Übungen zur Vorlesung

Grundlagen der Theoretischen Informatik I

Aufgabenblatt 6

Abgabe der Lösungen bis Mittwoch, 01.06.2011, 12 Uhr im Kasten für "GTI I" vor Raum H 426

Wir betrachten in den ersten beiden Aufgaben die folgenden sechs Relationen:

- $R_1 = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x|y\}$, wobei | die Teilbarkeitsrelation bezeichnet.
- $R_2 = R_1 \cap \{(x,y) : x > 0 \land y > 0\}.$
- $R_3 = \{(x,y) \in \mathbb{N} \times \mathbb{N} : 3 | (x+y) \}.$
- $R_4 = R_1 \cap R_3$.
- $R_5 = (\mathbb{Z} \times \mathbb{Z}) \setminus R_4$.
- $R_6 = R_1 \circ R_5$.

Aufgabe 1 (Eigenschaften von Relationen) (15+6 Punkte)

Ergänzen Sie die Tabelle durch Einfügen von Einträgen w (wahr) und f (falsch):

	reflexiv	symmetrisch	antisymmetrisch	transitiv	nacheindeutig	vortotal
R_1						
R_2						
R_3						
R_4						
R_5						
R_6						

Beachten Sie, dass R_1, R_4, R_5, R_6 binäre Relationen über der Grundmenge der ganzen Zahlen, während R_2 eine binäre Relation über der Grundmenge der positiven ganzen Zahlen und R_3 eine binäre Relation über der Grundmenge der nichtnegativen ganzen Zahlen sein sollen.

Beweisen Sie drei Ihrer Behauptungen.

Aufgabe 2 (Relationen und Graphen) (3+3+3+4+2 Punkte)

Erinnern Sie sich, dass mit |z| der Absolutbetrag einer ganzen Zahl z bezeichnet wird. Für $k \geq 0$ definieren wir die Menge $B_k = \{z \in \mathbb{Z} : |z| \leq k\}$. Weiterhin seien $E_i = R_i \cap (B_3 \times B_3)$ und $S_i = R_i \cap (B_5 \times B_5)$ für $1 \leq i \leq 5$. Beispielsweise sieht die Relation S_2 wie folgt aus:

$$S_2 = \{(1,5), (5,5), (1,4), (2,4), (4,4), (1,3), (3,3), (1,2), (2,2), (1,1)\}.$$

Ferner seien $S_6 = S_1 \circ S_5$ (Grundmenge B_5) und $E_6 = E_1 \circ E_5$ (Grundmenge B_3).

- 1. Geben Sie die Relationen S_4, S_5, S_6 durch Auflistung ihrer Elemente an.
- 2. Interpretieren Sie E_i für $1 \le i \le 6$ als Kantenrelation eines gerichteten Graphen. Stellen Sie E_i für $4 \le i \le 6$ bildlich dar.
- 3. Überprüfen Sie E_i für $4 \le i \le 6$ auf die Eigenschaften "Äquivalenzrelation", "Halbordnung" und "Funktion".
- 4. Bestimmen Sie $(E_6)^2$, $(E_6)^3$ und $(E_6)^4$. Wie lassen sich diese Relationen im oben konstruierten Graphen erklären?
- 5. Gilt $(E_6)^+ = E_6 \cup (E_6)^2 \cup (E_6)^3$? Geben Sie eine kurze Begründung Ihrer Vermutung.

Aufgabe 3 (Transitivität) (3+2 Punkte)

Seien R, S, T binäre Relation über einer Menge M mit den folgenden Eigenschaften: (a) $R \subseteq S$, (b) $R \subseteq T$ und (c) S und T sind transitiv.

- 1. Zeigen Sie, dass $S \cap T$ transitiv ist. Gilt damit $R \subseteq R^+ \subseteq S \cap T$?
- 2. Geben Sie konkrete M, R, S, T mit den oben angenommenen Eigenschaften an, so dass zusätzlich $R^+ \neq (S \cap T)$ gilt.