
Live Object Exploration: Observing and
Manipulating Behavior and State of Java Objects

Benjamin Biegel, Benedikt Lesch, and Stephan Diehl
Department of Computer Science

University of Trier
Trier, Germany

Email: {biegel,diehl}@uni-trier.de

Abstract—In this paper we introduce a visual representation of
Java objects that can be used for observing and manipulating be-
havior and state of currently developed classes. It runs separately,
e.g., on a tablet, beside an integrated development environment.
Within the visualization, developers are able to arbitrarily change
the object state, then invoke any method with custom parameters
and observe how the object state changes. When changing the
source code of the related class, the visualization holds the
previous object state and adapts the new behavior defined by
the underlying source code. This instantly enables developers
to observe functionalities objects of a certain class have and
how they manipulate their state, and especially, how source
code changes influence their behavior. We implemented a first
prototype as a touch-enabled web application that is connected
to a conventional integrated development environment. In order
to gain first practical insights, we evaluated our approach in a
pilot user study.

I. INTRODUCTION

Current tools and research methods introduce many tech-
niques that help developers to comprehend and manage their
source code [1]. When syntax or compiler errors occur, for
example, modern integrated development environments pro-
vide built-in features that immediately notify developers. What
is more, syntax highlighting, displaying structural context in-
formation, automatic source code formatting, links for source
code navigation, specialized visualizations like UML [2] and
other features support understanding the overall structure of
a software project. Nevertheless, the behavior (or semantics)
of a certain code fragment is not observable. While creating
or changing source code, developers have to put themselves
into the role of a computer [3]. As for that, they are forced to
execute code fragments mentally and guess how a code change
would affect state and behavior of the program at runtime [4].
This issue was nicely summarized by Chris Granger, who is
mainly known for developing an interactive open-source IDE
named ‘Light Table’1:

“We are quite literally throwing darts in the dark
and praying that we at least hit the board. We simply
cannot see what our programs do and that’s a huge
problem whether you’re just starting out or have
written millions of lines of beautiful code.”

—Chris Granger, 20142

1http://lighttable.com/
2http://www.chris-granger.com/2014/03/27/toward-a-better-programming/

It is not surprising that developers try to avoid compre-
hending the program behavior by solely reading the source
code. In about 40% of the time spent for understanding a
certain code fragment, developers execute the program and
investigate the code rational at runtime [5]. This includes a
frequent use of debuggers [6], testing the program behavior
by using the user interface as end-users will do [7], or simply
using loggers or console outputs. Nevertheless, developers
are forced to permanently switch between the structural and
behavioral view on a program, which still is tedious and
cognitively demanding. Furthermore, since the program state
is only changed temporarily, for subsequent executions, all
changes to the program state must be re-applied manually.

A promising paradigm that addresses the previously men-
tioned issues is live programming [8]–[10]. In general, live
programming environments provide an infrastructure, that
enables developers to immediately recognize how state and
behavior of a running program are affected, when changing
the underlying source code [11], [12]. Live programming
occurs in several application scenarios, e.g., creating user
interfaces [13], in continuous testing [14], or when using an in-
situ debugger [15]. Recent studies show that live programming
significantly helps developers in finding and fixing bugs [16],
[17]. In particular, since live programming narrows the gap
between editing and debugging, developers become aware of
newly introduced bugs more early. Nevertheless, when using
object-oriented languages like Java, current live programming
approaches have some limitations. Some only allow to execute
the entire program, which makes it hard to investigate smaller
parts in isolation. Others use a fine-grained view on runtime
data by putting it directly into or beside source code, e.g.,
line by line, which makes it hard to keep track of bigger
parts of the program. Beside program and source code level,
however, object-oriented languages also require observing on
the object level, which is not explicitly supported by current
live programming approaches.

This paper fills this gap by introducing an additional visual-
ization representing Java objects. Such objects are instantiated
directly from classes developed within an IDE and can be
explored by changing their states and invoking their methods.
Changes in the underlying class will be injected into the
“living objects” and can immediately be observed in the
visualization.

http://lighttable.com/
http://www.chris-granger.com/2014/03/27/toward-a-better-programming/
Diehl
Schreibmaschine
Preprint. Final version published in Proceedings of the 31st International Conference on Software Maintenance and Evolution ICSME (ERA Track), Bremen, Sept. 29- Oct. 1, 2015. https://doi.org/10.1109/ICSM.2015.7332518].



Fig. 1. A Screenshot from our prototype implementation displaying a living object of a class named “Motorcycle”.

II. MAIN CONCEPT AND PROTOTYPE IMPLEMENTATION

The main idea of this paper is to bring live execution
feedback to the development of Java classes. An advantage
of live programming is that effects on the program execution
can be observed continuously while changing the source
code in the editor. As for that, we propose a visualization
that (1) is permanently connected to an IDE, (2) represents
instances of currently developed classes, (3) ensures updating
object behavior that comes with source code changes while
keeping the current object state, and (4) enables to observe and
manipulate behavior and state of currently represented objects
within the visualization.

A. Live Object Exploration

As can be seen in Figure 1, the entire view is used to
visualize an object. Its fields (green), constructors (orange)
and methods (red) are represented as floating boxes. These
boxes can be rearranged by simple drag and drop gestures
with mouse or touch input. In the toolbar at the top, there are
tabs for switching between currently living objects. In order
to distinguish between multiple objects of the same class, it is
possible to rename the tabs. The + symbol on the right allows
to create new instances of classes from the currently opened
project within the IDE.

1) Filtering: Because all members of an object, including
the inherited members, are shown per default, representing
larger objects can be very complex. To solve this problem, we
use two different filtering mechanisms. First, by clicking on the
cog symbol in the upper right of the toolbar, a menu opens with

settings for showing and hiding several types of members, like
inherited members or constructors. Another way for filtering
specific members is pinning. By clicking on the star symbol
in the upper right corner of any box, the related box can be
pinned or unpinned. Changing the mode from “Show all” to
“Show pinned” (right side of the toolbar) hides all unpinned
boxes and shows only the selected ones.

2) Fields: In the head of a field box (green part) the name
of the field is displayed. In this first concept, we refrain from
displaying type information to keep the layout more tidy.
The value of the field is displayed in the lower white area.
Depending on the type, the value is represented differently,
e.g., a toggle button is used for boolean values, whereas for
string values an input field is used. Arrays and objects are not
displayed directly on the main screen. They are only indicated
by buttons that lead to a special dialog showing their array
elements and members respectively. If any number is saved in
a field, developers can chose between a regular representation,
that is only displaying the current value, and a line chart
representation, that makes it possible to observe how the
underlying value changed over time. With the button next to
the star symbol one can toggle between both representations.

3) Changing Values: The object state can be changed
directly within the visualization by entering new field values.
In order to support an explorative interaction style, we also
provide, besides entering new values solely with the keyboard,
touch-optimized visual components like sliders and buttons to
change the values interactively. Furthermore, instead of typing
a new value, the developer is also able to choose from a list



Fig. 2. A dialog for creating a new object.

of predefined values. Field boxes that contain changed values
are temporarily highlighted by changing its color.

4) Method Invocation: In order to explore the behavior of
a living object, all its methods can be invoked. Parameter
values can be entered as described in Section II-A2. If a field
value is changed after invoking a method, the field box is
highlighted temporarily. Furthermore, if only pinned boxes are
shown and a hidden box was affected by the invocation, it is
then automatically highlighted for a certain time. By invoking
constructors, a new instance will be created and the current
living object will be replaced.

5) Creating Arrays and Objects: Since primitive values
can be entered directly, arrays and objects must be created in
special dialogs. In the array dialog, elements of an array can
be added and removed. Developers are also able to navigate
through multi-dimensional arrays. In order to keep track of
inner array elements, they can also be pinned, and are then
be shown on the main screen. In contrast to arrays, objects
can only be instantiated by invoking one of its constructors.
Figure 2 shows a dialog for creating objects. On the left side,
developers can chose the preferred constructor. Then, on the
right side, they have to enter values for its parameters. If a
parameter requires an object or array, another dialog can be
opened in order to create one of these.

B. Prototype Implementation and Infrastructure

For our prototype implementation we strongly rely on state-
of-the-art web technologies like HTML5, JavaScript, Poly-
mer3, and web sockets. This enables us to independently
run our prototype visualization on diverse devices, e.g., on
a tablet used with touch gestures as well as in a classical
desktop environment with mouse and keyboard. Inspired by

3http://www.polymer-project.org

CodePad [18] and our previous work [19] we suggest using
a conventional desktop environment with an additional touch
device. Furthermore, we wrote a plug-in for the IntelliJ IDE4

that handles the communication between IDE and web ap-
plication. By using the reflection API of Java, this plug-in
instantiates new objects, manipulates their state and invokes
their methods. After changing the source code, a new object
is being created based on previously chosen parameter values
for the constructor. Then, based on the saved object state in
the web application, the newly created object in the IDE will
be updated immediately. It is worth mentioning that living
objects in the web application and objects within the IDE are
only loosely connected. That means, we synchronize structure
and state manually. In contrast to standard Java techniques like
serializing objects, this enables us to also change the structure
of a living object without losing its state.

C. Application Scenarios

While elaborating our approach, we discussed several ap-
plication scenarios. A classical live programming scenario is
using the tool next to an IDE by a single developer. But also
a pair programming setting is conceivable, as we have seen
in our study. The driver could concentrate on writing code
and the navigator could use our tool for testing the expected
behavior. Since our prototype was implemented with web
technologies, this approach can also be applied in teaching.
While the lecturer presents source code of a Java class, for
example, students could use our tool simultaneously on tablets
to explore its structure and behavior.

III. EVALUATION

In order to gain first practical insights, we asked 9 devel-
opers to participate in a think-aloud user study. Each session
lasted about 45 minutes in a pair programming setup (one
session with three participants, other three in pairs). During
the study, we observed the sessions and took notes. After the
study, we performed a semi-structured interview and asked
each participant to fill in a questionnaire.

A. Questionnaire

Before filling in the questionnaire, we informed the par-
ticipants that their answers will be evaluated and published
anonymously. In the first part of the questionnaire, the par-
ticipants were asked to provide some demographic data, their
prior knowledge and skills. The rest of the questionnaire is
subdivided in three parts, addressing the proposed approach in
general, and the used visualization and interaction in particular.
In order to assess our approach, we provided both free-text
forms (5 in total) as well as statements (25 in total), that can
be rated by a 5-point Likert scale ranging from ‘Disagree’
(rating 0) to ‘Agree’ (rating 4). The scale value ‘2’ refers to
a neutral position.

4http://www.jetbrains.com/idea/

http://www.polymer-project.org
http://www.jetbrains.com/idea/


B. Participants

The participants of the study were 9 male developers, three
master and two PhD students from the University of Trier,
Germany, three bachelor students from the HTW Saarbrücken,
Germany, and one professional software developer working in
the industry. They were between 23 and 31 years old. All
participants rated themselves as ‘intermediates’ in Java. In
object-oriented programming, two see themselves as ‘experts’
(rest as ‘intermediates’), and two specify only an ‘average’
experience in debugging, whereas the rest are ‘intermediates’.
In summary, all participants are quite experienced in Java,
object-oriented programming, and debugging. Experiences in
visualizations and JUnit are more diverse. 4 participants had
only little experience with program or object visualizations (2
‘average’, 2 ‘advanced’). The same distribution also apply for
the experience with JUnit.

C. Experimental Design

The participants had to solve ten exercises by using our
prototype implementation. We used a classical desktop envi-
ronment running IntelliJ. Next to this, we used an additional
touch-monitor running our visualization connected to the IDE.
The overall study was divided into three parts, focusing on (1)
visualization, (2) interaction, (3) integration. In the first two
parts, we evaluated the external view without using the IDE
only. In the third part, the participants used both IDE and
external view to investigate how our approach integrates in
their usual work flow.

D. Results

The overall impression was quite positive. Although we
did not introduced our prototype to the participants on pur-
pose, no additional help was needed or requested. Since our
observations suggest that using our tool was intuitive and
easy, one participant slightly disagreed (rating 1), whereas
6 participants (rating 3 or 4) confirmed our observations
and 2 took a neutral position (rating 2). Most participants,
however, agreed that using our prototype was beneficial. Also
the following statements were mostly rated by 3 or 4, whereas
2 (‘neutral’) was the worst rating. They confirmed that our
approach offered sufficient support for object exploration,
helped in understanding the related class structure, supported
in exploring the functional behavior of the object, and made
the object state easy to explore. 6 participants said they would
use our prototype more often in the future.

1) Visualization: In contrast to the general impression,
the opinions concerning our visualization, however, diverged.
8 participants (rating 3 or 4) found the visualization well
structured and clear, one participant had a ‘neutral’ position
and another partly disagreed (rating 1). In order to get an
even clearer structure, half of the participants suggested to use
a table layout instead of floating boxes. Moreover, in order
to get a better understanding of the structure of an object,
some participants also requested displaying type information
of fields and parameters. Since 7 participants still thought
that the visualization of primitives and strings was clear,

some participants had problems with the proposed object
and array visualizations. One participant was not completely
convinced (rating 1) that objects were visualized in a good
way. 2 participants partly disagreed that arrays were easy to
use. Instead of using modal dialogs, most participants wanted
to expand objects and arrays directly on the main screen, e.g.,
as a tree map. Furthermore, modal dialogs made it difficult to
keep the current context. Nevertheless, 8 participants (rating
3 or 4) confirmed that changes in the object state were very
well highlighted. Still 7 participants thought that the line charts
helped them to keep track of those changes. Remarks were
missing labels of the axis, access to the complete history in a
scrollable graph, and fixing several bugs, like vanishing values.
In general, the line chart view was preferred to the regular
view.

2) Interaction: In general, all participant found that method
invocation was easy and helped them to understand the func-
tional behavior. Most noted that they got no visual feedback if
an method invocation caused no change in the object state or
if an exception was thrown. As setting up primitive or string
values was consistently considered as an easy task, only one
participant found it challenging to create an array and an entire
object. Using predefined values were only questionable for
one participant (rating 1), whereas 6 participants found this
feature sufficient for exploration purposes. Half of them said
that the given examples were not very useful and seemed to be
randomly chosen. All participants thought that the pin mode
helped well in focusing on a specific set of elements. But
they suggested to expand this feature, e.g., to allow hiding
elements, or pin all children of an object. Another helpful
filtering feature would be a text search for elements.

3) Integration: Using our visualization together with the
IDE was considered differently. Only 4 participants thought
that this combination supported them in the development
process, and two participants were skeptical (rating 1) about
it. Nevertheless, many of them mentioned that they liked
to quickly test new implemented or changed functionality,
without executing the program or starting the debugger. Us-
ing an additional touch-enabled device for displaying the
visualization was also considered very differently. Only 3
participants (rating 3 or 4) liked the idea of a touch input,
whereas 3 took a neutral position, one was doubtful (rating 1),
and two gave no rating at all. One half of the participants
preferred using a second monitor, while the other half thought
that touch interaction fits more in an exploration scenario like
debugging.

IV. RELATED WORK

Besides the related work in the field of live program-
ming already mentioned in the introduction, there are several
other approaches, that visualize the program state at runtime.
Algorithm animation systems like Jeliot [20] or LIVE [21]
provide automatically generated animations for visualizing
the execution of an application step-by-step. In contrast to
our approach, they are strongly focused on source code lines
instead of a more abstract view on object level. Jive [22] is



a visual debugger that visualizes the runtime state, displayed
as an UML object diagram [2], and the call history of an
application, displayed as an UML sequence diagram [2]. A
similar strategy was used in jGRASP [23], but instead of using
general visualizations, they use specialized dynamic object
viewers that consider the underlying data structure of an ob-
ject. Since both approaches offer more detailed visualizations,
they can only visualize data provided by a debugger, thus
they are not able to provide live execution feedback as our
approach does. With BlueJ [24] it is possible to invoke code
without starting the program manually. The result can then be
inspected or used for subsequent invocations. BlueJ also allows
to create class instances that can be explored. In contrast to
our approach, after changing the underlying code, interactively
created objects are dropped. Thus, BlueJ does not support live
programming. Finally, all above mentioned approaches have
integrated visualizations that cannot be run on other devices
separated from the IDE . That is why they are less suitable
for the application scenarios described in Section II-C.

V. CONCLUSION

In this paper, we introduced live object exploration, a live
programming approach for representing instances of currently
developed Java classes. The visualization enables developers
to interactively observe and manipulate behavior and state of
such “living objects”. After changing the underlying source
code, the behavior and structure of living objects also change,
while their current states still remain.

The user study shows that the approach does work in
general and helps to understand structure and behavior of Java
objects, especially, to observe impacts of source code changes
on runtime. The study results, gathered from questionnaires,
interviews and observations, also provide important informa-
tion for further improvements. More specialized visualizations,
for example, were requested for different data structures as
used in previous work (cf. Section IV). Partly it was tedious
to navigate through highly nested data structures, especially,
because the current visualization also uses modal dialogs that
sometimes distract attention from the main context. Another
drawback is creating new instances of complex classes or
arrays. Some participants suggest to provide also techniques
for defining objects and arrays within the IDE.

REFERENCES

[1] M. D. Storey, “Theories, tools and research methods in program com-
prehension: past, present and future,” Software Quality Journal, vol. 14,
no. 3, pp. 187–208, 2006.

[2] G. Booch, J. E. Rumbaugh, and I. Jacobson, The unified modeling
language user guide - the ultimate tutorial to the UML from the original
designers, ser. Addison-Wesley object technology series. Addison-
Wesley-Longman, 1999.

[3] H. Lieberman and C. Fry, “Bridging the gulf between code and behavior
in programming,” in Human Factors in Computing Systems, CHI ’95
Conference Proceedings, Denver, Colorado, USA, May 7-11, 1995, pp.
480–486.

[4] J. L. Snell, “Ahead-of-time debugging, or programming not in the dark,”
in Software Technology and Engineering Practice, 1997. Proceedings.,
Eighth IEEE International Workshop on [incorporating Computer Aided
Software Engineering]. IEEE, 1997, pp. 288–293.

[5] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in 28th International Conference on
Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006,
pp. 492–501.

[6] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse ide?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[7] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 255–265.

[8] S. L. Tanimoto, “VIVA: A visual language for image processing,” J. Vis.
Lang. Comput., vol. 1, no. 2, pp. 127–139, 1990.

[9] C. M. Hancock, “Real-time programming and the big ideas of compu-
tational literacy,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2003.

[10] S. McDirmid, “Living it up with a live programming language,” in
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA, October 21-25, Montreal, Quebec, Canada, 2007, pp. 623–638.

[11] B. Victor, “Inventing on principle,” Invited talk at the Canadian Univer-
sity Software Engineering Conference (CUSEC), January 2012.

[12] S. L. Tanimoto, “A perspective on the evolution of live programming,”
in Proceedings of the 1st International Workshop on Live Programming,
LIVE 2013, San Francisco, California, USA, May 19, 2013, pp. 31–34.

[13] S. Burckhardt, M. Fähndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato, “It’s alive! continuous feedback in UI pro-
gramming,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pp. 95–104.

[14] D. Saff and M. D. Ernst, “An experimental evaluation of continuous
testing during development,” in Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2004,
Boston, Massachusetts, USA, July 11-14, 2004, pp. 76–85.

[15] S. McDirmid, “Usable live programming,” in ACM Symposium on New
Ideas in Programming and Reflections on Software, Onward! 2013, part
of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013, pp. 53–62.

[16] J. Krämer, J. Kurz, T. Karrer, and J. O. Borchers, “How live coding
affects developers’ coding behavior,” in IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2014, Melbourne,
VIC, Australia, July 28 - August 1, 2014, pp. 5–8.

[17] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook,
“Does continuous visual feedback aid debugging in direct-manipulation
programming systems?” in Human Factors in Computing Systems, CHI
’97 Conference Proceedings, Atlanta, Georgia, USA, March 22-27,
1997, pp. 258–265.

[18] C. Parnin, C. Görg, and S. Rugaber, “Codepad: interactive spaces for
maintaining concentration in programming environments,” in Proceed-
ings of the ACM 2010 Symposium on Software Visualization, Salt Lake
City, UT, USA, October 25-26, 2010, pp. 15–24.

[19] B. Biegel, S. Baltes, I. Scarpellini, and S. Diehl, “Codebasket: Making
developers’ mental model visible and explorable,” in 2nd Workshop on
Context for Software Development (CSD), Florence, Italy, May 19, 2015.

[20] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing
programs with jeliot 3,” in Proceedings of the working conference on
Advanced visual interfaces, AVI 2004, Gallipoli, Italy, May 25-28, 2004,
pp. 373–376.

[21] A. E. R. Campbell, G. L. Catto, and E. E. Hansen, “Language-
independent interactive data visualization,” in Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science Education, 2003,
Reno, Nevada, USA, February 19-23, 2003, pp. 215–219.

[22] P. V. Gestwicki and B. Jayaraman, “JIVE: java interactive visualiza-
tion environment,” in Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2004, October 24-28, Vancouver, BC, Canada,
2004, pp. 226–228.

[23] J. H. C. II and T. D. Hendrix, “jgrasp: a lightweight IDE with dynamic
object viewers for CS1 and CS2,” in Proceedings of the 11th Annual
SIGCSE Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2006, Bologna, Italy, June 26-28, 2006, p. 356.

[24] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The bluej system
and its pedagogy,” Computer Science Education, vol. 13, no. 4, pp. 249–
268, 2003.


	Introduction
	Main Concept and Prototype Implementation
	Live Object Exploration
	Filtering
	Fields
	Changing Values
	Method Invocation
	Creating Arrays and Objects

	Prototype Implementation and Infrastructure
	Application Scenarios

	Evaluation
	Questionnaire
	Participants
	Experimental Design
	Results
	Visualization
	Interaction
	Integration


	Related Work
	Conclusion
	References

