Fernau/Raible Wintersemester 2007/08 Universität Trier

Übungen zur Vorlesung Parametrisierte Algorithmen Aufgabenblatt 8

In der Übung Mittwoch 14.02.08 um 8.30 Uhr im H406 werden die Übungsaufgaben vorgerechnet.

Aufgabe 1. (Parametrisierte Reduktionen)

Seien L und L' zwei parametrisierte Probleme über Σ . Wir sagen, daß es eine parametrisierte Reduktion von L auf L' gibt, wenn folgendes erfüllt ist: Es gibt Funktionen $k \mapsto k'$ und $k \mapsto k''$ auf $\mathbb N$ und eine Funktion $(x,k) \mapsto x'$ von $\Sigma^* \times \mathbb N$ nach Σ^* derart, daß

- 1. $(x,k) \mapsto x'$ ist in Zeit $k''|x|^{O(1)}$ berechenbar.
- $2. (x,k) \in L \iff (x',k') \in L'.$

Geben Sie im folgenden parametrisierte Reduktionen an

- 1. von MaxCut auf MaxSat;
- 2. von Independent Set auf Set Packing.
- 3. von Strong Offensive alliance auf Offensive Alliance

Einige Definitionen:

Der Rand einer Knotenmenge $V' \subseteq V$ ist wie folgt definiert: $\partial V' = (\cup_{u \in V'} N(u)) \setminus V'$

MAXCUT:

Gegeben: Graph G = (V, E) und natürliche Zahl k.

Gefragt: Gibt es eine Menge $S \subseteq V$, sodaß mindestens k Kanten einen Endpunkt in S und einen in $V \setminus S$ haben?

MAXSAT:

Gegeben: Aussagenlogische Formel F in KNF und natürliche Zahl k.

Gefragt: Gibt es eine Belegung der Variablen in F, sodaß mindestens k Klauseln in F wahr werden?

SET PACKING:

Gegeben: Endliche Familie von Mengen $S = \{S_1, S_2, \dots, S_n\}$ und natürliche Zahl k.

Gefragt: Gibt es in S eine Teilmenge von mindestens k paarweise disjunkten Mengen?

OFFENSIVE ALLIANCE:

Gegeben: Ein Graph G(V, E) und natürliche Zahl k.

Gefragt: Gibt es ein $A \subset V$ mit $|A| \leq k$ so daß für alle $v \in \partial A : |N[v] \cap A| \geq |N(v) \setminus A|$ gilt?

STRONG OFFENSIVE ALLIANCE:

Gegeben: Ein Graph G(V, E) und natürliche Zahl k.

Gefragt: Gibt es ein $A \subset V$ mit $|A| \leq k$ so daß für alle $v \in \partial A : |N[v] \cap A| > |N(v) \setminus A|$ gilt?

Aufgabe 2 (W[2]-Mitgliedschaft)

MERKMALSMENGE (FEATURE SET)

Gegeben: Merkmalsmenge $F = \{1, \dots, n\}$, Messreihe $X = \{x_1, \dots, x_m\}$ mit

 $x_i: F \to \{0,1\}$, Zielfunktion $t: X \to \{0,1\}$, und der Parameter k. Wir fragen: Gibt es Merkmalsteilmenge $M \subseteq F$, $|M| \le k$ mit

ingeni dibi es mermiciscimiense m ≤ 1 , $|m| \leq n$ mic

$$\forall x, y \in X : (x \neq y \land t(x) \neq t(y)) \implies \exists f \in M : x(f) \neq y(f)$$
?

Zeigen Sie, daß Feature Set $\in W[2]$.

Aufgabe 3 (Color-Coding)

EDGE DISJOINT TRIANGLE PACKING

Gegeben: G(V, E), und der Parameter k.

Wir fragen: Gibt es eine Menge von k Dreiecken in G, die keine Kante gemeinsam haben? Zeigen Sie, daß diese Problem in FPT liegt! Nutzen Sie dazu color-coding!