Übungen zur Vorlesung

Diskrete Strukturen und Logik

Aufgabenblatt 13, Zusatzblatt

Dieses Blatt enthält optionale Aufgaben und soll es Ihnen ermöglichen, Ihren Punktestand anzuheben. Die auf dem Blatt vergebenen Punkte zählen nicht zu den regulären 100% der erhaltbaren Punkte.

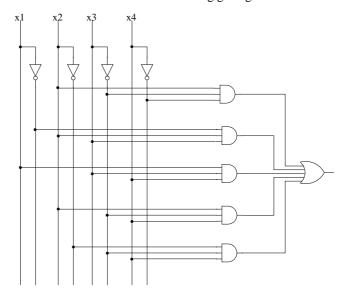
Abgabe der Ausarbeitungen bis vor Beginn der ersten zugehörigen Übungsstunde Wo? Fächer beschriftet mit "Diskrete Strukturen und Logik" vor Raum H426

Aufgabe 53 (Junktoren-Algebra)

(4+2+3 Punkte)

Ein 4-Tupel von Wahrheitswerten, $n_1n_2n_3n_4$, wird als 'Nibble' bezeichnet. Sei \mathcal{N} die Menge aller Nibbles. Nibbles lassen sich durch \land (bzw. \lor) verknüpfen, indem die Operation stellenweise angewendet wird. Beispiele:

Analog wird $n \in \mathcal{N}$ negiert, indem die Stellen von n negiert werden. Es gilt $\neg (n_1 n_2 n_3 n_4) = \neg n_1 \neg n_2 \neg n_3 \neg n_4$.


- 1. Geben Sie die neutralen Elemente \top bzgl. \vee und \bot bzgl. \wedge an und zeigen Sie, dass $(\mathcal{N}, \vee, \wedge, \top, \bot, \neg)$ eine Boolesche Algebra ist.
- 2. Zeichnen Sie das zugehörige Hasse-Diagramm.
- 3. Interpretieren Sie ein Nibble als 2-stelligen Junktor nach folgendem Schema:

Zeichnen Sie ein weiteres Hasse-Diagramm, in dem die Nibbles durch möglichst knappe aussagenlogische Formeln in x und y mit bekannten Junktoren dargestellt sind.

Aufgabe 54 (Schaltkreise I)

(2+3+4+3+3 Punkte)

Betrachten Sie den in der Abbildung gezeigten Schaltkreis

- 1. Geben Sie die vom Schaltkreis berechnete Funktion in disjunktiver Normalform an
- 2. Bestimmen Sie die Primimplikanten der Funktion im Karnaugh-Diagramm und geben Sie eine minimierte Formel an
- 3. Bestimmen Sie die Menge aller Resolventen aus den Mintermen und geben Sie auch hier die Primimplikanten an
- 4. Zeichnen Sie den Schaltkreis der minimierten Funktion
- 5. Geben Sie die Formel auch in konjunktiver Normalform an

Aufgabe 55 (Schaltkreise II)

(4+6 Punkte)

- 1. Beweisen Sie, daß jeder Schaltkreis durch einen Schaltkreis simuliert werden kann, der ausschliesslich aus NAND-Gattern besteht.
- 2. Geben Sie einen möglichst effizienten (d.h. mit wenigen Junktoren auskommenden) Booleschen Ausdruck sowie den zugehörigen Schaltkreis an, der für eine Eingabe (x_1,\ldots,x_n) angibt, ob die Anzahl der Eingänge, die 1 sind, ein Vielfaches von 4 ist.

Aufgabe 56 (Resolventen)

(2+4 Punkte)

- 1. Bei der Bildung von Resolventen tritt als Sonderfall die leere Resolvente, die als 1 notiert wird, auf. Wie lässt diese sich interpretieren?
- 2. Wie könnte man durch Bildung von Resolventen Kontradiktionen identifizieren? Wäre die Methode auf beliebige Kontradiktionen anwendbar?