A scalable wor kbench for implementing and evaluating distributed
applications in mobile ad-hoc networks

JohannesK. Lehnert , Daniel GOrgen, Hannes Frey and Peter Sturm
System Software and Distributed Systems
University of Trier, Germany
{lehnert|goer gen|frey|stur m} @syssoft.uni-trier.de

“Keywords” multihop ad-hoc network

Abstract

This work presents a Java-based development platform
aimed to ease the task of building applications for mobile
multihop ad-hoc networks. The platform follows a three-
tier development principle composed of simulation, emula-
tion and deployment on real mobile devices. Opposed to
pure network simulators, this development environment
primarily focuses on an easy to use event-based program-
ming model and scalability regarding simulating thousands
of mobile devices. Additionally, utmost code reuse is pro-
vided, since attaching real hardware to the simulation and
running the application on real devices are an integral part
of the workbench. Performance evaluation by means of a
benchmark application demonstrates that simulating over
ten thousand mobile devices can be performed faster than
in real-time. Also experiences gained from implementing a
mobile auction system for ad-hoc networks proved that the
integral parts for emulating and deployment are of high
value when building real life applications for mobile multi-
hop ad-hoc networks.

INTRODUCTION

Future paradigms such as pervasive computing and
ubiquitous computing [1] are characterized by countless
numbers of small and thus mobile devices that communi-
cate with neighboring peers using wireless transmission
techniques. Groups of these mobile devices may form
highly dynamic ad-hoc networks at any given time. The
number of hops required in these networks to reach a given
destination or to enter awireful and more reliable backbone
structure is used to distinguish between at least two differ-
ent classes of networks. Single-hop ad-hoc networks such
as cellular phone networks, WLAN infrastructures based on
access points or Bluetooth piconets are state of the art. In
contrast to this, spontaneous multihop networks with high
device mobility and frequent fluctuation are still a research
issue. Since it is expensive for any mobile device within

such a multihop network to obtain reliable global informa-
tion, self-organization as the primary design principle is
essential to cope with the anticipated frequency of change.
As a consequence, decisions within a mobile device can
only be based on local information, e.g. the state of the de-
vice itself and its current neighborhood. In such an envi-
ronment, most of the goals of a distributed mobile applica
tion are achieved by synergy through atruistic behavior of
all involved devices.

Successfully evaluating self-organizing applications for
multihop ad-hoc networks requires more mobile devices
than can be provided at the moment. Additionally, the
number of volunteers needed to run these experiments is
hard to obtain even in a university environment and they
are even harder to orchestrate for the sake of reproducible
scientific results. A promising approach is to provide a uni-
form workbench supporting experiments ranging from pure
simulation of several thousand mobile devices, over hybrid
scenarios with interaction among simulated as well as real
life devices up to dedicated field trials as proofs of concept.
From this uniform workbench, a development process can
be derived that starts with implementing, testing, and
evaluating algorithms and applications in a purely simu-
lated environment first. In subsequent steps, dedicated mo-
bile devices can be cut out of a simulation run and be trans-
ferred to areal mobile device in order to deal with real user
interaction and to evaluate the user experience. In a final
phase, specific field trials can be defined and executed on a
number of mobile devices. The hybrid nature of this ap-
proach leads to the additional requirement, that the simula-
tor must be capable to achieve real-time execution behavior
even in the case of several thousand mobile devices.

In the remainder of this paper, a Java-based implemen-
tation of such a uniform workbench for multihop ad-hoc
networks is presented. The next section starts with a discus-
sion of related work. In the following section 3, the simula-
tor of the workbench is presented in detail. Emphasis will
be put on parts of the simulator core that have been mod-
eled explicitly for extension and adaption to specific mobil-

" This work is funded in part by DFG, Schwerpunktprogramm SPP1140 “Basissoftware fir selbstorganisierende Infrastrukturen fir

vernetzte mobile Systeme”

ity models, different dynamic aspects of ad-hoc networks as
well as the visualization of simulation results. By measur-
ing benchmark simulations, it is shown in section 4 that the
simulation of several thousand mobile devices in real-time
is possible, which was a primary design goal. In section 5,
the remaining two parts of the workbench, hybrid simula-
tion and support for execution on real hardware, are intro-
duced briefly. Finally, in section 6 conclusions drawn from
experiences with a self-organized auction system for ad-hoc
networks are discussed.

RELATED WORK

This work presents a development environment for
mobile applications running in a large scale mobile multi-
hop ad-hoc network. The environment divides the design
process of mobile applications in three parts, simulation,
emulation and execution on real devices.

The CMU wireless extension to ns2 [2] and GloMoSim
[3] are the commonly used tools for simulating protocolsin
mobile multihop ad-hoc networks. Both simulation envi-
ronments focus on a detailed simulation of protocol layer 1
to 4. This high level of detail increases the computational
complexity of the simulations. Thus, only a small number
of devices can be simulated in acceptable time.

Emulation is used in order to allow user interaction
and to allow existing applications to be tested in a simula
tion environment without the need of managing hundreds
of real devices. An emulation platform using ns2 is pro-
posed in [4]. It is an extension of the Vint/NS simulator [5]
for emulation of wired networks using the wireless exten-
sion to ns2 [6]. This emulation platform scales well up to
about 100 devices simulated by ns2. Other emulation ap-
proaches forego the simulation of mobile devices but emu-
late only node mobility and the resulting network behavior.
Mobility data can be created synthetically as proposed in
[7] or captured from real life test runs as donein [8].

Network experimentation using a testbed is useful to
prove the applicability of a protocol or application in areal
life scenario. Ad-hoc network examination in such experi-
ments were performed by [9] and [10] or [11] for single hop
networks. An obvious disadvantage of using a testbed to
examine protocol or application characteristics is that re-
sults are not reproducible and that it takes great efforts
to manage the large number of real maobile devices. In order
to alow more reproducible results [12] proposes users
walking around by following the instructions of a scenario
script running on each mobile device.

SIMULATION

The main focus of the simulation platform presented in
this paper is to ease the development and simulative evalua-
tion of applications for mobile multihop ad-hoc networks.
A high abstraction level based on an object-oriented design
in Java enables the developer to concentrate on application
design without worrying about technical details of the

simulator. Instead of aiming to simulate the lower network
layers as exactly as possible, the focus is on the simulation
of the topological properties of the ad-hoc network. The
combination of a high abstraction level and the limitation
on the topological properties reduces the computational
complexity of the simulation and allows simulating a high
number of devices while maintaining short simulation
times.

Additionally, the high abstraction level alows imple-
menting the same abstractions in the simulation environ-
ment as well as on real hardware platforms. Applications
developed and tested in the simulation environment can
easily be transferred to a real hardware platform (See sec-
tion 5). Thus, field trials are based on well-tested code.
Traditional simulators, in contrast, require a complete re-
write of the application in order to port it to areal hardware
platform.

[User \
{ Behavior

7

y Vv

(Application

\

/ ///’___\\
. Mobility \
. 7~ Source /
Dynamic:_ /,/
Source)\ T

Visualization
Canvas

Simulation Kernel

ﬂ:onnectivity
\Computation,
N

Figure 1. Architecture of the simulation environment: a
simulation kernel extended by pluggable components.

P
/ Application/
‘ User

\Source

Figure 1 shows the architecture of the simulation envi-
ronment. A discrete-event simulation kernd is extended by
multiple components. These components are based on gen-
eralized interfaces and thus are exchangeable. Developers
can use the default implementations provided by the simu-
lation environment or use their own implementations. In
particular, these pluggable components are:

Application: The application to simulate.

User Behavior: The simulated user behavior used to trigger
actions in the simulated application.

Mobility Source: Provides mobility information for all mo-
bile devicesin the smulation.

Dynamic Source; Provides information on all other dy-
namic aspects of the devices in the simulation

Network Model: The implementation of the wireless com-
munication network in the simulation.

Connectivity Computation: Calculates the connectivity be-
tween the devices in the simulation.

Application/User Source: Provides the coupling of devices,
applications and user behavior.

Visualization Canvas. Implements a visualization method
for the simulation.
All these components are described in detail in the

following subsections.

3.1 Mobility models

The simulation uses a smple but effective abstraction
for mobility models. A mobile device enters the simulation
area at a given point in time and remains in the simulation
area until no more mobility data is available. After entering
the scenario devices repeatedly move directly from one
point to another within a given period of time. The velocity
of a device is constant during such a move, but can be
changed for each new move. Choosing an identical starting
point and endpoint stops the device for the duration of the
“move”. This abstraction allows the implementation or gp-
proximation of arbitrary mobility models. Additionally, it
supports the optimized calculation of connectivity data as
shown in subsection 3.3.

Mobility information in the simulation following this
abstraction is provided by Mobility Sources. The simulation
kernel queries the mobility source (through the dynamic
source) for mobility information and executes the corre-
sponding movements. If no more mobility information for a
device is available, the device is removed from the simula-
tion.

Mobility sources are exchangeable and their implemen-
tation is not determined. This leads to flexibility because
mobility information may be computed on-the-fly but also
read from afile as well. Thus, the usage of external mobil-
ity generators like BonnMotion [13] isfairly easy.

3.2 Further dynamic aspects

The wireless communication technology leads to addi-
tional dynamic aspects (actions) of the mobile devices. Uni-
and bidirectional connections between mobile devices are
established and closed whenever devices enter or leave their
mutual sending ranges. The link reliability of an existing
connection may change over time and devices might
change their sending power.

All these dynamic aspects are provided by Dynamic
Sour ces, together with the mobility information. On request
of the simulation kernel the dynamic source provides the
next mobility information or the next dynamic action of a
device. As with mobility sources the implementation of
dynamic sources is not determined and they are exchange-
able. Dynamic actions may be computed on-the-fly, read
from afile or result from user input.

Dynamic aspects are reusable for identical scenarios
even if the simulated application and/or its simulated user
behavior are changed. This reduces the simulation time

significantly since the expensive connectivity computation
is avoided.

3.3 Connectivity computation

Computing the connectivity between mobile devices is
a computationally intensive task in the simulation. The
simulation uses proactive connectivity computation. The
connectivity between all mobile devices is computed in ad-
vance and independently of the network communication.
Therefore, thisinformation is available all the time.

The Link Calculator component computes all connec-
tivity information in the simulation and acts as a dynamic
source. It uses the properties of the mobility model abstrac-
tion to compute the connectivity information efficiently.
Since all devices move with constant velocity on straight
lines, a device starting a new move is able to compute all
connectivity events for this move. The mobile device com-
pares its move with all actual moves of other devicesin the
simulation and computes if and when the distance between
two devices creates or breaks a link by solving the corre-
sponding linear system of equations The device computes
the connectivity events for both devices. Combined with a
specia handling for devices entering and exiting the simu-
lation this method alows to compute the connectivity in-
formation efficiently. Instead of computing connectivity
information in fixed time intervals this information is
computed once for the complete movement.

3.4 Network models

The network model of the simulation is based on two
communication primitives: local unicast and local broad-
cast. Local unicast provides communication with one de-
vice in the sending range while local broadcast allows
communicating with all devicesin the sending range. Con-
nectivity information provided by the dynamic source is
used by the network implementation. Actions indicating a
new connection are interpreted as “potential new connec-
tions’, thus enabling the network implementation to ignore
the connection. This alows the implementation of simple
network models as well as complicated statistical models,
which take into account the device density and other distur-
bances of the wireless network. Even very detailed network
models as the IEEE 802.11 model of ns-2 could be mapped
to the network model abstraction.

Messages sent over the network may be traced: the
sender is notified when the message leaves the local queue.
Additionally, network implementations may provide notifi-
cations about successful, unsuccessful or undefined delivery
aswell.

Applications in the simulation never use a network
implementation directly but use a collection of network
protocols instead. Network protocol implementations use
the two communication primitives of the network model to
implement complex communication protocols.

In order to speed-up application and protocol develop-
ment, messages in the smulation are standard Java objects

implementing a message interface. These objects "know"
which method to call at the receiver and thus can be han-
dled generically in the network model implementation.
Messages do not need to be space-optimized since a specia
size dtribute allows the realistic simulation. This eases the
devel opment of new message types.

Application messages are wrapped in protocol mes-
sages when they are sent using one of the network proto-
cols. At the receiver side the protocol message is handled
and triggers the handling of the application message if nec-
essary. Message objects must be cloned when they are sent
to other devicesin the simulation to preserve the inner state
of the messages when multiple devices receive the same
message. The developer can disable this cloning for state-
less messages, thus allowing faster simulation runs due to a
significantly reduced number of objects.

3.5 Application interface

The simulation environment allows one application per
mobile device and uses Application User Sourcesto handle
the assignment of applications and devices as well as the
definition of the ssimulated user behavior. Application User
Sources provide the simulation kernel on request with a
tuple of application and user behavior. By implementing a
suitable Application User Source, the developer is able to
define exactly which application is executed on each de-
vice. The separation of the simulation scenario, i.e. mobil-
ity, simulation area, sending ranges etc., from the simulated
application and the user behavior allows using precomputed
connectivity and mobility data to speed-up the simulation.

The application has no direct access to the mobile de-
vice, but uses the operating system abstraction of the simu-
lation kernel to get information about the device. The oper-
ating system makes available the current time, the position
and the moving direction of the device. A neighbor discov-
ery service informs the application whenever another de-
vice enters or leaves the communication range of the device
running the application. Additional information like the
current position and direction of other devices are available
from the neighbor discovery service as well.

3.6 User behavior

The simulated user behavior has access to the applica
tion and thus can trigger application events. Additionally,
the simulated application can trigger actions of the simu-
lated user behavior as well.

3.7 Visualization

The visualization architecture of the simulation allows
the visuadization of all simulation components. It is based
on shapes like rectangles, ellipses, images, text and poly-
gons, which draw themselves on a canvas. Due to this ge-
neric approach the implementation of the visualization can
be varied and is not limited to windowing systems. Visuali-
zation backends like Postscript or movie files are possible.
The current version provides canvas implementations using
Java 2D, SWT [14], OpenGL [15], XML and Postscript.

The simulation alows the visualization of the simula
tion area, the mobile devices, the network, network mes-
sages, protocols and applications. By defining shapes or
collection of shapes for these components, the developer
can define the needed level of detail. The visualizations of
the components are placed on different layers. The order of
these layers may be specified by the developer as well.

Using the visualization is computationally expensive
and slows the simulation down. But often the visualization
provides insights which would be very hard to obtain by
evaluating traditional trace files. Additionally, the visuali-
zation can be disabled and causes no delay in this case.

3.8 Statistics

The evaluation of simulation runs is simplified by a
statistics system. This statistics system allows the developer
to collect and evaluate local as well as global data during
simulation runs. All collected data may be saved in a report
after the simulation run is finished. Additionally, live visu-
aization of the statistical data is possible.

PERFORMANCE EVALUATION

In order to allow a better evaluation of the scalability
and performance of the simulation environment, a sample
message dissemination application has been tested. This
application was simulated with the Random Waypoint Mo-
bility Model [6] and a simple network implementation for
10 minutes. The sending radii of the mobile devices are
uniformly distributed between 10 and 100 meters and the
moving speed of the mobile devicesis uniformly distributed
between 0.8 and 1.0 meters per second.

Three series of measurements were done on a Pentium
IV (HT) with 3 GHz and Java 2 SDK 1.4.1 (IBM). Thefirst
one measured the execution speed for an increasing number
of devices on a fixed simulation area of 500m x 500m, thus
increasing the average device density in each step. The sec-
ond measurement increased the size of the simulation area
while increasing the number of devices, thus keeping the
average device density the same. Table 1 and 2 clearly
show that device density is an important factor for the per-
formance of the simulation environment. The third meas-
urement increases the device density just as the first, but
also increases the network load. An increasing number of
devices flood a50m radius region around them with a con-
stant bit rate (one data package every 4s, rebroadcast by
every devicein the area).

In case of a constant device density the simulation en-
vironment scales well with the number of devices, because
the number of links per devices does not increase. In al
cases the execution time is slightly quadratic in the number
of the devices, because all devices has to be compared with
every other. But in the precomputed constant device density
case this is only linear due to the fact, that the links per
device is constant. In both cases the real-time simulation of
a high number of devices is possible: for the constant de-

vice density a simulation of 8000 more than twice as fast as
real-timeis possible.

If the mobility and connectivity data is precomputed,
the execution times decrease significantly. Especially in the
case of constant device density the performance gain is sub-
stantial. A simulation run with 3200 maobile devices is fin-
ished nearly 20 times as fast (243.5s instead of 4784.1s).
For the measurement with increasing device density the
execution time is reduced by 70% (1173.9 instead of
3797.7).

Using a Java2D canvas implementation, visualization
in real-time (or even faster) is possible up to 3200 devices
in the case of increasing device density. For constant device
density the maximum number of devices for a real-time
visualization is 8000. Further speed-ups are possible by
using precomputed mobility and connectivity data.

Table 1. Execution times for for the example simulation on
asimulation area of 500m ~ 500m.

#de- Execution Execution
vices time time

(seconds) (precomputed)

(seconds)
50 0.52 0.87
100 0.76 1.08
200 1.30 1.61
400 3.31 3.69
800 11.77 11.97
1600 47.90 40.72
3200 245.13 167.30
6400 3797.74* 1173.89
12800 n/a n/a

Table 2. Execution times for the example simulation with
an average device density of 0.002 devices per m”.

#devices Simulation Execution Execution time
area time (precomputed)
(meters) (seconds) (seconds)

125 250" 250 124 181
250 250" 250 2.20 281
500 500" 500 4,78 5.23
1000 707~ 707 11.69 10.12
2000 1000 “ 1000 29.50 19.87
4000 1414 1414 77.05 35.57
8000 | 2000 2000 233.10 66.32
16000 2828 " 2828 807.87 118.73
32000 | 4000 4000 4784.08 243.48

Increasing the network load linearly causes only linear
increasing execution times. After omitting the link calcula-

1 Unlike the other simulation runs the also tested Sun VM per-
formed better here and needed only 2686.99 seconds.

2 The available RAM (1792 MB) of the machine used for the
measurement was not sufficient to run the simulation. Thisis due
to the high device density and the resulting number of events.

tion times (0 sending devices) doubling the network load
increases the execution time only by the factor 1.7-2.2. The
data rate (10240 bytes/s) and the sending data rate (128
bytes/s) were chosen so that the network is nearly saturated
in the case that 640 of 3200 devices are sending. All results
of this measurement are depicted in table 3.

Table 3. Execution time (seconds) for increasing device
density and increasing network load.

Devices | 50 100 | 200 | 400 | 800 | 1600 | 3200
sender

0| 047 061] 0.96| 249 9.73] 4050/ 210.89

10| 0.76] 1.08| 1.58| 3.94| 16.61 62.68| 311.48

20| 0.90| 1.15| 2.00| 4.87| 21.64| 82.60| 399.88

40| 0.94| 1.36| 254| 7.53| 30.62| 129.91| 558.92

80 x| 1.79| 3.93| 12.57| 53.62| 231.52| 982.71

160 X X| 6.70| 23.85| 95.68| 444.40|1936.53

320 X X x| 44.29|190.65| 861.43|3882.74

640 X X X x|394.41| 1703.27| 7662.28

EMULATION AND REAL HARDWARE

Based on the high abstraction level of the smulation
environment two further evaluation environments are pro-
vided. The first one, a hybrid simulation platform, enables
the emulation of applications developed for the simulation
environment while the second one alows the execution of
these applications on real hardware.

5.1 Hybrid simulation platform

The hybrid approach alows real clients to be attached
to a running simulation using RMI over a network connec-
tion. Mobile devices using a wireless connection as well as
workstations in a traditional fixed network may act as cli-
ents in this approach. This enables users to interact with
the simulated application, thus replacing the simulated user
behavior with more realistic input. The visualization of the
simulation allows the visualization of the global simulation
state regarding the simulated application. Even though the
application is running in a simulation environment, never-
theless one gets a feeling about the application running in
red life.

Using the hybrid simulation platform frees the devel-
oper from testing his application directly in field trids. In-
stead of having to configure lots of devices and organize a
field trial, he can use a network of workstations and still
gain insights into the behavior of the application in a real
world scenario. Additionally, the hybrid simulation plat-
form dlows the easy demonstration of applications.

The hybrid simulation platform is based on a cli-
ent/server architecture. Simulation server and simulation
control are running on the server side. The simulation
server acts as a RMI server with the simulation clients reg-
istering as RMI clients. Simulation control runs the smula-
tion platform in a second thread and passes user input from
the simulation clients to the simulation platform and vice
versa. The core simulation is not aware of external clients,

since by using an external user object, input and output
regarding a certain client is treated in the same manner as
for a common simulated user. Thus, there is no need to
change any code from the pure simulation to the hybrid
simulation platform.

The simulation client is responsible to provide a fron-
tend for the user to control its assigned mobile device and
application. In general, it consists of an application GUI
replacing the simulated user behavior and providing infor-
mation about the application state. When porting an appli-
cation from the pure simulation to the hybrid simulation
platform, this is the only part where additional code has to
be written.

5.2 Execution on real hardware

The hardware execution platform provides exactly the
same interfaces as the simulation platform. A hardware
abstraction layer provides al functionality of the simulated
platform such as network communication, neighbor discov-
ery, positioning and the same event-based programming
model including system timers and message events. With
these preconditions the application code of a simulated ap-
plication can be used without any modifications. Solely the
simulated user behavior is replaced by a GUI which enables
the user to interact with the application running on the mo-
bile device. If the hybrid simulation platform has been used
to evaluate the application, the GUI from this evaluation
can be reused.

The current implementation of the hardware execution
platform is implemented for Pocket-PC or notebooks run-
ning a VM. Devices receive positioning information using
GPS [16] units and wireless communication is done over
IEEE 802.11 [17]. The network model of the simulation
platform is implemented using UDP/IP unicasts and broad-
casts. One hop communication between devices is mapped
to these primitives directly. All higher level communication
protocols like topology-based routing are implemented in
the simulation platform and can be used without modifica-
tions because they use the network model interface of the
simulation platform. Messages sent by applications are se-
rialized with the standard Java serialization mechanism
and sent over the network. If needed, this could be replaced
with amore efficient method.

Neighbor discovery is implemented with a beaconing
protocol. A beacon contains the device address, its current
position and its moving direction. Each device broadcasts
beaconsin regular intervals. To detect bidirectional connec-
tions, devices respond with an empty unicast message when
they receive a beacon. Neighbor information is cached and
provided to the application as needed.

At the moment the execution platform solely supports
GPS to receive positioning information, but other position-
ing services such as [18, 19] would aso be possible. The
spherical (longitude/latitude) coordinates of GPS are
mapped to the Cartesian coordinates of the mobility model

of the simulation platform by using a Gauss-Kriiger projec-
tion with a shifted zero-point.

Simulated applications are inherently event-driven.
Thus, the execution platform must provide the same event-
driven programming environment. This is achieved by mul-
tithreading and operating system timers. The
singlethreaded nature of the simulated application code is
preserved with multiple threads and local event queues.
Contrary to the simulation, events on the execution plat-
form have no ordering, therefore no assumptions should be
made in case of contemporaneity of independent events.

CONCLUSIONS

The simulation environment presented in this paper
provides the developer of applications for mobile multihop
ad-hoc networks with a scalable and comfortable evaluation
platform. Developers are supported by a high abstraction
level, a suitable programming model and a powerful visu-
alization interface. Furthermore, the simulation environ-
ment allows the efficient simulation of a high number of
mobile devices.

Applications developed in the simulation environment
can be transferred to a hybrid simulation environment and
areal hardware platform without modifications in the ap-
plication code. This accelerates the evaluation process sig-
nificantly, since well-tested code is used in the emulation as
well asin field trials.

UbiBay, an auction system for mobile multihop ad-hoc
networks, has been implemented using the simulation plat-
form. UbiBay uses a middleware based on the marketplace
communication pattern [20] to readlize a completely self-
organized auction system. Based on the first implementa-
tion of the auction system in the simulation environment,
UbiBay was evaluated both in the hybrid simulation envi-
ronment as well as on real hardware (HP iPAQs with IBM
J9 VM). Porting the application from the simulation envi-
ronment to the hybrid simulation environment proved to be
trouble-free. Only a graphical user interface had to be im-
plemented to allow the interaction of human users with the
application. Moving UbiBay from the hybrid simulation
environment to the real hardware platform required little
effort since the graphical user interface could be reused and
needed only minor modifications.

Current work involves the implementation of a more
realistic statistical network model resembling the properties
of IEEE 802.11. Additionally, a broader set of mobility
models for the simulation environment is implemented to
provide developers with a broader choice.

REFERENCES

1. Weiser, M.: The computer for the 21st Century. Scientific
American 265 (1991) 94-104

2. Fdl, K., Varadhan, K.: The ns manual. The VINT Project - A
collaboration between researchers at UC Berkeley, LBL, USC/ISI,
and Xerox PARC (1989-2003)

3 Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: A library for
parallel simulation of large-scale wireless networks. In: Proceed-
ings of the 12th Workshop on Parallel and Distributed Simulation
(PADS-98), Los Alamitos, IEEE Computer Society (1998) 154-
161

4. Ke, Q., Mdtz, D., Johnson, D.B.: Emulation of multi-hop
wireless ad hoc networks. In: The 7th International Workshop on
Mabile Multimedia Communications (MoMuC 2000). (2000)

5. Fal, K.: Network emulation in the VINT/NS simulator. Pro-
ceedings of the fourth IEEE Symposium on Computers and Com-
munications (1999)

6. Broch, J, Maltz, D., Johnson, D., Hu, Y.C., Jetcheva, J.: A
performance comparison of multi-hop wireless ad hoc network
routing protocols. In: Proc. of the 4th ACM/IEEE Int. Conf. on
Mobile Computing and Networking (MobiCom'98). (1998) 85-97
7 Zhang, Y., Li, W.: An integrated environment for testing
mobile ad-hoc networks. In: Proceedings of the 3rd ACM interna-
tional symposium on Mobile ad hoc networking & computing.
(2002) 104-111

8 Noble, B., Satyanarayanan, M., Nguyen, G.T., Katz, R.H.:
Trace-based mobile network emulation. In: Proceedings of
SIGCOMM 97. (1997) 51-61

9. Maltz, D., Broch, J., Johnson, D.: Lessons from a full-scale
multihop wireless ad hoc network testbed. |EEE Personal Com-
munications Magazine 8 (2001) 8-15

10. Ramanathan, R., Hain, R.: An ad hoc wireless testbed for
scalable, adaptive qos support. In: Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC 2000).
Volume 3. (2000) 998-1002

11. Agrawal, P., Asthana, A., Cravatts, M., Hyden, E.,
Krzyzanowski, P., Mishra, P., Narendran, B., Srivastava, M.,
Trotter, J.: A testbed for mobile networked computing. In: Pro-
ceedings of 1995 IEEE International Conference on Communica
tions (ICC "95). (1995) 410-416

12. Lundgren, H., Lundberg, D., Nielsen, J., Nordstrém, E.,
Tschudin, C.: A large-scale testbed for reproducible ad hoc proto-
col evauations. In: 3rd annual IEEE Wireless Communications
and Networking Conference (WCNC 2002). (2002)

13. de Waal, C.: Bonnmotion: A mobility scenario generation
and andysis tool (2002-2003) Available from
http://web.informatik.uni-
bonn.de/lIV/Mitarbeiter/dewaal/BonnM otion/

14. Eclipse Project - Universa Tool Platform: SWT: Standard
widget toolkit (2003) Available from
http://www.eclipse.org/platform/index.html

15. Segal, M., Akeley, K.: The OpenGL graphics system: A
specification (verson 14) (2002) Avalable from
http://www.opengl.org/devel opers/documentation/versionl_4/glsp
ecl4.pdf

16. Kaplan, E.D.: Understanding GPS-Principles and Applica
tions. Artech House Publisher, Boston (1996)

17. International Standard 1SO/IEC 8802-11: Information tech-
nology - telecommunications and information exchange between
systems - local and metropolitan area networks - specific require-
ments - part 11: Wireless lan medium access control (mac) and
physical layer (phy) specifications (1999)

18. Hamdi, M., Capkun, S., Hubaux, J.P.: GPS-free Positioning
in Mobile Ad-Hoc Networks. In: Proceedings of HICSS, Hawaii
(2001)

19. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low Cost
Outdoor Localization For Very Small Devices. IEEE Persona
Communications Magazine 7 (2000) 28-34

20. Gorgen, D., Frey, H., Lehnert, J., Sturm, P.: Marketplaces as
communication patterns in mobile ad-hoc networks. In: Kommu-
nikation in Verteilten Systemen (KiV'S). (2003)

