Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2010/11 in Trier

Henning Fernau Universität Trier fernau@uni-trier.de

Näherungsalgorithmen Gesamtübersicht

- Organisatorisches
- Einführung / Motivation
- Grundtechniken für Näherungsalgorithmen
- Approximationsklassen (Approximationstheorie)

Approximationstheorie

- Absolute Approximation
- Relative Approximation: die Klasse APX
- Polynomzeit-Approximationsschemata PTAS
- Zwischen APX und NPO
- Zwischen PTAS und APX
- Approximationsklassen und Reduktionen

Zwischen PTAS und APX: eine Verallgemeinerung der Klasse PTAS

Definition Ein NPO-Problem \mathcal{P} liegt in PTAS $^{\infty}$, in Worten: \mathcal{P} hat ein *asymptotisches Approximationsschema*, wenn es einen Algorithmus \mathcal{A} gibt und eine Konstante k, sodass (für jede Instanz x von \mathcal{P} und für jede rationale Zahl $r \geq 1$ als Eingaben) $\mathcal{A}(x,r)$ in Polynomzeit eine Lösung liefert, deren Leistungsgüte höchstens $r + \frac{k}{m^*(x)}$ beträgt.

Natürlich gilt: $PTAS \subseteq PTAS^{\infty} \subseteq APX$. (*)

Mitteilung: Unter der Annahme P \neq NP sind beide Inklusionen in (*) echt.

Wir werden hier zwei Probleme aus $PTAS^{\infty}$ betrachten: das Kantenfärben in einem Graphen sowie Bin-Packing.

Kantenfärben

I: Graph G = (V, E)

S: Eine Färbung der Kanten, d.h. eine Partition von E in E_1,\ldots,E_K , sodass für jedes $1 \le i \le K$ gilt: Keine zwei Kanten aus E_i haben einen gemeinsamen Endpunkt

m: Anzahl der Farben, d. h. also K.

opt: min.

Satz: (Vizing) Es gibt einen Polynomzeitalgorithmus, welcher bei Eingabe eines Graphen G mit Maximalgrad Δ eine Kantenfärbung mit höchstens $\Delta + 1$ vielen Farben liefert.

Beweis: Ist G = (V, E) der Eingabegraph vom Maximalgrad Δ , so färbt \mathcal{A} G, indem \mathcal{A} nacheinander die Kanten von E färbt, wobei evtl. "frühere" Kantenfärbungen später revidiert werden.

- 1. $E' := E; \overline{E} := \emptyset;$
- 2. Solange $E' \neq \emptyset$, tue:
 - 2a) Wähle Kante $\{u, v\} \in E'$.
 - 2b) Erweitere die Kantenfärbung von \overline{E} auf $\overline{E} \cup \{\{u,v\}\},$ sodass $(V,\overline{E} \cup \{\{u,v\}\})$ mit höchstens $\Delta + 1$ vielen Farben gefärbt ist.
 - 2c) $E' := E' \setminus \{\{u, v\}\}; \overline{E} := \overline{E} \cup \{\{u, v\}\}\}$

Präzisierung von 2b)

Farbmenge: $F = \{1, ..., \Delta + 1\}$. Gesucht: Färbung: $f : E \rightarrow F$.

Annahme: Für (V, \overline{E}) ist eine Kantenfärbung mit höchstens $\Delta + 1$ vielen Farben konstruiert. (Formal führen wir also einen Induktionsbeweis über $|\overline{E}|$ mit trivialen Induktionsanfang für $\overline{E} = \emptyset$.) f ist also partiell und vorläufig auf \overline{E} festgelegt.

Notation:

• Ist $v \in V$ beliebig, so bezeichne

$$C(\nu) = \left\{ \tilde{f} \in F \mid \neg \exists u \in V : \{u, v\} \in E \land f(\{u, v\}) = \tilde{f} \right\}$$

die Farbmenge, die für "weitere Kanten", die mit v inzidieren, noch "frei" ist.

• Da $\delta(v) \leq \Delta$, ist für alle $v \in V$ die Menge $C(v) \neq \emptyset$. Daher gibt es eine Repräsentantenfunktion $c: V \to F$ mit $\forall v \in V: c(v) \in C(v)$.

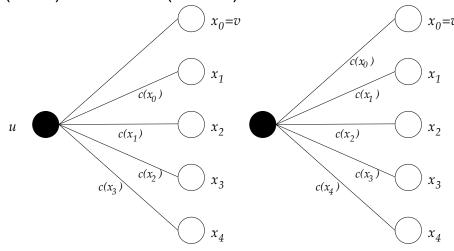
Es sei $\{u, v\}$ die in Schritt 2a) gewählte Kante.

Wir betrachten jetzt sogenannte *Kantenfarbfolgen*, das sind mit \mathfrak{u} (bzgl. $\overline{\mathbb{E}} \cup \{\{\mathfrak{u}, \mathfrak{v}\}\}$) inzidierende Knotenfolgen x_0, \ldots, x_s mit $x_0 = \mathfrak{v}$ und $f(\{\mathfrak{u}, x_i\}) = c(x_{i-1})$. Eine Kantenfarbfolge heißt maximal, wenn es keine weitere Kanten $\{\mathfrak{u}, x\}$ in $\overline{\mathbb{E}}$ gibt (mit $x \notin \{x_0, \ldots, x_s\}$) mit $f(\{\mathfrak{u}, x\}) = c(x_s)$.

Hilfssatz: Ist $x_0, ..., x_s$ eine Kantenfarbfolge mit $c(x_s) \in C(\mathfrak{u})$, so ist f zu einer Färbung auf $\overline{E} \cup \{\{\mathfrak{u}, \mathfrak{v}\}\}$ erweiterbar.

<u>Beweis:</u> Setze $f(\{u, x_i\}) := c(x_i)$ für $0 \le i \le s$ und lasse sonst die alte Färbung bestehen. \square Hinweis: Insbesondere für s = 1 ist das Färben trivial.

Die Situation vor (links) und nach (rechts) dem Umfärben mit dem Hilfssatz, s=4:



In Polynomzeit kann nun eine maximale Kantenfarbfolge (an \mathfrak{u}) gefunden werden. Wegen des Hilfssatzes können wir $c(x_s) \notin C(\mathfrak{u})$ annehmen.

Wegen der Maximalität der Folge gibt es ein $0 \le i < s$ mit $f(\{u, x_i\}) = c(x_s)$, denn $c(x_s)$ ist ja nicht mehr "frei" zum Färben von u-inzidenten Kanten.

Damit gilt: $c(x_{i-1}) = c(x_s)$.

 p_{i-1} : ein maximaler Pfad in (V, \overline{E}) , der bei x_{i-1} startet und dessen Kanten abwechselnd mit c(u) und $c(x_s)$ gefärbt sind.

w: der letzte Knoten dieser Folge.

Unterscheide zwei Fälle:

- (a) $w \neq u$. \rightsquigarrow Färbe alle ursprünglich mit c(u) gefärbten Kanten mit $c(x_s)$ und umgekehrt. Färbe Kante $\{u, x_{i-1}\}$ mit c(u). Für die Kantenfarbfolge x_0, \ldots, x_{i-1} ist der HS anwendbar.
- (b) w = u. Jetzt suchen wir in Linearzeit einem weiteren maximalen Pfad p_s , der bei x_s startet und dessen Kanten abwechselnd mit c(u) und $c(x_s)$ gefärbt sind, mit letztem Knoten w'. Gilt $w \neq u$, können wir p_s analog zu (a) umfärben und dann den Hilfsatz anwenden. Diskutiere Fall w = w' = u. Da p_{i-1} und p_s maximal und die Färbung insbesondere an u-Kanten zulässig war, müssen auch die vorletzten Knoten von p_{i-1} und p_w gleich sein. Das Argument wiederholt sich, bis o.E. x_s auf p_{i-1} erscheint. Da p_{i-1} nicht endet, gibt es eine mit $c(x_s)$ gefärbte Kante, die inzident zu x_s ist. \leadsto Widerspruch zu $c(x_s) \in C(x_s)$.

Satz: Minimales Kantenfärben gehört zu PTAS $^{\infty}$.

Beweis: Da $\Delta(G) \le \mathfrak{m}^*(G)$, gilt für die Lösung $\mathfrak{m}(G)$ unseres Algorithmus $\mathfrak{m}(G) \le \Delta(G) + 1 \le \mathfrak{m}^*(G) + 1$. Daher ist:

$$\frac{m(G)}{m^*(G)} \le \frac{m^*(G)+1}{m^*(G)} = 1 + \frac{1}{m^*(G)}.$$

Mitteilung: Mit Hilfe der Gap-Technik lässt sich zeigen, dass das Kantenfärbeproblem kein PTAS besitzt, sofern nicht P = NP.

Bin Packing (BP)

Idee: polynomielle Lösbarkeit der folgenden eingeschränkten Variante:

Minimum (c, δ) *eingeschränktes BP* (für $c \in \mathbb{N}, c > 0$ und $\delta \in \mathbb{Q}, \delta \leq 1$) liegt vor, falls

es höchstens c unterschiedliche Größen der Gegenstände gibt und jeder Gegenstand wenigstens δ groß ist (also einen Bruchteil der mit 1 angenommenen Kapazität jedes Behälters).

Um Bruchzahlen zu vermeiden bei Angabe der Gegenstandsgrößen s_i , gestatten wir noch die Angabe der Behältnisgröße B, weichen also formal von unserer Ursprungsdefinition von Bin-Packing leicht ab. In diesem Sinne wäre $(I = \{3:4,5:2,7:1\}, B = 8)$ eine Instanz von Minimum (3,3/8)-eingeschränktem BP.

Lemma: Minimum (c, δ) -eingeschränktem BP kann in der Zeit O (n^q) gelöst werden, wobei n die Zahl der Gegenstände in der Eingabeinstanz ist und q nur von c und δ , nicht aber von n abhängt.

<u>Beweis:</u> Es sei (I,B) eine Instanz von Min. (c,δ) -eingeschränktem BP. Der **Typ** eines Behälters ist ein c-dimensionaler Vektor $\vec{b}=(t_1,\ldots,t_c)$ von natürlichen Zahlen mit $0 \le t_i \le n_i$, sodass $\sum_{i=1}^c t_i s_i \le B$.

Für jeden Typ gilt wegen $\delta B \leq s_i$:

$$\sum_{i=1}^{c} t_i \leq \frac{1}{\delta B} \sum t_i s_i \leq \frac{1}{\delta}$$

Erinnerung

$$\left|\left\{(x_1,\ldots,x_s)\mid x_i\in\mathbb{N},x_i\geq0,\sum x_i\leq m\right\}\right|=\left(\begin{array}{c}m+s\\m\end{array}\right)=\left(\begin{array}{c}m+s\\s\end{array}\right)$$

Anwendung: Es gibt höchstens $q=\begin{pmatrix}c+\lfloor\frac{1}{\delta}\rfloor\\c\end{pmatrix}$ viele Typen von Behältern. Eine zulässige Lösung von Minimum (c,δ) -eingeschränktem BP kann daher durch einen q-dimensionalen Vektor $\vec{y}=(y_1,\ldots,y_q)$ beschrieben werden, wobei $y_i\geq 0$ angibt, wie viele Behälter von Typ i in der Lösung vorkommen. Da trivialer Weise höchstens n Behälter verwendet werden müssen, gibt es daher höchstens n^q verschiedene zulässige Lösungen. In diesem Raum kann in der Zeit $O(n^q)$ nach einer optimalen Lösung gesucht werden.

Ein PTAS[∞] **für Bin-Packing** (Skizze)

- 1. Entferne "kleine Gegenstände".
- 2. Gruppiere die verbleibenden Gegenstände in eine konstante Zahl von Grö-Benklassen.
- 3. Finde optimale Lösung für verbleibende Instanz. (wie eben)
- 4. Mache die Gruppierung aus Schritt 2 rückgängig.
- 5. Füge die "kleinen Gegenstände" wieder ein.

Zum Gruppieren der Gegenstände

Es sei x eine Bin-Packing-Instanz.

Die Gegenstände x_1, \ldots, x_n seien der Größe nach absteigend sortiert. Für jede natürliche Zahl $k \le n$ sei $m := \lfloor n/k \rfloor$.

Teile die n Gegenstände auf m(+1) Gruppen G_i auf mit $G_i = \{x_{(i-1)k+1}, \dots, x_{ik}\}$, $1 \le i \le m$ und $G_{m+1} = \{x_{mk+1}, \dots, x_n\}$.

Wir definieren nun eine neue Instanz x_g^k von BP (mit derselben Behältergröße), sodass x_g^k für jeden Gegenstand x_j von der ursprünglichen Instanz, der aus G_i war, einen Gegenstand der Größe $s(x_{(i-1)k+1})$ enthält für $i=2,\ldots,m+1$.

Es gibt also höchstens $\mathfrak{m}k$ Gegenstände in \mathfrak{x}_g^k , und diese Gegenstände haben höchstens \mathfrak{m} verschiedene Größen.

Wir ignorieren die k größten Gegenstände auf diese Weise.

Lemma: $m^*(x_g^k) \le m^*(x) \le m^*(x_g^k) + k$.

Beweis: Jede Lösung für x_g^k ist trivialer Weise eine für x, wenn wir weiter k Behälter für die ersten (größten) Gegenstände von x bereit halten.

Eine Lösung von x wiederum kann wie folgt in eine für x_g^k umgebildet werden:

- (a) Entferne alle Gegenstände aus der letzten Gruppe,
- (b) ersetze jeden Gegenstand aus G_i durch einen Gegenstand, der so groß ist wie x_{ik+1} (wenn nötig; G_{m+1} hat evtl. weniger Elemente als G_m).

Zur Behandlung "kleiner Gegenstände"

Es sei x eine BP-Instanz. Für jedes $\delta \in \mathbb{Q}, \delta \in \left(0, \frac{1}{2}\right]$, sei x_{δ} die Instanz, die aus x durch Fortlassen aller Gegenstände, die kleiner als δB sind, entsteht. Haben wir nun eine Lösung für x_{δ} , die M Behälter benötigt, so benutzen wir FirstFit, um die kleinen Gegenstände wieder einzufügen.

Lemma: Auf diese Weise lässt sich in Polynomzeit eine Lösung für x finden, die höchstens $\max(M, (1+2\delta)m^*(x)+1)$ viele Behälter benutzt.

Beweis: Wir unterscheiden zwei Fälle:

- (a) Es wurden keine neuen Behälter durch FirstFit geöffnet $\rightarrow M$ Behälter reichen.
- (b) Es wurden $M' \ge 1$ neue Behälter durch FirstFit geöffnet. Wie schon früher überlegt, enthalten alle Behälter (mit möglicher Ausnahme des zuletzt geöffneten) höchstens δB vielen freien Platz. Daher ist

$$(1 - \delta) \underbrace{(M + M' - 1)}_{\text{\# Behälter bis auf den letzten}} \leq \frac{\sum_{i=1}^{n} s(x_i)}{B} \leq m^*(x)$$

$$\sim M + M' \le \frac{1}{1 - \delta} m^*(x) + 1 \le (1 + 2\delta) m^*(x) + 1$$

denn wegen $\delta \in (0, \frac{1}{2}]$ gilt $2\delta^2 \leq \delta$, also $1 \leq 1 - 2\delta^2 + \delta$.

Ein PTAS $^{\infty}$ für BP AsymptBP(x, B, r)

- 1. Falls $r \ge 2$ nimm NextFit (oder FirstFit).
- 2. $\delta := (r-1)/2$;
- 3. Sei x_{δ} die aus x durch Fortlassen von Gegenständen der Größe $<\delta B$ entstehende Instanz; n' sei die Zahl der Gegenstände in x_{δ} .
- 4. $k := \lceil (r-1)^2 n'/2 \rceil$;
- 5. Sei $x_{\delta,g}^k$ die aus x_{δ} durch Gruppierung gebildete Instanz.
- 6. Finde optimale Lösung $x_{\delta,g}^k$ vom Wert $\mathfrak{m}^*(x_{\delta,g}^k)$.
- 7. Füge die ersten (größten) k Gegenstände von x_{δ} in k "neue" Behälter.
- 8. Wende FirstFit an, um die "kleineren Gegenstände" wieder einzufügen.
- 9. Liefere die so erhaltene Packungsvorschrift zurück.

Satz: AsymptBP ist ein PTAS $^{\infty}$ für BP.

<u>Beweis:</u> AsymptBP läuft in Polynomzeit, da eine optimale Lösung für $\chi_{\delta,g}^k$ in Zeit \mathfrak{n}^q gefunden werden kann mit $q = f(\lceil \mathfrak{n}'/k \rceil, \delta)$, s. erstes Lemma.

Beachte: $\lceil n'/k \rceil$ hängt nicht von n ab, nur von r (bzw. δ).

Mit dem zweiten Lemma ist der Wert einer Lösung von AsymptBP beschränkt durch $\mathfrak{m}^*(\chi_{\delta,g}^k)+k$. Alle Gegenstände in χ_δ haben eine Größe von wenigstens δB , sodass $\delta \mathfrak{n}' \leq \mathfrak{m}^*(\chi_\delta)$ folgt, und damit

$$k \le \frac{(r-1)^2}{2}n' + 1 = (r-1)\delta n' + 1 \le (r-1)m^*(x_\delta) + 1.$$

Mit dem zweiten Lemma folgt $\mathfrak{m}^*(x_{\delta,g}^k) + k \leq \mathfrak{m}^*(x_{\delta}) + (r-1)\mathfrak{m}^*(x_{\delta}) + 1 = r\mathfrak{m}^*(x_{\delta}) + 1$. Benutzen wir $r = (1+2\delta)$ im dritten Lemma, so erhalten wir, dass maximal

$$\max(\text{rm}^*(x_\delta) + 1, \text{rm}^*(x) + 1) \le \text{rm}^*(x) + 1$$

viele Behälter von AsymptBP benutzt werden.

Man kann sogar zeigen: BinPacking liegt in FPTAS $^{\infty}$.