Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2010/11 in Trier

Henning Fernau Universität Trier fernau@uni-trier.de

Näherungsalgorithmen Gesamtübersicht

- Organisatorisches
- Einführung / Motivation
- Grundtechniken für Näherungsalgorithmen
- Approximationsklassen (Approximationstheorie)

Organisatorisches

Vorlesung: Dienstags 12-14 Uhr, H7;

Vorschlag ab 4. SW: 12.25-13.55

Da ich in den nächsten zwei Wochen fast nicht da ist: Suche nach Alternativter-

min diese und nächste Woche FR, z.B. jeweils 14-16 Uhr

Übungen (Daniel Meister): DI 10-12 F 59 (neben der Mensa)

Vorschlag: 10.05-11.35

Beginn 2. Semesterwoche

Meine Sprechstunde: DO, 13-14 Uhr

Kontakt: fernau/meister@uni-trier.de

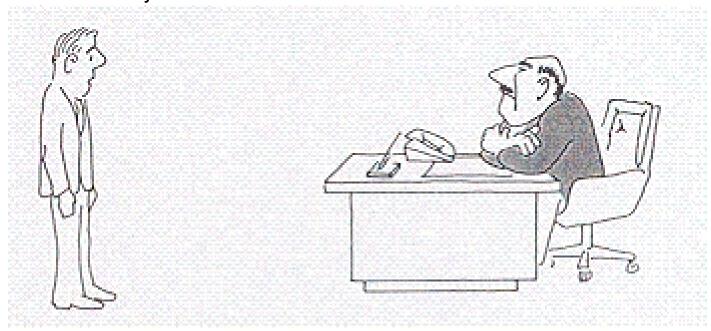
Motivation

Viele interessante Probleme (aus der Praxis!) sind NP-hart

 \Rightarrow wohl keine Polynomialzeitalgorithmen sind zu erwarten.

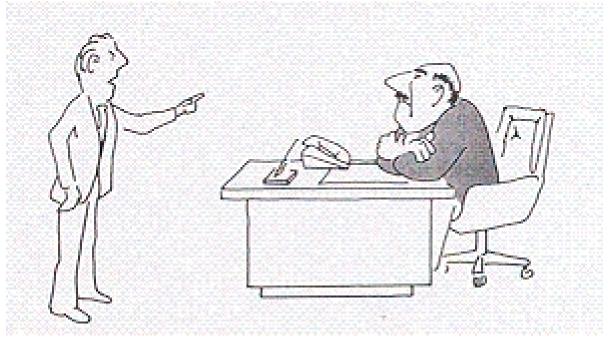
Motivation

siehe http://max.cs.kzoo.edu/~kschultz/CS510/ClassPresentations/NPCartoons.
html wiederum aus Garey / Johnson



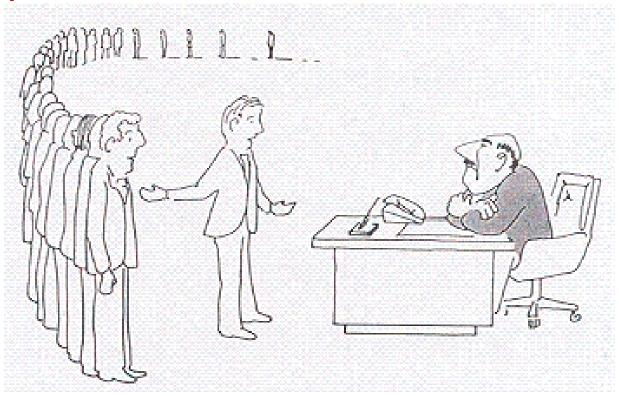
Sorry Chef, aber ich kann für das Problem keinen guten Algorithmus finden...

Die beste Antwort wäre hier aber...



... Ich kann aber beweisen, dass es für das Problem keinen guten Algorithmus geben kann !

Was die Komplexitätstheorie statt dessen liefert...



... Ich kann aber beweisen, dass das alle anderen auch nicht können!

Heuristische Verfahren

• Ziel: schnelle Laufzeit

- "hoffentlich" wird "gute" Lösung gefunden.
 - \hookrightarrow keine "mathematische" Garantie, nur "Empirie".
- typische Beispiele: Greedy-Verfahren

Randomisierte Verfahren

• finden optimale Lösung "mit großer Wahrscheinlichkeit". Hinweis: Eine Vorlesung "randomisierte Algorithmen" wird manchmal angeboten; oder auch Seminar zum Thema.

Parametrisierte Verfahren

- finden stets optimale Lösung.
- versuchen, den nicht-polymiellen Laufzeitanteil auf einen (als klein angenommenen) sogenannten Parameter zu beschränken.
 Hinweis: Spezialvorlesung "paramet(e)risierte Algorithmen"
 wird im Wechsel mit "Näherungsalgorithmen" angeboten

Näherungsverfahren

- sind "Heuristiken mit Leistungsgarantie".
- Güte von Näherungsverfahren kann
 - absolut oder
 - relativ zum Optimum gemessen werden

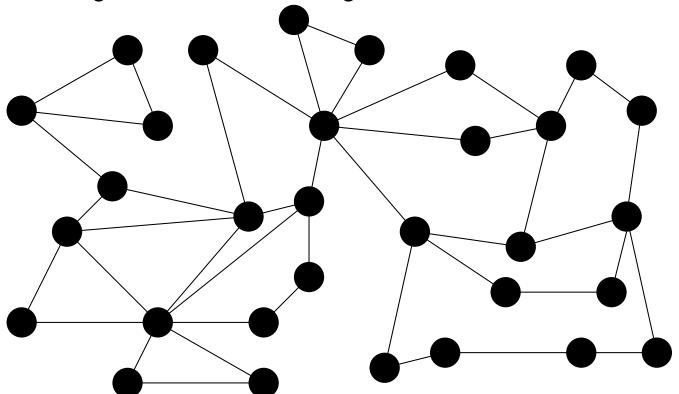
Eine erste Definition für ein einführendes Beispiel

Eine *Knotenüberdeckung* (engl: vertex cover) eines Graphen G = (V, E) ist eine Menge $C \subseteq V$ derart, dass für jede Kante $e = \{v_1, v_2\} \in E$ gilt: $e \cap C \neq \emptyset$, d.h., e wird durch einen Knoten aus C abgedeckt.

Knotenüberdeckungsproblem VC: Finde kleinstmögliche Knotenüberdeckung!

Hinweis: VC ist eines der grundlegenden NP-harten Probleme.

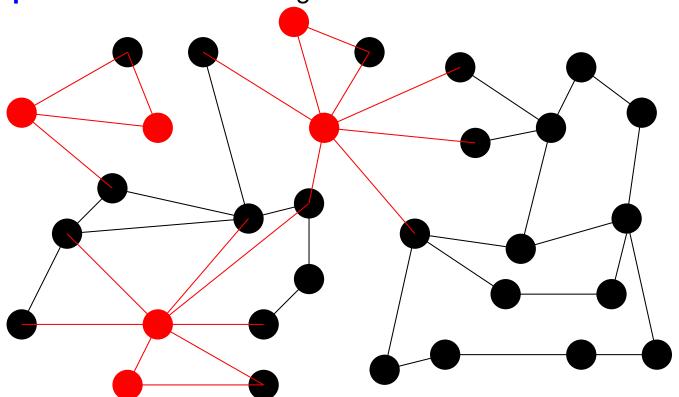
Ein Beispiel: Wie groß ist ein kleinstmögliches VC?



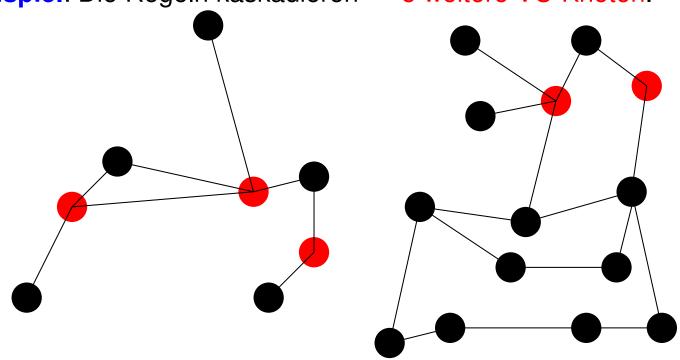
Einfache Beobachtungen und Regeln

- Zwei Knoten in einem Dreieck gehören in ein VC.
- Wenn Wahlmöglichkeit besteht, nimm solche Knoten, die "noch mehr" abdecken können.
 - → Nimm Nachbarn eines Grad-1-Knotens ins VC.
 - → Gibt es in einem Dreieck einen Knoten vom Grad zwei, so nimm dessen beide Nachbarn ins VC.

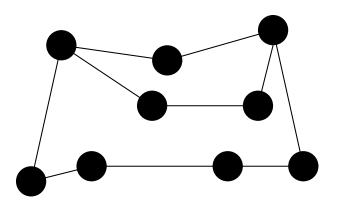
Unser Beispiel: Wir wenden die Regeln an und finden 6 VC-Knoten.



Unser Beispiel: Die Regeln kaskadieren → 5 weitere VC-Knoten.



Unser Beispiel: Was bleibt übrig?

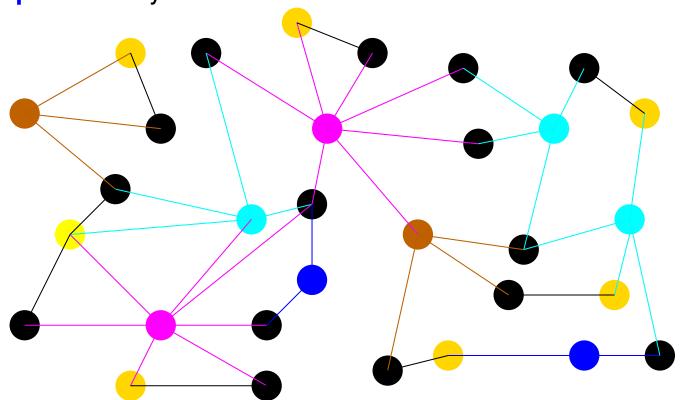


Ein Greedyverfahren GreedyVC (G, C)

- Falls E(G) leer, gib C aus; exit.
- Suche Knoten v mit maximalem Grad in G.
- Berechne GreedyVC $(G v, C \cup \{v\})$

Hinweis: G - v entsteht aus G, indem v mit anliegenden Kanten aus G gelöscht wird.

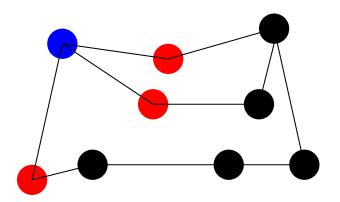
Unser Beispiel: Greedy at work... Farben kodieren Grad → 16 VC-Knoten



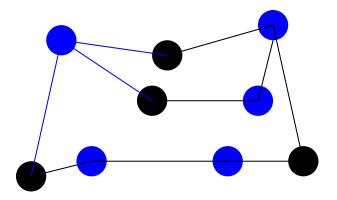
Ein Suchbaumverfahren SuchbaumVC(G, C, k)

- Falls E(G) leer, gib C aus; exit.
- Falls k = 0: exit (Fehlerfall).
- Nimm irgendeine Kante $e = \{v_1, v_2\}$ aus G und verzweige:
 - 1. Berechne Suchbaum $VC(G v_1, C \cup \{v_1\}, k 1)$
 - 2. Berechne Suchbaum $VC(G v_2, C \cup \{v_2\}, k 1)$
 - 3. Liefere kleinere Lösung "nach oben".

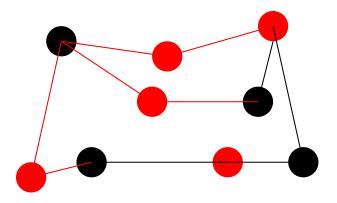
Weitere Idee: Knotenorientierter Suchbaum, kombiniert mit den Regeln \leadsto zwei Zweige



Weitere Idee: Kombiniere Suchbaum mit unseren Regeln der blaue Fall



Weitere Idee: Kombiniere Suchbaum mit unseren Regeln der rote Fall



Ergebnis für unser Beispiel:

Die kleinste Knotenüberdeckung enthält 16 Knoten.

Eine kleinste Knotenüberdeckung wurde von der Heuristik gefunden.

Die Verwendung von sog. Reduktionsregeln hilft, die Verzweigungszahl bei Suchbaumalgorithmen zu verringern.

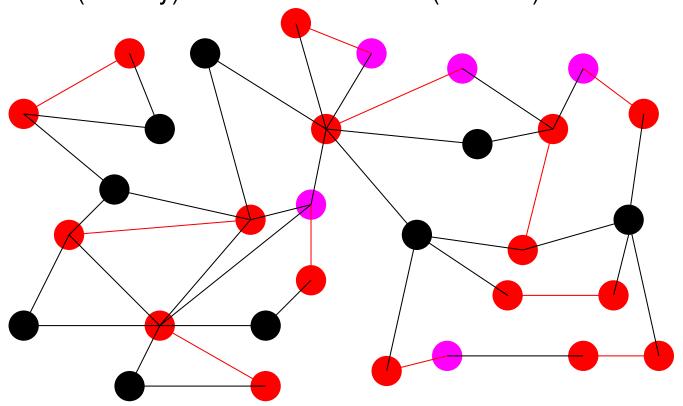
Ein Näherungsverfahren N1VC(G = (V, E), C)

Falls E leer, gib C aus; exit.

• Nimm irgendeine Kante $e = \{v_1, v_2\}$ aus G und berechne N1VC(G $= \{v_1, v_2\}, C \cup \{v_1, v_2\})$

Dies ist ein 2-Approximations-Verfahren (s.u.)

Unser Beispiel: magentafarbene Knoten gehören nicht zu *(inklusions-)minimaler* Überdeckung; die gefundene Lösung ist daher fast bestmöglich Wichtig: Minimal (Greedy) versus Minimum VC (NP-hart).



Ein allgemeines Überdeckungsproblem

ist gegeben durch ein Tripel (X, f, w), wobei

- X eine endliche Menge ist,
- $f: 2^X \to \{0, 1\}$ eine monotone Abbildung ist, d.h. $A \subseteq B \to f(A) \le f(B)$, und es gelte f(X) = 1;
- $w: X \to \mathbb{R}^+$ ist die *Gewichtsfunktion*.

Eine Menge C mit f(C) = 1 heißt *Überdeckung*. Gesucht: Überdeckung C^* mit kleinstmöglichem Gewicht $OPT(w) = w(C^*)$.