Komplexitätstheorie WiSe 2011/12 in Trier

Henning Fernau

Universität Trier fernau@uni-trier.de

Komplexitätstheorie Gesamtübersicht

- Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen
- Diskussion verschiedener Komplexitätsklassen: Zeitkomplexität Platzkomplexität
- zugehörige Reduktionsbegriffe
- vollständige Probleme
- Anpassung von Klassenbegriffen und Reduktionen

Umfangreiche Liste NP-vollständiger Probleme

- Garey, M.R., Johnson, D.S., Computers and Intractability:
 A Guide to the Theory of NP-Completeness, Freeman, San Francisco 1979 sowie als Fortsetzung davon:
- Johnson, D.S., The NP-completeness column: an ongoing guide, seit 1981 in der Zeitschrift "Journal of Algorithms", später in "ACM Transactions on Algorithms"

Noch einmal als Merksatz:

Solange es nicht gelungen ist, P = NP zu beweisen, ist für keines der NPvollständigen Probleme ein praktisch verwendbarer Algorithmus bekannt!

Im Folgenden NP-vollständige Probleme aus verschiedenen Problembereichen:

Logik, Graphentheorie, Mengentheorie und Zahlentheorie

Logik: → Letzte Vorlesung

Graphentheorie / Mengentheorie: heute

Probleme aus Graphentheorie:

Satz 1 NP-vollständig (bzgl. \leq_{\log}) sind:

- SIMPLE MAX CUT
- VERTEX COVER
- CLIQUE
- INDEPENDENT SET
- 3-FÄRBBARKEIT
- GERICHTETER HAMILTON-KREIS
- UNGERICHTETER HAMILTON-KREIS
- TRAVELING SALESMAN
- SUBGRAPH ISOMORPHISM

SIMPLE MAX CUT:

Gegeben: ein ungerichteter Graph G = (V, E) und eine natürliche Zahl k.

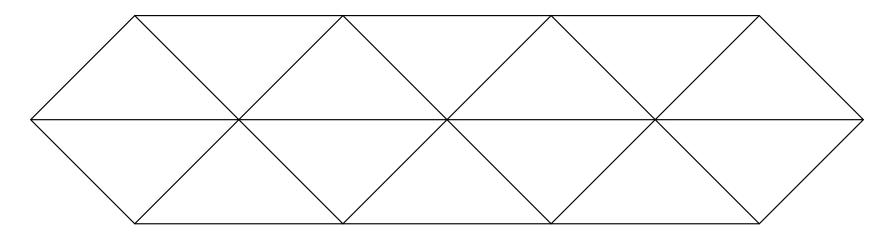
Frage: Kann man die Knotenmenge V so in zwei disjunkte Teilmengen V_a, V_b aufteilen, dass die Zahl der Kanten, die ein Ende in V_a und ein Ende in V_b haben, mindestens k ist?

VERTEX COVER:

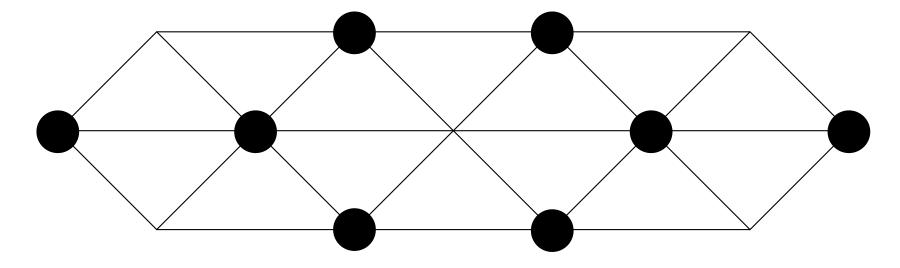
Gegeben: ein ungerichteter Graph G = (V, E) und eine natürliche Zahl k.

Frage: Gibt es eine Menge $V' \subseteq V$ aus höchstens k Knoten, die eine Knoten- überdeckung bildet?

Beispiel für die Begriffe: Betrachte folgenden Graphen:

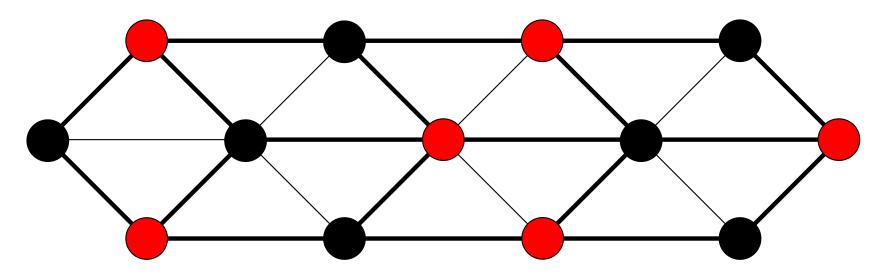


Beispiel: Lösung zu $\textsc{vertex}\ \textsc{cover}\ \textsc{mit}\ k \geq 8$



Optimalitätsbeweis: Betrachte drei knotendisjunkte Dreiecke sowie zwei weitere disjunkte Kanten am Rand.

Beispiel: Lösung zu SIMPLE MAX CUT mit k=19



Graph enthält 7 kantendisjunkte Dreiecke

- → höchstens zwei Kanten jedes dieser Dreiecke kommt in den Schnitt
- $\sim k = 19$ ist maximal, da 26 Kanten insgesamt

Sei G = (V, E) ungerichteter Graph.

unabhängige Knotenmenge: Menge V_1 von Knoten, von denen keine zwei durch eine Kante verbunden sind.

Clique in G: Menge V_2 von Knoten, von denen je zwei durch eine Kante verbunden sind

(vgl. frühere Vorlesung: CLIQUE(k) und INDEPENDENT SET(k))

- CLIQUE: Gegeben: ungerichteter Graph G = (V, E) und k > 0. Frage: Gibt es in G eine Clique mit mindestens k Elementen?
- INDEPENDENT SET: Gegeben: ungerichteter Graph G = (V, E) und k > 0. Frage: Gibt es in G eine unabhängige Knotenmenge mit mindestens k Elementen?

3-FÄRBBARKEIT: Gegeben: ungerichteter Graph G = (V, E).

Frage: Gibt es eine Färbung der Knotenmenge V mit drei Farben, sodass keine benachbarten Knoten die gleiche Farbe erhalten?

Färbung: Abbildung Fb : $V \rightarrow \{0, 1, 2\}$

Verallgemeinerung auf k Farben:

k-FÄRBBARKEIT **NP**-vollständig für $k \ge 3$ k = 2: schnell deterministisch lösbar ist, in co-NL.

Umformulierung von 2-FÄRBBARKEIT:

Gibt es keinen Kreis mit ungerader Länge im Graphen?

Lewis und Papadimitriou (Symmetric Space-Bounded Computation, Theor. Comput. Sci. 19, 1982) sowie Reingold (J. ACM 55, 2008) haben gezeigt, das 2-FÄRBBARKEIT L-vollständig ist.

Kreise im Graphen:

- —Pfad, der in dem Knoten endet, in dem er auch beginnt
- —Knoten $x_1, \dots x_m$ mit $x_m = x_1$ und $(x_i, x_{i+1}) \in E$ für $1 \le i < m$ (bzw. $\{x_i, x_{i+1}\} \in E$ bei ungerichteten Graphen).

• GERICHTETER HAMILTON-KREIS:

Gegeben: gerichteter Graph G = (V, E).

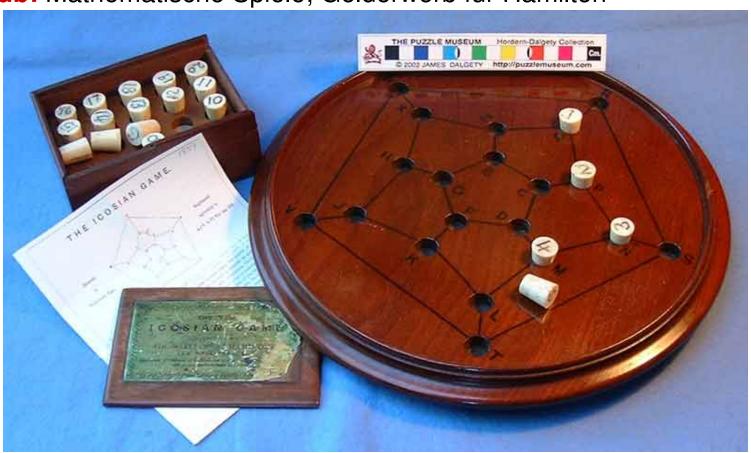
Frage: Gibt es in G Kreis, der alle Knoten genau einmal berührt, d.h. gibt es Permutation $(x_1, ..., x_n)$ von V, für die $x_1, ..., x_n, x_1$ ein Kreis ist?

• UNGERICHTETER HAMILTON-KREIS:

Gegeben:ungerichteter Graph G = (V, E).

Frage: Gibt es in G Kreis, der alle Knoten genau einmal berührt?

Einschub: Mathematische Spiele; Gelderwerb für Hamilton



• TRAVELING SALESMAN:

Gegeben: ungerichteter Graph G = (V, E), Funktion $f : E \to \mathbb{N}$, Zahl $k \in \mathbb{N}$. Frage: Gibt es in G Kreis $x_1, \ldots x_m, x_1$, der alle Knoten mindestens einmal berührt, sodass die Summe aller f(e) für die Kanten e im Kreis höchstens k ergibt, d.h. folgender Ungleichung genügt?

$$\sum_{1 \le i \le m} f(x_i, x_{i+1}) \le k$$

Anmerkungen:

- —oft 'Kreis' so definiert: kein Knoten mehrfach durchlaufen (einfacher Kreis)!
- —im Pfad nur Anfangs- und Endknoten identisch
- —unwichtig bei HAMILTON-Problemen
- —wichtig bei TRAVELING SALESMAN (in Literatur ohnehin unterschiedlich definiert!)

G = (V, E) ist ein *Teilgraph* von G' = (V', E'), wenn $V \subseteq V'$ und $E \subseteq E'$, E enthält nur Endpunkte aus V.

G ist *isomorph* zu G'' = (V'', E''), wenn Bijektion $f: V \to V''$ mit $(x, y) \in E \iff (f(x), f(y)) \in E''$ existiert.

• SUBGRAPH ISOMORPHISM:

Gegeben: zwei gerichtete (oder ungerichtete) Graphen G', G" Frage: Gibt es einen Teilgraphen G von G', der zu G" isomorph ist?

Hier nur Teil der Vollständigkeitsbeweise, Rest: Übungen

Zu den Übungen 1

Vollständigkeitsbeweise für ein Problem \mathcal{P} erfordern immer zwei Beweisschritte:

- Enthaltensein in NP
- Härte für NP

Für den ersten Schritt: entweder Angabe eines nichtdeterministischen Algorithmus oder Angabe einer geeigneten Reduktion, d.h., zeige $\mathcal{P} \leq_{\log} \mathcal{Q}$ für ein geeignet gewähltes Problem \mathcal{Q} aus NP.

Für den zweiten Schritt: Wähle geeignetes NP-hartes Problem \mathcal{H} und zeige $\mathcal{H} \leq_{\log} \mathcal{P}$.

Zu den Übungen 2

Die Korrektheit einer Reduktion r für $\mathcal{R} \leq_{\log} \mathcal{S}$ erfordert vier Überlegungen:

- 1. <u>Jeder</u> Instanz I von \mathcal{R} wird eine Instanz r(I) von \mathcal{S} zugeordnet.
- 2. r kann mit einer logspace-Maschine berechnet werden.
- 3. Ist I eine JA-Instanz von \mathcal{R} , so ist r(I) eine JA-Instanz von \mathcal{S} .
- 4. Ist r(I) eine JA-Instanz von S, so ist I eine JA-Instanz von R.

Schwierigkeiten bei der erdachten Konstruktion zeigen sich zumeist im vierten Schritt.

$3-SAT \leq_{log} GERICHTETER HAMILTON-KREIS (GHK)$

Sei $w = (C_1 \land \cdots \land C_m)$ ein 3-CNF-Ausdruck mit Variablen x_1, \ldots, x_n . Konstruiere Graph G = (V, E) mit $w \in 3 - SAT \iff G \in GHK$. Insbesondere: Variable sind Knoten von G.

Erwünschte Eigenschaften:

- —Es gibt von x_i nach $x_{(i \mod n)+1}$ stets zwei mögliche Pfade, einer für " x_i ist wahr" und einer für " x_i ist falsch".
- —Für jede Klausel C_j enthält G Teilgraph ("Gadget") H_j , sodass bei "richtiger" Wahl der Pfade für x_i (wahr/falsch gemäß der Interpretation φ) alle Knoten in H_j genau dann im Kreis $x_1 \to \cdots \to x_1$ durchlaufen werden können, wenn $C_j = (α_j \lor b_j \lor c_j)$ ein bzgl. φ wahres Literal enthält.

Der Teilgraph H_j für $C_j = (a_j \lor b_j \lor c_j)$

Hinweis: Auf der nächsten Folie andere Variablenbezeichnungen wie $x_i(j)$.

Je zwei Knoten A_j , A'_i je Literal a_j etc.

Drei Arten gerichteter Kanten:

(1)
$$A_j \rightarrow B_j \rightarrow C_j \rightarrow A_j$$

(2)
$$C_{j}^{\prime} \rightarrow B_{j}^{\prime} \rightarrow A_{j}^{\prime} \rightarrow C_{j}^{\prime}$$

(3)
$$A_j \rightarrow A_j'$$
, $B_j \rightarrow B_j'$, $C_j \rightarrow C_j'$.

Außerdem Anbindungen von / nach "außen" über " α_i wahr"-Pfade etc.

Erwünschte Eigenschaften:

- — H_j muss bei jeder nichtleeren Teilmenge L von $\{a_j, b_j, c_j\}$ ganz durchlaufen werden, wobei: ϕ weist (genau) jedem $\ell \in L$ "wahr" zu.
- —Die "Schnittstelle" zu den anderen Teilgraphen muss stimmen:

Nach Durchlauf durch H_j müssen die gleichen x_i -Belegungspfade aus H_j herausführen, wie sie hineingelaufen sind.

Umsetzung der Eigenschaften von H_j :

Eingang	Durchlauf	Ausgang
a_j wahr	$A_j \rightarrow B_j \rightarrow C_j \rightarrow C'_j \rightarrow B'_j \rightarrow A'_j$	A_i' wahr
	$B_{j} \rightarrow C_{j} \rightarrow A_{j} \rightarrow A_{j}' \rightarrow C_{j}' \rightarrow B_{j}'$	
	$C_{j} \rightarrow A_{j} \rightarrow B_{j} \rightarrow B_{j}' \rightarrow A_{j}' \rightarrow C_{j}'$	
	$A_j \rightarrow A'_j; B_j \rightarrow C_j \rightarrow C'_j \rightarrow B'_j$	
a_j, c_j wahr		A_i', C_i' wahr
b_j, c_j wahr	$B_{j} \rightarrow B_{j}'; C_{j} \rightarrow A_{j} \rightarrow A_{j}' \rightarrow C_{j}'$	$B_i^{\prime}, C_i^{\prime}$ wahr
a_j, b_j, c_j wahr	$A_j \rightarrow A'_j; B_j \rightarrow B'_j; C_j \rightarrow C'_j$	A'_{j}, B'_{j}, C'_{j} wahr

Man mache sich klar: Es gibt keine anderen Möglichkeiten, durchlaufende "wahr-Pfade" zu konstruieren.

Gesamtkonstruktion

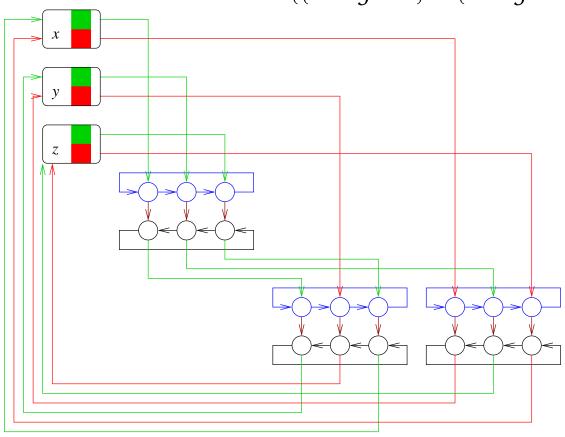
Knotenmenge enthält: (1) $\{x_1, \ldots, x_n\}$

- (2) $\{x_i(j), x_i'(j) \mid 1 \le i \le n, 1 \le j \le m, x_i \in C_j\}$
- (3) $\{\overline{x_i}(j), \overline{x_i}'(j) \mid 1 \le i \le n, 1 \le j \le m, \overline{x_i} \in C_j\}$

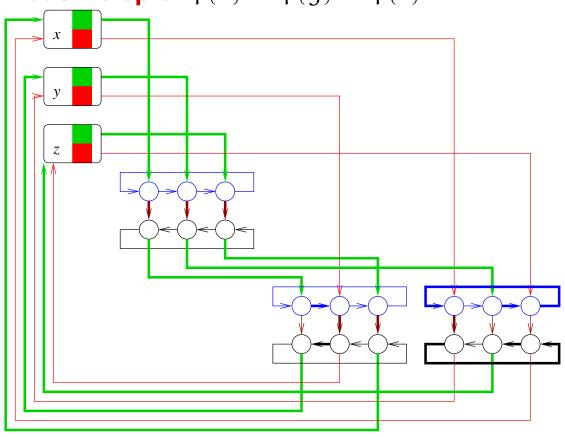
Kantenmenge enthält:

- (1) H_j -Gadget-Kanten für C_j (das betrifft Verbindungen zwischen $x_i(j)$, $x_i'(j)$, $\overline{x_i}(j)$, $\overline{x_i}(j)$)
- (2) $(x_i, x_i(j))$, falls C_j die erste Klausel in w ist, die x_i als Literal enthält (also: $x_i \in C_j$),
 - $(x_i, \overline{x_i}(j))$, falls C_j die erste Klausel in w ist mit $\overline{x_i} \in C_j$
- (3) $(x_i'(j), x_i(k))$, falls C_k die erste Klausel in w nach C_j ist mit $x_i \in C_k$, $(\overline{x_i}'(j), \overline{x_i}(k))$, falls . . .
- (4) $(x_i'(j), x_{(i \text{ mod } n)+1})$, falls C_j die letzte Klausel in w ist mit $x_i \in C_j$, $(\overline{x_i}'(j), x_{(i \text{ mod } n)+1})$, falls . . .

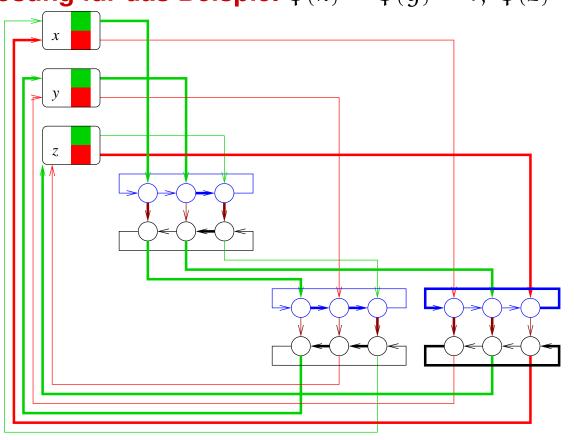
Ein Beispiel für die Konstruktion $w = ((x \lor y \lor z) \land (x \lor \bar{y} \lor z) \land (\bar{x} \lor y \lor \bar{z}))$



Eine Lösung für das Beispiel $\phi(x) = \phi(y) = \phi(z) = 1$.



Eine weitere Lösung für das Beispiel $\phi(x) = \phi(y) = 1$; $\phi(z) = 0$.



Ein kleines Eingeständnis

Wie oft, wird bei der Konstruktion ein wenig "geschludert": Implizit wird bei der Kantenangabe in (2) und (4) davon ausgegangen, dass die erwähnten "ersten" bzw. "letzten" Klauseln mit x_i überhaupt existieren.

Wie kann man die Konstruktion "retten"?

Möglichkeit 1: Genauere Beschreibung der Kantenmenge, die "wirklich" gemeint ist.

Möglichkeit 2: Was bedeutet es auf der logischen (SAT) Ebene, wenn es gar keine Klauseln mit x_i gibt ?

Gibt es vielleicht eine Normalform für 3-SAT, die diesen Fall ausschließt? Gibt es ein Polynomzeitverfahren, das diese Normalform herstellt? In welchem Sinne könnte man dies als Reduktion auffassen?

Welche weiteren Mängel an der beschriebenen Reduktion (und der Beweisskizze) sind Ihnen aufgefallen ?

GHK \leq_{\log} UNGERICHTETER HAMILTON-KREIS (UHK)

Sei G = (V, E) gerichteter Graph.

Konstruiere ungerichteten Graphen G' = (V', E') wie folgt:

$$-V' = \{x_a, x_m, x_e \mid x \in V\},\$$

$$-E' = \{\{x_a, x_m\}, \{x_m, x_e\} \mid x \in V\} \cup \{\{x_e, y_a\} \mid (x, y) \in E\}.$$

Gilt $G \in GHK$, so gibt es Kreis x_1, \ldots, x_n, x_1 in G mit $V = \{x_1, \ldots, x_n\}$.

Dann ist $x_{1a}, x_{1m}, x_{1e}, x_{2a}, \dots, x_{na}, x_{nm}, x_{ne}, x_{1a}$ Kreis in V', der alle Knoten von V' durchläuft, d.h., $G' \in UHK$.

Für jeden Kreis in G', der alle Knoten durchläuft, gilt:

 x_m wird entweder über x_a, x_m, x_e oder über x_e, x_m, x_a erreicht.

Nach Konstruktion gibt es von x_a nur Verbindungen zu y_e und von x_e nur Verbindungen zu z_a . Also werden alle x_m in gleicher Weise durchlaufen. O.E. hat der Kreis in G' die folgende Bauart:

 $z_{1a}, z_{1m}, z_{1e}, z_{2a}, \dots, z_{ne}, z_{1a}.$

Dann ist $z_1, z_2, \ldots, z_n, z_1$ ein Hamilton-Kreis in G.

Mengentheoretische Probleme

Satz 2 NP-vollständig (bzgl. \leq_{\log}) sind:

- TRIPARTITE MATCHING
- SET COVERING
- SET PACKING
- EXACT COVER BY 3 SETS

• TRIPARTITE MATCHING:

Gegeben: drei Mengen M, F, H mit gleicher Kardinalität

$$n := \#M = \#F = \#H$$

und eine Menge T von Tripeln T $\subseteq M \times F \times H$.

Frage: Gibt es eine Teilmenge $T' \subseteq T$ von n Tripeln, so dass keine zwei Tripel eine gemeinsame Komponente haben?

So eine Teilmenge heißt auch (tripartites) / (dreidimensionales) Matching.

• SET COVERING: Gegeben: Familie $F = \{S_1, ..., S_n\}$ von Mengen mit $S_i \subseteq U$ für ein endliches Universum U sowie eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es k Mengen $S_{i_1}, ..., S_{i_k}$ mit

$$\bigcup_{j=1}^k S_{i_j} = U$$

• SET PACKING: Gegeben: Familie $F = \{S_1, ..., S_n\}$ von Mengen mit $S_i \subseteq U$ für ein endliches Universum U sowie eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es k paarweise disjunkte Mengen $S_{i_1},...,S_{i_k}$ mit

$$\bigcup_{j=1}^k S_{i_j} = U$$

• EXACT COVER BY 3 SETS: Gegeben: Familie $\mathcal{F} = \{S_1, ..., S_n\}$ von Mengen mit $S_i \subseteq U$ mit $\#S_i = 3$ und #U = 3k.

Frage: Gibt es k paaarweise disjunkte Mengen $S_{i_1},...,S_{i_k}$ mit

$$\bigcup_{j=1}^{k} S_{i_j} = U$$

Die Reduktionen

TRIPARTITE MATCHING \leq_{log} EXACT COVER BY 3 SETS EXACT COVER BY 3 SETS \leq_{log} SET COVERING EXACT COVER BY 3 SETS \leq_{log} SET PACKING sind (fast) offensichtlich....

Das Offensichtliche formaler...

TRIPARTITE MATCHING ist ein Spezialfall von EXACT COVER BY 3 SETS: Das Universum U hat die besondere Eigenschaft, in drei gleich große Mengen M, F, H zerlegt werden zu können, sodass jede Menge aus \mathcal{F} jeweils ein Element dieser drei Mengen enthält.

EXACT COVER BY 3 SETS ist ein Spezialfall von SET COVERING mit |U|=3m, $|S_i|=3$ für alle $S_i\in\mathcal{F}$ und k=m.

Entsprechendes gilt für SET PACKING.

3-SAT < TRIPARTITE MATCHING

Betrachte CNF-Formel $w = (C_1 \land C_2 \land \cdots \land C_m)$ mit Klauseln $C_j = (y_{j1} \lor y_{j2} \lor y_{j3})$ und Variablen $\{x_1, \dots, x_n\}$.

Konstruiere 3 Mengen W, X, Y gleicher Mächtigkeit 2nm und Tripelmenge $T \subseteq W \times X \times Y$, .

 $W = \{u_{ij}^k \mid 1 \le i \le n, 1 \le j \le m, k = 0, 1\}$: Wahrheitswerte der Variablen x_i bzgl. Klausel C_j (sollte harmonisiert sein, s.u.).

T beinhaltet drei Arten von Tripeln:

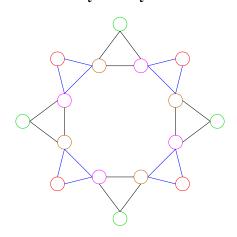
 H_i (Harmonisierung) Hat Variable x_i in allen (simulierten) Klauseln denselben Wert?

 E_j (Erfüllungstest) Sind alle Klauseln C_j erfüllt?

G (Garbage Collection) Syntaktischer Müll, damit das Matching aufgeht.

 H_i Zu X kommen Elemente a_{ij} und zu Y Elemente b_{ij} hinzu $(1 \le i \le n, 1 \le j \le m)$, die in keinen Tripeln außer den Folgenden enthalten sind:

$$\begin{split} &H_{i}^{1} = \{(u_{ij}^{1}, \alpha_{ij}, b_{ij}) \mid 1 \leq j \leq m\}. \\ &H_{i}^{0} = \{(u_{ij}^{0}, \alpha_{i,(j \text{ mod } m)+1}, b_{ij}) \mid 1 \leq j \leq m\}. \\ &H_{i} = H_{i}^{1} \cup H_{i}^{0}. \end{split}$$



Jedes H_i entspricht einem solchen "Stern" (hier j=4). Da a_{ij} , b_{ij} (braun / magenta) sonst nicht vorkommen, ist bei einem Matching M' entweder H_i^0 oder H_i^1 enthalten (blaue bzw. schwarze Dreiecke), aber niemals "gemischt". Die Wahrheitswertzuweisung kann z.B. mit

$$x_i$$
 wahr gdw. $M' \cap H_i = H_i^1$

"abgelesen" werden (s. rot/grün-Färbung der Sternstrahlen)

 E_{j} zu $C_{j} = (y_{j1} \lor y_{j2} \lor y_{j3})$:

Zu X kommen Elemente s_{1j} und zu Y Elemente s_{2j} hinzu.

Ist x_i das k-te Literal in C_j , so liegt $(u_{ij}^0, s_{1j}, s_{2j})$ in T.

Ist $\overline{x_i}$ das k-te Literal in C_j , so liegt $(u_{ij}^1, s_{1j}, s_{2j})$ in T.

Jedes Matching M' enthält höchstens eines der drei Tripel $(??,s_{1j},s_{2j})$. Ist so ein Tripel enthalten, so entspricht dies der Erfüllung der Klausel C_j . Genauer: Wurde durch H_i u^1_{ij} ausgewählt (also x_i auf wahr gesetzt), so ist u^0_{ij} noch "frei" und kann zur "Erfüllung" von C_j verwendet werden.

Müll G Durch $\bigcup H_i$ und $\bigcup E_j$ sind von W genau mn + m Elemente abgedeckt. G muss die restlichen (m-1)n Elemente abdecken:

$$G = \{(u_{ij}^k, g_{1\ell}, g_{2\ell}) \mid 1 \le i \le n, 1 \le j \le m, 0 \le k \le 1, 1 \le \ell \le (m-1)n\}.$$

Achtung: Konstruktion klappt nur, falls Variable nicht zweimal in irgendeiner Klausel vorkommt.