
On the Diversity and Frequency of Code Related to Mathematical
Formulas in Real-World Java Projects

Oliver Moseler*a, Felix Lemmera, Sebastian Baltesa, Stephan Diehla

aComputer Science, University of Trier, Germany

Abstract

In this paper, the term formula code refers to fragments of source code that implement a mathe-
matical formula. We present empirical studies that analyze the diversity and frequency of formula
code in open-source software projects. First, in an exploratory study, we investigated what kinds
of formulas are implemented in real-world Java projects and derived syntactical patterns and
constraints for reoccurring formula code fragments. We refined the patterns for sum and product
formulas to not only automatically detect formula code in software archives, but also to recon-
struct the implemented formula in mathematical notation. Second, in a quantitative study of a
large sample of engineered Java projects on GitHub we analyzed the frequency of formula code
and estimated that one of 700 lines of code in this sample implements a sum or product formula.
We repeated the study with a sample consisting solely of scientific-computing projects, found a
formula code density that was 7.4 times higher and estimated that one of 100 lines of code im-
plements a sum or product formula. Our findings provide first insights into the characteristics of
formula code, that can motivate further studies on the role of formula code in software projects
and the design of formula-related tools.

Keywords: formula code, qualitative study, code patterns, GitHub, quantitative study

Preprint submitted to Journal of Systems and Software December 8, 2019

On the Diversity and Frequency of Code Related to Mathematical
Formulas in Real-World Java Projects

1. Introduction1

Since there exists a wide range of mathematical formulas and their implementations, in the2

context of this paper, we use the term formula code to denote fragments of source code that3

compute a numerical value (scalar, vector, matrix) in a way that can be expressed in a common4

mathematical notation [1] or by a mixed form of source code artifacts and maths symbols.5

The correct and performant implementation of mathematical aspects is a crucial part influenc-6

ing the success of a software system. The destruction of the Mariner 1 spacecraft in 1962 caused7

a $18.5 million financial damage due to a faulty implementation of a mathematical formula, in8

particular a missing superscript bar ‘signifying a smoothing function, so the formula should have9

calculated the smoothed value of the time derivative of a radius’ [2, 3, 4]. This is only one promi-10

nent example where formula code happens to be a critical part of a software system. The general11

discipline of software engineering is studded with problem solving and therefore with mathemat-12

ical reasoning [5]. Thus maths is omnipresent in the work of a software engineer and represented13

in the software systems’ code base by the utilization of one or more programming languages.14

Furthermore, the early detection of defects in maths implementations and discovery of opportu-15

nities to increase the software’s performance within the development of a software system could16

save hours of testing and consumption of resources, especially in long running computational17

environments, such as scientific or high performance computing. Software development tools18

supporting the implementation and comprehension of formula code would not only be of advan-19

tage in such specialized scientific domains. To some extent every computer program contains at20

least some logic or discrete mathematics like combinatorics, probability theory, graph theory or21

number theory.22

In psychological studies Landy et al. investigated the importance of spatial relationships in23

mathematical notations [6]. For example, test persons falsely rated the equation a + b ∗ c + d =24

c+d ∗a+b valid, if the distance between symbols did not correspond to the operator precedence.25

The authors concluded ‘that competent symbolic reasoners typically rely on semantically irrel-26

evant properties of notational formulae in order to quickly and accurately—but also sometimes27

inaccurately—solve symbolic reasoning problems.’ Thus, We assume that a mathematical rep-28

resentation is beneficial in order to reduce both the time for comprehending the code as well as29

assessing its correctness. In mathematical notation, operators and symbols are arranged in two30

dimensions allowing a more compact view.31

When we started this project, we found ourselves in the situation that we couldn’t find much32

work to build on. Surprisingly, although mathematical formulas obviously play an important33

role in programming, so far, software engineering research has not empirically studied the im-34

plementation of formulas in common programming languages nor developed much tool support35

for implementing, debugging and optimizing formulas. Research as well as tools have rather36

focused on different levels of program abstractions (e.g. statement, class, or package level) or37

on higher-level abstractions (e.g. features, aspects, or components). In general purpose pro-38

gramming languages such as Java, Python or C++, formula code does not simply correspond to39

a syntactical category such as expression: Not all expressions in a program implement a formula40

(e.g. fopen(fname)!=-1) and not all formulas are implemented as expressions (e.g. program41

code for
∑n

i=1 ai typically uses for-loops). Identifying formula code and making software de-42

velopers aware of recurring patterns, best practices, pitfalls, and useful ’hacks’ related to the43

2

implementation of mathematical aspects as well as simply showing the code in maths like no-44

tation can help to reduce development time and technical risk, as well as the effort for code45

comprehension and communication, particularly in cross disciplinary development teams, where46

experts of mathematically predominant domains, e.g. mathematicians or chemical scientists, and47

software developers tightly work together.48

Our vision is that better understanding the characteristics of formula code will help to develop49

novel tools, beyond formula editors, for understanding, maintaining, debugging and optimizing50

formula code as well as to design new APIs and language features to enhance a software systems51

maintainability and thus its overall code quality.52

To gain insights on the use of formula code in real software projects and as a basis for future53

research on tool support and language design, we want to answer the following two research54

questions:55

RQ1 (Diversity): What kinds of formula code occur in real-world software projects?56

RQ2 (Frequency): How frequent is formula code both at file and line granularity?57

To answer these research questions, we performed two studies, one qualitative and one quan-58

titative study. For our qualitative study, we ran a keyword-based search to find formula code in59

open source Java projects on GitHub (Section 3). While this keyword-based approach suffers60

both from low recall and low precision and requires a lot of manual post-processing, it helped61

us to find an initial set of real-world formula code samples, that we then manually analyzed in62

order to gain first insights on the kinds of formula code that exist (RQ1) and to derive patterns63

of formula code (Section 4). Given the diversity of the formulas that we found, we decided to64

focus on sum and product formulas for our quantitative analysis, because they are structurally65

non-trivial and we expected them to occur quite frequently. We will use the term SP-formulas66

in the rest of this paper to refer to sum and product formulas and the term SP-formula code to67

refer to source code we can express as SP-formulas in a mathematical notation. The derived68

patterns from the quantitative study form the basis of our pattern-based method for detecting SP-69

formula code (Section 5.1). Our approach is not only able to classify source code as SP-formula70

code, but also to reconstruct the formula implemented by the code in mathematical notation.71

Our evaluation shows that the pattern-based method has a very high precision (almost 100%)72

and a modest recall (31%) for SP-formula code. Moreover, for 85% of the detected SP-formula73

code the reconstructed formula was both correct and completely described the computation of74

the matched code. Finally, to answer research question RQ2, we applied the tool on a sample of75

1000 different open source Java projects to detect SP-formula code on GitHub (Section 5). For76

a smaller sample, we also compared the densities from arbitrary application domains with those77

in scientific computing.78

In summary our contributions are: A first qualitative study investigating the nature of formula79

code; a set of recurring formula code patterns derived from the findings in the qualitative study; a80

quantitative study on the density of sum and product formula code in open source Java projects.81

2. Related Work82

Work on automatic layout of formulas based on textual specifications as well as graphical83

formula editors [7, 8, 9] dates at least back to the seventies. There is also a considerable amount84

of research on producing internal representations from graphical ones using image recognition85

techniques [10, 11].86

3

In the area of programming, recent work includes the integration of a formula editor in a87

common IDE as a domain specific language extension using Jetbrains MPS [12].88

Since the advent of mining software repositories, researchers have developed numerous89

methods for analyzing software repositories to detect patterns in the source code (e.g., aspects[13]90

or API patterns [14]) or its changes (e.g., recommended changes [15] or refactorings [16]). The91

only work on reconstructing mathematical formulas from source code has been published by92

Moser et al. [17, 18]. Their RgB tool extracts formulas from annotated source code to produce a93

documentation of the source code. The tool was developed for Fortran and C++, requires man-94

ual annotations, uses static program analysis and covers only a small part of possible formulas.95

While there exist tools for searching mathematical formulas in documents (e.g., using tree-edit96

distance [19]) or for searching mathematical expressions in software binaries [20] (using fin-97

gerprints) in order to build a search system which is capable of querying for software libraries98

implementing a mathematical term, to our knowledge, so far, no methods for detecting formula99

code in software repositories or empirical studies on formula code in common programming lan-100

guages have been published. To some extent, almost every implementation of a mathematical101

formula is working with numerical values such as integer or floating point numbers. The com-102

putation of numerical values comes with its own challenges and pitfalls. Recently, studies on103

characteristics such as categories, symptoms, frequencies and possible fixes of numerical bugs104

have been conducted by Di Franco et al. [21]. They have neither investigated patterns in the105

code of numerical computations nor tried to detect it automatically, but focused on bugs which106

are related to these code fragments. While parts of numerical computations can be described by107

formulas, they are often more algorithmic in nature.108

3. Keyword-Based Search for Formula Code109

To get first insights into what kinds of formulas are actually implemented in real-world soft-110

ware projects (RQ1) we conducted a qualitative study using GitHub as our data source. With111

more than 96 million repositories and 31 million contributors involved (as of September 2018112

[22]), GitHub is one of the most popular code hosting platforms today. It is not only used by113

developers for their personal projects, but also by large companies such as Google, Microsoft,114

or Facebook. We restricted our search to projects containing Java source code, since Java is one115

of the most popular general purpose programming languages according to the IEEE language116

ranking (as of July 2018 [23]) and the TIOBE index (as of October 2018 [24]). Our decision to117

investigate Java projects is based on the assumption that they contain code that was developed118

by programmers of all levels from novices to experts with respect to their programming as well119

as maths skills.120

To find formula code, we searched for certain keywords in the commit messages and code121

comments, because software developers use these annotations to document and communicate122

various aspects of source code artifacts and changes, including their intent. For our study, we123

wanted to find program code that a developer documented to be associated with mathematical124

formulas. Hence, we searched for occurrences of the keywords ’formula’, ’equation’, ’math’,125

’theorem’, ’sum of’ and ’product over/of’ within the Git commit logs and comment sections of126

Java code . While our list of keywords is certainly not comprehensive, it allowed us to find a127

sufficiently large and divers set of samples for our subsequent manual analysis.128

In a first attempt, we utilized the Boa language and infrastructure [25] to retrieve candidates.129

We conducted a search on the ’2015 September/GitHub’ dataset available through Boa. This130

approach revealed only a modest number of useful hits. Furthermore it was a time consuming131

4

task to deduce the interesting code fragments, if existent, from the commit log messages since a132

commit usually relates to multiple files and thus required a significant amount of manual effort133

to identify the relevant file and source-code fragment in this file. Thus we changed our strategy134

and only searched in the source code comments, because the comments are in the same file and135

usually very close to the source code fragments that they annotate. Unfortunately, Boa did not136

provide access to source code comments, since they were not contained in its data model. As a137

consequence, we switched to Google Big Query [26] (GBQ), a web service for searching GitHub138

using the GBQ GitHub and GHTorrent datasets, that allows executing SQL-queries to search for139

keywords within source code comments of Java files.140

3.1. Exploratory study141

With the help of GBQ, we created one big CSV file containing all matches of each keyword142

mentioned above. Each match is recorded as a tuple with the following data:143

(id, match, link, line, repo name, path)144

where id denotes a file identifier in the GBQ GitHub dataset, match the matched keyword, link145

the link to the respective repository on GitHub, repo name the corresponding repository name146

consisting of the account as well as project name and path denotes the path of the file containing147

the match.148

The goal of our qualitative analysis was to find common properties of real-world formula149

code. To this end, we followed an iterative analysis process borrowing some ideas (open coding,150

iteration, theoretical sampling and saturation) from Grounded Theory [27]:151

1. Compute a set of matches (sample) using feedback from the previous iteration to adapt the152

sampling strategy and collect data that will more likely lead to new insights (theoretical153

sampling).154

2. For each match:155

• Decide whether the source code fragment implements a formula156

• Try to reconstruct the underlying mathematical formula, observe and describe phe-157

nomena of the formula and the formula code (open coding).158

3. If the analysis of the sample lead to new insights (i.e. new or refined codes) then repeat the159

analysis with another sample (Step 1). Otherwise, our codes cover all relevant phenomena160

(theoretical saturation).161

In total, we conducted 4 iterations of group sessions until we reached a saturation on our162

observations. For these iterations, we used the following samples to search for formula code out163

of different perspectives:164

Top10M: Matches of top 10 projects sorted by number of matches per project (keywords: theo-165

rem, formula, math, equation, sum of)166

Top50P1: Matches of top 50 projects sorted by popularity (keywords: theorem, formula, equa-167

tion, sum of)168

Top20P2: Matches of top 20 projects sorted by popularity (keywords: product of, product over)169

5

Figure 1: Formula reconstructed from code in Listing 2

Random: Matches randomly selected (keywords: theorem, formula, equation, sum of, product170

of, product over)171

For the first sample, we ranked the projects by the number of matches and started to manually172

inspect the matches of the top ten projects. As the term math caused too many false positives, i.e.173

mostly commented calls to functions of the standard library like Math.sqrt(...), we omitted174

it in subsequent samples. The samples TOP50P1 and TOP20P2 were created by sorting the175

projects by their popularity, measured in terms of their number of watchers. Our motivation was176

to reduce noise in our sample caused by small toy projects.177

In total, we closely inspected 142 matches from 101 different open source Java projects on178

GitHub and found 47 matches from 21 different projects to be formula code. For those matches,179

we reconstructed the underlying mathematical formula of each fragment (example shown in Fig-180

ure 1). The observed and coded phenomena include control flow statements, roles of variables,181

comprehensibility and mathematical data type. Note, albeit we consider the Java language fea-182

ture of lambda expressions being close to a mathematical notation, it did not occur once in our183

qualitative study.184

Control-Flow Statements. As shown in Table 1, 24 of the 47 verified formula code fragments185

made use of a for-loop of which 12 were simple non nested for-loops, eight were double nested186

for-loops (one nested into another) and four were triple nested for-loops. We only found two187

examples where while-loops were used to implement a mathematical formula—one was non188

nested and the other double nested. Furthermore, our findings revealed that most sum and product189

formulas were implemented using for-loops, which is not surprising as for-loops are closer to190

the mathematical representation than other loops. The same holds for formulas which required191

iterating through a vector or matrix. The conditional statement (if) was found 16 times, either192

within a loop body to function as a filter (seven times) or completely outside of any loop (nine193

times). In three cases, we also determined an incremental computation which means that, at194

runtime, a series of method calls resulted in a more complex implementation of a mathematical195

formula—the formula actually describes the invariant of the value of a variable. For example,196

the method put(float value) in the class FloatCounter of the project libgdx/libgdx197

(Listing 1) incrementally updates simple statistical values, such that average equals 1
n
∑n

i=1 vi198

where n is the current value of count and vi are the actual values of the parameter value of all199

invocations of the method:200

201

Listing 1: Formula code in FloatCounter.java [28]

p u b l i c vo id p u t (f l o a t v a l u e) {202

l a t e s t = v a l u e ;203

t o t a l += v a l u e ;204

c o u n t ++;205

6

Table 1: Properties of the coded samples

control-flow mathematical
statements roles of variables comprehensibility data type

Sample coded fo
r

w
hi

le

if in
cr

em
en

ta
l

re
ad

on
ly

ac
cu

in
de

x

co
-i

nd
ex

w
/o

co
nt

ex
t

ex
pr

es
si

bl
e

pr
ox

im
ity

m
ix

-f
or

m

m
at

ri
x

ar
ra

y

se
ri

es

po
in

t/v
ec

to
r

Top10M 12 4 1 5 1 9 3 5 0 7 11 9 3 4 9 2 5
Top50P1 21 10 1 8 2 17 12 13 2 11 18 11 8 5 7 8 8
Top20P2 4 3 0 0 0 4 3 3 0 3 4 4 1 1 3 3 3
Random 10 7 0 3 0 9 4 7 1 7 10 7 6 2 4 2 6
Total 47 24 2 16 3 39 22 28 3 28 43 31 18 12 23 15 22

a v e r a g e = t o t a l / c o u n t ;206

. . .207

Albeit recursive implementations are considered to be more elegant and closer to the mathe-208

matical specification, we found no recursively implemented mathematical formula in our sample.209

This may be due to the fact that recursive implementations suffer from performance penalties.210

Moreover, Grechanik et al. [29] analyzed 30.000 Java projects on SourceForge and found that211

less than 4% of all methods were recursive.212

Roles of Variables. We categorized variables by the way they are initialized, read and changed213

in the formula code—i.e. the roles they play in the code. Table 1 lists the different roles of214

variables that we found in our examples. These different kinds of variable roles mostly refer to215

their use within a loop. First of all, it makes a difference whether a variable is read or written in216

the code. If a variable is only read, it is usually a parameter of a method, a field or a constant.217

More interesting are the write-accessed variables. Here, we distinguish accumulator variables,218

indexing variables and co-indexing variables. Accumulator variables are used to accumulate219

a value over every iteration of a loop and occur on the left side of an assignment expression.220

Indexing variables are usually incremented in each iteration of a loop and are mainly used to221

access data structures like arrays or collections, or used in an expression to generate a series of222

values. In for-loops, the indexing variable is usually explicitly defined in the head of the loop.223

A co-indexing variable, like the name suggests, is a variable that indirectly depends on the224

value of the current indexing variable and is possibly used in expressions in each iteration of the225

loop. For example, the variable pixel in the method analyze(BufferedImage image) of the226

class HOGFeature.java in the project airbnb/aerosolve is a co-index of the index variable227

i (see Listing 2):228

229

Listing 2: SP-Formula code in HOGFeature.java [30]

/ / Compute sum o f a l l c h a n n e l s per p i x e l230

f o r (i n t y = 0 ; y < h e i g h t ; y++) {231

f o r (i n t x = 0 ; x < wid th ; x++) {232

i n t p i x e l = image . getRGB (x , y) ;233

f o r (i n t i = 0 ; i < 3 ; i ++) {234

7

lum [x] [y] += p i x e l & 0 x f f ;235

p i x e l = p i x e l >> 8 ;236

}237

lum [x] [y] /= 3 ;238

} }239

We only found few instances of co-indexing variables in our coded examples. Finally, we240

also found temporary variables, which were used to split the computation of an expression into241

several steps. We assume that temporary variables were often used to increase readability and to242

support debugging.243

Roles of variables have also been investigated in computer science education research [31].244

Our roles of variables correspond to the ones identified by Taherkhani et al. [32] in their inves-245

tigation of implementations of sorting algorithms. Our term indexing variable relates to their246

definition of a stepper, our term co-indexing variable to their definition of a follower, and our247

term accumulation variable to their understanding of a gatherer. Finally, they denote constants248

or read-only variables as fixed values.249

Often, valuable context information was encoded in the name of a variable, e.g. C phi (Cφ)250

or xbar (x). We assume that developers name variables or other artifacts like this when they251

program according to a visual representation of a mathematical formula. This way, a mental and252

partly visual connection between the program code and the underlying mathematical representa-253

tion is established to increase the recognition value of the formula within the code.254

Comprehensibility. The effort for reconstructing the formulas was influenced by several factors255

(see Table 1). In many cases, the formulas could be reconstructed by inspecting the code frag-256

ment and without additional context information. In other cases, we had to inspect the code257

surrounding the actual denoted formula, because the code of the complete implementation can258

be fragmented in many lines of code, methods or even classes.259

Furthermore, we recorded whether we were able to express the documented formula code in260

a mathematical notation (row expressible in Table 1). The few cases for which we could not261

reconstruct the underlying formula, but which were annotated by the developers to be implemen-262

tations of some formula, are either indications of our limited domain knowledge or examples of263

how performance improvements obfuscate the program code.264

A related property of the formula code is its proximity to the mathematical representation. With265

33 of 47 coded matches, the majority of the inspected formula code examples are quite close266

to their mathematical notation. When reconstructing the formulas, we often caught ourselves267

mixing mathematical notations with simple program code artifacts, e.g. function calls or array268

accesses. Therefore, we also coded whether a code fragment could be more intuitively described269

by a mixed representation of mathematical symbols and program code notation, even if we were270

able to reconstruct a purely mathematical representation as well. Figure 1 shows an example271

where we embedded code fragments into the mathematical representation since the bit opera-272

tions & and >> are programming specific and have no corresponding semantically equal symbols273

in maths. Altogether, for 18 of 47 coded examples, we found that such a mixed form might be274

an appropriate alternative representation.275

Mathematical Data Type. Twelve of the 47 formula code examples implement matrix operations276

or calculations on matrices in general. Usually, matrices were implemented with the help of two-277

dimensional arrays either directly or indirectly through utility classes. But simply assuming a278

formula code example is implementing matrix calculations when detecting a two dimensional279

8

array is not always correct. Among other things, the correct sizes of the dimensions were nec-280

essary to consider a two dimensional array to be a matrix implementation. Furthermore, a two281

dimensional array in conjunction with a nested for-loop may not have been intended to be an282

actual matrix operation even though one could express it as such. Almost twice as many formula283

code examples (22 of 47) dealt with vector calculations or points in 2D or 3D space. In the284

coded examples, vector mathematics was implemented in three different ways: by arrays (e.g.285

v[0]), by separate scalar variables for each dimension of a vector (e.g. v x, mostly for 2D or 3D286

vectors), or by utility classes (e.g. v.get(0)).287

Finally, 15 of 47 examples implemented a mathematical series with a single loop. In mathe-288

matics, a series is an infinite sum which of course is not implemented as such and thus outlines289

an important difference between program code representation and mathematical notation of the290

same formula.291

292

4. Derived Formula Code Patterns293

In our exploratory study, we found many different structural aspects and other phenomena re-294

lated to formula code. We also gained more insights in what developers annotated to be program295

code implementing a mathematical formula. Moreover, we were also able to derive patterns of296

typical formula code examples from our observations. In this section we will explain these in297

detail.298

Since more than half of the examples in our qualitative study used for-loops, we focus on299

loop-related patterns in the following. In particular, we look at those using for or foreach300

to implement a sum or product formula. In this section, we exemplary present a simple (non301

nested) for-loop and a nested foreach-loop pattern in an abstract notation including derived302

constraints for a transformation of the code to a formula representation in mathematical notation.303

Please note that arithmetic operations and function calls may occur in expressions within these304

formulas. All patterns that we implemented in our detection tool to perform the case study in305

Section 5 can be described in the same manner.306

4.1. Non-nested for loops307

A pattern of typical implementations of sum and product formulas using a for loop is pre-308

sented in Pattern 1:309

Pattern 1: Syntactic pattern for implementations of sum/product formulas using a for-loop

for (index = exp1;310

index < exp2;311

[index=index+1 | index+=1 | ++index | index++]) {312

block1313

[accu = accu op exp3; | accu op= exp3;]314

block2315

}316

In this pattern, we used the variable roles introduced in the previous section to name the meta317

variables. The meta variables expri are placeholders for arbitrary expressions, blocki for any318

possible other program code at those positions. This implies that the code implementing a for-319

mula can be embedded in other program code and that only a small slice of code forms the actual320

9

formula code that we can represent in mathematical notation. In the above pattern, we increment321

the indexing variable by one in each iteration and make use of the comparison operator less than322

in the loop conditional. This is due to the fact that it is the most common utilization of a for-323

loop in this context, and a stepping of one is consistent with the semantics of a mathematical324

sum or product. Other loop-conditions or increments are conceivable but would result in a more325

complex mathematical representation albeit some, e.g. using the comparison operator less than326

or equal, are trivial adjustments. In the patterns that we implemented, we therefore allowed other327

relational operators as well. Assuming that the value of the variable accu is accu0 before the first328

execution of the for-loop, the mathematical formula that relates to the formula code pattern in329

Pattern 1 is described by the following formula template:330

accu = accu0 op
exp2−1∑

index=exp1

exp3 if op ∈ {+, -} (1)

accu = accu0 ∗

exp2−1∏
index=exp1

exp3 if op ∈ {*} (2)

accu = accu0 ∗

exp2−1∏
index=exp1

1
exp3

if op ∈ {/} (3)

However, many program code fragments that match with the syntactic pattern may not imple-331

ment the formula described by the formula template, e.g. because they change the accumulator332

or indexing variables in the code blocks or expressions. Hence, we extended the pattern with ad-333

ditional constraints to reduce the number of false positives. To this end, we define the functions334

vars() and writes() which we will later use to formulate the constraints.335

vars(e) = {x | x occurs in e} (4)
vars({e1, . . . , ek}) = vars(e1) ∪ · · · ∪ vars(ek) (5)

writes(b) = {v | v=e occurs in b} (6)
writes({b1, . . . , bk}) = writes(b1) ∪ · · · ∪ writes(bk) (7)

The first two constraints require that the accumulation variable accu shall not occur in the336

expressions expr2 and expr3 and the indexing variable index shall not occur in expr2:337

accu < vars({exp2, exp3) (8)
index < vars(exp2) (9)

We allow that the accumulation variable occurs in expr1, because it will only be evaluated338

once during the initialization of the indexing variable and at that time it will have its initial value339

accu0. It must not occur in expr2, because then it would occur on both sides of the equal sign in340

the formula. The indexing variable must not occur in expr2, because otherwise the upper bound341

of the sum or product would not be constant but reevaluated in each iteration.342

The following three constraints require that any variable occurring in expr2 and expr3 as well343

as the variables accu and index will not be written within the body of the loop, i.e. that there are344

10

no assignment statements assigning new values to these variables:345

accu < writes({block1, block2}) (10)
index < writes({block1, block2, exp3}) (11)

vars({exp2, exp3}) ∩ writes({block1, block2, exp2, exp3}) = ∅ (12)

Variables can not only be changed directly through assignments, but also indirectly through346

method calls in the body of the loop. In this case, the method has a side effect: Rountev [33]347

describes a side effect of a method as ‘(...) state changes that can be observed by code that348

invokes the method’. Thus, if all methods called in the body of the loop are side-effect free, we349

can be certain that they don’t change the relevant variable values. We did not add a constraint on350

side-effect-freeness, because it would require a full-fledged static program analysis.351

4.2. Nested loops352

We also defined patterns for nested loops, loops which iterate over arrays, and foreach-353

loops which iterate over collections (including arrays). As an example, we present a pattern with354

two nested foreach-loops below:355

Pattern 2: Syntactic pattern for implementations of computing a vector of sums/products using two nested foreach-loops

for(entry : exp1) {356

block1357

for(elem : exp2) {358

block2359

[entry = entry op exp3 | entry op= exp3]360

block3361

}362

block4363

}364

In the formula template related to this pattern, we use the mathematical notation for an indexed365

family:366 entry op
∑

elem∈exp2

exp3

entry∈exp1

if op ∈ {+, -} (13)

entry ∗
∏

elem∈exp2

exp3

entry∈exp1

if op ∈ {*} (14)

entry ∗
∏

elem∈exp2

1
exp3

entry∈exp1

if op ∈ {/} (15)

11

To reduce the number of false positives we define the following constraints for the nested foreach367

pattern:368

entry < writes(
4⋃

i=1

blocki) (16)

elem < writes({block2, block3}) (17)

vars(exp1) ∩ writes(
4⋃

i=1

blocki) = ∅ (18)

vars({exp2, exp3}) ∩ writes({block2, block3, exp3}) = ∅ (19)

4.3. Vector arithmetics369

Although we did not use these patterns in our later analysis, we also defined patterns for370

vector addition and scalar product. We present a pattern for the 2D vector space which can easily371

be extended to more dimensions. Note that Pattern 1 would apply for scalar products as well if372

they are implemented using a for-loop. Furthermore, we did not observe any vector addition373

with more than three dimensions being implemented in the manner of the following pattern.374

Pattern 3: Syntactic patterns for implementations of vector addition and scalar product

Scalar product:375

var = exp1,1 * exp2,1 + exp1,2 * exp2,2 ;376

377

Vector addition:378

var1 = exp1,1 + exp2,1 ;379

var2 = exp1,2 + exp2,2 ;380

The formula template for these patterns uses typical vector notation:381

var =

〈(
exp1,1
exp1,2

)
,

(
exp2,1
exp2,2

)〉
and

(
var1
var2

)
=

(
exp1,1
exp1,2

)
+

(
exp2,1
exp2,2

)
(20)

The above patterns would match with far too many assignments in the source code, thus we add382

the following constraints. Our constraints are based on the observation that certain suffixes occur383

often: .x; getX() or [0] and that certain naming conventions are used, e.g. sx or s1, to access384

components of a vector. First, we define the following auxiliary functions:385

source(e) = e′, if e = e′.s and s ∈ {x, y, getX(), getY(), get(0), get(1)} or e = e′[i] (21)
source(e) = p, if e = ps is a variable name with prefix p and suffix s ∈ {x, y, 0, 1} (22)

index(e) = 0, if e = e′.s and s ∈ {x, getX(), get(0)}
or e = e′[0] or e is a variable name with suffix s ∈ {x, 0}

(23)

index(e) = 1, if e = e′.s and s ∈ {y, getY(), get(1)}
or e = e′[1] or e is a variable name with suffix s ∈ {y, 1}

(24)

Now we can define the following constraints:386

source(e1,1) = source(e1,2) and source(e2,1) = source(e2,2) (25)
index(e1,1) = index(e2,1) and index(e1,2) = index(e2,2) (26)

12

For the vector addition we also require:387

index(var1) = index(e1,1) = index(e2,1) (27)
index(var2) = index(e1,2) = index(e2,2) (28)

source(var1) = source(var2) (29)

Now the formula templates can be rewritten as:388

var =
〈

source(exp1,1), source(exp2,1)
〉

(30)
source(var1) = source(exp1,1) + source(exp2,1) (31)

Note that the presented patterns with the given constraints are only a heuristics to be able389

to find candidates for formula code, i.e. instances of the pattern within Java software projects.390

The patterns neither define necessary nor sufficient conditions of program code implementing,391

for example, a sum or product formula.392

5. SP-Formula Code on GitHub393

To answer research question RQ2, we performed a quantitative study on two different sam-394

ples of open source Java projects on GitHub. To automate the search for formula code, in par-395

ticular SP-formula code, we developed a detection tool which employs refined variations of the396

patterns introduced in Section 4. First, we present some detail on the SP-formula code detec-397

tion tool, in particular on the patterns it can detect and its evaluation in terms of precision and398

recall. Next, we introduce a sample of engineered Java software projects of arbitrary topic (see399

GitHub topics [34]) and present the results obtained by our tool for this sample. We also look at400

the application domains of the projects with highest SP-formula code densities. Thereafter, we401

describe another sample consisting solely of Java projects with topic scientific-computing and402

discuss the results computed by our tool for this sample.403

5.1. Pattern-Based SP-Formula Code Detection Tool404

For our study, we used a shell script that clones each project from a given list of GitHub405

projects and checks out their configured default branch. The detection tool reads all Java files of406

these projects one after another (comments in the source code are removed) and searches for all407

patterns in parallel to exploit multiple CPU cores. Each pattern is implemented as a compiled408

regular expression. Although the regular expressions cannot match every syntactic pattern of409

the Java programming language, the approach performed pretty well for our purposes as it also410

captures and preprocesses pattern-specific elements like variable roles, such that the constraints411

associated with each pattern can be tested. The tool tests the nested SP-formula code patterns first412

and then the non-nested SP-Formula-code patterns (see Table 2). Every match of the non-nested413

patterns will be checked for intersection with all matches of the nested patterns. If an intersection414

exists, the respective non-nested match will be discarded. Matched code fragments that satisfy415

the constraints are attached to the output which is stored in form of a CSV file. This file lists416

for each entry, the line numbers of the start and end of the match, the source code of the code417

fragments, the inferred formula in mathematical notation as well as other detailed information418

about the source like project name, file name and GitHub path. The inferred formula is basically419

an instance of our formula templates and is stored in the file both in a textual representation as420

well as in MathML.421

13

Listing 3 shows the regular expression for Pattern 1 (all pattern implementations are avail-422

able in the supplementary material [35]). Note that the regular expression is built using String423

constants like VAR and EXP which themselves contain regular expressions:424

Listing 3: Regular expression for non-nested for-loop implementing a sum/procuct (Pattern 1)

Pattern.compile(425

// head of loop426

"(?<lineOuterFor >for"+b+"\\((?:"+b+DT+b2+")?"+427

"(?<ind0 >"+VAR+")"+b+"="+b+"(?<exp00 >"+EXP+")"+428

b+";"+b+"\\k<ind0 >"+b+"(?<relOp0 >"+REL_OP+")"+b+429

"(?<exp10 >"+EXP+")"+b+";"+ITER0_INCREASE+"\\))\\s*+"430

// body in brackets431

+ "(?:\\{\\s*?" +432

"(?<blockFiOu >"+BLOCKR+"\\s++)" +433

"(?<lineAssiA >"+ACCUA_ASSIGNMENT+";)\\s*+" +434

"(?<blockSeOu >"+BLOCKP+")\\s*+" +435

"\\}"436

// no brackets437

+ "|" +438

"(?<lineAssiB >"+ACCUB_ASSIGNMENT+";))"439

);440

We implemented the 10 patterns listed in Table 2 to detect SP-formula code. On average, the441

regular expressions for non-nested loops consist of 8 lines of code without comments, those for442

nested loops of 28 lines.443

Table 2: Patterns implemented by the tool

Pa
tte

rn
s

fo
r

no
n-

ne
st

ed
lo

op
s

FIS for-loop for sum/product
FES foreach-loop for sum/product
FIA for-loop for arrays
FEC foreach-loop for arrays/collections

Pa
tte

rn
s

fo
r

ne
st

ed
lo

op
s

NFISS for-loops for sum/product of sums/products
NFESS foreach-loops for sum/product of sums/products
NFIAS for-loops for array of products/sums
NFECS foreach-loops for array/collection of products/sums
NFIAA for-loops for array of arrays
NFECC foreach-loops for array/collection of arrays/collections

Evaluation. To evaluate our approach to detect SP-formula code in software repositories we444

applied our tool with the patterns listed in Table 2 to random samples of Java files on GitHub. As445

validation metrics we use recall and precision:446

• Recall: How many of the SP-formula code fragments in a sample are automatically de-447

tected?448

• Precision: To what extent are the detected SP-formula code fragments correct?449

14

More precisely, let F be the set of all formula code fragments in the sample, and D be the450

detected formula code fragments. Then the recall is the number of correctly found formula code451

fragments divided by all correct formula code fragments, i.e., recall =
|D∩F|
|F| , and the precision452

is the number of correctly found formula code fragments divided by all found formula code453

fragments, i.e., precision =
|D∩F|
|D| . Based on the GBQ GitHub and GHTorrent dataset, we454

retrieved a list of 21,052,682 Java filenames (including full path information) on GitHub. The455

list does not include any forked repositories and duplicates, i.e. files with the same hash value.456

To draw random samples from the above data set we used the statistical programming language457

R and its uniform distributed function ‘runif’. To measure the recall of our approach we used458

a sample of 1,000 Java files, to measure its precision we used a sample of 10,000 files. Since459

the GBQ GitHub and GHTorrent datasets are off-line mirrors of GitHub metadata, each sample460

contained names of files which have already been moved, removed or renamed on GitHub. Thus,461

we could not download the source code of all files leading to a sample size of 878 and 8,960,462

respectively.463

Oracle. For computing the recall, we created an oracle data set by manually inspecting the464

complete sample of 878 files and annotating the formula code fragments that we found. We465

annotated the code fragments in a group discussion in order to reduce subjective biases. To466

annotate the fragments, we enclosed them in XML-tags which can be nested. The choice of467

the tags <SimpleNestedLoop>, <DoubleNestedLoop>, <SimpleFormula>, <Assignment>,468

<Matrix>, and <Vector> is based on the results of our keyword-based search. Finally, we469

manually found and annotated 145 formula code fragments in 53 of the 878 files (6.04%). These470

formula code fragments made up 1,064 lines of 142,419 total lines of code (0.75%). These471

annotated formula code fragments contained SP-formula code in 110 cases (75.86%). Almost all472

remaining cases were annotated with <SimpleFormula> which we used to describe simple, but473

non-trivial arithmetic expressions. The mathematical representation of those expressions may474

have some added value compared to the representation in program code, e.g.
√

5 instead of475

Math.sqrt(5). Matrices and vectors were only used in 4 lines outside of loops.476

Recall. Our tool found 34 of 110 SP-formula code fragments in the oracle data set. Thus, the477

recall is 30.91%. In cases where both an inner and outer loop each represent an SP-Formula code478

fragment, the tool would only consider the outer one. However, in our evaluation this case never479

happened.480

Precision. To measure the precision we applied our tool to the 8,960 Java files of the second,481

non-annotated sample. For each detected formula code fragment, we manually checked whether482

the matched code fragment implemented an SP-formula. We also recorded whether the inferred483

formula covered the matched code fragment completely or only a part of it.484

Our tool found 181 matches. All of these matches contained SP-formula code. 153 code485

fragments got completely specified by the inferred formula in mathematical notation. For 23486

matches the tool inferred a correct formula that, however, did not describe the whole code ex-487

cerpt. Only in 5 cases we found that the inferred mathematical formula was inadequate or wrong488

(2.76%). Thus, if we only take into account whether the match contained formula code, the pre-489

cision was 100%. If we require that the inferred formula is correct, the precision was 97.23%,490

and if we require that the inferred formula is correct and completely describes the effect of the491

code matched, the precision was 84.53%.492

15

Formula code density. To quantify how often formula code occurs in real world software (RQ2),493

we define two different measures for the formula code density—one based on lines of codes ρLOC494

and one based on number of unique files ρ f iles:495

ρ f iles =
#files containing formula code

#all scanned files
(32)

ρLOC =
#lines with formula code in all scanned files

#lines of all scanned files
(33)

The formula code densities in our oracle data set, i.e. based on all manually identified and496

annotated formula code fragments, were ρ f iles = 53
878 = 6.04% and ρLOC = 1,064

142,419 = 0.76%.497

In other words, in our oracle data set on average one of 130 lines of code was part of a code498

fragment which we annotated as formula code.499

5.2. SP-Formula Code in engineered Java software projects on GitHub500

In the following, we introduce the examined sample of randomly chosen open source Java501

stargazer projects, present results of our detection tool for this sample and look at the application502

domains of the SP-formula code-rich projects.503

Stargazers. We used the stargazers-based classifier approach with threshold 10 which according504

to a recent study by Munaiah et al. [36] has high precision (97%) and a reasonable recall (32%)505

to predict whether a GitHub project is an engineered software project and thus is sufficient for506

our purposes. First, we generated a sample of randomly chosen non-forked open source Java507

projects from GitHub excluding the already examined projects from our preliminary qualitative508

study. We utilized the GBQ GHTorrent dataset to retrieve the initial project list which contained509

255,561 projects (as of January, 8th 2019). Next, we filtered the list by watcher (Stargazers)510

count greater than 10. The filtered list contained 28,139 projects, from which we randomly drew511

1000 with the help of the statistical programming language R. The results of applying our SP-512

formula code detection tool to the Stargazers sample, the SciC (scientific computing) sample513

(see Subsection 5.3) as well as aggregated results are shown in Table 3. It lists the total number514

of projects investigated in each sample (#projects), the number of projects containing any kind515

of Java code at all (#nonempty), the number of projects which contained any SP-formula code516

detected by the tool (#fc projects), the total number of Java files within the complete sample517

(#files), the total number of files which contained any SP-formula code detected by the tool (#fc518

files), the total number of lines of Java code in the complete sample (LOC), the total number519

of detected lines of SP-formula code (LOFC), the total number of matches found by the tool in520

the complete sample (#matches) as well as code densities for actually detected SP-formula code521

ρS P
f iles and ρS P

LOC based on the definitions of general formula code densities in Equation 32 and 33,522

respectively. Assuming, that the distribution of SP-formula code in the samples is the same as in523

the oracle, we can use the recall of 31% determined in Section 5.1 to compute a rough estimation524

of the real SP-formula code densities ρ̃ S P
LOC = 1

recall ρ
S P
LOC , resp. ρ̃ S P

f iles = 1
recall ρ

S P
f iles.525

LOC was computed with the Unix command cloc (version 1.74) and does neither include526

comments nor performs a uniqueness test on files. The same holds for LOFC computed by527

our tool, since it removes comments before scanning the files and processes every file in the528

project. Further statistical analyses were done with R. In total, we scanned 199,457 Java files529

from 949 open source Java projects of arbitrary topic available on GitHub using the patterns530

listed in Table 2. Below, we present the results for this sample.531

16

Table 3: Results of the SP-formula code detection tool for each sample

Sample Stargazers SciC Sum
#projects 1000 14 1014

#nonempty 949 14 963
#fc projects 266 11 277

#files 199,457 4050 203,507
#fc files 1713 199 1,912

LOC 30,275,938 548,976 30,824,914
LOFC 13,094 1,794 14,888

#matches 2,858 515 3,373
ρS P

f iles 0.85% 4, 91% 0.94%
ρS P

LOC 0.043% 0.32% 0.048%
ρ̃ S P

f iles 2.74% 15.84% 3, 03%
ρ̃ S P

LOC 0.14% 1, 03% 0.15%

Results for Stargazers. Our detection tool yielded 2,858 SP-formula code matches in 266 of532

949 projects (28%) respectively in 1713 of 199,457 Java files in this sample. The detected SP-533

formula code was spread over 13,094 lines of 30,275,938 total lines of Java code. Thus, the534

densities of SP-formula code in this sample are ρS P
f iles = 0.85% and ρS P

LOC = 0.043%. Practically535

speaking, on average the tool detected SP-formula code in one of 117 files respectively in one of536

2325 lines of code. As can be seen in Figure 3, every pattern derived from our preliminary study537

occurred in the Stargazers sample, which confirms their relevance. Nevertheless, the non-nested538

loop patterns FIS, FES and FIA are more common than the nested ones. Compared to the other539

non-nested loop patterns, the pattern FEA describing a foreach-loop that traverses an array sticks540

out, because it is rarely found.541

Considering the absolute number of matches is not sufficient to tell if a project contains much SP-542

formula code. Therefore, we further investigate the SP-formula code density, ρS P
LOC introduced543

earlier in this section to identify SP-formula code rich projects. A corresponding scatter plot is544

presented in Figure 2. It becomes apparent that only few projects (18, with a density ρS P
LOC greater545

or equal to 0.01) have comparatively high formula code densities, i.e. at least 1 of 100 lines of546

code is part of SP-formula code. Table 4 shows the complete list of these projects.547

The 18 projects with high SP-formula code density form the basis for a coding of the respec-548

tive application domains and thus towards further investigations concerning RQ2.549

Application Domains. As there was no sufficiently exact and efficient way to automatically de-550

termine the application domain of GitHub projects, we manually inspected the web sites of the551

projects to extract this information. While GitHub offers the feature topics [34], this feature is552

not sufficiently informative for the majority of projects examined in this work.553

As it was not possible with reasonable effort to determine the application areas for all projects554

included in our sample, we decided to take a closer look at the application domains of the projects555

having a high SP-formula code density, more precisely, the top 18 projects of the Stargazers556

sample in terms of ρS P
LOC as presented in Table 4. Again we applied open and axial coding to557

determine the application domains based on the descriptions of these projects on GitHub and558

names of code artifact, such as classes and packages. In total, we performed two iterations559

involving three of the four authors, where we abstracted from more specific to more generic560

17

18

Figure 2: Jittered scatter plot of SP-formula code densities ρS P
LOC across all projects for each sample.

Table 4: Top 18 projects of the Stargazers sample having high (greater or equal to 0.01) SP-formula code densities
ordered by ρS P

LOC including their respective coded application domain.

Project LOFC LOC ρS P
LOC Application Domain

grunka/Fortuna 87 1476 0.058 Cryptography
hfut-dmic/ContentExtractor 16 355 0,045 Information Retrieval
eljefe6a/UnoExample 3 75 0,040 Programming Model
radzio/AndroidOggStreamPlayer 272 7068 0,038 Signal Processing
brendano/myutil 319 10930 0,029 Statistics
InfiniteSearchSpace/Automata-Gen-3 100 3694 0,027 Simulation
DASAR/Minim-Android 186 9604 0,019 Signal Processing
hanks/Natural-Language-Processing 79 4358 0,018 Natural Language Processing
liuxang/LivePublisher 11 636 0,017 Signal Processing
sudohippie/throttle 12 730 0,016 Computer Networks
jlmd/SimpleNeuralNetwork 6 423 0,014 Machine Learning
ozelentok/CodingBat-Soultions 36 2593 0,013 Programming Language Practice
aliHafizji/CreditCardEditText 4 307 0,013 Mobile User Interface
quiqueqs-BabushkaText 4 318 0,012 Mobile User Interface
jroper-play-promise-presentation 3 239 0,012 Programming Model
jestan/netty-perf 8 669 0,011 Computer Networks
chipKIT32/chipKIT32-MAX 674 62409 0,010 Micro-Controller
martijnvdwoude/recycler-view-merge-adapter 3 281 0,010 Mobile User Interface

categories. The resulting application domains are also shown in Table 4.561

The results of the application domain coding do partially coincide with our expectations. One562

SP-formula code dense project is a practice project, where features of the Java programming lan-563

guage are exercised. Another two projects highlight a certain programming model. Furthermore,564

three projects are concerned with mobile user interface elements. These projects form outliers in565

the sense that their high formula code density is due to their low number of lines of code, because566

they only contain a single SP-formula code match (see Table 4).567

The other twelve projects draw a different application domain picture. We labeled three projects568

with Signal Processing as they dealt with either audio or video encoding, respectively trans-569

fer. Besides that, we assigned the labels Computer Networks, Statistics, Information Retrieval,570

Neural Networks, Natural Language Processing, Micro-Controller, Simulation and Cryptog-571

raphy to characterize the application domains of the remaining SP-formula code dense projects.572

For each of the labels assigned to these twelve projects, we can associate the application of573

mathematical formulas. Surprisingly, neither domains like computer graphics and games, nor574

chemistry and physics, which one typically subsumes by the term scientific-computing, occurred575

among the projects with the highest SP-formula-code density in our sample. Nonetheless, the576

majority of the assigned labels seem related to scientific-computing. Thus, projects of this ap-577

plication domain seem promising in terms of frequency of SP-formula code and we investigate a578

thematically more focused sample as described in the following.579

5.3. SP-Formula Code in Scientific-Computing Java Projects on GitHub580

Due to the unexpected distribution of application domains among the projects with the high-581

est SP-formula-code density, we drew another sample solely consisting of Java repositories with582

topic scientific-computing.583

19

SciC. To generate this topic-specific sample directly from the GitHub website, we used the584

search term language:Java topic:scientific-computing to query Java repositories. The585

14 resulting repositories (as of January, 9th 2019) do neither intersect with the already examined586

projects of our preliminary qualitative study nor with the sample Stargazers.587

We followed the exact same approach to compute the data for the sample SciC as we did for the588

other sample. The results are listed in the second column in Table 3.589

Results for SciC. A total of 4050 Java files and 548,976 lines of code were scanned in this590

sample. The tool detected 515 SP-formula code matches in eleven of 14 projects (78.5%) in591

199 different Java files and 1,794 lines of SP-formula code. Hence the density of detected SP-592

formula code based on files and lines of code is ρS P
f iles = 4.91% and ρS P

LOC = 0.32%, respectively.593

In Figure 2 we can see that 11 of the 14 projects have a considerably higher SP-formula code594

density than most of the projects in the Stargazers sample. Furthermore, Figure 2 reveals that595

six of the implemented patterns also occur in this sample. Note, that in contrast to the Stargazers596

sample, here the two patterns NFIAA and NFIAS have a high density.597

6. Discussion598

6.1. Diversity of Formula Code599

From our qualitative study, we can conclude that there exists a wide range of formula code.600

On that basis, we can give first answers to research question RQ1: One general observation is that601

the full extent of an implemented formula was often not directly recognizable. For some samples602

in our qualitative study, it took considerable effort to track down the complete implementation603

of a documented formula. Especially when the code fragments were split across different source604

code artifacts such as classes or files. We manually inspected 142 matches and classified 47605

as real formula code. While the formula code was certainly diverse, almost half of the code606

involved for-loops, and also almost half of the code used arrays. We found several examples607

of incremental implementations of formulas. In these cases, the code may only implement the608

formula when we assume a certain dynamic behavior, such as a certain sequence of method609

calls or object instantiations. Detecting these kinds of formula implementations and asking the610

programmer to add assertions to the code to assure the correct dynamic behavior could help to611

prevent erroneous usage. Furthermore, reconstructing a formula in mathematical notation from612

the code was a very valuable and intuitive part in the process of code comprehension. From that613

point of view, it is obvious that one integral requirement for formula code support is the visual614

mathematical representation of the respective code.615

Splitting. We also found that very often, complex expressions are split into multiple partial com-616

putations storing the interim results in temporary variables — either with names that intend to617

describe the computational part it represents, or with simple names such as tmp. The developers618

often followed an approach in which they split the expressions by operator precedence. For ex-619

ample, fractions the numerator and denominator computations are separated, stored in temporary620

variables and then divided in a subsequent statement. Besides the motivation of making the code621

more reusable and readable, developers seem to also split large expressions to facilitate debug-622

ging of the formula code. The splitting of computations makes it possible to leverage interactive623

break-point debuggers to investigate the interim results as well as assure correct application of624

arithmetic operations and functions according to their sequence and precedence. Current inter-625

active debuggers only support line-by-line evaluation of code. A more fine grained approach in626

20

which single operations in the same line can be investigated seems helpful. For formula code,627

an interactive mathematical visualization where parts of a formula could be collapsed, expanded,628

evaluated, used as break-points and also be edited with respective effectual code changes would629

form a promising extension to current debugging mechanisms.630

Naming and Formatting. The scope of arithmetic computations is not limited to scalar values.631

We often found groups of variables coherent in the way they were named and the kind of op-632

erations applied to them. These variables were actually used to represent a single element of a633

vector or matrix. We found these groups of variables being modeled either as object variables634

encapsulated in a class and thus programmatically specifying their coherence, or completely un-635

bounded as local variables. The formatting of corresponding code snippets gives the impression636

that developers try to visually form a vector or matrix in a known mathematical way. For vectors,637

we often discovered a vertical arrangement such that every component of a vector is computed638

subsequently in its own line of code. For matrices, the variables are sub-grouped for every row639

and column in a similar approach as for vectors, i.e. for each row- and column vector separately.640

This gives us even more evidence that developers want to have a visual representation of the641

formula code close to its mathematical representation.642

Arrays. In total, 36 out of the 47 investigated code examples in our qualitative study were con-643

cerned with vector or matrix computations. Besides the low level modeling of vectors and matri-644

ces through semantic groups of variables, arrays are being used for this purpose. Surprisingly,645

also one-dimensional arrays are being used to model matrices. It is possible that developers646

want to avoid the computational overhead involved with n-dimensional arrays. In Java an n-647

dimensional array is actually a one dimensional array with pointers to (n-1)-dimensional arrays.648

Hence, we assume that developers intend to trade computing offsets for dereferencing point-649

ers. Among others, this represents one phenomenon where we encountered a performance op-650

timization at the expense of the formula’s recognizability and thus overall code readability and651

maintainability.652

Loops. Along with the utilization of arrays comes the application of loops, not only to iterate653

through arrays, but also, and in particular, to implement sum and product formulas. Those kinds654

of formulas occurred not only in vector/matrix contexts but also in scalar computations and655

sequences. In our small sample in Section 3, for-loops with an indexing variable were the656

predominant kind of loops used. This is not surprising, since these are already syntactically657

very close to the
∑

or
∏

operators in mathematics. Nested conditionals within the loops body658

could directly be translated to a part of the mathematical representation. Only in a few cases the659

formula code contained extra code, for example debug statements.660

While the while-loop plays a secondary role in our findings of the qualitative study, the661

foreach-loop turns out to be relevant in the context of formula code as well. foreach-loops are662

mostly applied on collections and in particular to traverse them where the sequence of processing663

the elements does not play a significant role. In the formula code context, foreach-loops can664

not only be used to implement sum and product formulas over collections, but also to implement665

logical formulas (predicates) related to these collections using the universal quantifier ∀ and666

existential qualifier ∃. The derived code patterns for sum and product formulas of Section 4667

concentrate on for and foreach-loops in simple and nested variants.668

21

6.2. Frequency of Formula Code669

To answers research question RQ2, we decided to investigate the frequency of formula code670

for sums and products in terms of formula code densities as defined in Section 5.1. These met-671

rics are relative to the size of the projects and thus give a better impression than absolute num-672

bers of matches and are comparable between projects. Above all, we found a 7.4 times higher673

SP-formula code density in sample of scientific-computing projects compared to the one of en-674

gineered software projects. Within the latter sample, we also found the SP-formula code-rich675

projects came from application domains related to scientific-computing. Nonetheless, the small676

size of the SciC sample calls for repeating the study as soon as more scientific-computing Java677

projects become available on GitHub.678

Estimations. Based on our detection tool’s recall, we determined a rough estimation of SP-679

formula code density of ρ̃ S P
LOC = 0.14% for the Stargazers sample and ρ̃ S P

LOC = 1.03% for the680

SciC sample. In other words, we estimate that about 1 of 700 lines of code in an engineered681

Java software project and 1 of 100 lines in a scientific-computing Java software project is part of682

an implementation of a sum or product formula. What does this mean in practice? The daily683

programming tasks of a software developer are not limited to writing code. Tasks related to the684

project’s code base comprise writing, editing and, to a major proportion, reading and with that685

comprehending the code. Thus, we are certain that an average software developer gets in touch686

with SP-formula code multiple times a work week.687

Patterns. In our quantitative study, we have shown the relevance of all patterns in the context688

of formula code. Figure 3 reveals that in the Stargazers sample, every SP-formula code pattern689

was detected at least once. In the SciC sample, six of the eight patterns appeared. Furthermore,690

the three SP-formula code patterns FES, FIA and FIS (all based on non-nested for-loops) are691

the most frequent patterns in both samples (Figure 3). We determine a 3.7, 46.2 respectively692

10.6 times higher density of these patterns in the SciC sample. Besides that, we discover higher693

densities for the nested SP-formula code patterns in the SciC sample as well. This represents694

another insight showing an increased relevance of the patterns as well as an increased probability695

to encounter SP-formula code in scientific-computing projects.696

Percentage of loops implementing formulas. To put the SP-formula code density into perspec-697

tive, we investigated how many (nested) for-loops occur in the source code and how many of698

these actually implement SP-formulas. To this end, we implemented two patterns using regular699

expressions, similar to the SP-formula code patterns, in order to detect simple (non-nested) and700

nested for- and foreach-loops. In the following, we use the term loops to refer to both for-701

and foreach-loops. We applied our detection tool (Subsection 5.1) with the new patterns to en-702

sure comparability. Table 5 summarizes the detection tool’s results for the general loop patterns.703

We report for both simple and nested loops the total number of matches in the whole sample704

(#matches), the total number of files in which a match occurred (#files) and the total number of705

projects in which a match occurred (#projects). The tool yielded 114.793 simple and 9,558 nested706

loops in the Stargazers sample. Surprisingly, in 156, respectively 534 of the 946 projects, i.e.707

in 16,49%, respectively 56.44%, no simple, respectively nested loops were found. In contrast,708

2,738 SP-formula code matches, based on simple loops and 120 SP-formula code matches based709

on nested loops were detected in this sample. Therefore, 2.38% (every 42nd) of all simple loops710

and 1.25% (every 80th) of all nested loops implement a sum of product formula according to our711

definition. When we apply a rough estimation depending on the detection tool’s recall, in 7.71%712

22

Table 5: Results of the detection tool for each sample utilizing the general loop patterns.

Simple for-loops Nested for-loops
Sample #matches #files #projects #matches #files #projects
Stargazers 114,793 38,143 790 9,558 5,278 412
SciC 6,350 1,255 13 1,685 460 10

(every 13th) a simple and in 4.06% (every 25th) a nested loop implements a SP-formula. In the713

SciC sample, we found 6,350 simple and 1,685 nested loops. The SP-formula code matches in714

this sample amount to 483 simple and 32 nested loops. Thus, 7.60% (every 13th), respectively715

1.89% (every 52nd) of all investigated simple, respectively nested loops form a SP-formula ac-716

cording to our definition. Taking the detection tool’s recall into account, we roughly estimate717

that 24.60% (every 4th) for simple, and 6.14% (every 16th) for nested loops implement sum or718

product formulas.719

Overall, we think that it is reasonable to assume that formula code in scientific-computing is720

more frequent, more diverse and more complex than in most other application areas.721

Figure 3: Density of SP-formula code matches for each pattern relative to LOC per sample.

7. Limitations722

To classify a code fragment as formula code, we do not require that the programmer’s orig-723

inal intention was to implement a mathematical formula, but instead it is sufficient that the im-724

plemented computation could be expressed by a mathematical formula. On the other hand, some725

program code fragments that really implement a mathematical formula might not directly be ex-726

pressible in a mathematical notation since the respective code is already too far away from the727

maths, possibly due to performance optimizations, refactorings or applied coding ’hacks’.728

Each of the empirical studies presented in this paper comes with its own limitations.729

23

Qualitative Analysis of Formula Code Examples. The formula code examples that we manually730

inspected were selected based on keywords occurring in their comments. Undocumented formula731

code, i.e. code that had none of our keywords in its comments, may have different properties.732

Furthermore, while our selection of keywords certainly introduces a bias toward sum and product733

formulas, it did not affect the oracle data set, since we annotated any formula code that we found.734

We also tried to increase credibility and transferability by following established coding methods735

and by discussing all reconstructed formulas in group sessions with all authors. This also holds736

for our coding of the application domains.737

Quantitative Tool Evaluation. While the tags that we used to annotate the oracle data set were738

based on the results of the qualitative study, we did not exclude any kind of formula code only739

because it was not considered in the qualitative study. However, the annotation of the oracle data740

set depends on the subjective assessment whether some code fragment implements a formula.741

Quantitative Analysis of SP-formula code on GitHub. We tried to carefully distinguish between742

the SP-formula code detected by our tool and the SP-formula code actually present in a sample.743

We used a randomized, stargazer-based sampling strategy to increase the generalizability of our744

findings to engineered software projects on GitHub. The generalizability of our results for the745

sample SciC is strongly limited by the small size of the sample.746

To enable other researchers to verify our results, we provide all data that is not protected by747

copyright (e.g. content of GitHub repos) as supplementary material [37].748

8. Conclusion749

So far, research in software engineering has focused on the synthesis but not the analysis of750

formula code. In this paper, we first presented a qualitative study designed for gaining insights751

into the diversity of formula code in real world Java projects (RQ1). We found that code that752

developers document as formula code has special properties. The observed phenomena range753

from coded mathematical notation in the names of variables, complex arithmetic operations split754

by a debugging or precedence strategy, groups of variables with coherent naming and coherently755

applied operations, over sum and product formulas based on for-loops up to incremental for-756

mula implementations that depend on the dynamic behavior (call sequence). In particular, we757

find it promising to provide an alternative representation of the respective code in terms of a758

mathematical notation. During our qualitative study, deriving such a mathematical representa-759

tion of the code supported the process of code comprehension to a great extent. If those code760

visualizations are made interactive and reachable directly from within the source code editor, we761

assume that they would greatly facilitate debugging of formula code. Designing and implement-762

ing such debugging features and assessing their usability and efficiency are part of our plans for763

future research.764

Furthermore, we presented an approach to detect SP-formula code using syntactic patterns765

in combination with a set of constraints on the variables occurring in the matched code frag-766

ments. We derived these patterns based on our preliminary qualitative study and evaluated the767

effectiveness of our approach in terms of recall and precision. On that basis, we performed a768

case study to investigate the frequency of SP-formula code in a sample of 1,000 open source769

Java stargazer projects on GitHub (RQ2). We also looked at the application domains of the770

SP-formula code-rich projects and found a major overlap with scientific, respectively technical771

24

subject areas, e.g. information retrieval, signal processing, computer networks, statistics, ma-772

chine learning and simulation. This inspired us to also apply our tool to a sample consisting773

solely of scientific-computing projects (SciC). Since they give a more realistic impression on the774

real distribution of SP-formula code in open source Java projects, here, we only give densities775

estimated based on our detection approach’s recall. The absolute numbers have been presented776

and discussed in the previous sections. We estimate that one of 700 lines of code in the Stargaz-777

ers and even one of 100 lines of code in the SciC sample is part of an implementation of a sum778

or product formula. In addition to the line-based metrics, we also computed the total number of779

simple and nested for-loops and foreach-loops in the samples. We estimate that in the stargaz-780

ers sample every 13th simple respectively 25th nested loop implements a sum or product. In the781

SciC sample the ratio is considerably higher: every 4th simple respectively 16th nested loop.782

Based on these numbers, it is reasonable to assume that an average software developer will have783

to write, or at least comprehend, SP-formula code multiple times a work week.784

As we determine a 7.4 times higher SP-formula code density in the SciC sample, we think785

that the design of tools and language features specialized for formula code in this domain is786

a promising route for future research. Thus, we intend to enhance and extend the patterns in787

our tool, e.g., by adding vector and matrix patterns, and in particular, we want to investigate788

other programming languages such as Python, which are more common in the field of scientific-789

computing.790

References791

[1] F. Cajori, A history of mathematical notations, The Open Court Publishing Co., Chicago, IL, 1929.792

[2] Matt Lake, Epic failures: 11 infamous software bugs — computerworld, https://www.computerworld.793

com/article/2515483/enterprise-applications/epic-failures--11-infamous-software-bugs.794

html?page=2, Accessed October 2, 2018, 2010.795

[3] Jonathan P. Leech, Larry Klaes, Space faq 08/13 - planetary probe history, http://www.faqs.org/faqs/space/796

probe/, Accessed October 2, 2018, 2017.797

[4] Marty Moore, The risks digest volume 5 issue 73, http://catless.ncl.ac.uk/Risks/5.73.html#subj2,798

Accessed October 2, 2018, 1987.799

[5] P. B. Henderson, Mathematical reasoning in software engineering education, Commun. ACM 46 (2003) 45–50.800

URL: https://doi.org/10.1145/903893.903919. doi:10.1145/903893.903919.801

[6] D. Landy, C. Allen, C. Zednik, A perceptual account of symbolic reasoning, Frontiers in Psychology 5 (2014) 275.802

URL: http://journal.frontiersin.org/article/10.3389/fpsyg.2014.00275. doi:10.3389/fpsyg.803

2014.00275.804

[7] B. W. Kernighan, L. L. Cherry, A system for typesetting mathematics, Commun. ACM 18 (1975) 151–157. URL:805

http://doi.acm.org/10.1145/360680.360684. doi:10.1145/360680.360684.806

[8] D. E. Knuth, Mathematical typography, Bull. Amer. Math. Soc. 1 (1979) 337–372. URL: http://807

projecteuclid.org/euclid.bams/1183544082. doi:10.1090/S0273-0979-1979-14598-1.808

[9] M. Levison, Editing mathematical formulae, Softw., Pract. Exper. 13 (1983) 189–195. URL: https://doi.org/809

10.1002/spe.4380130208. doi:10.1002/spe.4380130208.810

[10] R. Zanibbi, D. Blostein, Recognition and retrieval of mathematical expressions, International Journal on811

Document Analysis and Recognition (IJDAR) 15 (2012) 331–357. URL: http://dx.doi.org/10.1007/812

s10032-011-0174-4. doi:10.1007/s10032-011-0174-4.813

[11] K.-F. Chan, D.-Y. Yeung, Mathematical expression recognition: a survey, International Journal on Document814

Analysis and Recognition 3 (2000) 3–15. URL: http://dx.doi.org/10.1007/PL00013549. doi:10.1007/815

PL00013549.816

[12] Jetbrains, Mps: Domain-specific language creator by jetbrains, https://www.jetbrains.com/mps/, Accessed817

May 25, 2018, 2018.818

[13] S. Breu, T. Zimmermann, C. Lindig, Mining eclipse for cross-cutting concerns, in: Proceedings of the 2006819

International Workshop on Mining Software Repositories, MSR 2006, Shanghai, China, May 22-23, 2006, 2006,820

pp. 94–97. URL: https://doi.org/10.1145/1137983.1138006. doi:10.1145/1137983.1138006.821

25

[14] T. Xie, J. Pei, MAPO: mining API usages from open source repositories, in: Proceedings of the 2006 International822

Workshop on Mining Software Repositories, MSR 2006, Shanghai, China, May 22-23, 2006, 2006, pp. 54–57.823

URL: https://doi.org/10.1145/1137983.1137997. doi:10.1145/1137983.1137997.824

[15] T. Zimmermann, P. Weißgerber, S. Diehl, A. Zeller, Mining version histories to guide software changes, IEEE825

Trans. Software Eng. 31 (2005) 429–445. URL: https://doi.org/10.1109/TSE.2005.72. doi:10.1109/826

TSE.2005.72.827

[16] P. Weißgerber, S. Diehl, Identifying refactorings from source-code changes, 21st IEEE/ACM International Confer-828

ence on Automated Software Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan, 2006, pp. 231–240.829

URL: https://doi.org/10.1109/ASE.2006.41. doi:10.1109/ASE.2006.41.830

[17] M. Moser, J. Pichler, Documentation generation from annotated source code of scientific software: position paper,831

Proceedings of the International Workshop on Software Engineering for Science, SE4Science@ICSE 2016, Austin,832

Texas, USA, May 14-22, 2016, 2016, pp. 12–15. URL: https://doi.org/10.1145/2897676.2897679.833

doi:10.1145/2897676.2897679.834

[18] M. Moser, J. Pichler, G. Fleck, M. Witlatschil, Rbg: A documentation generator for scientific and engineering835

software, 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering, SANER836

2015, Montreal, QC, Canada, March 2-6, 2015, 2015, pp. 464–468. URL: https://doi.org/10.1109/SANER.837

2015.7081857. doi:10.1109/SANER.2015.7081857.838

[19] S. Kamali, F. W. Tompa, Retrieving documents with mathematical content, The 36th International ACM SIGIR839

conference on research and development in Information Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August840

01, 2013, 2013, pp. 353–362. URL: https://doi.org/10.1145/2484028.2484083. doi:10.1145/2484028.841

2484083.842

[20] R. Jain, S. Prathik, V. Vinayakarao, R. Purandare, A search system for mathematical expressions on software bina-843

ries, in: Proceedings of the 15th International Conference on Mining Software Repositories, MSR 2018, Gothen-844

burg, Sweden, May 28-29, 2018, 2018, pp. 487–491. URL: https://doi.org/10.1145/3196398.3196413.845

doi:10.1145/3196398.3196413.846

[21] A. D. Franco, H. Guo, C. Rubio-González, A comprehensive study of real-world numerical bug characteristics,847

in: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,848

Urbana, IL, USA, October 30 - November 03, 2017, 2017, pp. 509–519. URL: https://doi.org/10.1109/849

ASE.2017.8115662. doi:10.1109/ASE.2017.8115662.850

[22] GitHub Inc., The state of the octoverse, https://octoverse.github.com/, Accessed December 18, 2018, ????851

[23] IEEE, The 2018 top programming languages - ieee spectrum, https://spectrum.ieee.org/static/852

interactive-the-top-programming-languages-2018, Accessed October 11, 2018, 2018.853

[24] TIOBE Software BV, Tiobe index — tiobe - the software quality company, https://www.tiobe.com/854

tiobe-index/, Accessed October 11, 2018, 2018.855

[25] R. Dyer, H. A. Nguyen, H. Rajan, T. N. Nguyen, Boa: a language and infrastructure for analyzing ultra-large-856

scale software repositories, 35th International Conference on Software Engineering, ICSE ’13, San Francisco,857

CA, USA, May 18-26, 2013, 2013, pp. 422–431. URL: https://doi.org/10.1109/ICSE.2013.6606588.858

doi:10.1109/ICSE.2013.6606588.859

[26] Google LLC, Bigquery - analytics data warehouse — google cloud platform, https://cloud.google.com/860

bigquery/, Accessed January 30, 2018, 2018.861

[27] B. G. Glaser, A. L. Strauss, The discovery of Grounded Theroy: Strategies for Qualitative Research, Aldine Trans-862

action, 1967.863

[28] libgdx, Desktop/Android/HTML5/iOS Java game development framework, https://github.com/libgdx/864

libgdx/blob/master/gdx/src/com/badlogic/gdx/math/FloatCounter.java, Accessed May 27, 2018,865

2018.866

[29] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi-Reghizzi, D. Poshyvanyk, C. Fu, Q. Xie, C. Ghezzi,867

An empirical investigation into a large-scale java open source code repository, in: Proceedings of the Interna-868

tional Symposium on Empirical Software Engineering and Measurement, ESEM 2010, 16-17 September 2010,869

Bolzano/Bozen, Italy, 2010. URL: https://doi.org/10.1145/1852786.1852801. doi:10.1145/1852786.870

1852801.871

[30] Airbnb, Inc, A machine learning package built for humans, https://github.com/airbnb/aerosolve/blob/872

master/core/src/main/java/com/airbnb/aerosolve/core/images/HOGFeature.java, Accessed May873

27, 2018, 2018.874

[31] J. Sajaniemi, An empirical analysis of roles of variables in novice-level procedural programs, 2002 IEEE CS875

International Symposium on Human-Centric Computing Languages and Environments (HCC 2002), 3-6 September876

2002, Arlington, VA, USA, 2002, pp. 37–39. URL: https://doi.org/10.1109/HCC.2002.1046340. doi:10.877

1109/HCC.2002.1046340.878

[32] A. Taherkhani, A. Korhonen, L. Malmi, Recognizing algorithms using language constructs, software metrics879

and roles of variables: An experiment with sorting algorithms, Comput. J. 54 (2011) 1049–1066. URL: https:880

26

//doi.org/10.1093/comjnl/bxq049. doi:10.1093/comjnl/bxq049.881

[33] A. Rountev, Precise identification of side-effect-free methods in java, 20th International Conference on Software882

Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA, 2004, pp. 82–91. URL: https://doi.883

org/10.1109/ICSM.2004.1357793. doi:10.1109/ICSM.2004.1357793.884

[34] GitHub Help, About topics - user documentation, https://help.github.com/articles/about-topics/,885

Accessed January 30, 2018, 2017.886

[35] O. Moseler, F. Lemmer, S. Baltes, S. Diehl, On the Diversity and Frequency of Formula Code in Java: Supplemen-887

tary Material (2019). URL: https://doi.org/10.5281/zenodo.1252323. doi:10.5281/zenodo.1252323.888

[36] N. Munaiah, S. Kroh, C. Cabrey, M. Nagappan, Curating github for engineered software projects, Empir-889

ical Software Engineering 22 (2017) 3219–3253. URL: https://doi.org/10.1007/s10664-017-9512-6.890

doi:10.1007/s10664-017-9512-6.891

[37] O. Moseler, F. Lemmer, S. Baltes, S. Diehl, On the Diversity and Frequency of Code Related to Mathematical892

Formulas in Real-World Java Projects, 2019. URL: https://doi.org/10.5281/zenodo.3566933. doi:10.893

5281/zenodo.3566933.894

27

