
Technical Reports Mathematics/Computer Science
FB IV - Department of Computer Science
University of Trier
54296 Trier

Theorietag 2017

Automaten und Formale Sprachen

(Bonn, 18. September – 22. September 2017)

Herausgeber: Henning Fernau

Technical Report No. 17-1 September 2017

Vorwort

Theorietage haben eine lange Tradition bei verschiedenen Fachgruppen der
Gesellschaft für Informatik (GI).

Die Fachgruppe Automaten und Formale Sprachen (AFS) aus dem Fach-
bereich Grundlagen der Informatik (GInf) innerhalb der GI trifft sich einmal
jährlich zu ihrem zweitägigen Theorietag. In diesem Jahr feiert die Reihe
ihre 27. Auflage in Bonn. Seit über zwanzig Jahren gibt es auch die Tra-
dition, einen Workshop mit eingeladenen Vorträgen dem eigentlichen AFS-
Theorietag voran- oder nachzustellen.

Theorietage haben zum Ziel, insbesondere dem wissenschaftlichen Nach-
wuchs ein Forum zu bieten, auf dem sie ihre Ergebnisse der nationalen Fach-
öffentlichkeit vorstellen können. Näheres zur Geschichte dieser Serien findet
man im Internetauftritt unserer Fachgruppe.

Als Besonderheit haben wir in diesem Jahr einen zweitägigen Workshop
angehängt, auf dem wir uns Gedanken zur Situation in der Lehre der The-
matik AFS an den deutschen Hochschulen machen und austauschen werden.
Sind die betreffenden (GI-)Vorgaben noch zeitgemäß? Diese und ähnliche
Fragen sollen uns bewegen. Nähere Einzelheiten entnehme man bitte dem
Tagungsprogramm.

In dem hier vorgelegten Tagungsband finden Sie ein- bis vierseitige Kurz-
fassungen der

”
nichteingeladenen“ Vorträge dieses Theorietags. Dieses folgt

der Tradition der AFS-Theorietage. Der Tagungsband wird elektronisch zur
Verfügung gestellt, soll aber bei Bedarf ein Nachschlagen der vorgestellten
Resultate ermöglichen.

Wir danken der Gesellschaft für Informatik für die freundliche Unter-
stützung. Dadurch wurde es möglich, einen Teil der Reisekosten der einge-
ladenen Vortragenden abzudecken.

Wir wünschen allen Teilnehmern eine interessante und anregende Tagung
sowie einen angenehmen Aufenthalt in Bonn. Hoffentlich finden Sie auch
Zeit, diesen geschichtsträchtigen Ort zu erkunden.

Trier, im September 2017 Henning Fernau
im Namen der gesamten FG-Leitung

P.S.: Da wir die angedeutete curriculare Diskussion nicht nur im nationalen
Rahmen führen wollen, werden wir auf diesem Theorietag etliche internatio-
nale Gäste erwarten. Deshalb sind die meisten der folgenden Beiträge auch
in englischer Sprache abgefasst.

Inhaltsverzeichnis

1 (Polarized) Tissue P Systems with Vesicles of Multisets 1

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

2 State Complexity and Decidability of Jumping Finite Automata . 5

Simon Beier, Markus Holzer, Martin Kutrib

3 A Characterization of Completely Reachable Automata 10

E. A. Bondar and M. V. Volkov

4 Formal Language Techniques for Space Lower Bounds 14

Li-Hsuan Chen, Philipp Kuinke, Felix Reidl, Peter Rossmanith,

Fernando Sánchez Villaamil

5 A Normal Form, a Representation Theorem, and a Regular Appro-

ximation for Context-Free Languages 18

Liliana Cojocaru, Erkki Mäkinen

6 The Hardness of Solving Simple Word Equations 23

Joel Day, Florin Manea, Dirk Nowotka

7 Regular Grammars for Array Languages 27

Henning Fernau, Meenakshi Paramasivan, D. G. Thomas

8 Deterministic Regular Expressions with Back-References 31

Dominik D. Freydenberger, Markus L. Schmid

9 Concise Description of Finite Languages, Revisited 32

Hermann Gruber, Markus Holzer, Simon Wolfsteiner

10 Deciding regular intersection emptiness of complete problems for

PSPACE and the polynomial hierarchy 37

Demen Güler, Andreas Krebs, Klaus-Jörn Lange, Petra Wolf

11 Parallel Contextual Array Insertion Deletion Grammar 41

S. James Immanuel, D. G. Thomas

12 Rational, Recognizable, and Aperiodic Sets in the Partially Lossy

Queue Monoid . 45

Chris Köcher

13 Die Teilwort- und -spurordnung . 48

Dietrich Kuske

14 Transducing Reversibly with Finite State Machines 49

Martin Kutrib, Andreas Malcher, Matthias Wendlandt

15 Decidability Questions for Insertion Systems 53

Andreas Malcher

16 On Matching Restricted Patterns with Variables 54

Florin Manea

17 Deciding Equivalence of Tree Transducers 55

Sebastian Maneth

18 An Automaton Learning Approach to Solving Safety Games over

Infinite Graphs . 58

Daniel Neider

19 On Deterministic Ordered Restart-Delete Automata 59

Friedrich Otto

20 On the Expressive Power of Weighted Restarting Automata 63

Qichao Wang

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 1–4.

(Polarized) Tissue P Systems
with Vesicles of Multisets

Artiom Alhazov(A) Rudolf Freund(B) Sergiu Ivanov(C)

Sergey Verlan(C)

(A) Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău, MD-2028, Moldova
artiom@math.md

(B) Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Vienna, Austria

rudi@emcc.at
(C) Laboratoire d’Algorithmique, Complexité et Logique,

Université Paris Est Créteil,
61 av. du général de Gaulle, 94010 Créteil, France
sergiu.ivanov@u-pec.fr, verlan@u-pec.fr

Abstract

We consider tissue P systems working on vesicles of multisets with the very simple op-
erations of insertion, deletion, and substitution of single objects. With the whole multiset
being enclosed in a vesicle, sending it to a target cell can be indicated in those simple rules
working on the multiset. As derivation modes we consider the sequential mode, where
exactly one rule is applied in a derivation step, and the set maximal mode, where in each
derivation step a non-extendable set of rules is applied. With the set maximal mode, compu-
tational completeness can already be obtained with tissue P systems having a tree structure,
whereas tissue P systems even with an arbitrary communication structure are not compu-
tationally complete when working in the sequential mode. Adding polarizations – -1, 0, 1
are sufficient – allows for obtaining computational completeness even for tissue P systems
working in the sequential mode.

1. Introduction and Preliminaries
For a comprehensive overview of different variants of (tissue) P systems and their expressive
power we refer the reader to the handbook [4], and for a state of the art snapshot of the domain
to the P systems website [6] as well as to the Bulletin series of the International Membrane
Computing Society [5].

2 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

Very simple biologically motivated operations on strings are the so-called point mutations,
i.e., insertion, deletion, and substitution. For example, these point mutations are used in net-
works of evolutionary processors (NEPs). A computation step in a NEP consists of two sub-
steps – performing an evolution step in each cell using point mutations and then redistributing
the resulting strings via filters. In hybrid networks of evolutionary processors (HNEPs), each
language processor performs only one of these operations at a certain position of the strings.
For an overview on HNEPs and the best results known so far, we refer the reader to [2].

In networks of evolutionary processors with polarizations, each symbol has assigned a fixed
integer value; the polarization of a string is computed according to a given evaluation function,
and in the communication step the obtained string is moved to any of the connected cells having
the same polarization, e,g. see [3].

In this extended abstract, we recall the results from [1] for (polarized) tissue P systems
where a multiset is enclosed in a vesicle, point mutations are working on such a multiset in the
evolution step, and the vesicle with the resulting multiset is moved from one cell to another one
as a whole in the communication step.

Recursively Enumerable Sets. The family of recursively enumerable sets of Parikh sets
(vectors of natural numbers) is denoted by PsRE.
Point Mutations. For an alphabet V , let a→ b be a rewriting rule with a,b ∈ V ∪{λ}, and
ab 6= λ; we call such a rule a substitution rule if both a and b are different from λ; such a rule
is called a deletion rule if a 6= λ and b= λ, and it is called an insertion rule if a= λ and b 6= λ.
The set of all insertion rules, deletion rules, and substitution rules over an alphabet V is denoted
by InsV ,DelV , and SubV , respectively.
Register Machines. Register machines are well-known computationally complete (universal)
devices for generating or accepting (computing on) sets of vectors of natural numbers.

A register machine is a construct M = (m,B,l0, lh,P) where m is the number of registers,
B is a set of labels bijectively labeling the instructions in the set P , l0 ∈ B is the initial label,
and lh ∈ B is the final label. A labeled instruction of M in P can be a (non-deterministic)
increment of a register r, a conditional decrement of a register r, or the HALT instruction.

In the case when a register machine cannot check whether a register is empty we say that it
is partially blind: the registers are increased and decreased by one as usual, but if the machine
tries to subtract from an empty register, then the computation aborts without producing any
result. PsPBRM denotes the Parikh sets obtained by partially blind register machines.

2. (Polarized) Tissue P Systems with Vesicles of Multisets
A tissue P systems working on vesicles of multisets (a tPV system for short) is a tuple Π =
(L,V,T,R,(i0,w0),h) where

– L is a set of labels identifying in a one-to-one manner the |L| cells of Π;
– V is the alphabet of the system,
– T is the terminal alphabet of the system,
– R is a set of rules of the form (i,p, j) where i, j ∈ L and p ∈ InsV ∪DelV ∪SubV ;
– (i0,w0) describes the initial vesicle containing the multiset w0 in cell i0;
– h is the (label of the) output cell.

(Polarized) Tissue P Systems with Vesicles of Multisets 3

The tPV system can work with different derivation modes for applying the rules in R: in
the sequential mode (abbreviated sequ), in each derivation step, with the vesicle enclosing the
multiset w being in cell i, exactly one rule (i,p, j) from Ri is applied, i.e., p is applied to w and
the resulting multiset in its vesicle is moved to cell j. In the set maximally parallel derivation
mode (abbreviated smax), we apply a non-extendable multiset of rules from Ri such that all the
evolution rules (i,p, j) in this multiset of rules specify the same target cell j.

In any case, the computation of Π starts with a vesicle containing the multiset w0 in cell
i0, and the computation proceeds in the underlying derivation mode until one of the following
output condition is fulfilled (in any case, we only consider the vesicle having arrived in the
output cell h):.

– halt: the only condition is that the system halts;
– term: the resulting multiset contained in the vesicle to be found in cell h consists of

terminal symbols only (yet the system need not have reached a halting configuration).
– (halt, term): both conditions must be fulfilled.
The families of sets of vectors of natural numbers generated by tPV systems working in

the derivation mode α and using the output strategy β are denoted by Ps(tPV,α,β). If the
underlying communication structure is a tree, we omit the t and write Ps(PV,α,β).

Theorem 2.1 PsRE = Ps([t]PV,smax,β) for any β ∈ {(halt, term),halt, term}.

Theorem 2.2 PsPBRM ⊆ Ps(PV,sequ,β) for any β ∈ {(halt, term),halt, term}.

Theorem 2.3 Ps([t]PV,sequ, term) = PsPBRM .

In a polarized tissue P system Π working on vesicles of multisets, each cell gets assigned an
elementary polarization from {−1,0,1}; each symbol from the alphabet V also has an integer
polarization (again the elementary polarizations {−1,0,1} are sufficient), but every terminal
symbol from the terminal alphabet has polarization 0.

A polarized tissue P systems working on vesicles of multisets (a ptPV system for short) is a
tuple Π = (L,V,T,R,(i0,w0),h,πL,πV ,ϕ) where

– L is a set of labels identifying in a one-to-one manner the |L| cells of Π;
– V is the polarized alphabet of the system,
– T is the terminal alphabet of the system (the terminal symbols have no polarization, i.e.,

polarization 0),
– R is a set of rules of the form (i,p, j) where i, j ∈ L and p ∈ InsV ∪DelV ∪SubV ;
– (i0,w0) describes the initial vesicle containing the multiset w0 in cell i0;
– h is the (label of the) output cell;
– πL is the function assigning an integer polarization (from {−1,0,1}) to each cell;
– πV is the function assigning an (elementary) integer polarization (from {−1,0,1}) to each

symbol in V ;
– ϕ is the evaluation function yielding an integer value for each multiset.

Given a multiset, we need an evaluation function computing the polarization of the whole
multiset from the polarizations of the symbols it contains; here we only use the evaluation
function ϕ which computes the value of a multiset as the sum of the values of the symbols
contained in it. Given the result m of this evaluation of the multiset in the vesicle, we apply the

4 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

sign function sign(m), which returns one of the values +1/0/−1, provided thatm is a positive
integer / is 0 / is a negative integer, respectively.

A derivation step in a ptPV system (as in (H)NEPs) consists of two substeps – the evolution
step, with applying the rule(s) from R in the way required by the derivation mode (sequ or
smax), and the communication step with sending the vesicle to a cell with the same polarization
as the multiset in it. Although in the rules themselves still a target is specified, the vesicle
can only move to a cell having the same polarization as the multiset contained in it. As a
special additional feature we require that the vesicle must not stay in the current cell even if its
polarization would fit (if there is no other cell with a fitting polarization, the vesicle is eliminated
from the system). As the terminal symbols have polarization 0, the output cell itself also has to
have polarization 0.

In any case, the computation of Π starts with a vesicle containing the multiset w0 in cell i0
(obviously, the initial multiset w0 has to have the same polarization as the initial cell i0), and
the computation proceeds using the underlying derivation mode for the evolution steps until an
output condition is fulfilled, which in all possible cases means that the vesicle has arrived in the
output cell h. Again we use one of the output strategies halt, term and (halt, term).

The families of sets of vectors of natural numbers generated by ptPV systems working in
the derivation mode α and using the output strategy β are denoted by Ps(ptPVn,α,β).

Theorem 2.4 PsRE = Ps(ptPV,sequ, term).

References
[1] A. ALHAZOV, R. FREUND, S. IVANOV, S. VERLAN, (Tissue) P Systems with Vesicles of Multisets.

In: Proceedings AFL 2017, to appear. 2017.

[2] A. ALHAZOV, R. FREUND, V. ROGOZHIN, YU. ROGOZHIN, Computational completeness of com-
plete, star-like, and linear hybrid networks of evolutionary processors with a small number of pro-
cessors. Natural Computing 15 (2016) 1, 51–68.
http://dx.doi.org/10.1007/s11047-015-9534-1

[3] R. FREUND, V. ROGOJIN, S. VERLAN, Computational Completeness of Networks of Evolutionary
Processors with Elementary Polarizations and a Small Number of Processors. In: G. PIGHIZZINI,
C. CÂMPEANU (eds.), Descriptional Complexity of Formal Systems: 19th IFIP WG 1.02 Interna-
tional Conference, DCFS 2017, Milano, Italy, July 3-5, 2017, Proceedings. Springer, 2017, 140–151.
https://doi.org/10.1007/978-3-319-60252-3_11

[4] GH. PĂUN, G. ROZENBERG, A. SALOMAA (eds.), The Oxford Handbook of Membrane Computing.
Oxford University Press, Oxford, England, 2010.

[5] Bulletin of the International Membrane Computing Society (IMCS). http://
membranecomputing.net/IMCSBulletin/index.php.

[6] The P Systems Website. http://ppage.psystems.eu/.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 5–9.

Operational State Complexity and Decidability of
Jumping Finite Automata

Simon Beier Markus Holzer Martin Kutrib

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{simon.beier,holzer,kutrib}@informatik.uni-giessen.de

Abstract

We consider jumping finite automata and their operational state complexity and de-
cidability status. Roughly speaking, a jumping automaton is a finite automaton with a
non-continuous input. We prove upper bounds on the intersection and complementation.
The latter result on the complementation upper bound answers an open problem from
[G. J. LAVADO, G. PIGHIZZINI, S. SEKI: Operational State Complexity of Parikh Equiv-
alence, 2014]. Moreover, we correct an erroneous result on the inverse homomorphism
closure. Finally, we also consider the decidability status of some problems for jumping
finite automata.

1. Introduction
Jumping finite automata were recently introduced in [7] as a machine model for non-local in-
formation processing, which is motivated from modern information processing, see, for exam-
ple, [1]. This non-locality is modeled by a non-continuous input. Roughly speaking, a jumping
finite automaton is an ordinary finite automaton, which is allowed to read letters from anywhere
in the input string, not necessarily only from the left of the remaining input. Already in [7] quite
a large number of questions regarding jumping automata were studied and answered: inclusion
relations to well-known formal language families, closure and non-closure results under stan-
dard formal language operations, decision problems on jumping finite automata languages, etc.
Since then, a series of papers [3, 4, 9, 10] pushed the investigation on jumping finite automata
further and obtained results on normalforms for jumping finite automata languages by shuffle
expressions, computational complexity of jumping finite automata problems, etc. Nevertheless,
still several problems for this new device remain open, such as, for example, questions on the
descriptional complexity of operations on jumping finite automata languages.

2. Preliminaries
We define jumping finite automata where the notion from [7] is slightly adapted. A nondeter-
ministic general finite automaton is a quintuple A= (Q,Σ, δ,q0,F), where Q is the finite set of
states, Σ is the finite set of input symbols, q0 ∈Q is the initial state, F ⊆Q is the set of accept-
ing states, and δ : Q× (Σ∪{λ})→ 2Q is the transition function. A nondeterministic general

6 Simon Beier, Markus Holzer, Martin Kutrib

finite automaton is deterministic if δ(q,a) is a singleton set, for every state q ∈ Q and letter
a ∈ Σ, and δ(q,λ) = ∅ for every state q ∈Q. In this case we simply write δ(q,a) = p instead of
δ(q,a) = {p}, assuming that δ is a function from Q×Σ to Q.

One can interpret the general finite automaton A on configurations of the form QΣ∗ in two
ways:

1. As ordinary finite automaton: the move relation `A of A is defined as

qw `A pv iff w = av, for v ∈ Σ∗, a ∈ Σ∪{λ}, and p ∈ δ(q,a).

As usual `∗A refers to the reflexive transitive closure of `A.

2. As jumping finite automaton: the jumping relation yA of A is defined as

qwyA puv iff w = uav, for u,v ∈ Σ∗, a ∈ Σ∪{λ}, and p ∈ δ(q,a).

As usual y∗A refers to the reflexive transitive closure of yA.

We obtain the following languages from a general finite automaton:

1. The language accepted by an ordinary finite automaton A = (Q,Σ, δ,q0,F) is defined as
LF (A) = {w ∈ Σ∗ | q0w `∗A qf , for some qf ∈ F }.

2. The language accepted by a jumping finite automaton A = (Q,Σ, δ,q0,F) is defined as
LJ(A) = {w ∈ Σ∗ | q0wy∗A qf , for some qf ∈ F }.

If there is no danger of confusion we simply write L(A) instead of LF (A), for a finite automa-
ton A, and LJ(B), for a jumping finite automaton B.

As usual we write NFA (DFA) for nondeterministic (deterministic) finite automata. More-
over, NJFA (DJFA) is an abbreviation for nondeterministic (deterministic) finite jumping au-
tomata. The family of languages accepted by a device of type X is denoted by L (X). The
closure and non-closure results of the family of all languages accepted by jumping finite au-
tomata have been obtained in [4, 7] and [9].

3. Operational State Complexity of Jumping Automata
We investigate the operational state complexity of jumping finite automata. In particular, we
prove upper bounds on the intersection, complementation, and inverse homomorphism. To do
this we use the following strategy for NJFAs: first we interpret the NJFAs that we start with
as ordinary NFAs and construct a semilinear presentation of the languages under consideration.
Here we use [8, Theorem 4.1]. Then we use a result on the descriptional complexity of our
operation applied to semilinear sets from [2]. Finally we convert the resulting semilinear set
back to an NFA which we interpret as an NJFA. In most cases we also get nice results for
DJFAs with a little more effort. A summary of our results on the operational state complexity
of jumping automata can be found in Table 1.

The bound for the complementation answers an open problem from [6]. By proving the
bound for inverse homomorphism we correct an erroneous result on the inverse homomorphism
closure from [7]. There it is claimed that the family L (NJFA) is closed under inverse homo-
morphism, where the proof relies on an analogous construction as for ordinary finite automata,

State Complexity and Decidability of Jumping Finite Automata 7

Number of states of the resulting automaton
Operation X =D X =N

XJFA∩XJFA→ XJFA (k ·n)O(k5) (k ·n)O(k2)

Σ∗ \XJFA→ DJFA 2k
O(k·log(k))nO(k2·log(k))

h−1(NJFA)→ XJFA 2(k1k2mn)5k1k2+k2
2+O(k1+k2) (k1k2mn)

5k1k2+k2
2+O(k1+k2)

XJFA∩XFA→ XJFA (k ·n)O(k5) (k ·n)O(k2)

Table 1: Operational state complexity results for deterministic jumping finite automata (DJFAs) and non-
deterministic jumping finite automata (NJFAs) over an input alphabet Σ of size k (k2 for the operation
of inverse homomorphism). For every operation the parameter n is the maximum of the numbers of
states of the operand automata. For the operation of inverse homomorphism we have another alphabet Γ
of size k1, a homomorphism h : Γ∗→ Σ∗, and the parameter m = max({|h(a)|b | a ∈ Γ, b ∈ Σ}∪{1}),
where |h(a)|b stands for the number of appearances of the symbol b in the word h(a). For the last oper-
ation (intersection with regular languages) the given bounds are valid whenever the resulting language is
accepted by a jumping automaton.

which reads as follows: LetA= (Q,Γ, δ,q0,F) be an NFA, Σ be an alphabet, and h : Σ∗→ Γ∗ be
a homomorphism. Then the automaton A′ = (Q,Σ, δ′, q0,F) accepts the language h−1(L(A)),
where

q ∈ δ′(p,a) if and only if pwa `∗A q with wa = h(a).

The same construction is used in [7, Theorem 42] to show the closure of L (NJFA) under
inverse homomorphism. However, this construction does not work in general as shown by the
following counterexample.

Example 3.1 Consider the NJFA A with the input alphabet Σ = {a,b} depicted on the left of
Figure 1. It is easy to see that L(A) = {w ∈ Σ∗ | |w|a = |w|b }. Set Γ = {a} and define the

0 1
a

b
0 1

a

Figure 1: (Left): NJFA A accepting the set {w ∈ Σ∗ | |w|a = |w|b }. (Right): NJFA A′ induced from A
and the homomorphism h : {a}∗→ {a,b}∗ defined by h(a) = ba by the standard construction on NFAs
for the inverse homomorphism closure, accepting the set {λ}.

homomorphism h : Γ∗→ Σ∗ via h(a) = ba. Constructing the automaton A′ as described above
results in the jumping automaton drawn on the right of Figure 1. But then

L(A′) = {λ} 6= a∗ = h−1(L(A)),

which shows the argument to be invalid. Even a more sophisticated construction taking permu-
tation of words h(a), for a ∈ Σ, into account is not properly working.

With our construction the fact that semilinear sets are closed under inverse homomorphism
implies that the family L (NJFA) is closed under inverse homomorphism.

8 Simon Beier, Markus Holzer, Martin Kutrib

4. Decidability and Complexity of Problems Involving Jump-
ing Automata

The language family L (NJFA) is not closed under intersection with regular languages, but it is
decidable if such an intersection belongs to L (NJFA):

Theorem 4.1 Let A be an NJFA and B be an NFA. Then it is decidable whether the language
L(A)∩L(B) is accepted by an NJFA.

As an immediate consequence we obtain the following result:

Corollary 4.2 Let A be an NFA. Then it is decidable whether the language L(A) is closed
under permutation.

An NP lower bound on the permutation problem was obtained earlier in [4], if an NFA is
given. Next an NP upper bound is given for DFAs.

Theorem 4.3 Let A be a DFA. Then the problem to decide whether L(A) is closed under
permutation is in coNP. If the size of the input alphabet is fixed, then the problem to decide
whether L(A) is closed under permutation is in P.

The regularity problem for NJFAs is decidable, which can be seen by a result of [5] on
semilinear sets. The lower bound on this problem is NP-hardness as recently shown in [4]. Now
the question on the descriptional complexity of NJFAs or DJFAs accepting a regular language
compared to ordinary finite automata may arise. We can give an exponential lower bound for
the conversion:

Theorem 4.4 For any integer n ≥ 1, there exists an (n(n+ 1)/2)-state DJFA A with input
alphabet Σn = {a1,a2, . . . ,an} accepting a regular language such that any DFA accepting L(A)
needs at least n! states.

Proof. We use the languages Ln = {w ∈ Σ∗n | |w|ai = 0 mod i, for 1≤ i≤ n} as witnesses.
A DJFA A that accepts Ln is depicted in Figure 2. The number of states of A is 1+2+ · · ·+n,
which is equal to n(n+1)/2.

a1

a2

a3

a4

a3

a4

a2

a2

a4

a4

a4

a4

a3

a3 a3

a4

Figure 2: Let n = 4. The (n(n+ 1)/2)-state DJFA A with input alphabet Σn = {a1,a2, . . . ,an} that
accepts the regular language Ln = {w ∈ Σ∗n | |w|ai = 0 mod i, for 1≤ i≤ n}.

State Complexity and Decidability of Jumping Finite Automata 9

Next, we describe an ordinary DFA B = (Q,Σn, δ,q0,F) accepting the language Ln. Let
Q= {0}×{0,1}×· · ·×{0,1, . . . ,n−1}, q0 = (0,0, . . . ,0), F = {(0,0, . . . ,0)}, and the transi-
tion function be

δ((i1, i2, . . . , in),aj) = (i1, i2, . . . , ij−1, ij +1 mod j, ij+1, . . . , in),

for 0≤ ik ≤ k−1, for 1≤ k ≤ n, and 1≤ j ≤ n. The automaton B accepts Ln and all n! states
of B are necessary, as one can see with standard arguments. 2

References
[1] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and

Technology behind Search. Addison-Wesley (2011)

[2] Beier, S., Holzer, M., Kutrib, M.: On the descriptional complexity of operations on semi-
linear sets. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, G. (eds.) Proceedings of the 15th
International Conference Automata and Formal Languages, EPTCS (2017)

[3] Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: Characterizations
and complexity. In: Drewes, F. (ed.) Proceedings of the 20th Conference on Implementa-
tion and Application of Automata. pp. 89–101. No. 9223 in LNCS, Springer (2015)

[4] Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity
results on jumping finite automata. Theoret. Comput. Sci. 679, 31–52 (2017)

[5] Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. AMS 113, 333–368
(1964)

[6] Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under Parikh equiv-
alence. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) Proceedings of the 16th In-
ternational Workshop on Descriptional Complexity of Formal Systems. pp. 294–305. No.
8614 in LNCS, Springer (2014)

[7] Meduna, A., Zemek, P.: Jumping finite automata. Internat. J. Found. Comput. Sci. 23,
1555–1578 (2012)

[8] To, A.W.: Parikh images of regular languages: Complexity and applications.
http://arxiv.org/abs/1002.1464v2 (2010)

[9] Vorel, V.: On basic properties of jumping finite automata.
http://arxiv.org/abs/1511.08396v2 (2015)

[10] Vorel, V.: Two results on discontinuous input processing. In: Câmpeanu, C., Manea, F.,
Shallit, J.O. (eds.) Proceedings of the 17th International Workshop on Descriptional Com-
plexity of Formal Systems. pp. 205–216. No. 9777 in LNCS, Springer (2016)

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 10–13.

A Characterization
of Completely Reachable Automata

E. A. Bondar and M. V. Volkov

Institute of Natural Sciences and Mathematics
Ural Federal University, Lenina 51, 620000 Ekaterinburg, Russia

bondareug@gmail.com, mikhail.volkov@usu.ru

Abstract

A complete deterministic finite automaton in which every non-empty subset of the state
set occurs as the image of the whole state set under the action of a suitable input word is
called completely reachable. We characterize completely reachable automata in terms of a
certain directed graph.

Recall that a complete deterministic finite automaton (DFA) is a triple A = 〈Q,Σ, δ〉, where
Q and Σ are finite sets called the state set and the input alphabet respectively, and δ : Q×Σ→Q
is a totally defined map called the transition function. Let Σ∗ stand for the collection of all finite
words over the alphabet Σ, including the empty word. The function δ extends to a function
Q×Σ∗→Q (still denoted by δ) in the following natural way: for every q ∈Q and w ∈ Σ∗, we
set δ(q,w) := q if w is empty and δ(q,w) := δ(δ(q,v),a) if w = va for some word v ∈ Σ∗ and
some letter a ∈ Σ. Thus, via δ, every word w ∈ Σ∗ induces a transformation of the set Q.

Whenever we deal with a fixed DFA, we simplify our notation by suppressing the sign of
the transition function; this means that we may introduce the DFA as the pair 〈Q,Σ〉 rather than
the triple 〈Q,Σ, δ〉 and may write q .w for δ(q,w) and P .w for {δ(q,w) | q ∈ P} where P is any
non-empty subset of Q.

Given a DFA A = 〈Q,Σ〉, we say that a non-empty subset P ⊆ Q is reachable in A if
P = Q.w for some word w ∈ Σ∗. A DFA is called completely reachable if every non-empty
subset of its state set is reachable.

Completely reachable automata were introduced and studied in [1]. In particular, [1] con-
tains a sufficient condition for complete reachability which we are going to generalize in the
present note. We start with recalling the condition from [1].

If Q is a finite set, we denote by T (Q) the full transformation monoid on Q, i.e., the monoid
consisting of all transformations ϕ : Q→ Q. For ϕ ∈ T (Q), its defect df(ϕ) is defined as the
size of the set Q\Qϕ. If A = 〈Q,Σ〉 is a DFA, the defect df(w) of a word w ∈ Σ∗ with respect
to A is the defect of the transformation of the set Q induced by w.

Supported by the Russian Foundation for Basic Research, grant no. 16-01-00795, the Ministry of Education
and Science of the Russian Federation, project no. 1.3253.2017, and the Competitiveness Enhancement Program
of Ural Federal University.

A Characterization of Completely Reachable Automata 11

Consider a word w of defect 1. For such a word, the set Q \Q.w consists of a unique
state, which is called the excluded state for w and is denoted by excl(w). Further, the set Q.w
contains a unique state p such that p= q1 .w = q2 .w for some q1 6= q2; this state p is called the
duplicate state for w and is denoted by dupl(w). Let D1(A) stand for the set of all words of
defect 1 with respect to A , and let Γ1(A) denote the directed graph having Q as the vertex set
and the set

E1 := {(excl(w),dupl(w)) | w ∈D1(A)} (1)

as the edge set. Since we consider only directed graphs in this paper, we call them just graphs
in the sequel.

Given a graph Γ, a vertex p is said to be reachable from a vertex q if there exists a directed
path starting at q and terminating at p. The mutual reachability relation on Γ consists of all
pairs (p,q) of vertices such that either p = q or each of the vertices p and q is reachable from
the other. Clearly, the mutual reachability relation is an equivalence on the vertex set of Γ, and
it partitions this set into classes of mutually reachable vertices. The subgraphs of Γ induced
on these classes are called the strongly connected components of Γ and a graph whose mutual
reachability relation is universal is said to be strongly connected.

Theorem 0.1 ([1]) If a DFA A = 〈Q,Σ〉 is such that the graph Γ1(A) is strongly connected,
then A is completely reachable; more precisely, for every non-empty subset P ⊆ Q, there is a
product w of words of defect 1 such that P =Q.w.

In Theorem 0.1 and in similar statements below we do not exclude the case when P = Q
since we may consider the empty word as the product of the empty set of factors with any
prescribed property.

The following example, also taken from [1], demonstrates that the condition of Theorem 0.1
is not necessary.

Example 0.2 Consider the DFA E3 with the state set {1,2,3} and the input letters a[1],a[2],a[3],a[1,2]
that act as follows:

i .a[1] :=

{
2 if i= 1,2,
3 if i= 3;

i .a[2] :=

{
1 if i= 1,2,
3 if i= 3;

i .a[3] :=

{
1 if i= 1,2,
2 if i= 3;

i .a[1,2] := 3 for all i= 1,2,3.

The graph Γ1(E3) is not strongly connected. However, it can be checked by a straightforward
computation that the automaton E3 is completely reachable. (This will also follow from Theo-
rem 0.3 below.)

In order to generalize Theorem 0.1, we first extend the operators excl(_) and dupl(_) to
words with defect> 1. Namely, if A = 〈Q,Σ〉 is a DFA andw∈Σ∗ is a word with df(w)≥ 1, we
define excl(w) as the setQ\Q.w and dupl(w) as the set {p∈Q | p= q1 .w= q2 .w for some q1 6=
q2}. If we take the usual liberty of ignoring the distinction between singleton subsets and their
elements, then for words of defect 1, the new meanings of excl(w) and dupl(w) agree with the
definition from [1].

12 E. A. Bondar and M. V. Volkov

Now we describe an iterative process that assigns to each given DFA A = 〈Q,Σ〉 a certain
“layered” graph Γ(A). The process starts with the graph Γ1(A) defined above. If the graph
Γ1(A) is strongly connected, then we define Γ(A) as Γ1(A) and stop the process. If all
strongly connected components of Γ1(A) are singletons, we also set Γ(A) := Γ1(A) and stop.
Except for these two extreme cases, we extend the graph Γ1(A) as follows. Let Q2 be the
collection of the vertex sets of all at least 2-element strongly connected components of the
graph Γ1(A) and let D2(A) stand for the set of all words of defect 2 with respect to A . We
define Γ2(A) as the graph whose vertex set is Q∪Q2 and whose edge set is the union of E1
with the set

E2 := {(C,p) ∈Q2×Q | C ⊇ excl(w), p ∈ dupl(w)for some w ∈D2(A)} (2)

and the set I2 := {(q,C) ∈ Q×Q2 | q ∈ C} of inclusion edges representing the containment
relation between the elements of Q and the strongly connected components in Q2.

Observe that the definition of E1 in (1) can be easily restated in the form similar to the one
of the definition of E2 in (2):

E1 := {(q,p) ∈Q×Q | {q} ⊇ excl(w), p ∈ dupl(w)for some w ∈D1(A)}.

Before we proceed with the description of the generic step of our process, we present an
intermediate result. Even though it will be superseded by our main theorem, we believe that its
proof may help the reader to better understand the intuition behind our construction.

Theorem 0.3 If a DFA A = 〈Q,Σ〉 is such that the graph Γ2(A) is strongly connected, then A
is completely reachable; more precisely, for every non-empty subset P ⊆ Q, there is a product
w of words of defect at most 2 such that P =Q.w.

Proof. Take an arbitrary non-empty subset P ⊆Q. We prove that P is reachable in A via
a product of words of defect at most 2 by induction on m := |Q\P |. If m= 0, then P =Q and
nothing is to prove as Q is reachable via the empty word. Now let m> 0 so that P is a proper
subset of Q. We aim to find a subset R ⊆ Q such that P = R.w for some word w of defect at
most 2 and |R|> |P |. Then |Q\R|<m, and the induction assumption applies to the subset R
whence R =Q.v for some product v of words of defect at most 2. Then P =Q.vw so that P
is reachable as required.

Consider two cases.
Case 1: There exists an edge (q,p) ∈ E1 such that q ∈Q\P and p ∈ P .

Since (q,p)∈E1, there is a word w of defect 1 with respect to A for which q is the excluded
state and p is the duplicate state. By the definition of the duplicate state, p = q1 .w = q2 .w for
some q1 6= q2, and since the excluded state q for w does not belong to P , for each state r ∈
P \{p}, there exists a unique state r′ ∈Q such that r′ .w = r. Now letting R := {q1, q2}∪

{
r′ |

r ∈ P \{p}
}

, we conclude that P =R.w and |R|= |P |+1.
Case 2: For every edge (q,p) ∈ E1, if q ∈Q\P , then also p ∈Q\P .

In this case, it is easy to see that every strongly connected component of the graph Γ1(A)

is either contained in P or disjoint with P . Consider the set P̂ := P ∪{C ∈ Q2 | C ⊆ P}. It
is a proper subset of Q∪Q2 as P is a proper subset of Q. Since the graph Γ2(A) is strongly
connected, there must exist an edge e that connects (Q∪Q2) \ P̂ with P̂ in the sense that the

A Characterization of Completely Reachable Automata 13

head of the edge e belongs to (Q∪Q2) \ P̂ while the tail of e lies in P̂ . Under the condition
of Case 2, the edge e cannot belong to E1. Furthermore, the definition of P̂ eliminates the
possibility for e to be an inclusion edge: if (q,C) ∈ I2 is such that C ∈ P̂ , then C ⊆ P whence
q ∈ P . Thus, we conclude that e ∈ E2, i.e., e = (C,p) where C /∈ P̂ and p ∈ P . By the
definition of E2, there exists a word w of defect 2 with respect to A such that C ⊇ excl(w) and
p ∈ dupl(w). By the definition of dupl(w), there exist some q1, q2 ∈ Q such that q1 6= q2 and
q1 .w= q2 .w= p. Since C /∈ P̂ , we have C∩P =∅, whence excl(w)∩P =∅. Thus, for every
state r ∈ P \{p}, there is a state r′ ∈Q such that r′ .w = r. Now we can proceed as in Case 1:
we set R := {q | q .w= p}∪

{
r′ | r ∈ P \{p}

}
and conclude that P =R.w and |R|> |P | since

q1, q2 ∈R. 2
Now we return to our iterative definition of the graph Γ(A). Suppose that k > 2 and the

graph Γk−1(A) with the vertex set Q∪Q2∪·· ·∪Qk−1 and the edge set

E1∪E2∪·· ·∪Ek−1∪ I2∪·· ·∪ Ik−1 (3)

has already been defined. If the graph Γk−1(A) is strongly connected, then we define Γ(A)
as Γk−1(A) and terminate the process. Now suppose that Γk−1(A) is not strongly connected.
Given a strongly connected component of Γk−1(A), we define its rank as the number of vertices
from Q that belong to the component. If all strongly connected components of Γk−1(A) have
rank less than k, we also set Γ(A) := Γk−1(A) and stop. Otherwise we define the set Qk as
the collection of the vertex sets of all strongly connected components of rank at least k in the
graph Γk−1(A). Let Dk(A) stand for the set of all words of defect k with respect to A . We
define Γk(A) as the graph whose vertex set is Q∪Q2∪·· ·∪Qk−1∪Qk and whose edge set is
the union of the set (3) with the set

Ek := {(C,p) ∈Qk×Q | C ⊇ excl(w), p ∈ dupl(w)for some w ∈Dk(A)} (4)

and the set

Ik := {(q,C) ∈Q×Qk | q ∈ C}∪
k−1⋃

i=2

{(D,C) ∈Qi×Qk |D ⊆ C}

of inclusion edges representing the inclusions between the elements of Q∪Q2∪·· ·∪Qk−1 and
the strongly connected components in Qk.

Our main result is the following theorem.

Theorem 0.4 If a DFA A = 〈Q,Σ〉 is such that the graph Γ(A) is strongly connected and
Γ(A) = Γk(A), then A is completely reachable; more precisely, for every non-empty subset
P ⊆Q, there is a product w of words of defect at most k such that P =Q.w.

Its proof will be published elsewhere.

References
[1] E. A. BONDAR, M. V. VOLKOV, Completely Reachable Automata. In: C. CÂMPEANU, F. MANEA,

J. SHALLIT (eds.), Descriptional Complexity of Formal Systems, 18th Int. Conf., DCFS 2016. LNCS
9777, Springer, 2016, 1–17.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 14–17.

Formal Language Techniques for Space Lower Bounds
Li-Hsuan Chen(A) Philipp Kuinke(B) Felix Reidl(C)

Peter Rossmanith(B) Fernando Sánchez Villaamil(B)

(A)National Chung Cheng University, Taiwan
clh100p@cs.ccu.edu.tw

(B)RWTH Aachen University
{kuinke,rossmani,fernando.sanchez}@cs.rwth-aachen.de

(C)Royal Holloway, University of London
felix.reidl@gmail.com

Abstract

For a fomally defined model of dynamic programming algorithms, we use a definition
of Myhill–Nerode families to prove that for every ε > 0, no dynamic programming algo-
rithm solves 3-COLORING/VERTEX COVER/DOMINATING SET on a tree, path or treedepth
decomposition of width/depth k with space bounded by O((3−ε)k · logO(1)n).

1. Introduction
The sentiment that the table size is the crucial factor in the complexity of dynamic programm-
ing algorithms is certainly not new (see e.g. [4]), so it seems natural to provide lower bounds
to formalize this intuition. Our tool of choice will be a family of boundaried graphs that are
distinct under Myhill–Nerode equivalence. The perspective of viewing graph decompositions
as an “algebraic” expression of boundaried graphs that allow such equivalences is well- estab-
lished [1, 2].

To formalize the notion of a dynamic programming algorithm on tree, path and treedepth
decompositions, we consider algorithms that take as input a tree-, path- or treedepth decompo-
sition of width/depth s and size n and satisfy the following constraints:

1. They pass a single time over the decomposition in a bottom-up fashion;

2. they use O(f(s) · logO(1)n) space; and

3. they do not modify the decomposition, including re-arranging it.

While these three constraints might look stringent, they include pretty much all dynamic pro-
gramming algorithm for hard optimization problems on tree or path decompositions. For that
reason, we will refer to this type of algorithms simply as DP algorithms in the following.

Formal Language Techniques for Space Lower Bounds 15

In order to show the aforementioned space lower bounds, we introduce a simple machine
model that models DP algorithms on treedepth decompositions and construct superexponen-
tially large Myhill– Nerode families that imply lower bounds for DOMINATING SET, VERTEX

COVER/INDEPENDENT SET and 3-COLORABILITY in this algorithmic model. These lower
bounds hold as well for tree and path decompositions and align nicely with the space complex-
ity of known DP algorithms. While probably not surprising, we consider a formal proof for
what previously were just widely held assumptions valuable. The provided framework should
easily extend to other problems. Consequently, any algorithmic benefit of treedepth over path-
width and treewidth must be obtained by non-DP means. A full version of the claimed results
is also available [5].

2. Myhill-Nerode Families

In this section we introduce the basic machinery to formalize the notion of dynamic programm-
ing algorithms and how we prove lower bounds based on this notion. To make things easier,
we assume that the input graphs are connected, which allows us to presume that the treedepth
decomposition is always a tree instead of a forest.

First of all, we need to establish what we mean by dynamic programming (DP). DP al-
gorithms on graph decompositions work by visiting the bags/nodes of the decomposition in
a bottom-up fashion (a post-order depth-first traversal), maintaining tables to compute a solu-
tion. For decision problems, these algorithms only need to keep at most logn tables in memory
at any given moment (achieved in the case of treewidth by always descending first into the
part of the tree decomposition with the greatest number of leaves). We propose a machine
model with a read-only tape for the input that can only be traversed once, which only accepts
as input decompositions presented in a valid order. This model suffices to capture known dy-
namic programming algorithms on path, tree and treedepth decompositions. More specifically,
given a decision problem on graphs Π and some well-formed instance (G,ξ) of Π (where ξ
encodes the non-graph part of the input), let T be a tree, path or treedepth decomposition of G
of width/depth k. We fix an encoding T̂ of T that lists the separators provided by the decompo-
sition in the order they are normally visited in a dynamic programming algorithm (post-order
depth-first traversal of the bag/nodes of a tree/path/treedepth decomposition) and additionally
encodes the edges of G contained in a separator using O(k logk) bits per bag or path. Then
(k, T̂ , ξ) is a well- formed instance of the DP decision problem ΠDP. Pairing DP decision prob-
lems with the following machine model provides us with a way to model DP computation over
graph decompositions.

Definition 2.1 (Dynamic programming TM) A DPTM M is a Turing machine with an input
read-only tape, whose head moves only in one direction and a separate working tape. It accepts
as inputs only well-formed instances of some DP decision problem.

Any single-pass dynamic programming algorithm that solves a DP decision problem on tree,
path or treedepth decompositions of width/depth k using tables of size f(k) that does not re-
arrange the decomposition can be translated into a DPTM with a working tape of size O(f(k) ·
logn). This model does not suffice to rule out algebraic techniques, since this technique, like

16Li-Hsuan Chen, Philipp Kuinke, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil

branching, requires to visit every part of the decomposition many times [3]; or algorithms that
preprocess the decomposition first to find a suitable traversal strategy.

An s-boundaried graph ◦G is a graphGwith a set bd(◦G)⊆ V (G) of s distinguished vertices
labeled 1 through s, called the boundary of ◦G. We will call vertices that are not in bd(◦G)
internal. By ◦Gs we denote the class of all s-boundaried graphs. For s-boundaried graphs ◦G1
and ◦G2, we let the gluing operation ◦G1⊕ ◦G2 denote the s-boundaried graph obtained by first
taking the disjoint union of G1 and G2 and then unifying the boundary vertices that share the
same label.

The following notion of a Myhill–Nerode family will provide us with the machinery to prove
space lower-bounds for DPTMs where the input instance is an unlabeled graph and hence for
common dynamic programming algorithms on such instances. Recall that ◦Gs denotes the class
of all s-boundaried graphs.

Definition 2.2 (Myhill–Nerode family) A set H ⊆ ◦Gs×N is an s-Myhill–Nerode family for
a DP-decision problem ΠDP if the following holds:

(a) For every (◦H,q) ∈H it holds that |◦H|= |H| · logO(1)|H| and q = 2|H|·logO(1)|H|.
(b) For every subset I ⊆ H there exists an s-boundaried graph ◦GI ∈ ◦Gs with |◦GI |= |H| ·

logO(1)|H| and an integer pI such that for every (◦H,q) ∈H it holds that

(◦GI ⊕ ◦H,pI + q) 6∈ΠDP ⇐⇒ (◦H,q) ∈ I.

Let ◦td(◦G) be the minimal depth over all treedepth decompositions of ◦G∈Gs where the bound-
ary appears as a path starting at the root. We define the size of a Myhill–Nerode familyH as |H|,
its treedepth as

td(H) = max
(◦H,·)∈H,I⊆H

◦td(◦GI ⊕ ◦H)

and its treewidth and pathwidth as the maximum tree/path decomposition of lowest width of
any (◦H, ·) ∈H where the boundary is contained in every bag.

The space lower bounds all follow the same basic construction. We define a problem-
specific “state” for the vertices of a boundary set X and construct two boundaried graphs for
it: one graph that enforces this state in any (optimal) solution of the respective problem and
one graph that “tests” for this state by either rendering the instance unsolvable or increasing the
costs of an optimal solution. This yields lower bounds for 3-COLORING, VERTEX COVER and
DOMINATING SET.

Theorem 2.3 For every ε> 0, no DPTM solves 3-COLORING/ VERTEX COVER/ DOMINATING

SET on a tree, path or treedepth decomposition of width/depth k with space bounded by O((3−
ε)k · logO(1)n).

3. Conclusion
We have shown that single-pass dynamic programming algorithms on treedepth, tree or path de-
compositions without preprocessing of the input must use space exponential in the width/depth,
confirming a common suspicion and proving it rigorously for the first time. This complements

Formal Language Techniques for Space Lower Bounds 17

previous SETH-based arguments about the running time of arbitrary algorithms on low tree-
width graphs. Our lower bounds appear as if they could be special cases of a general theory
to be developed in future work and we further ask whether our result can be extended to less
stringent definitions of “dynamic programming algorithms.”

References
[1] H. L. BODLAENDER, Fixed-parameter tractability of treewidth and pathwidth. In: The Multivariate

Algorithmic Revolution and Beyond. 2012, 196–227.

[2] R. BORIE, R. PARKER, C. TOVEY, Solving problems on recursively constructed graphs. ACM Com-
puting Surveys 41 (2008) 1, 4.

[3] M. FÜRER, H. YU, Space Saving by Dynamic Algebraization Based on Tree-Depth. Theory of
Computing Systems (2017), 1–22.

[4] J. V. ROOIJ, H. L. BODLAENDER, P. ROSSMANITH, Dynamic programming on tree decomposi-
tions using generalised fast subset convolution. In: Algorithms – ESA 2009: 17th Annual European
Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings. Number 5193 in LNCS,
Springer, 2009, 566–577.

[5] F. SÁNCHEZ VILLAAMIL, About Treedepth and Related Notions. Ph.D. thesis, RWTH Aachen Uni-
versity, 2017.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 18–22.

A Normal Form, a Representation Theorem, and a
Regular Approximation for Context-Free Languages

Liliana Cojocaru Erkki Mäkinen

University of Tampere, Faculty of Natural Sciences
{Liliana.Cojocaru, Erkki.Makinen}@uta.fi

Zusammenfassung
Wir stellen eine neue Normalform, genannt Dyck-Normalform (DNF), für kontextfreie Gram-
matiken vor. Mit Hilfe dieser Normalform beweisen wir, dass für jede kontextfreie Sprache
L, eine ganze Zahl K und ein Homomorphismus ϕ existieren, so dass L = ϕ(D′

K) wobei
D′

K eine bestimmte Teilmenge der Dyck-Sprache über K Buchstaben ist. Die Sprache D′
K

ist dabei abhängig von einer kontextfreien Grammatik G in DNF für die Sprache L. Wei-
terhin nutzen wir ein übergangsartiges Diagramm für G, um eine reguläre Sprache R zu
konstruieren, so dass D′

K=R∩DK , womit wir den Chomsky-Schützenberger-Satz erhalten.
Die verwendete Methode zur Konstruktion von R ist grafisch konstruktiv und liefert eine
reguläre Grammatik, die eine Obermengen-Annäherung der anfänglichen Sprache erzeugt.

1. Introduction
A normal form for context-free grammars (CFGs) consists of restrictions imposed to the struc-
ture of context-free (CF) rules, especially on the number and order of terminals and nontermi-
nals allowed on the right-hand side of a CF rule. A normal form is correct if it preserves the
language generated by the original grammar. This condition is called the weak equivalence, i.e.,
a normal form preserves the language but may lose important syntactical or semantical pro-
perties of the original grammar. The more properties a normal form preserves, the stronger it
is. Normal forms turned out to be useful tools in parsing theory, inference and learning theory,
structural and descriptional complexity.

This paper is devoted to a new normal form for CFGs, called Dyck normal form (DNF).
The DNF is a syntactical restriction of the Chomsky normal form (CNF), in which the two
nonterminals occurring on the right-hand side of a rule are paired nonterminals. This pairwise
property induces a nested structure on the derivation tree of a word generated by a grammar in
DNF, i.e., each derivation tree of a word generated by a grammar in DNF, read in depth-first
search order, is a Dyck word. Moreover, there exists a homomorphism between the derivation
tree of a word generated by a grammar in CNF and its equivalent in DNF, i.e., the DNF and
CNF are strongly equivalent. For a CFG G in DNF we define the trace language associated
with derivations in G, which is the set of all derivation trees of G read in the depth-first search
order. By exploiting the DNF we prove, in Section 2, that for each CF language L, generated
by a grammarG in DNF, there exist an integerK and a homomorphism ϕ such that L=ϕ(D′K),

A Normal Form, a Representation Theorem, and a Regular Approximation for CF Languages19

where D′K (a subset of the Dyck language over K letters) equals the trace language associated
withG. This representation theorem emerges through a transition-like diagram to the Chomsky-
Schützenberger (C-S) theorem, i.e, we build a regular language R such that D′K =R∩DK . As
an application, in Section 3 we build a transition diagram for a regular grammar that genera-
tes a regular superset approximation of the initial CF language. We illustrate, through several
examples, the manner in which the regular languages provided by C-S theorem and regular ap-
proximation can be built. Even if we reach the same famous C-S theorem, the method used to
approach it is different from the other methods known in the literature. In brief, the method in
[2] is based on pushdown approaches, while that in [1] uses equations on languages and alge-
braic techniques to derive several types of Dyck language generators for CF languages. In these
works, the Dyck language is somehow hidden behind the derivative structure of the CF langua-
ge. The Dyck language provided in this paper is merely found through a pairwise-renaming
procedure of the nonterminals in the original CFG. Hence, it lies inside the CFG it describes.

2. Dyck Normal Form, Dyck Languages, and the Chomsky-
Schützenberger Theorem

Definition 2.1 A context-free grammar G = (N,T,P,S) is said to be in Dyck normal form
(DNF) if it satisfies the following conditions:

1. G is in Chomsky normal form,
2. if A→ a ∈ P , A ∈N , A 6= S, a ∈ T , then no other rule in P rewrites A,
3. for any A ∈N , X→AB ∈ P (X→BA) there is no other rule in P of the form X ′→B′A

(X ′→AB′),
4. for any two rules X→ AB, X ′→ A′B (X→ AB, X ′→ AB′) we have A′ = A (B′ =B).

Note that, condition 2 (Definition 2.1) allows to make a partition between nonterminals rewritten
by nonterminals, and nonterminals rewritten by terminals. This is useful when defining a homo-
morphism from Dyck words to words generated by a grammar in DNF. Conditions 3 and 4 allow
to split the set of nonterminals into paired nonterminals, and thus to introduce bracketed pairs.

Theorem 2.2 For each CFG G= (N,T,P,S) there exists a grammar G′ = (N ′,T,P ′,S) such
that L(G) = L(G′) and G′ is in DNF.

Definition 2.3 A Dyck languageDk over k letters is a CF language defined byGk =({S},Tk,P,
S), where Tk = {[1, [2, ..., [k,]1,]2, ...,]k} and P = {S→ [iS]i,S→ SS,S→ [i]i|1≤ i≤ k}.

Definition 2.4 LetGk= (Nk,T,Pk,S) be a CFG in DNF with |Nk−{S}|= 2k. LetD : S⇒ u1
⇒ u2⇒...⇒ u2n−1 =w, n≥ 2, be a leftmost derivation ofw ∈L(G). The trace-word of a word
w of length n≥ 2, associated with the derivation D, denoted by tw,D, is defined as the concate-
nation of nonterminals consecutively rewritten in D, excluding the axiom. The trace-language
Ł(Gk) associated with Gk is Ł(Gk) = {tw,D|D is a leftmost derivation of w,w ∈ L(Gk)}.

Note that tw,D, w ∈ L(G), can also be read from the derivation tree of w in the depth-first
search order starting with the root (but omitting the root and the leaves). To be observed that
Ł(Gk) is a subset of Dk.

20 Liliana Cojocaru, Erkki Mäkinen

Theorem 2.5 Given a CFG G there exist an integer K, a homomorphism ϕ, and a subset D′K
of the Dyck languageDK , such that L(G) =ϕ(D′K). Furthermore, ifG has no rules of the form
S → t, where t is a terminal, then D′K equals the trace-language associated with G in DNF.
Otherwise, D′K is a very small extension of the trace-language of grammar G in DNF.

Proof. LetG be a CFG andGk =(Nk,T,Pk,S) be the DNF ofG such thatNk = {S, [1, [2, ...,
[k,]1,]2, ...,]k}. Let Ł(Gk) be the trace-language associated with Gk. Let {tk+1, ..., tk+p} be the
ordered subset of T , such that S→ tk+i ∈P , 1≤ i≤ p. DefineNk+p=Nk∪{[tk+1 , ..., [tk+p

,]tk+1 ,
...]tk+p

}, and Pk+p = (Pk −{S → tk+i ∈ P |1≤ i ≤ p})∪ {S→ [tk+i
]tk+i

, [tk+i
→ tk+i,]tk+i

→
λ|S→ tk+i ∈ P,1≤ i≤ p}. The new grammar Gk+p = (Nk+p,T,Pk+p,S) has the property that
L(Gk+p) = L(Gk). Let ϕ : (Nk+p−{S})∗→ T ∗ be the homomorphism defined by ϕ(N) = λ,
for each rule N→XY , N,X,Y∈Nk−{S}, ϕ(N) = t, for each rule N→ t, N∈Nk−{S}, and
t ∈ T ∪{λ}, ϕ([k+i) = tk+i, and ϕ(]k+i) = λ, for each 1≤ i≤ p. Obviously, L= ϕ(D′K), where
K= k+p, D′K = Ł(Gk)∪Lp(Gk), and Lp(Gk)= {[tk+1]tk+1 , ..., [tk+p

]tk+p
}. If G has no rule of

the form S→ t, t∈ T ∪{λ}, then Lp(Gk) = ∅ andD′K= Ł(Gk). 2

Next grammar Gk+p is called the extended grammar of Gk. Gk has an extended grammar
if and only if Gk (or G) has rules of the form S→ t, t ∈ T ∪{λ}. Let Gk = (Nk,T,Pk,S) be a
CFG in DNF. We divide Nk= {S, [1, ..., [k,]1, ...,]k} into three sets N (1), N (2), N (3) as follows:

1. [i,]i ∈N (1) if and only if ϕ([i) = t and ϕ(]i) = t′, t, t′ ∈ T ,
2. [i,]i ∈N (2) if and only if ϕ([i) = t and ϕ(]i) = λ, or ϕ([i) = λ and ϕ(]i) = t, t ∈ T ,
3. [i,]i ∈N (3) if and only if ϕ([i) = λ and ϕ(]i) = λ.
Certainly,Nk−{S}=N (1)∪N (2)∪N (3) andN (1)∩N (2)∩N (3)= ∅.N (2) is further divided

into N (2)
l and N (2)

r , such that N (2)
l contains those bracketed pairs [i,]i ∈N (2) for which ϕ([i) 6=

λ, and N (2)
r contains those bracketed pairs [i,]i ∈ N (2) for which ϕ(]i) 6= λ. We have N (2)=

N
(2)
l ∪N

(2)
r and N (2)

l ∩N
(2)
r = ∅. To find a connection between C-S theorem and Theorem 2.5

we build some transition diagrams as follows.

Construction 2.6 A dependency graph of Gk is a directed graph GX= (VX ,EX), X∈ {]j |]j ∈
N (3)}∪{S}, in which nodes are labeled with variables in Ñk∪{X}, Ñk= {[i|[i∈N (1)∪N (2)

r ∪
N (3)}∪{]j |]j ∈N (2)

l } and the set of edges is built as follows. For each X→ [i]i ∈ Pk,]i ∈N (2)
l ,

GX contains a directed edge from X to]i, for each X→ [i]i ∈ Pk, [i∈ N (1)∪N (2)
r ∪N (3), GX

contains an edge from X to [i. There is an edge in GX from a node [i, [i∈N (2)
r ∪N (3) to a node

]j or [k,]j ∈ N (2)
l , [k∈ N (1)∪N (2)

r ∪N (3), if there is a rule in Pk of the form [i→ [j]j or of the

form [i→ [k]k, respectively. There is an edge in GX from a node]i,]i ∈ N (2)
l , to a node]j or

[k,]j ∈N (2)
l , [k∈N (1)∪N (2)

r ∪N (3), if there is a rule in Pk of the form]i→ [j]j or of the form
]i→ [k]k, respectively. X is the initial node of GX . Any node [i∈N (1) is a final node in GX .

Let GX be a dependency graph of Gk. Consider the set of all terminal path in GX (starting
from the initial node to a final node). The set of terminal paths in GX can be characterized by
a finite number of regular expressions (reg.exps). Denote by RX

[i
the set of all reg.exps over

Ñk ∪ {X} that can be read in GX , starting from X and ending in the final node [i∈ N (1).
Define the homomorphism hG :Ñk ∪ {X}→{]i|]i∈N (2)

r ∪N (3)} ∪ {λ}, hG([i)=]i for any [i∈

A Normal Form, a Representation Theorem, and a Regular Approximation for CF Languages21

N
(2)
r ∪N (3), hG(X)= hG([i)= hG(]i)=λ, for any [i∈ N (2)

l ∪N (1). For any r.e
(l,X)
[i
∈ RX

[i
we

build a new reg.exp r.e(r,X)
[i

= hrG(r.e
(l,X)
[i

), where hrG is the mirror image of hG . Define r.eX[i =

r.e
(l,X)
[i

r.e
(r,X)
[i

, called the extended reg.exp of r.e(l,X)
[i

. For a certain X and [i denote by R.eX[i
the set of all extended reg.exps r.eX[i obtained as above. Furthermore, R.eX=

⋃
[i∈N (1)R.eX[i

and R.e=R.eS ∪ (⋃]i∈N (3)R.e]i). Connecting all reg.exps in R.e, through brackets]i, where

]i ∈ N (2)
r ∪N (3) by preserving some rules in Gk we build the extended dependency graph of

Gk, denoted by Ge= (Ve,Ee), which is a directed graph in which Ve= Ñk ∪ {S} ∪ {]i|]i ∈
N

(2)
r ∪N (3)}, S is the initial node, and final nodes are brackets]i, where]i ∈N (2)

r ∪N (1).

Theorem 2.7 (Chomsky-Schützenberger) For each CF language L there exist an integer K,
a regular set R, and a homomorphism h, such that L = h(DK ∩R). Furthermore, if G is a
CFG generating L, Gk the DNF of G, and Gk has no extended grammar, then K= k and
DK ∩R= Ł(Gk). Otherwise, there exists p > 0 such that K= k+p, and DK ∩R=D′K , where
D′K is the subset of DK computed as in Theorem 2.5.

Note that, the proof is a direct consequence of the manner in which the extended depen-
dency graph is built. The homomorphism h is equal to ϕ in the proof of Theorem 2.5. The
interpretation that emerges from the graphical method we propose is that the regular language
in the Chomsky-Schützenberger theorem intersected with a (certain) Dyck language lists all de-
rivation trees (read in the depth-first search order) associated with words in a CFG in DNF or
in CNF (since these derivation trees are equal, up to a homomorphism).

Example 2.8 LetG=({S, [1..., [7,]1...,]7},{a,b,c},S,P) in DNF, P = {S→ [1]1, [1→ [5]5/[1]1,
]1→ [6]6, [2→ [6]6/[7]7, [3→ [7]7, [5→ [4]4, [6→ [3]3,]6→ [2]2,]7→ [3]3/[4]4,]2→ b,]3→ a, [4→
c,]4→ c,]5→ b, [7→ a}.

The sets of reg.exps and extended reg.exps obtained by reading GS (Figure 1.a) are RS
[4
=

{S[+1 [5[4} andR.eS =R.eS[4 = {S[
+
1 [5[4]5]

+
1 }, respectively. The reg.exps and extended reg.exps

readable from G]1 (Figure 1.b) areR]1
[4
= {]1[6([3]7)+[4} andR.e]1 = {]1[6([3]7)+[4(]3)+]6}, re-

spectively. The reg.exps and extended reg.exps obtained by reading G]6 (Figure 1.c) are R]6
[4
=

{]6[2[6([3]7)+[4,]6[2(]7[3)∗]7[4} andR.e]6=R.e]6
[4
= {]6[2[6([3]7)+[4(]3)+]6]2,]6[2(]7[3)∗]7[4(]3)∗]2},

respectively. The extended dependency graph Ge of G is sketched in Figure 1.d. Edges in black,
are built from reg.exps in RX

[4
, X∈{S,]1,]6}. Orange edges emphasize symmetrical structu-

res, built with respect to the structure of trace-words. Some of them (e.g.]2]1 and]2]2) connect
reg.exps inR.e with respect to the structure of trace-words in Ł(G). Edge]2]1 is added because
there is at least one reg.exps in R.e that contains]1]1 (e.g. S[+1 [5[4]5]

+
1), a reg.exps in R.e]1

[4

that ends in]6 (e.g.]1[6([3]7)+[4(]3)+]6) and a reg.exp in R.e]6
[4

that ends in]2. Edge]2]2 is due
to the existence of a reg.exp that contains]6]2 (e.g.]6[2[6([3]7)+[4(]3)+]6]2) and a reg.exp in
R.e]6

[4
that ends in]2 (e.g.]6[2[6([3]7)+[4(]3)+]6]2 or]6[2(]7[3)∗]7[4(]3)∗]2). The regular language

provided by the C-S theorem is the homomorphic image, through hk of all reg.exps associa-
ted with all terminal paths in Ge (Figure 1.d) reachable from S to the final node]2, where
hk : Ñk∪{]i|]i ∈N (2)

r ∪N (3)}∪{S}→Nk is defined by hk(S) = λ, hk([i) = [i, hk(]i) =]i, for
[i∈N (2)

r ∪N (3), hk(]i) = [i]i,]i ∈N (2)
l , hk([i) = [i]i, [i∈N (1).

22 Liliana Cojocaru, Erkki Mäkinen

S

]
3

]
5

]
2

]
4

[
4 b

b

b

c

a
a

a
a

a
a

b

c

fS

c l

Figure 1: a. - d. The dependency graphs and extended dependency graph of the grammar in Example 2.8. e. The
transition diagram Ae in Example 3.1. The nodes colored in blue or purple are final nodes.

3. Conclusions and Further Applications of the DNF
In this paper we introduced a normal form for CFGs, called Dyck normal form (DNF). Ba-
sed on this normal form and on graphical approaches we give an alternative proof of the
Chomsky-Schützenberger (C-S) theorem. The regular language in this theorem is obtained from
a transition-like diagram called the extended dependency graph associated with derivations in
a CFG in DNF. Let Gk= (Nk,T,Pk,S) be a CFG in DNF and Ge =(Ve,Ee) the extended de-
pendency graph of Gk. From Ge we can depict a state diagram Ae for a finite automaton and a
regular grammar Gr= (Nr,T,Pr,S) that generates a regular superset approximation for Gk. In
brief, this can be obtained by dropping in Ge all left brackets in N (2)

r and all brackets in N (3),
and labeling the edges with the symbols produced in Gk by left or right bracket in N (2)∪N (1).
Based on graphical approaches, Ge can be further refined and therefore the regular superset
approximation can be further adjusted. The method provides a tight approximation especially
for linear CF languages. Besides, it preserves much of the structure of the original CFG, sin-
ce the regular language in the C-S theorem is an approximation of the trace-language, which
encodes derivation tress in the original CFG. A further goal is to compare our method with
the approximation technique described in [3]. The graphical method used to approach the C-S
theorem and the regular approximation we proposed may have further applications in the study
of descriptional and complexity properties of (several subclasses of) CF languages.

Example 3.1 The regular grammar generating the regular superset approximation of the CF
language in Example 2.8 is Gr = ({S,]2,]3, [4,]4,]5,]7},{a,b,c},S,Pr), Pr = {S→ c[4, [4→ c]4,
]4→ b]2/a]3/b]5,]2→ b]2/a]7,]3→ a]3/b]2/a]7,]5→ a]7,]7→ a]7/c[4,]2→ λ}. L(Gr) = ((c2ba+)∗

(c2a∗b+a+)∗)∗c2a∗b+. The transition diagram Ae is sketched in Figure 1.e.

References
[1] J. BERSTEL, Transductions and Context-Free Languages. Teuber, 1979.

[2] M. HARRISON, Introduction to Formal Language Theory. Addison-Wesley Longman, 1978.

[3] M. N. M. MOHRI, Regular Approximation of Context-free Grammars through Transformation. Ro-
bustness in Language and Speech Technolog 9 (2000), 251–261.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 23–26.

The Hardness of Solving Simple Word Equations
Joel Day, Florin Manea, Dirk Nowotka

Kiel University,
{jda,flm,dn}@informatik.uni-kiel.de

A word equation is an equality α = β, where α and β are words over an alphabet Σ∪X
(called the left, respectively, right side of the equation); Σ = {a,b,c, . . .} is the alphabet of
constants and X = {x1,x2,x3, . . .} is the alphabet set of variables. A solution to the equation
α = β is a morphism h : (Σ∪X)∗ → Σ∗ that acts as the identity on Σ and satisfies h(α) =
h(β). For instance, α= x1abx2 and β = ax1x2b define the equation x1abx2 = ax1x2b, whose
solutions are the morphisms h with h(x1) = ak, for k ≥ 0, and h(x2) = b`, for `≥ 0.

The study of word equations (or the existential theory of equations over free monoids) is
an important topic found at the intersection of algebra and computer science. The problem of
deciding whether a given word equation α= β has a solution or not, known as the satisfiability
problem, was shown to be decidable by Makanin [12] (see Chapter 12 of [11] for a survey).
Later it was shown that the satisfiability problem is in PSPACE by Plandowski [14]; a new
proof of this result was obtained in [10], based on a new simple technique called recompression.
However, it is conjectured that the satisfiability problem is in NP; this would match the known
lower bounds: the satisfiability of word equations is NP-hard, as it follows immediately from,
e.g., [4]. This hardness result holds in fact for much simpler classes of word equations, like
quadratic equations (where the number of occurrences of each variable in αβ is at most two),
as shown in [3]. There are also cases when the satisfiability problem is tractable. For instance,
word equations with only one variable can be solved in linear time in the size of the equation,
see [9]; equations with two variables can be solved in time O(|αβ|5), see [2].

In most cases, the NP-hardness of the satisfiability problem for classes of word equations
was shown as following from the NP-completeness of the matching problem for correspond-
ing classes of patterns with variables. In the matching problem we essentially have to decide
whether an equation α= β, with α ∈ (Σ∪X)∗ and β ∈ Σ∗, has a solution; that is, only one side
of the equation, called pattern, contains variables. The aforementioned results [4, 3] show, in
fact, that the matching problem is NP-complete for general α, respectively when α is quadratic.
Many more tractability and intractability results concerning the matching problem are known
(see [16, 6, 7]). In [5], efficient algorithms were defined for, among others, patterns which are
regular (each variable has at most one occurrence), non-cross (between any two occurrences
of a variable, no other distinct variable occurs), or patterns with only a constant number of
variables occurring more than once.

Naturally, for a class of patterns that can be matched efficiently, the hardness of the satisfi-
ability problem for word equations with sides in the respective class is no longer immediate. A
study of such word equations was initiated in [13], where the following results were obtained.
Firstly, the satisfiability problem for word equations with non-cross sides (for short non-cross

24 Joel Day, Florin Manea, Dirk Nowotka

equations) remains NP-hard. In particular, solving non-cross equations α= β where each vari-
able occurs at most three times, at most twice in α and exactly once in β, is NP-hard. Secondly,
the satisfiability of one-repeated variable equations (where at most one variable occurs more
than once in αβ, but arbitrarily many other variables occur only once) having at least one non-
repeated variable on each side, was shown to be trivially in P.

In this talk, we mainly address the class of regular-ordered equations, whose sides are reg-
ular patterns and, moreover, the order of the variables occurring in both sides is the same. This
seems to be one of the structurally simplest classes of equations whose number of variables is
not bounded by a constant. One central motivation for studying these equations with a sim-
ple structure is that understanding their complexity and combinatorial properties may help us
to identify a boundary between classes of word equations whose satisfiability is tractable and
intractable. Moreover, we wish to gain a better understanding of the core reasons why solving
word equations is hard. In the following, we overview our results, methods, and their connection
to existing works from the literature.

Lower bounds: Our first result closes the main problem left open in [13]. Namely, we show
that it is (still) NP-hard to solve regular (ordered) word equations. Note that in these word equa-
tions each variable occurs at most twice: at most once in every side. They are particular cases
of both quadratic equations and non-cross equations, so the reductions showing the hardness
of solving these more general equations do not carry over. To begin with, matching quadratic
patterns is NP-hard, while matching regular patterns can be done in linear time. Showing the
hardness of the matching problem for quadratic patterns in [3] relied on a simple reduction from
3-SAT, where the two occurrences of each variable were used to simulate an assignment of a
corresponding variable in the SAT formula, respectively to ensure that this assignment satisfies
the formula. To facilitate this final part, the second occurrences of the variables were grouped
together, so the equation constructed in this reduction was not non-cross. Indeed, matching
non-cross patterns can be done in polynomial time. So showing that solving non-cross equa-
tions is hard, in [13], required slightly different techniques. This time, the reduction was from
an assignment problem in graphs. The (single) occurrences of the variables in one side of the
equation were used to simulate an assignment in the graph, while the (two) occurrences of the
variables from the other side were used for two reasons: to ensure that the previously mentioned
assignment is correctly constructed and to ensure that it also satisfies the requirements of the
problem. For the second part it was also useful to allow the variables to occur in one side in a
different order as in the other side.

As stated in [13], showing that the satisfiability problem for regular equations seems to
require a totally different approach. Our hardness reduction relies on some novel ideas, and,
unlike the aforementioned proofs, has a deep word-combinatorics core. As a first step, we de-
fine a reachability problem for a certain type of (regulated) string rewriting systems, and show
it is NP-complete. This is achieved via a reduction from the strongly NP-complete problem
3-PARTITION [8]. Then we show that this reachability problem can be reduced to the satis-
fiability of regular-ordered word equations; in this reduction, we essentially try to encode the
applications of the rewriting rules of the system into the periods of the words assigned to the
variables in a solution to the equation. In doing this, we are able to only use one occurrence of
each variable per side, and moreover to even have the variables in the same order in both sides.

Upper bounds: A consequence of the results in [15] is that the satisfiability problem for a
certain class of word equations is in NP if the lengths of the minimal solutions of such equations

The Hardness of Solving Simple Word Equations 25

(where the length of the solution defined by a morphism h is the image of the equation’s sides
under h) are at most exponential. With this in mind, which obtain an insight in the combinatorial
structure of the minimal solutions of quadratic equations: if we follow around the minimal
solutions the positions that are fixed inside the images of the variables by each terminal of
the original equation (in order, starting with that terminal), we obtain sequences that should
not contain repetitions. Consequently, we give a simple and concise proof of the fact that the
image of any variable in a minimal solution to a regular-ordered equation is at most linear
in the size of the equation. It immediately follows that the satisfiability problem for regular-
ordered equations is in NP. While this result was expected, the approach we use to obtain
it seems rather interesting to us, and also a promising approach to showing that other, more
complicated, classes of restricted word equations can be solved in NP-time. For instance, it is
an open problem to show this for arbitrary regular or quadratic equations. It is worth noting
that our polynomial upper bound on length of minimal solutions of regular-ordered equations
does not hold even for slightly relaxed versions of such equations. More precisely, non-cross
equations α = β where the order of the variables is the same in both sides and each variable
occurs exactly three times in αβ, but never only on one side, may already have exponentially
long minimal solutions. To this end, it seems even more surprising that it is NP-hard to solve
equations with such a simple structure (regular-ordered), which, moreover, have quadratically
short solutions. As such, regular-ordered equations seem to be among the structurally simplest
word-equations, whose satisfiability problem is intractable.

Extending our ideas, we settle the complexity of solving regular-ordered equations with
regular constraints (as defined in [3], where each variable is associated with an NFA), which is
in NP for regular-ordered equations whose sides contain exactly the same variables, or when
the languages defining the scope of the variables are all accepted by NFAs with at most c states,
where c is a constant. For regular-ordered equations with regular constraints without these
restrictions, the problem remains PSPACE-complete.

These results appeared in [1].

References
[1] J. D. DAY, F. MANEA, D. NOWOTKA, The Hardness of Solving Simple Word Equations. CoRR

abs/1702.07922 (2017). To appear in MFCS 2017.

[2] R. DA̧BROWSKI, W. PLANDOWSKI, Solving two-variable word equations. In: Proc. 31th Inter-
national Colloquium on Automata, Languages and Programming, ICALP 2004. Lecture Notes in
Computer Science 3142, 2004, 408–419.

[3] V. DIEKERT, J. M. ROBSON, On Quadratic Word Equations. In: Proc. 16th Annual Symposium on
Theoretical Aspects of Computer Science, STACS 1999. Lecture Notes in Computer Science 1563,
1999, 217–226.

[4] A. EHRENFEUCHT, G. ROZENBERG, Finding a Homomorphism Between Two Words is NP-
Complete. Information Processing Letters 9 (1979), 86–88.

[5] H. FERNAU, F. MANEA, R. MERCAŞ, M. SCHMID, Pattern Matching with Variables: Fast Algo-
rithms and New Hardness Results. In: Proc. 32nd Symposium on Theoretical Aspects of Computer

26 Joel Day, Florin Manea, Dirk Nowotka

Science, STACS 2015. Leibniz International Proceedings in Informatics (LIPIcs) 30, 2015, 302–
315.

[6] H. FERNAU, M. L. SCHMID, Pattern matching with variables: A multivariate complexity analysis.
Information and Computation 242 (2015), 287–305.

[7] H. FERNAU, M. L. SCHMID, Y. VILLANGER, On the Parameterised Complexity of String Mor-
phism Problems. Theory of Computing Systems (2015). Http://dx.doi.org/10.1007/s00224-015-
9635-3.

[8] M. R. GAREY, D. S. JOHNSON, Computers And Intractability. W. H. Freeman and Company,
1979.

[9] A. JEŻ, One-Variable Word Equations in Linear Time. Algorithmica 74 (2016), 1–48.

[10] A. JEŻ, Recompression: A Simple and Powerful Technique for Word Equations. Journal of the
ACM 63 (2016).

[11] M. LOTHAIRE, Algebraic Combinatorics on Words. Cambridge University Press, Cambridge, New
York, 2002.

[12] G. S. MAKANIN, The problem of solvability of equations in a free semigroup. Matematicheskii
Sbornik 103 (1977), 147–236.

[13] F. MANEA, D. NOWOTKA, M. L. SCHMID, On the Solvability Problem for Restricted Classes of
Word Equations. In: Proc. 20th International Conference on Developments in Language Theory,
DLT 2016. Lecture Notes in Computer Science 9840, Springer, 2016, 306–318.

[14] W. PLANDOWSKI, An efficient algorithm for solving word equations. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, STOC 2006. 2006, 467–476.

[15] W. PLANDOWSKI, W. RYTTER, Application of Lempel-Ziv Encodings to the Solution of Words
Equations. In: Proc. 25th International Colloquium on Automata, Languages and Programming,
ICALP’98. Lecture Notes in Computer Science 1443, Springer, 1998, 731–742.

[16] D. REIDENBACH, M. L. SCHMID, Patterns with bounded Treewidth. Information and Computation
239 (2014), 87–99.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 27–30.

Regular Grammars for Array Languages
Henning Fernau(A) Meenakshi Paramasivan(A) D. G. Thomas(B)

(A)Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54286 Trier, Germany
fernau@uni-trier.de; meena_maths@yahoo.com

(B)Department of Mathematics, Madras Christian College, Chennai - 600059, India
dgthomasmcc@yahoo.com

Abstract

We study two different types of regular grammars of array languages introduced in the
literature and we refine the presentation of (regular : regular) array grammars in order to
clarify the non-closure under union.

1. Introduction and Definitions
Let Σn

m denote the set of two-dimensional arrays over the alphabet Σ with n columns and m
rows and consequently, Σ∗∗ =

⋃
n,m≥0 Σn

m is the set of all (rectangular) arrays over Σ. Several
regular-like mechanisms have been proposed in the literature to generalize, say, right-linear
grammars from the 1-dimensional (string) case to the 2-dimensional world.

The original definition of a two-dimensional right-linear grammars (2RLG) [6] under the
name regular matrix grammars (RMG) can be found in [7, 8]. RMG and boustrophedon finite
automata (BFA) [1], are among the simpler devices. RMG have been somehow extended to-
wards so-called regular-regular array grammars ((R:R)AG) in [8]. By splitting the definition of
(R:R)AG into two parts, according to the types. We are giving only an intuitive description of
BFA here. BFA can be seen as a restriction of the so-called isometric regular array grammars
(IRAG, originally introduced to describe non-rectangular-shaped pictures) that can only move
east, west and south. We denote the corresponding language families as L(IRAG) and L(BFA),
respectively, adding subscripts indicating alphabets when necessary. As described in [3], IRAGs
can be viewed as natural extensions of BFAs and then seen to describe a superclass of BFA- and
RMG-languages. The class of all languages generated by RMGs (defined below) is L(RMG).

It is customary to study operations on array and array languages. For reasons of space,
we only list the operations that we use in this paper in the following, together with a short
description of their meaning, otherwise referring to [1, 4].

A 2-dimensional word (also called picture, matrix or an array) over Σ is a tuple

W := ((a1,1,a1,2, . . . ,a1,n),(a2,1,a2,2, . . . ,a2,n), . . . ,(am,1,am,2, . . . ,am,n)) ,

where m,n ∈ N and, for every i, 1 ≤ i ≤m, and j, 1 ≤ j ≤ n, ai,j ∈ Σ. Every subset L ⊆ Σ∗∗
is a (rectangular) array language. Let W := [ai,j]m,n and W ′ := [bi,j]m′,n′ be two non-empty

28 Henning Fernau, Meenakshi Paramasivan, D. G. Thomas

pictures over Σ. The column concatenation of W and W ′, denoted by W �W ′, is undefined if
m 6=m′. The row concatenation of W and W ′, denoted by W �W ′, is undefined if n 6= n′. For
a picture W and k,k′ ∈N, by W k we denote the k-fold column-concatenation of W , by Wk we
denote the k-fold row-concatenation of W , and we write W k

k′ := (W k)k′ . If L1 and L2 are two
array languages the column product and the row product is defined as L1 �L2 = {W �W ′ :
W ∈ L1,W

′ ∈ L2} and L1 �L2 = {W �W ′ : W ∈ L1,W
′ ∈ L2} respectively.

Let L be a array language and L1,� =L, Li+1,� =Li,��L and Li+1,� =Li,��L for i≥ 1;

then L+ =
∞⋃
i=1

Li,� and L+ =
∞⋃
i=1

Li,�. If W is an array, then the transpose and half-turn of W

are given by T (W) := ((a1,1,a1,2, . . . ,am,1),(a1,2,a2,2, . . . ,am,2), . . . ,(a1,n,a2,n, . . . ,am,n)) and
H(W) := ((am,n,am,2, . . . ,am,1),(a2,n,a2,2, . . . ,a2,1), . . . ,(a1,n,a1,2, . . . ,a1,1)), respectively. In
a natural way, these operations are lifted to array languages and even to families of array lan-
guages.

Definition 1.1 [6] A two-dimensional right-linear grammar (RMG for short) is defined by a
7-tuple G = (Vh,Vv,ΣI ,Σ,S,Rh,Rv), where: Vh is a finite set of horizontal non-terminals; Vv
is a finite set of vertical non-terminals, with Vh∩Vv = ∅; ΣI ⊆ Vv is a finite set of intermediates;
Σ is a finite set of terminals; S ∈ Vh is a starting symbol; Rh is a finite set of horizontal rules of
the form V → AV ′ or V → A, where V , V ′ ∈ Vh and A ∈ ΣI ; and Rv is a finite set of vertical
rules of the form W → aW ′ or W → a, where W,W ′ ∈ Vv and a ∈ Σ.

Example 1.2 L= {0}++�{1}+�{0}++ is generated by the RMGG=(Vh,Vv,ΣI ,Σ,S,Rh,Rv),
where Vh = {S,X,Y }, Vv = {A,B}, ΣI = Vv, Σ = {0,1}, Rh = {S → AX,X → AX,X →
BY,Y → AY,Y → A} and Rv = {A→ 0A,A→ 0,B→ 1B,B→ 1}.

Theorem 1.3 [2] LΣ(BFA) = T (LΣ(RMG)).

Siromoney et al. introduced another interesting class of array grammars called (R:R)AG [8]
to generate picture languages which cannot be generated by RMG. As we are not so much
interested in other language families (as described in [8]), we are now giving a different yet
equivalent formalization of this picture language description as follows:

Definition 1.4 An (R:R)AG can be specified asG= (S,VN ,VI ,Σ,PN ,PI ,π,τ), where the com-
ponents are as follows: A nonterminal alphabet VN with a distinctive start symbol S ∈ VN ; an
intermediate alphabet VI , disjoint from VN ; a terminal alphabet Σ, disjoint from VN ∪VI ; a
set PN of non-terminal rules that are either of the form A→XB (right-linear), or of the form
A→BX (left-linear), where A,B ∈ VN and X ∈ VI ; a set PI of rules of the form A→X , with
A ∈ VN and X ∈ VI ; a picture association mapping π : VI → LΣ(RMG)∪LΣ(BFA); a type
interpretation mapping τ : PN →{�,�} such that τ(p1) = τ(p2) implies that p1 is right-linear
if and only if p2 is right-linear.

Observe that the last condition implies that p1 is left-linear if and only if p2 is left-linear. The
derivation proceeds as follows: first, a derivation tree T is generated by the linear rules given
by PN , PI , starting with S.

According to the type, the inner nodes are henceforth interpreted as row or as column cate-
nation. Finally, π is applied to all leaves of the tree.

Regular Grammars for Array Languages 29

So, we obtain a tree whose leaves correspond to array languages and whose inner nodes
show catenation operators; hence, we can inductively, bottom-up, associate a language to all
inner nodes and hence to the root of T . The language we associate with G is then the union
of all languages associated to roots of derivation trees of G in this manner. This describes the
language family L((R : R)AG).

Example 1.5 A (R:R)AG that generates the staircase of x’s of a fixed proportion is defined as
G = (S,VN ,VI ,Σ,PN ,PI ,π,τ), where VN = {S,A}, VI = {X↑,X→,X}, Σ = {x,•}, PN =
{S→AX→,A→X↑S}, PI = {S→X}, a picture association mapping π : VI →LΣ(RMG)∪
LΣ(BFA) is given by π(X↑) = {(• • •• • •)n � (••) | n≥ 1}, π(X→) = {(

• • x• • x
x x x

)� (• • •• • •)n | n≥ 1}
and π(X) =

• • • x• • • x
x x x x

, Here π(X↑) ∈ LΣ(RMG), π(X→) ∈ LΣ(BFA) and interestingly π(X) ∈
LΣ(RMG)∩LΣ(BFA), and a type interpretation mapping τ : PN →{�,�} is given by τ(S→
AX→) = � and τ(A→X↑S) = �. Here τ(S→ AX→) 6= τ(A→X↑S).

Definition 1.6 An (R:R)AG G with |τ(PN)|= 2 is called �-left, �-right

• if A→BX ∈ PN then τ(A→BX) = �,

• if A→XB ∈ PN then τ(A→XB) = �.

�-left, �-right (R:R)AG describes the language family L�−`,�−r((R : R)AG).

Definition 1.7 An (R:R)AG G with |τ(PN)|= 2 is called �-left, �-right

• if A→BX ∈ PN then τ(A→BX) = �,

• if A→XB ∈ PN then τ(A→XB) = �.

�-left, �-right (R:R)AG describes the language family L�−`,�−r((R : R)AG).

2. Results
Lemma 2.1 L((R : R)AG) = L�−`,�−r((R : R)AG)∪L�−`,�−r((R : R)AG).

Lemma 2.2 (a) A regular string language corresponds to a language of single-row arrays gen-
erated by RMG. (b) A regular string language corresponds to a language of single-column
arrays generated by RMG.

By combining Lemma 2.2 with Theorem 1.3 we obtain Corollary 2.3 and Remark 2.4, as by
definition BFA and RMG languages are in L�−`,�−r((R : R)AG)∩L�−`,�−r((R : R)AG).

Corollary 2.3 (a) A regular string language corresponds to a language of single-row arrays
accepted by BFA. (b) A regular string language corresponds to a language of single-column
arrays accepted by BFA.

Remark 2.4 A language of single-row (column) arrays is in both familiesL�−`,�−r((R : R)AG)
and L�−`,�−r((R : R)AG).

30 Henning Fernau, Meenakshi Paramasivan, D. G. Thomas

In [8, Theorem 3.1], it is claimed that L((R : R)AG) is closed under union, without giving
any proof. Unfortunately, this claim is wrong.

Theorem 2.5 L((R : R)AG) is not closed under union.

Proof. (Sketch) Let us reconsider the array language L = {0}++ � {1}+ � {0}++ that can
be described by some RMG (see Example 1.2). Let L̂= (T (L)�L�T (L))�L�T (L) . This
language can be described by some (R:R)AG that starts puzzling together the pieces from the
left lower corner. Notice that H(L̂) = T (L)�L� (T (L)�L�T (L)). Assume that there is
some (R:R)AG G generating L̂∪H(L̂). Consider a picture P from H(L̂) that is sufficiently big
and that is generated by G starting in the left lower corner. In the process of generating P , we
have to distinguish two cases which will lead to a contradiction as explained in [5]. 2

References
[1] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, D. G. THOMAS, Scanning Pictures the Boustro-

phedon Way. In: R. P. BARNEVA, B. B. BHATTACHARYA, V. E. BRIMKOV (eds.), International
Workshop on Combinatorial Image Analysis IWCIA. LNCS 9448, Springer, 2015, 202–216.

[2] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, D. G. THOMAS, Simple Picture Processing Based
on Finite Automata and Regular Grammars, 2017. Submitted to Journal of Computer and System
Sciences.

[3] H. FERNAU, M. PARAMASIVAN, D. G. THOMAS, Regular Array Grammars and Boustrophedon
Finite Automata. In: H. BORDIHN, R. FREUND, B. NAGY, G. VASZIL (eds.), Eighth Workshop on
Non-Classical Models of Automata and Applications (NCMA 2016); Short Papers. 2016, 55–63.

[4] H. FERNAU, M. PARAMASIVAN, D. G. THOMAS, Picture Scanning Automata. In: R. P. BARNEVA,
V. E. BRIMKOV, J. M. R. S. TAVARES (eds.), Computational Modeling of Objects Presented in
Images. Fundamentals, Methods, and Applications - 5th International Symposium, CompIMAGE
2016. LNCS 10149, Springer, 2017, 132–147.

[5] H. FERNAU, M. PARAMASIVAN, D. G. THOMAS, Regular Grammars for Array Languages. In:
R. FREUND, F. MRÁZ, D. PRŮŠA (eds.), Ninth Workshop on Non-Classical Models of Automata
and Applications (NCMA). 2017, 119–134.

[6] D. GIAMMARRESI, A. RESTIVO, Two-dimensional languages. In: G. ROZENBERG, A. SALOMAA

(eds.), Handbook of Formal Languages, Volume III. Springer, 1997, 215–267.

[7] G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Abstract Families of Matrices and Picture
Languages. Computer Graphics and Image Processing 1 (1972), 284–307.

[8] G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Picture Languages with Array Rewriting
Rules. Information and Control (now Information and Computation) 22 (1973) 5, 447–470.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 31–31.

Deterministic Regular Expressions with
Back-References

Dominik D. Freydenberger(A) Markus L. Schmid(B)

(A)Loughborough University, Loughborough, United Kingdom
ddfy@ddfy.de

(B)University of Trier, Germany
MSchmid@uni-trier.de

Abstract

Most modern libraries for regular expression matching allow back-references (i.e., rep-
etition operators) that substantially increase expressive power, but also lead to intractabil-
ity. In order to find a better balance between expressiveness and tractability, we combine
these with the notion of determinism for regular expressions used in XML DTDs and XML
Schema. This includes the definition of a suitable automaton model, and a generalization
of the Glushkov construction.

The talk is based on the paper [1]. See http://ddfy.de/ for the full version.

References
[1] D. D. FREYDENBERGER, M. L. SCHMID, Deterministic Regular Expressions with Back-

References. In: STACS. 2017, 33:1–33:14.

(A)Supported by DFG grant FR 3551/1-1.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 32–36.

Concise Description of Finite Languages, Revisited
Hermann Gruber(A) Markus Holzer(B) Simon Wolfsteiner(C)

(A)Knowledgepark GmbH, Leonrodstr. 68, 80636 München, Germany
hermann.gruber@kpark.de

(B)Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

(C)Institut für Diskrete Mathematik und Geometrie, TU Wien,
Wiedner Hauptstr. 8–10, 1040 Wien, Austria

simon.wolfsteiner@tuwien.ac.at

Abstract

We investigate the grammatical complexity of finite languages w.r.t. context-free gram-
mars and variants thereof. It is shown that the minimal number of productions necessary for
a finite language encoded by a context-free grammar cannot be approximated within a ratio
of o(nd), for all d ≥ 1, unless P = NP. Here, n is the length of longest word in the finite
language. Similar inapproximability results hold for linear context-free and right-linear (or
regular) grammars.

1. Introduction
Questions regarding the economy of descriptions of formal languages by different formalisms
such as automata, grammars, and formal systems have been studied quite extensively in the
past, see, e.g., [13, 14]. The results in [4] mark the starting point of a theory of the gram-
matical complexity of finite languages where the chosen complexity measure is the number of
productions. In particular, [4] gives a relative succinctness classification for various kinds of
context-free grammars. Further results along these lines can be found in [1, 2, 3, 15] as well as
some newer ones in, e.g., [6, 7, 9, 10]. It is worth mentioning that in [10] a method for proving
lower bounds on the number of productions for context-free grammars was developed. For in-
stance, it was shown that the set of all squares of a given length requires an exponential number
of productions to be generated by a context-free grammar.

More recently, it was shown that there is a close relationship between a certain class of
formal proofs in first-order logic and a certain class of (tree) grammars. In particular, the num-
ber of productions in such a grammar corresponds to the number of certain inference rules in

(C)This research was completed while the author was on leave at the Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany, in Summer 2017 and is partially supported by FWF project W1255-N23.

Concise Description of Finite Languages, Revisited 33

the proof [12, 8]. This correspondence sparked our interest in further investigating questions re-
garding the grammatical complexity of finite languages. The main result of this paper is that the
minimal number of productions necessary for a finite language encoded by a context-free gram-
mar cannot be approximated within a ratio of o(nd), for all d≥ 1, unless P=NP. Here, n is the
length of a longest word in the finite language. This result nicely generalizes the inapproxima-
bility of the smallest grammar problem with approximation ratio less than 8569

8568 unless P= NP
from [5]. Here, the smallest grammar problem asks for the smallest (in terms of the number
of productions) context-free grammar that generates exactly one given word. As a byproduct
of our inapproximability result, we show that the set of all cubes of a given length requires an
exponential number of productions using elementary methods already developed in [4]. To be
more precise, the language Tn = {w$w#w | w ∈ {0,1}n } requires Θ(2n) context-free produc-
tions, for n≥ 1. This constitutes a drastic improvement of previous results obtained in [4] and,
moreover, is more precise than using the lower bound method from [10] that results only in a
lower bound of Ω(2n/8/

√
3n) many context-free productions.

2. Preliminaries
We assume the reader to be familiar with the basic notions on grammars and languages as
contained in [11]. In particular, a context-free grammar (CFG) is a 4-tuple G = (N,T,P,S),
where N and T are disjoint alphabets of nonterminals and terminals, respectively, S ∈N is the
axiom, and P is a finite set of productions of the form A→ α, where A ∈N and α ∈ (N ∪T)∗.
As usual, the derivation relation of G is denoted by⇒G, and the reflexive and transitive closure
of⇒G is written as⇒∗G. The language generated by G is defined as

L(G) = {w ∈ T ∗ | S⇒∗G w}.
We also consider the following restrictions of context-free grammars: (i) a context-free gram-
mar is said to be linear context-free (LIN) if the productions are of the formA→α, whereA∈N
and α ∈ T ∗(N ∪{ε})T ∗—here ε refers to the empty word, and (ii) a context-free grammar is
said to be right-linear or regular (REG) if the productions are of the form A→ α, where A ∈N
and α ∈ T ∗(N ∪{ε}). Moreover, a grammar is said to have weight at most two, if every right-
hand side α of each production A→ α in P is of length at most two, that is, |α| ≤ 2. Linear
context-free and regular grammars of weight at most two are abbreviated by SLIN and SREG,
respectively—the prefix S stands for strict—this naming was coined in [4]. Furthermore, Γ will
denote the set of those abbreviations in the sequel, that is, Γ = {SREG,REG,SLIN,LIN,CFG}.

We are interested in the complexity of finite languages w.r.t. different types of grammars. To
be more precise: what is the smallest number of productions of a grammar required to generate
the language L? Let G = (N,T,P,S) be a context-free grammar. We define |G| to be the
number of productions if not stated otherwise, i.e., the number of elements in P . Then the
complexity of a finite language L w.r.t. an X-grammar, for X ∈ Γ, also called the X-complexity
of L, is defined as

Xc(L) = min{|G| |G is an X-grammar and L= L(G)}.
By definition, the following relations hold: CFG≤ LIN≤ REG≤ SREG and moreover we have
CFG ≤ LIN ≤ SLIN ≤ SREG, where X ≤ Y , for X,Y ∈ Γ, if and only if Xc(L) ≤ Yc(L), for
every finite language L. In the case that X ≤ Y , we say that X is more succinct than Y .

34 Hermann Gruber, Markus Holzer, Simon Wolfsteiner

3. Results
In the seminal paper [4] on concise description of finite languages by different types of gram-
mars, certain languages were identified that can only be generated minimally by listing all words
that belong to the language under consideration. For instance, the language

Un = {akbkca`b`dambm | 0≤ k+ `+m≤ n}

contains a quadratic number of words and satisfies CFGc(Un) = Ω(n2). The proof of this fact is
based on [4, Lemma 2.1] which states some easy facts about minimal context-free grammars: let
G = (N,T,P,S) be a minimal context-free grammar for the finite language L. Then for every
nonterminalA∈N \{S}, there are words α1 and α2 with α1 6=α2 such thatA→α1 andA→α2
are in P . Moreover, for every A ∈ N \ {S}, the set LA(G) = {w ∈ T ∗ | A⇒∗G w} contains
at least two words, and there is no derivation of the form A⇒+

G αAβ with α,β ∈ (N ∪T)∗.
Finally, for every A ∈N \{S}, there are u1,u2,v1,v2 ∈ T ∗ such that u1Au2 6= v1Av2 as well as
S⇒∗G u1Au2 and S⇒∗G v1Av2. Using these facts we show that the set

Tn = {w$w#w | w ∈ {0,1}n }

of all tripels of length n can be generated minimally by a context-free grammar only by listing
all words. Thus, we have the following result—observe that this result is more precise than
using the lower bound technique from [10] for the language under consideration:

Theorem 3.1 Let X ∈ Γ and n≥ 1. Then Xc(Tn) = Θ(2n).

The language Tn will be a basic building block for our main result, which states that the min-
imal number of context-free productions for a finite language cannot be approximated within a
certain factor unless P= NP. The main result reads as follows:

Theorem 3.2 Let X ∈ Γ. Given an X-grammar generating a finite language, it is impossible
to approximate Xc(L) within a factor of o(nd), for n = max{|w| | w ∈ L} and all d ≥ 1,
unless P= NP.

The proof strategy is by a reduction from the coNP-complete unsatisfiability problem for
3SAT-formulae: given a formula F with m clauses and n variables, where each clause is the
disjunction of at most 3 literals, it is coNP-complete to determine whether F is unsatisfiable—
in other words whether the negation of F is a tautology. Then the core idea is to give a suitable
presentation of non-satisfying assignments of F in {0,1}n for the n variables in form of a
grammar G, such that F is unsatisfiable if and only if L(G) = {0,1}n; by construction there is
a one-to-one correspondence between assignments and words from the set {0,1}n. In order to
finish our reduction we embed G into a grammar that generates the language

LF = L(G) · {0,1,$,#}3c·logn+2∪{0,1}n ·Tc·logn,

for some carefully chosen constant c. It is not hard to see that this reduction is polynomial,
even if we force the grammar for LF to be (strict) regular. Then we distinguish two cases: (i)
clearly, if F is unsatisfiable then LF = {0,1}n · {0,1,$,#}3c·logn+2 and there is a CFG-grammar
with a constant number of productions that generates LF . For the other types of X-grammars,

Concise Description of Finite Languages, Revisited 35

for X ∈ {REG,SREG,LIN,SLIN}, a linear number of productions suffices, i.e., the number
is O(n). (ii) On the other hand, if F is satisfiable, there is an assignment that evaluates F
to true. Hence, there is a word w ∈ {0,1}n that corresponds to that assignment and is not
a member of L(G). But then the left-quotient of LF w.r.t. the word w, that is, the language
w−1LF = {v ∈ {0,1,$,#}∗ | wv ∈ LF }, is equal to the language of cubes Tc·logn. In order to
estimate the number of productions for the set w−1L, for some word w ∈ T ∗ and a language
L⊆ T ∗, we apply the following lemma.

Lemma 3.3 Let X ∈ Γ and G = (N,T,P,S) be an X-grammar generating a finite language
with n= max{|w| | w ∈ L(G)}. Then one can effectively construct a grammar G′ of the same
type with |G′| ≤ |G|, if X ∈ {REG,SREG}, and |G′| = O(|G| ·n4), if X ∈ {LIN,SLIN,CFG},
satisfying L(G′) = w−1L(G), for every w ∈ T ∗.

Before we continue with the outline of the proof strategy of the main theorem, we briefly
explain the construction of the proof of the lemma. First, we transform the grammar into an
equivalent grammar of the same type and weight at most two. This increases the number of
productions at most by a factor of O(n). Then we apply the triple construction of this grammar
with the partial deterministic finite automaton that accepts wT ∗ in order to accept the intersec-
tion of both languages. Simultaneously during this construction, we take care of the triples that
directly terminate to letters from the word w and replace them by the empty word ε. These
triples can be easily identified, because the partial deterministic finite automaton for wT ∗ is
actually a chain, where the word w is read, followed by the sole accepting state that has a trivial
loop on all letters from T . The tedious details are left to the reader. The triple construction with
the simultaneous modification increases the grammar at most by a factor ofO(n3). Overall, this
gives an increase by a factor of O(n4) from the original grammar. This proves the stated result
for SLIN-, LIN-, and CFG-grammars. An alternative proof shows the linear bound for REG- and
SREG-grammars for the quotient w.r.t a single word w.

Now let us come back to the proof outline for the main theorem. Assume that there is
a polynomial time approximation algorithm for the minimal number of productions problem
within o(nd), where n is the length of the longest word in the language under consideration
and d≥ 1. Then this algorithm could be applied to decide whether CFGc(LF) = O(1). To this
end, set c= d+5. If F is unsatisfiable, then CFGc(LF) = O(1), as mentioned above. But if F
is satisfiable, let w present a satisfying assignment for F . Then w−1LF = Tc·logn, and by Theo-
rem 3.1, we have CFGc(Tc·n) =Θ(nd+5). By Lemma 3.3 we deduce that CFGc(LF) =Ω(nd+1)
in this case. Thus, the putative approximation algorithm returns a grammar size of o(nd+1) if
and only if F is unsatisfiable. This solves a coNP-hard problem in deterministic polynomial
time, which implies P = NP. A similar reasoning can be done with the other types of gram-
mars from Γ. The details are left to the reader. This proves Theorem 3.2 and shows that the
X-complexity, for X ∈ Γ, of a given finite language cannot be approximated within a factor
of o(nd), for all d≥ 1, unless P= NP.

References
[1] B. ALSPACH, P. EADES, G. ROSE, A Lower-Bound For the Number of Productions Required For

A Certain Class of Languages. Discrete Appl. Math. 6 (1983), 109–115.

36 Hermann Gruber, Markus Holzer, Simon Wolfsteiner

[2] W. BUCHER, A Note on a Problem in the Theory of Grammatical Complexity. Theoret. Comput.
Sci. 14 (1981) 3, 337–344.

[3] W. BUCHER, H. A. MAURER, K. CULIK II, Context-Free Complexity of Finite Languages. The-
oret. Comput. Sci. 28 (1983) 3, 277–285.

[4] W. BUCHER, H. A. MAURER, K. CULIK II, D. WOTSCHKE, Concise Description of Finite Lan-
guages. Theoret. Comput. Sci. 14 (1981) 3, 227–246.

[5] M. CHARIKAR, E. LEHMAN, D. LIU, R. PANIGRAHY, M. PRABHAKARAN, A. SAHAI, S. SHE-
LAT, The smallest grammar problem. IEEE Trans. Inf. Theory. 51 (2005) 7, 2554–2576.

[6] J. DASSOW, Descriptional Complexity and Operations—Two Non-classical Cases. In:
G. PIGHIZZINI, C. CÂMPEANU (eds.), Proceedings of the 19th Workshop on Descriptional Com-
plexity of Formal Systems. Number 10316 in LNCS, Springer, Milano, Italy, 2017, 33–44.

[7] J. DASSOW, R. HARBICH, Production Complexity of Some Operations on Context-Free Lan-
guages. In: M. KUTRIB, N. MOREIRA, R. REIS (eds.), Proceedings of the 14th Workshop on
Descriptional Complexity of Formal Systems. Number 7386 in LNCS, Springer, Braga, Portugal,
2012, 141–154.

[8] S. EBERHARD, S. HETZL, Compressibility of Finite Languages by Grammars. In: J. SHALLIT,
A. OKHOTIN (eds.), Proceedings of the 17th Workshop on Deescriptional Complexity of Formal
Systems. Number 9118 in LNCS, Springer, Waterloo, Ontario, Canada, 2015, 93–104.

[9] K. ELLUL, B. KRAWETZ, J. SHALLIT, M.-W. WANG, Regular Expressions: New Results and
Open Problems. J. Autom., Lang. Comb. 9 (2004) 2/3, 233–256.

[10] Y. FILMUS, Lower Bounds for Context-Free Grammars. Inform. Process. Lett. 111 (2011) 18,
895–898.

[11] M. A. HARRISON, Introduction to Formal Language Theory. Addison-Wesley, 1978.

[12] S. HETZL, Applying Tree Languages in Proof Theory. In: A. H. DEDIU, C. MARTÍN-VIDE (eds.),
Proceedings of the 6th International Conference Language and Automata Theory and Applications.
Number 7183 in LNCS, Springer, A Coruña, Spain, 2012, 301–312.

[13] M. HOLZER, M. KUTRIB, Descriptional Complexity—An Introductory Survey. In: C. MARTÍN-
VIDE (ed.), Scientific Applications of Language Methods. World Scientific, 2010, 1–58.

[14] A. R. MEYER, M. J. FISCHER, Economy of description by automata, grammars, and formal sys-
tems. In: Proceedings of the 12th Annual Symposium on Switching and Automata Theory. IEEE
Computer Society Press, 1971, 188–191.

[15] Z. TUZA, On the Context-Free Production Complexity of Finite Languages. Discrete Appl. Math.
18 (1987) 3, 293–304.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 37–40.

Deciding regular intersection emptiness of complete
problems for PSPACE and the polynomial hierarchy

Demen Güler(A) Andreas Krebs(A) Klaus-Jörn Lange(A)

Petra Wolf(A)

(A)WSI - University of Tübingen
Sand 13, 72076 Tübingen, Germany

{gueler,krebs,lange,wolfp}@informatik.uni-tuebingen.de

Abstract

For a regular set R of quantified Boolean formulae we decide whether R contains a
true formula. We conclude that there is a PSPACE-complete problem for which emptiness
of regular intersection is decidable. Furthermore, by restriction of quantification depth and
order we obtain complete problems for each level of the polynomial hierarchy with this
decidability as well. 1

1. Introduction
We consider for a language L of quantified Boolean formulae of several types the emptiness
problem of intersection with a regular set, i.e. whether L∩R = ∅ for a regular set R given
by a finite automaton. Van Leeuwen [12] showed that the satisfiability problem SAT in an
appropriate variable-free coding is an ET0L (and hence indexed) language, which implies the
decidability of the regular intersection emptiness problem [1]. This might be contrasted with the
fact that the NP-complete machine language {〈M,x,an〉 |M is NTM accepting x in n steps}
has an undecidable regular intersection emptiness problem.

The original motivation of this work was to distinguish formal languages like the contextfree
or regular ones with iteration or pumping lemmata and various decidabilities from non-formal
languages like the machine language.

Since all known families of formal languages are contained in NP we were interested in
problems (most probably) outside of NP which have a decidable regular intersection emptiness
problem. In particular, the existence of families of formal languages being densely complete in
the classes NP, SAC1 and NSPACE(logn) [7, 8] motivated this line of research.

In this article we consider the complexity classes PSPACE and the levels of the polynomial
hierarchy. Machine versions of languages complete for these classes would be defined by using
polynomially time bounded Turing machines of unbounded and respectively bounded alterna-
tion depth. In both cases the emptiness of intersection with a regular set would be undecidable.

1The presented results are extracted from our main article [6].

38 Demen Güler, Andreas Krebs, Klaus-Jörn Lange, Petra Wolf

In analogy to the satisfiability problem languages of (true) quantified formulae are the
canonical complete languages for these classes. Arbitrary true quantified Boolean formulae gen-
erate a PSPACE-complete language, where constraining quantification depth and order yields
languages for the classes of the polynomial hierarchy. We show for ΣP

k -, ΠP
k - and respectively

PSPACE-complete languages LΣk
, LΠk

and LTQBF that intersection emptiness problem with
regular languages is decidable.

A converse viewpoint of this problem is to consider a regular set of encoded quantified
Boolean formulae and to decide whether at least one does evaluate to true. For finite sets this
problem is, from a decidability perspective, trivial, since each quantified Boolean formula can
be evaluated by a Turing machine with a polynomial space bound. On the contrary, the ques-
tion whether an arbitrary (not necessarily regular) infinite set contains a true quantified Boolean
formula is not decidable. In our proof we make use of the finiteness of the state set of a finite
automaton which ensures us the repetitions of certain subwords in words accepted by the au-
tomaton. This way we only have to evaluate a finite number of candidates when we search for
true quantified Boolean formulae in infinite regular sets.

2. Definitions

We use the common notation for Boolean formulae with 0 and 1 as truth values. For readability
reasons we extend regular expressions by operations E≤n :=

⋃n
i=1E

i and E≥n := EnE∗ for a
fixed n∈N and E a regular expression. In particular we write E≥1 instead of E+ because signs
are part of the alphabet we use.

Definition 2.1 Let Γ = {a,b,〈,〉,∧,∨,+,−} and ± be the regular expression of {+,−}. We
define Lk-QBF as the regular set of encoded quantified Boolean formulae in 3-CNF:

Lk-QBF :=
{
〈±b≤ka≥1∨±b≤ka≥1∨±b≤ka≥1〉

(
∧〈±b≤ka≥1∨±b≤ka≥1∨±b≤ka≥1〉

)∗}

The literals ±b≤ka≥1 are interpreted in the following way. A + deontes a positive literal,
while − denotes negated literal. The number of bs determines the quantifier type (odd numbers
are existentially, even are universally quantified) and depth of the throught the number of as
indicated variable.
Furthermore, let LQBF :=

⋃
k≥1Lk-QBF be the set of encoded quantified Boolean formulae with-

out bound of quantifier alternation depth.

Definition 2.2 Let LΣk
(LΠk

) ⊆ Lk-QBF be the set of all true quantified Boolean formulae in
sequential encoding and 3-CNF, where the first quantifier is existential (universal).

Let Lk-TQBF := LΣk
∪LΠk

and LTQBF :=
⋃
k≥1Lk-TQBF.

Remark 2.3 For odd (even) k, the language LΣk
(LΠk

) is ΣP
k

(
ΠP

k

)
-complete [13]. The set

LTQBF⊆LQBF of encoded true quantified Boolean formulae in 3-CNF is PSPACE-complete [11].

Deciding regular intersection emptiness of complete problems for PSPACE and the polynomial
hierarchy 39

3. Results
In this section we present our two main theorems for the ΣP

k -complete language LΣk
, the ΠP

k -
complete language LΠ and the PSPACE-complete language LTQBF. We will only sketch the
proofs, for details we refer to the main article [6].

Theorem 3.1 Let R be a regular language. For each k ∈N it is decidable whether LΣk
∩R= ∅

and LΠk
∩R= ∅.

Proof Idea:
Let A be a DFA recognizing R. For every pair of states in A we compute the (possibly empty)
regular set of end-to-end literals that can be read in-between them. Each such literal set is then
assigned a finite set of representing literals. We define an automaton condense(A) based on the
finitely many representatives and show that condense(A) recognizes a true quantified Boolean
formula if and only if A accepts one. Finally we show that for each k ∈ N the emptiness of
condense(A)∩LΣk

and condense(A)∩LΠk
is decidable, which in total proves Theorem 3.1.

Theorem 3.2 Let R be a regular language. It is decidable whether LTQBF∩R= ∅.
Proof Idea:
Let R be given as a DFA A. Formulae recognized by A can be unbounded in their quantification
depth. We construct a new automaton restrict(A) which only accepts formulae of quantification
depth up to d, where d is only dependent on the size of A. The idea is to pump unbounded
quantifiers in two large groups of quantifiers of the same type. We show that A accepts a true
quantified Boolean formula if and only if restrict(A) accepts one. Following Theorem 3.1 it
is decidable whether L(restrict(A)) contains a true quantified Boolean formula with at most d
alternating quantifiers and thus LTQBF∩R= ∅ is decidable, too.

References
[1] A. V. AHO, Indexed grammars – an extension of context-free grammars. Journal of the ACM

(JACM) 15 (1968) 4, 647–671.

[2] S. ARORA, B. BARAK, Computational complexity: a modern approach. Cambridge University
Press, 2009.

[3] H. CALBRIX, T. KNAPIK, A string-rewriting characterization of Muller and Schupp’s context-free
graphs. In: FSTTCS. 98, Springer, 1998, 331–342.

[4] S. A. COOK, The complexity of theorem-proving procedures. In: Proceedings of the third annual
ACM symposium on Theory of computing. ACM, 1971, 151–158.

[5] J. ENGELFRIET, Iterated stack automata and complexity classes. Information and computation 95
(1991) 1, 21–75.

[6] D. GÜLER, A. KREBS, K.-J. LANGE, P. WOLF, Deciding regular intersection emptiness of com-
plete problems for PSPACE and the polynomial hierarchy. (submitted) (2017).

[7] A. KREBS, K.-J. LANGE, Dense Completeness. In: Developments in Language Theory. Springer,
2012, 178–189.

40 Demen Güler, Andreas Krebs, Klaus-Jörn Lange, Petra Wolf

[8] A. KREBS, K.-J. LANGE, M. LUDWIG, On Distinguishing NC1 and NL. In: International Con-
ference on Developments in Language Theory. Springer, 2015, 340–351.

[9] J.-É. PIN, Mathematical foundations of automata theory. Lecture notes LIAFA, Université Paris 7
(2010).

[10] L. J. STOCKMEYER, The polynomial-time hierarchy. Theoretical Computer Science 3 (1976) 1,
1–22.

[11] L. J. STOCKMEYER, A. R. MEYER, Word problems requiring exponential time (Preliminary Re-
port). In: Proceedings of the fifth annual ACM symposium on Theory of computing. ACM, 1973,
1–9.

[12] J. VAN LEEUWEN, The membership question for ETOL-languages is polynomially complete. In-
formation Processing Letters 3 (1975) 5, 138–143.

[13] C. WRATHALL, Complete sets and the polynomial-time hierarchy. Theoretical Computer Science
3 (1976) 1, 23–33.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 41–44.

Parallel Contextual Array Insertion Deletion Grammar
S. James Immanuel(A) D. G. Thomas(A)

(A)Department of Mathematics, Madras Christian College, Chennai - 600059, India
james_imch@yahoo.co.in , dgthomasmcc@yahoo.com

Abstract

We introduce a new grammar, called parallel contextual array insertion deletion grammar
and show that it has higher generative power as the family of languages generated by these
grammars includes families of recognizable languages and Siromoney matrix languages.

1. Introduction and Definitions

Contextual grammars offer novel insight to a number of issues central to formal language theory
and hence have been intensively investigated by formal language theorists. A contextual gram-
mar produces a language by starting from a given finite set of strings and adding, iteratively,
pairs of strings(called as contexts), associated to sets of words(called selectors) to the string
already obtained. Extension of these grammars to 2-dimensional array structures has been at-
tempted in [1, 2, 3, 5]. Based on the modified contextual style of internal parallel contextual
array grammars considered in [1] and by using array insertion and deletion operations we in-
troduce a new grammar called parallel contextual array insertion and deletion grammar. We
give the comparison of the family of picture languages generated by this new grammar with the
families of local languages, recognizable languages [4] and Siromoney matrix languages [6],
thus bringing out their generative powers.

Let us briefly recall some standard definitions. Let V be a finite alphabet, V ∗ is the set
of words over Σ including the empty word λ. V + = V ∗−{λ}. For w ∈ V ∗ and a ∈ V , |w|a
denotes the number of occurrences of a in w. An array consists of finitely many symbols from
V that are arranged as rows and columns in some particular order and is written in the form,
A=

[a11 ··· a1n...
am1 ··· amn

]
or in short A= [aij]m×n , for all aij ∈ Σ, i= 1,2, . . . ,m and j = 1,2, . . . ,n.

The set of all arrays over V is denoted by V ∗∗ which also includes the empty array Λ (zero rows
and zero columns). V ++ = V ∗∗−{Λ}. For a ∈ V , |A|a denotes the number of occurrences

of a in A. The column concatenation of A=
[a11 ··· a1p...
am1 ··· amp

]
, and B =

[
b11 ··· b1q...
bn1 ··· bnq

]
, defined only

Acknowledgement: The authors are thankful to Prof. Henning Fernau (Fachbereich 4 – Abteilung Informatik,
Universität Trier, D-54286 Trier, Germany) for his valuable input to this paper.

42 S. James Immanuel, D. G. Thomas

when m= n, is given by A©|| B =

[
a11 ··· a1p b11 ··· b1q...

...
am1 ··· amp bn1 ··· bnq

]
. Similarly, the row concatenation of

A and B, defined only when p= q, is given by A©=B =

a11 ··· a1p...
am1 ··· amp

b11 ··· b1q...
bn1 ··· bnq

.

As pictures are geometrical objects, several further unary operations can be introduced:
quarter-turn (rotate clockwise by 90◦), half-turn (rotate by 180◦), anti-quarter-turn (rotate anti-
clockwise by 90◦ or rotate clockwise by 270◦), transpose (reflection along the main diagonal),
anti-transpose (reflection along the anti-diagonal), reflection along the horizontal base line,
reflection along the rightmost vertical line.

Definition 1.1 The parallel column contextual insertion operation is defined as follows: Let
V be an alphabet, C be a finite subset of V ∗∗ whose elements are the column array con-

texts and ϕi
c : V ∗∗× V ∗∗ → 2C be a choice mapping. For arrays, A =

a1j ··· a1(k−1)...
amj ··· am(k−1)

,B =

a1k ··· a1(l−1)...
amk ··· am(l−1)

, j < k < l,aij ∈V , we define ϕ̂i
c :V ∗∗×V ∗∗→V ∗∗ such that, Ic ∈ ϕ̂i

c(A,B), Ic=
[u1

u2...
um

]
if ci = [ui

ui+1] ∈ ϕi
c

(
aij ··· ai(k−1)

a(i+1)j ··· a(i+1)(k−1) ,
aik ··· ai(l−1)

a(i+1)k ··· a(i+1)(l−1)

)
, ci ∈ C,1≤ i≤m−1, not all

need to be distinct.
Given an array X = [aij]m×n ∈ V ∗∗ : X = X1©|| A©|| B©|| X2, X1 =

a11 ··· a1(j−1)...
am1 ··· am(j−1)

, A =

a1j ··· a1(k−1)...
amj ··· am(k−1)

, B =
a1k ··· a1(l−1)...
amk ··· am(l−1)

, X2 =
a1l ··· a1n...
aml ··· amn

, 1 ≤ j ≤ k < l ≤ n+ 1 (or) 1 ≤ j <

k ≤ l ≤ n+ 1, we write X ⇒i Y if Y = X1©|| A©|| Ic©|| B©|| X2, such that Ic ∈ ϕ̂i
c(A,B). Ic

is called as the inserted column context. We say that Y is obtained from X by parallel column
contextual insertion operation. The following 4 special cases for X = X1©|| A©|| B©|| X2 are
also considered,(i) For j = 1, we have X1 = Λ. (ii) For j = k = 1, we have X1 = Λ and A= Λ.
(iii) For l = n+1, we have X2 = Λ. (iv) For k = l = n+1, we have B = Λ and X2 = Λ.

The case j = k = l is not possible for performing parallel column contextual insertion op-
eration.

Similarly we can define parallel row contextual insertion operation also.

Definition 1.2 The parallel column contextual deletion operation is defined as follows: Let
V be an alphabet, C be a finite subset of V ∗∗ whose elements are the column array con-

texts and ϕd
c : V ∗∗× V ∗∗ → 2C be a choice mapping. For arrays, A =

a1j ··· a1(k−1)...
amj ··· am(k−1)

,B =

a1(k−p) ··· a1(l−1)...
am(k−p) ··· am(l−1)

, j < k < l,aij ∈V , we define ϕ̂d
c :V ∗∗×V ∗∗→V ∗∗ such that,Dc ∈ ϕ̂d

c(A), Dc=
[u1

u2...
um

]
if ci = [ui

ui+1] ∈ ϕd
c

(
aij ··· ai(k−1)

a(i+1)j ··· a(i+1)(k−1) ,
ai(k+p) ··· ai(l−1)

a(i+1)(k+p) ··· a(i+1)(l−1)

)
, ci ∈ C,1≤ i≤m−1, not

all need to be distinct.
Given an array X = [aij]m×n ∈ V ∗∗ : X = X1©|| A©|| Dc©|| B©|| X2, X1 =

a11 ··· a1(j−1)...
am1 ··· am(j−1)

,

A =
a1j ··· a1(k−1)...
amj ··· am(k−1)

,B =
a1(k+p) ··· a1(l−1)...
am(k+p) ··· am(l−1)

,X2 =
a1l ··· a1n...
aml ··· amn

, 1 ≤ j ≤ k < l ≤ n+ 1, we write

Parallel Contextual Array Insertion Deletion Grammar 43

X⇒d Y if Y =X1©|| A©|| B©|| X2, such that Dc ∈ ϕ̂d
c(A,B). Dc is called as the deleted column

context. We say that Y is obtained from X by parallel column contextual deletion operation.The
following 4 special cases for X =X1©|| A©|| Dc©|| B©|| X2 are also considered, (i) For j = 1 we
have X1 = Λ. (ii) For j = k = 1, we have X1 = Λ and A = Λ. (iii) For l = n+ 1, we have
X2 = Λ. (iv) For k+p= l = n+1, we have B = Λ and X2 = Λ.

Similarly we can define parallel row contextual deletion operation also.

Definition 1.3 A parallel contextual array insertion deletion grammar is defined as
G = (V,T,M,C,R,ϕi

c,ϕ
i
r,ϕ

d
c ,ϕ

d
r) where, V is an alphabet, T ⊆ V is a terminal alphabet,

M is a finite subset of V ∗∗ called the base of G, C is a finite subset of V ∗∗ called column ar-
ray contexts, R is a finite subset of $rV ∗∗$r called row array contexts, ϕi

c : V ∗∗×V ∗∗→ 2C ,
ϕi
r : V ∗∗×V ∗∗→ 2R, ϕd

c : V ∗∗×V ∗∗→ 2C , ϕd
r : V ∗∗×V ∗∗→ 2R, are the choice mappings

which perform the parallel column contextual insertion, row contextual insertion, column con-
textual deletion and row contextual deletion operations, respectively.

The insertion derivation with respect to G is a binary relation ⇒i on V ∗∗ and is defined
as X ⇒i Y , where X,Y ∈ V ∗∗ if and only if X = X1©|| A©|| B©|| X2, Y = X1©|| A©|| Ic©|| B
©|| X2 orX =X3©=A©=B©=X4, Y =X3©=A©=Ir©=B©=X4 for someX1,X2,X3,X4 ∈ V ∗∗ and
Ic, Ir are inserted column and row contexts obtained by the parallel column or row contextual
insertion operations according to the choice mappings.

The deletion derivation with respect to G is a binary relation ⇒d on V ∗∗ and is defined
as X ⇒d Y , where X,Y ∈ V ∗∗ if and only if X = X1©|| A©|| Dc©|| B©|| X2, Y = X1©|| A©|| B
©|| X2 or X = X3©=A©=Dr©=B©=X4, Y = X3©=A©=B©=X4 for some X1,X2,X3,X4 ∈ V ∗∗

and Dc,Dr are deleted column and row contexts with respect to the parallel column or row
contextual deletion operations according to the choice mappings.

The direct derivation with respect to G is a binary relation⇒i,d on V ∗∗ which is either⇒i

or⇒d.

Definition 1.4 Let G = (V,T,M,C,R,ϕi
c,ϕ

d
r ,ϕ

d
c ,ϕ

d
r) be a parallel contextual array insertion

deletion grammar. The language generated by G, denoted by L(G) is defined as,

L(G) = {Y ∈ T ∗∗|∃X ∈M with X ⇒∗
i,d Y }.

The family of all array languages generated by parallel contextual array insertion deletion gram-
mar is denoted by PCAIDG.

Example 1.5 Let G= (V,T,M,C,R,ϕi
c,ϕ

i
r,ϕ

d
c ,ϕ

d
r) where,

V = {X,Y,Z,•}, T = {X,•}, M =

{
Z • • • X
Z • • • X
Z X X X X
Z Z Z Z Z

}
, C =

{
Y • • •
Y • • • ,

Y • • •
Y Z Z Z ,

Y
Y ,

Z
Z

}
,

R=
{

Z Y
Z Y
Y Y

,
Y •
Y X
Y Y

,
• •
X X
Y Y

,
• X
X X
Y Y

,
X •
X •
Y Y

,
• •• •
Y Y

, Y Y , Z Z

}
,

ϕi
c

[
Z
Z , • •• •

]
=
{
Y • • •
Y • • •

}
,ϕi

c

[
Z
Z , • •

X X

]
=
{
Y • • •
Y • • •

}
,ϕi

c

[
Z
Z , X X

Z Z

]
=
{
Y • • •
Y Z Z Z

}

ϕi
r

[
Z Y
Z Y , Z Y

]
=
{Z Y
Z Y
Y Y

}
,ϕi

r

[
Y •
Y • , Y Z

]
=
{Y •
Y X
Y Y

}
,ϕi

r [
• •• • , Z Z] =

{ • •
X X
Y Y

,
• •• •
Y Y

}
,

ϕi
r [

• •
• X , Z Z] =

{ • X
X X
Y Y

}
,ϕi

r [
• •
X X , Z Z] =

{X •
X •
Y Y

,
• •• •
Y Y

}
,ϕi

r

[• X
X X , Z Z

]
=
{ • •• •
Y Y

}

44 S. James Immanuel, D. G. Thomas

ϕd
c

[
Z
Z , • •• •

]
=
{
Y
Y

}
,ϕd

c

[
Z
Z , • •

X X

]
=
{
Y
Y

}
,ϕd

c

[
Z
Y , X X

Y Y

]
=
{
Y
Y

}
,ϕd

c

[
Y
Z , Y Y

Z Z

]
=
{
Y
Y

}
,

ϕd
c [Λ, • •• •] =

{
Z
Z

}
,ϕd

c [Λ,
• •
X X] =

{
Z
Z

}
,ϕd

c

[
Λ, X X

Z Z

]
=
{
Z
Z

}

ϕd
r

[
Z •
Z X , Z Z

]
=
{
Y Y

}
,ϕd

r [
• •• • , Z Z] =

{
Y Y

}
,ϕd

r

[
X •
X • , Z Z

]
=
{
Y Y

}
,

ϕd
r [

• •
X X , Z Z] =

{
Y Y

}
,ϕd

r

[• X
X X , Z Z

]
=
{
Y Y

}
,ϕd

r [
• •
X X ,Λ] =

{
Z Z
}
,

ϕd
r

[• X
X X ,Λ

]
=
{
Z Z
}
,ϕd

r [
• •• • ,Λ] =

{
Z Z
}
,ϕd

r

[
X •
X • ,Λ

]
=
{
Z Z
}

The picture language generated by this grammar consists of arrays describing staircases of X’s

of the form,

• • • • • • • • • X
• • • • • • • • • X
• • • • • • X X X X
• • • • • • X • • •
• • • X X X X • • •
• • • X • • • • • •
X X X X • • • • • •

. We note that L(G) /∈REC ∪L(CSML) [4, 6].

2. Results
Theorem 2.1 PCAIDG is closed under union, row catenation and column catenation.

Theorem 2.2 PCAIDG is closed under transpose, anti-transpose, quarter-turn, half-turn, anti-
quarter-turn, reflection along the horizontal base line and reflection along the rightmost vertical
line.

Theorem 2.3 PCAIDG is closed under projection

Theorem 2.4 REC (PCAIDG.

Theorem 2.5 L(CSML)(PCAIDG.

References
[1] P. H. CHANDRA, K. G. SUBRAMANIAN, D. G. THOMAS, Parallel Contextual array grammars and

languages. Electronic Notes in Discrete Math. 12 (2003), 106–117.

[2] H. FERNAU, R. FREUND, M. L. SCHMID, K. G. SUBRAMANIAN, P. WIELDERHOLD, Contextual
array grammars and array P systems. Annals of Mathematics and Artificial Intelligence 75 (2015),
5–26.

[3] R. FREUND, GH. PĂUN, G. ROZENBERG, Contextual array grammars. In: K. G. SUBRAMANIAN,
K. RANGARAJAN, M. MUKUND (eds.), Formal Models, Languages and Application Series in Ma-
chine Perception and Artificial Intelligence. 66, World Scientific, 2007, 112–136.

[4] D. GIAMMARRESI, A. RESTIVO, Two- Dimensional Languages. In: Handbook of Formal Lan-
guages. 3, Springer, 1997, 215–267.

[5] K. KRITHIVASAN, M. S. BALAN, R. RAMA, Array Contextual Grammars. In: C. MARTÍN-VIDE,
GH. PĂUN (eds.), Recent Topics in Mathematical and Computational Linguistics. The Publishing
House of the Romanian Academy, 2000, 154–168.

[6] G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Abstract Families of Matrices and Picture
Languages. Computer Graphics and Image Processing 1 (1972), 284–307.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 45–47.

Rational, Recognizable, and Aperiodic Sets in the
Partially Lossy Queue Monoid

Chris Köcher

Technische Universität Ilmenau, Institut für Theoretische Informatik
chris.koecher@tu-ilmenau.de

The study of different models of automata along with their expressiveness and algorithmic
properties is one of the most important areas in automata theory. Many of these models differ in
the mechanism to store their data. One very important mechanism is the so called fifo queue (or
channel), where data could be written to one end and read from the other end of its contents. If
we equip these queues with a finite state automaton we obtain a Turing complete computation
model [3], which results in the undecidability of all non-trivial decision problems on these
devices.

A surprising result was the decidability of some decision problems like reachability, fair
termination or control-state-maintainability if we replace the (reliable) fifo queue by a lossy
queue [6, 4, 1, 15] (although of prohibitive complexity, cf. [5]). These lossy queues are a
variation of the classical queues which are allowed to forget any part of their contents at any
time.

To obtain some algebraic results on the behavior of these storage mechanisms we can model
them as monoid of transformations. Some important results on the transformation monoid of
reliable queues can be found in [9, 13]. Furthermore in [11] we considered the transformation
monoid of lossy queues. When studying the similarities and differences between those two
monoids in [12] we found it convenient to join both, the reliable and lossy queues, respectively,
into one model, the so called partially lossy queues (or plqs). Those are given by their under-
lying alphabet A as well as a subset X ⊆ A of letters that are unforgettable while the letters
contained in A \X can be forgotten at any time. We denote their transformation monoid by
Q(A,X) and call it the partially lossy queue monoid or plq monoid.

Another main topic in the theory of automata and formal languages is the study of regular
languages. This revealed strong relations to logic, combinatorics, and algebra. For example,
we can generalize the notion of regularity from free monoids to arbitrary monoids. This gen-
eralization results in two notions: the rational subsets, which are a generalization of languages
that are described by regular expressions, and recognizable subsets, which are a generalization
of sets accepted by finite automata (see, e.g., [2, 19]). Kleene’s Theorem [10] states that both
notions are equivalent in the free monoid.

At first we consider some algorithmic properties of rational subsets of the plq monoid. Such
properties encountered increased attention in recent years, e.g., [14] provides a survey on the
membership problem for rational sets. We prove in this paper that the membership problem of

Supported by the DFG-Project “Speichermechanismen als Monoide”, KU 1107/9-1.

46 Chris Köcher

the plq monoid is NL-complete. Furthermore we give some negative results: e.g., we can prove
the undecidability of universality, inclusion, and recognizability of rational subsets in Q(A,X)
by reduction from their counterparts in the direct product of (N,+) and {a,b}∗ (cf. [17, 7]).

If the given subsets are recognizable, all of these decision problems are decidable by known
constructions from automata theory. Hence these results also imply that the classes of rational
and recognizable subsets in the plq monoid do not coincide. Due to McKnight’s Theorem [16],
each recognizable subset is rational in the plq monoid (note thatQ(A,X) is finitely generated).
Therefore, it is a natural question to ask in which cases a rational subset is recognizable.

Since we cannot generalize Kleene’s Theorem to plq monoids we have to use another ap-
proach. A similar situation is known from trace monoids. Here, Ochmański could prove in [18]
that it suffices to restrict the Kleene star in an appropriate way to characterize the recognizable
subsets in the trace monoid. Here, we will use an approach similar to Ochmański’s. In other
words, we can prove by restricting Kleene’s star-operator and the monoid’s product, we can
characterize the recognizable subsets in Q(A,X).

The final result regards the connection between the aperiodic and star-free subsets. Recall
that a set is aperiodic if it is accepted by a counter-free automaton and a set is star-free if it
can be generated from finite sets by application of Boolean operations and concatenation, only.
Schützenberger’s Theorem [20] states that both classes coincide in the free monoid. This result
gives a decision procedure for regular languages to be star-free. Additionally, in [8] was proven
that these classes also coincide in trace monoids. In contrast to these two cases this equality
does hold in the plq monoid. But we can characterize the aperiodic subsets in Q(A,X) as well
as the recognizable ones with the help of the same restrictions to star-freeness of subsets as in
our result regarding the rational subsets.

References
[1] P. A. ABDULLA, B. JONSSON, Verifying programs with unreliable channels. Information and

Computation 127 (1996) 2, 91–101.

[2] J. BERSTEL, Transductions and Context-Free Languages. Teubner Studienbücher, 1979.

[3] D. BRAND, P. ZAFIROPULO, On Communicating Finite-State Machines. Journal of the ACM 30
(1983) 2.

[4] G. CÉCÉ, A. FINKEL, S. PURUSHOTAMAN IYER, Unreliable channels are easier to verify than
perfectchannels. Information and Computation 124 (1996) 1, 20–31.

[5] P. CHAMBART, P. SCHNOEBELEN, The Ordinal Recursive Complexity of Lossy Channel Systems.
In: LICS’08. IEEE Computer Society Press, 2008, 205–216.

[6] A. FINKEL, Decidability of the termination problem for completely specified protocols. Distributed
Computing 7 (1994) 3, 129–135.

[7] A. GIBBONS, W. RYTTER, On the decidability of some problems about rational subsets of free
partially commutative monoids. Theoretical Computer Science 48 (1986), 329–337.

[8] G. GUAIANA, A. RESTIVO, S. SALEMI, On aperiodic trace languages. In: STACS’91. Lecture
Notes in Computer Science 480, Springer, 1991, 76–88.

Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid 47

[9] M. HUSCHENBETT, D. KUSKE, G. ZETZSCHE, The monoid of queue actions. Semigroup forum
(2017). To appear.

[10] S. C. KLEENE, Representation of events in nerve nets and finite automata. Technical report, DTIC
Document, 1951.

[11] C. KÖCHER, Einbettungen in das Transformationsmonoid einer vergesslichen Warteschlange.
Master’s thesis, TU Ilmenau, 2016.

[12] C. KÖCHER, D. KUSKE, O. PRIANYCHNYKOVA, The Transformation Monoid of a Partially Lossy
Queue (2017). Submitted.

[13] D. KUSKE, O. PRIANYCHNYKOVA, The trace monoids in the queue monoid and in the direct
product of two free monoids. In: DLT’16. Lecture Notes in Computer Science 9840, Springer,
2016, 256–267.

[14] M. LOHREY, The rational subset membership problem for groups: a survey. In: Groups St Andrews.
422, Cambridge University Press, 2013, 368–389.

[15] B. MASSON, P. SCHNOEBELEN, On verifying fair lossy channel systems. In: MFCS’02. Lecture
Notes in Computer Science 2420, Springer, 2002, 543–555.

[16] J. MCKNIGHT, Kleene quotient theorems. Pacific Journal of Mathematics 14 (1964) 4, 1343–1352.

[17] A. MUSCHOLL, H. PETERSEN, A Note on the Commutative Closure of Star-Free Languages.
Information Processing Letters 57 (1996) 2, 71–74.

[18] E. OCHMAŃSKI, Regular behaviour of concurrent systems. Bulletin of the EATCS 27 (1985), 56–
67.

[19] J.-É. PIN, Mathematical foundations of automata theory. Lecture notes LIAFA, Université Paris 7
(2010).

[20] M. P. SCHÜTZENBERGER, On finite monoids having only trivial subgroups. Information and con-
trol 8 (1965) 2, 190–194.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 48–48.

Die Teilwort- und -spurordnung
Dietrich Kuske

Fachgebiet Automaten und Logik, Technische Universität Ilmenau Helmholtzplatz 5,
D-98684, Ilmenau, Germany

dietrich.kuske@tu-ilmenau.de

Zusammenfassung

Zusammenfassung: Von Schnoebelen und Karandikar bzw. unabhängig davon von Lind-
ner wurde 2015 gezeigt, daß die elementare Theorie der Teilwortordnung für zwei Variable
entscheidbar ist (drei Variablen führen zur Unentscheidbarkeit). Der Beweis beruht dar-
auf, daß sowohl die Teilwortordnung als auch ihr Komplement rationale Relationen sind
und daß die Klasse der regulären Sprachen unter rationalen Transduktionen abgeschlos-
sen ist. Verwendet man zusätzlich die Theorie der formalen Potenzreihen, so erhält man
die Entscheidbarkeit für die Erweiterung der Logik 1. Stufe um Quantoren der Form “es
gibt wenigstens k viele Zeugen” (Zählquantor) bzw. “die Anzahl der Zeugen ist gerade”
(Mod-Quantor).

Zur Zeit untersuchen wir die analogen Fragen für Spuren. Als erstes fällt auf, daß ratio-
nale Relationen nicht hilfreich sind, da die Klasse der regulären Spursprachen unter rationa-
len Transduktionen nicht abgeschlossen ist. Die Potenzreihen können aber weiter verwen-
det werden. Aus unseren (bisherigen) Ergebnissen folgt, daß die elementare 2-Variablen-
Theorie der Teilspurordnung entscheidbar ist. Die Erweiterung um den Zählquantor er-
scheint ebenfalls möglich, der Mod-Quantor macht (noch?) an einer Stelle Probleme.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 49–52.

Transducing Reversibly with
Finite State Machines

Martin Kutrib(A) Andreas Malcher(A) Matthias Wendlandt(A)

(A)Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract

Finite state machines are investigated towards their ability to reversibly compute trans-
ductions, that is, to transform inputs into outputs in a reversible way. This means that the
transducers are backward deterministic and hence are able to uniquely step the computation
back and forth. The families of transductions computed are classified with regard to three
types of length-preserving transductions as well as to the property of working reversibly. It
is possible to settle all inclusion relations between the families of transductions. Finally, the
standard closure properties are investigated and the non-closure under almost all operations
can be shown.

1. Introduction
One main motivation for the study of computational devices performing reversible computa-
tions is the physical observation that a loss of information results in heat dissipation [13]. It is
therefore of great interest to avoid such situations and to privilege computations in which every
configuration has a unique successor configuration as well as a unique predecessor configuration
so that at every point of the computation no information gets lost. Reversibility has been stud-
ied for many computational devices starting with Lecerf’s [15] and Bennett’s [5] investigations
for Turing machines, where it is shown that for every (possibly irreversible) Turing machine
an equivalent reversible Turing machine can be constructed. This result has been achieved also
for deterministic space-bounded Turing machines in [14]. For deterministic multi-head finite
automata, the results depend on whether or not two-way motion of the heads is allowed. It
is shown in [16] that the general model and the reversible model coincide for two-way multi-
head finite automata, whereas the reversible model is weaker than the general model in case of
one-way motion [12]. A similar result has been obtained in [10] for deterministic pushdown
automata. In both cases, the loss of information in computations is inevitable. Reversible com-
putations in deterministic finite automata (DFA) have been introduced in [3] and it is shown
in [17] that there are regular languages which cannot be accepted by any (one-way) reversible
deterministic finite automaton. On the other hand, it is known due to [9] that the general model
and the reversible model coincide if the input head is two-way. Recent results on reversible

50 Martin Kutrib, Andreas Malcher, Matthias Wendlandt

regular languages are given in [8], where it is shown that it is NL-complete to decide whether a
given one-way DFA accepts a reversible language. Additionally, exponential upper and lower
bounds for the conversion of one-way DFAs to equivalent reversible DFAs are given.

Computational models are not only interesting from the vantage point of accepting some
input, but also from the viewpoint of transforming some input into some output. For example,
a parser for a formal language should not only return the information whether or not the input
word can be parsed, but also the parse tree in the positive case. The simplest model in this con-
text is the finite state transducer which is a finite automaton with an output alphabet that assigns
to each input accepted at least one output word. Transductions computed by different variants
of such transducers are studied in detail in [7]. Deterministic and nondeterministic pushdown
transducers are investigated in [2]. Furthermore, characterizations of pushdown transductions
as well as applications to the parsing of context-free languages are given. A more general the-
ory of transducing devices has been outlined already 1969 in [1]. More recently, transducing
variants of stack automata have been considered in [6], whereas the parallel model of cellular
automata has been investigated in [11] towards its transducing capabilities.

Here, we study reversible deterministic finite state transducers (DFST). Since reversible
devices should be able to preserve information and DFSTs use and produce information con-
cerning the input and the output, the transition function in DFSTs will be defined depending on
the input and the output. Thus, reversible DFSTs may be considered as reversible Turing ma-
chines (see, for example, [4, 5]) with a one-way input tape and a one-way output tape. To start
with a weak form of transductions and, again, from the viewpoint of information preserving
computations, we are here considering essentially length-preserving transductions.

2. Preliminaries
First, we define reversible deterministic finite state transducers. We define this model as usual
with two tapes, namely, an input and an output tape. The model can be seen as a restricted
variant of a Turing machine having a one-way read-only input tape and a one-way output tape.
In the forward computation the transducer decides its operation depending on the current state,
the current input symbol, and the symbol at the current square of the output tape. It may perform
a right move on the input tape and may rewrite the current tape square on the output tape and
afterwards may perform a right move on the output tape as well. The output tape is initially
filled with blank symbols.

We define a deterministic finite state transducer (DFST) as a system M = 〈Q,Σ,∆, q0, δ,F 〉,
where Q is the set of internal states, Σ is the set of input symbols, ∆ is the set of output symbols
containing the blank symbol ␣, q0 is the initial state, F ⊆Q is the set of accepting states, and

δ : Q×Σ×∆→Q× (∆\{␣})×{0,1}×{0,1}

is the partial transition function.
A configuration of DFST M at some time t≥ 0 is a quadruple (v,p,w,z), where v ∈ Σ∗ is

the already read part of the input to the left of the input head, p ∈Q is the current state, w ∈ Σ∗
is the still unread part of the input to the right of the input head, and z ∈ ∆+ is the already
written part of the output, the rightmost symbol of z being the currently scanned symbol on the
output tape. The initial configuration for input w is set to (λ,q0,w,␣). During the course of its

Transducing Reversibly with Finite State Machines 51

computation, M runs through a sequence of configurations. One step from a configuration to
its successor configuration is denoted by ` and defined as follows. For p ∈Q, a ∈ Σ, v,w ∈ Σ∗,
z ∈ ∆∗, and b ∈ ∆, let (v,p,aw,zb) be a configuration. Then we define

(v,p,aw,zb) ` (va,q,w,zc), if δ(p,a,b) = (q,c,1,0),
(v,p,aw,zb) ` (v,q,aw,zc), if δ(p,a,b) = (q,c,0,0),
(v,p,aw,zb) ` (va,q,w,zc␣), if δ(p,a,b) = (q,c,1,1),
(v,p,aw,zb) ` (v,q,aw,zc␣), if δ(p,a,b) = (q,c,0,1).

The reflexive transitive closure of ` is denoted by `∗.
A DFST halts if the transition function is undefined for the current configuration. The output

written by a DFST M on input w ∈ Σ∗ is denoted by M(w) ∈ (∆\{␣})∗ and is defined as
M(w) = v, if (λ,q0,w,␣) `∗ (w,q,λ,v′) with q ∈ F , v is the non-blank part of v′, and M halts.
Otherwise, M(w) is defined to be the empty set. Now, the transduction defined by M is the
set T (M) = {(w,M(w)) | w ∈ Σ∗ and M(w) 6= ∅}. We remark that M may also be considered
as a partial function mapping some w ∈ Σ∗ to v ∈ (∆\{␣})∗. If we build the projection on the
first components of T (M), denoted by L(M), then the transducer degenerates to a deterministic
language acceptor.

In general, the family of all transductions performed by some device of type X is denoted
by T (X).

Now, we turn to reversible DFST. Basically, reversibility is meant with respect to the pos-
sibility of stepping the computation back and forth. So, the machines have also to be backward
deterministic. In particular, the machines reread the symbols which they have read in a preced-
ing forward computation step. So, for reverse computation steps each head is either moved to
the left or stays stationary. Figuratively, one can imagine that in a forward step, first the current
symbols are read and then the heads are moved, whereas in a backward step first the heads are
moved and then the symbols are read.

A DFST is said to be reversible, abbreviated as REV-DFST, if for any two distinct transitions

δ(p,x0,x1) = (q,y1,d0,d1) and
δ(p′,x′0,x

′
1) = (q′,y′1,d

′
0,d
′
1),

if q = q′, then (d0,d1) = (d′0,d
′
1) and (x0,y1) 6= (x′0,y

′
1). The first condition means that transi-

tions reaching the same state have to move both heads in the same way. The second condition
ensures that for any configuration the predecessor state can uniquely be determined from the
state (which then implies the head movements), the input symbol read and the output symbol
written.

In this paper, we consider in particular length-preserving DFST and differentiate between
three notions. We call a DFST a Mealy transducer (M-DFST) if the transition function δ maps
from Q×Σ×∆ to Q× (∆ \ {␣})×{1}×{1}. That is, in every time step an input symbol is
read, an output symbol is written, and both heads proceed one position to the right. We call a
DFST strongly length-preserving (s-DFST) if the transition function δ maps from Q×Σ×∆ to
Q× (∆\{␣})×{(1,1),(0,0)}. That is, both heads are moved synchronously. Finally, we call
a DFST M weakly length-preserving (w-DFST), if |w|= |M(w)|, for all (w,M(w)) ∈ T (M).
That is, the length of the input word read and the length of the output word written is equal at
the end of the transduction.

52 Martin Kutrib, Andreas Malcher, Matthias Wendlandt

References
[1] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: A general theory of translation. Math. Systems

Theory 3, 193–221 (1969)

[2] Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling, vol. I: Parsing.
Prentice-Hall (1972)

[3] Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)

[4] Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible Turing
machines. In: Reversible Computation (RC 2015). LNCS, vol. 9138, pp. 29–44. Springer
(2015)

[5] Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

[6] Bensch, S., Björklund, J., Kutrib, M.: Deterministic stack transducers. In: Implementation
and Application of Automata (CIAA 2016). LNCS, vol. 9705, pp. 27–38. Springer (2016)

[7] Berstel, J.: Transductions and Context-Free-Languages. Teubner (1979)

[8] Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In:
Developments in Language Theory (DLT 2015). LNCS, vol. 9168, pp. 276–287. Springer
(2015)

[9] Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Foundations
of Computer Science (FOCS 97). pp. 66–75. IEEE Computer Society (1997)

[10] Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System Sci. 78,
1814–1827 (2012)

[11] Kutrib, M., Malcher, A.: One-dimensional cellular automaton transducers. Fundam. In-
form. 126, 201–224 (2013)

[12] Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. Theor. Comput.
Sci., to appear

[13] Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res.
Dev. 5, 183–191 (1961)

[14] Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Com-
put. System Sci. 60, 354–367 (2000)

[15] Lecerf, Y.: Logique Mathématique: Machines de Turing réversible. C. R. Séances Acad.
Sci. 257, 2597–2600 (1963)

[16] Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241–254
(2011)

[17] Pin, J.E.: On reversible automata. In: Latin 1992: Theoretical Informatics. LNCS, vol.
583, pp. 401–416. Springer (1992)

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 53–53.

Decidability Questions for Insertion Systems
Andreas Malcher(A)

(A)Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
malcher@informatik.uni-giessen.de

Zusammenfassung

Insertion systems or insertion grammars are a generative formalism in which words can
only be generated by starting with some axioms and by iteratively inserting strings sub-
ject to certain contexts of a fixed maximal length. It is known that languages generated
by such systems are always context sensitive and that the corresponding language classes
are incomparable with the regular languages. On the other hand, it is possible to generate
non-semilinear languages with systems having contexts of length two. Here, we study de-
cidability questions for insertion systems. On the one hand, it can be seen that emptiness
and universality is decidable. Moreover, the fixed membership problem is solvable in de-
terministic polynomial time. On the other hand, the usually studied decidability questions
such as, for example, finiteness, inclusion, equivalence, regularity, inclusion in a regular
language, and inclusion of a regular language turn out to be undecidable.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 54–54.

On Matching Restricted Patterns with Variables
Florin Manea

Kiel University,
flm@informatik.uni-kiel.de

Our talk covers a series of new results regarding restricted patterns with variables that can
be matched efficiently.

In the first part of the talk we address unary patterns. More precisely, for a pattern p =
s1x1s2x2 · · ·sr−1xr−1sr such that x1,x2, . . . ,xr−1 ∈ {x,←x}, where x is a variable and ←x its
reversal, and s1, s2, . . . , sr are strings that contain no variables, we describe an algorithm that
constructs in O(rn) time a compact representation of all P instances of p in an input string of
length n over a polynomially bounded integer alphabet, so that one can report those instances
in O(P) time.

If the pattern contains only a constant number of variables (e.g., generalized squares or
cubes with terminals between the variables), our algorithm is asymptotically as efficient as the
algorithms detecting fixed exponent (pseudo-)repetitions. For arbitrary patterns, our solution
generalizes and improves the results of [3], where an O(r2n)-time solution to the problem of
finding one occurrence of a unary pattern with reversals (without terminals) was given. Here,
compared to [3], we work with patterns that contain both variables and terminals and we detect,
even faster, all their instances. Also, we improve the results of [2] in several directions: as said,
we find all instances of a unary pattern (in [2] such a problem was solved as a subroutine in the
algorithm detecting non-cross patterns, and only some instances of the patterns were found),
our algorithm is faster by a logn factor, and our patterns also contain reversed variables. Our
results were published in [4].

The efficient detection of unary patterns is then used to obtain efficient matching algorithms
for a series of more general classes of patterns with variables (k-local patterns, nested patterns).
These results are based on [1].

References
[1] J. D. DAY, P. FLEISCHMANN, F. MANEA, D. NOWOTKA, Local Patterns. work in progress. .

[2] H. FERNAU, F. MANEA, R. MERCAS, M. L. SCHMID, Pattern matching with variables: fast algo-
rithms and new hardness results. In: STACS 2015. LIPIcs 30, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015, 302–315.

[3] P. GAWRYCHOWSKI, F. MANEA, D. NOWOTKA, Testing generalised freeness of words. In: STACS
2014. LIPIcs 25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014, 337–349.

[4] D. KOSOLOBOV, F. MANEA, D. NOWOTKA, Detecting Unary Patterns. CoRR abs/1604.00054
(2016). To appear in SPIRE 2017.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 55–57.

Deciding Equivalence of Tree Transducers
Sebastian Maneth

Universität Bremen, FB3 Mathematik/Informatik, Bibliothekstraße 5, 28359 Bremen
maneth@uni-bremen.de

Abstract

Three different techniques for deciding equivalence of tree transducers are discussed.

Tree transducers have been invented in the 1970s as formal model for compilers and mathe-
matical linguistics. Since then, many different models have been considered, such as top-down
tree transducers, bottom-up tree transducers, attributed tree transducers, and macro tree trans-
ducers. While equivalence is known to be decidable for the first two models (in the deterministic
case), it remains open for the latter two. Here we consider, as in [8], equivalence for

(1) top-down tree transducers,

(2) finite-copying top-down tree-to-string transducers, and

(3) top-down tree-to-string transducers with monadic input.

The top-down tree transducer is a generalization of the finite-state string transducer (aka
GSM) from strings to ranked ordered trees. Equivalence of nondeterministic GSMs is known
to be undecidable, even for ε-free transducers [4]. Hence, also equivalence of nondeterministic
top-down tree transducers is undecidable. For deterministic top-down tree transducers it was
proved already in 1980 by Zoltan Ésik [3] that equivalence is decidable. The proof relies on
the fact that during a computation, one transducer can only be boundedly “ahead” of the other
transducer. The different aheadnesses can be recorded in the states of a tree automaton.

Ésik [3] did not study the complexity of his decision procedure (it requires at least exponen-
tial time). A completely different way of deciding equivalence of deterministic top-down tree
transducers is given in [2]. The idea is to transform the given transducers into a certain canon-
ical normal form, and then to test isomorphism (i.e., whether there exists a state renaming that
transforms one transducer into the other). The normal form demands that output is produced as
early as possible. More specifically, if there is a common prefix in the rules of a given state for
all input symbols, then this transducer is not earliest, because the common prefix should have
been produced earlier (as it does not depend on the label of the current input node). It can be
shown that if a transducer is total (for each state and input symbol there exists a rule), then its
canonical earliest form can be constructed in polynomial time; thus, equivalende for total deter-
ministic top-down tree transducers can be decided in polynomial time. The canonical normal
form has been extended to a Myhill-Nerod theorem [7] which can be used for MAT/Gold style
learning.

56 Sebastian Maneth

The second type of equivalence problem relies on properties of semi-linear sets. A top-
down tree transducer can translate a monadic tree into a full binary tree, i.e., can realize a
translation of exponential size increase. This implies that its range is not semi-linear. If we
restrict top-down tree transductions (with look-ahead) to linear size increase, then we obtain
the class of finite-copying top-down tree transducers with regular look-ahead [1], the ranges
of which are semi-linear. The latter even holds for top-down tree-to-string transducers. Thus,
we can decide equivalence of finite-copying top-down tree-to-string transducers with regular
look-ahead (which are equivalent to MSO-definable tree-to-string translations). The particular
property of semi-linearity that is being used, is the problem of intersection emptiness with the
set {(n,n) | n≥ 1}. We change and combine the given transducersM1,M2 so that on a common
input tree the resulting transducer produces anbm if and only if M1 produces the letter a in the
output string at position n, and M2 produces the letter b at position m.

In the third kind of problem we consider top-down tree-to-string transducers with monadic
input (i.e., string-to-string transducers). It should be noted that deciding equivalence of trans-
ducers with string output is far more difficult than of transducers with tree output. E.g., while
equivalence of deterministic top-down tree transducers was solved in 1980, the corresponding
tree-to-string problem had been a big open problem, and was only recently solved in 2015 [10].
Our third problem here is the younger cousin of the latter problem, in the sense that the input is
a monadic tree (i.e., a string) instead of a tree. Here, equivalence can be reduced to the so called
“sequence equivalence problem of HDT0L systems” (these are a variant of L (Lindemeyer)
systems), which is known to be decidable. The first proof was by Culik II and Karhumäki [6],
using Ehrenfeucht’s Conjecture and Makanin’s algorithm. The later proof of Ruohonen [9] is
based on the theory of metabelian groups. The final (very short) proof by Honkala [5] relies on
Hilbert’s Basis Theorem. The stronger result mentioned above about tree-to-string transducers
also uses Hilbert’s Basis Theorem but relies on polynomial ideals.

References
[1] J. ENGELFRIET, S. MANETH, Macro Tree Translations of Linear Size Increase are MSO Definable.

SIAM J. Comput. 32 (2003) 4, 950–1006.
https://doi.org/10.1137/S0097539701394511

[2] J. ENGELFRIET, S. MANETH, H. SEIDL, Deciding equivalence of top-down XML transformations
in polynomial time. J. Comput. Syst. Sci. 75 (2009) 5, 271–286.
https://doi.org/10.1016/j.jcss.2009.01.001

[3] Z. ÉSIK, Decidability results concerning tree transducers I. Acta Cybern. 5 (1980) 1, 1–20.
http://www.inf.u-szeged.hu/actacybernetica/edb/vol05n1/Esik_1980_
ActaCybernetica.xml

[4] T. V. GRIFFITHS, The Unsolvability of the Equivalence Problem for Lambda-Free Nondeterminis-
tic Generalized Machines. J. ACM 15 (1968) 3, 409–413.

[5] J. HONKALA, A short solution for the HDT0L sequence equivalence problem. Theor. Comput. Sci.
244 (2000) 1-2, 267–270.
https://doi.org/10.1016/S0304-3975(00)00158-4

Deciding Equivalence of Tree Transducers 57

[6] K. C. II, J. KARHUMÄKI, The Equivalence of Finite Valued Transducers (On HDT0L Languages)
is Decidable. Theor. Comput. Sci. 47 (1986) 3, 71–84.
https://doi.org/10.1016/0304-3975(86)90134-9

[7] A. LEMAY, S. MANETH, J. NIEHREN, A learning algorithm for top-down XML transformations.
In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA. 2010, 285–296.
http://doi.acm.org/10.1145/1807085.1807122

[8] S. MANETH, A Survey on Decidable Equivalence Problems for Tree Transducers. Int. J. Found.
Comput. Sci. 26 (2015) 8, 1069–1100.
https://doi.org/10.1142/S0129054115400134

[9] K. RUOHONEN, Equivalence Problems for Regular sets of Word Morphisms. Springer, Berlin,
Heidelberg, 1986, 393–401.
https://doi.org/10.1007/978-3-642-95486-3_33

[10] H. SEIDL, S. MANETH, G. KEMPER, Equivalence of Deterministic Top-Down Tree-to-String
Transducers is Decidable. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 2015, 943–962.
https://doi.org/10.1109/FOCS.2015.62

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 58–58.

An Automaton Learning Approach to Solving
Safety Games over Infinite Graphs

Daniel Neider(A)

(A)Max-Planck-Institut für Software-Systeme, 67663 Kaiserslautern, Deutschland
neider@mpi-sws.org

Abstract

We propose a method to construct finite-state reactive controllers for systems whose
interactions with their adversarial environment are modeled by infinite-duration two-player
games over (possibly) infinite graphs. The method targets safety games with infinitely
many states or with such a large number of states that it would be impractical—if not
impossible—for conventional synthesis techniques that work on the entire state space. We
resort to constructing finite-state controllers for such systems through an automata learning
approach, utilizing a symbolic representation of the underlying game that is based on finite
automata. Throughout the learning process, the learner maintains an approximation of the
winning region (represented as a finite automaton) and refines it using different types of
counterexamples provided by the teacher until a satisfactory controller can be derived (if
one exists). We present a symbolic representation of safety games (inspired by regular
model checking), propose implementations of the learner and teacher, and evaluate their
performance on examples motivated by robotic motion planning.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 59–62.

On Deterministic
Ordered Restart-Delete Automata

Friedrich Otto

Universität Kassel, Fachbereich Elektrotechnik/Informatik, D-34109 Kassel
otto@theory.informatik.uni-kassel.de

Abstract

We consider ordered restart-delete automata, which are deterministic ORWW-automata
that have an additional delete operation. We show that these automata don’t need states,
that they accept all deterministic context-free languages, and that they even accept some
languages that are not deterministic context-free. On the other hand, these automata only
accept languages that are at the same time context-free and Church-Rosser. In addition,
closure properties for the class of languages accepted by deterministic ordered restart-delete
automata are studied.

1. Introduction

An ordered restarting automaton consists of a finite-state control, a tape with endmarkers, a
read-write window of size three, and a (partial) ordering on its tape alphabet. Based on the
actual state and window contents, the automaton can move its window one position to the right
and change its state, or it can replace the letter in the middle of the window by a smaller let-
ter and restart, or it can accept. During a restart the window is placed onto the left end of
the tape, and the finite-state control is reset to the initial state. In [5] it is shown that deter-
ministic ordered restarting automata (det-ORWW-automata) don’t need states and that they just
characterize the class of regular languages. In fact, these automata yield very compact descrip-
tions for (some) regular languages, as there exist det-ORWW-automata with n letters such that
the smallest NFAs for the corresponding languages have 2O(n) states [3]. On the other hand,
the nondeterministic ordered restarting automata define an abstract family of languages that
properly extends the regular languages, but that is incomparable to the (deterministic) linear
languages, the (deterministic) context-free languages, the Church-Rosser languages, and the
growing context-sensitive languages with respect to inclusion [4].

Here we extend the det-ORWW-automaton by introducing an additional delete/restart oper-
ation that allows to delete the symbol from the middle of the window and to restart, obtaining
the deterministic ordered restart-delete automaton (or det-ORD-automaton, for short). This
extension has surprisingly strong implications as we will see below.

60 Friedrich Otto

2. Definition and Example
A det-ORD-automaton is described by an 8-tuple M = (Q,Σ,Γ,�,�, q0, δ,>), where Q is a
finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet such that Σ ⊆ Γ, the
symbols �,� 6∈ Γ serve as markers for the left and right border of the work space, respectively,
q0 ∈Q is the initial state,

δ : Q× (((Γ∪{�}) ·Γ · (Γ∪{�}))∪{��})→ (Q×{MVR})∪ (Γ∪{λ})∪{Accept}
is the transition function, and > is a partial ordering on Γ. The transition function describes
four different types of transition steps:

(1) A move-right step has the form δ(q,a1a2a3) = (q′,MVR), where q,q′ ∈Q, a1 ∈ Γ∪{�}
and a2,a3 ∈ Γ. It causes M to shift the window one position to the right and to enter
state q′.

(2) A rewrite/restart step has the form δ(q,a1a2a3) = b, where q ∈Q, a1 ∈ Γ∪{�}, a2, b∈ Γ,
and a3 ∈ Γ∪{�} such that a2 > b holds. It causes M to replace the symbol a2 in the
middle of its window by the symbol b and to restart.

(3) A delete/restart step has the form δ(q,a1a2a3) = λ (the empty word), where q ∈Q, a1 ∈
Γ∪{�}, a2 ∈ Γ, and a3 ∈ Γ∪{�}. It causes M to delete the symbol a2 in the middle
of its window and to restart. Through this step, the tape field that contains a2 is also
removed, which means that the length of the tape is reduced by one.

(4) An accept step has the form δ(q,a1a2a3) = Accept, where q ∈ Q, a1 ∈ Γ∪{�}, a2 ∈ Γ,
and a3 ∈ Γ∪{�}. It causes M to halt and accept. In addition, we allow an accept step of
the form δ(q0,��) = Accept.

If δ(q,u) is undefined for some pair (q,u), then M necessarily halts, when it is in state q
with the word u in its window, and we say that M rejects in this situation. Further, the letters in
ΓrΣ are called auxiliary symbols. The det-ORD-automaton M is called stateless if Q= {q0}.
For a stateless det-ORD-automaton, we drop the components Q and q0 from its description, and
we abbreviate it as stl-det-ORD-automaton.

A configuration of a det-ORD-automaton M is a word αqβ, where q ∈ Q and |β| ≥ 3,
and either α = λ and β ∈ {�} ·Γ+ · {�} or α ∈ {�} ·Γ∗ and β ∈ Γ ·Γ+ · {�}; here q ∈ Q
represents the current state, αβ is the current content of the tape, and it is understood that the
window contains the first three symbols of β. In addition, we admit the configuration q0 ��. A
restarting configuration has the form q0 �w�; if w ∈ Σ∗, then q0 �w� is also called an initial
configuration. A configuration that is reached by an accept step is an accepting configuration,
denoted by Accept. By `M we denote the single-step computation relation that M induces on
its set of configurations, and `∗M , its reflexive and transitive closure, is the computation relation
of M . An input w ∈ Σ∗ is accepted by M , if the computation of M which starts with the initial
configuration q0 �w� ends with an accept step. The language consisting of all words that are
accepted by M is denoted by L(M).

After executing a restart step, a det-ORD-automaton performs MVR-steps until its window
contains the newly written symbol or the first symbol to the right of the one just deleted. It
follows that M can actually be simulated by a deterministic single-tape Turing machine in
time O(n).

On Deterministic Ordered Restart-Delete Automata 61

Theorem 2.1 For each det-ORD-automatonM = (Q,Σ,Γ,�,�, q0, δ,>), there exists a stl-det-
ORD-automatonM ′= (Σ,∆,�,�, δ′,>′) such that L(M ′) =L(M) and |∆|= |Q| · |Γ|2+2 · |Γ|.

Accordingly we restrict our attention to stl-det-ORD-automata. The following example
illustrates the way in which a stl-det-ORWW-automaton works.

Example 2.2 Let L= {anbnc | n≥ 0}∪{anb2nd | n≥ 0}. It is well-known that L is a context-
free language that is not deterministic context-free.

We present a stl-det-ORD-automaton M = (Σ,Γ,�,�, δ,>) for L that is defined by taking
Σ = {a,b,c,d} and Γ = Σ∪{a1, e,e1,f,f1,f2}, by choosing the ordering > such that a > a1,
b > e > e1, and b > f > f1 > f2, and by defining the transition function δ as follows:

(1) δ(�c�) = Accept, (17) δ(�a1e) = MVR, (33) δ(a1ee) = e1,
(2) δ(�d�) = Accept, (18) δ(a1ec) = e1, (34) δ(aa1e1) = λ,
(3) δ(�ab) = MVR, (19) δ(�a1e1) = λ, (35) δ(aae1) = MVR,
(4) δ(abc) = e, (20) δ(�e1c) = λ, (36) δ(ae1e) = λ,
(5) δ(�aa) = MVR, (21) δ(�af) = a1, (37) δ(aa1f) = MVR,
(6) δ(aaa) = MVR, (22) δ(�a1f) = MVR, (38) δ(aae) = a1,
(7) δ(aab) = MVR, (23) δ(a1ff) = f1, (39) δ(aaa1) = MVR,
(8) δ(abb) = MVR, (24) δ(�a1f1) = MVR, (40) δ(aaf) = a1,
(9) δ(bbb) = MVR, (25) δ(a1f1f) = MVR, (41) δ(a1ff) = f1,
(10) δ(bbc) = e, (26) δ(f1fd) = f2, (42) δ(aa1f1) = MVR,
(11) δ(bbd) = f, (27) δ(�a1f2) = λ, (43) δ(f1ff) = f2,
(12) δ(bbe) = e, (28) δ(a1f1f2) = λ, (44) δ(aa1f2) = λ,
(13) δ(bbf) = f, (29) δ(aa1f2) = λ, (45) δ(aaf2) = MVR,
(14) δ(abe) = e, (30) δ(�f2d) = λ, (46) δ(af2f) = λ,
(15) δ(abf) = f, (31) δ(�aa1) = MVR, (47) δ(�ae1) = MVR,
(16) δ(�ae) = a1, (32) δ(aa1e) = MVR, (48) δ(�af2) = MVR.

Given c= a0b0c or d= a0b2·0d as input, M accepts immediately using rules (1) or (2). On
input abc, M proceeds as follows, where we underline the word currently in the window of M :

�abc� `(3) �abc� `(4) �aec� `(16) �a1ec� `(17) �a1ec�
`(18) �a1e1c� `(19) �e1c� `(20) �c� `(1) Accept,

and on input abbd, M proceeds as follows:

�abbd� `(3) �abbd� `(8) �abbd� `(11) �abfd� `(3) �abfd�
`(15) �affd� `(21) �a1ffd� `(22) �a1ffd� `(23) �a1f1fd�
`(24) �a1f1fd� `(25) �a1f1fd� `(26) �a1f1f2d� `(24) �a1f1f2d�
`(28) �a1f2d� `(27) �f2d� `(30) �d� `(4) Accept.

Thus, if the input is of the form ambnc, then the factor bn is rewritten, from right to left, into
en, and then by alternatingly rewriting the last letter a into a1 and the first letter e into e1, it is
checked whether m = n. On the other hand, if the input is of the form ambnd, then the factor
bn is rewritten, from right to left, into fn, and then by alternatingly rewriting the last letter a
into a1 and the first factor ff into f1f2, it is checked whether n = 2m. Hence, it follows that
L(M) = L.

62 Friedrich Otto

3. Results
The det-ORD-automaton is a special type of deterministic shrinking RWW-automaton, and as
the class of languages accepted by the latter coincides with the class CRL of Church-Rosser
languages [2], we see thatL(det-ORD)⊆CRL. On the other hand, each DPDA can be simulated
by a det-ORD-automaton.

Theorem 3.1 DCFL (L(stl-det-ORD).

Theorem 3.2 The language class L(det-ORD) is closed under the operations of complement,
reversal, and intersection with regular languages, but it is not closed under union or intersec-
tion.

A language L⊆ Σ∗ belongs to the class LRR of left-to-right regular languages of [1] if there
exists a deterministic context-free language L′ ⊆ ∆∗ and a right-to-left sequential transducer S
such that, for all w ∈ Σ∗, w ∈ L iff S(w) ∈ L′. As such a transducer can easily be combined
with a det-ORD-automaton for the language L′, we see that LRR⊆L(det-ORD) holds. Finally,
the language L3blocks = {ambmanbnapbp,amb2man+kbnapb2p |m,n,p,k ≥ 1} does not belong
to the class LRR and neither does its reversal LR

3blocks [1]. However, this language is accepted
by a det-ORD-automaton, which yields the inclusion LRR∪RLR(L(det-ORD), where RLR=
LRRR. Finally, it can be shown that the accepting computations of a stl-det-ORD-automaton
can be simulated by an unambiguous PDA.

Theorem 3.3 L(det-ORD)(UCFL.

Thus, in summary we have the following chain of inclusions, where Co-UCFL denotes the
class of languages that are the complements of unambiguous context-free languages.

Corollary 3.4 DCFL∪DCFLR (LRR∪RLR(L(det-ORD)⊆ CRL∩UCFL∩Co-UCFL.

References
[1] K. CULIK, II, R. COHEN, LR-regular grammars - an extension of LR(k) grammars. Journal of

Computer and System Sciences 7 (1973), 66–96.

[2] T. JURDZIŃSKI, F. OTTO, Shrinking restarting automata. International Journal of Foundations of
Computer Science 18 (2007), 361–385.

[3] K. KWEE, F. OTTO, On some decision problems for stateless deterministic ordered restarting au-
tomata. In: J. SHALLIT, A. OKHOTIN (eds.), DCFS 2015, Proc.. Lecture Notes in Computer Science
9118, Springer, Heidelberg, 2015, 165–176.

[4] K. KWEE, F. OTTO, On the effects of nondeterminism on ordered restarting automata. In:
R. FREIVALDS, G. ENGELS, B. CATANIA (eds.), SOFSEM 2016, Proc.. Lecture Notes in Com-
puter Science 9587, Springer, Heidelberg, 2016, 369–380.

[5] F. OTTO, On the descriptional complexity of deterministic ordered restarting automata. In: H. JÜR-
GENSEN, J. KARHUMÄKI, A. OKHOTIN (eds.), DCFS 2014, Proc.. Lecture Notes in Computer
Science 8614, Springer, Heidelberg, 2014, 318–329.

THEORIE-TAG 2017
H. Fernau (Herausgeber): Theorietag 2017, Bonn, 18. – 22.9.2017

Universität Trier, Technischer Bericht, S. 63–66.

On the Expressive Power of
Weighted Restarting Automata

Qichao Wang

Fachbereich Elektrotechnik/Informatik
Universität Kassel, 34109 Kassel, Germany
wang@theory.informatik.uni-kassel.de

1. Introduction
Analysis by reduction is a linguistic technique that is used to check the correctness of sentences
of natural languages through sequences of local simplifications. Restarting automata have been
introduced as a formal model for the analysis by reduction [1]. In order to study quantitative
aspects of computations of restarting automata, weighted restarting automata were introduced
in [4].

A weighted restarting automaton M is given by a pair (M,ω), where M is a restarting
automaton on some finite input alphabet Σ, and ω is a weight function that assigns a weight from
some semiring S to each transition ofM . The product (in S) of the weights of all transitions that
are used in a computation yields a weight for that computation, and by forming the sum over the
weights of all accepting computations for a given input w ∈ Σ∗, a value from S is assigned to
w. Thus, a partial function f : Σ∗→ S is obtained. By placing a condition T on the value f(w),
some words from the language L(M) that is accepted by the underlying (unweighted) restarting
automatonM are filtered out. In this way, we can define a sublanguage LT (M) of the language
L(M) by combining the acceptance condition of M with a condition T on the weight f(w) for
w ∈ L(M). We will see that by using a relative acceptance condition the expressive power of a
restarting automaton can be increased, and a restarting automaton of a weak type can simulate
a restarting automaton of a strong type.

2. Definitions and Examples
A restarting automaton (or RRWW-automaton) is a nondeterministic machine with a finite-state
control, a flexible tape with endmarkers, and a read/write window [1]. Formally, it is described
by an 8-tuple M = (Q,Σ,Γ,c,$, q0,k,δ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite tape alphabet containing Σ, the symbols c,$ 6∈ Γ are used as markers for
the left and right border of the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is
the size of the read/write window, and δ is the (partial) transition relation that associates finite
sets of transition steps to pairs of the form (q,u), where q is a state and u is a possible content

64 Qichao Wang

of the read/write window. There are four types of transition steps. A move-right step (MVR)
causes M to shift its read/write window one position to the right and to change the state. A
rewrite step causes M to replace the content u of the read/write window by a shorter string v,
thereby reducing the length of the tape, and to change the state. Further, the read/write window
is placed immediately to the right of the string v. However, occurrences of the delimiters c and
$ can neither be deleted nor newly created by a rewrite step. A restart step causes M to place
its read/write window over the left end of the tape, so that the first symbol it sees is the left
sentinel c, and to reenter the initial state q0, and, finally, an accept step causes M to halt and
accept.

If δ(q,u) is undefined for some pair (q,u), then M necessarily halts in a corresponding
situation, and we say that M rejects. Finally, if each rewrite step is combined with a restart
step into a joint rewrite/restart operation, then M is called an RWW-automaton. An RRWW-
automaton is called an RRW-automaton if its tape alphabet Γ coincides with its input alphabet
Σ, that is, if no auxiliary symbols are available. It is an RR-automaton if it is an RRW-automaton
for which the right-hand side v of each rewrite step (q′,v) ∈ δ(q,u) is a scattered subword of
the left-hand side u. Analogously, we obtain the RW-automaton and the R-automaton from the
RWW-automaton.

A configuration of M is a string αqβ, where q ∈Q, and either α = λ and β ∈ {c} ·Γ∗ · {$}
or α ∈ {c} ·Γ∗ and β ∈ Γ∗ · {$}; here q is the current state, and αβ is the current content of the
tape, where it is understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$. If w ∈ Σ∗, then q0cw$ is an initial
configuration.

Any computation of M consists of certain phases. A phase, called a cycle, starts in a restart-
ing configuration, the head moves along the tape performing move-right operations and a single
rewrite operation until a restart operation is performed and thus a new restarting configuration
is reached. If no further restart operation is performed, the computation necessarily finishes in a
halting configuration – such a phase is called a tail. It is required that in each cycle M performs
exactly one rewrite step. A word w ∈ Σ∗ is accepted by M , if there is an accepting computation
which starts from the initial configuration q0cw$. By L(M) we denote the language consisting
of all (input) words that are accepted by M .

For studying quantitative aspects of computations of restarting automata, the weighted restart-
ing automaton has been introduced in [4]. A weighted restarting automaton of type X, a wX-
automaton for short, is a pair (M,ω), where M is a restarting automaton of type X, and ω is
a weight function from the transitions of M into a semiring S, that is, ω assigns an element
ω(t) ∈ S as a weight to each transition t of M . The product (in S) of the weights of all tran-
sitions that are used in a computation then yields a weight for that computation, and the sum
over all weights of all accepting computations of M for a given input word w ∈ Σ∗ yields a
value from S. In this way, a partial function fMω : Σ∗→ S is obtained. Here we use weighted
restarting automata to define sublanguages of the language that is accepted by the underlying
(unweighted) restarting automaton.

Definition 2.1 LetM = (Q,Σ,Γ,c,$, q0,k,δ) be a restarting automaton, let ω be a weight func-
tion from M into a semiring S, and let M = (M,ω). For a subset T of S, LT (M) = {w ∈
L(M) | fMω (w) ∈ T } is the language accepted by M relative to T , that is, a word w ∈ Σ∗
belongs to the language LT (M) iff w ∈ L(M) and fMω (w) ∈ T .

On the Expressive Power of Weighted Restarting Automata 65

Definition 2.2 Let X be a type of restarting automaton, let S be a semiring, and let H be a
family of subsets of S. Then

L(X,S,H) = {LT (M) | M is a weighted restarting automaton of type X, and T ∈H}

is the class of languages that are accepted by weighted restarting automata of type X relative
to H.

We continue with an example that illustrates our definitions.

Example 2.3 Let M1 = (Q,Σ,Γ,c,$, q0,k,δ) be the RW-automaton that is defined by taking
Q= {q0, qr}, Γ = Σ = {a,b,c,d}, and k = 5, where δ is defined as follows:

t1 : (q0,caaaa) → (q0,MVR), t15 : (q0,caaac) → (q0,MVR),
t2 : (q0,aaaaa)→ (q0,MVR), t16 : (q0,caaad)→ (q0,MVR),
t3 : (q0,aaaab) → (q0,MVR), t17 : (q0,cacbc) → (qr,ccc),
t4 : (q0,aaabb) → (q0,MVR), t18 : (q0,cadbb) → (q0,MVR),
t5 : (q0,aabbb) → (qr,acbb), t19 : (q0,adbbd) → (qr,dd),

t6 : (q0,aabbb) → (qr,adb), t20 : (q0,caabb) → (q0,MVR),
t7 : (q0,aaaac) → (q0,MVR), t21 : (q0,aabbc) → (qr,acbc),

t8 : (q0,aaacb) → (q0,MVR), t22 : (q0,cabc$) → (qr,ccc$),
t9 : (q0,aacbb) → (qr,acb), t23 : (q0,cabbd) → (qr,cdd),
t10 : (q0,aaaad)→ (q0,MVR), t24 : (q0,ccc$) → Accept,
t11 : (q0,aaadb) → (q0,MVR), t25 : (q0,cdd$) → Accept,
t12 : (q0,aadbb) → (q0,MVR), t26 : (q0,cc$) → Accept,
t13 : (q0,adbbb) → (qr,db), t27 : (q0,cd$) → Accept,
t14 : (q0,caaab) → (q0,MVR), t28,x : (qr,x) → Restart for all admissible x.

It is easily seen that L(M1) = {ancibnc,andib2nd | n ≥ 0, i ∈ {0,1}}, and that for each
input, M1 has just a single accepting computation. Let N∞ = (N∪{∞},min,+,∞,0) be the
tropical semiring, and let ω1 be the weight function from the transitions of M1 into the semiring
N∞ that is defined as follows

ω1(ti) =

{
1, if i ∈ {5,6,21,22,23,24,25,26,27},
0, otherwise.

LetM1 =(M1,ω1), letL1 = {ancbnc,andb2nd |n≥ 0}, andL2 = {anbnc,anb2nd | n≥ 0}.
It is rather clear that L(M1) = L1∪L2. Given an input word w ∈ Σ∗, fM1

ω1 (w) = 1 if and only if
w ∈ L1, and fM1

ω1 (w) = 2 if and only if w ∈ L2. Further, we take T1 = {2}. It follows that

LT1(M1) = L2 = {anbnc,anb2nd | n≥ 0}.

It is known that LT1(M1) is not accepted by any RW-automaton [2]. Hence, we see that the
notion of relative acceptance increases the expressive power of RW-automata.

66 Qichao Wang

3. Results
First, we study the classes of languages that are accepted by weighted restarting automata rel-
ative to some semirings over integers. We will see that by using the tropical semiring Z∞ =
(Z∪{∞},min,+,∞,0), we can avoid the use of auxiliary symbols in rewrite steps [7], and that
a #P-complete function can be computed by a weighted R-automaton relative to subsets of the
semiring N×N, i.e., the direct product of the semirings N = (N∪{−∞},max,+,−∞,0) and
N= (N,+, ·,0,1) [5].

Further, we study the case that S is the semiring of formal languages P(∆∗) = (P(∆∗),∪, ·,∅,
{λ}), and its subsets such as the semiring of regular languages REG(∆)= (REG(∆),∪, ·,∅,{λ}).
As the weight of a transition of a restarting automaton can be any language over ∆, the gen-
eral model of weighted restarting automata is quite powerful. Therefore, some more restricted
types of weighted restarting automata such as word-weighted restarting automata and regular-
weighted restarting automata were introduced in [5, 6]. We prove that the class of languages
accepted by word-weighted restarting automata with the weak acceptance condition coincides
with the class of languages accepted by non-forgetting restarting automata of the corresponding
type [3, 7]. In addition, we show that RRWW-automata can be simulated by regular-weighted
RW-automata with the weak acceptance condition [5].

Finally, word-weighted restarting automata with the strong acceptance condition turn to be
more expressive than the ones with the weak acceptance condition [5]. In particular, the classes
of languages accepted by word-weighted RWW- and RRWW-automata with the strong accep-
tance condition are closed under the operation of intersection [7]. This is the first result that
shows that a class of languages defined in terms of a quite general class of restarting automata
is closed under the operation of intersection.

References
[1] P. JANCAR, F. MRÁZ, M. PLÁTEK, J. VOGEL, Restarting Automata. In: H. REICHEL (ed.), FCT .

LNCS 965, Springer, Heidelberg, 1995, 283–292.

[2] P. JANCAR, F. MRÁZ, M. PLÁTEK, J. VOGEL, On Monotonic Automata with a Restart Operation.
J. Auto. Lang. Comb. 4 (1999) 4, 287–312.

[3] H. MESSERSCHMIDT, F. OTTO, On Nonforgetting Restarting Automata That Are Deterministic
and/or Monotone. In: D. GRIGORIEV, J. HARRISON, E. A. HIRSCH (eds.), CSR. LNCS, Springer,
Heidelberg, 2006, 247–258.

[4] F. OTTO, Q. WANG, Weighted Restarting Automata. Soft Computing (2016). DOI: 10.1007/s00500-
016-2164-4. The results of this paper have been announced at WATA 2014 in Leipzig.

[5] Q. WANG, On the expressive power of weighted restarting automata. NCMA, 2017. Accepted.

[6] Q. WANG, F. OTTO, Weighted restarting automata and pushdown relations. Theor. Comput. Sci. 635
(2016), 1–15.

[7] Q. WANG, F. OTTO, Weighted Restarting Automata as Language Acceptors. In: Y. HAN, K. SA-
LOMAA (eds.), CIAA. LNCS 9705, Springer, Switzerland, 2016, 298–309.

	(Polarized) Tissue P Systems with Vesicles of Multisets
	State Complexity and Decidability of Jumping Finite Automata
	A Characterization of Completely Reachable Automata
	Formal Language Techniques for Space Lower Bounds
	A Normal Form, a Representation Theorem, and a Regular Approximation for Context-Free Languages
	The Hardness of Solving Simple Word Equations
	Regular Grammars for Array Languages
	Deterministic Regular Expressions with Back-References
	Concise Description of Finite Languages, Revisited
	Deciding regular intersection emptiness of complete problems for PSPACE and the polynomial hierarchy
	Parallel Contextual Array Insertion Deletion Grammar
	Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue Monoid
	Die Teilwort- und -spurordnung
	Transducing Reversibly with Finite State Machines
	Decidability Questions for Insertion Systems
	On Matching Restricted Patterns with Variables
	Deciding Equivalence of Tree Transducers
	An Automaton Learning Approach to Solving Safety Games over Infinite Graphs
	On Deterministic Ordered Restart-Delete Automata
	On the Expressive Power of Weighted Restarting Automata

