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Abstract

In this work new approaches to the problem of offline drawing
dynamic graphs are presented: how to draw a given sequence of
graphs which evolve over time by adding and/or deleting nodes
and/or edges, such that the local quality of each drawing as well
as the dynamic stability of all drawings is maximized. Unfortu-
nately, these two goals conflict with each other in general. The
first goal, namely maximizing the quality of a drawing for one
single graph, is widely researched in the graph drawing commu-
nity. The second goal, maximizing the stability of all drawings,
also known by the term “preserving the mental map”, has been
identified to be crucial for the usability of systems for drawing of
dynamic graphs.

To deal with the problem of conflicting optimization goals,
new algorithms are developed which are parameterized such that
they are able to trade stability for local quality and vice versa.
Three different categories of graph drawing methods are inves-
tigated: force-directed, hierarchic, and orthogonal. All of these
algorithms are integrated into a generic framework.

Metrics are used to check the stability of two successive draw-
ings. So far, only metrics working on complete drawings of graphs
have been known. Because the orthogonal and hierarchical algo-
rithms use several phases, new metrics are introduced which work
on intermediate results, that is on partial drawings of graphs and
structures of drawings respectively.

To show the usefulness of this approach, several case stud-
ies in different application domains like algorithm animation and
software visualization are presented.
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Zusammenfassung

Diese Arbeit befasst sich mit dem Offline-Problem des Zeich-
nens dynamischer Graphen: wie kann eine Sequenz gegebener
Graphen, die sich iiber die Zeit durch Einfiigen bzw. Loschen
von Knoten bzw. Kanten verandern, gezeichnet werden, dass
sowohl die lokale Qualitat jeder einzelnen Zeichnung als auch die
dynamische Stabilitat aller Zeichnungen maximiert wird. Diese
beiden Ziele stehen im Allgemeinen leider in Konflikt zueinander.
Das erste Ziel, die Qualitit einer Graphzeichnung zu maximieren,
ist von den Graphzeichnern schon weit erforscht. Das zweite Ziel,
die Stabilitat von Zeichnungen einer Graphsequenz, auch bekannt
als “Erhaltung der Mental Map”, wurde als entscheidend fiir die
Nutzbarkeit von Systemen fiir dynamisches Graphzeichnen iden-
tifiziert.

Um das Problem der zueinander in Konflikt stehenden Opti-
mierungsziele zu 16sen, werden neue Algorithmen entwickelt, die
parametrisiert sind, so dass sie Stabilitat gegen lokale Qualitat
eintauschen konnen und umgekehrt. Graphzeichenmethoden drei
verschiedener Kategorien werden untersucht: kraftebasierte, hie-
rarchische und orthogonale. Diese Algorithmen werden in ein
generisches Framework integriert.

Um die Stabilitat zweier aufeinanderfolgender Zeichnungen zu
bewerten, werden Metriken benutzt. Bis jetzt waren allerdings
nur Metriken bekannt, die auf vollstindigen Zeichnungen von
Graphen arbeiten. Da der orthogonale und der hierarchische Al-
gorithmus aus mehreren Phasen bestehen, werden neue Metriken
entwickelt, die auf den Zwischenergebnissen dieser Phasen ar-
beiten, das heifit auf unvollstandigen Zeichnungen von Graphen
bzw. auf Strukturen dieser Zeichnungen.

Anhand von Fallstudien in verschiedenen Anwendungsgebie-
ten wie Algorithmenanimation und Softwarevisualisierung wird
der praktische Nutzen dieser Methode gezeigt.
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Extended Abstract

Dynamic graph drawing has many applications and got more and more into
the focus of the researchers. The basic difference between static and dynamic
graph drawing algorithms is that in the dynamic case, in addition to pro-
ducing an aesthetic drawing, the algorithm has to minimize changes to the
user’s mental map.

This thesis introduces a generic framework for the problem of offline draw-
ing dynamic graphs: how to draw a given sequence of graphs which evolve
over time by adding and/or deleting nodes and/or edges, such that the local
quality of each drawing as well as the dynamic stability of all drawings is
maximized.

First, we present the motivation and theory behind foresighted graph
drawing. This approach projects the graphs of the sequence to the so called
super graph, which represents an approximation of the whole sequence, then
computes a drawing of the super graph using a standard static drawing al-
gorithm. This drawing is used as a template, that is the drawings of the
individual graphs of the sequence are induced by the drawing of the super
graph. Thus neither nodes nor edges change their positions in the drawing
and a high global stability is guaranteed. The disadvantage is that the lo-
cal quality of individual drawings is sometimes poor because the quality is
restricted by the drawing of the super graph.

To counteract this effect we extend the foresighted graph drawing ap-
proach by allowing local optimization of the individual drawings up to a
given threshold. We use difference metrics to measure if the drawing re-
sulting from the local adaptation is in the allowed range to guarantee the
preserving of the mental map.

Thus, it is possible to trade local quality (of the drawing) for global
stability (of all drawings of the sequence) by using a low or a high threshold
respectively: a low threshold ensures global stability, but we have to pay
for this with a reduced quality of the drawing and a high threshold allows
drawings of better quality, but the stability is reduced.
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We present the concept of a backbone as generalization of the super graph.
The backbone does not contain all graphs of the sequence like the super
graph, but only nodes of a high importance for the sequence of graphs. The
importance of the nodes can be arbitrarily defined. Is is possible to use
statistical information, for example nodes contained in many graphs of the
sequence are more important than nodes only contained in few graphs, or it
is possible as well to use semantical information if they are available.

The advantage of the tolerant version of foresighted graph drawing is that
it is possible to decide what is more important for a specific graph sequence:
emphasizing the quality of the individual drawings or preserving the mental
map. The disadvantage is that it is no longer possible to use a standard
static drawing algorithm because this approach requires an algorithm which
allows to compute a drawing by adjusting an existing one.

Therefore, we show how to adapt three different approaches of drawing
algorithms (the force-directed, the hierarchical, and the orthogonal approach)
such that they fit into our framework.

The force-directed approach fits well in our framework because the pos-
sibility to adjust a given drawing is already built in. The drawing to be
adjusted is taken as initialization for the algorithm and the amount of al-
lowed changes can be modeled using simulated annealing.

Hierarchical and orthogonal approaches work both in phases, and we have
to introduce new metrics which work on the intermediate results of these
phases instead of on the final drawings. If we would realize after the last
phase that an adaptation is not within the predefined limits, we could not
reconstruct any more which phase was responsible for that.

For the hierarchical approach we compute a global ranking for the back-
bone and introduce rank metrics to adjust the rankings of the individual
graphs up to a given threshold. For the crossing reduction phase we in-
troduce an adjusted sorting approach called smooth sorting which allows to
restrict the number of changes resulting from the sorting. For the orthogonal
approach we adjust the computation of the quasi orthogonal shape by using
a parameterized version of the network flow computation.

Afterward, we present the DGD-system which implements the framework
and the adjusted algorithms in Java. It is available as a stand-alone applica-
tion as well as a web application. Finally, we discuss the influence of different
parameters and the usefulness of our approach by mean of case studies of ap-
plications from different domains. Some of the results presented in this thesis
have been published at international conferences [DGKO01, DG02, GBPD04].



Ausfuhrliche Zusammenfassung

Dynamisches Graphzeichnen hat viele Anwendungen und etabliert sich lang-
sam als eigenstandiges Teilgebiet des Graphzeichnens. Der grundlegende
Unterschied zwischen statischem und dynamischem Graphzeichnen besteht
darin, dass im dynamischen Fall nicht nur die &sthetischen Anforderun-
gen an eine gute Zeichnung des Graphen zu erfiillen, sondern gleichzeitig
Anderungen der “Mental Map” des Betrachters zu minimieren sind.

Diese Arbeit prasentiert ein generisches Framework fiir das Offline Prob-
lem des Zeichnens dynamischer Graphen: wie kann eine Sequenz gegebener
Graphen, die sich iiber die Zeit durch Einfiigen bzw. Loschen von Knoten
bzw. Kanten verandert, so gezeichnet werden, dass sowohl die lokale Qualitat
jeder einzelnen Zeichnung als auch die dynamische Stabilitat aller Zeichnun-
gen maximiert wird.

Zuerst fiihren wir die Theorie und Motivation des vorausschauenden Zeich-
nens von Graphen ein. Dabei wird eine Projektion der Graphsequenz auf
einen Graphen, den sogenannten Supergraphen, berechnet und fiir diesen
dann mit einem beliebigen statischen Graphzeichenalgorithmus eine Zeich-
nung erstellt. Diese dient als Schablone, um fiir die Einzelgraphen der Se-
quenz eine induzierte Zeichnung abzuleiten. Das fiihrt dazu, dass weder
Knoten noch Kanten ihre Position in der Zeichnung andern und eine hohe
globale Stabilitat gegeben ist. Allerdings muss man dafiir eine Einschrankung
der lokalen Qualitat der einzelnen Zeichnungen in Kauf nehmen.

Um dem entgegenzuwirken, erlauben wir in unserem zweiten Ansatz —
vorausschauendes Zeichnen von Graphen mit Toleranz — lokale Optimierun-
gen der induzierten Zeichnungen bis zu einem gegebenen Grenzwert. Um zu
messen, ob eine Anderung noch innerhalb der gegebenen Grenzen liegt und
somit die Mental Map des Betrachters bewahrt werden kann, wenden wir
Differenzmetriken an.

Durch die Wahl des Grenzwertes ist es jetzt moglich, lokale Qualitat gegen
globale Stabilitat einzutauschen: ein niedriger Grenzwert erhoht die globale
Stabilitat und schriankt die lokale Qualitat ein, bei einem hohen Grenzwert
verhalt es sich umgekehrt.

X



Als Verallgemeinerung des Supergraphen stellen wir das Konzept des so-
genannten Backbone einer Graphsequenz vor. Dieser ist eine partielle Projek-
tion der Sequenz von Graphen und enthilt nur diejenigen Knoten, die fiir die
Graphsequenz von grofler Bedeutung sind. Die Bedeutung von Knoten wird
mit Hilfe einer frei wahlbaren Funktion definiert. Diese kann zum Beispiel
auf statistischen Informationen beruhen (wie héufig kommt ein Knoten in
der Sequenz vor) oder auch die Semantik einer Graphsequenz nutzen.

Der Vorteil des toleranzbasierten Ansatzes liegt darin, dass festgelegt wer-
den kann, ob fiir eine Sequenz die Qualitdt der einzelnen Zeichnungen oder
die dynamische Stabilitat im Vordergrund steht. Der Nachteil besteht darin,
dass ein Algorithmus vorausgesetzt wird, der eine gegebene Zeichnung an-
passen kann. Das trifft fiir die meisten Standardalgorithmen des statischen
Graphzeichnens nicht zu.

Deshalb wird gezeigt, wie drei verschiedene Typen von Zeichenalgorith-
men so angepasst werden konnen, dass sie in das Framework passen. Es
handelt sich dabei um den kraftebasierten, den hierarchischen und den or-
thogonalen Ansatz.

Der kraftebasierte Ansatz passt sehr gut in das Framework, da er iterativ
arbeitet und es einfach moglich ist, eine gegebene Zeichnung anzupassen. Um
zu gewahrleisten, dass die Anpassung innerhalb der vorgegebenen Grenze
bleibt, wird er mit dem Ansatz des Simulated Annealing kombiniert.

Der hierarchische und orthogonale Ansatz arbeiten beide in Phasen. Des-
halb werden neue Metriken eingefiihrt, die auf den Zwischenergebnissen der
Phasen (partielle Zeichnungen oder eine Gestalt) arbeiten konnen. Wiirde
erst nach der letzten Phase festgestellt, dass eine Anpassung nicht innerhalb
der vorgegebenen Grenzen lage, konnte nicht mehr nachvollzogen werden,
welche Phase dafiir verantwortlich war.

Beim hierarchischen Ansatz wird eine globale Hierarchie fiir den Back-
bone berechnet und anschlieflend fiir die einzelnen Graphen mit Hilfe einer
Rangmetrik bis zu einem bestimmten Grad angepasst. Bei der Kreuzungsmi-
nimierung wird eine “weiche” Sortierung angewendet, bei der ein Parameter
festlegt, wie viele Anderungen in Bezug auf die Initialisierung erlaubt sind.
Beim orthogonalen Ansatz wird eine parametrisierte Netzwerkflussberech-
nung mit Constraints benutzt.

Anschlieflend stellen wir das DGD-System vor, welches das Framework
und die angepassten Algorithmen in Java implementiert. Es ist sowohl als
standalone Applikation als auch als Webanwendung verfiighar. Abschlielend
werden der Einfluss der verschiedenen Parameter und der praktische Nutzen
anhand von Fallstudien aus verschiedenen Anwendungsbereichen diskutiert.
Teile dieser Arbeit wurden bereits auf verschiedenen internationalen Kon-
ferenzen verdffentlicht [DGKO01, DG02, GBPDO04].
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Chapter 1

Introduction

Optimizing the layout adjustment for a sequence of graph
changes, e.g. for an off-line animation, s still an open yet very
challenging area of research.

— Jiirgen Branke [Bra01b]

Relational data is most commonly encoded in the form of a graph. A
graph consists of a set of nodes representing the data items and a set of
edges describing the relationships between the data items. Graphs have
many applications and are, for example, used to model software systems,
represent knowledge maps, or to describe communication networks.

Graph drawing deals with the visualization of relations between objects
encoded in graphs: each node is usually displayed as a graphical object such
as a circle, rectangle, polygon, or an image. KEdges are usually drawn as
straight or curved line segments connecting the nodes of the graph. The
aim of graph drawing is to produce “good” visualizations of graphs, that is
the drawing should reflect the information encoded in the graph as clear as
possible. Thus, graph drawing is the art of conveying structured abstract
data and belongs to the research area of information visualization.

In many applications a graph does not contain specific geometric infor-
mation. Theoretically, when drawing such a graph, the positions of the nodes
in the drawing could be chosen arbitrarily. However, for information visual-
ization the choice of the positions of the nodes can make a large difference
regarding the quality of the visualization. Figure 1.1(a) shows an example
of a graph drawing — the nodes are displayed as circles and the edges are
displayed as lines connecting two edges. But the drawing is of poor quality
and it is hard to figure out the relationships between the nodes. Figure 1.1(b)
displays the same graph as Figure 1.1(a), but this time the nodes are posi-



2 Chapter 1. Introduction

tioned such that no edges cross each other - in contrast to the drawing in
Figure 1.1(a). This makes it easier to perceive the structure of the graph.

(a) Drawing of poor quality (b) Drawing of good quality
Figure 1.1: Two different drawings of the same graph.

Since the handmade design of appropriate drawings is a complex and
expensive task, the automatic generation of graph drawings is becoming in-
creasingly important to a variety of information visualization applications
in science (especially computer science) and engineering. Examples include
compilers, data bases, VLSI and network design, and software engineering.

Many general and specific algorithms for automatically drawing graphs
have been developed — an overview can be found in [BETT99]. Graph draw-
ing is a very lively and dynamic area and the results of the latest research
are presented at the annual International Graph Drawing Symposium.

Most work on graph drawing addresses the problem of drawing a single,
static graph. Algorithms have been developed for different classes of graphs,
like undirected graphs, planar graphs, directed graphs, directed acyclic graphs,
and trees. There also exist different drawing conventions. These are basic
rules that the drawing must fulfill, for example a grid drawing where all
nodes, edge crossings, and edge bends have to be integer coordinates, or an
orthogonal drawing where all edge segments have to be drawn horizontally or
vertically. Finally, there are different aesthetic criteria, like minimizing cross-
ings and bends or maximizing symmetries, which a drawing should preserve
as much as possible to achieve readability [DETT94, HMMO0].

Different algorithmic approaches to draw a graph have been developed
over the last decades. The most popular ones are force-directed, hierarchi-
cal, and orthogonal drawing methods. Force-directed approaches are very
popular because they produce good drawings for many graphs, emphasize
symmetric structures in a graph, and are easy to implement. Unfortunately
they tend to be rather slow and to run into local minima. Hierarchical ap-
proaches are the most widely used algorithms for drawing layered graphs.
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They produce drawings by placing nodes on layers (usually horizontal or
vertical layers, but drawings with circular layers exist as well) while trying
to minimize the number of edge crossings. Orthogonal approaches are pop-
ular in real life applications. For example, entity-relationship and data flow
diagrams, information systems, data bases, and software engineering areas
are quite often represented by orthogonal drawings.

1.1 Dynamic Graph Drawing

In many applications graphs are not static but change their structure and
drawing conventions according to user and application actions. Thus, a graph
is not drawn once and for all, but its drawing changes over time. There are
two sources of dynamics:

e nodes or edges are dynamically added to or removed from the graph
and therefore the drawing of the graph has to be updated,

e or it has to be updated due to changes of the requirements of the draw-
ing, for example using a hierarchical approach instead of an orthogonal
one, or collapsing and expanding clusters in large graphs.

Both cases have in common that the dynamics results in an additional aes-
thetic criterion known as “preserving the mental map” [MELS95] or dynamic
stability: The human brain builds a mental map of its environment in order
to be able to navigate without memorizing each detail. The mental map is a
distorted and abstracted representation of the real environment. Unimpor-
tant areas tend to be collapsed to a single entity while important landmarks
are overemphasized. When working with visualizations of information users
build a mental map of the data which is closely linked to the particular visu-
alization. If the visualization changes significantly due to changes in the data
or the way it is represented they loose the mental map and have to rebuild
it from scratch.

“Preserving the mental map” when changing the drawings of graphs has
been identified to be crucial for the usability of systems for drawing of dy-
namic graphs [DETT99]. There are two possible approaches to this problem:
either use graph drawing algorithms that try to minimize changes, or to com-
municate the changes in form of an animation, that is, a smooth transition
from the old to the new drawing.
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1.1.1 Dynamic Drawing of a Graph

Often, it is desirable to generate different drawings of the same graph, which
emphasize particular aspects of the same underlying graph, for example a
drawing representing the dataflow information in a telecommunication net-
work could either emphasize the hierarchical structure of the dataflow or
could emphasize which parts of the network communicate with which other
parts of the network by clustering the graph appropriately.

In such a case there is the following challenge: given two different drawings
of the same graph — preserve the mental map by communicating the changes.
The common approach for this problem is to create a smooth transforma-
tion (called animation) between the two drawings which helps the users to
maintain or quickly update their mental map. An animation is a sequence of
images that is characterized by subtle but highly structured changes between
consecutive frames over space and time. In the human brain these changes
create the illusion of a smooth movement of the corresponding objects.

However, the standard method of simply using linear interpolation to
create animations often yields animations of poor quality which are more
confusing than useful to preserve the user’s mental map (as an example see
Figure 9.1). A superior method was introduced by Friedrich [Fri02, FE02,
FHO1]. He proposes to use a combination of affine transformations to build
the animation between the two drawings and achieves much better results.

Dynamic drawing of a graph is not covered in this thesis, but is discussed
as part of the related work in more detail in Section 9.1.

1.1.2 Drawing of Dynamic Graphs

The world of computer science is full of dynamic graphs, for example ani-
mations of graph algorithms or algorithms which work on linked data struc-
tures, dynamic visualizations of resource allocation in operating systems and
project management, network connectivity and the constantly changing hy-
perlink structure of the world wide web.

Drawing of dynamic graphs addresses the problem of computing drawings
of graphs which evolve over time because nodes or edges are dynamically
added or removed. Here the challenge is to compute a drawing for each
graph such that each drawing is of good quality and the successive drawings
do not change too much such that the mental map can be preserved.

The ad-hoc approach to solve this problem is to compute a new drawing
for the whole graph after each update using algorithms developed for static
graph drawing. This approach produces drawings of good quality for each
single graph, but in most cases these drawings do not preserve the mental
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map at all.

To preserve the mental map between two drawings nodes which are present
in both graphs should preserve some common relationships (for example
proximity or orthogonality). Therefore, better approaches try to compute
drawings which preserve invariant parts of the graphs also in the drawings.
In this way changes in two successive drawings are reduced to a minimum
and the mental map can be preserved. But, in most cases the quality of the
single drawings is also reduced, because the restriction to preserve invariant
parts limits the possible drawings.

In some cases all changes of the graphs are even known beforehand, for
example if we want to visualize the evolution of a social network based on
an email archive, or the evolution of program structures stored in software
archives.

Thus, there are two variations of the problem of drawing of dynamic
graphs: the online problem and the offline problem. The online problem
considers only predecessor graphs of the current graph, whereas the offline
problem considers predecessor as well as successor graphs, that is it considers
a whole sequence of graphs, which is known beforehand.

In the latter case each graph can be drawn being fully aware of what
graphs will follow — the knowledge about the future can be used to improve
the quality and stability of the drawings.

Off course, it is also possible and reasonable to combine the drawing of
dynamic graphs approach and the dynamic drawing of a graph approach
to preserve the mental map: try to minimize the changes in two successive
drawings and communicate the unavoidable changes by using an animation
between the drawings.

This thesis deals only with the offline problem. So far, there exists only
one other approach that takes advantage of the knowledge about the future,
namely TGRIP [CKNT03]. This approach which is restricted to spring em-
bedding (a force-directed graph drawing approach) and some approaches for
the online problem are discussed in Chapter 9.

1.2 Overview of this Thesis

This thesis is organized as follows: Chapter 2 introduces the basic principles
and notations of graph drawing. It contains the mathematical definitions
of a graph and a drawing of a graph, followed by a description of drawing
conventions and aesthetic criteria of drawings. Then, it presents the concept
of the mental map and difference metrics for comparing drawings of a graph,
that is to measure how much the drawings change.
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Chapter 3 presents a framework for drawing sequences of graphs — where
the whole sequence is known beforehand — while preserving the mental map
and trading layout quality for dynamic stability (tolerance). The framework
is generic in the sense that it works with different graph drawing algorithms
with related metrics and adjustment strategies.

Chapter 4 treats the force-directed approach, Chapter 5 deals with the
hierarchical approach and Chapter 6 with the orthogonal approach. Each
of these chapters first introduces a static graph drawing approach and then
shows how to adapt this approach such that it fits in the framework presented
in Chapter 3.

Chapter 7 describes the implementation of our framework. A stand-alone
application as well as a web service is available. Chapter 8 presents case
studies in different application domains and also discusses the influence of
different drawing strategies and parameters of the algorithms presented in
Chapters 3 to 6.

After an overview of related work in Chapter 9, this thesis concludes with
a summary and a short discussion of possible directions of future research in
Chapter 10.

Some of the results presented in this thesis have been published in [DGKO01,
DG02, GBPDO04].



Chapter 2

Fundamental Principles

The main purpose of this chapter is to introduce the mathematical principles
and to define the basic concepts of graphs and graph drawings. Some basic
concepts are assumed to be known (when in doubt see [KW01, BETT99,
DETT94)).

Related topics are covered in many textbooks: graph theory is described
in [BM76, Har72], graph algorithms are presented in [Eve79, Gib80, Meh84,
NC88], and computational geometry, which also provides a good background
for graph drawing methods, is described in [PS85].

Furthermore, the concept of the mental map and a large variety of dif-
ference metrics are introduced, which are essential to compare two graph
drawings and such to decide if they are “close” enough so that the users can
preserve their mental maps.

2.1 Sets and Functions

This section provides basic definitions of sets and functions, which are used
in the rest of this thesis.

Definition 2.1 (Set Notations) Let X be an arbitrary set.
e X" is the set of all n-ary tuples (z1,...,x,) with z; € X.
e X*is an ordered list with elements of X.
e P(X) is the power set of X: P(X)={Y |Y C X}.

e P,(X) is the set of all subsets of X with cardinality n:
P.(X)={Y e P(X) | |Y|=n}.

7
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e A multiset is a pair (X, f), where f is a function mapping X to the
cardinal numbers greater than zero. For any x € X, f(z) is called the
multiplicity of z. In other words a multiset is a set for which repeated
elements are considered.

Definition 2.2 (Function Notations) Let X and Y be two arbitrary
sets.

e f: X — Y is a mapping of elements of the set X to elements of the
set Y.

e X — Y is the set of all mappings from X to V.

e Let f: X — Y be amapping. The set

D(f) ={reX[FyeY y=/[lz)}

is the domain of the mapping f. If ©(f) # X then f is a partial
mapping.

2.2 Graphs and Drawings of Graphs

Relational structures, consisting of a set of entities and relationships between
those entities, are widely spread in computer science. Such structures are
usually modeled as graphs: the entities are nodes, and the relationships are
edges.

Definition 2.3 (Graph) Let V be a finite set. A directed graph is a tuple
G = (V,E) with E C V xV, where V is the set of nodes and E the multiset of
directed edges, that is, ordered pairs (v, w) of nodes. The directed edge (v, w)
is an outgoing edge of v and an incoming edge of w. Nodes without outgoing
edges are called sinks, nodes without incoming edges are called sources.
pred(v) = {w € V | (w,v) € E} is the set of predecessor nodes of v and
succ(v) ={w € V| (v,w) € E} the set of successor nodes of v.

The cardinalities of these sets are indeg(v) = |pred(v)| and outdeg(v) =
|succ(v)]. The degree of a node v is degree(v) = indeg(v) + outdeg(v).

An undirected graph is defined similarly to a directed graph, except that the
elements of E are undirected edges, that is, unordered pairs {v, w} of nodes.

The end-nodes of an undirected edge e = {v, w} are v and w. The nodes v
and w are adjacent to each other and e is incident to v and w. The neighbors
of v are its adjacent nodes.
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An edge (v,v) is called self-loop. An edge which occurs more than once
in E is a multiple edge. A simple graph has no self-loops and no multiple
edges. Unless otherwise specified, we assume in the following that graphs are
simple.

Further, a (directed) path in a (directed) graph G = (V, E) is a sequence
(v1, V9, ..., vy,) of distinct nodes of G, such that (v;,v;41) € E for 1 < i < n.
A (directed) path is a (directed) cycle if (v,,v1) € E. A directed graph is
acyclic if it has no directed cycles.

A graph G' = (V' E'), such that V' C V and E' C EN (V' x V'), is a
subgraph of graph G = (V, E). If E' = EN (V' x V') then G’ is the induced
subgraph by V'.

An undirected graph is connected if for each pair {v,w} of nodes there
is a path between v and w. A directed graph G = (V| E) is connected if
for each pair (v,w) of nodes there is a sequence of nodes vy, ..., v, with
vy = v,v, = w and for 0 < i < n holds: (v;,vi1) € E or (vi41,v;) € E . A
maximally connected subgraph of a graph G is a connected component of G.

Definition 2.4 (Drawing of a Graph) A drawing of a graph G = (V, E)
is a pair ' = (I'V,I'f) with IV : V — R? and I'f : E — (R?)" with
PE(,w) = {(z1,91), - (@n, )} = TV (0) = (21,51) ATV (w) = (20, ),
where I'V is the mapping of the nodes and I'® the mapping of the edges.
['(G) is the set of all drawings of a graph G.

The function 'V assigns a point in the plane to each node and the function
'Y maps each edge to a sequence of points. The final drawing of a graph
results from the functions I'V', I'?, and the graphical interpretation of the
nodes and edges. A node could be drawn as a circle or a rectangle for
example, and an edge could be a polygonal chain, a straight line segment,
or a curve. A directed edge is usually drawn as an arrow head at the target
node.

At this point, it is important to note that a graph and its drawing are
quite different objects — in general, a graph has many different drawings.
Nevertheless it is common to use the same terminology for an edge (v, w)
and the drawing I'E (v, w).

A drawing I is called planar if no two distinct edges intersect. A graph
is called planar if it admits a planar drawing.

Planar graphs are important in graph drawing for several reasons. First,
edge crossings reduce readability (see [BPCJ95, PCJ96, Pur97]) and thus,
planar graphs are really appropriate to produce nice drawings. Second, the
theory of planar graphs has a long history in graph theory (see [NC88|) which
can be used to simplify topological concepts.
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A planar drawing partitions the plane into topologically connected regions
called faces. The unbounded face is usually called the external face. A
planar drawing determines a circular ordering on the neighbors of each node
v according to the clockwise sequence of the incident edges around v. Two
planar drawings of the same graph G are equivalent if they determine the
same circular orderings of the neighbor sets. A (planar) embedding is an
equivalence class of planar drawings and is described by the circular order of
the neighbors of each node. An embedded graph is a graph with a specified
embedding. A planar graph may have an exponential number of embeddings.

The dual graph G* of an embedding of a planar graph G has a node
for each face of G, and an edge {f, g} between two faces f and ¢ for each
edge that is shared by f and g. In a sense, the dual graph G* catches the
combinatorial information in the embedding. If two graphs have the same
embedding, then they have the same dual graph.

Figure 2.1 shows a planar graph and its dual graph.

Figure 2.1: Dual graph (drawn with boxes for nodes and dashed lines for
edges) for an embedding of a planar graph.

2.2.1 Graph Drawing Paradigms

This section provides an overview of two important graph drawing concepts:
the drawing conventions used when drawing a graph, and the aesthetic cri-
teria for a readable drawing.

Drawing Conventions

Drawing conventions are certain properties that the drawing must satisfy.
These properties deal with the representation and placement of nodes and
edges. Widely used drawing conventions are given in the list below:
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e Grid Drawing: Nodes, crossings, and edge bends have integer coor-
dinates.

e Planar Drawing: No two edges cross.

e Polyline Drawing: Each edge is drawn as a sequence of one or more
straight lines.

e Straight-line Drawing: Each edge is drawn as a straight line seg-
ment.

e Orthogonal Drawing: Fach edge is drawn as a sequence of one or
more straight lines where horizontal and vertical segments alternate.

e Upward/Downward Drawing: For acyclic directed graphs, each
edge is drawn as a curve monotonically nondecreasing/nonincreasing
in the vertical direction.

Straight-line and orthogonal drawings are special cases of polyline draw-
ings. Drawings with curved edges can be approximated using polyline draw-
ings.

Aesthetic Criteria

Aesthetic criteria specify graphic properties of the drawing that we would
like to apply, as much as possible, to achieve readability. Several criteria
have been identified to be essential (see [BFN85, PCJ96, STT81]):

e Crossings: Minimization of the total number of crossings between
edges. If too many edges cross each other, the human eye cannot easily
find out which nodes are connected by an edge. Ideally, we would like
to have planar drawings, but not every graph admits one.

e Bends: Minimization of bends is an important criterion because the
human eye can more easily follow an edge with none or only few bends
than an edge wildly zig-zagging through the drawing. In VLSI pro-
duction, bends in wires are potential spots of trouble. We distinguish
three sub criteria:

— Total Bends: Minimization of the total number of bends along
edges. This is especially important for orthogonal drawings.

— Maximum Bends: Minimization of the maximum number of
bends on an edge.
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— Uniform Bends: Minimization of the variance of the number of
bends on the edges.

e Edge Length: In VLSI schematics, edges correspond to wires which
carry information from one point on the chip to another. To do this
fast, wires should be short. We distinguish three sub criteria:

— Total Edge Length: Minimization of the sum of the lengths of
the edges.

— Maximum Edge Length: Minimization of the maximum length
of an edge.

— Uniform Edge Length: Minimization of the variance of the
lengths of the edges.

e Area: Minimization of the area of the drawing. The area of a drawing
can be defined in different ways. For example, we can define it as
the bounding box, that is, the smallest rectangle with horizontal and
vertical sides covering the drawing, or as the convex hull, that is, the
area of the smallest convex polygon covering the drawing. The ability to
construct area-efficient drawings is important in practical visualization
applications, where saving screen space is of high importance. Further,
it is also crucial for VLSI schematics.

Angular Resolution: Maximization of the smallest angle between
two edges incident on the same node. This aesthetic is especially rele-
vant for straight-line drawings.

Aspect ratio: Minimization of the aspect ratio of the drawing, that
is the lengths of the sides of the bounding box of the drawing should
be balanced.

Symmetry: If a graph contains symmetrical information then it is
important to reflect this symmetry in its drawing. Unfortunately, dis-
playing symmetries is not an easy task.

Clustering: When drawing large graphs it is necessary to cluster the
nodes to reveal some of the structure of the graph.

In most cases not all of these criteria can be met in one drawing. Indi-
vidual criteria might conflict or the computational complexity of optimizing
all criteria at once can be too high. Most graph drawing algorithms there-
fore try to optimize a subset of these criteria. Attempts have been made to
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classify these criteria according to how important they are for creating good
graph drawings [Pur97, Pur00].

In some cases further restrictions may apply to the drawing. Edges may
be allowed to only point into a specified range of directions, edges may not be
allowed to cross each other, or node positions might be restricted to points on
a grid. The above aesthetic criteria are naturally associated with optimiza-
tion problems. However, most of these problems are computationally hard.
Thus, many approximation strategies and heuristics have been devised.

Precedence Among Aesthetics Criteria

Unfortunately, aesthetic criteria often conflict with each other. Thus, trade-
offs are unavoidable. And even if they do not conflict, it is often algorith-
mically difficult to deal with all of them at the same time. Therefore, most
graph drawing methods establish a precedence relation among aesthetics.

2.3 Mental Map

The phenomenon of “mental maps” is well studied in the areas of geogra-
phy [GWS86] and psychology [Den91]. The term mental map is commonly
credited to Tolman [Tol48]. It refers to the observation that humans tend
to build map-like cognitive representations of their environment including
metric properties and topological relationships between landmarks. These
mental maps are abstract and distorted representations of the underlying
real structures. Unimportant areas tend to be collapsed to a single entity
while important landmarks are overemphasized.

When working with a graph, the user builds a mental map of that graph,
that is he will learn about the structure of the drawing, will learn to navigate
in the drawing, and try to understand its meaning [ELMS91, MELS95].

In many applications graphs are not constant but change according to
user and program actions. These changes can be visual such as changes of
positions or appearance of nodes and edges, or structural such as addition
or removal of nodes or edges. When the graph changes beyond a certain
threshold the mental map of the user gets destroyed and has to be rebuilt.

Figure 2.2 shows an example. The diagram (a) shows the current drawing
of the graph. The diagram (b) shows a drawing which might result after the
insertion of the red edge and the rerun of the drawing algorithm. Diagram
(c) shows a drawing after the insertion of the red edge which preserves the
mental map.

To increase efficiency in graph drawing applications the number of events
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(a) (b) (c)

Figure 2.2: (a) Current drawing, (b) New drawing after inserting the red edge
and rerunning a static drawing algorithm, (¢) New drawing which preserves
the mental map.

where the mental map is not preserved should be minimized. To achieve
this we try to minimize the changes when changing the graph structure or
computing a new layout. To be able to measure the changes of two subsequent
drawings, we introduce difference metrics in the following section.

2.4 Difference Metrics

Bridgeman and Tamassia [BT98, BT01] propose a number of difference met-
rics for orthogonal drawings (most of them can be applied to other drawing
paradigms as well). The proposed metrics fall into five categories: distance,
proximity, orthogonal ordering, shape, and topology. The distance category
could be considered a subset of proximity, but it is kept separate to distin-
guish between metrics using the Euclidean distance between points and those
using relative orderings based on distance.

2.4.1 Drawing Alignment

Most of the metrics compare coordinates between drawings. Therefore, they
are sensitive to the particular values of the coordinates, as illustrated in
Figure 2.3. The Euclidean distance metric (see Section 2.4.2) would compute
a distance of 4.25. However, translating the dark points one unit to the left
and then scaling by 1/2 in the z direction allows the points to be matched
exactly, that is the distance would be 0.
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Figure 2.3: Two point sets superimposed in one drawing (corresponding
points in the two sets are connected with dotted lines).

To eliminate this effect, the drawings are aligned before the metric is
computed. This can be done by extracting a (matched) set of points from
the drawings and then applying a point set matching algorithm to obtain
the best fit — exact matches are not possible in general. In most cases the
matching algorithm should take into account scaling and translation.

2.4.2 Metrics

Every metric compares two drawings I' and I of the same graph G. Each
object of the graph G is associated with two sets of coordinates, one describ-
ing the position in I', called P, and the other the position in I, called P’.
Thus p’ € P’ is the corresponding point for p € P and vice versa. A matched
set of objects is a set of the pairs describing the position of the object in the
two drawings.

Usually, only the nodes — considered as single points without physical
extension — are taken into account as objects of the graph. But, it is also
possible to consider the bounding boxes of the nodes instead to achieve that
the node size and shape is taken into account as well. Further, the bends of
the edges could also be considered as objects of the graph.

Let A be a difference metric defined so that the value of the measure is
0 if the drawings are identical. To be useful, A should satisfy the following
properties:

e Rotation: Given drawings I' and I'', A(I", T'y ) should have the minimum

value for the angle a user would report as giving the best match, where

o is [ rotated by an angle of © with respect to its original orientation
(see Figure 2.4).

e Ordering: Given drawings I', I, and I, A(I',T") < A(I',T") if and
only if a user would say that I'' is more like I" than I'".
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(a) (b) (c)

Figure 2.4: The rotation problem: (a) is the current graph with a modifi-
cation shown in red; (b) and (c¢) show possible drawings of the successive
graph, where (b) is mirrored and rotated. While (b) and (c) are both clearly
drawings of the graph shown in (a), the similarity is more clearly seen in the
properly rotated drawing (c).

e Magnitude: Given drawings I', IV, and I'”, A(I',I') = LA(T, ') if and

only if a user would say that I is ¢ times more like I" than I'”.

In order to facilitate comparisons the metrics are normalized by dividing
by the maximum possible value, or the lowest known upper bound if the
maximum value is not known, such that all values are between 0 and 1. In
the following, let d(p, ¢) be the Euclidean distance between points p and g.

Distance Metrics

The distance metrics reflect the simple observation that the location of the
points should not move too far between drawings.

Hausdorff-Distance The Hausdorff distance is a standard metric for de-
termining the distance between two point sets and measures the largest dis-
tance between a point in one set and its nearest neighbor in the other. The
undirected Hausdorff distance for two point sets P and P’ does not take into
account the fact that the point sets may be matched:

hausdorff(P, P') = in d(p, ¢ in d(p’
ausdorff(P, P') = max{max min d(p, ¢'), max mind(p', ¢) }

The paired Hausdorff distance is an adaptation of the undirected Hausdorff
distance for matched point sets, and is defined as the maximum distance
between two corresponding points:

phausdorff(P, P") = maxd(p, p')
pep
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(a) (b) (c)

Figure 2.5: Proximity: (b) is more similar to (a) than (c) because the relative
shape of both the inner and outer squares are preserved even though the
distance (using the Euclidean distance metrics) between (a) and (c) is smaller.
An aligned version of the nodes of (a), used in the computation of the distance
metric, is shown in dotted lines in (b) and (c).

Euclidean Distance The Fuclidean distance is a simple metric measur-
ing the average distance moved by each point from the first drawing to the
second.
1
dist(P, ) = 15 > dp.p)

F
peP

Neighborhood Metrics

The proximity metrics reflect the idea that points near each other in the
first drawing should remain near each other in the second drawing. This is
stronger than the distance metrics because it captures the idea that if a sub-
graph moves relative to another without any changes within either subgraph
the distance should be less than if each point in one of the subgraph moves
in a different direction (see Figure 2.5).

Nearest Neighbor Within Nearest neighbor within is based on the idea
that if ¢ is the closest point to p in I', then ¢’ should be closest point to p'
in I (see Figure 2.6). Considering only distances within a single drawing
means that nearest neighbor within is alignment-independent.

This metric has two versions, weighted and unweighted. In the weighted
version the number of points closer to p' than ¢’ is considered, whereas in
the unweighted version it only matters if ¢’ is or is not the closest point.
The reasoning behind the weighted version is that if there are more points



18 Chapter 2. Fundamental Principles

(a) Drawing T’ (b) Drawing I (c) Drawing I

Figure 2.6: Nearest neighbor within metric.

between p' and ¢/, the visual linking between p’ and ¢’ has been disrupted to
a greater degree.

In both cases the distance is scaled by the number of points being consid-
ered. Let nn(p) be the nearest neighbor of p in the point set of p and nn(p)’
be the corresponding point in P’ to nn(p).

1
nnw(P, P') = OB Z weight(nearer(p))

peEP

where

nearer(p) = {q | d(p', ¢') < d(p',nn(p)'),q € P,q # p,q # nn(p)}
Unweighted

0 if[S|=0
1 otherwise

weight(S) = {
UB(n) = |P|
Weighted
weight(S) = |S|
UB(n) = [P|(|P|-1)

Nearest Neighbor Between Nearest neighbor between is similar to near-
est neighbor within but instead measures whether or not p’ is the closest of
the points in I to p when the two drawings have been aligned (see Figure 2.7).

1
nnb(P, P') = UB Z weight(nearer(p))

peEP
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Figure 2.7: Nearest neighbor between metric.

where
nearer(p) = {q | d(p,q') < d(p,p'),q € P,q # p}

Unweighted

: B 0 if|S|=0
weight($) - = {1 otherwise
UB(n) = [P|
Weighted

weight(S) = |9]
UB(n) = [P|(|P]-1)

Orthogonal Metrics

The orthogonal ordering metrics reflects the desire to preserve the relative
ordering of every pair of points — if p is northeast of ¢ in I', p’ should remain
to the northeast of ¢/ in I''. The simplest measurement of difference in the

—
orthogonal ordering is to take the angle between the vectors @ and ¢'p’
(constant weighted orthogonal ordering). This has the nice feature that if ¢

is far away from p, ¢'¢ must be larger to result in the same angular move,
which reflects the intuition that the relative position of points close to each
other is more important than the relative position of points far away from
each other (see Figure 2.9).

In the linear-weighted version changes in the north, south, east, and west
relationships are weighted more heavily than changes in angle which do not
affect this relationship (see Figure 2.8).

Let 8, be the counterclockwise angle between the positive x-axis and the
vector g — p.

1 Oprqr Opq
order(P, P') = W min{ weight(6) d9,/ weight(6) df}

opq ap/q/
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m - /j
m

(a) (b) (c)

Figure 2.8: Orthogonal ordering: Even though the angle the node moves
relative to the center of the large node is the same from (a) to (b) and from
(a) to (c¢), the perceptual difference between (a) and (c) is much greater. The
original location of the node is shown with a dotted box in (b) and (c¢) for
purpose of comparison.

Figure 2.9: Orthogonal relationships.

Constant-weighted

weight(§) = 1
2m

=
|

Linear-Weighted

(6 mod 7/2) if (f mod 7/2) < 7 /4
. B /i !
weight(0) = { Lﬁldm) otherwise

Shape Metrics

The metrics introduced so far only considered node positions. The shape
metrics is motivated by the reasoning that edge routing may have an effect
on the overall look of the graph (see Figure 2.10). The shape of an edge
is the sequence of directions (north, south, east and west) traveled when
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traversing the edge from source to sink. The shape string is the sequence of
the characters N, S, E, and W. The edge of Figure 2.11, for example, has the
shape string NENW.

Figure 2.10: Shape metric: (a) and (b) look different even though the graphs
are the same and the nodes have the same positions.

Figure 2.11: Example for a shape string.

For non-orthogonal edges the predominant direction is chosen. For each
edge the minimum number of edits to transform the shape string in one
drawing to the string in the other is computed, where an edit consists of
inserting, deleting, or replacing a character in the shape string. The metric
is the average number of edits per edge.

1 . . . '
shape = UB Z edits(shapestring(e), shapestring(e'))

eck

The edit distance is not normalized for the length of the sequence, and
the upper bound is as follows:

UB = Z llength(e) — length(e')| + min{length(e), length(e')}

eck

where length(e) = [shapestring(e)|.
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Topology

The topology metric reflects the idea that preserving the order of edges
around a node is important in preserving the mental map. The topology
of a graph is represented by its dual graph. Thus, maintaining topology just
means maintaining the dual graph.

Further Comments

So far, the metrics compare two drawings of the same graph. However we
also would like to compare drawings of different graphs. To this end we take
only the nodes (and edges if appropriate for the metric) of the intersection of
both graphs into account, because nodes only contained in one of the graphs
are not comparable.



Chapter 3

A Framework for Offline
Drawing of Dynamic Graphs

In this chapter we introduce a generic framework for drawing a sequence
of evolving graphs which is known beforehand. The framework is generic
because it works with different graph drawing algorithms. The adaptation of
force-directed, hierarchical, and orthogonal drawing algorithms to fit in this
framework is given in Chapters 4 to 6.

First we present the concept of the mental distance between two drawings
of two graphs. This distance indicates how difficult it is for users to adopt
their mental map from one drawing to the other one, that is a small mental
distance means that users can easily preserve or adopt their mental maps
whereas a large mental distance means that the mental map of the users
cannot be preserved. Or in other words, the mental distance is a metric that
indicates how close the mental maps of two given drawings are.

Definition 3.1 (Mental Distance) LetI'; € I'(G) be a drawing of graph
G1 and T’y € I'(G3) a drawing of graph G5. Then the function A : T'(G;) X
['(G2) — R{ is a metric for how good I'y preserves the mental map of Iy
and is called mental distance between I'; and I'y. In particular A(T',Ty) =0
means that ['; and ['y have the same mental map.

The metrics presented in Section 2.4.2 can be used to compute mental
distances between two drawings.

Assume that the quality of a drawing could be measured by a function
U regarding aesthetic goals like compactness, even distribution of nodes,
minimal number of edge crossings, etc [PCJ96]. Such formal criteria are
the computational crutches to substitute real models of human cognition or
simply taste.

23
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Definition 3.2 (Quality of a Drawing) Let I' € I'(G) be a drawing of
graph G. Then the function ¥ : T'(G) — R{ is a metric for the quality of a
drawing. In particular ¥U(I') = 0 means that [ has minimal quality.

Now we can state the problem of offline drawing of dynamic graphs. In
most applications the graphs are given as a sequence, in which the graphs
will result from changes to the preceding graph and thus will share some
nodes and edges.

Definition 3.3 (The Offline Drawing of Dynamic Graphs Problem)
Given a sequence of n graphs G, ...,G,. Compute drawings ['y, ..., T, for
these graphs such that

1. A= Y A(Ty,Tiyy) is minimal

1<i<n

2. U= Y ¥(I;) is maximal

1<i<n

Thus, drawing of dynamic graphs is an optimization problem with two
objective functions. The first one pursues the global goal to preserve the men-
tal map by minimizing the mental distances between two successive drawings
over the whole sequence. The second objective function pursues a local goal,
namely to maximize the quality of each single drawing.

Just as a side note: the online drawing of dynamic graphs problem is
stated as follows: Given I'y,...I",,_; and G,, compute I';,. In Chapter 9 some
approaches to the online problem are discussed.

Unfortunately, the two optimization goals of the offline drawing problem
conflict with each other and in general cannot be achieved at the same time.
Figure 3.1 illustrates this fact: if we want to achieve a high stability, that is
a small mental distance A, the quality of the drawings is decreased, because
there are too many restrictions. In the other case, if we want to achieve a
high quality ¥ of the drawings, the mental map cannot be preserved, because
the high quality causes too many changes in successive drawings.

P A

'

€]

Figure 3.1: Conflicting optimization goals.

In the remainder of this chapter we present a framework for drawing
algorithms for dynamic graphs which provides the possibility to trade local
quality for global stability.

But first, we discuss the extreme approaches by only taking one of the
two optimization functions into account.
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e The first, called the ad-hoc approach, ignores the dynamic stability and
computes drawings of highest quality for each graph of the sequence
by using an algorithm for static graph drawing. In most cases this
approach produces drawings which do not preserve the mental map at
all.

In the worst case it is even possible that two successive graphs, which
are equal, have completely different drawings. For example, some
spring embedder algorithms assign random initial positions to the nodes
and therefore could produce different drawings of the same graph.

Thus, this approach is not suitable for drawing of dynamic graphs.

e The second approach, called foresighted graph drawing, achieves to
preserve the mental map by impossing strong restrictions to the draw-
ings: nodes do not change their positions in successive drawings. This
approach is presented in Section 3.1 in detail.

In Section 3.2 the foresighted drawing approach is extended such that it
is controlled by a tolerance threshold: trade quality for stability.

3.1 Foresighted Graph Drawing

In this section we present the foresighted drawing approach. This approach
computes a global drawing of a whole sequence of graphs using an arbitrary
static graph drawing algorithm. Thus, the algorithm is generic with respect
to the static graph drawing algorithm. A global drawing induces a drawing
for each graph of the sequence. A unique feature of this approach is that once
they are drawn neither nodes nor the bends of edges change their positions in
graphs subsequently drawn. Using static graph drawing algorithms, which
accept fixed node positions as an additional input, it is also possible that
only the bends change their positions. The algorithm is called foresighted
graph drawing because it knows the future of the current graph, that is the
modifications that are applied to transform the graph to the subsequent ones.

Figure 3.2 displays the construction of a finite automaton as a sequence
of drawings computed with the foresighted drawing approach: the nodes are
immediately placed where they will be in the final drawing. Therefore they
do not have to change their positions in the drawings.

In the following we consider graphs with multi-edges. For this we extend
the definition of a graph by adding an unique identifier to each edge.
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'S (alb)* >0

Figure 3.2: Foresighted Graph Drawing.

Definition 3.4 (Multi-graph) A multi-graph is a tuple G = (V, E), where
V is a set of nodes. Elements of the set E consist of a pair of nodes and
an identifier. If the pairs are ordered, G is a directed multi-graph and E C
V' x V x1d, where Id is a set of identifiers and the elements e = (v, w, id) are
called directed edges. If the pairs are unordered, G is an undirected multi-
graph and E C Py(V) x Id, where the elements e = ({v,w},id) € E are
called undirected edges. Furthermore, for directed multi-graphs the following
holds: V(v,w,id;), (v',w',ids) € E : idy = idy = v =v" and w = w'. And for
undirected multi-graphs it analogously holds: V({v,w},idy), ({v',w'}, ids) €
E :idy =idy = {v,w} = {v,w'}.

The last condition of Definition 3.4 assures that two different edges have
different identifiers. All other notations concerning a graph introduced in
Chapter 2 apply analogously.

In the following we consider sequences of graphs, in which a graph results
from modifications (adding or deleting nodes and edges) of its preceding
graph. Usually subsequent graphs share some nodes and edges. But in the
worst case each graph can consist of totally different nodes and edges.

Definition 3.5 (Consistent Graph Sequence) A consistent graph se-
quence S = [Gy,...,G,] is a sequence of graphs with G; = (V;, E;) and
V(v,w,idy) € E,, (v',w',idy) € E, with1 <p<nandl1l<r <n:id =
idy = v =2 and w = w'.

The restriction in this definition ensures that edge identifiers are used
consistently in all graphs, that is an edge is adjacent to the same nodes in
all graphs it occurs in.
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Now, we state a generic algorithm which computes a foresighted drawing
of a consistent graph sequence.

Algorithm 1 Generic Foresighted Graph Drawing
foresightedDrawing(S = |G, ..., G,],staticDrawing(),projectGraphs())

(G =(V,E), mapy, : UVi — V,mapy : UEZ — E) := projectGraphs(S5)

(3
drawing:= staticDrawing(G)
fori:=1ton do
drawGraph(G;,drawing,mapy,,mapy)
end for

The input of Algorithm 1 consists of a consistent graph sequence S =
Gy, ...,G,], with G; = (V;, E;), a function staticDrawing() which computes
a static drawing of a graph, and a function projectGraphs() which projects a
sequence of graphs to one single graph and additionally provides correspond-
ing mappings for the nodes and edges. Using this function the algorithm
computes the projection G' of S as well as the mapping of the nodes mapy,
and the mapping of the edges mapy. Then, the function staticDrawing() com-
putes a static drawing of the projection G, that is a data structure drawing
that contains the positions of the nodes of V' and the curves of the edges of E.
The function drawGraph() draws each graph of the sequence by adopting the
corresponding drawing information out of the data structure drawing using
the mapping map,, for the nodes and the mapping mapy for the edges.

In the following sections we will have a look at some concrete functions to
compute the projection G as well as the mapping functions map,, and mapy,.

3.1.1 Super Graph

Now, we define the super graph of a consistent sequence of graphs and use
it to compute a projection.

Definition 3.6 (Super Graph) Let S = [G,...,G,] be a consistent graph
sequence with G; = (V;, E;), then the graph G = (V, E) with
V=V and E=JE
i=1 i=1

is called super graph of the sequence S.

The super graph is the union of all graphs of the sequence. Using the
super graph to compute a foresighted drawing with Algorithm 1, the function
projectGraphs() is defined as follows:
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e G=GCG
e mapy, is the identity

e mapy is the identity

The Super Graph and the Mental Map

Using the super graph as a projection preserves the mental map very well,
as all nodes and edges occurring in the graph sequence have their own place
in the drawing which never changes. If a node occurs in a graph of the
sequence, it is drawn at “its own” place, if it does not occur in a graph of
the sequence, “its” place remains empty. The same analogously holds for
the edges. Unfortunately, the aesthetical criteria of a static drawing are not
well satisfied, as the super graph of a long sequence can become really large
although all single graphs of the sequence are small. This is the case if the
single graphs of the sequence contain many different nodes and edges. The
result is that the drawing of each individual graph of the sequence contains
much unused space. This reduces the clarity and the aesthetic criterion of
compactness is not satisfied.

This problem is avoidable by the following observation: nodes never oc-
curring in a same graph of the sequence can share the same position in the
drawing. To achieve this goal we construct a smaller graph on the basis of
the super graph by taking into account the life times of nodes and edges.

Definition 3.7 (Life Time) Let S =[Gy,...,G,] with G; = (V;, E;) be a
consistent graph sequence and G = (‘7,@) the corresponding super graph.
Then T(v) = {i | v € V;} are the life times of the nodes v € V and T(id) =
{i| (v,w,id) € E;} are the life times of the edge identified by id.

The life time of a node is the set of points in time at which the node is
contained in the sequence of graphs, that is the set of indices of the graphs of
the sequence which contain the node. The same analogously holds for the life
time of an edge. The life time has not to consist of successive points in time,
but can contain breaks or can even consist only of single, not continuous
points in time.

3.1.2 Graph Sequence Partition

This section describes how the super graph can be transformed into a more
compact graph by bundling nodes with disjoint life times together. First we
introduce the term partition.
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Definition 3.8 (Partition) A partition of a finite set S is defined as a
system {Sy,...,S,} of non empty, pairwise disjoint subsets of S, whose union
is S: S;NS;=0V1<i<j<rand U::1 S; = S. A triwvial partition is the
system {{z}| x € S} that consist of all singletons of S.

Now, we build a graph partition out of the set of nodes of the super graph.

Definition 3.9 (Graph Partition) Let G = (V, E) be a graph and vV C
P(V)and E CV xV x1d. A graph G = (V,E) is a graph partition of
G if and only if V is a partition of V' and (v,w,id) € E < Jv et and
wew: (v,w,id) € B. We call E the set of edges induced by V.

In other words, each node in v represents one or more nodes of V' and
all edges between two nodes in V_are converted into edges between the rep-
resentatives of the two nodes in V.

If a graph partition of a super graph fulfills the condition that each set
of the partition contains nodes with disjoint life times, it is named a graph
sequence partition.

Definition 3.10 (Graph Sequence Partition GSP)

Let S = [Gl, ..., Gy with G; = (V;, E;) be a consistent graph sequence and
G = (V E) be the super graph of S. A graph partition G = (V, E) of G
where V = {P,..., P} is a graph sequence partition of S if and only if
Yo, w € P; with v 7é w = T(v) NT(w) = 0. We call G a minimal GSP of S,
if there exists no GSP of S with less nodes.

In a GSP nodes with disjoint life times are bundled together. Unfor-
tunately, the problem of computing a minimal GSP (hence minimal graph
sequence partition problem mGSPP) is N'P-complete. The proof of the N'P-
completeness of mGSPP and mRGSPP (see Section 3.1.4) by reduction on
the minimal graph coloring problem [GJ79] is given in [DGKO0].

Now we present an algorithm which computes a GSP.
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Algorithm 2 Computing a GSP
W=VP:=0p:=0
while v € W do

if 3j : T(v) NT(P;) =0 then
P, = P,U{v}, T(P) == T(P}) UT(v)
else
p=p+1, P :={v}, T(P,) :=T(v)
end if
W =W\ {v}
end while

Algorithm 2 intentionally leaves open how the set P; is chosen. We will
introduce different strategies for this in Section 3.1.3. In general, Algorithm 2
does not compute a minimal GSP, but we will see in the next section that
minimal GSPs are not always desirable depending on which aesthetic criteria
should be optimized. If a minimal partition has to be computed this can be
done by using an algorithm solving the exact graph coloring problem.

Using a GSP to compute a foresighted drawing with Algorithm 1, the
function projectGraphs() is defined as follows:

¢« G=0G

e map,, maps each node v € |JV; to the node of V that represents v
i

e map, maps each edge e € |J E; to the edge of E that represents e
i

GSP and the Mental Map

The drawings resulting from using a GSP as a projection instead of the super
graph better fulfill the aesthetical criterion of compactness, as the drawings
are more compact because of the bundling of the nodes and they do not
contain as much unused space. But the mental map is not preserved as well,
because now several nodes share the same position in different drawings and
this could confuse the viewer of the sequence of drawings.

3.1.3 Strategies for Computing a GSP

This section introduces different strategies to compute a GSP. In general
Algorithm 2 does not compute a minimal GSP. From an aesthetical point of
view it is not too bad that we do not compute minimal GSP’s. A minimal
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GSP is often not the best choice as we pay for the minimal number of nodes
by an increased number of edge crossings in most cases. A GSP can be
computed using one of the following strategies:

1. Search the list from P, to P, or from P, to P;. In this case the GSP is
built randomly.

2. Add v to the set with the smallest cardinality.
This strategy tries to compute partitions of equal size and such to
obtain an even distribution of nodes.

3. Add v to the set, whose life time has the smallest cardinality.
This strategy tries to achieve that the positions of all nodes are occupied
the same amount of time.

4. Only allow a limited number of nodes in a partition. If there is no
partition with less nodes, then create a new set.
This strategy prevents that too many nodes share the same position.

5. Only allow a limited number of edges in a partition. If there is no
partition with less edges, then create a new set. This strategy prevents
that too many edge crossings arise.

6. Give priority to nodes with adjacent edges to the same (already com-
puted) partitions. This strategy prevents also that too many edge
crossings arise.

These strategies can also be combined.

3.1.4 Reduced Graph Sequence Partition

In a GSP the number of nodes of the super graph of a consistent graph
sequence is reduced. In a similar way, the number of edges in a GSP can be
reduced.

Definition 3.11 (Reduced Graph Sequence Partition RGSP)

Let S = [Gy,...,G,] with G; = (V;, E;) be a consistent graph sequence,
G = (V,E) be the super graph of S and G = (V, E) be a GSP of G. The
graph G = (V,E), where E C V x V x P(Id), is a reduced GSP, if and
only it E = {(3,@, P\),..., (0, @, P} with 5,0,0,0 € V = {P,,... P} is a
partition of the identifiers of the edges of E and V@, w,{my,...,my}) € E
the following holds: (v, w,m;), (v,w, m;) € E : T(m;) N T(m;) = 0 for
1<i<j<k.
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We call G a minimal RGSP of S, if there exists no RGSP of S with less
edges.

A RGSP bundles multi-edges of the GSP together, that is edges of the
GSP which connect the same nodes, if they have disjoint life times. There-
fore, only multi-edges which result from building the super graph or the GSP
can be bundled together, because other multi-edges which existed beforehand
have the same life times. An edge (v, vs, {m1,...,my}) of the RGSP repre-
sents k edges which exist at different times, that is in different graphs of the
graph sequence, between a node in v and w. Also the problem of computing
a minimal RGSP (hence minimal reduced graph sequence partition problem
mRGSPP) is N'P-complete.

As computing minimal RGSPs is AP-complete, we present an algorithm
which does not compute minimal RGSPs, but yields good results in practice,
that is RGSPs with small numbers of edges. The algorithm actually computes
a partition of identifiers of the edges of a RGSP.

Algorithm 3 Computing a RGSP

W= {my,...,my}, i.e. the set of all identifiers occurring in E
P:=0,p:=0
while n € W do
Let (v, w,n) be the edge identified by n
p=p+1,P,:={n},T(P) ::~T(n)
while 3m e W : (v,w,m) € E and T'(P,) N T(m) =0 do
P, =P, U{m}, T(P,) :=T(P)UT(m),W :=W\{m}
end while
W =W\ {n}
end while

If only the edges but not the nodes of a super graph are to be bundled
together it is possible to compute a RGSP ‘directly’ out of the super graph.
For that purpose a trivial GSP is computed, at which the partition consists
of nothing but singletons - the nodes of the super graph - and this GSP is
reduced afterward to a RGSP.

Using a RGSP to compute a foresighted drawing with Algorithm 1, the
function projectGraphs() is defined as follows:

e G=G

e map, maps each node v € | JV; to the node of V that represents v
i
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e mapy maps each edge e € | J E; to the edge of E that represents e
i

RGSP and the Mental Map

The drawings resulting from using a RGSP as a projection instead of a GSP
again better fulfill the aesthetical criterion of compactness, as the drawings
are even more compact due to the bundling of the edges. But the mental
map is not preserved as well, because now several edges share a common
curve in the drawing and this could confuse the viewers of the drawing.

3.1.5 Optimization of the Edge Routing

Since the drawing of each individual graph of the sequence is derived from
the super graph, the GSP, or the RGSP it is possible that the edge routing
is not optimal. An edge could for example be drawn as a curve around a
node that is not contained in the current graph of the sequence, but will be
contained in a following graph. This can be avoided by optimizing the edge
routing of the individual graphs.

For this purpose the static drawing algorithm has to provide a function
which takes a graph with fixed node positions as input and computes a
drawing for the edges. Then, it is possible to compute the drawing of the
super graph, of the GSP, or of the RGSP, where only the node positions
matter. Now, the positions of the nodes are derived from this drawing for
each graph of the sequence and an optimal drawing for the edges is computed.

Optimized Edge Routing and the Mental Map

By optimizing the edge routing the aesthetical criteria of the drawings of the
graphs of the sequence are better fulfilled, but at the same time the mental
map is not preserved as well, because the drawing of the edges changes over
time. Therefore the viewer of the drawing might find it more difficult to
identify the edges in the individual graphs.
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3.1.6 Algorithm

The following generic algorithm computes a drawing of a sequence of graphs.
It uses the super graph, the GSP, and the RGSP in combination with a static
graph drawing algorithm to draw a sequence of graphs while preserving the
mental map, mode C {GSP, RGSP,optEdges}.

Algorithm 4 Compact Foresighted Graph Drawing
foresightedDrawing(S =[G, . .., G,],staticDrawing(),mode)

~

G := buildSuperGraph(Gy, ..., G,)
if GSP € mode then
G := computeGSP(G)
else R
G := trivial GSP(G)
end if
if RGSP € mode then_
G := computeRGSP(G)
else
G = trivialRGSP(G)
end if
globalDrawing:= staticDrawing(G)
fori:=1ton do
currentDrawing:= extractDrawing(G;,globalDrawing)
if optEdges € mode then

drawing := optimizeEdges(currentDrawing)

else
drawing := currentDrawing
end if
drawGraph(G;,drawing)
end for

The function extractDrawing() computes the corresponding part of the
drawing of the current graph G; of the sequence out of the global drawing.
The function optimizeEdges() optimizes the drawing of the edges of a given
drawing, where the position of the nodes are unchanged.

Short Summary and Remark

In this section we introduced the theory of foresighted graph drawing and
investigated the influence of each single step on the mental map and the
aesthetic criteria. Figure 3.3 gives again an overview.
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Foresighted graph drawing does not work for all classes of graphs equally
well, as it requires that the super graph, GSP or RGSP of the graphs belongs
to the same class as the individual graphs. For example, in general the super
graph of trees is not a tree, and the super graph of planar graphs is not a
planar graph.

graph sequence
S =1[G1,...,Gn]

super graph
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A A
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Figure 3.3: Correlation between foresighted drawing, mental map, and aes-
thetic criteria.

3.1.7 Interactively Drawing of Dynamic Graphs

In some applications the future of a graph depends on user input. Neverthe-
less between such points in time when the user interacts with the application,
the program can perform several “foreseeable” changes of the graph. Thus
the execution of such an interactive application can be modeled as a series
of graph sequences. When we draw a graph sequence of such a series on
the screen, we do not know the next graph in the series but we know the
one before. As a “smooth” transition between the previous and the cur-
rent graph sequence we can use the traditional animation approach. More
precisely: Let S = [Gy,...,G,] be the previously drawn graph sequence.



36 Chapter 3. A Framework for Offline Drawing of Dynamic Graphs

Then graph G, was drawn on the screen using the foresighted drawing for
a RGSP G of S. Now the user does some input and triggers the graph se-
quence S" = [GY,...,G!] ]. To draw this sequence the application computes
a RGSP G’ of S" and uses morphing between the graph G,, with node and
edge positions as in G and G| with node and edge positions as in G'.

3.2 Foresighted Graph Drawing with Toler-
ance

The approach presented in the last section preserves the mental map in a
trivial way by using the global drawing, but does so at the cost of other
aesthetic criteria.

Now, we extend the foresighted drawing approach such that it can trade
aesthetic quality for dynamic stability and vice versa. Again, we compute
first a global drawing of the whole sequence, but we allow to make local
adjustments to the drawings of the induced graphs up to some predefined
threshold while preserving the mental map of the whole sequence. To this
end we use a tolerance value ¢ and allow such drawings for individual graphs
of the sequence for which the mental distance to certain other graphs' is
smaller than §. As a result we can formulate a weaker problem.

Definition 3.12 (The Tolerant Offline Drawing of Dynamic Graphs
Problem) Given a sequence of n graphs G, ..., G, and a tolerance value 0.
Compute drawings ['y,...,[", for these graphs such that

1. A(FZ, Fi+1) <dforalll<i<n
2. U= Y ¥(T;) is maximal
As a simple corollary we get that 0 < A < n*4. In general we can expect

that W increases for larger values of §. In other words a small § enforces
dynamic stability, while larger values increase local quality (see Figure 3.4).

- A e
o — —
A =0 W W max

Figure 3.4: Threshold ¢: Trading quality for stability.

! The strategies that we will present differ in particular with regard to what other graphs
are chosen for comparison.
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For efficiency reasons we do not try to compute an optimal solution, but
we compute approximations. Algorithm 5 is generic in the sense that it works
with different static drawing algorithms and related metrics and adjustment
strategies. We use the notation I'| to denote the drawing which results from
restricting I' to the nodes and edges in G. In other words I'|¢ is the drawing
for G induced by the drawing ['.

Algorithm 5 Foresighted Graph Drawing with Tolerance ¢

Compute global drawing [ for super graph (resp. GSP or RGSP) of
Gy,...,G,
fori:=1ton do

Fi = F|Gz R
. Compute I'; by adjusting I[';
Ly := adjust(....) ;? usingpone of t}}:e stiategiis discussed in Section 3.2.1
end for

animate drawings I'y,..., [, of graph sequence G4, ...,G,

Algorithm 5 first computes a global drawing T of a graph which is a
projection of the whole graph sequence. Then, for each graph the induced
drawing is taken from the global drawing and is adjusted afterward. Sec-
tion 3.2.1 presents different strategies that can be used to adjust the drawing.
Finally the whole sequence of computed drawings is displayed using a graph
animation which is described in Algorithm 6.

Algorithm 6 Animate Drawings I'y,...,[', of Graph Sequence G,...,G,
fori:=1ton do
if i=1 then
Display drawing I’y
else
Fade out all nodes € T ; \ T} and edges € T'F | \T'F
Show animation transforming I';_1|¢, ,na, to Lila,_ina;
Fade in all nodes € 'Y \ I/ ; and edges € TP\ T'? |
end if
end for

The graph animation algorithm works as follows: The drawing of the first
graph of the sequence is displayed. Each following drawing is shown using
the following technique:

e fade out all nodes that are removed from the previous graph.
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e show an animation moving the nodes that are contained in the previous
and the current graph from their old to their new positions.

e fade in all nodes that are inserted in the current graph.

Section 9.1 introduces several methods to compute animations between
two drawings of graphs.

3.2.1 Drawing Adjustment Strategies

Classical drawing adjustment methods adjust(G;,I'; ;) draw a graph G; by
adapting the drawing I';_; of the preceding graph. The adjustment strategies
presented in this section also take the global drawing into account. We use
the super graph (resp. GSP or RGSP) as a rough abstraction of the whole
sequence of graphs. In a sense it contains information about the future of the
whole sequence. In addition the strategies might consider the previous, next
or all graphs of the sequence. Instead of the graph G; these strategies get
the drawing ['; for the graph induced by the global drawing and try to adjust
it while regarding constraints on the mental distance to other drawings. If
they cannot fulfill the constraints these strategies yield the induced drawing.

Strategy 1 (Independent Adjustment)

Usage in algorithm 5: T'; = adjust(fi, J)

This strategy tries to preserve the mental map by ensuring that A(fi, [;) <é.
As a result all graphs in the animation stay close to the global drawing.

Strategy 2 (Predecessor Dependent Adjustment)

Usage in algorithm 5: T'; = adjust(fi, [iq,9)

This strategy differs from the above by requim’ng that the drawing stays close
to that of the preceding one, that is A(I';_1,T;) < 6. Note, that there is no
constraint for adjusting fl. As a result I'y can be very far from the induced
drawing and this can have undesirable effects. The value of A(T'y, f;g) maght
get greater than 6 and all adjustments to fg might not sufficiently reduce the
mental distance. In this case the adjustment will fail and return the induced
drawing.

Strategy 3 (Context Dependent AdJustment)

Usage in algorithm 5: T'; = adJust(FZ, L 1,FZ+1, J)

This strategy extends the previous one by enforcing that the drawing stays
close to both the preceding drawing as well as the induced drawing for the
subsequent graph, that is A(T;_1,T;) < 0 and A(T, fiﬂ) < 4. In particular,
this strateqy makes sure that 'y stays close to fg and thus we do not run into
the problem discussed above when adjusting fg.
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The above strategies try to adjust a drawing as much as possible, before
proceeding to the next one. The previous drawing can thus impose too
many restrictions on the next one and render adjustments impossible. The
following strategy strives to evenly adjust all drawings in the sequence.

Strategy 4 (Simultaneous Adjustment)

Usage in algorithm 5: (I'y,...,T},) = adjust(fl, A J)

This strategy simultaneously adjusts the induced drawings fl,...,fn such
that A(T;,Tiyq) < 0 for all 1 <i <n. A variant of the simultaneous adjust-
ment strategy could also try to preserve the inertia of movements.

3.2.2 Requirements for the drawing algorithms

In Algorithm 4 (Foresighted Graph Drawing) an arbitrary static drawing
algorithm could be used to compute the global drawing. In Algorithm 5
(Foresighted Graph Drawing with Tolerance), however, it is not possible
to use an arbitrary static drawing algorithm, because the algorithm has to
provide the ability to compute a drawing of a graph by adjusting another
drawing, and not just to compute a drawing from scratch. And even more:
the degree of the adjustment is not free, but limited by a given threshold.

In Chapter 4 we show how a force-directed algorithm that works itera-
tively can be modified to meet these requirements. In Chapter 5 and Chap-
ter 6 we discuss how algorithms based on several computing phases, namely
hierarchical respectively orthogonal drawing algorithms, can be modified to
meet these requirements.

3.2.3 Backbone

In this chapter the super graph played a crucial role. The reason for using
the super graph was that it provided an approximation about the graph
sequence and that its drawing could be used as a sketch for all graphs of the
sequence. However, the super graph is restrictive, as it induces a drawing for
all nodes without taking into account that they are of different relevance for
the sequence.

To improve that model we now introduce the concept of a backbone of
a sequence. Therefore we need a function that defines the importance of a
node in the sequence G, ..., G,.

Definition 3.13 (Importance and Backbone) Given a sequence of graphs
Gi,...,G, with G; = (V;,E;) and V =J_, V; and E = ], E;.
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e The function I : V' — [0, 1], mapping each node of the sequence to a a
value between zero and one, is called importance.

e The graph
B' = (Vp, Ep)

with

Ve = {veV|I(v)>6d}CVand
Eg = {(u,v) € E|u,veVg}

is called backbone of the sequence with respect to I and dp. If I and
0p is clear from context B denotes the the backbone.

This concept of a backbone is a generalization of the concept of a super
graph: The backbone is less restrictive and is adjusted to the given graph
sequence. For §; = 0 the backbone is equal to the super graph.

Depending on the choice of the importance function, the backbone rep-
resents different base models. There are several possibilities for choosing an
importance function. We can define the function depending on the structure
of the sequence. For example the number of occurrences of a node in the se-
quence: [(v) = |{i| v € V;}| for a graph sequence G4, ..., Gy, or the number
of occurrences of a node in subsequent graphs, that is the longest life time of
the node. Another possibility to define the importance function is the node
size. Large nodes often act as landmarks in drawings and should not change
their position, because the loss of the landmark makes orientation more diffi-
cult. Therefore large nodes could be seen more important than small nodes.
If we know enough about the semantics of the graphs, we can instead choose
an importance function that takes this information into account, that is we
can use application-domain specific importance functions.

The improved algorithm for foresighted drawing that uses the backbone
instead of the super graph now looks as follows:

Algorithm 7 Improved Foresighted Drawing with Tolerance

compute global drawing [ for the backbone B of Gy,...,Gy
for i:=1ton do
Fi =T G;
I'; == adjust(...)
end for
animate drawings I'y, ..., [, of graph sequence G4, ...,G,

In this improved version the global drawing does not provide initial draw-
ing information for nodes v € V; \ Vjp, that is those that are not part of the
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backbone. So the adjustment functions have to assign initial positions to
these nodes.
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Chapter 4

Force-Directed Approach

This chapter is divided into two parts. The first part introduces the principles
of force-directed graph drawing. The second part shows, how to adapt force-
directed drawing algorithms such that they fit into the framework for drawing
dynamic graphs as presented in Chapter 3.

4.1 Force-Directed Graph Drawing

Force-directed graph drawing algorithms are intuitive methods to create
straight-line drawings of (in most cases undirected) graphs. They compute
node positions by simulating forces in a physical system. The nodes and
edges of the graph are interpreted as physical components exerting forces on
each other. Force-directed methods minimize the energy of the simulated
system by moving nodes along their force vectors. Force-directed approaches
consist of two parts:

e A force model consisting of physical objects (representing the elements
of the graph). For example, a “spring” of “natural length” [,, can be
assigned to each pair (u,v) of nodes connected by an edge. The spring
follows Hooke’s law, that is, it induces a force of magnitude proportional
to dyy — lyy Oon u, where d,, is the Euclidean distance between u and v.

e An algorithm that (approximately) computes an equilibrium configu-
ration of the system. Often, simple iterative methods are used.

The specifications of a model fully represent the intuition behind what
is considered a good layout. Its associated algorithm merely serves as an
optimization routine for the objective function expressed in the model.

In spite of their disadvantages to be rather slow and to tend to run into
local minima, force-directed methods are very popular because they produce

43
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good drawings for many graphs, emphasize symmetric structures in a graph,
and are easy to implement.

Many force-directed algorithms have been proposed and tested [Ead84,
KK89, FLM95, Bra96, EK97], which differ both in the force or energy model
used, and in the method applied to find an equilibrium or minimal energy
configuration. In the following sections we introduce some basic models for
simulating physical system.

4.1.1 Springs and Electrical Forces

The simplest force-directed method uses a combination of spring and electri-
cal forces. While nodes represent equally charged particles which repel each
other, edges act as springs attracting connected nodes to each other.

For example, Figure 4.1(a) shows a graph modeled with this system. An
equilibrium configuration, where the sum of forces on each particle is zero,
is illustrated in Figure 4.1(b). This configuration can now be interpreted as
a straight-line drawing of the graph, shown in Figure 4.1(c).

Figure 4.1: A spring algorithm.

The force acting on each node v € V' is given by

Fl)= Y fepT @ TV@)+ Y fopringTV (), TV (0))

u{uw}eE u{u,v}eE

where fp is the electrical repulsion exerted on v by node u, and fypring
is the force acting on v by the spring between u and v. The force fypring
follows Hooke’s law, that is fping is proportional to the difference between
the distance between u and v and the natural length of the spring.
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Thus, the forces are defined as follows:
frep(TY (u), TV (v)) = ———5

and
fSpring(FV(u)a FV(U)) = |d(u, U) - luv|021v,u

where d(u,v) is the distance between the node positions I''(v) and I'V(u),
1y, is the unit vector from v in direction of u, [, is the natural length of
the spring between v and v, ¢; is a repulsion constant, and ¢, is a constant
controlling the strength of the spring.

The first sum represents the repelling force between every pair of non-
adjacent nodes u,v € V. The second sum represents the spring forces
between adjacent nodes u,v € V. The direction of this force depends on
whether the current distance between the nodes uw and v is less or greater
than the natural length [ of the spring.

To compute an equilibrium of this system nodes are iteratively moved
according to a net force vector F'(v), which is the sum of all repulsion and
spring forces acting on v. After computing the net forces for all nodes,
each node is moved a constant ¢ times this vector. This constant is used
to prevent excessive movement due to synchronous update. The system
approaches a stable state in which no local improvement is possible any
more by iteratively computing the forces on all nodes and updating the node
positions accordingly (see Algorithm 8).

Algorithm 8 Spring embedder
for all v € V do
assign initial position to 'V (v)
end for
for ¢t := 1 to #lterations do
for all v € V do
Flo)= ¥ frep(@ @), TV(0)+ 3 fopring(T (w), IV (v))
u{uv}¢E u{u,v}EE
end for
for all v € V do
IV(v):=T"(v)+6-F(v)
end for
end for

The initial positions of the nodes can either be chosen randomly, or the
nodes can be placed on a circle which is a widely used technique.
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4.1.2 Magnetic Fields

For directed graphs it is desirable to have the directed edges point into
roughly the same direction, which cannot be achieved by the presented spring
embedder model presented above. Sugiyama and Misue [SM95a, SM95b] pro-
posed a model in which some or all of the springs are magnetized, and there
is a global magnetic field that acts on the springs. The magnetic field can be
used to rotate the edges to point in any given direction. Let © be the angle
between the prescribed and the current direction of an edge, and 1,;, be the
unit length vector perpendicular to 1,, and pointing toward a decrease of
O, then the rotation forces

Srot OV (w), TV (v)) = b~ d(u,v)" - O% - 1,

can be combined with the spring and electrical forces and thus rotates the
edge to reduce O (see Figure 4.2). The constant b controls the strength of the
magnetic field acting on an edge between u and v, ¢; and ¢y are parameters
controlling the relative dependency of rotative forces on node distances and
angle deviation, respectively.

direction of the
magnetic field

Figure 4.2: Magnetic spring.
There are three basic types of magnetic fields (see Figure 4.3):
e Parallel: All magnetic forces operate in the same direction.
e Radial: The forces operate radially outward from a point.

e Concentric: The forces operate in concentric circles.

It is also possible to combine these basic fields.

4.1.3 Simulated Annealing

Davidson and Harel [DH96] introduced a general method for minimizing
objective functions of combinatorial problems. Given a candidate solution
a new solution is proposed by minor modification of the current one. If the
new solution reduces the value of the objective function, it becomes the new
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©

(a) Parallel (b) Radial (c) Concentric

A
v

Yy vV v v v

Figure 4.3: Types of magnetic fields.

candidate solution. Otherwise, it becomes the new candidate solution only
with probability e#, where AFE is the increase of the objective function,
and T > 0 is the temperature parameter. Convergence is enforced by slowly
lowering T to zero (see Algorithm 9).

Algorithm 9 Simulated Annealing
while 7" > THRESHOLD do
for allv € V do
LYy =1
IV (v) :=T"(v) + Arandom
if E(I'Y,) < E(T'Y) then

ey p-ecY)

with probability 1 —e™ 7 reset I'V := T},
end if
end for
anneal T
end while

Fruchterman and Reingold [FR91] combine this approach with a spring
model: the repulsion and spring forces determine the direction of the move-
ment of a node, but the global temperature determines how far the node
is moved. The global temperature anneals using a temperature scheme de-
pending on the number of the nodes and edges.

Frick et al. [FLM95] expand this concept by applying local temperature
for every single node. The total temperature of the system is the average
of the temperatures of all nodes. The amount of movement of every node
depends of its own temperature. Local temperatures have the advantage
that not all parts of a graph have to get to their final positions at the same
time. Further, the temperature is more sensitive about the behavior pattern
of the movements of the nodes and therefore, the algorithm terminates faster
in general.
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4.2 Force-Directed Drawing of
Dynamic Graphs

In this section we show how a simple spring embedder [Ead84, Bra0la] can be
modified to perform drawing adjustment according to the strategies presented
in Chapter 3.

The spring model fits quite well into our framework because the adjust-
ment of a given drawing is implicitly provided by the model: just initialize
the algorithm with the given drawing and then let the forces act.

Unfortunately once this spring embedder has computed a drawing that
does not preserve the mental map further iterations do not resolve the prob-
lem. As a result we extended the spring embedder by simulated annealing.
We assume a global temperature 7" which cools off after each iteration.

Algorithm 10 adjust(G;, fi, [ 4,9) predecessor dependent
for all v € V; do
if ve ') then
LY (v) =T} (v)
else
assign initial position to 'Y (v)
end if
end for
for t:=1 to #lterations do
Compute forces for each node in 'Y with global temperature T
Compute new drawing I} by applying forces to nodes in I'Y’
if A(T;_1,T%) <0 then
end if
anneal T’
end for
return I';

Algorithm 10 follows immediately from the general description of the
predecessor dependent adjustment strategy in Section 3.2.1 and Algorithm 7.
First, the position of the nodes contained in the global drawing induced by
the backbone '} are initialized with the position in the global drawing. The
positions of all other nodes are initialized using the standard initialization of
the spring embedder. Then a new drawing is computed by applying the forces
to the nodes. If the new drawing preserves the mental map it is accepted as
the new drawing, else it is discarded. The temperature anneals and we start
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over.

The algorithms for the independent and context dependent adjustment
strategies work analogously and differ only in the condition checking if the
mental map is preserved: instead A(I';_;,I}) < 0 the independent adjust-
ment strategy uses A(fi,F;) < 0 and the context dependent adjustment
strategy uses A(I';_, ) < 6 A A(TY, Tiv1) < 0.

Algorithm 11 implements the simultaneous adjustment strategy. The
iterations of the embedder are performed simultaneously on all drawings.
After each step we check whether the mental distances of a drawing and the
drawings of its previous and next graphs are below the tolerance value. If
this is not the case the drawing is discarded and the drawing of the previous
iteration is used for the next iteration with reduced temperature.

Algorithm 11 adjust(Gy,...,G,, fl, o ,fn, J) simultaneous

(FI;---;Fn) = (Fl,...,Fn)
for : :=1 ton do
for all v € V; do
if v € IV then
LY (v) == T} (v)
else
assign initial position to I'Y (v)
end if
end for
end for
for j:=1 to #lterations do
for . :=1ton do
Compute forces for each node in I'}” with global temperature T
Compute new layout I'} by applying forces to nodes in '}’
if AT, 1,T%) <0 and AT, T;11) < 6 then
end if
end for
anneal T’
end for
return (I'y,...,[,)

Short Summary In this chapter we introduced the concept of force-directed
drawing algorithms and some basic models, like springs, electrical forces, and
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magnetic fields. The force-directed algorithms fit well into our framework be-
cause they work iteratively and are able to adjust a given drawing. By using
temperature annealing we achieve to limit the adjustment to a decreasing
amount.



Chapter 5

Hierarchical Approach

This chapter is divided into two parts. The first part introduces the prin-
ciples of hierarchical graph drawing. The second part shows, how to adapt
hierarchical drawing algorithms such that they fit into the framework for
offline drawing of dynamic graphs presented in Chapter 3.

5.1 Hierarchical Graph Drawing

Directed graphs are widely used in applications to model dependency re-
lationships, for example call graphs of programs. Acyclic directed graphs
are usually presented with the polyline downward (or upward) drawing con-
vention. The hierarchical approach is intuitive and was originally proposed
in [STT81]. An extension which can also be used when the input graph is
not acyclic is shown in Figure 5.1.

e [f the graph is not acyclic, convert it into a acyclic one by temporarily
reversing a subset of its edges. The set of reversed edges should be
kept as small as possible to obtain a drawing in which most of the
edges follow the hierarchical direction.

e The layer assignment step receives an acyclic directed graph as input
and produces a layered directed graph by assigning the nodes to layers
Ly,..., Ly, such that if (u,v) is an edge with u € L; and v € L;, then
¢ > j. Each layer corresponds to a row in the drawing plane and in
the final drawing each node on layer L; will have y coordinate equal to
i, that is all edges are directed downward. Next the layered drawing
is transformed into a proper layered directed graph, that is, a layered
directed graph such that, if (u,v) is an edge with v € L; and v € L;,

o1
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then ¢ = j + 1. This is achieved by inserting dummy nodes in the
intermediate layers along the edges that span more than two layers.

e The crossing reduction step receives a proper layered directed graph as
input and produces a new proper layered directed graph in which an
order is specified for the nodes on each layer. The orders of the nodes
on the layers are chosen in such a way that the number of crossings
is kept as small as possible. Together with the layer assignment the
orders of the nodes define the topology of the final drawing.

e The z-coordinate assignment step receives a proper layered directed
graph as input and produces final  coordinates for the nodes preserving
the ordering computed in the last step. In the final drawing the dummy
nodes are removed and build the bends of the edges.

e The original direction of the edges is restored that were reversed.

The hierarchical approach implicitly establishes an ordering among aes-
thetics through the ordering of the steps. The method can also be extended
to undirected graphs by preprocessing the graph to give it an artificial acyclic
orientation.

Several aesthetics can be taken into account during the x-coordinate as-
signment step. For example, the dummy nodes introduced by replacing the
long edges can be aligned to reduce the number of bends, or the nodes can be
horizontally displaced to emphasize symmetries, or nodes can also be packed
to reduce the area of the drawing.

As the hierarchical approach produces a drawing in several steps where
each step is based on and restricted by the result of the previous step, a bad
decision in an early phase can reduce the quality of all subsequent phases.
Furthermore theoretical problems underlying some of the phases have been
proven to be NP-hard[GJ79]. This, in combination with the strong interde-
pendence of the phases make the choice of good and compatible heuristics
essential.

In the following sections we will take a closer look at the single steps.

5.1.1 Layer Assignment

The layer assignment has a strong influence on the area required by the
drawing as it determines the height of the drawing and gives a lower bound
on the width of the drawing. Many different approaches for this step exist.
Layer assignment methods usually try to optimize criteria such as minimal
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Figure 5.1: The hierarchical approach. Dummy nodes are represented by
squares.

height or width of the final drawing. Minimizing both width and height in
one drawing has been proven to be NP-hard [Lin92].
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Definition 5.1 (Layering and Ranking) Let £ be a partition of the
node set V of a graph G = (V, E), that is, L = {Ly, Lo, ..., Ly}, U?Zl L;,=V.
The function R : V' — {1,2,..., h} denotes the characteristic function of this
partition, that is R(u) = ¢ if and only if u € L;, and is also called ranking.
L is called a layering if V(v,u) € E : R(u) > R(v) holds.

The height of a layering is the number of layers h, the corresponding
graph is called an h-layered graph. The width of a layering is the number
of nodes in the largest layer, that is max;<;<p |L;| and the span of an edge
(v,w) is defined as R(w) — R(v). A layering is called proper if no edge has a
span greater than one.

In the following we use the terms height and width also in the context of
a ranking and they are interpreted as the height and width of the partition
L implied by the ranking.

The aim of the layer assignment step is to transform an acyclic graph into
a layered directed graph. The following requirements hold for a layering:

e The layer should be compact, that is its width and height should be
small. A lower bound for the height is the maximum number of nodes
in a path from a source to a sink.

e The layer should be proper. This can be easily achieved by inserting
“dummy” nodes along edges with span greater than one.

e The number of dummy nodes should be small due to the following
reasons:

1. The computation time of the following steps depends on the num-
ber of nodes, including dummy nodes.

2. Bends in the edges in the final drawing occur only at dummy
nodes. Not all dummy nodes introduce bends (bends can be pre-
vented by straightening at the horizontal coordinate assignment
step), but is is desirable to avoid this problem by reducing the
number of dummy nodes.

3. The number of dummy nodes on an edges determines the length
of the edge. For the eye it is easier to follow short edges.

In the remainder of this section we present different approaches to com-
pute layer assignments. But first we show how to remove cycles in the case
the input graph is not acyclic.
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Cycle Removal

If the graph contains cycles the cycles can be removed by reverting individual
edges. Although this can be done in linear time using a modified depth first
search algorithm, trying to make a graph acyclic by reverting as few edges
as possible has been proven to be NP-hard [GJ79).

The mazximum acyclic subgraph problem is stated as follows: find a maxi-
mum set F, C E such that the graph (V, E,) is acyclic. The maximum acyclic
subgraph problem is equivalent to the unweighted ordering problem: find an
ordering of the nodes of G, that is find a mapping o : V- — {1,2,...,|V|}
such that the number of edges (u,v) € E : o(u) > o(v) is minimized.

Thus the easiest heuristic for the maximum acyclic subgraph problem is
to take an arbitrary ordering of the graph, which could be computed for
example by applying breadth first search or depth first search, and delete all
edges (u,v) with o(u) > o(v). This heuristic is fast, but does not allow to
give any quality guarantees.

Therefore we introduce another heuristic which guarantees an acyclic set
of size at least %|E| The idea is to delete for every node either the incoming
or outgoing edges (see Algorithm 12).

Algorithm 12 Cycle Removal
E,=0
forallv eV do
if outdeg(v) > indeg(v) then
append outdeg(v) to E,
else
append indeg(v) to E,
end if
delete pred(v) and succ(v) from G
end for

Further heuristics and an exact approach are presented in [BM01, BETT99].
Henceforth we assume that the graphs are acyclic.

Longest Path Layering

The longest path layering first places all sinks in the bottom layer L, then
each remaining node v is placed in layer L, ;, where the longest (maximum
number of edges) path from v to a sink has length p. This produces a layering
where many nodes stay at close to the bottom. It can be computed in linear
time using a topological ordering of the nodes.
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Minimizing the Number of Dummy Nodes

To solve this problem we formulate it as an integer program. The properties
of a layering can be stated as follows.

R(u) — R(v) > 1V(u,v) € E

R(v) € ZT Vv eV

Thus minimizing over . (R(u)— R(v)) minimizes the number of dummy
(u,v)EE

nodes. It is shown in [GKNV93| that the corresponding relaxed linear pro-
gramming problem has an integer solution. Frick [Fri97] presents a detailed
study on the number of dummy nodes.

In Section 5.2.1 we will present an algorithm which computes a layering
of a directed graph, which may contain cycles, using a topological sorting
without removing the cycles first.

5.1.2 Crossing Reduction

In this step the relative positions of the nodes within each layer are computed.
The main aim in this phase is to minimize the number of edge crossings. This
problem has been proven to be NP-hard [GJ83], even if there are only two
layers. In the following we introduce the layer-by-layer sweep, which is the
general format of most techniques. The most important part of the layer-
by-layer sweep is an algorithm solving the two-layer crossing problem, that
is, a method for reducing crossings between two layers, which we present
afterward.

Layer-by-Layer Sweep

This method works as follows: first, a node ordering of the layers is chosen,
for example by computing a depth or breadth first search starting with the
sources and assign positions to the nodes in a left to right order arising from
the search process.

In the next step, a layer with an ordering, for example layer L, is chosen
and for 2 = 2,3, ..., h the node ordering of layer L;_; is fixed while the nodes
in L; are reordered to reduce the number of crossings between L;_; and L;.
After that we can sweep from layer L, to layer L; and repeat these two steps
which means L; is fixed and L;_; is reordered until no further reduction of
crossings is achieved.
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Barycenter Heuristic

The most common methods employed for the two-layer crossing problem are
variations from the barycenter method [STT81], which is also called averag-
ing. It is based on the intuition that each node should be close to its adjacent
nodes in a drawing with few crossings.

An ordering of layer L; is defined by a permutation m; of L;. In this
heuristic, we choose the position of a node as the barycenter (average) of the
positions of its neighbors N:

B 1

bary(v) = degree(v)

Y we N(m(e)
for all v in Ly. If two values are equal we separate them arbitrarily by a
small amount. Then the nodes are sorted according to their values.
The barycenter method is very popular because it runs fast, gives good
results, and even gives a drawing without crossings if one is possible.
Further good and fast heuristics are presented in [EK86, JM97].

5.1.3 Horizontal Coordinate Assignment

So far a vertical coordinate and a horizontal ordering has been computed
for all nodes. In the last step the horizontal position for each node is de-
termined according to various aesthetic criteria. Important criteria include
that dummy nodes of the same edge should be placed directly above each
other to form a straight line and that nodes should be centered over their

successors. The theoretical problems underlying the optimization of some of
these criteria have also been proven to be NP-hard [GJ79, BETT99].

5.2 Hierarchical Drawing of Dynamic Graphs

In this section we show how a hierarchical drawing algorithm can be mod-
ified to be suitable for our framework. As we have seen in Section 5.1 the
computation of a hierarchical drawing of a graph following the Sugiyama ap-
proach needs several phases: First all nodes are distributed in discrete layers
(the layer assignment or ranking assignment phase), then the nodes of each
layer are arranged (the crossing reduction phase), and finally the drawing
is computed from the layers and their arrangements. One of the problems
that occur when trying to apply foresighted drawing with tolerance to hi-
erarchical drawing is that there is no option for global drawing adjustment
such as temperature annealing in the force-directed approach. Instead, we
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have to divide the drawing adjustment applied in foresighted drawing into
two different adjustments: one adjustment for the ranking assignment and
another adjustment for the crossing reduction. However, after the ranking
adjustment has been performed, we cannot apply standard metrics, as there
exists no final drawing of the graphs yet. Therefore we will introduce a new
kind of metrics which only concern the rankings of two graphs.

The general algorithm for hierarchical foresighted drawing using the pre-
decessor dependent adjustment is shown in Algorithm 13.

Algorithm 13 Hierarchical Foresighted Drawing with Tolerance
B := computeBackbone(Gy, ...,Gy, I, 0;)
Rp := computeGlobalRanking(Gy, . .., G, B)
for7:=1ton do
Ri = RB \%
R; := adjustRanking(R!, R, |, G;) // with ®(Ro) =0
(Fi; Ui) = adjustOrder(Gi, R,_,R;, 0i_1, Fi—l) // with D(09) = 0 and D(Tp) =0
end for
animate drawings I'y,..., [, of graph sequence G4, ...,G,

Starting from the input sequence, we compute the backbone first. As
the nodes of the backbone are of highest importance, we try to preserve the
mental map of the graph sequence by fixing these nodes to a certain rank for
the entire graph sequence. After that, we compute local rankings for each
graph with respect to the ranking of the backbone. In the second phase, we
try to arrange the nodes on each layer, such that we preserve the mental
map, but try to reduce the edge crossings at the same time.

5.2.1 Rank Assignment

In this section we show how to compute a ranking for each graph of a sequence
which is suitable to compute drawings preserving the mental map. To achieve
that we first compute a ranking of the backbone which serves as a global
ranking. The rankings of the individual graphs take this ranking into account
and adjust the rank of the nodes not contained in the backbone.

Global and Local Rankings

To apply foresighted graph drawing with tolerance we need an algorithm
providing the ability to adapt a given ranking. Sander [San96] introduced an
algorithm to do so by applying a topological sorting.



5.2. Hierarchical Drawing of Dynamic Graphs 59

Definition 5.2 (Topological Sorting) The function 7 : V' — N for a
directed acyclic graph G = (V, E) is called topological sorting, if the following
holds: Y(v,w) € E : 7(v) < 7(w)

Algorithm 14 computes a layering for a graph applying a topological
sorting while taking into account that nodes could already have been assigned
to a layer — defined by R’ (see [San96]).

Algorithm 14 Computation of a layering by topological sorting
topSort(G = (V, E), R')
M:=0U=V
Z :={v eV |indeg(v) = 0}
while U # () do
while Jv € Z do
Z =7 —A{v},M:=MU{v},U :=U — {v}
r:=max ({R(w) | w € pred(v) ANw € M} U{0})+1
if v € ®(R') then
R(v) :== R'(v)
else
R(v) :=r
end if
Z:=ZU{w € Unsucc(v) | pred(w) NU = 0}
end while
Smin ‘— X

Smaz =0
for all v € U do
sy := |pred(v) N U|
so 1= [succ(v) NU| + 37 cpred(wnw IPred(w) N U
if s1 < s,in then
breaknode == v, Spmin = S1, Smaz := 52
else
if s1 = Syin A S92 > Sper then
breaknode == v, Syez = So
end if
end if
end for
if s, < 00 then
7 = Z U {breaknode}
end if
end while
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As a topological sorting only exists for acyclic graphs, existing cycles are
broken by reversing one edge of the cycle. The choice of such an edge is
important for the quality of the resulting layering. The algorithm works as
follows: the set M contains all nodes assigned to a layer, the set U contains
all other nodes. Z contains all nodes under consideration in the inner while
loop which assigns a layer with value greater than that of all predecessor
nodes to all nodes not assigned to a layer yet. Nodes already assigned to a
layer in advance keep their layer and such the algorithm fulfills the condition
of adjusting a given layering.

The for all loop chooses a node to break an existing cycle. A cycle is
found if Z is empty but U is not. The breaking node is then the starting
point for a new iteration.

Using this algorithm we compute a global ranking of the backbone which
serves as a basis for the computation of the rankings of the individual graphs
of the sequence.

Algorithm 15 computeGlobalRanking(Gy, . .., G, B)
for::=1ton do
R! := topSort(G;, 0)
end for
for all v € Vi do
Rp(v) := median(R} (v),..., R} (v))
end for
return Rp

Algorithm 15 works as follows: first of all, for each graph of the sequence
a ranking is computed by means of the topological sorting. Afterward a
ranking of the backbone is computed. As the backbone is a graph it would
be possible to compute the ranking of the backbone also by means of the
topological sorting. But in general this would not be a good choice because
the backbone does not reflect the hierarchical structure of the individual
graphs of the sequence. Instead we use another method: each node of the
backbone is assigned to the layer which is the median of all rankings of the
sequence which contain this node. Thus, the ranking of the backbone is
defined by:

Vv € Vg : Rg(v) := median(R; (v),. .., R,(v))

where only defined values in a ranking are taken into account.
The function median returns the value that would be in the middle po-
sition after sorting the arguments. Instead of the median it would also be
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possible to take the average. But then it is possible to get unexpected results:
if a node is mostly on the same layer but in one case on another layer far
away, the average rank would be somewhere in the middle. Thus, this node
would be assigned to a layer which is never the optimal layer.

Using the median “outliers” are ignored and the node is assigned to a
rank which is optimal for at least one graph of the sequence.

Rank Metrics

In Section 2.4 we introduced different metrics to determine the mental dis-
tance between two drawings. Unfortunately, these metrics require complete
drawings and cannot be applied to graphs with associated rankings, that is
partial drawings. If we would apply these metrics to a final drawing and the
mental map would not be preserved, we could not decide if the rank assign-
ment or the crossing reduction or both were causing to many changes. There-
fore, we introduce a new kind of metrics operating on rankings of graphs.
Thus, we are able to check if two rankings are suitable to compute drawings
which can preserve the mental map.

Definition 5.3 (Rank metric) Let (G, R) be a graph G with a ranking R.
Then the function Ag that maps ((G, R), (G', R')) to a positive real number
is called a rank metric. In particular, Ag ((G, R,), (G', R')) = 0 means that
G and G’ have a non-distinguishable ranking.

Rank metrics yield only a necessary condition to preserve the mental map
of drawings computed with the considered rankings, but not a sufficient con-
dition. That is if a rank metric yields a small value it is possible to compute
drawings which preserve the mental map using the considered rankings, but
it is also possible that adjustments applied in the crossing reduction step will
destroy the mental map of the resulting drawings. If a rank metric yields a
large value it is not possible any more to compute drawings preserving the
mental map.

In the following we present different rank metrics Ag belonging to two
different categories:

1. metrics based on differences of nodes between rankings (difference met-
rics)

2. metrics based on the structure of rankings (structure metrics)

First, we present some difference metrics. Let R, and Ry be two rankings
and V =D (R)) ND(Ry).
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Euclidean Rank Metric The FEuclidean rank metric sums up the dis-
tances of the nodes between two rankings:

AG(Ry, Ry) =) |Ri(v) = Ra(0))]

veV

This metric does not take into account the degree of a change, that is
many small changes are equally rated as less large changes. A more sensitive
version is achieved by parametrization:

Aer Rl,Rg = Z|R1 )|

veV

The parameter r is used to weight large changes compared to small
changes.

Discrete Rank Metric In some cases it is sufficient to know only the
number of nodes whose ranks changed. This is taken into account by the
discrete rank metric:

B(Ri, Ry) =) sgn|Ri(v) — Ra(v)]

veV

In contrast to difference metrics which examine the change of rank of each
node between two rankings, structure metrics examine the relationships of
nodes between each other in two rankings.

Orthogonal Rank Metric The orthogonal rank metric takes the relative
ranking position of the nodes into account, that is if two nodes have been on
the same layer in one ranking they should be also on the same layer in the
other ranking:

A%(Ry, Ry) := Y Isgn(Ry(v1) — Ri(v2)) — sgn(Ra(v1) — Ra(v2))]

v1,v2€V

Horizontal Rank Metric The horizontal rank metric takes the width of
the implied layers of a ranking into account:

height(R1)

AWRLRy) o= ) w(Ry, i) — w(Ry, i)

=1

where w(R,i) = [{v € D(R) | R(v) = i}| is the width of layer 7 in ranking
R.
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Properties of Rank Metrics

Similar to traditional distance metrics for drawings (see Section 2.4) also
rank metrics can be invariant under different operations. Given a ranking R,
we can compute a new ranking R’ by applying the following operations:

1. Translation: R'is the translation of R for a € Z with:
R'(v) :==a+ R(v)
2. Scaling: R’ is the scaling of R for n € N with:
R'(v) :==n- R(v)
3. Reflection: R’ is the reflection of R with:
R'(v) := height(R) + 1 — R(v)

Only the orthogonal rank metric is invariant under translation and scal-
ing, that is the orthogonal rank metric yield zero for two rankings where
one is the translation or the scaling of the other. All other metrics are not
invariant under these operations.

Adaptability of Rank Metrics

Now, we look at two important properties of rank metrics which provide
information about the behavior of the metrics during the adaptation steps.
Therefore, we need the following definition:

Definition 5.4 (Fixed Node) For two given rankings R; : V; — N and
Ry : Vo — N anode v € V) NV;is called fized if holds:

Ri(v) = Ry(v)

With fizing a node v we denote the change of a ranking R, such that node v
that was not fixed in R; and R, is fixed now.

Fixing nodes of a ranking with respect to another ranking can change
the value computed by a rank metric. From that we can derive two further
properties of rank metrics.

Definition 5.5 (Monotonous Rank Metric) A rank metric Ap is called
monotonous, if for all rankings Ry, Ry € (V' — N) holds:

Agr(Ry, R,) < Ar(Ry, Ry)

where R/, results from Ry by fixing one node.
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Definition 5.6 (Fixable Rank Metric) A rank metric Ag is called fiz-
able, if for two rankings R; and R, holds:

Yv € @(Rl) N @(Rg) : Rl(v) = RQ(U) = AR(Rl,Rg) =0
where R/, results from Ry by fixing one node.

The term “fixable” means that the rank metric computes a value of zero
if all nodes of one ranking are fixed with respect to another ranking. The
following table shows the properties of the presented rank metrics.

Rank Metric monotonous fixable
Euclidean yes yes
Param. Euclidean yes yes
Discrete yes yes
Orthogonal no yes
Horizontal no no

Adjustment of the Rank Assignment

In this section we describe how the rank assignments can be adjusted. After
computing a global ranking of the backbone we derive a partial local ranking
of each individual graph from the ranking of the backbone (see Algorithm 13).
Now we complete the local ranking R! and adjust it such that it is close
enough to the predecessor ranking to preserve the mental map, if this is
possible (see Algorithm 16).

Algorithm 16 adjustRanking(RL, R; 1, G;)

R; := topSort(G;, R)

while (AR(Rz?la Rz) > 51{) N ((V; N ‘/;',1) \@(Rﬁ) 7é @) do
add node v € {w |w € (ViNnV;_;) \ D(RHA

Vue (V;NVi)) \D(RL) : I(w) > I(u)} to R!

Ri(v) = Ri_1(v)
R; := topSort (G, RY)

end while

return R;

First, we compute a new ranking by sorting GG; topologically, but all nodes
contained in the local ranking Rﬁ keep their rank. If the rank metric applied
to the current and the predecessor ranking yields a value which exceeds the
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given threshold dz, we fix the rank of one more node to the rank of the node
in the predecessor ranking. We choose a node with maximal importance
from the node set with the following property: the nodes are contained in
the current and previous graph, but not in the backbone. Then we compute
a new topological sorting. We repeat this process until the given threshold
is no longer exceeded or until all nodes are fixed. In the second case, which
can only occur if the used rank metric is not fixable, we stop with a result
whose value of the rank metric exceeds the given threshold, but there is no
more space for improvement.

5.2.2 Crossing Reduction

In this phase we try to minimize edge crossings while staying as close as
possible to the predecessor arrangement of layers. To achieve this we use a
two-phased strategy: first we compute an order with little crossings and then
we adjust this order such that it preserves the mental map.

Initialization of the Order within Ranks
First, we define an order in each rank.
Definition 5.7 (Order within ranks) Given a ranking R of a graph G =

(V, E), the function o : V' — Z assigning each node v a position within rank
R(v) denotes the order within ranks, if the following property holds:

Vo,w € V : R(v) = R(w) = o(v) # o(w)

From the function o we derive the partial order <, on nodes: v <, w &
o(v) < o(w).

Algorithm 17 computes an initial order o; of nodes which fulfills the fol-
lowing relative orderedness conditions with respect to its predecessor (for
i>1):

L. Vo,we VNV, 1 AR;(v) = R 1(v) A Rj(w) = R; 1 (w) :
V<5 WU, , W

2. Yoe VNV, 1 AR;(v) # Ri_1(v) :
oiv) = ey | Ba(w) = Ri(o)}| <1

The first condition states that the relative order of the nodes in the same
rank in the current and predecessor graph is preserved. The second condition
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says that nodes which have changed their rank from the predecessor to the
current ranking preserve their relative position within the ranks.

Then we compute 0; by smoothly sorting the layers of G;, where <;,
restricted to the j-th layer {v|R;(v) = j} forms a total order. As there exists
no constraints for oy, 71 is obtained by sorting the layers of G;.

The layers of g; can be sorted either by the barycenter heuristic or the
median heuristic (see [BMO01]). Sorting smoothly with respect to sortmax
means using an arbitrary comparison-based sorting algorithm where a <
b - sortmax is used instead of a < b. Similarly to simulated annealing, we can
use linear, logarithmic or exponential decrease of the factor sortmax.

Definition 5.8 (Final layout) Given a ranking R and an order of ranks
o of graph G, then H(R, o) is the final hierarchical drawing of G.

Computing the final drawing includes all remaining phases after sorting
the ranks and yields the absolute positions of all nodes and edges. Thus we
can now check whether the mental map is preserved using some standard
difference metrics (see Section 2.4.2). If not, we decrease sortmax and start
over.

Algorithm 17 adjustOrder(G;, R;_1, Ri,04-1,1i_1)

sortmax :=1

o; := initialOrder(0;_1, R;_1, R;)

repeat
; := smoothSort(g;, o;, R;, sortmax)
dec(sortmax)

until A(T; ;,T;) < J Vsortmax < 0

return (I';, 5;)

5.2.3 Simultaneous Drawing Adjustment

In this section we illustrate how to apply the simultaneous adjustment strat-
egy to hierarchical drawing. The predecessor adjustment strategy of the
previous section tries to adjust a drawing as much as possible with respect to
its predecessor. In contrast the simultaneous adjustment strategy provides a
uniform adjustment of all graphs.

The main problem in applying the simultaneous adjustment strategy to
hierarchical drawing arises in the rank assignment phase. A possible ap-
proach in the rank phase would be to perform a topological sorting on all
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graphs simultaneously. But this requires that in each iteration one node in
each graph is ranked and the mental distance on ranks has to be checked.
If the check fails, backtracking has to be performed and the rank of the last
node that was ranked has to be fixed. Indeed, this approach is not a good
choice for the layer assignment of large graph sequences — in that case it
is more efficient to limit the simultaneous adjustment strategy to the cross-
ing reduction phase and to use the predecessor dependent rank assignment
phase.

The goal of the simultaneous arrangement of layers is to preserve the
relative node order in ranks over the whole sequence. Nodes which change
their ranks should preserve at least their relative position. To achieve this
goal we compute a global enumeration ¢* of the nodes which is consistent
throughout the entire graph sequence. Therefore we build the super graph,
compute a drawing of it using a static hierarchical drawing algorithm and
after that we retrieve the desired enumeration by projecting the nodes on
the z-axis and reading them from left to right.

A local improved enumeration o’ can be derived from o* by adjusting the
enumeration such that nodes which have changed their rank preserve their
relative position (as described in Section 5.2.2, second relative orderedness
condition). Using o* and ¢’ we define 0 = (0y,...,0,):

. e
o, ifi=1

N if 2+ > 1 and
e vOAH(R 07), H(Riz1,0001)) < A(H(R;, 07), H(Ri—1,0i-1))
oi, otherwise

(3

In Algorithm 18, starting with this initial order, we now use the same
iteration as in Algorithm 17, except that we use a global sortmax-variable.

Further Comments

We are confronted with another problem concerning the mental map when
drawing of dynamic hierarchical graphs: preserving the hierarchy of the graph
in the drawing comes into conflict with preserving the mental map. If we
restrict node movements by fixing nodes to a certain rank in order to preserve
the mental map it is not always possible to preserve the hierarchy in the
drawing and vice versa.

Our approach using a backbone to compute a global ranking and fixing
the nodes in the backbone to a rank attaches more importance to preserving
the mental map. If we would like to guarantee to preserve the hierarchy in
the drawing there are two possibilities to achieve this:
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Algorithm 18 adjustOrder((Gy,...,Gy), (R, ..., R,)) simultaneous

sortmax := 1
o* := initialGlobalOrder((Gy, . ..,G,))
o' := initialLocalAdjustedOrder(c*, (Ry, ..., R,))
o := initialSimultaneousOrder(c*, o', (Ry, ..., R,))
repeat

fori:=1ton do

; := smoothSort(G;, 0;, R;, sortmax)

end for

dec(sortmax)
until Vi: A([;_1,T;) <0 Vsortmax < 0
return (I'y,..., T,)

e remove restrictions globally: reduce the size of the backbone by choos-
ing a more restrictive importance function

e remove restrictions locally: remove nodes from the backbone only in
these graphs of the sequence where the hierarchy cannot be preserved

In both cases the dynamic stability decreases.

Another interesting observation is the following: in general the nodes in
the backbone are of the highest importance and should have a fixed rank
while nodes of less importance can change their rank. Thus, it is not always
possible to integrate the nodes of the backbone appropriate into the hierar-
chy. Therefore it is sometimes better to do it the other way round: fix the
nodes of lowest importance to improve stability and let the nodes of highest
importance move around so that they can be integrated into the hierarchy.
In Section 8.2.2 we show an example of this approach.



Chapter 6

Orthogonal Approach

This chapter is divided into two parts. The first part introduces the ba-
sic principles of orthogonal graph drawing. The second part shows, how to
adapt, extend, and combine existing orthogonal drawing approaches such
that they fit into the framework for offline drawing of dynamic graphs pre-
sented in Chapter 3.

6.1 Orthogonal Graph Drawing

6.1.1 The Topology-Shape-Metrics Approach

The topology-shape-metrics approach (originally introduced in [BNT86, Tam87,
TDBS88|) has been devised to construct orthogonal drawings on a grid. The
idea of the approach is that an orthogonal drawing is characterized by three
fundamental properties, defined in terms of equivalence classes:

e Topology: Two drawings have the same topology if one can be obtained
from the other by means of a continuous deformation that does not alter
the sequences of edges outlining the faces.

e Shape: Two drawings have the same shape if they have the same topol-
ogy and one can be obtained from the other by modifying only the
lengths of the segments of the edges without changing the angles built
by them.

e Metrics: Two drawings have the same metrics if they are congruent up
to a translation and/or rotation.

The hierarchical relation between topology, shape, and metric suggests
a stepwise generation of the drawing, where at each step an intermediate
representation is produced (see Figure 6.1).

69
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e Planarization: This step determines the topology of the drawing, which
is described by a planar embedding. For non-planar graphs dummy
nodes are inserted which represent crossings. Usually algorithms try to
minimize the number of crossings.

e Orthogonalization: This step determines the angles and the bends in
the drawing. Only multiple of 90° are assigned as angles which ensures
that the drawing is orthogonal. Usually algorithms try to minimize the
number of bends in this step.

e Compaction: In this step the final coordinates are assigned to the nodes
and the to the edge bends. The dummy nodes introduced in the pla-
narization step are removed. In this phase the main goal is to minimize
the sum of the lengths of all edges and/or the area of the drawing.

Detailed description of the planarization, orthogonalization, and com-
paction step are given in [KWO01, BETT99].

6.1.2 Sketch Driven Orthogonal Graph Drawing

Brandes et al. presented in [BEKWO02]| an orthogonal graph drawing algo-
rithm that produced an orthogonal drawing with few bends in the Kandinsky
model while preserving the general appearance of a given sketch. To this end
they combine the Kandinsky model which was introduced by Foéfimeier and
Kaufmann [UK96] and allows to draw planar graphs with maximum degree
beyond 4 with the Bayesian Paradigm (see Section 9.2.1).

The remainder of this section is a short summary of the paper [ BEKW02].
We adapt our notation to the common one for orthogonal drawing approaches:
objects of a graph are called vertexes and the term nodes is used for objects
in a network. We introduce the following notations: An embedded planar
graph G(V, E,F) is a planar graph with a specific circular order of edges
around vertices and a specific external face, admitting a planar drawing that
respects the given embedding.

A planar orthogonal box drawing of a planar graph is a planar drawing
that maps each vertex to a box and each edge to a sequence of horizontal and
vertical segments. An orthogonal shape () is a mapping from the set of faces
F of a graph G to clockwise ordered lists of tuples (e;,a;,b;), 1 < i < |Q(F)|,
where e; is an edge, a; € {1,...,4} represents the angle formed with the
following edge inside the appropriate face in multiples of 90°, and b; is the
list of bends of the edge. A quasi-orthogonal shape is an orthogonal shape
with a; = 0 allowed, where a 0° angle means that the succeeding edge is
adjacent to the same side of the vertex as the preceding edge. We denote



6.1. Orthogonal Graph Drawing 71

VvV ={1,2,3,4,5,6}

E ={(1,4),(1,5),(1,6),
(2,4), (2 5) (2,6),
(3.4),(3.5),(3.6)}

©&—@ —®
\I/—QD
= compaction
(3)

Figure 6.1: The orthogonal approach. Dummy nodes are represented by
squares.

with Q(f,7) the i-th tuple of Q(f), with a(Q, f,i) the value of the angle
field of Q(f,7), and with b(Q, f,7) the value of the bend field of Q(f,i). A
quasi-orthogonal shape @ is called valid, if there is a planar orthogonal box
drawing with quasi-orthogonal shape Q).
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The problem of finding a quasi-orthogonal shape () is a bi-criteria opti-
mization problem where the two objectives are readability (number of bends)
and stability (change in shape).

The readability of a shape @ is independent of the given sketch and
defined as the total number of bends, namely

5Y X W

feF (e,a,b)€Q(f)

The stability of an orthogonal shape () is expressed in terms of the dif-
ference between angles in (Q and corresponding angles in the shape S of the

sketch
=3 Y la(S, f,1) — a(Q, g,9)|

fer 1<i<|f]

and the difference in edge bends

=3 > AD(S, £,4),b(Q. f,1))

fer 1<i<|f]

where A(sl, s2) denotes a restricted edit-distance between two strings, in
which only insert and delete operations are permitted. The objective function
is

D(Q|S) = a- Au(Q, 5) + 8- Ap(Q,S) + v+ (B(Q) — B(S))
where parameters «, [, and v control the relative importance of angle or
bend changes and bend numbers.

6.2 Orthogonal Drawing of Dynamic Graphs

In this section, we show how to extend the sketch driven orthogonal approach
so that it fits into our framework, that is it applies the backbone concept and
is guided by metrics.

The general algorithm for orthogonal foresighted drawing using the pre-
decessor dependent adjustment is shown in Algorithm 19.

Starting from the input sequence, we compute the backbone first. After
computing the orthogonal drawing for the backbone by applying a stan-
dard orthogonal drawing algorithm and obtaining the corresponding quasi-
orthogonal shape, we build a sketch S; for each graph of the sequence. The
sketch is a combination of the drawing of the previous graph and the draw-
ing of the backbone restricted to the current graph. If a conflict between
the drawing of the backbone and the drawing of the previous graph exists,
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Algorithm 19 Orthogonal Foresighted Drawing with Tolerance

B := computeBackbone(G1, ..., Gy, I, )

'y := computeOrthogonalDrawing(B)

Qo := quasiOrthogonalShape(T'y)

fori:=1ton do
Si = (Fo D Fifl) G, // (s ®Tj)(x) is defined as I';(x) if x € D(I';) and I';(x) otherwise.
Q); := adjustShape(S;, G, Q1)
['; := adjustMetrics(S;, Q;, ;1)

end for

animate drawings ['y, ..., T',, of graph sequence Gy, ..., G,

we choose the one of the backbone. Then we compute an adjusted shape
using the adjustShape() algorithm and finally adjust this shape using the
adjustMetrics() algorithm.

6.2.1 Shape Adjustment

The adjustShape() algorithm first computes the extended network of the
sketch. Since the sketch was restricted to the current graph G;, we only
have to handle insertions of new nodes and edges. The insertion of a new
node creates a new vertex-node in the Kandinsky network. How to insert new
edges adjacent to vertex-nodes with a degree greater than 0 is presented in
[BEKWO02]. The insertion of a new edge adjacent to a vertex-node with a
degree of 0 does not create a new face-node.

We initialize the locally (for every edge) used parameters « and /3. Then
we compute the quasi-orthogonal shape as described in [BEKW02]. To com-
pare this shape with that of the previous graph, we define a new metrics for
quasi-orthogonal shapes. To this end, we extend the definition of a quasi-
orthogonal shape given in [BEKWO02]. With Q(f,7) we denote the i-th tu-
ple of Q(f), with edge(Q, f,i) the value of the edge field, with a(Q, f,1)
the value of the angle field, and with b(Q, f,7) the value of the bend field
of Q(f,7). The value of the edge field of the successor tuple of Q(f,i) is

succEdge(Q, f, 1) = edge(Q, f, (i + 1) mod |Q(f)])-

Definition 6.1 (Quasi-orthogonal-shape metrics) Let Q be the set of
quasi-orthogonal shapes. The function diff, : @ x Q@ — P(E),
(Q1,Q2) — {e =edge(Q1, f,1) | 3f',j : e = edge(Q2, [/, j) A
SUCCEdge(Qla f7 Z) = SUCCEdge(Q27 fla ]) N a(Ql; f7 Z) 7& a(Q27 fla ])}
defines the set of edges with the same successor edge, but with different
angles in two quasi-orthogonal shapes. The function diffs : @ x Q@ — P(E),
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(Q1,Q2) — {e =edge(Q, f,i) | Vf',j with e = edge(Qs, [, J) :
b(Ql; f7 Z) 7£ b(QZ) flaj)}
defines the set of edges with different bends in two quasi-orthogonal shapes.
Then the function A, with A,(Q1,Q2) = |diff,| is called angle metrics and
the function Ag with Az(Q4, Q2) = |diffs| is called bend metrics.

If the angle metrics does not fulfill the given angle threshold and there is
an « that is lower than the maximal value (the maximal value 6 - |V;| results
from the construction of the Kandinsky network and [UK96]), we increment
the corresponding cv. We deal analogously with the bend metrics and 3. The
construction of the modified Kandinsky network implies that incrementing
f could lead also to a change of angle between two edges. If angle stabil-
ity is more important than bend stability, then both # and « have to be
incremented if the bend metrics does not fulfill the given bend threshold.

Algorithm 20 adjustShape(S;, G;, Q; 1)
N; := compute extended network(S;, g;)
Vee E;:a,:=0,8,:=0
repeat
Q; := quasiOrthogonalShape(N;, «, 3)
if Ay(Qi, Qi 1) > 04 A Je € diff,(Qi, Qi 1) : ae < 6-]V;| then
Ve € diff,, : inc(a)
end if
if Ap(Qi, Qi—1) > 65 A Je € diffg(Qs, Qi—1) : fe < 6 |Vi| then
Ve € diffs : inc(fe)
end if
until done
return (Q);)

6.2.2 Metrics Adjustment

The last step concerns compaction. To be able to preserve the edge length
of the sketch S;, we extend the compaction algorithm from [EK02] by edges
of prescribed length. This extension is done straightforwardly by extending
the length function: let e = (u,v) be an edge and (ug,u,) the position of u
in S;, then

|y — | + |uy — vy, if e is fixed
length(e), otherwise

length’(e) = {
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An edge can be fixed if it is in the current graph as well as in the previous
one, and if the values of the corresponding bend fields are equal. We compute
the final drawing by applying the extended compaction algorithm. If the
metrics does not fulfill the given threshold we fix one more edge if there are
any left.

Algorithm 21 adjustMetrics(S;, Q;, ;1)

fixedEdges := ()

repeat
['; = compact(Q;, S;,fixedEdges)
if A(T;_1,T;) > 6 A fixedEdges C {E; N E;_,} — {diffs} then

extend fixedEdges by one edge of {E; N E;_} — {diffg}

end if

until done

return (I';)

6.2.3 Simultaneous Drawing Adjustment

So far, we have seen how to apply orthogonal drawing to the predecessor
adjustment strategy. But it is also possible to apply it to the simultaneous
adjustment strategy. In this case the drawing of the backbone is used as
sketch and we use global parameters « and [ instead of local ones to achieve a
more uniform adjustment of angles and bends over the whole sequence. The
adjustShape() algorithm first computes the quasi-orthogonal shapes for all
graphs. If the condition for the angle metrics 3i : Ay (Q; 1,Qi) > 00 N a <
6-|V;| is not fulfilled, that is there is a tuple of successive shapes which do not
hold the angle metrics condition and there is some space for improvement, «
is increased. Analogously, 3 is changed depending on the bend metrics. To
compute the final drawings we use the predecessor-dependent adjustMetrics()
algorithm.



76

Chapter 6. Orthogonal Approach



Chapter 7

The Dynamic Graph Drawing
System DGD

This chapter describes the dynamic graph drawing system DGD which im-
plements the presented framework. This system has been developed by the
Graph Animation project group [Pro].

The DGD system provides different input and output modules, and draw-
ing algorithms. It is easy to extend the system by implementing the defined
interfaces. The system is implemented in Java [Lan], which provides ap-
propriate concepts to model interfaces and classes. Also, Java is a suitable
programming language to design web applications.

Importing a graph sequence

To compute a graph animation of a given sequence of graphs, the sequence
has to be read by an input module first. The GAML (Graph Animation ML)
reader is one input module of the DGD system. GAML is an XML format
based on the definition of GraphML [For]. GAML describes sequences of
graphs. A sequence consists of several graphs and a graphs consists of nodes
and edges. A node provides the following properties:

e identifier

width of the shape

height of the shape

type of the shape (either a rectangle, a circle, or an image of type jpg,
gif, svg)

source of the image (only for the case that the shape is an image)
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color of the node
color of the outline of the node
label

color of the label

An edge provides the following properties:

identifier

source node

target node

type (directed or undirected)

drawing convention (straight-line, polyline, or splined)
type of the lines (lined, dashed, dotted)

thickness

type of arrow (none, standard, triangle, or diamond)
label

color of the label

Furthermore, it is possible to define a sequence of drawings in GAML.
To this end it is possible to assign x- and y-coordinates to the nodes and
positions of bends to the edges.

Figure 7.1 shows the classes used to represent the graph sequences:

Graph stores a list of its nodes and edges
Node represents a node in a graph
Edge represents an edge in a graph

LayoutedNode represents a node with drawing information for all graphs
it belongs to

LayoutedEdge represents an edge with drawing information for all
graphs it belongs to

The GAML reader creates objects of these classes. For each node and
each edge only one instance is created, even if it is contained in several graphs
of the sequence. All graphs of the sequence are stored in a list.
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LayoutedNode LayoutedEdge

Figure 7.1: Class diagram of the graph structure of DGD

Computing Drawings for a Sequence of Graphs

The DGD system provides implementations of the presented force-directed,
hierarchical, and orthogonal tolerant foresighted drawing algorithms. De-
tails about the hierarchical implementation are given in [Poh05], about the
orthogonal implementation in [Bir(05].

The input data of the drawing algorithms is a list of graphs. After com-
puting the drawings of the sequence, the drawing algorithms return again a
list of graphs, which contains objects of type LayoutedNode and Layouted-
Edge instead of node and edge.

The result can either be displayed using the DGDViewer or can be ex-
ported as SVG in a file.

7.1 The Viewer DGDView

The viewer DGDView is integrated into the DGD system. Figure 7.2 shows
its class diagram. The class DGDView is the core of the program. It creates
all necessary controlling elements and delegates the events to the correspond-
ing components of the system.

The class DGDViewer provides the drawing area on which the objects of
types DGDViewerNode, DGDViewerEdge, and DGDViewerGraph draw the
graphs of the sequence.

Smooth transition between two drawings of graphs are animated in the
following phases. First all deleted nodes and edges fade out. Next all re-
maining nodes and edges are moved to their new positions using linear in-
terpolation. Finally all new nodes and edges appear.

Furthermore, the viewer provides a color coding scheme for the outlines
of the nodes and the edges to communicate the past and future changes of
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«interface» «interface»
javax.swing.JFrame java.io.Runnable

N R

DGDViewerGraph

1.

«interface»
DGDViewerObject
A\ AL

N
N
I
.
__|DGDViewerNode | DGDViewerEdge |

| I \

\ DGDViewerLabel |

Figure 7.2: Class diagram of DGDView

the current graph. Newly inserted nodes and edges are colored green, nodes
and edge which will be deleted from the current graph are colored red.

After starting DGDView the user sees the main window. It provides the
possibility to load graph sequences, to choose a drawing algorithm, to set the
parameter for the chosen drawing algorithm, to show the computed graph
animation (see Figure 7.3) and to export the graph animation as an SVG
file.

SVG Export
Details of the implementation of the SVG export are presented in [Zim05].

In [GW05a, GW05b] we used the features of SVG to visualize refactorings
which we extracted from software archives (see Figure 7.4). In this case,
only static graphs representing parts of the inheritance hierarchy are shown.
Classes are represented by nodes. The image of a node is an interactive SVG
file. It shows the method names (color coded by the type of refactoring)
of the class and provides mouse-over tooltips which display the detected
refactorings.
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7.2 Web Application

The web application offers the same functionality as the DGDViewer besides
the resulting animations are shown as interactive SVG animations instead
of being displayed in the internal viewer. Details of the implementation are
presented in [Zim05].

Figure 7.5 shows the first web page of the application. It provides the pos-
sibility to submit general information about the node and edges appearance,
the chosen drawing algorithm and the graph sequence. Figure 7.6 shows the
second web page of the application. It provides the possibility to submit
the parameters for the selected drawing algorithm. Figure 7.7 shows the
computed SVG graph animation.
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Figure 7.5: Web Application (1).
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Chapter 8

Case Studies

In this chapter we present several applications in different domains and show
the effects of different parameters and strategies. The first section gives ex-
amples for foresighted graph drawing, the second section shows examples for
the tolerant version of foresighted graph drawing. To conclude this chapter
we discuss the difficulties with evaluating the effectiveness of our approach.

8.1 Foresighted Graph Drawing

8.1.1 Algorithm Animation

Algorithm animation is one of the most prominent areas of software visual-
ization. The GaniFA applet visualizes and animates several generation algo-
rithms from automata theory including the generation of a non-deterministic
finite automaton (NFA) from a regular expression RE [WM96]. We have
included GaniFA into an electronic textbook on automata theory to allow
interactive exercises [DK00, DK01, GAN].

In case of visualizing transition diagrams of finite automata a static draw-
ing algorithm is a good choice, but the algorithm RE — NFA changes the
graph successively. Animations of algorithms which change graphs, that is
add or delete nodes and edges, are often very confusing, because after each
change a new drawing of the current graph is computed. In this new drawing
nodes are moved to different places although the algorithm did not actually
change these nodes. As a result it is not clear to the user what changes of
the graph are due to the graph algorithm and what changes are due to the
drawing algorithm.

The lower part of Figure 8.1 shows how foresighted drawing can be used
to animate the conversion of a regular expression (a|b)* into an appropriate
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nondeterministic finite state automaton (RE — NFA). In contrast to the
upper part of Figure 8.1, which shows the same conversion, this visualization
is significantly more clear because once created, a node does not change its
position.

EARE > NFA J[=1 B M A RE > NFA J[=1 B M A RE > NFA O] x]
Help Help Help

\\
/
/S
|4 3 |4 )
"((a\b))* ((al)™ ((alb)™
et | ot | = | et | ............ T | == | et | ............ e | == |
[E4RE > NFA =] (NS RE > NFA =] (NS RE > NFA _[Ofx]
Help Help Help

((alb)r”

|4 |4 |4 E »

({alay |((a|h))* ((albyy*

Exit | Nex | Flay | Exit I Ned | Play | Exit I Next | Play |

Figure 8.1: Ad-hoc and foresighted graph drawing of the generation of a
NEA for (a|b)*
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Figure 8.2: Ad-hoc and foresighted graph drawing for a deadlock situation.

8.1.2 Resource Allocation

In Figure 8.2 we show a classical deadlock situation which in practice can
be avoided by using ordered resources. Process P1 requests resource R1
(indicated by the dashed arrow) and gets exclusive access (indicated by the
solid arrow). Then P2 requests and gets exclusive access to R2. Next P1
requests access to R2, but the resource is locked by P2. Then P2 requests
access to R1 which is locked by P1. As long as none of the two processes
releases its lock both are stuck.

In the left sequence using the ad-hoc approach (compute a drawing from
scratch for each graph using a static drawing algorithm) it is difficult to see
what is changed between subsequent graphs. In the 6 pictures of the ad-hoc
approach P1 is drawn at 4, P2 at 2, R1 at 3 and R2 at 4 different positions.
As a result for example the dashed arrow from P1 to R1 is drawn upwards
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in some and downwards in other pictures. Using foresighted graph drawing
nodes remain at their position and edges are drawn consistently in all graphs.

8.1.3 Buffered 10

In Figures 8.3 we compare the different kinds of foresighted graph drawing
(using a super graph, a GSP, or a RGSP) and the ad-hoc approach with
each other. In this example several users share a printer, but the access to
the printer is buffered by using a printer spool. In the drawing of the ad-
hoc drawing approach positions of the nodes “Printer” and “Spool” change
several times. In the super graph based foresighted drawing node positions
and edge routings are fixed, but there is much unused space. In the drawing
based on a GSP node positions do also not change, but as the nodes “Userl”
and “User2” share the same position, the drawing is more compact. But there
are sharp bends in the edges of the first three graphs and normal bends in
those of the last four graphs. Finally in the RGSP based foresighted drawing
there are no sharp bends as edges at different life times share bend positions.
Obviously, for this example RGSP-based foresighted drawing produces the
best results.
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8.2 Foresighted Graph Drawing with Toler-
ance

8.2.1 Force-directed Approach
Word Collocation Graphs

In Figure 8.4 navigation through word collocation graphs is shown, more pre-
cisely the sequence consists of the two graphs for the words mathematician
and the word Turing. In the first column the induced drawings of the graphs
are shown. In the second column predecessor dependent adjustment with or-
thogonal mental distance and § = 0 is shown. Compared to the induced
drawings the nodes in the drawing of the first graph are more evenly dis-
tributed. Unfortunately for the second graph no drawing could be computed
that fulfills the constraint, that is gets close to the drawing of the previous
graph and thus the induced drawing is shown for the second graph. By in-
creasing o also a drawing for the second graph can be computed, but the
horizontal alignment of the nodes labelled Turing and mathematician has
changed.

(a) induced (b) predecessor 6 =0 (c) predecessor 6 = 2

Figure 8.4: Predecessor dependent adjustment fails for 6 = 0 and yields
induced layout.
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Drawing a House

Figure 8.5 depicts drawings of a sequence of drawing a house in a single
stroke computed with simultaneous adjustment, orthogonal mental distance
and increasing values of 0. In particular for the 6th and 7th graph the
orthogonality with respect to previous and subsequent graphs decreases for
increasing values of .
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Figure 8.5: Drawing a house with increasing tolerance and simultaneous
adjustment.
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8.2.2 Hierarchical Approach

Hasse-Diagrams

(a) Graph 15 (b) Graph 16

Figure 8.6: Ad-hoc approach.

(a) Graph 15 (b) Graph 16

Figure 8.7: Foresighted with small ¢, deltar = 0.

(a) Graph 15 (b) Graph 16

Figure 8.8: Foresighted with large 9§, deltar = 2.

In Figure 8.6, 8.7 and 8.8 we show snapshots from three different anima-
tions of the same graph sequence, which consists of evolving Hasse-diagrams.
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(Hasse-diagrams represent divisibility on natural numbers: there is an edge
between v and w, if w is divisible by ».) In the graphs 1 to 15 the nodes
representing these numbers are inserted successively. In graph 16, node 1 is
deleted and node 16 is inserted. In Figure 8.6 the ad-hoc approach is shown:
for each graph a new drawing is computed by using a static drawing algo-
rithm. The mental map is poorly preserved as all nodes change their ranks
and more than half of the nodes also change their order within the ranks. In
Figure 8.7 the predecessor dependent adjustment strategy with 0z = 0 and
a small ¢ is shown: the mental map is well preserved. No node changes its
rank, and the order within the ranks is stable as well. But the local drawings
are worse as there are more edge crossings. In Figure 8.8 the predecessor
dependent adjustment strategy with 0z = 2 and a large ¢ is shown: the left
graph is equal to that produced by the ad-hoc approach. But in the next
graph, all nodes contained in the backbone do not change their rank. So it is
a good compromise between preserving the mental map and achieving local
quality.

Call Graphs

Figure 8.9: Call graphs before and after a refactoring: The labeled
nodes represent the following functions: A is DiffParser.getResults(),
B is DiffParser.parseltCPP(), C is DiffParser.parseIt() and D is
DiffType.getDiffNumber (). The colors of the nodes encode the package
to which the method belongs.

This example is taken from the real world: the CVS-miner developed
in our group. Figure 8.9 shows two call graphs before and after an “In-
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line Method” refactoring. After the refactoring the function getResults()
calls the function getDiffNumber () directly instead of through parseIt().
A closer look at the source code reveals that the code of the functions
parseIt() and parseItCPP() has been inserted into getResults().

Visualization of Results in Soccer League

Using the described method of drawing a sequence of dynamic graphs it is
possible to visualize the results of a sports league.

The following example visualizes a part of the season 2003/2004 of the
German Bundesliga of soccer. The visualization is done by drawing a se-
quence of graphs that was created as follows:

Each graph of the sequence denotes two consecutive match-days of the
league, that is the first graph shows results of the first and the second match-
day. Each node of the graph represents a team of the league and an edge
indicates the result of a game, that is an edge from a to b indicates that a
defeated b. In case of a draw the edge is undirected (that is the arrow is
omitted).

To keep the visualization clear, only the matches of one selected team are
taken into account. Furthermore all matches of the selected team’s opponents
of the corresponding match-day are added to the graphs. It turns out that
this is sufficient for a good graph sequence.

The following example shows the results of the match days 9 to 13 in a
sequence of four graphs. The selected team that should be taken care of is
the 1. FC Kaiserslautern - marked in the pictures with a dark circle around
the corresponding node.

In the first graph (Figure 8.10(a)) the node of the 1. FC Kaiserslautern
is in one row like those from FC Bayern Miinchen, Hamburger SV and FC
Schalke 04. One could think that the latter two nodes have to be drawn on
the third row as Kaiserslautern won against Hamburg, but as FC Schalke
04 won against FC Bayern Miinchen later on, the team of Schalke can be
considered as good as the team of Miinchen at that time.

In the second graph(Figure 8.10(b)), Kaiserslautern’s node sinks down
in the drawing as the team could not win against Bayer 04 Leverkusen. In
the third drawing, the selected team lost against the team of Hansa Rostock
— but as Hansa Rostock could also win against Schalke 04, it has to be
considered rather strong in that moment. Another reason for that behavior
is that Kaiserslautern won against the team from Hertha BSC Berlin later
on. One can say that the third graph already shows the tendency of 1. FC
Kaiserslautern - and also that of FC Schalke 04 which will be defeated by
Hansa Rostock.
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The fourth graph (Figure 8.11(b)) shows the tendency of the teams after
the 13th match-day. Hansa Rostock is in a very good condition but is followed
by Kaiserslautern and also by the team of Borussia Monchengladbach. The
teams from Schalke 04 and Bayer Leverkusen seems to have had problems at
that time.

& W &

| 1
e—&—a—0 e 0]
8—a

(a) match day 9 and 10 (b) match day 10 and 11

Figure 8.10: Soccer League (1).

(a) match day 11 and 12 (b) match day 12 and 13

Figure 8.11: Soccer League(2).
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8.2.3 Orthogonal Approach
Social Network

Figure 8.12 shows two sequences, each consisting of four drawings of graphs
out of a sequence representing a social network. Nodes represent people and
edges a relation between them.

From graph 1 to graph 2 person N leaves the group and the relations
between J and O, and GG and B respectively are broken off. From graph 2 to
graph 3 N joins the group again and has relations to G and P. From graph
3 to graph 4 C leaves the group.

Figure 8.12(a) shows the resulting drawings using a large backbone and a
small threshold for the angle and bend metrics (0; = 0, 1; 20% of the angles
and 50% of the bends in a graph and its predecessor can change without
resulting in a new flow computation). There are some sets of nodes preserving
their neighborhood: {H, A, B,C,I}{Q, J, P}, and {G, M, A} over the whole
sequence, {G,N,P,Q} and {K,O,D} in graph 3 and 4. Also the global
appearance of the drawings is quite stable. Thus, the users mental map can
be preserved.

Figure 8.12(b) shows the resulting drawings without using a backbone and
large thresholds for the angle and bend metrics (90% and 100% repectively).
In this sequence we try to minimize the number of bends in the drawings (the
original idea of the network flow algorithms) by increasing the parameter
for optimal static drawings. The drawings have less bends than the drawings
in Figure 8.12(a): graph 1 has only 23 instead of 25, graph 2 has only 17
instead of 21, graph 3 has only 16 instead of 25, and graph 4 has only 17
instead of 20 bends. Due to the lower bend number they are also more
compact. It is hard to identify stable sets of nodes: {A, B, C, H} is relatively
stable in drawings 1 to 3 but the position in the shape is changing.
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8.3 Evaluation

In the previous sections we have seen that it is possible to compute draw-
ings of a sequence of graphs which either emphasize the global stability or
the local quality — at least according to the metrics and aesthetic criteria.
But the question arises if this is also accurate for a real user, that is if
the concepts of metrics and aesthetic criteria, which are the computational
crutches to substitute real models of human cognition, are suitable. Pur-
chase [PCJ96] performed an evaluation for aesthetic criteria of static graph
drawings, Bridgeman [BTO01] studied the similarity measures for orthogonal
graph drawing, but for the effectiveness of preserving the mental map by re-
stricting changes or using graph animations, there is no published evaluation
available so far.

One of the reasons could be that there are many parameters to take into
account (for more background information see [Kos94]):

1. Concerning the data:

e with or without semantics

e ordered or unordered
2. Concerning the graph:

e number of nodes and edges

e color, length, and thickness of the edges

e color, shape, and size of the nodes

e number of bends

e minimal and maximal distance between two nodes
e polylined, straight-lined, or curved edges

e bounding box of the drawing
3. Concerning the animation:

e number of animation steps

e speed of animation

e number of deleted nodes, edges, and bends
e number of inserted nodes, edges, and bends
e number of moved nodes, edges, and bends

e positions of the deleted nodes, edges, and bends
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e positions of the inserted nodes, edges, and bends
e positions of the moved nodes, edges, and bends

e type and distance of movements
4. Concerning the user:

e limited short-term memory
e perception and differentiation of details

e previous knowledge of graphs

quality of sight (glasses)

motivation

5. Concerning the presentation medium (computer):

e size and type of monitor

e refreshing rate

Nevertheless we started a collaboration with psychologists. The effective-
ness of the resulting animations is currently being studied as part of a master
thesis in psychology at the Catholic University Eichstatt.
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Chapter 9

Related Work

In this chapter related work is described. It is divided into two main sections.
One section deals with the problem of dynamic drawing of a graph, that is
given different drawings of the same graph, preserve the mental map by
communicating the changes. The other sections concerns the problem of
drawing of dynamic graphs, that is drawing of graphs which change over
time by adding or deleting nodes and edges.

9.1 Dynamic Drawing of a Graph

The algorithms in this thesis for foresighted graph drawing with tolerance try
to minimize the changes between successive drawings of a graph sequence,
but they do allow changes up to a predefined threshold to improve the local
quality of a drawing.

There is an evidence that animation in user interfaces can help people
to interact more efficiently with information visualization systems [BB99,
DK97]. Further, there is an agreement on the conjecture that this is also
true for the special case of systems which visualize dynamically changing
graphs. Therefore, to communicate changes between subsequent graphs we
use the technique of graph animation to create smooth transformations which
help the users in maintaining or quickly update their mental map.

The straightforward method to transform one drawing into another using
linear interpolation often yields animations of poor quality, as illustrated
in Figure 9.1. A better animation between the same graphs is shown in
Figure 9.2.

Friedrich [FHO1, Fri02] introduces a formal model describing animations,
informal and formal criteria and measures for evaluating the quality of an-
imations as well as a general framework for specifying and implementing
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(b) (c) (d)

Figure 9.1: When linear interpolation is used for the animation from (a)
(e), all nodes meet in the middle and the drawing collapses at one point (c).

Figure 9.2: When rotation is used for the animation from (a) to (c), the
changes in the drawing are more clearly communicated.

animation methods. Furthermore, he presents new approaches to automati-
cally compute animations from given initial and target graph drawings. Some
of them will be presented in the following sections.

9.1.1 Quality Measures for Graph Animation

Friedrich proposes the following criteria (among others) to measure the qual-
ity of a graph animation:

e The path of the nodes and edges should be smooth

e Uniform node movement: If the distance between two nodes in the
initial frame is similar to their distance in the target frame, this distance
should be preserved during the animation.

e Constant edge length: If the length of an edge in the initial frame is
similar to its length in the target frame, then the length of the edge
should be preserved during the animation.

e Minimize edge crossings: It should be avoided to introduce new edge
crossings during the animation.
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e Maintain a minimum distance between nodes which do not move uni-
formly: If nodes lie close to each other, then it is more difficult to follow
their individual movements.

e Maximize symmetry: Since symmetrical movements are easier to fol-
low, the symmetry should be maximized.

e Display of non-existing structures should be avoided (see Figure 9.3)

Figure 9.3: Example of misleading drawing.

In the following two naive methods and two advanced methods for graph
animation are introduced and shortly discussed.

9.1.2 Naive Methods for Graph Animation
Direct Linear Interpolation

The Direct Linear Interpolation method can produce good animations for
simple changes between graph drawings. In trivial cases, the Direct Linear
Interpolation method can even find an optimal solution. However, in the
majority of cases the resulting animation is often rather poor.

Orthogonal Interpolation

The Orthogonal Interpolation method moves the nodes of the graph in par-
allel to the y-axis and subsequently in parallel to the x-axis. This induces
the illusion of a rotation rigid three-dimensional object. The animation is
perceived as aesthetically very pleasing. However, it is doubtful whether this
kind of animation is actually increasing the users ability in maintaining or
adjusting the mental map. Especially for changing graphs, the illusion of a
constant three-dimensional object can be counter-intuitive.
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9.1.3 Linear Regression Analysis Method

The Linear Regression Analysis is based on the idea of structured movements.
Nodes are treated as one rigid object which moves through three dimensional
space trying to bring all nodes as close as possible to their final positions.
To this end the method uses affine transformation which consists of four
operations: translation, scaling, rotation, and shearing. In most cases it is
not possible to move all nodes exactly to their final positions. Therefore
the method uses linear interpolation or an adjusted force-directed approach
(forces are used to attract nodes to their final positions) to move the nodes
to their final positions.

The linear regression analysis method produces good results in many
cases. It is designed to identify and animate changes between drawings of
graphs which can be described by affine linear transformations. These espe-
cially include transformations with a significant rotation component.

9.1.4 Motion Cluster Analysis Method

The linear regression analysis fails if certain nodes or whole subgraphs have
to be moved in different directions. The Motion Cluster Analysis solves this
problem by introducing clusters. Nodes performing similar movements are
assigned to the same cluster. Friedrich proposes two different heuristics to
compute appropriate clusters:

e K-Means Clustering: K-Means Clustering is a well known method used
in various fields. It first creates an initial partitioning P = Py,..., P
of the objects. Then an average property vector of every partition is
computed. A new partitioning is created by assigning every object to
the partition with the most similar property vector. This is repeated
until no objects change their partition anymore.

Using k-means for animation with rigid motion works as follows: After
performing the initial partitioning the affine transformation matrix for
every cluster is computed. A new partitioning is created by assigning
every node to the partition with the affine matrix that moves the node
closest to its endpoint. The number of clusters is restricted to ten be-
cause too many clusters, which represent movements in the animation,
would be hard to follow. The results of this approach depends heavily
on the initial partitioning.

e Distance-Based Clustering: The Distance-Based Clustering methods
respect the distances of the nodes in the initial or in the final drawing.
The idea is that nodes positioned close to each other will also perform
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similar movements. This method uses a delaunay-triangulation with
edge elimination to build the clusters: First, the triangulation of the set
of nodes is computed and every triangle is a partition. Then triangles
next to each other are merged by removing the edge between them if
they have similar transformations. Here the choice of the threshold is
important which determines if transformations are similar.

It is also possible to combine these two approaches: Compute a distance
based clustering and use it as an initial partitioning for the k-means cluster-
ing.

9.2 Drawing of Dynamic Graphs

This section presents the basic ideas of a number of dynamic graph drawing
algorithms which have been categorized according to the kind of drawing
they produce.

Most work on dynamic graph drawing [Bra0lb] is related to the online
problem, which means that only information about the previous graphs in a
sequence is used for computing a drawing.

9.2.1 General Frameworks

Brandes and Wagner [BW97a, BW97b] present a generic framework that
uses a Bayesian perspective to state a cost model representing the trade-
off between local quality and dynamic stability. With X being the current
drawing, and Y representing the previous drawing, the aim is to search for
a current drawing X that maximizes

PY=y|X=ux)-P(X=n2x)
P(Y =y)

PX=z|Y=y)=

where P(X = x) is the static cost function for the current drawing, and
P(Y =y | X = x) represents the cost for the difference between the previous
and the current drawing.

The framework is independent of a drawing algorithm and also of the
difference metric used. The conditional probability for a drawing depends on
those of the preceding ones, that is no look-ahead in the sequence is available.

Bohringer and Paulisch [BP90] transfer the dynamic graph drawing prob-
lem — aesthetic criteria as well as criteria preserving the mental map — into
a set of linear constraints and solve it applying constraint propagation. It
is possible to assign priorities to the constraints to resolve inconsistencies
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between aesthetic criteria. An additional advantage of this approach is that
user constraints (like node A should be above node B) can also be stated as
linear constraints and thus easily be integrated.

9.2.2 Force-Directed Drawings

Brandes and Wagner [BW97a] present two ways to adapt the force-directed
model to deal with the stability criteria using their Bayesian framework.
One of them considers the change of absolute node positions as distance
criterion between drawings, which translate nicely into introducing additional
forces keeping the nodes at their position in the previous drawing (springs
with natural length zero). The second approach considers the change of
relative node positions instead of the absolute positions. This is achieved by
emphasizing the forces between nodes that are contained in both drawings
- the current and the previous. In other words, the invariant parts of the
graphs are connected by a stiffer structure than new or changed parts. It is
also possible to take the history of the sequence into account: by cumulating
the stiffening effect, the longer a relation existed, the less will it be changed.

Eades et al. [ECH97] present an approach which animates the movement
of the nodes according to the forces to make the changes more gradual.
However, even a small change to a graph could lead to a quite different
equilibrium state and the mental map could not be preserved.

9.2.3 Hierarchical Drawings

Bohringer and Paulisch [BP90] show how the Sugiyama heuristic can be
modeled in terms of constraints, and how it can then be adapted to preserve
dynamic stability. In the layer assignment step for each edge (u,v) a con-
straint is introduced stating node u should be placed above node v. In the
crossing reduction step the barycenter ordering is used to derive constraints
determining whether a node should be left or right of another node.

When the graph is modified, stability constraints are derived from the
previous drawing. They state:

1. the ordering of the nodes in each layer

2. that nodes which have been on the same layer in the previous drawing
should also be on the same layer in the current drawing.

Nodes close to a change in the graph, that is nodes in the neighborhood
of the change, are removed from these constraints and allowed to move freely.
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By setting the size of the neighborhood it is possible to influence the emphasis
on dynamic stability.

North [Nor96, NW02] presents another adaptation of the Sugiyama heuris-
tic: The DynaDAG system allows interactive changes to the graph structure
- insert, optimize, or delete single nodes or edges. Nodes are initially placed
on the highest possible layer and could be moved down when it becomes
necessary by an insertion of another node or edge. Then nodes are moved
down layer by layer, positioned in each layer at its median position (accord-
ing to its adjacent edges). When the nodes are finally placed the adjacent
edges are adjusted (shrunk or stretched if its span changed and moved to the
new bends). New edges are routed by a heuristic. The final coordinates are
computed by a linear program with a linear penalty for moving a node from
its position in the previous drawing.

9.2.4 Orthogonal Drawings

Brandes and Wagner [BW97b]| demonstrate how the minimum cost flow ap-
proach suggested by Tamassia can be extended to account to their framework
and to minimize the changes of angles at nodes as well as of bends in edges.
The idea of that approach is to modify the flow network of the old draw-
ing by adding “residual” arcs in opposite direction to the current flows and
by adapting the cost and capacity constraints of these arcs to reflect the
additional cost of changing a flow.

Bridegman et al. [BFGT97] present the InteractiveGiotto tool which is
an interactive variant of the Giotto tool for computing orthogonal drawings.
A user is required to specify the position of new nodes and to sketch the
desired edge routing. Then the tool transforms the current drawing into
a planar one by replacing each edge crossing and each bend with a dummy
node, where the embedding and the edge crossings are preserved. This graph
is then optimized applying a variant of a minimum cost flow approach.

Papakostas and Tollis [PT98] propose two algorithms for orthogonal pla-
nar graphs of maximum degree four for two different scenarios. In both cases,
it is tried to minimize the number of bends in the drawing.

In the no-change scenario, the current drawing may not be changed when
adding new nodes with adjacent edges. The approach here is to start with an
empty drawing and to add nodes sequentially one after another. New nodes
are always placed outside of the current drawing area.

In the relative coordinates scenario, the current drawing may be modified
by introducing a limited number of rows and/or columns anywhere in the
current drawing.
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9.2.5 Offline Problem

All approaches presented so far consider the online problem. The only ap-
proach apart from this thesis that considers the offline problem, that is all
graphs in the sequence, is TGRIP [CKN'03, EHK"03] which is an exten-
sion of the spring embedder GRIP for large graphs. The basic idea is very
intuitive: time is modeled by springs in the third dimension. To this end for
each graph of the sequence a drawing in a 2D plane is computed. Nodes in
the individual drawings representing the same node of the sequence in sub-
sequent graphs are connected by additional springs, but each node can only
move within the 2D plane to which it belongs. In contrast to the approach
presented in this work, the approach does not allow using different mental
map metrics, because the metrics is built into the heuristic for minimizing
the forces and cannot be applied to other drawing methods, for example
hierarchical or orthogonal.



Chapter 10

Conclusions

In this thesis we introduced a framework for offline drawing of dynamic
graphs. To the best of our knowledge this is the first framework for the
offline problem - there exist only other frameworks for the online variant of
the problem. In this chapter we conclude the achievements of this thesis and
discuss possible directions for future research.

10.1 Achievements

Foresighted Graph Drawing

We presented the motivation and theory behind foresighted graph drawing.
This approach projects the graphs of the sequence to the so called super
graph, which represents an approximation of the whole sequence, then com-
putes a drawing of the super graph and uses this drawing as a template, that
is the drawings of the individual graphs of the sequence are induced by the
drawing of the super graph. The advantages of this approach are that it is
generic and therefore existing static graph drawing algorithms can be used
to compute the drawing of the super graph and the mental map is well pre-
served because nodes do not change their position at all. The disadvantage
is that the local quality of individual drawings is sometimes poor because the
quality is restricted by the drawing of the super graph.

Foresighted Graph Drawing with Tolerance
We extended the foresighted graph drawing approach by allowing local opti-
mization of the individual drawings up to a given threshold. We use difference
metrics to measure if the drawing resulting from the local adaptation is in
the allowed range to guarantee the preserving of the mental map.

Thus, is is possible to trade local quality (of the drawing) for global
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stability (of all drawings of the sequence) by using a low or a high threshold
respectively: a low threshold ensures global stability, but we have to pay
for this with a reduced quality of the drawing and a high threshold allows
drawings of better quality, but the stability is reduced.

We discussed several strategies for drawing adjustment which differ with
regard to what other graphs are chosen for comparison: the projection graph,
the predecessor graph, or the predecessor graph as well as the projection of
the successor graph. Furthermore, we presented another strategy which tries
to adjust all graphs of the sequence in parallel.

Finally we introduced the concept of a backbone as generalization of the
super graph. The backbone does not contain all graphs of the sequence
like the super graph, but only nodes of a high importance for the sequence of
graphs. The importance of the nodes can be arbitrarily defined. Is is possible
to use statistical information, for example nodes contained in many graphs
of the sequence are more important than nodes only contained in few graphs,
or it is possible as well to use semantical information if they are available.

The advantage of the tolerant version of foresighted graph drawing is that
it is possible to decide what is more important for a specific graph sequence:
emphasizing the quality of the individual drawings or preserving the mental
map. The disadvantage is that it is no longer possible to use a standard
static drawing algorithm because this approach requires an algorithm which
allows to compute a drawing by adjusting an existing one.

Adjusting Drawing Algorithms to fit into the framework

While implementing tolerant foresighted drawing for a force-directed ap-
proach was relatively straight forward, applying the approach to orthogonal
and hierarchical layout turned out to require many more changes to the static
layout algorithms.

The force-directed approach fitted well in our framework because the
possibility to adjust a given drawing is already built in. The drawing to
be adjusted is taken as initialization for the algorithm and the amount of
allowed changes can be modeled using simulated annealing: if the adjusted
drawing changed too much the temperature is annealed and a new drawing
is computed.

Hierarchical and orthogonal approaches work both in phases, and we had
to introduce new metrics which work on the intermediate results of these
phases instead of on the final drawings. When the mental distance of two
intermediate results exceeds a given threshold, then we restrict the search
space either locally, that is for some nodes or edges, or globally, that is for
all nodes or edges.
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For the hierarchical approach we computed a global ranking for the back-
bone and introduced rank metrics to adjust the rankings of the individual
graphs up to a given threshold. For the crossing reduction phase we intro-
duced an adjusted sorting approach called smooth sorting which allows to
restrict the number of changes resulting from the sorting. For the orthogo-
nal approach we adjusted the computation of the quasi orthogonal shape by
using a parameterized version of the network flow computation.

We used two different kinds of restrictions:

e Global restrictions: For spring embedding, the global temperature
was reduced, which resulted in allowing fewer position changes of all
nodes. Similarly, for hierarchical layout the smooth sort parameter
influences all nodes in the sorting phase.

e Local Restrictions: In the ranking phase of the hierarchical layout,
we fix the rank of the not yet fixed nodes of highest importance. Thus,
all remaining nodes can still change their ranks. For orthogonal layout
the metrics, in fact, also gives a hint what to restrict. As a side-effect
of computing the quasi-orthogonal-shape metrics, we do get a set of
edges for which we can increment the corresponding parameters of one
or more of these edges, that is restrict the number of angle and bend
changes.

Implementation and Applications

The framework has been implemented in Java and is available as a stand-
alone application as well as a web application. We discussed the influence of
different parameters and applied our approach to applications from different
domains, like algorithm animation, word collocation graphs, call graphs, and
social networks.

10.2 Future Work

This section describes possible directions for future research. There are three
major directions:

e evaluate the effectiveness of preserving the mental
e improve the graph animation technique for changing graphs

e enhance the framework for offline drawing of dynamic graphs
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10.2.1 Evaluate the Effectiveness

The framework presented in this thesis lays the foundation for dealing with
the problem of offline drawing of dynamic graphs. By choosing an appropri-
ate drawing algorithm and an appropriate difference metric with an associ-
ated threshold, it is possible to compute drawings of a sequence of graphs
which either emphasize the global stability or the local quality — at least
according to the metrics and aesthetic criteria.

But the question arises if this is also accurate for a real user, that is if
the concepts of metrics and aesthetic criteria, which are the computational
crutches to substitute real models of human cognition, are suitable. Pur-
chase [PCJ96| performed an evaluation for aesthetic criteria of static graph
drawings, but for the effectiveness of preserving the mental map by restricting
changes or using graph animations, there is no published evaluation available
so far.

Therefore, it seems to be important to get a clearer concept of how
changes in the drawing influence a user’s mental map. This should be exam-
ined by user studies to learn about importance of the many different criteria
suggested to preserve the mental map.

10.2.2 Graph Animation

Another possible direction for future research concerns the graph animations.
Friedrich [FHOL, Fri02] investigated the problem to communicate changes
between two different drawings of the same graph and proposed to use fade
in and fade out operations for inserted or deleted objects if the graph changes.
But the users apparently cannot perceive all changes, especially if they are
located at different places in a drawing of a graph, using this fading approach.

This approach also fails, if there are too many changes between two graphs
— the user just looses the overview. For that, a possible solution would be
to build different clusters of the changes and to communicate the changes
in several steps. This would avoid to overwhelm the user with too many
changes, but the problem occurs that the user could think that there are
intermediate graphs which do not exist.

10.2.3 The Framework

A further possible direction for research concerns dealing with the knowledge
about the future in the graph sequence. Our first approach was to project
the whole sequence of graphs to a super graph which contains all information
given in the sequence and therefore approximates the knowledge of the future.
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Then we introduced the backbone as a generalization of the super graph
to allow to take into account that nodes are of different importance for the
sequence. A further improvement would be to consider an evolving backbone,
that is a backbone changing over time. Then it would also be possible to
model the fact that the importance of nodes in the sequence can change over
time: a node which is very important in the beginning of the sequence does
not have to be important at the end as well — this especially applies in long
sequences.

A more general approach to handle long sequences would be to split the
sequence in several small sequences using a sliding time window: for every
graph of the sequence consider the graph itself and its n predecessor and
successor graphs. Thus, each graph has its own backbone which approximates
its limited past and future.

Finally, for sequences containing large graphs it would be useful to in-
vestigate a focus context interface which allows to concentrate on a specific
change while providing the necessary context of the graph. The context
should also contain information of the past or future of the concerned nodes
and edges. A first idea to achieve that would be to integrate the concerned
parts of the predecessor or successor drawing into the current one.
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