Diskrete Strukturen und Logik WiSe 2007/08 in Trier

Henning Fernau

Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik Gesamtübersicht

- Organisatorisches
- Einführung
- Logik & Mengenlehre
- Beweisverfahren
- Kombinatorik: Die Kunst des Zählens
- algebraische Strukturen

Boolesche Algebren

Syntax (Aussehen)

Eine *Boolesche Algebra* ist beschrieben durch ein 6-Tupel $\mathcal{B} = (B, \oplus, \otimes, \kappa, 0, 1)$:

B: Grundmenge

 \oplus , \otimes : B \times B \to B: zweistellige Verknüpfungen auf B

⊕: *Addition*; ⊗: *Multiplikation*

 $\kappa : B \to B$: einstellige Operation auf B: *Komplement*

 $0, 1 \in B$: Konstanten (nullstellige Operationen)

Boolesche Algebren: geforderte Eigenschaften

 $0 \neq 1$

Kommutativgesetze: (1) $\forall a, b \in B : a \oplus b = b \oplus a$, (2) $\forall a, b \in B : a \otimes b = b \otimes a$. *Distributivgesetze*: (1) $\forall a, b, c \in B : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ und (2) $\forall a, b, c \in B : a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c)$

Neutralitätsgesetze: (1) 0 ist rechtsneutrales Element bzgl. \oplus , d.h.: $\alpha \oplus 0 = \alpha$ und (2) 1 ist rechtsneutrales Element bzgl. \otimes , d.h.: $\alpha \otimes 1 = \alpha$ Komplementgesetze: (1) $\kappa(\alpha)$ ist das Komplement von α , d.h.: (1) $\alpha \oplus \kappa(\alpha) = 1$ und (2) $\alpha \otimes \kappa(\alpha) = 0$.

0 heiß auch *Nullelement*, 1 *Einselement* von \mathcal{B} .

Boolesche Algebren: ein Beispiel

 $(\{w, f\}, \lor, \land, \neg, f, w)$ ist eine Boolesche Algebra. In der Schreibweise $(\{0, 1\}, +, \cdot, \neg, 0, 1)$ heißt sie auch *Schaltalgebra*.

Satz: Die Schaltalgebra ist (bis auf Isomorphie) die kleinste Boolesche Algebra.

Beweis: Die Eigenschaften einer Booleschen Algebra sind für die Schaltalgebra bekannt.

Da $0 \neq 1$ stets zwei verschiedene Elemente mit definierten Eigenschaften sind, folgt die Minimalität und Eindeutigkeit.

→ Unsere Theorie hat ein Modell (ist also nicht leer)!

Potenzmengenalgebren: ein weiteres Beispiel

Aus unserer 8. Vorlesung wissen wir:

Satz: Für jede Menge $M \neq \emptyset$ bildet $(2^M, \cup, \cap, \neg, \emptyset, M)$ eine Boolesche Algebra, die so genannte *Potenzmengenalgebra* (über M). (Das Komplement ist bezüglich M zu verstehen.)

<u>Beweis:</u> Möglicherweise noch unbekannt: das Komplementgesetz. Das bedeutet jetzt für $A \subseteq M$: $A \cup \bar{A} = M$ und $A \cap \bar{A} = \emptyset$.

Satz: Die Potenzmengenalgebra einer einelementigen Menge ist isomorph zur Schaltalgebra.

Boolesche Algebren: Teileralgebra als Beispiel

```
\begin{split} &T(n) = \{k \in \mathbb{N} \mid k | n\} \text{: Teiler von } n. \\ &kgV(a,b) \text{: das kleinste gemeinsame Vielfache von } \alpha \text{ und } b \\ &ggT(a,b) \text{: der größte gemeinsame Teiler von } \alpha \text{ und } b \\ &\underline{\text{Erinnerung: }} kgV(a,b) = \alpha b / ggT(a,b); ((t|a) \wedge (t'|a')) \implies (ggT(t,t')| ggT(a,a')). \\ &\underline{\text{Definiere für }} \alpha \in T(n) \text{: } u_n(\alpha) := n/\alpha. \end{split}
```

Problem: Ist, für $n \ge 2$, $\mathcal{T}(n) = (T(n), ggT, kgV, u_n, n, 1)$ stets eine Boolesche Algebra ?

Beachte fehlerhafte Benennung der neutralen Elemente im M/M.

Wenn ja, nennen wir sie *Teileralgebra*.

Beobachte: Die betrachtete Schaltalgebra ist zu $\mathcal{T}(2)$ isomorph:

$$ggT(1,1) = ggT(1,2) = ggT(2,1) = 1, ggT(2,2) = 2.$$

 $kgV(1,1) = 1, kgV(1,2) = kgV(2,1) = kgV(2,2) = 2.$

Überprüfe geforderte Eigenschaften

 $0 \neq 1$: Da $n \geq 2$, gilt $1 \neq n$. \checkmark

Kommutativgesetze: (1) $\forall a, b \in B : a \oplus b = b \oplus a$, (2) $\forall a, b \in B : a \otimes b = b \otimes a$. Nach Def. von kgV und ggT kommt es offenbar nicht auf die Reihenfolge der Argumente an. \checkmark

Neutralitätsgesetze: (1) 0 ist rechtsneutrales Element bzgl. \oplus , d.h.: $\alpha \oplus 0 = \alpha$ und (2) 1 ist rechtsneutrales Element bzgl. \otimes , d.h.: $\alpha \otimes 1 = \alpha$ ad (1): Dies bedeutet in unserem Fall: $\forall \alpha | n : ggT(\alpha, n) = \alpha$. ad (2): Dies bedeutet in unserem Fall: $\forall \alpha | n : kgV(\alpha, 1) = \alpha$.

Überprüfe geforderte Eigenschaften

```
Distributivgesetze: (1) \forall a, b, c \in B : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) und (2) \forall a, b, c \in B : a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c) ad (1): Dies bedeutet in unserem Fall: \forall a, b, c \in T(n) : kgV(a, ggT(b, c)) = ggT(kgV(a, b), kgV(a, c)). kgV(a, ggT(b, c)) = a ggT(b, c)/ggT(a, b, c) versus ggT(kgV(a, b), kgV(a, c)) = ggT(ab/ggT(a, b), ac/ggT(a, c)) Sind diese Ausdücke immer gleich ?? Wir prüfen zunächst Beispiele:
```

```
a = 2, b = 6, c = 3:

kgV(a, ggT(b, c)) = kgV(2, ggT(6, 3)) = kgV(2, 3) = 6.

ggT(kgV(a, b), kgV(a, c)) = ggT(kgV(2, 6), kgV(2, 3)) = ggT(6, 6) = 6. \checkmark

a = 3, b = 6, c = 9:

kgV(a, ggT(b, c)) = kgV(3, ggT(6, 9)) = kgV(3, 3) = 3.

ggT(kgV(a, b), kgV(a, c)) = ggT(kgV(3, 6), kgV(3, 9)) = ggT(6, 9) = 3. \checkmark
```

Überprüfe geforderte Eigenschaften: Distributivgesetze (allgemein)

Betrachte Zahl t mit t|kgV(a, ggT(b, c)).

t lässt sich schreiben als t = pq mit p|a und q|ggT(b,c).

Wegen p|a gilt: p| kgV(a, x) für jedes x, und somit p| ggT(kgV(a, b), kgV(a, c)).

$$\mathsf{q}|\,\mathsf{ggT}(\mathsf{b},\mathsf{c}). \rightsquigarrow (\mathsf{q}|\mathsf{b}) \land (\mathsf{q}|\mathsf{c}) \rightsquigarrow (\mathsf{q}|\,\mathsf{kgV}(\mathsf{a},\mathsf{b})) \land (\mathsf{q}|\,\mathsf{kgV}(\mathsf{a},\mathsf{c})) \rightsquigarrow$$

t|ggT(kgV(a,b),kgV(a,c)) mit t=pq; insbesondere t=kgV(a,ggT(b,c)).

Umgekehrt: Betrachte Zahl t mit t|ggT(kgV(a,b),kgV(a,c)).

Dann gilt: t | kgV(a, b) und t | kgV(a, c).

t lässt sich schreiben als t = pq mit p|a und q|b.

t lässt sich schreiben als t = p'q' mit p'|a und q'|c.

Mit p'' = kgV(p, p') haben wir eine weitere Darstellung t = p''q'' mit p''|a.

Aus der Aufteilung der Primfaktoren von t ergibt sich sofort: q'' = ggT(q, q').

Es gilt: q''|ggT(b,c), denn $((q|b) \land (q'|c)) \implies (ggT(q,q')|ggT(b,c))$.

Aus p''|a und q''|ggT(b,c) folgt für t = p''q'': t|kgV(a,ggT(b,c)). \checkmark

Überprüfe geforderte Eigenschaften

Distributivgesetze: (1) $\forall a, b, c \in B : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ und (2)

 $\forall a, b, c \in B : a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c)$

ad (2): Dies bedeutet in unserem Fall:

 $\forall a, b, c \in \mathsf{T}(n) : \mathsf{ggT}(a, k\mathsf{gV}(b, c)) = k\mathsf{gV}(\mathsf{ggT}(a, b), \mathsf{ggT}(a, c)).$

Der Beweis folgt ganz analog.

Überprüfe geforderte Eigenschaften: Komplementgesetze

- (1) $\kappa(\alpha)$ ist das *Komplement* von α , d.h.: (1) $\alpha \oplus \kappa(\alpha) = 1$ und (2) $\alpha \otimes \kappa(\alpha) = 0$.
- (1) bedeutet: $ggT(\alpha, u_n(\alpha)) = ggT(\alpha, n/\alpha) = 1$.

Das gilt nur für jedes a|n, falls es keine Quadratzahl größer 1 gibt, die n teilt.

(2) sieht man entsprechend.

Alles zusammen genommen zeigen unsere Überlegungen:

Satz: $\mathcal{T}(n)$ ist eine Boolesche Algebra genau dann, wenn es keine Zahl größer 1 gibt, deren Quadrat n teilt.

Ausdruck-Algebra

Erinnerung: Wir hatten früher wohlgeformte aussagenlogische Ausdrücke samt der Belegungsfunktion β betrachtet.

Wir nannten zwei w.a.A. α , α' äquivalent, falls $\beta(\alpha) = \beta(\alpha')$.

Es sei A_n die Menge aller Äquivalenzklassen von w.a.A. mit Variablenmenge $X_n = \{x_1, \dots, x_n\}.$

Die Äquivalenzklasse von α werde $[\alpha]$ notiert.

Definiere: $[\alpha] \sqcup [\alpha'] := [(\alpha) \lor (\alpha')], [\alpha] \sqcap [\alpha'] := [(\alpha) \land (\alpha')], C_n([\alpha]) := [\neg \alpha].$

Satz: Für jedes $n \in \mathbb{N}$ ist $A_n = (A_n, \sqcup, \sqcap, C_n, [f], [w])$ eine Boolesche Algebra. Diese ist für n = 0 zur Schaltalgebra isomorph.

Beweis: Zu überlegen: Wohldefiniertheit.

BAs aus BAs: Funktionenalgebren

Es sei $\mathcal{B} = (B, \oplus, \otimes, \kappa, 0, 1)$ eine Boolesche Algebra.

 $B_n := B^{B^n}$ bezeichne die n*-stelligen Booleschen Funktionen*.

Definiere für $f, g \in B_n$ folgende Operationen:

$$(f \star g)(x_1, \dots, x_n) := f(x_1, \dots, x_n) \oplus g(x_1, \dots, x_n)$$

 $(f \odot g)(x_1, \dots, x_n) := f(x_1, \dots, x_n) \otimes g(x_1, \dots, x_n)$
 $(\Gamma(f))(x_1, \dots, x_n) := \kappa(f(x_1, \dots, x_n))$

0 und 1 sollen der Einfachheit halber auch die π -stelligen Funktionen bezeichnen, die konstant 0 bzw. 1 liefern.

Satz: Für $n \in \mathbb{N}$ ist $\mathcal{B}_n = (B_n, \star, \odot, \Gamma, 0, 1)$ eine Boolesche Algebra. Diese ist für n = 0 zu \mathcal{B} isomorph.

Beweis: Tafel

Der Plan für die nächste Zeit:

Wir haben jetzt heute viele Modelle für Boolesche Algebren kennengelernt. Insbesondere für die Schaltalgebra und die Potenzmengenalgebren wissen wir bereits viele weitere Eigenschaften.

Natürliche mathematische Fragen:

- Gelten diese Eigenschaften allgemein?
- Können wir vielleicht sogar weitere Eigenschaften herausbekommen?