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Abstract—Software debugging is one of the most time consum-
ing source code related tasks. Hence, we propose a novel approach
to breakpoint debugging for formula code, i.e. source code
implementing mathematical formulae. In this work, the focus is
on source code which computes a numerical value via arithmetic
operations as well as sum- and product formulae. We introduce
and discuss breakpoints placed on an automatically inferred
mathematical representation, i.e. in a common mathematical
notation or by a mixed form of source code artifacts and maths
symbols. Furthermore, we present visual debugging features
aiming to facilitate the dynamic inspection of the formula code
leveraging the mathematical representation. We briefly present
a first prototype implementation of our formula debugging
approach and indicate future directions of our work.

Index Terms—debugging, breakpoint, formula code, maths,
visualization, program comprehension

I. INTRODUCTION

A software developer’s daily work comprises not only
the creation of new source code. There are other source
code related tasks such as testing, refactoring, improving and
debugging of the already existing source code. Specifically
the task of debugging can become very time-consuming and
difficult. In case a software failure occurs, a developer is
confronted with three main tasks: localizing, understanding
and correcting the fault(s) [1]. While the localization of faults
can be supported by (semi-)automated debugging techniques
( [2], [3]) the task of understanding the fault(s) remains
challenging and is inevitable for their correction. Due to
potential poor explanatory capabilities of (semi-)automated de-
bugging tools applied in code comprehension tasks, developers
demand traditional debugging with breakpoints [1]. In this
paper, we present a novel approach for breakpoint debugging
on implementations of mathematical formulae, in particular
sums and products. Subsequently, we refer to source code
implementing a mathematical formula as formula code. For
instance, Figure 1 depicts the Leibniz formula for π (Equa-
tion 1) with a corresponding simple Java implementation of
an approximation. This code’s nature allows a straightforward
alternative visual representation, i.e. expressing formula code
in a common mathematical notation [4] or by a mixed form
of source code artifacts and maths symbols. Our vision is that
expressing the formula code in a mathematical representation
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1 double quPi = 0;
2 for (int k = 0; k < n; k++) {
3 quPi += Math.pow(-1, k) / (2 * k + 1); }

Fig. 1. The Leibniz formula for π (Equation 1) with a corresponding simple
Java implementation.
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Fig. 2. Formula breakpoints (red dots) added to a mathematical representation
of the formula code in Figure 1. The term quP i stands for ”quarter of pi”
and quP i0 refers to the value of variable quP i prior to the for-loop.

results in a reduction of time a developer needs to comprehend
formula code, which we further discuss in Section II. With
the available mathematical representation of the formula code,
novel opportunities to set breakpoints on this representation
emerge. An example for an inferred mathematical representa-
tion of formula code with added formula breakpoints, depicted
by the red dots, is presented in Figure 2. Note that the upper
bound of the sum is replaced by a fixed number of iterations
to execute (n− 1).

In Section III, we present and discuss each breakpoint, state
how we map them to available line breakpoint approaches in
Java and outline resulting limitations and challenges. Further-
more, we introduce visual debugging features, which aim to
assist the code comprehension task while inspecting dynamic
behavior of formula code, e.g. on debugging or manually
testing the formula code. Altogether, our contributions
are:
• A basic approach on expressing source code in a common

mathematical notation to support code comprehension
tasks. In this work, we focus on source code which
computes a numerical value via arithmetic operations as
well as sum- and product formulae;
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• A novel application of interactive breakpoint debugging
where breakpoints can be placed on the mathematical
representation of the particular source code; Visual de-
bugging features to assist dynamic inspections of the
formula code;

• A first prototype of our debugging approach implement-
ing a subset of the breakpoints and features outlined in
this work.

II. MATHEMATICAL REPRESENTATION OF FORMULA CODE

The general discipline of software engineering is studded
with problem solving and therefore with mathematical reason-
ing [5]. Thus maths is omnipresent in the work of a software
developer and represented in the software systems’ code base
by the utilization of one or more programming languages.

Presenting formula code in an alternative mathematical
representation promises a reduction of time to comprehend
the code. According to the cognitive load theory [6]–[8], a
reduction of the extraneous cognitive load, i.e. the working
memory load affected by the manner in which information
is presented, can facilitate a learning or problem solving
task. From our perspective, the mathematical representation
of formula code achieves this in multiple ways: The overall
number of symbols is reduced by omitting potential visual
disturbances, e.g. type information, variable initializations and
method calls. A method call to Math.sqrt(x), for instance,
is replaced by its mathematical counterpart symbol

√
x. In

contrast to the one dimensional writing space of code editors,
a maths notation avails itself of a two dimensional space.
This can lower the distance between cohesive symbols, e.g.
x = a

b in contrast to int x = a / b;, resulting in a more
compact depiction. Moreover, the understanding of arithmetic
expressions can be facilitated since a two dimensional writing
space allows a more comfortable visual grouping of symbols
according to valid operator precedence, for instance (a +
b) / (9 * x) versus a+b

9x . The semantics of for-loops are
similar to the semantics of the maths symbols Σ and Π. This
is due to the definition of the index variable with respective
lower-bound, a step size of one (or other step sizes as well)
and the definition of an upper-bound. In total, it makes the
connection of formula code utilizing a for-loop to implement
a sum or product formula to a mathematical representation
straightforward. Thus, the usage of Σ or Π reduces the number
of symbols used to describe the semantics of formula code
for sum and product formulae and compacts its depiction into
one annotated symbol. Future directions also include to embed
the mathematical representation into the source code editor to
first, add valuable context (the surrounding source code) to
the visualization and second, avoid extraneous cognitive load
caused by a potential split attention effect [9]–[11].

III. FORMULA BREAKPOINT DEBUGGING APPROACH

The concept of breakpoints in the context of interactive
debugging dates back at least to the sixties [12], [13]. Common
interactive breakpoint debuggers allow programmers to define
breakpoints at particular lines of code which makes it possible

to suspend a program’s execution, inspect and modify its state
and then resume or stepwise continue the program. Modern
IDEs, e.g. Jetbrains IntelliJ IDEA, provide traditional line
breakpoints as well as exception- and method-breakpoints or
field-watchpoints. Conditions can be attached to every type
of breakpoint, e.g. pass counts, class filters or even complex
expressions, on which a breakpoint is supposed to trigger.
This enables a programmer to filter out interesting executions
during the dynamic inspection of a program.

A. Breakpoints on Sum and Product Formulae
Subsequently, we consider the pseudocode for a simple

for-loop (Figure 3, right) and its respective mathematical
representation (Figure 3, left). Note that expr0 and expri are
placeholders for arbitrary expressions and expri might depend
on the indexing variable i’s value. Since breakpoints for the

accu0 = expr0 (2)

accu = accu0 +
n∑

i=k

expri (3)

1 int accu=expr0;
2 for(int i=k;i<=n;i++){
3 accu += expri;
4 }

Fig. 3. A simple for loop in pseudocode (left) and its respective mathematical
representation (right).

formula presented in Equation 2 are trivial, we focus on the
summation formula in Equation 3. Our intention is to define
breakpoints which are most intuitive and self explanatory. In
the following, we refer to equations listed in Figure 4 and
respective lines of source code presented in the corresponding
code listings next to the equations.

• accu = accu0 +

n∑
i=k

expri

(4)

1 int accu=expr0;
2 for(int i=k;i<=n;i++){
3 accu += expri;
4 }

accu = accu0 +

n∑
• i=k

expri

(5)

1 int accu=expr0;
2 for(int i=k;i<=n;i++){
3 accu += expri;
4 }

accu = accu0 +

•n∑
i=k

expri (6)

1 int accu=expr0;
2 for(int i=k;
3 i<=n;i++){
4 accu += expri;
5 }

accu = accu0 +

n∑
i=k

• expri

(7)

1 int accu=expr0;
2 for(int i=k;i<=n;i++){
3 accu += expri;
4 }

accu = accu0 +

n∑
i=k

expri•
(8)

1 int accu=expr0;
2 for(int i=k;i<=n;i++){
3 accu += expri;
4 nop();
5 }

Fig. 4. List of available formula breakpoints.

The first formula breakpoint presented in Equation 4 is in
front of the whole formula. We map this breakpoint to a line



breakpoint in line 1. When the execution suspends at this point,
the value of accu0 is not yet present. Assuming expr0 does
not take changes on k and n, the values for these variables are
defined. Thus, we are able to update the mathematical repre-
sentation of the formula code by replacing the occurrences of
k and n in the formula with their actual values. By this, we
add dynamic information to the mathematical representation.
This leads to the term of a dynamic formula which, each time a
variable is updated, represents a different state of the statically
inferred formula. The breakpoint right before the summation-
index definition (Equation 5) is understandable as a halt right
before the definition of i. This maps to a line breakpoint in
line 2. Then, the value of accu0 is available and again, we
can replace the variable accu0 with its actual value in the
mathematical representation.

The breakpoint before the upper-bound definition (Equa-
tion 6) refers to a halt of the program after the summation-
index definition, but before the definition of the upper-bound.
To map this, we alter the code such that the summation-
index definition (int i=k) and the upper-bound definition
(i<=n) are placed in subsequent lines of code by inserting a
newline character before i<=n. That way, we can place a line
breakpoint in the new introduced line, which than results in a
halt right before the definition of the upper-bound value. This
makes the actual value for i available which can be replaced
in the mathematical representation. Note, we do not intend to
alter the source code itself which would be confusing to a
user. There are other ways to implement those alterations, e.g.
by editing classes during the Java VM’s class loading phase
or by application of bytecode instrumentation. The breakpoint
placed before expri (Equation 7) is interpretable as a halt on
the first line of the underlying loop’s body (line 3) under the
condition i == k. The condition ensures that the breakpoint
only triggers in the first iteration of the loop. When this
condition is omitted, the breakpoint triggers in every iteration
of the loop. This also represents a valid interpretation of
the breakpoint. The interpretations differ in the breakpoint’s
referring scope, either the whole summation or each summand.
We find both meaningful. To visually distinguish between
these two alternatives, we add two breakpoint markers in
different sizes. On hovering with the mouse over a marker, the
referring breakpoint’s scope is indicated by a frame (Figure 5).
On the first hit of this breakpoint, the value of the summation’s
upper-bound becomes available and its corresponding variable
in the mathematical representation can also be replaced by its
actual value. The interpretation of the breakpoint placed after
expri (Equation 8) is also ambiguous. It could either refer
to a halt after each evaluation of expri, i.e. loop iteration, or
at the end of the whole summation. To map this, we insert a
NOP operation, e.g. a call to a method with an empty body, in
the succeeding line of expri and add a line breakpoint on this
line (4). If only a halt on the end of the whole summation
is intended, we simply add the condition i == n to the
breakpoint to suspend the execution on the last iteration.To
visually distinguish between these two breakpoint scopes, we
follow the same approach as before (Figure 5).

Fig. 5. Different size breakpoint markers. The referring breakpoint’s scope
is indicated by the frames.

accu = accu0 +•
n∑
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expri

(9)

accu = accu0 +

n∑
i=k•

expri

(10)

accu = accu0 +

n•∑
i=k

expri

(11)
Fig. 6. Discarded formula breakpoints.

In Figure 6, we list further possible formula breakpoints.
We discarded them because their semantics are already imple-
mented through the other formula breakpoints. The breakpoint
right in front of the Σ symbol (Equation 9) maps to a line
breakpoint in line 2. This is equivalent to the breakpoint
in Equation 5. Setting a breakpoint after the summation-
index and lower-bound definition (Equation 10) is similar with
setting a breakpoint right before the upper-bound definition
realized by breakpoint in Equation 6. The breakpoint after
the upper-bound definition (Equation 11) is in line with the
whole summation scope interpretation of the breakpoint in
Equation 7, i.e. prior to the first iteration of the underlying
for-loop.

B. Dynamic Formula with Summation History

Whenever a formula breakpoint triggers or a debug step
is executed, the available values of the variables in the
formula code’s mathematical representation are replaced or
updated, respectively. This feature enables a dynamic view
and illustration of the formula’s current progress. Furthermore,
the value for the accumulation variable will update in every
iteration of the underlying for-loop. We can store the current
accumulation variable’s value in the mathematical represen-
tation by utilizing the accumulation variable’s initialization
placeholder in the mathematical representation, e.g. accu0
in Equation 3 or quP i0 in Figure 2. We demonstrate this
in Figure 7. We refer to the mathematical formula code
representation presented in Figure 2, assume an upper-bound
value of n = 100 and that the program suspended after the
third iteration. Thus the current accumulation variable’s value
is quP i3 = 1− 1

3+ 1
5 = 0.86666666, k has a value of 3 (started

at 0). On hovering with the mouse over the accumulation
value, we show its summation history in a small popup above
the value. In order to remain visually scalable, we only list the
last three summands. If there are more than three summands,
we indicate this by a leading ”...” in the summation history.
We suppose, that this will foster the summation’s traceability
and thus, supports program state inspections while a developer
tests, debugs or refactors the source code.



Fig. 7. Illustration of the formula’s progress and summation history of the
accumulation variable.

We are convinced, that these features can support de-
bugging, testing and refactoring tasks on formula code. In
particular, for formula code in the shape of sum and product
formulae such as the Leibniz formula for pi (Figure 1). With
the use of the summation history, the correct computation
of each summand can be ensured. With a clever usage of
the formula breakpoints, variables can be inspected at ease
in different stages of the formula computation. Furthermore,
the correctness of the variable values, in particular the start,
end and step values of for-loops, can be investigated in a
lightweight visual manner.

IV. PROTOTYPE IMPLEMENTATION

Fig. 8. Screenshot of the formula debugger prototype.

We implemented a first prototype of our formula debugging
approach. To this end, we developed a web application present-
ing the source code in an Ace code editor [14] and a list of the
automatically inferred mathematical representations of formula
code on the right next to the code in a separate view (Figure 8).
We utilized the Java Debug Interface [15] to control and query
the debuggee Java VM, i.e set breakpoints and retrieve variable
values. To infer a mathematical representation from the source
code, we utilize the Java parser javalang [16] written in
Python and added routines to nodes of the abstract syntax tree
to generate MathML (a markup language for mathematical
notation). Note, this approach is not able to infer every
possible formula code but is sufficient to deliver first working
examples. When hovering over an inferred mathematical repre-
sentation, the corresponding lines of source code in the editor
are highlighted in green. Furthermore, gray dots are used as
markers for the formula breakpoints, which are integrated into
the inferred mathematical representations. On hovering over
these markers, they turn red. With a click on those markers, the
respective formula breakpoint will be activated or deactivated,
respectively. We added controls to remotely run/resume, stop,
rerun or step through the debuggee’s execution as well as to
quit the debugger. On a breakpoint hit, the corresponding line

of source code on which the execution halts is highlighted in
blue. The respective available variable values are displayed in
a separate output view underneath the other two views. The
selection between global summation and local summand scope
of some formula breakpoints, the dynamic formula illustration
and the summation history are not yet fully implemented but
are planned to be completed in the near future.

V. RELATED WORK

Work on automatic layout of formulae based on textual
specifications as well as graphical formula editors [17]–[19]
dates at least back to the seventies. More recent work includes
the integration of a formula editor in a common IDE as a
domain specific language extension using Jetbrains MPS [20].
The only work on reconstructing mathematical formulae from
source code has been published by Moser et al. [21], [22].
Their RgB tool extracts formulae from annotated source code
to produce a documentation of the source code. The tool was
developed for Fortran and C++, requires manual annotations,
uses static program analysis and covers only a small part
of possible formulae. To some extent, implementations of
mathematical formulae make use of numerical values such
as integer or floating point numbers. Recently, studies on
characteristics such as categories, symptoms, frequencies and
possible fixes of numerical bugs have been conducted by Di
Franco et al. [23]. While parts of numerical computations can
be described by formulae, they are often more algorithmic
in nature. A variety of visual debugging approaches have
been developed. In [24], the dynamic program execution state
is linked to an enhanced UML object diagram. A sequence
diagram generated through traced executions paths is utilized
to reveal fault inducing source code fragments in [25]. The
tool JIVE [26] makes use of both, an object and sequence
diagram to dynamically visualize the state and the history
of a program’s execution, respectively. The system Lens [27]
integrates algorithm animation-style capabilities into a source-
level debugger allowing a rapid creation of visualizations
on defined breakpoints. The tool VIDA [28] recommends
breakpoint candidates to a programmer based on the analysis
of execution information and visualizes static dependency
relations.

VI. CONCLUSION AND FUTURE WORK

We presented a novel visual breakpoint debugging approach
for formula code. To this end, we automatically infer a math-
ematical representation of the formula code which is meant
to facilitate comprehension of the formula code. We leverage
the mathematical representation to place formula breakpoints
which we map to common line breakpoints on the underlying
formula code. Furthermore, we developed visual debugging
features in line with the mathematical representation aiming
to facilitate the dynamic inspection of the formula code. In
particular, this comprises the selection of breakpoints indi-
cating their referring scope, either the whole summation or a
single summand, the illustration of the dynamic formula’s state



including the summation history. Finally, we presented a first
prototype implementation of our visual debugging approach.

Future work includes the investigation of other formula code
in terms of syntactical structures used, e.g. foreach, while
and nested loops, and mathematical types, e.g. vectors and
matrices, as well as the qualitative and quantitative search
for occurrences of formula code in software archives. Fur-
thermore, by investigating bug databases to explore software
defects related to formula code more requirements for our
debugging approach could be identified. More important, user
studies for both, the effect of the mathematical representation
of formula code in program comprehension tasks and the
usability and effectiveness of the visual breakpoint debugging
approach itself, have to be conducted. A first qualitative user
study where the participants need to explain the semantics
of formula code, one group with and one group without an
inferred mathematical representation at hand, would deliver
first insights. A qualitative study where the participants in
two groups, one with and the other without the help of our
debugging tool, are confronted with fixing real-world formula
code bugs appears promising. We would conduct such a study
in an observational setting with encouraged thinking aloud and
a subsequent participant interview.
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