Übungen zur Vorlesung Komplexitätstheorie Aufgabenblatt zu VL 11

In der Übung Freitag 20.1.2012 um 10.05 Uhr im HZ201 werden die Übungsaufgaben vorgerechnet.

PLANNING ist folgendes Problem:

Eingabe: Eine endliche Menge C von Eigenschaften und eine Menge $O \subseteq \{-,+,0\}^C$ von Operationen sowie eine Ausgangskonfiguration C_{α} und eine Zielkonfiguration C_{ω} .

Frage: Gilt $C_{\alpha} \Rightarrow_{O}^{*} C_{\omega}$?

Hierbei sei \Rightarrow_O^* die reflexive transitive Hülle der Relation $\Rightarrow_O \subseteq 2^C \times 2^C$, die wie folgt definiert ist:

Für $C_1, C_2 \subseteq C$ gelte $C_1 \Rightarrow_O C_2$ gdw. es eine Operation $o \in O$ gibt, $o: C \to \{-,+,0\}$, mit:

- (A) $C_2 = \{x \in C \mid (o(x) = +) \lor (x \in C_1 \land o(x) = 0)\}$ und
- (B) $\forall x \in C : o(x) = \implies x \in C_1$.

Um das Wirken einer konkreten Operation $o \in O$ zu beschreiben, mit der C_2 aus C_1 entsteht, notieren wir auch $C_1 \Rightarrow_o C_2$.

Mit anderen Worten: C_2 entsteht aus C_1 , indem die mit – etikettierten Eigenschaften aus C_1 gelöscht werden (sie galten vor der, gelten aber nicht mehr nach der Durchführung von Operation o), die mit + etikettierten Eigenschaften jedoch (neu) hinzukommen. Die mit 0 etikettierten Eigenschaften aus C_1 bleiben erhalten.

Eine Lösung (also ein Beweis für $C_{\alpha} \Rightarrow_{O}^{*} C_{\omega}$) lässt sich also angeben durch eine Folge $C_{0}, C_{1}, C_{2}, \ldots, C_{t}$ von Teilmengen von C (genannt Konfigurationen) mit $C_{0} = C_{\alpha}$ und $C_{t} = C_{\omega}$ und einer Folge von Operationen o_{1}, \ldots, o_{t} , mit $o_{j} \in O$, sodass $C_{j-1} \Rightarrow_{o_{j}} C_{j}$.

<u>Hinweis</u>: Planungsprobleme erscheinen in einer Vielzahl von praktischen Kontexten. Daher sind sie auch einer der Gegenstände in der Vorlesung über Multiagentensysteme von Prof. Timm.

- 1. Formalisieren Sie ein Planungsszenario für eine Frachtfluggesellschaft mit Flughäfen $\mathcal{F} = \{F_1, \dots, F_f\}$, Transportgütern $\mathcal{G} = \{G_1, \dots, G_g\}$ und Maschinen $\mathcal{M} = \{M_1, \dots, M_m\}$.
 - Beispielsweise könnte $C_{\alpha} \subseteq \mathcal{F} \times \mathcal{G} \cup \mathcal{F} \times \mathcal{M}$ die Ausgangslage beschreiben. Diskutieren Sie auch, wie realistisch Ihr Modell ist.
- 2. Zeigen Sie die PSPACE-Härte von Planning, indem Sie zeigen, wie man Pebble als Planspiel modellieren kann. Geben Sie die Transformation genau an und diskutieren Sie deren Komplexität.

- 3. Zeigen Sie, dass es lösbare Instanzen (C,O) von Planning gibt, deren kürzeste Lösungen exponentiell in |C| lang sind, obwohl $|O| \leq |C|$ gilt. Hinweis: Binärzähler
- 4. Wie groß ist der "Suchraum" für eine Planning-Instanz (C, O)? Definieren Sie hierzu einen gerichteten Graphen G zu (C, O), sodass sich das Auffinden einer Lösung zu (C, O) mit Hilfe des Grapherreichbarkeitsproblemes lösen lässt.
- 5. Benutzen Sie Ihre Überlegungen aus dem vorigen Punkt sowie Ihnen bekannte Resultate aus der Komplexitätstheorie (welche genau?), um zu schlussfolgern, dass PLANNING in PSPACE liegt.
- 6. Wie sähe also konkret ein PSPACE-Algorithmus für PLANNING aus?
- 7. In welcher Zeit ließe sich Planning (deterministisch) lösen? Entspricht dies dem Zeitbedarf Ihres im vorigen Punkt vorgeschlagenen Algorithmus?