
Information dissemination based on the

en-passant communication pattern ?

Daniel Görgen, Hannes Frey and Christian Hutter

University of Trier
Department of Computer Science

54286 Trier, Germany
E-mail: {goergen|frey|hutter}@syssoft.uni-trier.de

Abstract This work presents a communication pattern for high mobile
ad hoc networks. En-passant communication uses the short interaction
period of passing devices to efficiently synchronize the information of
each device. This is achieved by creating peer-to-peer overlays of inter-
est domains. Missing information is determined by exchanging profiles
first. As example application UbiQuiz is presented, a mobile quiz ap-
plication. It exchanges questions using the en-passant communication
pattern. UbiQuiz has been implemented, tested and evaluated within a
simulation and on real devices.

1 Introduction

Nowadays, a large variety of more and more powerful mobile devices such as
Pocket PCs, PDAs, and smart-phones is available. Since most of these devices are
equipped with wireless communication adapters like IEEE 802.11 or Bluetooth,
it is reasonable to use these for communication with nearby devices. Communi-
cation in ad hoc networks can be classified in single hop communication, where
devices communicate with neighboring devices only, and multi hop networks,
where messages can pass several hops forwarded altruistically by others.

While it is possible to realize an end-to-end communication over a few hops
in dense ad hoc networks by using ad hoc routing mechanisms such as topology
based [11] or geographic [5] routing, end-to-end communication might fail when
network density decreases and network size and mobility increases. In such sparse
ad hoc networks infection-based mechanisms work well but degenerate to flood-
ing when the network density increases and may lead to the well known broad-
cast storm problem [10]. Thus, message exchanging must be reduced to efficient
broadcasting mechanisms, where the broadcasting property of wireless networks
is utilized to reduce message forwards and not every message is forwarded to
every other device. The most critical problem is to decide which message has

? This work is funded in part by DFG, Schwerpunktprogramm SPP1140 “Basissoft-
ware für selbstorganisierende Infrastrukturen für vernetzte mobile Systeme”, Mi-
crosoft Research Embedded Systems IFP (Contract 2003-210) and the Luxembourg
Ministère de la Culture, de l’Enseignement Supérieur et de la Recherche.



to be forwarded to which device. Thus, the devices have to determine which in-
formation is of interest and which is already known to the communicating peer.
Classifying devices by domains of interest is achieved by single hop peer-to-peer
overlays, where only devices within the same overlay are detected via beacon-
ing and are addressed by a local communication mechanism. The amount of
data transferred can be further reduced by exchanging information profiles first.
These profiles contain application specific information descriptions and all IDs
of known information fitting to this profile. Thus only new information must
be sent. This mobility driven information synchronization is termed en-passant
communication.

Much work has been done in the area of multi hop ad hoc networks in recent
years, but only a few real world applications have been implemented. One reason
for this is that implementation and testing causes still a high effort since a
critical mass of participating devices and test persons are needed. Starting the
development with simulations and emulations can reduce the testing overhead
and field trials can be reduced to a proof of concept only.

The UbiQuiz example is a quiz application helping students preparing for
their exams. Questions are shared and exchanged with neighboring devices and
disseminated within the ad hoc network. It is very probable, that en-passant
communication can be used today in this field, as no connected multi hop ad hoc
network is needed. Moreover, creating interest overlays perfectly fits to students
behavior, as it is common that they meet fellow-students currently studying for
the same exam.

This work is organized as follows: The next Section describes the UbiQuiz

application and all its parts in detail. It starts with a short application overview,
the description of peer-to-peer overlays and information synchronization with
neighboring devices. This is followed by a discussion of the applications gaming
part and the implementation issues starting with simulation and ending with
the real application prototype. The field-trials and the results are presented in
Section 3. Section 4 gives a short overview of the related work and finally Section
5 concludes this paper and gives an outlook to future work.

2 The UbiQuiz Application

UbiQuiz is a simple quiz game application in the manner of “Who wants to be
a millionaire”. The user has to answer questions with increasing difficulty by
choosing one out of four possible answers. To get help with difficult questions,
he is able to use jokers: Discard 50% of the answers keeping the correct one, call
a person for help or ask the audience and display a statistic of the results.

UbiQuiz is mainly intended to help students preparing their exams. There-
fore, it is possible to define different question categories, each covering one learn-
ing topic of different subjects, e.g. a lecture on distributed systems in computer
science. Students and teachers are able to define own questions and categories
in order to create a large and useful question pool. Devices running UbiQuiz

are able to exchange questions using the en-passant communication pattern.
UbiQuiz maps overlays to question categories. To reduce network load, only de-



vices interested in the same question categories will try to synchronize their ques-
tion catalogs. This behavior is realized by creating ad hoc peer-to-peer overlays,
where only devices interested in the same category are detected and addressed by
local communication mechanisms. During the synchronization of question pools,
the application aims at efficiently exchanging the missing questions causing a
minimum of network load. This is achieved by only sending profiles containing
a description of the needed subset and IDs of all known questions fitting to this
subset.

... ProfileProvider

ProfileManager

ProfileProvider

Altruistic OverlayOverlay n

ProfileProvider

QuestionManagerProfileManager ProfileManager QuestionManager

Overlay 1

Overlay Manager

QuizApplication

Information GateInformation Pool
send

information

receive

information

Figure 1. UbiQuiz P2P communication architecture overview

Figure 1 depicts a simplified overview of the application parts needed for the
peer-to-peer ad hoc communication. Each device has one InformationPool which
stores all known questions and one InformationGate, which delivers questions
to interested neighboring devices. All received or newly created questions are
directly passed to the InformationPool. For each question category the user is
interested in, one overlay is created. All overlays are managed by the Overlay-
Manager. On top of each overlay one ProfileProvider is used to send the user
profile and all fitting question hashes to devices entering the overlay. The Pro-
fileManager manages all known profiles of current neighbors. The QuestionMan-
ager provides questions to the quiz application and keeps track of all unanswered
questions.

To increase the probability that newly created questions are disseminated
within the network, each device also stores a fixed amount of questions from
other categories altruistically and exchanges them with other devices in an Al-
truistic Overlay as in other overlays but with a lower priority. All devices running
UbiQuiz are part of this overlay and also need a ProfileProvider and a Profile-
Manager for it.

2.1 Information Pool

All received and user created information is stored within the InformationPool.
Other application parts are able to register handlers to find out about newly
received, created or deleted information. Thus, the application is able to wait



for questions of a specific type, e.g. the question category and question difficulty.
Additionally, all ProfileProviders are interested in new information in order to
send it to interested neighbors. Each information item is addressed with an ID,
containing a hash value generated when it is created and a creation timestamp.
The hashes are currently generated using an MD5 hash function and are used
in the same manner as in the rsync protocol [13], where the hash values are
exchanged first to determine the missing information on each site.

2.2 Peer-to-peer Overlay Management

A single hop peer-to-peer overlay (see Figure 2) enables the application to find
out about devices within the same overlay leaving or entering the communica-
tion range. Moreover, it enables the application to send unicasts, multicasts and
broadcasts to devices within the overlay only. Thus, only devices which are pos-
sibly interested to communicate with each other are detected and are addressed
by multicasts and broadcasts. As UbiQuiz overlays are mapped to question cat-
egories, questions are only shared with devices interested in the same question
category.

The overlay management uses a periodic adaptive beaconing to broadcast the
IDs of all overlays the device currently participates in. The beaconing interval
is increased when the number of devices in the direct neighborhood increases.
They are counted using the incoming beacon messages. This avoids, that too
many beaconing messages are sent within dense networks and too much network
bandwidth is used for this service. In sparse networks a smaller beaconing interval
is needed to detect single passing devices much earlier. Applications can enter a
specific overlay, thus being able to receive enter and leave events of other devices
and receive multicast and broadcast messages of an overlay neighbor.

Broadcasts from other overlays are ignored, so that applications only have to
consider messages which are of interest to them. Overlay multicasts are used to
benefit from the broadcast capability of the network to send one message to all
or a subset of all devices within the same local overlay. To increase reliability,
in contrast to broadcasts, multicast messages are acknowledged by the receivers.
This is achieved by adding all receiver addresses to the multicast message header.
This information is also available to the receiving application, so that it can
determine the other receivers.

2.3 Profile Based Information Dissemination

One of the most challenging problems when dealing with applications for mobile
ad hoc networks is the goal of making all relevant information available to devices
interested in them. Thus, it is essential to find efficient strategies for information
dissemination.

UbiQuiz uses a profile-based approach, where each device determines a de-
scription for the subset of information it is interested in. In UbiQuiz these pro-
files currently only distinguish between different question difficulties and creation
times, but can be extended easily. Thus, the application is able to request ques-
tions of specific difficulties where not enough unanswered questions are left and



���
�

���
�

���
�

���
�

D

C

B

A

Overlay 1

Overlay 2

Overlay 3

Figure 2. Devices A, B and C share
overlay 2 and are able to communicate.
A, C and D are in overlay 1, but A can-
not address D directly. C and D are in
overlay 3.

U V W X

Multicast

Ack

Figure 3. Device V sends sequentially
information items to U,W and X. The
next item is sent, after all receivers ACKs
the item. The first item is multicasted to
U and W, the second to U and X, etc.

request all new questions within a specific time delta. Due to the fact that this
profile exchange sits on top of an overlay the profiles must only be exchanged
with devices within the same question category. To ensure that the receiving
devices only send information which is unknown to the profile sending devices,
the profile message also contains a set of information keys fitting to the profile.
With that, the receiving device can easily determine the set of information to be
sent by calculating the difference between all locally known information fitting to
the profile and all locally known keys of the other device. Profiles are exchanged
by the ProfileProvider whenever another device enters the local overlay. When a
profile changes, the device sends a profile update via broadcast to all neighboring
devices. Only the difference between the last sent key set and the key set fitting
to the new profile has to be included since all devices store the last profile and
information keys within their local ProfileManager.

Another reason for storing profile information is that the application can
send newly created or received information to interested devices when the local
key set does not contain the new key and the information fits to the devices
profile.

UbiQuiz has been designed to run in cooperative, mobile ad hoc networks.
Therefore it features support for general information dissemination realized with
an altruistic overlay. The user sacrifices some of his resources like storage capac-
ities, CPU power and communication bandwidth to disseminate data he is not
interested in.

The altruistic overlay will also be synchronized with other devices but its in-
ternal organization and the synchronization strategy differ from the ones applied
to normal overlays. In contrast to the “unlimited” amount of local information
stored for them, the size of the cache for the altruistic overlay is restricted and
might be changed by the user during application runtime. Consequently the
amount of information transmitted for this overlay is in the worst case limited
by the size of the cache. When two devices come into communication range, a
view of the altruistic cache is transmitted, the receiver computes the optimal
cache by adding the content of its cache to the received one and sends the miss-
ing elements. Nevertheless it might still occur that transmitted information is



discarded. This can happen as the cache might have changed due to information
received by other devices not being visible for the sending device.

The cache tries to keep recent data and also aims at being as altruistic as
possible. This implies storing data from as many different overlays as possible.
Therefore, the altruistic cache is internally organized as two independent caches,
one using the timestamps and one using the overlays as an argument to the
replacement algorithm. When an information key is deleted from the cache, the
corresponding information item is deleted from the InformationPool.

All information data which needs to be sent to interested neighbors is sent
by the InformationGate. This is mainly done in a FIFO manner: the information
added first is sent first. Due to the fact, that one information can be of interest
to more than one device, the FIFO order may be reorganized, so that informa-
tion addressed to most devices is prioritized. To save network bandwidth, the
information is sent via an overlay multicast, so that the information data must
only be sent once because a broadcast medium is used (see Figure 3). After all
receiving devices have acknowledged the message, the InformationGate sequen-
tially sends the next messages until all information is sent or all receiving devices
have left the communication range of the device.

It is possible that not all information is sent to the receiver, because it is
always able to leave the communication range. Therefore, it can be necessary to
send more important information first and unimportant information last. This
ordering can be achieved by adding them in the correct order to the Informa-
tionGate, since it sends them in FIFO order. This strategy achieves that the
maximum of relevant data can be exchanged even in short interaction periods.

The reception of the information by other devices is communicated to the
ProfileManager, so that it does not have to send this information to the receiver
again. Moreover, each receiving device can determine all other receivers and is
also able to communicate this to its ProfileManager.

2.4 Playing the Game

During an UbiQuiz game, the QuestionManager provides questions for the cur-
rent difficulty level. It keeps track of all answered questions so that it is able
to provide only unanswered questions to the user. When it detects that it runs
out of unanswered questions, it changes the current profile accordingly and com-
municates it to the ProfileProvider to announce this change to the neighboring
devices. Thus it is possible to receive these questions before no unanswered ques-
tion is left. To be up to date, the user can adjust the profile so that he always
receives the newest questions with a definable age.

It is, of course, possible that no (unanswered) question for a difficulty level
is left. In that case, the user can choose to answer a quetsion he answered in a
prior game, use a question of a higher difficulty level or wait until a question for
this difficulty level is received.

The game can be played offline when enough questions are stored within
the QuestionPool. It is also possible to play together with users in the direct
neighborhood. In this case, only simple singlehop ad-hoc communication is used.



The user is able to choose direct neighbors as a “telephone” or “audience” joker.
All active users are listed – this information is already known by the overlay
management – and the user is able to select one as telephone joker. Now the other
user can answer the question and specify how reliable his answer is. By selecting
the audience joker, neighboring devices of the same overlay are addressed via
a multicast message and can help the user answering the question. All unicast
answers are collected and an answer statistic is provided to the asking user.
Another variant is to create a question “on demand”. Neighbors are able to
create new questions for the playing user who is waiting for receiving questions
of the next difficulty step.

Figure 4. The UbiQuiz GUI. Figure 5. Manage question categories.

Beside playing the game, the user is able to manage the question categories he
is currently able to see. (Figure 5). He can leave or enter each known category. It
is also possible to load XML coded question libraries from the file system. These
new questions are stored within the local QuestionPool and are disseminated in
the ad hoc network from now on. The edit mode allows the user to create new
questions for a specific question category and to create new question categories.

2.5 Implementation

The UbiQuiz application has been implemented in Java using a workbench for
implementing and testing applications for mobile multihop ad hoc networks [6].
In a first step, all information management and exchanging components and pro-
tocols were implemented and tested within the workbench’s simulator. The sec-
ond step included the GUI and game logic development process and a testrun in
the workbench hybrid mode (see Figure 6). There, real devices can be connected
to the simulator and the application can be tested with real user behavior. For
such application testing, the devices in the simulator can be moved by clicking
on the visualization frame.

Finally, the implemented application and GUI code can be used without
modification on an execution platform for real devices. Thus, the application
can be tested and evaluated on a real hardware platform. The application not



Figure 6. Two extern devices are connected to the simulator, playing UbiQuiz together.
Devices are moved according to a path net mobility model.

only be used on notebooks as used for the field-trials, it is also possible to
use it on PocketPCs or other small mobile devices, equipped with a WLAN
adapter and providing a Java VM. The execution platform uses UDP unicasts
and broadcasts over WLAN for communication. Since multicast communication
is realized as broadcast within the lower layers in WLAN (no low level packaging
and acknowledgment), the multicasts are mapped to broadcasts with unicast
acknowledgments.

3 Evaluation of UbiQuiz in Field Trials

In order to estimate the practical applicability of the UbiQuiz application, the
reference implementation has been investigated in both a static and a mobile
”real world” usage scenario. All evaluation runs were performed by using a set
of mobile devices consisting of four notebooks and two tablet PCs. Each device
is equipped with an IEEE 802.11b interface. If possible, the interface was fixed
to the maximum transfer rate and the power save function was disabled.

Each device was running the UbiQuiz application, while logging the times
of message transmissions and message receipts. For each simulated scenario one
device initiated the dissemination of a new set of UbiQuiz questions containing
5000 questions, while each question accounting for about 900 − 1000 bytes of
message size.

Data rate and error probability were of primary interest in order to judge
the performance in both usage scenarios. However, in contrast to traditional
evaluation methodology, performance was measured from an application point
of view instead of sampling raw data traffic produced by the utilized network
protocols. Thus, the presented empirical values were obtained by sampling the
data rate and error probability in terms of average number of received ques-
tion library entries per second and the average number of lost messages during
transmission, respectively. The evaluation results presented in the following two
sections reflect the typical properties of a wireless communication media. The
data rate degrades for both, a growing number of devices utilizing the shared
communication media, and an increased distance between sending and receiving
device.



0

20

40

60

80

100

120

140

160

1 2 3 4 5

Number of Receiving Devices
Q

u
e

s
ti

o
n

s
 p

e
r 

S
e

c
o

n
d

Device 1 Device 2 Device 3 Device 4 Device 5

Figure 7. Question items per second. Figure 8. The en-passant communication
scenario.

3.1 Evaluating the One-to-Many Scenario

A typical real world application scenario of UbiQuiz may be some devices lo-
cated at a public place, while each device is within the communication range
of all others. In order to judge the performance of UbiQuiz for such a scenario,
three independent trials have been conducted for an increasing number (2-6) of
participating wireless devices.

Figure 7 depicts the average number of questions received per second as
a function of the number of receiving devices. One can see that the number of
received questions per device decreases, when the number of recipients increases.
This is due to the application design which requires that acknowledgements of
all current recipients have to be received before the next library entry is being
sent. Figure 7 also shows that summing the average number of question receipts
per device compensates that performance loss. This is due to the fact, that
questions are broadcasted to all devices and only the acknowledgments are sent
via unicast. Thus, only the small acknowledgement messages leads to a higher
protocol overhead, the large question messages has only to be send once to all
devices. Implementing such a multicast not within the application layer but in
mac layer as the unicast acknowledge my further reduce this acknowledgement
overhead.

3.2 Evaluating the En-passant Scenario

In a second application scenario, the quality of the UbiQuiz application has
been investigated with respect to exploiting the limited communication window
emerging from two devices passing each other causally as depicted in Figure 8.
Again three independent evaluation trials have been conducted, while both test
persons passed each other with ”almost” the same moving speed. The distance
of the starting points was about 150 meter, the meeting point was almost in the
middle. In all three evaluation runs the total amount of received messages was
about 1300− 1500 (≈ 14 MByte).

The curve progression of the number of transmitted question library entries
per second and the number of lost messages was investigated to be nearly the
same for all three evaluation runs. Thus, the data rate can be depicted as an
average over all three evaluation runs without losing its main characteristics (see



0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Time

Q
u

e
s

ti
o

n
s

 p
e

r 
S

e
c

o
n

d

Figure 9. Data rate during en-passant
communication.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

Time

L
o

s
t 

M
e

s
s

a
g

e
s

 p
e

r 
S

e
c

o
n

d

Figure 10. Message losses during en-
passant communication.

Figure 9 and Figure 10). One can see that both devices get in contact for the first
time at about 10 sec after starting the experiment. However, signal quality is bad
at this time and messages get lost with a high probability. The first message was
received successfully about 10 seconds later. The data rate increases and stays
around 30 question per second between 30 and 60. The devices met about second
50. There, the data rate drops to 21, probably caused by antenna interference.
After passing the meeting point the data rate start to decrease significantly. This
is probably due to the test persons hiding the device antennas. The same can
also be observed in Figure 9 where the number of lost messages is significantly
higher as before the meeting point.

4 Related work

There are multiple strategies to disseminate information in mobile multi hop
ad hoc networks. Beside several flooding algorithms like XCast [7], which uses
controlled flooding, e.g. MobiGrid [3] discusses among other ideas the publish
subscribe (PS) and the autonomous gossiping (AG) techniques. As UbiQuiz, AG
also uses en-passant communication and exchanges profiles first. But it neither
uses interest overlays, nor efficient information exchanging – date items are al-
ways forwarded to neighbors with fitting profiles. PS is used in [1] and works with
multi-layer networks to transport the data to the interested parties. A problem
when using PS is that a subscription to distant information sources is difficult.
Therefore, UbiQuiz can be thought of a PS implementation with one hop com-
munication. [4] as a representative of the AG technique broadcasts information
items and interested clients can detect and request missing information. Obvi-
ously, this might consume a lot of communication bandwidth. Instead of creating
information overlays as in UbiQuiz it is also possible to use tuple spaces. For
instance, [9] spreads tuples in the network according to propagation rules. Thus,
the data item “decides” to which device it migrates not the targeted device.
XMIDDLE [15] synchronizes information with direct neighbors by using XML
trees. Moreover, it is possible to link subtrees to devices were the information is
stored, but this leads to a high coupling of devices. Moreover, information access
is difficult in larger mobile ad hoc networks.



Many research has been done in the area of efficient flooding protocols [14].
One example are the SPIN [8] protocols which are intended to reduce message
overhead in sensor networks. This is also achieved by using information meta-
data, an application specific information description. New information is offered
to all neighbors by sending the metadata and neighbors then request missing
information. This causes much more overhead in a mobile environment, since all
locally known metadata must be exchanged when a new device is detected in
the neighborhood.

Even though the problem of information dissemination/retrieval in mobile ad
hoc network has been researched for some time, up to now very few applications
have been implemented. [2] is a multi-player adoption of the old single-player
”Elite” game. But it still uses central servers and was developed to research
social aspects of ubiquitous computer games. The approach made by [12] looks
more promising as Opentrek enables rapid game prototyping and delivers easy
discovery and integration of players into running games.

5 Conclusion and Further Work

This work introduced UbiQuiz, a real world gaming application for multi hop ad
hoc networks. Moreover, it introduced an ad hoc information dissemination pro-
tocol for efficient information exchanging by reducing the amount of exchanged
information to interest domains and profiles. The field-trials performed demon-
strated on the one hand the usefulness of using the broadcasting capabilities of
wireless communication and the necessity of reducing communication overhead
by using interest domains. On the other hand it can be observed, that current
system softwares and wireless communication techniques are still not prepared
for multi hop ad hoc communication and that still much work has to be done
in this area. One example is the lack of reliable communication mechanisms
efficiently using the broadcasting facilities of wireless communication.

Since field trials are still very expensive, only a very small subset of necessary
tests has been performed. More extensive tests are planned for the nearer future,
including the development of a field-trial testbed and a management application
helping to reduce the complexity of field-trials.

The UbiQuiz application is only one aspect of a larger m-learning environ-
ment and should be combined with other m-learning applications. For example
combining questions with distributively created scripts and lecture slides dissem-
inated over the ad hoc network to give answering hints is planned. Moreover,
it is of course possible to realize more complex applications not only based on
simple multiple choice questions.

Another application aspect is the possibility of editing and deleting questions.
Currently editing is achieved by simply changing the creation timestamp and
keeping the original hash value so that only the newest information survives.
Deleting is achieved by propagating deletion information and storing this in a
local deletion history. The current work is focused on a distributed information
evaluation process, where the user is able to vote for questions. Thus, it is possible
to keep a ”good” question alive while a ”bad” question expires and is deleted.



Finally the application should be put into practice by using it in the context
of a system software lecture, since most students are already equipped with
mobile devices having wireless communication adapters.

References

1. Emmanuelle Anceaume, Ajoy K. Datta, Maria Gradinariu, and Gwendal Simon.
Publish/subscribe scheme for mobile networks. In Proceedings of the second ACM
international workshop on Principles of mobile computing, 2002.

2. S. Bjork, J. Falk, R. Hansson, and P. Ljungstrand. Pirates! Using the Physical
World as a Game Board. In Conference on Human-Computer Interaction, 2001.

3. Anwitaman Datta. MobiGrid: P2P Overlay and MANET Rendezvous - a Data
Management Perspective. In CAiSE 2003 Doctoral Symposium, 2003.

4. Anwitaman Datta, Silvia Quarteroni, and Karl Aberer. Autonomous Gossiping: A
self-organizing epidemic algorithm for selective information dissemination in mobile
ad-hoc networks. In International Conference on Semantics of a Networked World,
2004.

5. Hannes Frey. Scalable geographic routing algorithms for wireless ad hoc networks.
IEEE Network, 18(4):18–20, July 2004.

6. Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm. A java-based
uniform workbench for simulating and executing distributed mobile applications.
In Proceedings of FIDJI 2003 International Workshop on scientific engineering of
distributed Java applications, Luxembourg, November 27–28 2003.

7. J. Koberstein, F. Reuter, and N. Luttenberger. The XCast Approach for Content-
based Flooding Control in Distributed Virtual Shared Information Spaces - Design
and Evaluation. In 1st European Workshop on Wireless Sensor Networks (EWSN),
2004.

8. J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks. In MobiCom, 1999.

9. Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples on The Air: a Mid-
dleware for Context-Aware Computing in Dynamic Networks. Technical report,
University of Modena and Reggio Emilia, 2002.

10. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem
in a mobile ad hoc network. Proc. of the 5th ACM/IEEE Int. Conf. on Mobile
Computing and Networking, pages 151–162, 1999.

11. Elizabeth M. Royer and Chai-Keong Toh. A review of current routing protocols for
ad-hoc mobile wireless networks. IEEE Personal Communications, pages 46–55,
April 1999.

12. Johan Sanneblad and Lars Erik Holmquist. Prototyping mobile game applications,
2002.

13. Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical report,
Australian National University, 1998.

14. B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad
hoc networks. In Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC), pages 194–205, 2002.

15. Stefanos Zachariadis, Licia Capra, Cecilia Mascolo, and Wolfgang Emmerich.
XMIDDLE: Information sharing middleware for a mobile environment. In ACM
Proc. Int. Conf. Software Engineering (ICSE02). Demo Presentation., Orlando,
FL, USA, May 2002.


