Näherungsalgorithmen (Approximationsalgorithmen)

WiSe 2008/09 in Trier

Henning Fernau

Universität Trier fernau@uni-trier.de

Näherungsalgorithmen Gesamtübersicht

- Organisatorisches
- Einführung / Motivation
- Grundtechniken für Näherungsalgorithmen
- Approximationsklassen (Approximationstheorie)

Organisatorisches

Vorlesung: Dienstags 12-14 Uhr, HZ 204; Vorschlag ab 3. SW: 12.25-13.55

Beginn 2. Semesterwoche

Übungen (Daniel Raible): DI 16-18 HZ 201

Beginn 2. Semesterwoche

Meine Sprechstunde: DO, 13-14 Uhr

Kontakt: fernau/raible@uni-trier.de

Hausaufgaben / Schein ?! n.V. (Master ?!)

Ein allgemeines Überdeckungsproblem

g ist gegeben durch ein Tripel (X, f, w), wobei gilt:

- X ist eine endliche Menge;
- $f: 2^X \to \{0, 1\}$ ist eine *monotone Abbildung*, d.h. $A \subseteq B \to f(A) \le f(B)$, und es gelte f(X) = 1; (Eine Menge C mit f(C) = 1 heiße *Überdeckung*.)
- $w: X \to \mathbb{R}^+$ ist die Gewichtsfunktion.

Gesucht: Überdeckung C^* mit kleinstmöglichem Gewicht $OPT(w) = w(C^*)$.

Gewichtetes Knotenüberdeckungsproblem

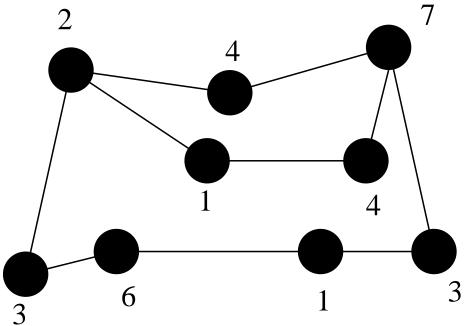
Ggb.: gewichteter Graph, i.Z.: $G = (V, E), w : V \to \mathbb{R}^+$ In obiger Terminologie:

$$X=V, \quad f:V'\mapsto \left\{ egin{array}{ll} 0,V' \mbox{ ist keine Knotenüberdeckung} \ 1,V' \mbox{ ist eine Knotenüberdeckung} \end{array}
ight.$$

Bemerke: f ist hier implizit durch E gegeben und muss **nicht** explizit gespeichert werden bzw. gehört nicht zur Eingabe.

Literatur: R. Bar-Yehuda: One for the price of two: a unified approach for approximating covering problems. *Algorithmica*, **27**, 131–144, 2000.

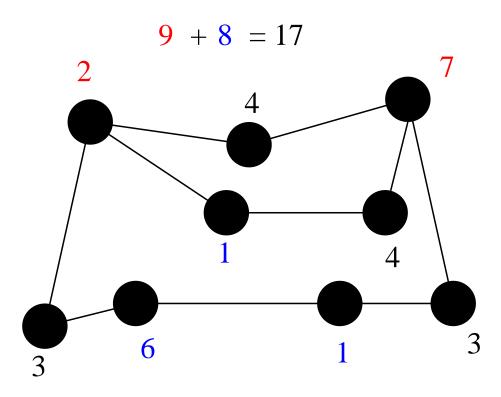
Ein kleines Beispiel:



Ein kleines Beispiel: mit möglicher Lösung

rote Knoten: Große-Grad-Heuristik

blaue Knoten aus Heuristik: Grad=1? → Nimm Nachbar!



Ein hilfreiches Lemma für Überdeckungsprobleme

Zerlegungsbeobachtung für ein allgemeines ÜP:

Sind w_1, w_2 Gewichtsfunktionen, so gilt für die Gewichte OPT (w_i) der jeweiligen kleinstmöglichen Überdeckungen:

$$OPT(w_1) + OPT(w_2) \le OPT(w_1 + w_2)$$

Beweis: Ist C^* optimal für $w_1 + w_2$, so gilt:

$$OPT(w_1 + w_2) = (w_1 + w_2)(C^*) = w_1(C^*) + w_2(C^*) \ge OPT(w_1) + OPT(w_2)$$

Anwendung des Lemmas

Betrachte nun als *Gewichtsreduktionsfunktion* $\delta: X \to \mathbb{R}^+$ mit $\forall x \in X: 0 \le \delta(x) \le w(x)$, d.h. δ und $w - \delta$ sind Gewichtsfunktionen.

Setze
$$\triangle \mathsf{OPT} := \mathsf{OPT}(w) - \mathsf{OPT}(w - \delta)$$
. Zerlegungsbeobachtung \rightsquigarrow

$$\Delta OPT = OPT(w) - OPT(w - \delta)$$

 $\geq OPT(\delta) + OPT(w - \delta) - OPT(w - \delta)$

Eine Gewichtsreduktion δ führt daher zu einer Minimumsreduktion um wenigstens $OPT(\delta)$.

Wir nennen δ r-*effektiv*, falls $\delta(X) \leq r \cdot OPT(\delta)$.

Grundnäherungsalgorithmus für Überdeckungsprobleme

A(X, f, w):

- Wähle r-effektive Gewichtsreduktion δ .
- Berechne durch $B(X, f, w \delta)$ eine Überdeckung C.
- Gib C aus.

Der erwähnte Algorithmus B wird häufig A selbst wieder sein (oder eine leichte Modifikation).

Approximationen mir konstantem Faktor

Ein Verfahren A heißt (Faktor) r-Approximation für ein Minimierungsproblem, falls A eine Lösung C liefert, die nur um einen Faktor von höchstens r schlechter ist als das Minimum C^* .

Satz über lokale Verhältnisse für den Grundnäherungsalgorithmus: Ist B eine r-Approximation, dann ist A ebenfalls eine r-Approximation.

Beweis:

$$\begin{array}{ll} w(C) &=& (w-\delta)(C)+\delta(C) \text{ [Linearit\"{a}t]} \\ &\leq& (w-\delta)(C)+\delta(X) \text{ [Monotonie von } \delta] \\ &\leq& r\cdot \mathsf{OPT}(w-\delta)+r\cdot \mathsf{OPT}(\delta) \text{ [B's Eigenschaft und } \delta \text{ r-effektiv]} \\ &\leq& r\cdot \mathsf{OPT}(w) \text{ [Zerlegungsbeobachtung]} \end{array}$$

Der Algorithmus von Bar-Yehuda und Even für gewichtetes VC:

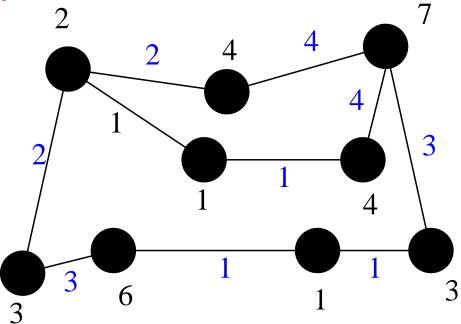
Kante e definiert Gewichtsreduktionsfunktion δ_e durch

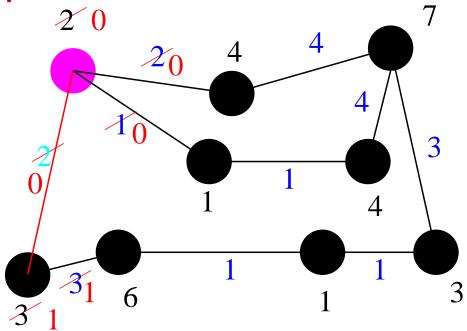
$$\delta_e(v) = \begin{cases} \min\{w(v_1), w(v_2)\} &, v \in e \\ 0 &, v \notin e \end{cases}$$

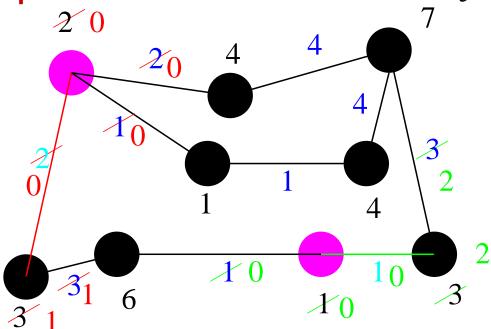
1. Rekursive Variante

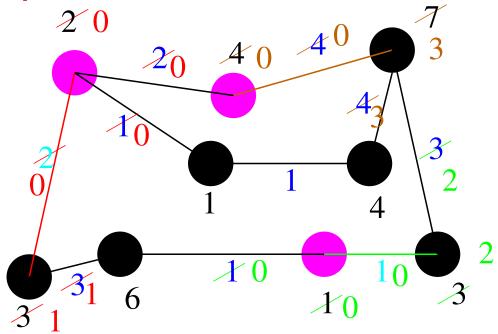
BErec
$$(G = (V, E), w)$$

- Falls $\forall e \in E : \delta_e = 0$, gib $C = \{v \in V \mid w(v) = 0\}$ aus; exit.
- Nimm irgendeine Kante $e = \{v_1, v_2\}$ aus G (mit $\delta_e \neq 0$);
- Berechne BErec $(G, w \delta_e)$

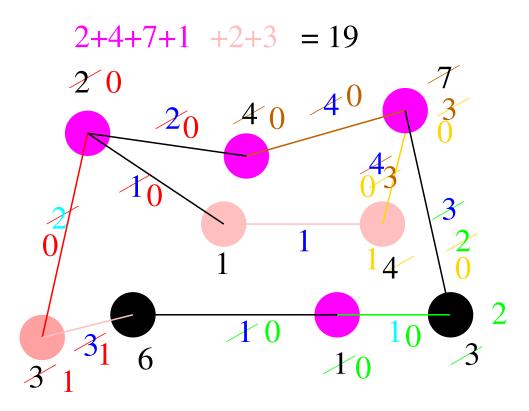






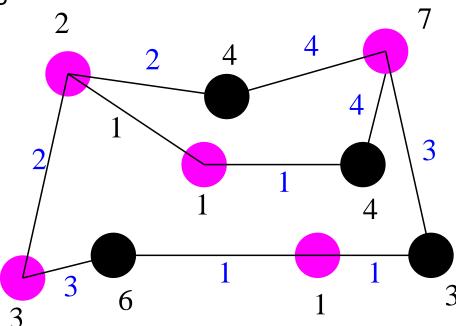


Unser kleines Beispiel mit Gewichtsreduktionsfunktion δ_e und Lösung: erst gelb, dann die pinken Kanten



Unser kleines Beispiel;

die gewonne Lösung enthält eine minimale mit Gewicht 14:



Der Algorithmus von Bar-Yehuda und Even für gewichtetes VC:

2. Iterative Variante

BEiter
$$G = (V, E), w$$

- Für jedes $e \in E$
 - Bestimme $\varepsilon = \min\{w(v) \mid v \in e\}$
 - Für jedes $v \in e$ setze $w(v) = w(v) \varepsilon$
- Gib $C = \{c \in V \mid w(v) = 0\}$ aus.

Satz: Der Algorithmus von Bar-Yehuda und Even ist eine 2-Approximation.

Beweis: für BErec durch Induktion über die Rekursionstiefe t:

- Ist t = 0, so liefert BErec sogar eine optimale Lösung.
- Ist die Behauptung, BErec liefere 2-Approximationen, für t=0,..,T gezeigt, so liefert der Satz über die lokalen Verhältnisse den Induktsionsschritt, denn δ_e ist 2-effektiv. Ist nämlich C_{δ_e} eine optimal Überdeckung für δ_e , so wird insbesondere e abgedeckt, d.h.

$$\delta_e(C^*_{\delta_e}) \geq \min\{w(v_1), w(v_2)\};$$

andererseits ist natürlich

$$\delta_e(V) = \delta_e(\nu_1) + \delta_e(\nu_2) \le 2 \cdot \min\{w(\nu_1), w(\nu_2)\},$$
 also $\delta_e < 2 \cdot \mathsf{OPT}(\delta_e)$.

Frage: (Warum) liefert die iterative Variante dasselbe?

Wie gut ist die gefundene Lösung "wirklich"?

Wichtiges Problem beim "Benchmarking" (Leistungsvergleich) heuristischer Algorithmen für NP-harte Probleme.

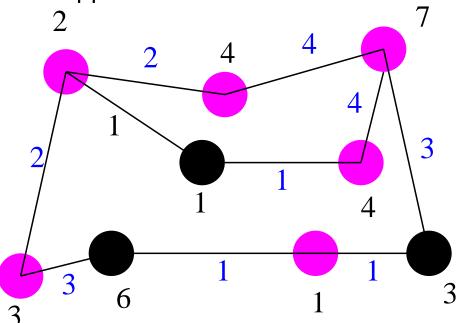
Hierbei sind auch Approximationen hilfreich, nämlich durch "möglichst ungeschickte Wahl."

In unserem Beispiel könnte man am Schluss auch eine Lösung vom Gewicht 21 erhalten haben (s. nächste Folie).

 \rightarrow Eine kleinstmögliche Überdeckung C^* hat Gewicht $w(C^*) \ge 11$.

Unser kleines Beispiel;

eine möglichst schlechte Approximation mit Gewicht 21:



Der Algorithmus von Clarkson: Hilfsdefinitionen

 δ_e als Hilfsgröße aus dem vorigen Algorithmus BErec

N(v): Menge der Nachbarn von Knoten v (offene Nachbarschaft).

d(v) sei der *Grad* (engl.: degree) des Knoten v, also: d(v) = |N(v)|. d'(v) = |N'(v)| mit $N'(v) = \{u \in N(v) \mid w(u) > 0\}$ für Graph mit Knotengewichten w

$$\varepsilon(v) = \frac{w(v)}{d(v)}, \quad \varepsilon'(v) = \frac{w(v)}{d'(v)}$$

Gewichtsreduktionsfunktionen:

$$\delta_{\nu}^{(\prime)}(u) = \begin{cases} w(\nu) &, u = \nu \\ \epsilon^{(\prime)}(\nu) &, u \in N^{(\prime)}(\nu) \\ 0 &, \text{ sonst} \end{cases}$$

Der Algorithmus von Clarkson: Rekursive Variante

Crec (G = (V, E), w)

- Falls $\forall e \in E$, $\delta_e = 0$, gib $C = \{c \in V \mid w(v) = 0\}$ aus; exit.
- Suche Knoten $v \in V$, der $\varepsilon'(v)$ minimiert.
- Berechne Crec(G, $w \delta_v'$).

Der Algorithmus von Clarkson: Iterative Variante Citer (G, (V, E), w)

- $C := \emptyset$
- Solange $E \neq \emptyset$, tue
 - Suche $v \in V$, der $\varepsilon(v)$ minimiert.
 - Für jeden Nachbarn $u \in V$ von v: setze $w(u) := w(u) \varepsilon(v)$.
 - Setze $G := G \nu$ und $C := C \cup \{\nu\}$.
- Gib C aus.

Was müssen wir zeigen?

Die iterative Variante liefert dasselbe wie die rekursive.

Beachte: Bei Crec bleiben nullgewichtete Knoten unbeachtet (ε'), bei Citer werden sie bevorzugt gelöscht.

• Die rekursive Variante ist eine 2-Approximation: (per Induktion aus dem Satz über lokale Verhältnisse).

Wesentlich ist dafür noch zu zeigen, dass δ_{ν} eine 2-effektive Gewichtsfunktion ist.

Überlegen Sie sich, wie der Algorithmus von Clarkson auf unserem Beispiel arbeitet.

Lemma: δ_{v} ist eine 2-effektive Gewichtsfunktion.

Beweis:

- a) Gewichtsfunktion: Klar für $u \notin N^{(\prime)}[\nu] = N^{(\prime)}(\nu) \cup \{\nu\}$ (abgeschlossene Nachbarschaft). Ist $u \in N^{(\prime)}(\nu)$, so ist $\delta_{\nu}^{(\prime)}(u) = \frac{w(\nu)}{d^{(\prime)}(\nu)} \leq \frac{w(u)}{d^{(\prime)}(u)} \leq w(u)$ aufgrund der minimalen Wahl von ν .
- b) 2-effektiv:

$$\begin{split} \delta_{\nu}^{(\prime)}(V) &= \delta_{\nu}^{(\prime)}(\nu) + \delta_{\nu}^{(\prime)}(N^{(\prime)}(\nu)) + \delta_{\nu}^{(\prime)}(V - N^{(\prime)}[\nu]) \\ &= w(\nu) + \left| N^{(\prime)}(\nu) \right| \frac{w(\nu)}{d^{(\prime)}(\nu)} + 0 \\ &= 2 \cdot w(\nu) = 2 \cdot \mathsf{OPT}(\delta_{\nu}^{(\prime)}) \end{split}$$

Randomisierte r-Approximation

Eine Wahrscheinlichkeitsverteilung auf dem Raum der Gewichtsreduktionsfunktionen zu (X, f, w) heißt r-effektiv, falls

$$\mathcal{E}[\delta(X)] \le r \cdot \mathcal{E}[\mathsf{OPT}(\delta)]^*$$

Erinnerung: Der Erwartungswert ist ein "lineares Funktional",

d.h. insbesondere: $\mathcal{E}[A + B] = \mathcal{E}[A] + \mathcal{E}[B]$.

Damit überträgt sich fast wörtlich der (Beweis vom) Satz über lokale Verhältnisse vom deterministischen Fall.

 $^{^*\}mathcal{E}$ ist Erwartungswert (bzgl. der angenommenen Verteilung)

Satz über lokale Verhältnisse — Randomisierte Version

Betrachte dazu folgenden *Grundalgorithmus* (bei Verteilung F) A(X, f, w)

- Wähle Gewichtsreduktion $\delta: X \to \mathbb{R}^+$ gemäß r-effektiver Verteilung F.
- Berechne durch $B(X, f, w \delta)$ eine Überdeckung C.
- Gib C aus.

Falls B eine Überdeckung C liefert mit

$$\mathcal{E}[(w - \delta)(C)] \le r \cdot \mathcal{E}[OPT(w - \delta)],$$

dann gilt: A liefert eine randomisierte r-Approximation.

Beispiel für randomisierte Approximation: RandomGreedyVC (G = (V, E), w)

- Setze $C := \{ v \in V \mid w(v) = 0 \}$ und G := G C.
- Solange $E \neq \emptyset$:

$$- \overline{w} := \left(\sum_{v \in V} \frac{\mathrm{d}(v)}{w(v)} \right)^{-1}$$

- Wähle zufällig $v \in V$ mit Wahrscheinlichkeit $p(v) = \frac{d(v)}{w(v)} \cdot \overline{w}$
- Setze $C := C \cup \{v\}$ und G := G v.
- Gib C aus.

Satz: RandomGreedyVC ist eine randomisierte 2-Approximation.

Beweis:

- 1. Überführe RandomGreedyVC in eine äquivalente rekursive Form.
- 2. Zeige die Behauptung durch vollständige Induktion über die Rekursionstiefe unter Benutzung der randomisierten Version des Satzes über lokale Verhältnisse.
- 3. Dazu ist zu klären: Wie sieht die Wahrscheinlichkeitsverteilung auf dem Raum der Gewichtsreduktionsfunktion aus?

Die Reduktionsfunktion $\delta^{\nu}(\mathfrak{u})=w(\mathfrak{u})\delta_{\mathfrak{u}\nu}$ wird mit Wahrscheinlichkeit $\mathfrak{p}(\nu)$ gezogen, alle übrigen Gewichtsfunktionen mit Wahrscheinlichkeit 0.

$$\sum_{v \in V} p(v) = 1$$
 gilt nach Definition von $p(v)$.

4. Zu zeigen bleibt: die Wahrscheinlichkeitsverteilung ist 2-effektiv.

a)
$$\mathcal{E}[\mathsf{OPT}(\delta)] = \mathcal{E}[\delta(C^*)] = \sum_{v \in V} \delta^v(C^*) \cdot \mathfrak{p}(v) = \sum_{v \in C^*} w(v) \mathfrak{p}(v) = \sum_{v \in C^*} d(v) \cdot \overline{w} \ge |\mathsf{E}| \cdot \overline{w}$$

b)
$$\mathcal{E}[\delta(v)] = \sum_{v \in V} w(v) p(v) = \sum_{v \in V} d(v) \overline{w} = 2 \cdot |E| \cdot \overline{w}$$

Verallgemeinerung: (Δ -)Hitting-Set

Ggb.: Grundmenge U ("Universum") von n Elementen x_1, \ldots, x_n und Mengen $S_1, \ldots, S_m \subseteq U$, genannt *Hyperkanten*

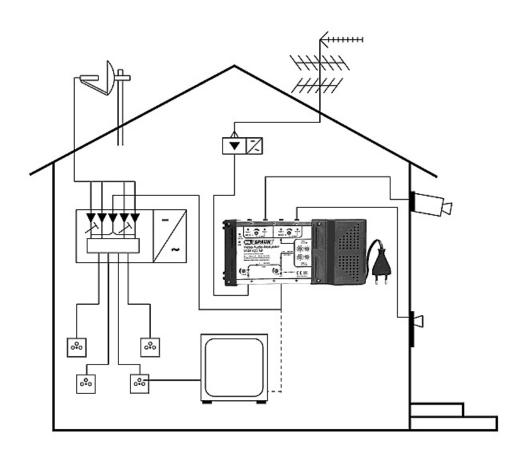
Ges.: Kleinste Anzahl j von Elementen x_{i_1}, \ldots, x_{i_j} , die alle Hyperkanten treffen, d.h.: $\forall 1 \leq k \leq m \; \exists \; 1 \leq r \leq j : x_{i_r} \in S_k$.

Ist bekannt, dass $\forall 1 \leq i \leq m : |S_i| \leq \Delta$ für eine Konstante Δ , so lassen sich die Algorithmen von Bar-Yahuda, Clarkson (!) und Random-Greedy auch für Δ -Hitting-Set lesen. Insbesondere: Kante e definiert Gewichtsreduktionsfunktion δ_e durch

$$\delta_e(v) = \left\{ \begin{array}{ll} \min\{w(u) \mid u \in e\} &, v \in e \\ 0 &, v \notin e \end{array} \right.$$

Satz: Δ -Hitting-Set ist Faktor- Δ -approximierbar.

Motivation: Systemanalyse á la Reiter



Was ist ein System? (nach R. Reiter)

- Systembestandteile (Komponenten) C
- Systembeschreibung (wie? → Logik) SD:
 Aussagen über erwartetes Systemverhalten,
 d.h., Beziehungen zwischen den Komponenten.
- beobachtetes Systemverhalten (Observationen) OBS

Was ist ein fehlerbehaftes System?

spezielles Prädikat ab(c) für jede Komponente c ∈ C: kennzeichnet abnormes Verhalten (Fehler)
SD enthält auch Aussagen der Form:
"Wenn ab(c), dann gilt:..." bzw.
"Wenn ¬ab(c), dann gilt:..."

• ein System (C, SD, OBS) ist *fehlerbehaftet*, wenn in

$$SD \cup OBS \cup \{\neg ab(c) \mid c \in C\}$$

ein Widerspruch zu erkennen ist.

Konfliktmengen und Diagnosen

Eine Konfliktmenge ist eine Menge C' von Komponenten, so dass in

$$SD \cup OBS \cup {\neg ab(c) \mid c \in C'}$$

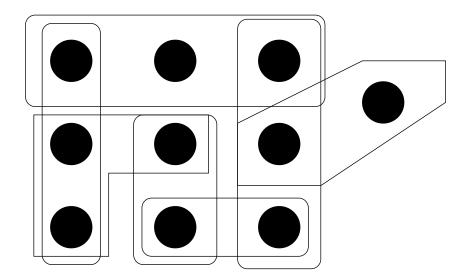
ein Widerspruch zu erkennen ist.

Eine *Diagnose* ist eine möglichst kleine Menge C' von Komponenten, so dass $C \setminus C'$ keine Konfliktmenge ist.

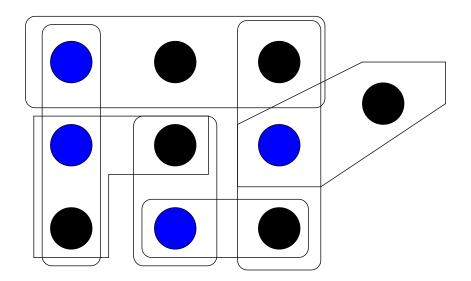
Übersetzung in Hitting Set:

Die Hypergraphknoten sind die Komponenten, die Konfliktmengen sind die Kanten, die Diagnose die Überdeckungsmenge.

Ein abstrakteres Beispiel



Eine kleinste Überdeckung

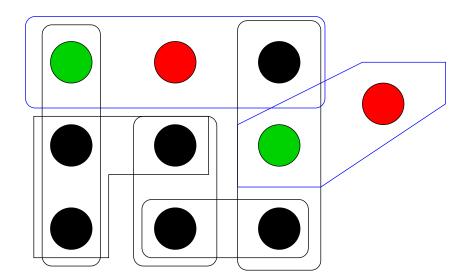


Datenreduktionsregeln

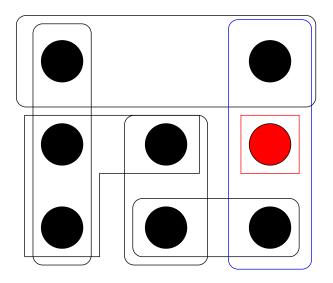
- 1. Kantendominierung: $f \subset e$. \rightsquigarrow entferne e
- 2. Kleine Kanten: $e = \{v\} \rightsquigarrow v$ kommt ins HS; entferne e
- 3. Knotendominierung: Ein Knoten x heiße dominiert durch einen Knoten y, falls $\{e \in E \mid x \in e\} \subset \{e \in E \mid y \in e\} \rightarrow \text{entferne } x$
- R. S. Garfinkel and G. L. Nemhauser. *Integer Programming*. John Wiley & Sons, 1972. Oft wiederentdeckt: K. Weihe (Zugnetzoptimierung), R. Niedermeier & P. Rossmanith (param. HS, 2003)

Also: R. Reiter (Theory of Diagnosis → HS Bäume, 1987)

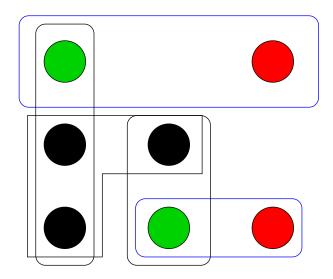
Knotendomination



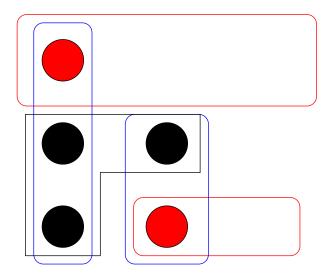
Kantenregeln



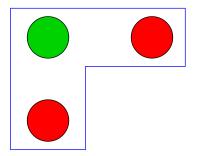
Knotendomination



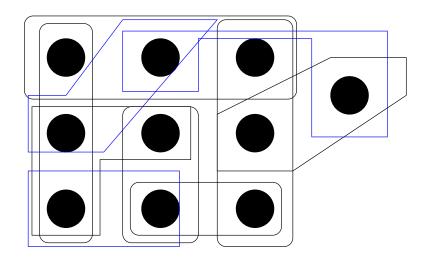
Kantenregeln



Knotendomination



Ein irreduzibles Beispiel



Ein Näherungsverfahren — übersetzt von VC N1 -3HS(G = (V, E), C)

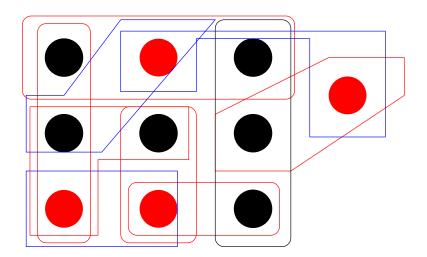
• (Wende Reduktionsregeln an.)

Falls E leer, gib C aus; exit.

• Nimm irgendeine "kleine Kante" e aus G und berechne $N1-3HS(G-e,C\cup e)$ e aufgefasst als Knotenmenge

Dies ist ein **3**-Approximations-Verfahren.

Ein irreduzibles Beispiel wird approximiert



Wie gut ist die Approximation "wirklich"?

Faktor 3 nur schlimmster Fall!

Wir erreichen 5 Knoten-Lösung mit dem "banalen" Algorithmus.

Da unser Beispiel das frühere als Teilfall enthält, wissen wir: 4 ist eine untere Schranke.

Am Lauf des Algorithmus sehen wir: zweimal haben wir zwei Knoten statt möglicherweise einem genommen, beim dritten Schritt waren wir optimal → untere Schranke 3 (auch ohne das früher behandelte Teilproblem).

→ Der Satz über lokale Verhältnisse gestattet das Auffinden besserer Schranken im konkreten Beispiel.

Tatsächlich gibt es Lösung mit 4 Knoten, und die findet unser Algorithmus "fast".