
Parallel Grammars
A Phenomenological Approach

Henning Fernau

Universität Trier

fernau@informatik.uni-trier.de

1

Overview

• Phenomena / literature pointers

• Some definitions

• A flavor of results

• Possible projects

– technical / mathematical

– models / applications

2

Literature

• G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages (3
volumes). Springer, 1997.
In particular: Vol. 1, Chap. 5 & Vol. 3, Chap. 9

• G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems.
Academic Press, 1980.

• P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. New
York: Springer, 1990.

These classical sources mostly deal with complete parallelism.

Many papers concerning partial parallelism.

Article on this course:

• H. Fernau. Parallel grammars: a phenomenology. GRAMMARS, vol. 6 (2003),
pp. 25–87.

3

Phenomena

AIM: A (formal language) model of parallel computation

More specifically: a grammar model

Parallel execution of operations

Basic operation in grammars:

one derivation step ; parallel derivation step

Details to come ;-)

4

A. Lindenmayer I

starting point: modeling algae growth

filamentous organisms are strings (of cells)

Read the masters:

A. Lindenmayer. Mathematical models for cellular interactions in de-

velopment I. Filaments with one-sided inputs. Journal of Theoretical

Biology, 18:280–299, 1968.

5

A. Lindenmayer II Basic ideas of Lindenmayer’s model:

1. Each cell is always in one of a finite number of states.

2. Cells may interact with their immediate (at most two) neighbors.

3. Cells may assume a new state depending on their own and their
neighbors’ states.

4. For an external observer, cells “process” in parallel;

5. these observations are undertaken after discrete time steps.

6

A. Lindenmayer III Mathematical translation of Lindenmayer’s model:

1. finite-state model

2. transition function / relation takes at most three arguments

3. output of transition function / relation is again a (new) state

4. transition is applied to each cell (state) in parallel;

5. development over time modeled by repetitions of the application
of the transition function / relation

7

A. Lindenmayer IV Is this all of Lindenmayer’s model? NO

1. cells may multiply / divide

2. cells may die

;

grammatical model rather than automaton model (cellular automata)

if a cell is then a character of a string, then dying means becoming the empty word

8

A. Lindenmayer V Extensions of Lindenmayer’s model

A. Lindenmayer. Mathematical models for cellular interactions in

development II. Simple and branching filaments with two-sided inputs.

Journal of Theoretical Biology, 18:300–315, 1968.

A. Lindenmayer. Adding continuous components to L-systems, IN:

volume 15 of LNCS, pages 53–68. Berlin: Springer, 1974.

9

A. Lindenmayer VI Modelling higher organisms

• growth only occurs near the boundary

• L systems with apical growth

• cellular automata (J von Neumann 1950..)

• (array grammars) [mostly viewed in sequential variants]

10

Literature

A. Burks. The Theory of Self-Reproducing Automata contains a chapter of J. v.
Neumann (a reprint of earlier work?). The University of Illinois Press, 1966.

V. Aladyev. τn-grammars and their generated languages (in Russian). Transactions
of the Academy of Sciences of Estonia; Eest NSV Teaduste Akadeemia toimetised
/ Biologiline seeria, 23(1):67–87, 1974.

V. Aladyev. Operations on languages generated by τn-grammars (in Russian). Com-
mentationes Mathematicae Universitatis Carolinae, 15:211–220, 1974.

V. Aladyev. On the equivalence of τm-grammars and Sb(n)-grammars (in Russian).
Commentationes Mathematicae Universitatis Carolinae, 15:717–726, 1974.

N. Nirmal and K. Krithivasan. Filamentous systems with apical growth. Interna-
tional Journal of Computer Mathematics, 12:203–215, 1983.

11

A. Lindenmayer VII Modelling higher organisms more realistically

• 2-3 dimensions:

A. Paz. Multidimensional parallel rewriting systems, IN: Automata,

Languages, Development, pages 509–515. North-Holland, 1976.

• computer graphics rendering: Prusinkiewicz

12

A shift of interests I Mathematics / Computer Science influence

Mathematical beauty

; study of L systems without interaction

A. Lindenmayer. Developmental systems without cellular interac-

tions, their languages and grammars. Journal of Theoretical Biology,

30:455–484, 1971.

13

A shift of interests II Biology influence

interest in the development of organisms (over time)

;

• study of growth patterns: PhD theses of P. G. Doucet and of

P. M. B. Vitányi, the latter one with the title: Lindenmayer systems: struc-

ture, languages, and growth functions.

• partial parallel derivations, ecogrammar systems might avoid ex-

ponential / polynomial growth

14

Partial parallelism Literature overview (partially chronological)

• multihead finite automata / TMs

• finite index restriction ; absolutely parallel grammars

V. Rajlich. Absolutely parallel grammars and two-way deterministic finite state

transducers. Journal of Computer and System Sciences, 6:324–342, 1972.

• these can be generalized: scattered context grammars

S. Greibach and J. Hopcroft. Scattered context grammars. Journal of Com-
puter and System Sciences, 3:233–247, 1969.

15

J. Gonczarowski and M. K. Warmuth. Scattered versus context-sensitive
rewriting. Acta Informatica, 27:81–95, 1989.

many papers of A. Meduna

• Simple matrix grammars

O. Ibarra. Simple matrix languages. Information and Control (now Information
and Computation), 17:359–394, 1970.

A. Pascu and Gh. Păun. On simple matrix grammars. Bull[etin] Math. de la

Soc. Sci. Math. [de la R. S.] de Roumanie, 20:333–340, 1976.

• n-parallel automata and grammars

R. D. Rosebrugh and D. Wood.

A characterization theorem for n-parallel right linear languages. Journal of
Computer and System Sciences, 7:579–582, 1973.

Image theorems for simple matrix languages and n-parallel languages. Mathe-
matical Systems Theory, 8:150–155, 1974.

Restricted parallelism and right linear grammars. Utilitas Mathematica, 7:151–

186, 1975.

• Indian parallelism / Bharat systems

R. Siromoney and K. Krithivasan. Parallel context-free languages. Information
and Control (now Information and Computation), 24:155–162, 1974.

M. Kudlek. Languages defined by Indian parallel systems. In G. Rozenberg and

A. Salomaa, editors, The Book of L, pages 233–244. Berlin: Springer, 1985.

• (uniformly) limited Lindenmayer systems

D. Wätjen. k-limited 0L systems and languages. J. Inf. Process. Cybern. EIK
(formerly Elektron. Inf.verarb. Kybern.), 24(6):267–285, 1988.

K. Salomaa. Hierarchy of k-context-free languages. International Journal of
Computer Mathematics, 26:69–90,193–205, 1989.

D. Wätjen. On k-uniformly-limited T0L systems and languages. J. Inf. Pro-

cess. Cybern. EIK (formerly Elektron. Inf.verarb. Kybern.), 26(4):229–238,

1990.

• parallel communicating grammar systems

; Lecture on grammar systems!

• (Pattern languages)

D. Angluin. Finding patterns common to a set of strings. Journal of Computer

and System Sciences, 21:46–62, 1980.

• Concepts can be combined:

– Russian parallel grammars

M. K. Levitina. On some grammars with rules of global replacement (in

Russian). Scientific-technical information (Nauchno-tehnichescaya infor-

macii), Series 2, (3):32–36, 1972.

– PCGS with partial parallelism

D. Wätjen. Parallel communicating limited and uniformly limited 0L sys-

tems. Theoretical Computer Science, 255(1–2):163–191, 2001.

Features to be modeled

• (partial) parallelism (see above)

• synchronization

– (limited) L systems

– PCGS

– trace languages

V. Diekert and G. Rozenberg, editors. Book of Traces. World Scientific,

Singapore, 1995.

16

• communication

– neighborhood patterns in cellular automata

– PCGS modes

• Communicating distributed grammar systems CDGS (Csuhaj-Varjú)

Parallel side tracks

• parallelism in operators

(Kudlek / Mateescu; traces)

• picture processing

– collage grammars (Kreowski/Habel/Drewes)

– array grammars (Freund/Wang)

– iterated function systems

• term rewriting

• “parallelism degrees” in context-free grammars (Brandenburg/Reinhardt)

17

Phenomena translation (The Lindenmayer Alphabet)

A → ε erasing rule cell death
P P ropagating cells don’t die

A → A chain rule state change
(G) A → BC growing rule cell division
I XAY → XBY context-sensing I nteraction
J (Finnish: J akautua) fragmentation
T T ables environment conditions
A A dult mechanism only grown-ups count
C C odings non-observable features

18

Further Phenomena

Signals play an eminent role in CAs.

D eterminism ; DL systems

(a special terminal alphabet ; E xtension)

19

Overview

• Phenomena / literature pointers

• Some definitions

• A flavor of results

• Possible projects

– technical / mathematical

– models / applications

20

T0L systems

An interactionless Lindenmayer system with tables, for short a T0L

system, is given by a triple G = (Σ, H, ω):

• Σ: alphabet.

• H = {h1, . . . , ht}
hi: a finite substitution i. e.,

hi : a 7→ {w1, . . . , wni,a}.

• ω ∈ Σ∗: axiom.

21

Some special cases are:

• t = 1: 0L system.

• ∀1 ≤ i ≤ t ∀a ∈ Σ: ni,a = 1: deterministic T0L systems, or DT0L

for short; in other words, each hi is a homomorphism.

G defines a derivation relation ⇒ by x ⇒ y iff y ∈ hi(x) for some

1 ≤ i ≤ t, where we now interpret hi as substitution mapping.

The language generated by G is

L(G) = {w ∈ Σ∗ | ω ⇒∗ w }

with ⇒∗ denoting the reflexive and transitive closure of ⇒.

Possible variants are the following ones:

• Given some “terminal alphabet” ∆, one might consider the ex-
tended language E(G,∆) = L(G) ∩∆∗.

• Given some coding function c : Σ → ∆, investigate the language
c(L(G)) = { c(w) | w ∈ L(G) }.

• A(G) = {w ∈ L(G) | {w} = {u | w ⇒ u} } is the adult language
generated by G.

The corresponding language classes will be denoted by ET0L, CT0L,
and AT0L, respectively. Again, variants like “A0L” denoting the adult lan-

guages definable by 0L systems, can be considered.

An example: L = {anbncn | n ≥ 1}.

A → AA′, A′ → A′

B → BB′, B′ → B′

C → CC′, C′ → C′

are the rules of a 0L system with axiom ABC which, together with the coding

A, A′ 7→ a, B, B′ 7→ b, and C, C ′ 7→ c describes L. More precisely, for the n-step

derivation, we can easily see that

ABC ⇒n A(A′)nB(B′)nC(C′)n

22

Taking these same rules plus the rules

A → a, A′ → a, a → F

B → b, B′ → b, b → F

C → c, C′ → c, c → F

F → F

result in an E0L system (with axiom ABC) which also generates L when taking

{a, b, c} as terminal alphabet.

synchronization by failure symbol F : useful when designing ET0L systems.

QUESTIONS concerning L = {anbncn | n ≥ 1}.

(How) can you prove that L is generated by the given

C/E0L system ?

Can L be generated by an A0L system ?

If not, by an AT0L system?

Partial parallelism Formally, all systems can be specified like a T0L

system G = (Σ, H, ω), H = {h1, . . . , ht}. We redefine “⇒”.

Bharat (T0B) systems x ⇒ y iff ∃1 ≤ i ≤ t ∃a ∈ Σ: all occurrences

of a in x are replaced by some word in hi(a) to obtain y from x;

k-limited (klT0L) systems x ⇒ y iff ∃1 ≤ i ≤ t ∀a ∈ Σ: min{|x|a, k}
occurrences of a in x are replaced by some word in hi(a) to obtain

y from x; (|x|a is the number of occurrences of a in x.)

uniformly k-limited (uklT0L) systems x ⇒ y iff ∃1 ≤ i ≤ t: min{|x|,
k} symbols in x are replaced according to hi to obtain y from x.

23

Another set of examples

G = ({a, b}, {{a → aa, b → ab}} , abb)

0L system abb ⇒ aaabab ⇒ a6aba2ab.

0B system abb ⇒ aabb ⇒ aaabab ⇒ a6ba2b

1l0L system abb ⇒ aaabb ⇒ aaaabab ⇒ a4baaab

2l0L system abb ⇒ aaabab ⇒ a5abaab (compare 0L / 1l0L)

u2l0L system abb ⇒ aabab ⇒ aaaabab ⇒ a6bab

Observe the different “growth patterns.”
What is L(G) in each case?

24

Some further mechanisms

A scattered context grammar is a construct

G = (Σ, P , S,∆), ∆ ⊂ Σ, S ∈ N := Σ \∆.

P = {p1, . . . , pt}, where

pi = (A1, . . . , Ani) → (w1, . . . , wni)

with Aj ∈ N and wj ∈ Σ∗ for 1 ≤ j ≤ ni.

x ⇒ y iff there is an i, 1 ≤ i ≤ t and if there are words u0, . . . , ut ∈ Σ∗

such that

x = u0A1u1 . . . Aniuni and y = u0w1u1 . . . wniuni. (1)

L(G) = {w ∈ ∆∗ | S
∗⇒ w}.

25

Special cases

1. If in addition, u0, . . . , uni ∈ ∆∗ in Eq. (1), then the grammar is
absolutely parallel.

2. If, with exception of the start rules, each ni equals a specific n,
then (in principle) we arrive at simple matrix grammars.

Caveat: interpretation different in literature (leftmost);

basic results are preserved.

Of some importance are the (even more special) cases of:

linear simple matrix languages—where each rule, with exception
of the start rules—is a “list of linear rules,” and of right-linear

26

simple matrix languages (or equal matrix languages)—where each
rule, with exception of the start rules—is a “list of right-linear
rules.”

In these two special cases, the different interpretations of simple ma-
trix grammars coincide.

The so-called n-parallel grammars (and all the corresponding special
cases discussed in a series of papers by Rosebrugh and Wood) are
in turn special cases of simple matrix grammars; basically, the “com-
munication” between the different “branches” in a derivation of a
simple matrix grammars (enabled by the start rule) is not possible
with n-parallel grammars; the only “regulation” is by means of the
“synchronization feature” inherent to the definition of a simple matrix
grammar derivation step.

Linguistic relevant examples

Gi = ({S, S1, S2, S′1, S′2, a, b}, Pi, S, {a, b}),

where P1 contains the following rules:

(S) → (S1S2S′1)

(S1, S2, S′1) → (aS1, bS2, aS′1)

(S1, S2, S′1) → (a, b, a),

27

P2 contains the following rules:

(S) → (S1S2)

(S1, S2) → (aS1, aS2)

(S1, S2) → (bS1, bS2)

(S1, S2) → (a, a)

(S1, S2) → (b, b)

and P3 contains the following rules:

(S) → (S1S2)

(S1, S2) → (aS1, aS2)

(S1, S2) → (S′1, S′2)

(S′1, S′2) → (bS′1, bS′2)

(S′1, S′2) → (ε, ε).

Then, the generated languages are the following ones:

L(G1) = {anbnan | n ≥ 1}
L(G2) = {ww | w ∈ {a, b}+}
L(G3) = {anbmanbm | n, m ≥ 0}

Some sequential mechanisms

• An ordered grammar is a context-free grammar together with a

partial order on its rule set.

A rule is only applicable to some sentential form if it is applicable in the

ordinary sense known from context-free grammars and if no other “greater”

rule is applicable to that sentential form; the yield of an application of a rule

is as known from Chomsky grammars.

The corresponding language families are written as L(O,CF[−ε]),

where −ε indicates that erasing rules are forbidden.

28

• A programmed grammar has—as rules—fragments of goto-programs

of the following form:(
` : A → w,

{
if A occurs in ξ, then apply rule and goto σ
if A does not occur in ξ, then goto φ

)
Here, ` is some label, ξ is the current sentential form, σ and φ are

sets of labels of the given programmed grammar, called success

field and failure field, respectively.

goto Λ means that in the next derivation step, only rules labelled

with some ` ∈ Λ can be applied.

The corresponding language families are written as L(P,CF[−ε], ac).

Important special cases are:

– If all failure fields are empty, then we have a grammar with-

out appearance checking whose language family is denoted as

L(P,CF[−ε]).

– If in each rule the success field and the failure field are identical,

we have a grammar with unconditional transfer whose language

family is denoted as L(P,CF[−ε],ut).

A simple important relation

Theorem 1 L(O,CF[−ε]) (L(P,CF[−ε],ut).

Proof (Sketch): Let A1, . . . , An be the left-hand sides of rules which

are the rules that are “greater” than a specific rule A → w. If F is a

special new failure symbol, then the sequence (“matrix”!)

(A1 → F , . . . , An → F , A → w)

can simulate an application of A → w.

Since ordered languages are recursive, but not all ut-languages, the

strictness follows.

29

A little exercise inbetween. . .

Write up the definitions in a formal way.

Prove the (weak) inclusion relation more formally.

30

Overview

• Phenomena / literature pointers

• Some definitions

• A flavor of results

• Possible projects

– technical / mathematical

– models / applications

31

A topical overview

The following list is a typical to-do list for formal language classes:

hierarchy questions ,

decidability questions,

closure property questions,

combinatorial properties,

descriptional complexity and normal forms, and

learning / inductive inference.

(growth functions)

32

Hierarchy questions

What is the “power” of a concrete grammatical mechanism compared
to other, possibly better known language classes? Most effort has
been spent here on comparing

• parallel grammar mechanisms with the Chomsky hierarchy,

• parallel grammars with suitable types of regulated grammars,

• the different Lindenmayer system types inter alia, and

• partial parallel grammars with “similar” types of Lindenmayer systems.

33

As basic tools,

inclusion relations are mostly shown by direct simulations (which

sometimes rely on certain normal forms of the mechanisms), while

strictness of certain inclusions can be shown

either via certain combinatorial properties of language classes in ques-

tion (like the well-known pumping lemmas for regular and context-free

languages)

or by the absence/presence of certain decidability properties, although

one has to be very careful when making use of the latter tool.

Decidability questions and complexity

membership This question has two variants: The fixed membership

question is: given a language L of a certain type L, is this language

recursive, i. e., is there a Turing machine which may, given any

word w, decide whether w ∈ L holds or not.

In a sense, this question is also a “hierarchy question,” asking whether or not

L is included in the class of recursive languages.

The second variant is the general or uniform membership question:

given a grammar G of a certain grammar type G and a word w, is

w ∈ L(G) or not?

34

emptiness Is the language given by a grammar of a certain type
empty or not?

Note that for stating complexity results more easily, there often the negation

of this problem (i. e., non-emptiness) is considered.

finiteness Is the language given by a grammar of a certain type finite
or not?

equivalence Are the languages of two given grammars the same?

Other questions are: Is the language given by a grammar of a certain type of type
1,2, or 3 in Chomky’s sense ? This is, more generally, the so-called L-ness question:
Is the language given by a grammar of a certain type belonging to L ?

As we will see, there are also decidability questions rather specific to parallel gram-
mars in connection with growth properties.

Closure properties

Typical questions are: Is the language class under consideration closed

under the Boolean operations or under more language-theoretic oper-

ations like closure under star, concatenation, homomorphism, inverse

homomorphism or intersection with regular sets.

A language class closed under the last mentioned five operations and

under union is called an abstract family of languages (AFL).

A language class which is not closed under any of the six AFL oper-

ations is called an anti-AFL.

35

Combinatorial properties

This kind of properties comprise pumping and interchange lemmas

as well-known for regular, linear and context-free languages (in fact,

there are also similar properties known for partial parallel grammars),

as well as several properties of ET0L and EDT0L languages (which

are usually harder to formulate).

For proving these properties, normal forms are often useful.

Since combinatorial properties are logically of the form

“Each language of language class L satisfies . . . ”,

they are very useful for providing non-examples, hence showing the

strictness of inclusions or non-comparability results.

36

Descriptional complexity issues and normal forms

Normal forms, in general, provide a way of having, if not a unique rep-

resentation, then at least a standardized representation of a language

of a certain language class. Well-known examples in this respect are

the Chomsky normal form for context-free grammars.

Normal forms are often helpful for establishing simulation results. The

proof of combinatorial results also often depends on them. Some

learning models explicitly require the use of normal forms.

37

A related question are questions of so-called descriptional complexity.
For example, is it possible to generate each context-free language
with just three nonterminals? This question has a negative answer,
but the analogous question concerning the nonterminal complexity
of scattered context languages or programmed languages has an af-
firmative answer. If rewriting of terminal symbols is permitted, the
notion of active symbol complexity is to be studied instead.

Another question concerns the restriction of the number of rules or
tables. In a sense, also the question whether or not deterministic
systems are as powerful as nondeterministic ones is a question of
descriptional complexity, especially, if the degree of nondeterminism
is quantified.

For mechanisms involving context, also the “degree of context-sensing” can be
quantified.

Learning/inductive inference

The main problem in this area can be described as follows: is it

possible to derive a correct (or at least approximative) description of

a language of a certain class when seeing the members of the language

one by one (and being given possibly additional side information)?

Depending on the type of side information, how the information is

provided (Is the learner only “passive” or can (s)he take an active

part, asking questions or making experiments?), on what is exactly

required to accept the answer of a learner (Are “errors” tolerated?),

and on how “certainly” a learner is required to learn “successfully,” a

multitude of learning scenarios have been discussed in the literature.

38

Growth functions

This is a topic special to parallel grammars.

With each DIL system G, we can associate a function g which tells

the length of the word derived after n derivation steps.

This growth function has been studied extensively, and also related

notions concerning more general forms of Lindenmayer systems.

In this connection, also new types of decidability questions arise, e. g.:

is the growth function of a given D0L system a polynomial function?

Normal forms for ET0L systems

Lemma 2 For every ET0L system, we can construct an equivalent

ET0L system whose terminal symbols are only trivially rewritten, i. e.,

by rules of the form a → a.

Proof: Exercise! Q.E.D.

Theorem 3 Every ET0L language is generatable by an ET0L system

with only two tables.

Proof: (Sketch) If L is generated by an ET0L system G = (Σ, H, ω,∆) which obeys
the normal form of Lemma 2 with tables

H = {h1, . . . , ht},

39

then let [A, i] for A ∈ Σ \∆ and for 1 ≤ i ≤ t be a new alphabet. For a ∈ ∆, let
[a, i] be an alternative writing for a. Let

Σ′ = {[A, i] | A ∈ Σ,1 ≤ i ≤ m}.
For a word x = ξ1 . . . ξm, let

[x, i] := [ξ1, i] . . . [ξm, i].

There are two tables in the simulating ET0L system G′ = (Σ′, H ′, [ω,1],∆):

• one simulation table containing, for all 1 ≤ i ≤ t, a rule [A, i] → [w, i] iff
A → w ∈ hi, and

• one dispatcher table with rules [A, i] → [A, (i mod n) + 1] for all 1 ≤ i ≤ t and
A ∈ Σ.

Q.E.D.

Alternatively, we can phrase the last theorem as follows:
ET0L systems have a synchronization degree of two.

We only state a corresponding result for limited ET0L systems.

Theorem 4 The synchronization degree of klET0L systems is at

most three and at least two.

Can you find a proof?

Remarks on closure properties

lack of (positive) closure properties due to the “pure rewriting”

Lemma 5 Each singleton language can be generated by a (uniformly

(limited)) PD0L system.

Proof: Take the word as axiom and introduce rules a → a. Q.E.D.

40

Lemma 6 {a, aa} is no (uniformly (limited)) 0L language.

Proof: If it were a 0L language, then either a or aa must be the axiom.

If aa is the axiom, then, in order to obtain a, the system must contain a rule a → ε.

But this would allow to generate ε, contradiction.∗

If a is the axiom, we would have the rule a → aa in our rule set, so that the generated

language would include at least {a2n | n ≥ 0} in the case of 0L systems (similar for

(uniformly) limited systems). Q.E.D.

Theorem 7 L(0L) is an anti-AFL. The statement is also true for systems

with determinism, propagation or more than one table. Analogous results hold for

(uniformly) limited systems.

∗When we consider {ε, a, aa} and {a, aa} as being “the same” language, we can take
{a, aaa} as example.

We will only prove non-closure of 0L languages under four operations

by making use of the preceding two lemmas in order to communicate

the flavour of this kind of results:

union {a} ∪ {aa} = {a, aa} /∈ L(0L)

catenation {a} · {a, ε} = {a, aa} /∈ L(0L)

homomorphism h : a, b 7→ a ; h({a, bb}) = {a, aa} /∈ L(0L)

intersection with regular sets {a2n | n ≥ 0} ∩ {a, aa} = {a, aa} /∈ L(0L)

On the other hand, when Lindenmayer systems with extensions are

considered, we observe positive closure properties:

Theorem 8 L(ET0L) forms an AFL.

Theorem 9 L(E0L) is closed under all AFL operations except from

inverse homomorphisms.

Parallel versus sequential derivations

How do CF languages relate to E0L, lE0L and A0L languages?

Lemma 10 Any CF grammar can be simulated by an (l)E0L system.

Proof: The idea is quite simple and we will encounter it in many situations when

we like to circumvent the enforced parallel derivation: sequentialization; we only

add all rules a → a to the rule set of the given CF grammar. Q.E.D.

With the example {anbnan | n ≥ 1} seen above, we can deduce:

Theorem 11 L(CF) (L(E0L) ∩ L(lE0L).

41

A new measure of descriptional complexity

Let G = (Σ, H, ω) be a T0L system. The static(ally measured) degree

of parallelism of a table h ∈ H is defined by

πst(h) = #{ a ∈ Σ | a → a /∈ h }.

Correspondingly, for G we set

πst(G) = max{πst(h) | h ∈ H }.

For a language L in L(T0L), we define

πst(L) = min{πst(G) | G is an T0L system and L = L(G) }.

42

Adult languages

Without full proof, we state the following rather surprising result:

Theorem 12 L(CF) = L(A0L).

The proof direction ⊇ is rather tricky and omitted.

To understand why A0L systems are not more powerful than CFG, try

to understand where the construction of the example {anbnan | n ≥ 1}
fails.

Think for a moment why the construction given in Lemma 10 does

not always work in the “adult” situation.

43

Correct guess: malicious words.

The CF grammar could contain useless rules so that words not con-

sisting solely of terminals could become “stable.”

Referring to the well-known technique for eliminating useless rules

(which is again sort of normal form for CFL) makes the previous

argument applicable.

Finally, we mention another interesting result in this context:

Theorem 13 L(ET0L) = L(AT0L).

Lindenmayer systems and ordered grammars

Theorem 14 L(ET0L) (L(O,CF− ε).

In the proof, we make use of the following results.

Theorem 15 L(ET0L) = L(EPT0L).

Lemma 16 L(O,CF− ε) is closed under union.

From a combinatorial property of ET0L systems, one can deduce:

Corollary 17 L = {(abm)ncn | m ≥ n ≥ 1} /∈ L(ET0L)

Observe the dependence of the “inner loop” on the “outer loop” in the

example language. This is typical for known non-ETOL languages.

44

Based on the mentioned three results, we can prove Theorem 14:
Proof: Let L ⊆ ∆∗ be an ET0L language. Let L be decomposed as

L =
⋃

a∈∆

aLa ∪ LF where La = {w ∈ ∆+ | aw ∈ L}

is basically the left derivative of L under a and LF is some finite language. The two
theorems 15 and 8 show that each La is in fact an EPT0L language.

We are going to show that each language aLa is an ordered language, which,
together with Lemma 16 proves the desired result.

Let La by described by an ET0L system Ga = (Σ, H, ω,∆) with H = {h1, . . . , ht}.
Let Σ′, Σ′′ be alphabets of primed (double-primed) symbols from Σ. We interpret
′ and ′′ also as homomorphisms, which means that ′ : A 7→ A′. Let S, F, A be three
new symbols, the start symbol, the failure symbol and a symbol which will finally
generate the leftmost a of aLa.

The simulating ordered grammar G′
a = (N, P, S,∆, <):

N := Σ′ ∪ {S, F, A} ∪ ((Σ ∪ {A})× {k | 1 ≤ k ≤ t}).
The last bunch of symbols keeps track of the currently simulated table.

We now describe the simulating rules together with their use in the simulation.

S → (A, k)ω′ for 1 ≤ k ≤ t

is a set of start rules. A simulation of table k (1 ≤ k ≤ t) is done by sequentialisation,

requiring—as usual—a marking and a real application phase:

marking I: B′ → (B, k)

〈
(A, s) → F for 1 ≤ s ≤ t, s 6= k
A → F

the actual application of table hk: (B, k) → w′′
〈

C ′ → F for C ∈ Σ
A → F

marking IO: B′′ → B′
〈

(C, k) → F for C ∈ Σ,1 ≤ k ≤ t
A → F

dispatcher rule: (A, k) → (A, s) < (B, r) → F for 1 ≤ k, r, s ≤ t, B ∈ Σ.

termination rules: (A, k) → A

〈
(B, k) → F for B ∈ Σ
B′ → F for B ∈ Σ \∆

b′ → b < (A, k) → F for b ∈ ∆,1 ≤ k ≤ t

A → a < b′ → F for b ∈ ∆ Q.E.D.

What would have to be shown to actually produce a proof?

Limited Lindenmayer systems

In the following, we present three results:

Theorem 18 Each klET0L language is also a 1lET0L language.

Theorem 19 Each klET0L language is a programmed language with

unconditional transfer and each programmed language with uncondi-

tional transfer is a 1lET0L language.

A similar statement is true for languages generatable by systems/grammars

without erasing rules.

Theorem 20 There are non-recursive klDT0L languages.

45

Theorem 18 can be shown in the following way:

Proof: (Sketch) Idea: sequentialisation by marking when simulating G with G′.
For each symbol A of G, introduce marked symbols A[i, j] with 1 ≤ i, j ≤ k.

Marking table Mi, 1 ≤ i ≤ k, has the following rules:
A → A[i, i] and A[i− 1, j] → A[i, j] for each symbol A and j < i; all other (marked)
symbols go to the failure symbol F .

For each original table h, there is a simulating table h′ containing rule A[k, j] → w

if A → w is present in h, as well as A → A. (All other symbols go to F .) Q.E.D.

Is the sketch working?
Check: L(G) ⊆ L(G′)? & L(G′) ⊆ L(G)?
Claim: If simulation starts with M1, then it has to cycle through M2, M3, . . . , Mk, h

′.

Two frequent techniques in this area: sequentialisation of rule appli-
cations and explicit state information.

Proof: (of Theorem 19)
For simulating 1lET0L systems with programmed grammars with ut, we introduce,
for each table h, one simulation loop which enables, for each symbol a, some rule
a → w of h to be simulated by using a′ → w. Moreover, there is a general priming
loop where, for each symbol a, there is a rule a → a′.
Assuming a certain normal form for 1lET0L systems due to D. Wätjen (namely,
only “nonterminal” symbols are “non-constantly” replaced), this basically shows
the sequentialisation construction of J. Dassow.
Observe: no need to show how to simulate klET0L systems by programmed gram-
mars in general due to Theorem 18.

For the other direction, we use explicit state information stored in a state symbol.

For each rule (p : A → w, γ) of a programmed grammar, we introduce a table with

non-failure rules p → q for each q ∈ γ and A → w.

The state symbol is erased only when a terminal string is derived (termination

table). Q.E.D.

Theorem 18 can be generalized:

Theorem 21 Consider two natural numbers k1 and k2. Then,

• (k1k2)lEPT0L ⊆ k1lEPT0L and

• (k1k2)lET0L ⊆ k1lET0L.

Proof: We only give the proof for the first assertion (propagating case).
Let G = (Σ, H, ω,∆) be some (k1k2)lEPT0L system.
For each A ∈ Σ and each 1 ≤ i, j ≤ k2, we have symbols A, Ai and A[i, j] (as well
as the failure symbol F) in the alphabet Σ′ of the simulating k1lEPT0L system G′.
A table h ∈ H is simulated by G′ by applying a sequence of tables described by the
regular expression

T ∗
0M1T

∗
1M2T

∗
2 . . . Mk2−1T

∗
k2−1Mk2

h′∗ .

Details of the tables:

• T0 has as non-failure rules A → A1 and A1 → A1 for each symbol A ∈ Σ.

• Mi (for i = 1, . . . , k2) contains, for each A ∈ Σ, Ai → A[i, i] and A[i−1, j] → A[i, j]
for j < i as only non-failure rules.

• Ti (for i = 1, . . . , k2 − 1) has as non-failure rules Ai → Ai+1, Ai+1 → Ai+1,
A[i, j] → A[i, j] for each A ∈ Σ and j ≤ i.

• h′ contains A[k2, j] → w for j ≤ k2 if A → w ∈ h. Moreover, conversion rules
Ak2

→ A and A → A for A ∈ Σ are supplied. All other rules lead to the failure
symbol.

Q.E.D.

Observation 22 A similar idea of distributing the state information

can be used to show that 1lEPT0L systems can simulate programmed

grammars with unconditional transfer without erasing rules.

Exercise: Provide the details!

Let us now prove Theorem 20: Problem: to choose the “right”

computability model. We will use a variant of register machines in

the following.

Each register is capable of storing a non-negative integer.

Registers are labelled by positive integers.

The input is stored in the first register.

The output is expected to be found in the second register.

Example 23 An example of a register machine program (RMP):

L1 : a1

L2 : a2

L3 : JZ1L7

L4 : s1

L5 : a2

L6 : JNZ1L4

L7 : END

Example 23 computes x +2 for each input x; if the start were at L3,

the identity function would be computed.

RMP consists of a sequence of labelled commands

• for incrementing and decrementing∗ register numbered i (by the

commands ai and si, respectively),

• for jumping if register numbered i is zero or not (by JZi and JNZi,

respectively),

• for indicating the END of an RMP.

∗In RMP, a modified decrement is used: if a register containing zero is decremented,
it will contain also zero afterwards.

If an RMP uses at most r registers and ` labels, we call it (r, `)-RMP.

Let k ≥ 1. A klT0L machine is given by

M = (Σ, {h1, . . . , ht}, {σ, x, y, R}, k),

where Σ and {h1, . . . , ht} are the total alphabet and the set of tables,

respectively. σ, x, y, R are special symbols in Σ.

We say that M computes the function f : N0−◦→N0 iff the corre-

sponding klT0L system GM,n = (Σ, {h1, . . . , ht}, xknRσ, k) with axiom

xknRσ generates a word of the form ykmσ if and only if m = f(n).

Especially, there is at most one word in {y}∗{σ} ∩ L(GM,n).

Lemma 24 For any computable function f : N0−◦→N0 and any k ≥ 1,

there exists a klT0L machine computing f .

Proof: f : N0−◦→N0 can be described by an (r, `)-RMP P . We describe a
simulating klT0L machine M = (Σ, H, {σ, x, y, R}) with

Σ = {σ, F, R, S, x = A1, . . . , Ar, y, C1, . . . , Cr} ∪ L ∪ L′.

F is a failure symbol; we list only productions which do not lead to F .
L = {L1, . . . , L`} is the set of labels controlling the simulation of the program P .
L′ is a set of primed version of the labels in L.
We can assume that every jump statement in P is actually a sequence of two
complementary statements: JZi lab1 and JNZi lab2 which carry the same register
index i. This avoids implicit jumps.

The set of tables H consists of

• one initialization table hI containing σ → σ, x → x and R → C1 · · ·CrL1;

• two termination tables
hT with σ → σ, Ai → ε for i 6= 2, A2 → y, L` → S, S → S, y → y, Ci → Ci (i ≤ r);
and h′T with σ → σ, Ci → ε for i ≤ r, S → ε, and y → y.
This way, the result is transferred from register 2 into a sequence of y’s.

• for any label Lj, there corresponds one or two simulation tables.

• Ls : ai: Ls → Ls+1, Ci → Ak
i Ci, Cj → Cj for j 6= i, Aj → Aj for 1 ≤ j ≤ r, σ → σ.

• Ls : si: Ls → Ls+1, Ai → ε, Cj → Cj for 1 ≤ j ≤ r, Aj → Aj for j 6= i, σ → σ.

• Ls : JZiLt: Ls → Lt, Cj → Cj for 1 ≤ j ≤ r, Aj → Aj for j 6= i, σ → σ.

• Ls : JNZiLt: There are two simulating tables here:

– t1: Ls → L′
s, Ai → σAi, Cj → Cj for 1 ≤ j ≤ r, Aj → Aj for j 6= i, σ → σ.

– t2: L′
s → Lt, σ → ε, Cj → Cj and Aj → Aj for 1 ≤ j ≤ r.

Observe: we do not (cannot ?) bother about the sequence in which the symbols

occur in a string derived via M . Nevertheless, the correctness of the construction

is easily seen observing the special role of σ as a success witness. Q.E.D.

With the help of Lemma 24, Theorem 20 can be shown: Exercise!

Theorem 25 For any k ≥ 1, L(O,CF) (L(klET0L).

Proof: (Sketch of crucial simulation)
Alphabet of klET0L system G′ that simulates ordered grammar G = (N, P, S,∆, <):

Σ = N ∪∆ ∪∆′ ∪ {σ, χ, α, F}.
Priming is seen as a morphism keeping fixed symbols others than terminals.
Axiom of G′: σS, σ indicates simulation mode.
Each rule p : A → w of G is simulated by two tables:

1. hp containing A → αkw′, A → A, as well as B → F for each left-hand side B of
any rule greater than A → w in G.
Moreover, hp contains rules X → X for the other nonterminals and rules b′ → b′

for the terminals b.
σ → χ introduces the checking mode marker;
all other symbols are sent to the failure symbol F .

2. h′p having only the following non-failure rules:
χ → σ and α → ε, as well as X ′ → X ′ for any nonterminal and terminal X of G.

h′p checks that when applying hp, rule A → αkw′ was applied at most once.

Termination table t contains non-failure rules b′ → b′ and b → b for terminals b and

σ → ε to stop the simulation. Q.E.D.

Explain: Purpose of primed terminals?!

Why simulation of ordered rule in two tables?!

Unfortunately, the above simulation does not carry over to the case

of disallowing erasing rules in general. Why?

Uniformly limited systems

Theorem 26 (Salomaa / Wätjen) The language families of k-uniformly

limited E0L systems form an infinite hierarchy:

L(CF) = L(1ulE0L) (L(2ulE0L) (L(3ulE0L) (· · · .

Theorem 27 For all k ≥ 1, we have:

L(kulET0L) ⊆ L(P,CF)

L(kulEPT0L) ⊆ L(P,CF− ε)

Proof: (Idea contains (possibly) non-algorithmic elements in the erasing case!)
Given a kulET0L system G = (Σ, H, ω,∆), we can compute the finite set

L′ := L(G) ∩ {w ∈ Σ∗ | |w| ≤ k}.

46

Consider now a slight variant of uniform k-limitation—exact uniform k-limitation:
x ⇒ex y if y is obtained from x by replacing exactly k symbols in x. If Lex(H) denotes
the language generated in this way by a kulET0L system H, then it is not hard to
see that

L(G) = Lex(G) ∪
⋃

w∈L′

Lex(G[w])

where G[w] is the system with axiom w (instead of ω).

Each exact uniformly limited system can be simulated by a programmed grammar

without appearance checking by sequentialisation. L(P,CF) is closed under union,

; X. Q.E.D.

Open: (1) Can L′ be computed algorithmically?

(2) Furthermore, the strictness of the inclusions in the preceding

theorem is unknown.

Appropriate combinatorial lemmas ;

Theorem 28 • For each k ≥ 1, L(kulE0L) (L(kulET0L), and

• for each k ≥ 1, L(klE0L) (L(klET0L).

Similar results hold for propagating and deterministic systems, as well.

A result on scattered context grammars

Aim: Pove universality result. Problem: to choose the “right” com-

putational model. Here, we rely on the following result:

Theorem 29 Every recursively enumerable language can be repre-

sented as the homomorphic image of the intersection of two context-

free languages.

Hint: have a look on the proof of the undecidability of Post’s corre-

spondence problem

Theorem 30 L(RE) = L(SC).

Proof: ⊇: X (Church’s thesis)

47

⊆: Use Theorem 29. G1 and G2 be CFGs, Gi = (Σi, Pi, Si,∆), i = 1,2,Σ1∩Σ2 = ∆.
Let h : ∆ → T be a homomorphism with ∆∩T = ∅. Define as total alphabet of the
simulating scattered context grammar G = (Σ, P, S,∆)

Σ := Σ1 ∪Σ2 ∪ {S,$} ∪ T,

S and $ being new symbols. Note: ∆ are nonterminal symbols!
Rules of G:

• (S) → ($S1$$S2$) as start rule;

• (A) → w for each A → w ∈ P1 ∪ P2; (to simulate G1 and G2)

• ($, A,$,$, A,$) → (h(A),$,$, ε,$,$) for each A ∈ ∆;
this way, a string $w$$w$ with w ∈ ∆∗ will be transformed into h(w)$4;

• ($,$,$,$) → (ε, ε, ε, ε).

Q.E.D.

In this connection, let us mention the following inclusion result whose

strictness is a long-standing open question:

Lemma 31 L(SC− ε) ⊆ L(CS).

Corollary 32 Every language representable as the morphic image of

the intersection of two context-free languages of finite index is also

an absolutely parallel language.

Back to Lindenmayer Classical topics:

• Coding versus extensions

• Fragmentation

• Growth patterns / Interaction

• Decidability

48

Coding versus extensions

Theorem 33 L(E0L) = L(C0L).

Proof: (Rough idea) ⊇: reconsider {anbncn | n ≥ 1} example (synchronization by

failure symbol)

⊆: more tricky. . . Q.E.D.

49

Fragmentation

Variants of Lindenmayer systems by introducing fragmentation (Finnish:

Jakautua), more formally:

Let G = (Σ, H, ω) be a T0L system.

Let q ∈ Σ be a special symbol with only production q → q having q as

left-hand side.

J(G, q) := {v ∈ (Σ \ {q})∗ | ∃u, w ∈ Σ∗ : qωq
∗⇒ uqvqw}.

(G, q) is also called a JT0L system. Obviously, it is also possible to

consider fragmentation as operation on languages L ⊆ Σ∗:

J(L, q) := {v ∈ (Σ \ {q})∗ | ∃x ∈ L∃u, w ∈ Σ∗ : qxq = uqvqw}.

Then, J(G, q) = J(L(G), q).

50

Example 34 Consider the J0L system (G, q) with

G = ({a, b, q}, h, aba) and

h = {a → a, b → abaqaba, q → q}.

Claim: J(G, q) = {aban, anba | n ≥ 1}.

Proof: In one derivation step, we have aba ⇒ aabaqabaa, so that aba, aaba and

abaa lie in J(G, q).

If aban lies in J(G, q), then aban+1 lies in J(G, q), as well: aban ⇒ aabaqabaan.

Similarly, if anba lies in J(G, q), then an+1ba lies in J(G, q).

By induction, the inclusion ⊆ follows.

The other direction is easily seen by induction along the same lines; no other words

are producible by G. Q.E.D.

Exercise: Investigate the J0L language generated by

G = ({a, b, c, q}, {a → aqa, b → ba, c → qb, q → q}, abc).

Theorem 35 L(EJ0L) = L(E0L).

Growth patterns / Interaction

In (i, j)L systems (or IL systems if the numbers i and j are arbitrary),

the i symbols “to the left” and the j symbols “to the right” of the

symbol which has to be replaced are taken into account.

If there are not i > 0 symbols to the left (e. g., when considering the leftmost

symbol), a special symbol # is considered as being read. Similarly, “missing” right

neighbours are handled.

51

Example 36 Consider the DIL system with axiom ad and the rules:

a b c d
c b a d
a a b a d
b a b a d
c b c a ad
d a b a d

The derivation proceeds as follows:

ad ⇒ cd ⇒ aad ⇒ cad ⇒ abd ⇒ cbd ⇒ acd ⇒ caad ⇒ abaad

It can be observed that this system, also known as Gabor’s sloth,

grows at a logarithmic scale.

Given a DIL system G = (Σ, h, ω), the DIL growth function

gG : n 7→ |wn| for ω ⇒n wn

gives the length of the word derived after n steps.

Lemma 37 No DIL growth function grows faster than exponential.

What kinds of functions can be realized as DIL growth functions?

1. exponential growth: consider the D0L system with rule a → a2;

2. polynomial growth: a → ab, b → b generate, starting with a, abn;

3. logarithmic growth: see Example 36.

Growth patterns without interaction

gG does not depend on the structure given by the sequence of letters

of the axiom and in the right-hand sides of the rules, it only matters

how many symbols of which type appear there.

This information can be stored in a vector (the Parikh (row) vector

of the axiom) and in a matrix (the growth matrix of the rules).

52

Example 38 Consider the D0L system

G = ({a, b, c}, {a → abc2, b → bc2, c → c}, a).

The growth matrix is:

MG :=

 1 1 2
0 1 2
0 0 1

The first row of MG is the Parikh (row) vector of abc2, the second row the Parikh

vector of bc2, and the third row is the Parikh vector of the right-hand side of the

rule c → c.

What is the matrix of Parikh vectors of the words derivable from a,

b, and c after two derivation steps? This is just the matrix

M2
G =

 1 2 6
0 1 4
0 0 1

This means that the Parikh vector of the word derivable from the

axiom after two derivation steps can be computed by multiplying the

Parikh vector of the axiom with M2
G:

a ⇒ abcc ⇒ abccbcccc and (1 0 0) M2
G = (1 2 6) X

Hence, we also can use matrix algebra to compute the growth function

for certain arguments.

Moreover, we can use now classical results of matrix theory, e. g., that

every matrix satisfies its own characteristic equation (Cayley-Hamilton

Theorem). In particular, this means that

Mn
G = c1Mn−1

G + c2Mn−2
G + · · ·+ cnM0

G,

from which we can derive the following recursion for the growth func-

tion gG:

gG(i + n) = c1gG(i + n− 1) + c2gG(i + n− 2) + · · ·+ cngG(i)

for all i ≥ 0. This way, it is often possible to express the function gG

explicitly. Let us reconsider our example:

Example 39 Let us compute M3
G for system G from Example 38. We get

M3
G =

 1 3 12
0 1 6
0 0 1

 = c1

 1 2 6
0 1 4
0 0 1

+ c2

 1 1 2
0 1 2
0 0 1

+ c3I,

where I denotes the identity matrix. A little algebra reveals:

c1 = 3, c2 = −3, and c3 = 1.

This means that

gG(i + 3) = 3gG(i + 2)− 3gG(i + 1) + gG(i)

with initial values

gG(0) = 1, gG(1) = 4, and gG(2) = 9.

As it might be guessed already from this sample sequence, we can further conclude
that gG(i) = i2 in general by verifying:

(i + 3)2 = i2 + 6i + 9 = 3(i + 2)2 − 3(i + 1)2 + i2.

This little piece of algebra has the following consequence:

Lemma 40 Assume that g is a D0L growth function with arbitrarily

long intervals on which it is constant, i. e., more formally:

∀k∃i : g(i) = g(i + 1) = · · · = g(i + k).

Then, g is ultimately constant.

This proves that there is no D0L growth function growing logarith-

mically like Gabor’s sloth:

Corollary 41 There are DIL growth functions which are not D0L

growth functions.

Decidability

The mentioned algebraic formulation can be also used to attack some

natural decidability questions:

1. Growth equivalence for D0L systems: Given two D0L systems G1

and G2, do their growth functions gG1
and gG2

coincide?

Theorem 42 Growth equivalence for D0L systems is decidable.

Proof: Let ni be the alphabet cardinality of Gi = (Σi, hi, ωi), i. e., ni = |Σi|.
Then, as a further consequence of the Hamilton-Cayley Theorem, gG1

= gG2
iff

∀0 ≤ i ≤ n1 + n2(gG1
(i) = gG2

(i)). Q.E.D.

53

2. Polynomiality problem for D0L systems: Given a D0L system,

decide whether its growth function is a polynomial.

Theorem 43 The polynomiality problem for D0L systems is de-

cidable.

Idea: A rule a → w with more than one occurrence of a in w implies

exponential growth. “More indirect” situations are detectable by

a “stage construction” as known from the elimination procedure

for erasing rules in context-free grammars.

3. Momentary stagnation: A D0L system G is said to stagnate mo-

mentarily if there exists a t such that gG(t) = gG(t + 1). It is

open whether the following problem is decidable or not: deter-

mine whether a given D0L system stagnates momentarily or not.

Equivalently, this problem can be posed purely algebraically: Decide, given an

n × n matrix M with (possibly negative) integer entries, whether or not there

exist a t such that a zero appears as entry in the right upper corner of M t.

More precisely, this re-formulation is decidable when n = 2, but the problem is

open when n ≥ 3.

Given two DIL systems G1 and G2, Gi = (Σi, hi, ωi), the question to

determine whether or not the infinite sequences

ω1, h1
1(ω1), h

2
1(ω1), h

3
1(ω1), . . .

and

ω2, h1
2(ω2), h

2
2(ω2), h

3
2(ω2), . . .

coincide or not is the sequence equivalence problem.

Theorem 44 Both the sequence equivalence and the language equiv-

alence problems are decidable for D0L systems.

Define, for any Lindenmayer system G with axiom ω, the sequence

cardinality function

dG : n 7→ |{w | ω ⇒n w}| .

Given two systems G1 and G2, the sequence cardinality problem ask

two determine if dG1
= dG2

.

Theorem 45 Sequence cardinality is undecidable when given two

DT0L or two 0L systems.

A Lindenmayer system is derivation slender iff there exists a constant

c such that dG(n) ≤ c for all n ≥ 0.

Theorem 46 Derivation slenderness is decidable for D0L systems.

Intriguingly, the seemingly related slenderness problem is open for

D0L systems. Recall that a language L is called slender if there exists

a constant c such that, for each n ≥ 0, there are at most c words of

length n in L.

We end this section with listing some (un-)decidability results which

are in a sense not so “typical” for Lindenmayer systems.

Theorem 47 Language equivalence is undecidable for P0L systems.

The context-freeness, regularity and 0L-ness problems are undecidable

for E0L systems.

UL systems are unary 0L systems. Here, things tend to be easier,

since—by interpreting words as unary numbers—tools from number

theory come at hand.

Theorem 48 Language equivalence between TUL and UL systems,

as well as between TUL systems and regular grammars, is decidable.

Regularity and UL-ness is decidable for TUL languages, as the TUL-

ness for regular languages.

Overview

• Phenomena / literature pointers

• Some definitions

• A flavor of results

• Possible projects

– technical / mathematical

– models / applications

54

Research Paper Proposal No. I: Adult languages are meant to model

“maturity” in grown-up organisms whose growth pattern is modelled

by means of a Lindenmayer system G = (Σ, H, ω). You can easily

observe that the adultness condition formulated by A. Walker is not

actually covering “reality,” where small changes can be observed also

in adult organisms.

Based on a measure µ of “closeness” between strings, a reasonable

generalization of the original notion of an adult language is obtainable,

e. g.,

Aabs,δ(G) = {w ∈ Σ∗ | ∀v ∈ Σ∗ : w ⇒G v ; µ(w, v) ≤ δ }

for bounding the absolute deviation between subsequent states and

Arel,δ(G) = {w ∈ Σ∗ | ∀v ∈ Σ∗ : w ⇒G v ; µ(w, v) ≤ δ max(|w|, |v|) }
55

for bounding the relative deviation between subsequent states.

Observe that, for each system G, A(G) = Aabs,0(G) = Arel,0(G) holds.

So, it seems to be worthwhile studying the corresponding language

classes Aabs,δ and Arel,δ for various values of δ more thoroughly.

In a variant of this project, one could allow/consider also the corre-

sponding classes obtained by partially parallel grammars. This way, a

larger project could emerge.

Note that other modifications of the notion of adult language have been considered

in: A. Kelemenová and P. Vajgel. Productions in stable 0L systems. In G. Rozen-

berg and A. Salomaa, editors, Developments in Language Theory (Turku, 1993),

pages 102–110. Singapore: World Scientific, 1994. 2

Research Paper Proposal No. II: Investigate the effect of the frag-
mentation operator applied to (uniformly) limited or Bharat systems
(or other parallel grammars). In particular, it would be interesting to
see whether results like

L(EJ0L) = L(E0L)

transfer to other cases. 2

Research Paper Proposal No. III: Investigate the effect of codings (or
homomorphisms, weak codings, k-limited homomorphisms, . . .) on
(uniformly) limited systems. 2

Probably, both small projects together might also serve as a larger
project on effects of operators on pure partial parallel languages.

56

We already discussed above that there exist, in a sense, two different

notions of this grammar mechanism. Therefore, the following small

research project can be stated rather briefly:

Research Paper Proposal No. IV: Investigate and compare the two

notions of simple matrix grammars with context-free cores. 2

57

Modelling

Since their very beginnings, automata and grammars were defined
taking ideas from nature. The most prominent examples here are:

• the ideas of McCulloch and Pitt (1943) which led to the consid-
eration of neural networks,

• the investigations of von Neumann (1950s) laying the foundations
of the theory of cellular automata,

• and the models proposed by Lindenmayer for simple filamentous
organisms which initiated the theory of Lindenmayer systems.

58

In more recent times, DNA computing and membrane computing,

motivated by biological phenomena, and quantum computing.

Due to the inherent parallelisms found in nature, all these model are

in fact models of parallel computation.

In comparison with the huge amount of literature generated in this

way the impact of language theory on biology and other sciences

seems to be rather small.

Research Project Proposal No. V: One of the reasons might be that

language theory tends to present its results in a rather abstract, math-

ematical fashion, while biologists prefer seeing concrete results and

examples.

So, work relating abstract ideas with biological data is highly welcome

and would probably re-intensify the collaboration of language theorists

and biologists.

Observe that the first papers on Lindenmayer systems were actually published in
biology journals, but later on almost all papers appeared in journals dedicated to
Theoretical Computer Science, see the references in (Rozenberg & Salomaa, 1980).

A notable exception is a recent sequence of papers applying Lindenmayer systems
to model the developments of forests by W. Kurth, e.g., Towards universality of
growth grammars: models of Bell, Pagès, and Takenaka revisited. Ann. For. Sci.,
57:543–554, 2000.

Of course, also the papers of P. Prusinkiewicz and his collaborators deserved to
mentioned here, most of them appearing in Computer Graphics Conferences and
Journals.

In this respect, the interview of A. Lindenmayer published in EATCS Bulletin,
23:185–198, 1984, is very interesting, since it discusses the biological (ir)relevance
of certain concepts introduced in the theory of Lindenmayer systems.

Related questions—but pointing to a more mathematical project—are discussed in

the project on parametric L systems. 2

Research Project Proposal No. VI: Another related source of inspira-

tion for defining grammatical mechanism are the social sciences, or,

more general, human behaviour or human interaction. Historically,

Turing’s paper: On computable numbers, with an application to the

Entscheidungsproblem. Proc. London Math. Soc., 2(42):230–265,

1936. (Corrections on volume 2(43):544–546) —where he defines a

model of computation (nowadays known as Turing machine) by ab-

stracting the behaviour of a “calculator” (who was in those times a

human being with certain mathematical skills)—can be seen as a first

attempt in this direction.

Later on, the definition of cooperating distributed grammar systems

and of colonies where largely motivated by social theories. This re-

mark includes other more special issues like the formation of teams.

Again, the impact of all these theories on social sciences seems to be rather limited,
with the notable exception of applications of grammar systems in linguistics, see
M. D. Jiménez-López. Grammar Systems: A Formal Language Theoretic Frame-
work for Linguistics and Cultural Evolution. PhD thesis, University Rovira i Virgili,
Tarragona, Spain, 2000.

So, it would be very beneficial—both from the point of view of language theory

and from the point of view of humanities—to see a back-flow of results or insights

from (abstract) formal language theory to concrete problems in humanities, best if

concerning areas where ideas motivating the formal language considerations were

taken from. 2

Research Project Proposal No. VII: Both L systems and CDGS were

invented to model certain phenomena in real life. On the other hand,

there is the nowadays growing area of artificial life (with conferences

explicitly dedicated to this area).

It would be interesting to see whether grammatical mechanisms as

the mentioned ones could establish a mathematical backbone in this

area. Note that some computer graphics applications—as mentioned

in the RP on biomodeling—can be viewed as a step in this direction.

2

Research Project Proposal No. VIII: Parallel communicating grammar
systems (PCGS) were somehow invented to model phenomena en-
countered in synchronized parallel processing. But what about the
real applicability of this approach?
An exception in this direction is L. Kari, H. Lutfiyya, Gh. Păun, and C. Martin-Vide.
Bringing PC grammar systems closer to Hoare’s CSP. In Gh. Păun and A. Salomaa,
editors, Grammatical Models of Multi-Agent Systems, pages 64–86. Gordon and
Breach, 1999.

Aho and others used parallel finite automata to model communication protocols by

automata, see A. V. Aho, J. D. Ullman, and M. Yannakakis. Modeling communi-

cation protocols by automata. In Proc. 20th Symp. Foundations Comput. Sci.,

pages 267–273, October 1979.

It would be therefore interesting to see applications of PCGS in areas
like protocol specification and the semantics of parallel programming
languages. 2

Applications

(NOT in the “original” area)

+ computer graphics

* pattern recognition

+ fractal geometry

* benchmark generation

- parsing / ambiguity

- data compression

- MPEG scripts

59

Computer graphics

• We observe the derivation process of a certain grammar G working

with an alphabet containing, among other symbols: f , F , +, −.

• A string containing f , F , + and − is sequentially interpreted by

a so-called turtle which is basically a pen equipped with a “direc-

tion”; the special symbols are interpreted as commands signifying:

Drawing F : the turtle draws a unit length line, moving in the current direction.

Skipping f : similarly, without drawing.

Turning right On seeing a +, the turtle turns right by δ degrees;

60

Turning left analogously, a left turn by δ degrees is indicated by −.

Other “reserved words” for the turtle are in use. For the ease of presentation,

we restrict ourselves to the above cases.

• Often, the sequence of pictures drawn by a turtle (corresponding

to the derivation sequence in question) is of interest, especially

when we are interested in fractal properties of the pictures which

show up if we continue interpreting sentential forms. Then, an

appropriate rescaling of the pictures in the sequence becomes an

issue.

Example 49 The D0L system with the following simple rules: F →
F − F ++F − F , + → + and − → − generates the well-known Koch-

curve.

F − F + +F − F is the string after the first iteration, while F − F +

+F −F −F −F ++F −F ++F −F ++F −F −F −F ++F −F −F −F +

+F −F −F −F ++F −F ++F −F ++F −F −F −F ++F −F ++F −
F ++F −F −F −F ++F −F ++F −F ++F −F −F −F ++F −F −
F −F ++F −F −F −F ++F −F ++F −F ++F −F −F −F ++F −F

is the result of the third iteration.

Research Project Proposal No. IX: By interpreting L system develop-

ments graphically in the turtle sense as described above, using appro-

priate rescalings, we may come to certain fractal limit objects. Such

objects can also be described by mutually recursive function systems,

as explained in works of Čulik, Dube, Morcrette and Nolle.

In this rather indirect way, fractal parameters like the Hausdorff di-

mension of the described fractal can be computed under certain con-

ditions.

It would be nice to come up with direct methods for determining

the Hausdorff dimension (and maybe also an appropriate Hausdorff

measure) for a given L system. Also, the higher dimensional case is

open.

Interestingly, there is an alternative graphical interpretation of stings:

special letters are used here for each “absolute” direction like W, N, E, S

for westwards, northwards, eastwards, and southwards, respectively.

Here, many things seem to be easier, see F. M. Dekking. Recurrent

sets. Advances in Mathematics, 44:78–104, 1982.

Another (yet unexplored) interpretation is via number systems; (see

the chapter on L systems in “the Handbook”).

A further link to parallel rewriting in a broader sense is offered by

the works of Peitgen, Saupe and Takahashi on fractal properties of

cellular automata.

A further related research project ; RP on compression. 2

Parametric / attributed L systems

Research Project Proposal No. X: As pointed out in “the Handbook”,

there is a “discrepancy between the studies on the theory of L-systems

and the needs of biological modeling.” We continue quoting: “Most

theoretical results are pertinent to non-parametric 0L-systems operat-

ing on non-branching strings without geometric interpretation. . . . In

contrast, . . . L-system models of biological phenomena often involve

parameters, endogenous and exogenous interactions, and geometric

features of the modeled structures. We hope that the further devel-

opment of L-system theory will bridge this gap.”

There is also a sort of linguistic motivation behind discussing especially parametric L

systems more systematically from a theoretical point of view: they form a natural L

61

system analogue to attribute grammars known as extending context-free grammars.

Although being quite “natural,” a systematic theoretic research on attributed L

systems, or more general, on attributed parallel grammars—following the spirit of

Knuth in the sequential case—is completely lacking. This is the more surprising

when recognizing that (preliminary) work on parametric L systems started at about

the same time as research on attribute grammars (Lindenmayer 1974).

Any sort of theoretical result on this enhanced forms of Lindenmayer
systems might have impacts on the use of these systems as modelling
tools.
Let us mention that in (Fernau & Stiebe 2001), parallel grammars with so-called
valuations were considered, which is a nowadays classical form of regulation orig-
inating in works of (Păun 1982) which are interpretable as a form of attributed
parallel grammars.

The mentioned can be a good starting point for writing the first one or two papers

on this study subject, since it lists a whole number of concrete open questions. 2

Research Project Proposal No. XI: As shown in a series of papers on
applying partially parallel array grammars, these are quite successful
for pattern recognition purposes, see, e.g.,
H. Fernau and R. Freund. Bounded parallelism in array grammars used for char-

acter recognition. In P. Perner, P. Wang, and A. Rosenfeld, editors, Advances

in Structural and Syntactical Pattern Recognition (Proceedings of the SSPR’96),

volume 1121 of LNCS, pages 40–49. Berlin: Springer, 1996.

Possibly, partial parallelelism can be successfully applied in other classification tasks.
For example, detecting similarities in trees in parallel could be used for supporting in-
ternet browsing or finding illegal copies of software code, even after making obvious
modifications like renaming variables. Partial parallelism or (probably equivalently)
regulated rewriting can be used to keep track of non-local information. Also in this
context, techniques from grammatical inference may be useful.

Moreover, this research project (coming from the praxis of computation) can be

related to the study of parallel attribute grammars, where the attributes can be

used to described certain aspects of the patterns. 2

62

Unorthodox applications I: Benchmarking

L systems are quite popular for describing fractal-like recursive struc-

tures by a turtle interpretation of the generated strings. Hence, they

were used in order to describe particular hard instances for the Trav-

eling Salesman Problem (TSP), see, e.g.,

A. Mariano, P. Moscato, and M. G. Norman. Using L-systems to generate arbitrarily
large instances of the Euclidean traveling salesman problem with known optimal
tours. In Anales del XXVII Simposio Brasileiro de Pesquisa Operacional, 1995.

Due to the recursive structure of the constructed instances, they could prove opti-

mality tours in a class of graphs containing arbitrarily large graphs. This way, it is

possible to measure the performance of heuristical algorithms for the Euclidean TSP

against optimal solutions, so that it is possible to get good benchmark examples.

64

Research Project Proposal No. XII: Find other NP-hard problems where

it is possible to construct benchmark examples by using parallel gram-

mars! Prove optimality of certain solutions by exploiting the recursive

nature of definition of parallel grammars!

Here, the main task is to find other interpretations of L systems (possibly different

from the turtle graphics approach) or to use parallel grammars not restricted to

generating strings. Here, we point especially to the works of R. Freund (concerning

array grammars) and of H.-J. Kreowski concerning collage grammars. 2

Unorthodox applications II: Data compression

C. G. Nevill-Manning and I. H. Witten used L systems to generate

simple benchmark examples for data compression algorithms.

C. G. Nevill-Manning and I. H. Witten. Compression and explanation using hierar-

chical grammars. The Computer Journal, 40(2/3):103–116, 1997.

65

Unorthodox applications III: Neural networks

A similar “unorthodox” application of L systems was reported in

I. Aho, H. Kemppainen, K. Koskimies, E. Mäkinen, and T. Niemi.

Searching neural network structures with L systems and genetic algo-

rithms. International Journal of Computer Mathematics, 73(1):55–

75, 1999. There, neural network structures were examined by using

L systems.

Independently, L systems were used in connection with neural nets in R. Freund
and F. Tafill. Modelling Kohonen networks by attributed parallel array systems. In
Conference on Neural Networks and Artificial Intelligence, International Symposium
on Substance Identification Technologies (Innsbruck, 1993), October 1993. and in
a more conventional way for generating dendrite structures in G. Ascoli and J. L.
Krichmar. L-neuron: a modeling tool for the efficient generation and parsimonious
description of dendritic morphology. Neurocomputing, 32–33:1003–1011, 2000.

66

Unorthodox applications IV: Miscellaneous

Without knowing whether this points to another interesting research

direction, let us mention that L systems have also been applied

to produce artificial music, see http://www.abc.net.au/science/news/

stories/s210368.htm and, as some tutorial, http://www.csu.edu.au/ci/

vol03/mccorm/mccorm.html.

Moreover, L systems have been envisaged by J. F. McGowan as a

tool for describing certain replacement operations for nanosystems,

see http://www.jmcgowan.com/nlsystem.PDF

67

Unexplored applications: linguistics

Research Project Proposal No. XIII: The issue of parsing has been

considerably neglected in the study of parallel grammars. This is of

course important if these concepts should be applied to model linguis-

tic phenomena, which seems to be possible as well as reasonable in

many ways. For example, observe that our brain is obviously working

in a sort of parallel fashion, so that we might also assume that human

syntax analysis of natural languages is actually performed in a parallel

way.

Closely related and important to this issue is the question of ambi-

guity in parallel grammars in a broad sense. Note that an ambiguous

grammar offers various ways of “reading” or “interpreting” a given

68

“sentence,” which is largely unwanted if certain semantics is con-

nected to each such interpretation.

Another issue in this respect is a systematic study of semantics. Connections to at-
tribute grammars were already mentioned. Let us mention here that programmed
grammars of finite index have been employed to model certain features of the
database query language DATALOG, see G. Dong. Grammar tools and character-
izations. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS’92), pages 81–90. ACM, June
1992., which is interesting in our context due to the mentioned characterization by
absolutely parallel grammars.

To develop such a “parsing program,” it is also important to give good automata

characterizations, see RP on characterization. 2

Unexplored applications: compression

One of the intriguing things about fractal geometry and its probably

most popular offspring, namely iterated function systems (IFS), is the

possibility to employ this theory as a data compression methodology.

In a nutshell, such a data compression algorithm assumes a certain fractal nature

in the picture to be encoded and analyses the picture based on this assumption,

seeking for an approximating codification in terms of an iterated function system.

Then, the hopefully few parameters of the IFS describing the given picture are

transmitted instead of the whole bitmap.

69

Research Project Proposal No. XIV: Due to the known close relations
between iterated function systems and Lindenmayer systems, it is
tempting to try a similar approach based on L systems or other types
of parallel grammars for obtaining compression algorithms. Since
the basic problem consists in obtaining a grammatical description
from a certain form of example(s), this sort of inverse problem is
obviously related to the problem of inferring parallel grammars, i.e.,
a grammatical inference problem.

Interestingly, one could also try to use parallel grammars for com-
pressing text data. Hints in this direction can be found, e.g., in:
E. Lehman and A. Shelat. Approximations algorithms for grammar-based compres-

sion. In Thirteenth Annual Symposium on Discrete Algorithms (SODA’02), 2002.

C. G. Nevill-Manning and I. H. Witten. Compression and explanation using hierar-

chical grammars. The Computer Journal, 40(2/3):103–116, 1997. 2

Unexplored applications: MPEG

Research Project Proposal No. XV: MPEG-4 is the new standard for

films etc. as recently described in the MPEG group. We refer to:

http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm and http:

//mpeg.telecomitalialab.com/documents/from\ mpeg-1\ to\ mpeg-21.htm.

This standard includes many interesting parallel features. It might be

interesting to model these features by means of parallel grammars.

In this way, it would be possible to give a solid semantical foundation

of the script concept, and it is quite imaginable that some sort of

grammars can be used for specification purposes. 2

70

Unexplored applications: cryptography

Research Project Proposal No. XVI: As explained in Vol. 2 of “the
Handbook,” there have been various approaches to define cryptosys-
tems by means of (problems arising in) formal language theory. Some
of them, admittedly not the most successful ones due to some obser-
vations of L. Kari, were based on Lindenmayer systems, i. e., com-
pletely parallel rewriting.

To our knowledge, there were no attempts to use restricted forms
of parallelism for defining cryptosystems. In this respect, the lack of
a thorough study of computational complexity issues has its obvious
bearing, since cryptography is the major realm of practical applications
of complexity theory. 2

71

Mathematical challenges: Complexity

Research Project Proposal No. XVII: Although several issues, notably

regarding the computational complexity of L systems, have been an-

alyzed, this area is largely untouched in terms of grammars with re-

stricted parallelism. In view of the large number of different rewriting

mechanisms, this offers a huge number of concrete mathematical

problems to solve.

Note that in some cases upperbounds are known, sometimes disguised as language
theoretic inclusion relations. As a concrete example, it is known that klED0L
languages are context-sensitive, which means that the fixed membership problem
is in the complexity class PSPACE, but the question whether this problem is hard
for PSPACE was not studied.

72

Furthermore, it might be helpful to take the known interrelations with various kinds

of regulated grammars into account, since in that area more complexity results are

known.

Related questions can be raised on the scale of undecidability degrees,

see the recursion theoretic project below. 2

In fact, there are also issues in the computational complexity of L

systems which are still open after all these years. Let us mention one

of these in the following:

Research Paper Proposal No. XVIII: As pointed to in (Rozenberg &

Salomaa, 1980, p. 315), one of the classical open problems is whether

or not each EDT0L language can be recognized in deterministic time
O(nk) for some fixed value of k. In known constructions, the value of k

depends on the number of nonterminals in the individual EDT0L system.

We are aware of recent (yet fruitless) attempts to employ techniques
from the emerging area of parameterized complexity.
More generally speaking, it would be nice to classify certain language
theoretic decision problems according to their parameterized com-
plexity. Coming back to the original sample question, it would be
interesting to know whether EDT0L membership, parameterized by
the number of nonterminals, is fixed-parameter tractable, i. e., solv-
able in time O(f(k)p(n)), where f is some arbitrary function and p is
some polynomial. 2

Although the above concrete question is classified as small research project, the
more general question of investigating formal language problems according to the
set-up offered by parameterized complexity is a largely yet untouched area.

Mathematical challenges: Recursion Theory

Research Project Proposal No. XIX: The more powerful a grammat-

ical mechanism becomes, the “more undecidable” it becomes, i. e.,

more and more questions which can be asked about the grammars or

the languages are undecidable. Since parallel grammars are in general

quite powerful mechanisms, this general observation applies to them

in particular.

Even if a certain question is undecidable, it can be asked “how unde-

cidable” this question is. Interestingly, this sort of question is barely

asked in formal language theory, but it is very important in recursion

theory, which has developped the corresponding notions.

73

Nevertheless, this question can be important to typical questions of

formal language theory, as well, e. g., regarding hierarchy relations.

Only few of these questions have been answered yet, see H. Fernau and F. Stephan.

Characterizations of recursively enumerable languages by programmed grammars

with unconditional transfer. Journal of Automata, Languages and Combinatorics,

4(2):117–142, 1999.

So, this is indeed a very interesting largely open theoretical research

area which is not restricted to parallel grammars; in fact, these meth-

ods might also help settle several old open questions in other areas

like regulated rewriting. 2

Mathematical challenges: Descriptional Complexity

This area discusses how economical certain “resources”in a grammar
may be used without loosing descriptional power. Such considerations
can become very important in practice (see RP on compression).

Research Project Proposal No. XX: Besides scattered context gram-
mars (many papers by Meduna) and classical Lindenmayer systems,
only scarce results are known for other mechanisms.

We already discussed the synchronization degree in Theorem 4. Even the mentioned
theorem does not exactly determine the synchronization degree of limited systems.

So, there is ample room of study, especially concerning the variety of partial parallel
grammar mechanisms presented in this paper.

A recent paper is: H. Bordihn and H. Fernau. The degree of parallelism. In:

Descriptional Complexity of Formal Systems 7th Workshop (DCFS 2005). 2

74

Mathematical challenges: Inclusions and Hierarchies

Research Paper Proposal No. XXI: We spread a number of open prob-

lems throughout the lecture. Since we mainly focussed on interrela-

tions between language families, most of these questions are basically

language hierarchy questions. This alone gives a lot of small and

precise (but probably difficult) problems to think about.

When browsing through the literature, you will find more and more of these open

questions, which somehow contradicts the general dictum that formal language

theory has already solved all its problems. 2

75

Mathematical challenges: Characterizations

Research Project Proposal No. XXII: In classical formal language the-

ory, the classical language classes all have (at least) two different char-

acterizations: an automaton based one and a grammar based one.

Often, there are other characterizations based on logic, see (Straub-

ing 1994) for (subclasses of) the regular languages and C. Lautemann,

T. Schwentick, and D. Thérien. Logics for context-free languages. In CSL: 8th

Workshop on Computer Science Logic, volume 933 of LNCS, pages 205–216.

Springer, 1994. in the case of CFL, or on expressions, as the well-

known regular expressions for REG and the less known context-free

expressions (Gruska, 1971) for CFL.

76

Unfortunately, for the case of languages defined by parallel grammars,
mostly only this grammar characterization is known, or the automata
models are very clumsy, as in the case of Lindenmayer systems.

For many applications, in the sequential case especially automaton
based and expression-like characterizations have to be proven to be
quite valuable. For instance, most parser of (subclasses of) context-
free languages can be viewed as pushdown automata. Expressions are
usually considered to be a good way for specifying regular languages.

It is therefore an interesting question to find natural alternative char-
acterizations for languages generated by certain types of parallel gram-
mars. Here, the notion of accepting grammar might provide a useful
tool, see H. Fernau and H. Bordihn. Remarks on accepting parallel systems.

International Journal of Computer Mathematics, 56:51–67, 1995. 2

Mathematical challenges: Learning

Research Project Proposal No. XXIII: A number of formal frameworks

have been developped to model the intuitive notion of learning from

examples; the most popular frameworks of grammatical inference are

the following:

• Identification in the limit (Gold 67) assumes that the (possibly infi-

nite) language to be learnt is enumerated to the learner by means

of positive and negative examples completely in the sense that

“in the end,” all words over the terminal alphabet show up. The

learner utters a stream of hypotheses (grammars, automata or

77

whatever kind of language description is decided upon) as an an-

swer to the stream of examples, and this stream should ultimately

become constant; in other words, the learner changes its hypoth-

esis no more, and this hypothesis should (of course) describe the

enumerated language. Many variants have been considered, the

most popular being identification in the limit from positive sam-

ples where only positive examples are given to the learner, and

identification in polynomial time and data, see C. de la Higuera.

Characteristic sets for polynomial grammatical inference. Machine

Learning, 27(2):125–138, 1997.

• In the query learning scenario, the learner may ask question about

the language to be learnt, and these questions are assumed to be

answered by a so-called teacher, see the original work of D. An-
gluin. Here, restricting the learning time to a polynomial in the
size of the expected learning result is important to avoid trivial
solutions.

• Probably approximately correct (PAC) learning was introduced by
L. G. Valiant (1984) in order to incorporate the possibility of
making errors and learning only in a certain approximate sense. A
different popular model—related by motivation—is error correct-
ing grammatical inference (ECGI).

There are a couple of papers dealing with the inference of Linden-
mayer systems. There have been also more empirical approaches to
this inference problem.

Keeping in mind that Lindenmayer systems were originally intended

to model real organism development, which means that it is of basic

interest to know or infer possible formalizations (in terms of Linden-

mayer systems) for “explaining” observed biological data, the litera-

ture is surprisingly scarce.

Even “worse” seems to be the situation within other types of parallel

grammars: nearly all work is left to be done.

Admittedly, there is one “positive” example, namely (variants of) pattern languages.

Here, the situation is really different: there is a huge amount of literature cover-

ing different aspects of learnability of these languages, starting with the ground-

breaking paper D. Angluin. Finding patterns common to a set of strings. Journal

of Computer and System Sciences, 21:46–62, 1980. 2

More research ideas

• multidimensional parallel rewriting

• parallel rewriting on trees, graphs, . . .

• . . .

Good luck with your PhD!

78

Recent additions

To quote from www.algorithmicbotany.org:

Publications 2004:

Martin Fuhrer, Henrik Wann Jensen, and Przemyslaw Prusinkiewicz. Modeling hairy plants. Pro-

ceedings of Pacific Graphics 2004 pp. 217-226.

Enrico Coen, Anne-Galle Rolland-Lagan, Mark Matthews, Andrew Bangham, and Przemyslaw

Prusinkiewicz. The genetics of geometry. Proceedings of the National Academy of Sciences 101

(14), pp. 4728-4735.

Przemyslaw Prusinkiewicz. Self-similarity in plants: Integrating mathematical and biological per-

spectives. In M. Novak (ed.), Thinking in Patterns: Fractals and Related Phenomena in Nature,

pp. 103-118.

79

Pavol Federl and Przemyslaw Prusinkiewicz. Solving differential equations in developmental models

of multicellular structures expressed using L-systems. In Proceedings of ICCS 2004, Lecture Notes

in Computer Science 3037, pp. 65-72.

Pavol Federl and Przemyslaw Prusinkiewicz. Finite element model of fracture formation on growing

surfaces. In Proceedings of ICCS 2004, Lecture Notes in Computer Science 3037, pp 138-145.

Przemyslaw Prusinkiewicz. Modeling plant growth and development. Current Opinion in Plant

Biology 7 (1), pp 79-83.

Przemyslaw Prusinkiewicz. Art and science for life: Designing and growing virtual plants with

L-systems. Acta Horticulturae 630, pp. 15-28.

Publications 2003:

Colin Smith, Przemyslaw Prusinkiewiz, and Faramarz Samavati. Local specification of surface sub-

division algorithms. In Proceedings of AGTIVE 2003, Lecture Notes in Computer Science 3062, pp.

313-327.

Przemyslaw Prusinkiewicz, Faramarz Samavati, Colin Smith, and Radoslaw Karwowski. L-system

description of subdivision curves. International Journal of Shape Modeling 9 (1), pp. 41-59.

Radomir Mech and Przemyslaw Prusinkiewicz. Generating subdivision curves with L-systems on a

GPU. SIGGRAPH 2003 Sketches and Applications.

Charles Baker, Sheelagh Carpendale, Przemyslaw Prusinkiewicz, and Michael Surette. GeneVis:

simulation and visualization of genetic networks. Journal of Information Visualization 2 (4), pp

201-217.

Lars Mündermann, Peter MacMurchy, Juraj Pivovarov, and Przemyslaw Prusinkiewicz. Modeling

lobed leaves. In Proceedings of CGI 2003, pp. 60-65.

Radoslaw Karwowski and Przemyslaw Prusinkiewicz. Design and implementation of the L+C mod-

eling language. Electronic Notes in Theoretical Computer Science 86 (2), 19 pp.

Mario Costa Sousa and Przemyslaw Prusinkiewicz. A few good lines: Suggestive drawing of 3D

models. Proceedings of Eurographics 2003: Computer Graphics Forum 22 (3), pp. 381-390.

Frederic Boudon, Przemyslaw Prusinkiewicz, Pavol Federl, Christophe Godin and Radoslaw Kar-

wowski. Interactive design of bonsai tree models. Proceedings of Eurographics 2003: Computer

Graphics Forum 22 (3), pp. 591-599.

Combining different ideas

Gyrgy Vaszil: Collapsing hierarchies of parallel rewriting P systems

without target conflicts (with D. Besozzi, G. Mauri, and C. Zandron),

In: Membrane Computing. International Workshop WMC 2003, Tar-

ragona, Spain, July 17-22, 2003. Revised Papers. Volume 2933 of

Lecture Notes in Computer Science, edited by C. Mart́ın-Vide, G.

Mauri, Gh. Paun, G. Rozenberg, and A. Salomaa. Springer-Verlag

Berlin-Heidelberg, 2004, 55-69.

80

The biological context

Perttunen, J. and Sievnen, R. 2005. Incorporating Lindenmayer systems for architectural devel-
opment in a functional-structural tree model. Ecological Modelling 181(4): 479-491, see http:
//www.sal.hut.fi/Personnel/Homepages/JariP/thesis/article Vb.pdf

S. Chuai-Aree, W. Jäger, H. G. Bock, S. Siripant, C. Lursinsap: PlantVR : An Algorithm for Gen-
erating Plant Shoot and Root Growth Using Applied Lindenmayer Systems. In B.Hu and M. Jaeger
(eds.): Proc. of 2003’ Intern. Symposium on Plant growth Modeling, simulation, visualization and
their Applications , Tsinghua University Press - Springer Verlag, October 13-16, Beijing, China, pp.
55-68, 2003.

S. Chuai-Aree, W. Jger, H. G. Bock, S. Siripant: Simulation and Visualization of Plant Growth
using Lindenmayer Systems, Proc. of Intern. Conf. on High Performance Scientific Computing
(HPSC), March 10-14, Hanoi, Vietnam, 2003.

From http://www.geog.ucl.ac.uk/∼plewis/phd2003.html; suggested PhD topic:
Ph3D: Modelling and monitoring the temporal dynamics of wheat using 3D dynamic
vegetation models and Lindenmayer systems

81

Nice fractal tools

http://robotics.ee.uwa.edu.au/lgrammar/java/

82

Unvonventional applications:
http://www.demo.cs.brandeis.edu/pr/evo design/evo design.html
Introduction
Recent research has demonstrated the ability for the automatic design of basic
shapes and the morphology and control of real physical robots using techniques
inspired by biological evolution. ...
Here we claim that for automatic design systems to scale in complexity the designs
they produce must be made of re-used modules. Our approach is based on the use
of a generative representation as the method to encode individuals in the population.
Unlike a direct representation of a design, a generative representation is an algorithm
for creating a design. That is, the data being optimized by the search algorithm is
itself a kind of program containing rules and program-like instructions for generating
a design, with the ability to re-use parts of the program in a modular way allowing it
to create more complex parts from simpler parts and re-use a component multiple
times in a design.

We describe a system for creating generative specifications capable of hierarchical
regularity by using Lindenmayer systems (L-systems) as the generative representa-
tion for an evolutionary algorithms. Using this system we demonstrate a system
that evolves hierarchically modular tables and locomoting robots (called genobots).

83

G. Escuela, G. Ochoa, N. Krasnogor. (2005) Evolving L-Systems to Capture
Protein Structure Native Conformations. 8th European Conference on Genetic
Programming (EuroGP 2005), Lecture Notes in Computer Science 3447, pp 73-
83,Springer-Verlag, Berlin.

What I missed out...

Ligia Collado-Vides, Guillermo Gómez-Alcaraz, Gerardo Rivas-Lechuga

and Vinicio Gómez-Gutierrez: Simulation of the clonal growth of

Bostrychia radicans (Ceramiales-Rhodophyta) using Lindenmayer sys-

tems. Biosystems, Volume 42, Issue 1 , March 1997, Pages 19-27.

Possibly, much more . . .

84

