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Preface

The 33rd International Workshop on Combinatorial Algorithms (IWOCA 2022) was
planned as a hybrid event, with the on-site activities taking place at the University of
Trier, Germany. Due to the COVID-19 pandemic and also in order to lower the carbon
footprint of the conference, it was decided that the conference could be also attended
online. The conference was scheduled during June 7–9, 2022, followed by the
Graphmaster and Stringmaster Workshops.

IWOCA is an annual conference series that started in 1989 as AWOCA (Aus-
tralasian Workshop on Combinatorial Algorithms), and became an international con-
ference in 2007, having been held in Australia, Canada, the Czech Republic, Finland,
France, Indonesia, India, Italy, Japan, Singapore, South Korea, the UK, and the USA.
Now, Germany can be added to this list of IWOCA countries. The conference brings
together researchers on diverse topics related to combinatorial algorithms, such as
algorithms and data structures; algorithmic and combinatorial aspects of cryptography
and information security; algorithmic game theory and complexity of games;
approximation algorithms; complexity theory; combinatorics and graph theory; com-
binatorial generation, enumeration, and counting; combinatorial optimization; combi-
natorics of words; computational biology; computational geometry; decompositions
and combinatorial designs; distributed and network algorithms; experimental combi-
natorics; fine-grained complexity; graph algorithms and modeling with graphs; graph
drawing and graph labeling; network theory and temporal graphs; quantum computing
and algorithms for quantum computers; online algorithms; parameterized and exact
algorithms; probabilistic and randomized algorithms; and streaming algorithms.

The Program Committee (PC) of IWOCA 2022 received 96 abstract submissions;
finally, 86 full papers were submitted. Each submission was reviewed by at least three
PC members and some trusted external referees, and evaluated on its quality, origi-
nality, and relevance to the conference. The PC selected 35 papers for presentation at
the conference and inclusion in the proceedings. Three invited talks were scheduled for
IWOCA 2022, given by Akanksha Agrawal (Indian Institute of Technology Madras,
India) Erik Demaine (MIT, USA), and Bhaskar Ray Chaudhury (University of Illinois
Urbana-Champaign, USA), as also testified by these proceedings.

The Program Committee also selected two papers to receive the Best Paper Award
and the Best Student Paper Award, respectively. These awards were sponsored by
Springer. The awardees are

• Best Paper Award: Hideo Bannai, Tomohiro I, Tomasz Kociumaka, Dominik
Köppl, Simon Puglisi. Computing Longest (Common) Lyndon Subsequence.

• Best Student Paper Award: Kanae Yoshiwatari, Hironori Kiya, Tesshu Hanaka,
Hirotaka Ono. Winner Determination Algorithms for Graph Games with Matching
Structures.



We would like to thank all invited speakers for accepting to give a talk at the
conference, the Program Committee members who graciously gave their time and
energy, and the 122 external reviewers for their expertise.

The organization of IWOCA 2022 started in the middle of the pandemic crisis. To
cope with the related uncertainties, we decided to run IWOCA as a hybrid event. We
still hope that, in particular, a number of younger participants were able to enjoy
IWOCA as an on-site event, possibly as their first-ever conference.

We also thank Springer for publishing the proceedings of IWOCA 2022 in their
ARCoSS/LNCS series and for their financial support towards the best paper awards.
Also, we were one of the last conferences collecting experiences with OCS, a Springer
system we used for managing the collection and editing of the papers.

Finally, we thank the Steering Committee for giving us the opportunity to serve as
program chairs of IWOCA 2022 and for their continuous support.

April 2022 Cristina Bazgan
Henning Fernau
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Graphs as Algorithms: Characterizing
Motion-Planning Gadgets through Simulation
and Complexity (Abstract of Invited Talk)

Erik D. Demaine

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA

edemaine@mit.edu

Abstract. Most motion planning problems—designing the route for one or more
agents (robots, humans, cars, drones, etc.) through a changeable environment—
are computationally difficult: NP-hard, PSPACE-hard, or worse. Such hardness
proofs usually consist of several gadgets—local pieces of environment with
limited agent interactions/traversals, some of which change local state, which in
turn change available interactions/traversals—that can be pasted together into
the overall reduction. Such gadgets essentially act like finite automata, where the
transitions are controlled by one or more agents traversing the environment.

In this talk, I’ll describe our quest to characterize exactly which such gadgets
suffice to prove different kinds of hardness, in our motion-planning-through-
gadgets framework that has developed over the past few years [1–9]. This
framework enables many hardness proofs, old and new, to be distilled down to a
single diagram of a single gadget.

Even stronger, we aim to characterize which motion-planning gadgets can
simulate which others. Gadget simulations are given by a graph describing how
to connect together the simulating gadgets (along with their initial states) in a
way that acts like the simulated gadget, essentially representing a reduction
algorithm as a graph. See Fig. 1.

Keywords: Gadgets • Motion planning • Computational complexity
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Distance from Triviality 2.0: Hybrid
Parameterizations

Akanksha Agrawal1(B) and M. S. Ramanujan2

1 Indian Institute of Technology Madras, Chennai, India
akanksha@cse.iitm.ac.in

2 University of Warwick, Coventry, England

R.Maadapuzhi-Sridharan@warwick.ac.uk

Abstract. Vertex deletion problems have been at the heart of numer-
ous major advances in Algorithms and Combinatorial Optimization, and
especially so in the area of Parameterized Complexity. For a family of
graphs H, the input to Vertex Deletion to H is a graph G and an
integer k, and the objective is to decide whether there is a vertex-subset,
called a modulator, whose removal from G results in a graph contained
in the family H, and such that |S| ≤ k. Traditionally, the majority
of the study of Vertex Deletion to H problems in Parameterized
Complexity has been limited to parameterization by modulator size and
structural graph width measures of the input graph such as treewidth.
Recent years have seen systematic efforts at: i) quantifying the com-
plexity of modulators in ways other than their size, and ii) studying the
complexity landscape of various graph problems under parameterizations
that are simultaneously better than both the modulator size and certain
width measures of the graph. In this talk we will look at some exciting
developments in this direction in relation to two such parameters that
are “hybridizations” of the modulator size, and the well-explored graph
parameters – treewidth and treedepth.

Keywords: Parameterized Complexity · Vertex deletion · Elimination
distance · H-treewidth

1 Introduction to Parameterized Algorithmics

The central goal in Algorithm Design and Analysis is to obtain “provably” the
fastest algorithm for various problems. Classical Complexity Theory focuses on
understanding the complexity of a problem based on the input size, and the holy
grail of efficient solvability is polynomial-time computability. Arguably, most of
the real world problems that we encounter turn out to be NP-hard, and thus
we cannot hope to obtain a polynomial-time algorithm for them. Often the
complexity of a problem is not just governed by its input size, but also certain
structural properties of the input or output. The framework of Parameterized
Complexity was originally developed by Downey and Fellows to cope with NP-
hardness. Intuitively, it is a two-dimensional generalization of “P vs. NP”, where
c© Springer Nature Switzerland AG 2022
C. Bazgan and H. Fernau (Eds.): IWOCA 2022, LNCS 13270, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-06678-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06678-8_1&domain=pdf
http://orcid.org/0000-0002-0656-7572
http://orcid.org/0000-0002-2116-6048
https://doi.org/10.1007/978-3-031-06678-8_1


4 A. Agrawal and M. S. Ramanujan

in addition to the input size, one studies how relevant a secondary measure
affects the computational complexity of problem. Here, the secondary measures
are some quantification over the input/output (or some combination of them).

Parameterized Complexity. A parameterized problem Π is a subset of Σ∗ × N,
where Σ is a finite alphabet set. An instance of a parameterized problem is a
tuple (I, κ), where I is a classical problem instance and κ is a natural number,
which is called the parameter. One of the central concepts in the Parameterized
Complexity is fixed-parameter tractability (FPT), which intuitively speaking is
solvability of instances of a parameterized problem in time f(κ) · |I|O(1), where
(I, κ) is the given instance, |I| is the encoding length of the instance and f is
a function on κ. When we talk about solvability, it means that there are some
algorithm(s) that resolve the given instance of the parameterized problem. Either
there can be a single algorithm that works for all instances of the problem, or
there maybe a particular algorithm that we wish to invoke based on the value
of the parameter. This may leads cause some non-uniformity, and thus we have
the following two notions of fixed-parameter tractability.

Definition 1 (Uniform and non-uniform FPT, Definition 2.2.1 [17]). Let
Π be a parameterized problem.

(i) We say that Π is uniformly FPT if there is an algorithm A, a constant c,
and an arbitrary function f : N → N such that: the running time of A(I, κ)
is at most f(κ) · |I|c and (I, κ) ∈ Π if and only if A(I, κ) = 1.

(ii) We say that Π is non-uniformly FPT if there is collection of algorithms
{Aκ | κ ∈ N}, a constant c, and an arbitrary function f : N → N, such that:
for each κ ∈ N, the running time of Ak(I, κ) is f(κ) · |I|c and (I, κ) ∈ Π if
and only if Aκ(I, κ) = 1.

We say that a parameterized problem is in the complexity class FPT if it is
uniformly FPT or non-uniformly FPT. Moreover, the algorithms involved in the
above two items are called FPT and non-uniform FPT algorithms, respectively.

Not all parameterized problems are FPT under reasonable complexity-
theoretic assumptions. Similar to the notion of NP-hardness and NP-hard reduc-
tions in the Classical Complexity Theory, we have the notion of W[t]-hardness,
where t ∈ N and parameterized reductions in the Parameterized Complexity.
Given that not all parameterized problems can be (non-uniformly) FPT, one
of the quests in the field of Parameterized Complexity is to classify problems
for which an FPT algorithm can exist. This leads us to the notion of FPT-
equivalence. We say that two parameterized problems are (non-uniformly) FPT-
equivalent if, given an FPT algorithm for any one of the two problems we can
obtain a (non-uniform) FPT algorithm for the other problem.

Another central notion in Parameterized Complexity is kernelization, which
mathematically captures the efficiency of a pre-processing/data reduction rou-
tine. A kernelization algorithm or a kernel for a parameterized problem Q takes
as input an instance (I, κ) of Q and in time polynomial in |I| + κ returns an
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instance (I ′, κ′) such that (I, κ) ∈ Q if and only if (I ′, κ′) ∈ Q. Furthermore,
|I ′| + κ′ ≤ g(κ), where g(·) is some function on κ.

For more details on the topic, please see the textbooks of Downey and Fel-
lows [17], Flum and Grohe [20], Niedermeier [42], and Cygan et al. [16].

2 Vertex Deletion Problems and Hybrid Parameters

Given the modeling power of graphs, graph problems have been extensively
studied in the literature. Many of the classical graph problems can be defined
as follows. For a family of graphs H, in the Vertex Deletion to H problem
we are given a graph and the goal is to compute a minimum sized set of vertices
to delete from the graph in order to obtain a graph contained in H. For a graph
G, modH(G) denotes the size of a smallest vertex set S such that G − S ∈ H.
If G − S ∈ H, then S is called a modulator to H. Lewis and Yannakakis [36]
obtained that for all non-trivial families of graphs, the Vertex Deletion to H
problems are NP-complete. Thus, the parameterized complexity of these prob-
lems have been extensively explored and arguably, their study has led to the
development of several important tools and techniques in the field. The prob-
lems have been studied for numerous choices of structured H, e.g., when H is
planar, bipartite, chordal, interval, acyclic or edgeless, respectively, we get the
classical Planar Vertex Deletion, Odd Cycle Transversal, Chordal
Vertex Deletion, Interval Vertex Deletion, Feedback Vertex Set,
and Vertex Cover problems (see, for example, [16]). Moreover, Parameter-
ized Complexity offers the perfect tools to design and analyze algorithms that
utilize small vertex modulators to various graph classes. This is because it is
often the case that inputs that have vertex modulators of small size to H turn
out to be tractable for many problems that are NP-complete in general while
being polynomial-time solvable on graphs in H. In fact, using the size of the
smallest vertex modulator of a graph into tractable graph classes as a parameter
that captures “distance from triviality” was proposed by Guo, Hüffner and Nie-
dermeier [28] as a methodology for systematically studying the parameterized
complexity of a problem. In the last two decades, this methodology has become
a rich source of interesting and useful parameters for graph problems.

Over the past decades much of the study of the vertex-deletion problems
in parameterized complexity have mainly focused on parameters like solution
size and various graph-width measures , and thus, their power and complexity
has been well understood. In particular, numerous vertex-deletion problems are
known to be fixed-parameter tractable (i.e., can be solved in time f(k) · nO(1),
where k is the parameter and n is the input size) under these parameterizations.
In light of this state of the art, recent efforts have shifted to the goal of identifying
and exploring “hybrid” parameters such that:

(a) they are upper bounded by the solution size as well as certain graph-width
measures,

(b) they can be arbitrarily (and simultaneously) smaller than both the solution
size and graph-width measures, and
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Fig. 1. Let H be the family of triangle-free graphs. The figure shows a graph G with
a modulator to H of size 5 (blue vertices), an H-elimination decomposition of depth
3 and an H-tree decomposition of width 1. The vertices in L for the H-elimination
decomposition and H-tree decomposition are the red vertices, and the edges of G in
these decompositions are shown using dotted lines. The yellow ovals and the blue
edges between them represents the associated trees in these decompositions. (Color
figure online)

(c) a significant number of the problems that are in the class FPT when param-
eterized by solution size or graph-width measures, can be shown to be in the
class FPT also when parameterized by these new parameters.

Two such recently introduced parameters are: (a) H-elimination distance and
(b) H-treewidth of a graph, where H is a family of graphs. Bulian and Dawar [7]
introduced the notion of H-elimination distance of a graph G (denoted edH(G)),
which intuitively speaking, is the number of rounds one needs to obtain a graph
in H where in each round we are allowed to remove one vertex from each of
the connected components. We next formally define H-elimination distance (see
Fig. 1 for an illustration). We remark that our definition is stated differently
than the one given by Bulian and Dawar [7], but it is equivalent and (almost)
in-line with the definition used by Jansen et al. [33].

Definition 2. For a graph class H, an H-elimination decomposition of graph G
is a pair (T, χ, L), where T is a rooted forest, χ : V (T ) → 2V (G) and L ⊆ V (G),
such that:

1. For each internal node t of T we have |χ(t)| ≤ 1 and χ(t) ⊆ V (G) \ L.
2. The sets (χ(t))t∈V (T ) form a partition of V (G).
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3. For each edge uv ∈ E(G), if u ∈ χ(t1) and v ∈ χ(t2) then t1, t2 are in
ancestor-descendant relation in T .

4. For each leaf t of T , we have χ(t) ⊆ L and the graph G[χ(t)], called a base
component, belongs to H.

The depth of T is the maximum number of edges on a root-to-leaf path (see
Fig. 1). We refer to the union of base components as the set of base vertices.
The H-elimination distance of G, denoted edH(G), is the minimum depth of an
H-elimination forest for G.

It is straight-forward to verify that for any G and H, the minimum depth of
an H-elimination forest of G is equal to the H-elimination distance given by
the (intuitve) recursive definition stated previously. (We remark that, due to
the above, we have defined the depth of an H-elimination forest in terms of the
number of edges, while the traditional definition of treedepth counts vertices
on root-to-leaf paths.) Readers familiar with the notion of treedepth [41] will
be able to see that if H is the class of empty graphs, then the H-elimination
distance of G is nothing but the treedepth of G. In fact, if H is union-closed (as
will be the case for all graph classes we consider), then one gets the following
equivalent perspective on this notion. The H-elimination distance of G is defined
as the minimum possible treedepth of the torso of a modulator of G to H. Here,
the torso of a vertex set S in a graph G is the graph with vertex set S and
an edge between two vertices u, v ∈ S if there is a path between u and v in G
whose internal vertices all lie outside S. The treedepth of G, denoted td(G), is
the minimum depth of a standard elimination forest.

The second parameter, H-treewidth, introduced by Eiben et al. [18], “gen-
eralizes” treewidth and solution size, the same way that elimination distance
generalizes treedepth and solution size. This notion builds on a similar parame-
terization that was first defined in the context CSPs [26], which also found appli-
cations in algorithms for SAT [25] and Mixed ILPs [24]. Intuitively speaking, a
H-tree decomposition of a graph G of width � is simply a tree decomposition of
G paired with a vertex subset L ⊆ V (G) that already induces in a graph in H
and thus are ignored in the width computation. Additionally, in order for this
subset to not interfere with many vertices, we required that each vertex in L is
contained in only one bag in the tree decomposition. Notice that a bag in the
tree decomposition can contain at most � + 1 vertices from V (G) \ L, but can
contain any number of vertices from L. The H-treewidth of G (denoted twH(G))
is the minimum width taken over all H-tree decompositions of G. We will now
formally define H-treewidth (see Fig. 1 for an illustration).

Definition 3 ([33]). For a graph class H, an H-tree decomposition of graph G
is a triplet (T, χ, L) where L ⊆ V (G), T is a rooted tree and χ : V (T ) → 2V (G),
such that:

1. For each v ∈ V (G) the nodes {t | v ∈ χ(t)} form a non-empty connected
subtree of T .

2. For each edge {u, v} ∈ E(G) there is a node t ∈ V (G) with {u, v} ⊆ χ(t).
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3. For each vertex v ∈ L, there is a unique t ∈ V (T ) for which v ∈ χ(t), with t
being a leaf of T .

4. For each node t ∈ V (T ), the graph G[χ(t) ∩ L] belongs to H.

The width of a H-tree decomposition is defined as max(0,maxt∈V (T ) |χ(t)\L|−1).
The H-treewidth of a graph G, denoted twH(G), is the minimum width of a H-
tree decomposition of G. The connected components of G[L] are called base
components and the vertices in L are called base vertices.

Note that a pair (T, χ) is a (standard) tree decomposition if (T, χ, ∅) satisfies all
conditions of an H-decomposition; the choice of H is irrelevant. In the definition
of width, we subtract one from the size of a largest bag to mimic treewidth. The
maximum with zero is taken to prevent G ∈ H from having twH(G) = −1.

From the definition it is easy to see that H-treewidth of G is upper bounded
by its treewidth, as one could simply take a tree-decomposition of G and the set
L = ∅. Furthermore, H-treewidth can always be upper bounded by modH(G).

From our definitions, it is easy to see that edH(G) (resp., twH(G)) can be
arbitrarily smaller than both modH(G) and the treedepth of G (respectively,
the treewidth of G).1 We note that, since treewidth of a graph can be upper
bounded by its treedepth, twH(G) can be arbitrarily smaller than edH(G). As
both edH(G) and twH(G) satisfy Properties (a) and (b) stated previously, in
the recent times there have been efforts in understanding the extent to which
Property (c) is satisfied by these parameters. This leads us to the following two
fundamental and challenging questions that will be the focus of this talk:

Question 1: For which families H of graphs is Elimination Distance
to H (resp., Treewidth Decomposition to H) FPT when param-
eterized by edH (resp., twH)?

Question 2: For which families H of graphs is Vertex Deletion to
H parameterized by edH(G) (or twH(G)) FPT?

The Elimination Distance to H (resp., Treewidth Decomposition
to H), the input is a graph G and integer k and the goal is to decide whether
edH(G) ≤ k (resp., twH(G) ≤ k). Note that for any of Vertex Deletion
to H, Elimination Distance to H or Treewidth Decomposition to H,
one may study its parameterized complexity for any choice of the parameter
modH(G), edH(G) or twH(G) (see Fig. 2). Whenever we skip mentioning the
parameter for these problems, then the parameter will be the number k.

We remark that, although for most families H,2 Vertex Deletion to H
has a trivial XP-time algorithm , i.e., an nO(k)-time algorithm, it is not obvious
how we can obtain an XP algorithm even for structured H for the problems
Elimination Distance to H or Treewidth Decomposition to H, when
1 For this, we always assume that H contains the empty graph and so V (G) is a trivial

modulator to H.
2 Here we make a mild assumption that, checking whether a graph is in H can be done

in polynomial time.
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Fig. 2. Different parameterized problem that are of interest to us. Note one can obtain
a parameterized problem by picking a (classical) problem from the left and a parameter
from the right (which is illustrated by a connecting line between them). All the param-
eterized problems illustrated using the green connecting lines are FPT equivalent when
H satisfies a mild condition [2].

parameterized by k. In the absence of a resolution to Question 1, Question 2 then
brings with it the challenge of solving Vertex Deletion to H (or indeed, any
problem) without necessarily being able to efficiently compute edH or twH.

3 Elimination Distance/Tree Decomposition to H
Bulian and Dawar [7] showed that Elimination Distance to H is FPT, when
H is a minor-closed class of graphs and asked whether it is FPT, when H is the
family of graphs of degree at most d. In a partial resolution to this question,
Lindermayr et al. [37] obtained that Elimination Distance to H is FPT
when we restrict the input graphs to be planar. After this, we (along with a
few others) [3] resolved this question completely by showing that the problem is
(non-uniformly) FPT. In fact, our result extends for all the families of graphs
H that can be characterized by a finite family of induced subgraphs.

Jansen and de Kroon [32] extended the aforementioned result, and showed
that Treewidth Decomposition to H is also (non-uniformly) FPT when
H is characterized by a finite family of excluded induced subgraphs. They also
showed that Treewidth Decomposition to H and Elimination Distance
to H are non-uniformly FPT when H is the family of bipartite graphs. Recently,
Fomin et al. [21] showed that for every graph family H expressible by a particular
fragment of first order-logic, Elimination Distance to H is (non-uniformly)
FPT. Since a family of graphs characterized by a finite set of forbidden induced
subgraphs is expressible in this fragment of logic, this result also generalizes the
result from [3].



10 A. Agrawal and M. S. Ramanujan

4 Vertex Deletion to H Parameterized by edH(G)/twH(G)

In a recent paper, Jansen et al. [33] provide a general framework to design
FPT-approximation algorithms for edH and twH for various choices of H. For
instance, when H is bipartite or characterized by a finite set of forbidden (topo-
logical) minors, they give FPT algorithms (parameterized by twH) that com-
pute a H-tree decomposition of G whose width is not necessarily optimal, but
polynomially bounded in the H-treewidth of the input, i.e., an approximation.
These approximation algorithms enable them to address Question 2 for various
classes H without having to exactly compute edH(G) or twH(G) (i.e., without
resolving Question 1 for these classes).

Towards answering Question 2, Jansen et al. [33] give the following FPT algo-
rithms for Vertex Deletion to H parameterized by twH. Let H be a hered-
itary class of graphs that is defined by a finite number of forbidden connected
(a) minors, or (b) induced subgraphs, or (c) H is the family of bipartite graphs
or chordal graphs.3 There is an algorithm that, given an n-vertex graph G, com-
putes a minimum vertex set X such that G−X ∈ H in time f(twH(G)) ·nO(1).
We note that all of these FPT algorithms are uniform.

5 Equivalence of Elimination/Decomposition/Deletion

A closer look at the results in [3,21,33] reveals an interesting property: these algo-
rithms for Elimination Distance to H and Treewidth Decomposition to
H utilize the corresponding (known) algorithms for Vertex Deletion to H
in a non-trivial manner. This raises the following natural questions.

Question 3: When (if at all) is the parameterized complexity of Elim-
ination Distance to H or Treewidth Decomposition to H
different from that of Vertex Deletion to H?

Question 4: When (if at all) is the parameterized complexity of Ver-
tex Deletion to H different from that of Vertex Deletion to
H parameterized by edH(G) or twH(G)?

Intrigued by the above questions, we (along with others) very recently
obtained that, when H is a hereditary family of graphs that is CMSO4 definable
and closed under disjoint union, then all the parameterized problems illustrated
by green connecting lines in Fig. 2 are (non-uniformly) FPT-equivalent [2]. We
formally state this result below.

3 A family of graphs H is hereditary if for each graph G ∈ H, every induced subgraph
of G belongs to H.

4 When we say CMSO, we refer to the fragment that is sometimes referred to as CMSO2

in the literature. We will only be using a meta-result regarding CMSO definable
problems, and thus, we refer to [5,11,12] for a an introduction to this topics.
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Theorem 1. H be a hereditary family of graphs that is CMSO definable and
closed under disjoint union. Then the following problems are (non-uniformly)
FPT-equivalent.

1. Vertex Deletion to H parameterized by modH(G)
2. Vertex Deletion to H parameterized by edH(G)
3. Vertex Deletion to H parameterized by twH(G)
4. Elimination Distance to H parameterized by modH(G)
5. Elimination Distance to H parameterized by edH(G)
6. Treewidth Decomposition to H parameterized by modH(G)
7. Treewidth Decomposition to H parameterized by edH(G)
8. Treewidth Decomposition to H parameterized by twH(G)

We will look at one of the implications from the above theorem, which we
summarize in the following lemma.

Lemma 1. Consider a family H of graphs that is CMSO definable and is closed
under disjoint union and induced subgraphs. If Elimination Distance to
H (resp. Treewidth Decomposition to H) parameterized by modH(G) is
FPT, then Vertex Deletion to H parameterized by modH(G) is also FPT.

Before proving the above lemma, we introduce some notations and state some
useful results regarding them.

Preliminaries. Consider a graph G. A pair (X,Y ) where X ∪ Y = V (G) is a
separation if there is no edge {u, v} ∈ E(G) such that u ∈ X \ Y and v ∈ Y \ X.
The order of (X,Y ) is |X ∩ Y |. For s, c ∈ N, we say that G is (s, c)-breakable
if there exists a separation (X,Y ) of order at most c such that |X \ Y | ≥ s
and |Y \ X| ≥ s. Moreover, if such a separation does not exists, then G is
(s, c)-breakable.

We will crucially use the following result of Lokshtanov et al. [39] that allows
one to obtain a (non-uniform) FPT algorithm for CMSO-expressible graph prob-
lems by designing an FPT algorithm for the problem on unbreakable graphs.

Proposition 1 (Theorem 1, [39]). Let ψ be a CMSO sentence and let d > 4
be a positive integer. There exists a function α : N → N, such that for every
c ∈ N there is an α(c) ∈ N, if there exists an algorithm that solves CMSO[ψ] on
(α(c), c)-unbreakable graphs in time O(nd), then there exists an algorithm that
solves CMSO[ψ] on general graphs in time O(nd).

Hereafter, α will denote the function obtained using the above proposition.
We next state a result which immediately follows from the definition of (s, c)-
unbreakable graphs.

Proposition 2. Consider a graph G, an integer k and a set S ⊆ V (G) of size
at most k, where G is an (α(k), k)-unbreakable graph with |V (G)| > 2α(k) + k.
Then, there is exactly one connected component C∗ in G − S that has at least
α(k) vertices and |V (G) \ V (C∗)| < α(k) + k.
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Proof of Lemma. 1. Fix any family H of graphs that is CMSO definable, hered-
itary and closed under disjoint union, such that Elimination Distance to
H (resp. Treewidth Decomposition to H) admits an FPT algorithm, say,
Xmod running in time f(�) ·nO(1), where n is the number of vertices in the given
graph G and � = modH(G).

Let (G, k) be an instance of Vertex Deletion to H. To prove Lemma 1,
from Proposition 1 it is enough to design an algorithm for (α(k), k)-unbreakable
graphs, and thus, we assume that G is (α(k), k)-unbreakable. We begin with the
following simple sanity checks.

Base Case 1. If G ∈ H and k ≥ 0, then return that (G, k) is a yes-instance of
the problem.5 Moreover, if k < 0, then return that the instance is a no-instance.

Base Case 2. If |V (G)| ≤ 2α(k) + k, then for each S ⊆ V (G) of size at most
k, check if G − S ∈ H. If for any such S we obtain that G − S ∈ H, return that
(G, k) is a yes-instance, and otherwise return that it is a no instance.

Base Case 3. If G does not admit an H-elimination decomposition (resp. H-
tree decomposition) of depth (resp. width) at most k, then return that (G, k) is
a no-instance of the problem.

The correctness of the Base Case 1 and 2 is immediate from their descriptions.
Note that twH(G) ≤ edH(G) ≤ modH(G). Thus, if (G, k) is a yes-instance of
Vertex Deletion to H, then it must admit an H-elimination decomposition
(resp. H-tree decomposition) of depth (resp. width) at most k. The above implies
the correctness of Base Case 3. Note that using Xmod, we can test/apply all the
base cases in time bounded by max{2α(k)+k, f(k)} · nO(1).

Hereafter we assume that the base cases are not applicable. We compute
an H-elimination decomposition (resp. H-tree decomposition), say, (T, χ, L), by
using the algorithm Xmod, of depth (resp. width) at most k.6 Note that the
above decomposition can be computed as Base Case 3 is not applicable.

Let C∗ be a connected component in G[L] with maximum number of vertices,
and let S∗ = NG(C∗) and Z∗ = V (G) \ NG[C∗]. Note that as (T, χ, L) is an H-
elimination decomposition (resp. H-tree decomposition) of depth (resp. width)
at most k, we can obtain that |S∗| ≤ k. As G is (α(k), k)-unbreakable, the
above together with Observation 2 implies that |Z∗ ∪ S∗| ≤ α(k) + k. We have
the following property which can be immediately derived from the fact that
(T, χ, L) is an H-elimination decomposition (resp. H-tree decomposition) for G
of depth (resp. width) at most k.

Proposition 3. Either G − S∗ ∈ H, or for every S ⊆ V (G) of size at most k
such that G − S ∈ H, we have Z∗ ∩ S 
= ∅.

The above result leads us to the following base case and our branching rule.

5 We can check if G ∈ H by calling Xmod for the instance (G, 0). We recall that H is
closed under disjoint union.

6 Even if Xmod is a decision algorithm, using the self-reducibility like property, we can
compute the decomposition itself, see Lemma 3.5 and 3.6 in [1] or [2] for details.
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Base Case 4. G − S∗ ∈ H, then return that (G, k) is a yes-instance.
As |S∗| ≤ k, the correctness of the above base case immediately follows.

Moreover, using Xmod, we can apply Base Case 3 in time bounded by f(k)·nO(1).

Branching Rule. For each z ∈ Z∗, (recursively) solve the instance (G−{z}, k−
1). Return that (G, k) is a yes-instance if and only if one of these instances is a
yes-instance.

The correctness of the branching rule follows from Proposition 3 and non-
applicability of Base Case 4. Moreover, we can create instances in the branching
rule in polynomial time, given the decomposition (T, χ, L).

Note that the depth of the recursion tree is bounded by k+1. Also, each of the
steps can be applied in time bounded by max{2α(k)+k, f(k)}·nO(1). Thus we can
bound the running time of our algorithm by kO(k)·max{2α(k)+k, f(k)}·nO(1). The
correctness of the algorithm is immediate from its description and Proposition 3.
This concludes the proof of Lemma 1. ��

6 Implication/Applications of the Equivalence Result

Unification/Extension of Known Results. Theorem 1 gives us a powerful clas-
sification tool which states that as far as the (non-uniform) fixed-parameter
tractability of computing any of the parameters modH(G), edH(G) and twH(G)
is concerned, they are essentially the “same parameter” for many frequently con-
sidered graph classes H. In other words, to obtain an FPT algorithm for any of
the problems stated in Theorem 1, it is sufficient to design an FPT algorithm for
the standard vertex-deletion problem, namely, Vertex Deletion to H. This
implication unifies several known results in the literature. For example, let H
be the family of graphs of degree at most d and recall that it was only recently
in [4,32] it was shown that Elimination Distance to H and Treewidth
Decomposition to H are (non-uniformly) FPT, respectively. However, using
equivalence result, the fixed-parameter tractability of these two problems and in
fact, even the fixed-parameter tractability of Vertex Deletion to H parame-
terized by edH(G) (or twH(G)), is implied by the straightforward dknO(1)-time
branching algorithm for Vertex Deletion to H (i.e., the problem of deleting
at most k vertices to get a graph of degree at most d).

Moreover, for various well-studied families of H, we immediately derive FPT
algorithms for all combinations of Vertex Deletion to H, Elimination
Distance to H, Treewidth Decomposition to H parameterized by any
of modH(G) edH(G) and twH(G), which are covered by the equivalence. For
instance, we can invoke it using well-known FPT algorithms for Vertex Dele-
tion to H for several families of graphs that are CMSO definable and closed
under disjoint union, such as families defined by a finite number of forbidden
connected (a) minors, or (b) topological minors, or (c) induced subgraphs, or
(d) H being bipartite, chordal, proper-interval, interval, or distance-hereditary;
to name a few [6,8–10,19,22,23,34,35,38,40,48–50]. Thus, it provides a unified
understanding of many recent results and resolves the parameterized complexity
of several questions that were open prior to this result. Of particular significance
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among the new results is the case where H is a class defined by a finite number of
forbidden connected topological minors, as this gives the first FPT algorithms
for computing edH and twH, resolving an open problem posed by Jansen et
al. [33].

Deletion to Families of Bounded Rankwidth. We observe that Theorem 1 can be
invoked by taking H as the class of graphs of bounded rankwidth, extending a
result of Eiben et al. [18].

Rankwidth is a graph parameter introduced by Oum and Seymour [47] to
approximate yet another graph parameter called Cliquewidth. The notion of
cliquewidth was defined by Courcelle and Olariu [14] as a measure of how “clique-
like” the input graph is. One of the main motivations was that several NP-
complete problems become tractable on the family of cliques (complete graphs),
the assumption was that these algorithmic properties extend to “clique-like”
graphs [13]. However, computing cliquewidth and the corresponding cliquewidth
decomposition seems to be computationally intractable. This then motivated the
notion of rankwidth, which is a graph parameter that approximates cliquewidth
well while also being algorithmically tractable [44,47]. For more information on
cliquewidth and rankwidth, we refer to the surveys by Hlinený et al. [29] and
Oum [46].

For a graph G, we use rwd(G) to denote the rankwidth of G. Let η ≥ 1 be a
fixed integer and let Hη denote the class of graphs of rankwidth at most η. It is
known that Vertex Deletion to Hη is FPT [15]. The algorithm is based on
the fact that for every integer η, there is a finite set Cη of graphs such that for
every graph G, rwd(G) ≤ η if and only if no vertex-minors of G are isomorphic
to a graph in Cη [43,45]. Further, it is known that vertex-minors can be expressed
in CMSO, this together with the fact that we can test whether a graph H is a
vertex-minor of G or not in f(|H|)nO(1) time on graphs of bounded rankwidth
leads to the desired algorithm [15, Theorem 6.11]. It is also important to mention
that for Vertex Deletion to H1, also known as the Distance-Hereditary
Vertex-Deletion problem, there is a dedicated algorithm running in time
2O(k)nO(1) [19]. For us, two properties of Hη are important: (a) expressibility in
CMSO and (b) being closed under disjoint union. These two properties, together
with the result in [15] imply that our result

Theorem 1 is also applicable to Hη. Thus, we are able to generalize and
extend the result of Eiben et al. [18], who showed that for every η, computing
twHη

is FPT. For different notions and definitions related to rankwidth and
vertex-minors we refer the reader to [29,46].

Cut Problems. Notice that in the same spirit as we have seen so far, one could
also consider the parameterized complexity of other classical problems such as
cut problems (e.g., Multiway Cut), as long as the parameter is smaller than
the standard parameter studied so far. Note that at a first look, problems like,
Multiway Cut, Subset FVS and Subset OCT do not seem to fit under the
umbrella of vertex deletion problems to a particular graph class.
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Ihe Multiway Cut problem, where one is given a graph G and a set of
vertices S (called terminals) and an integer � and the goal is to decide whether
there is a set of at most � vertices whose deletion separates every pair of these
terminals. The standard parameterization for this problem is the solution size �.
Jansen et al. [33] propose to consider annotated graphs (i.e., undirected graphs
with a distinguished set of terminal vertices) and study the parameterized com-
plexity of Multiway Cut parameterized by the elimination distance to a graph
where each component has at most one terminal. Notice that this new parameter
is always upper bounded by the size of a minimum solution.

We can obtain an FPT algorithm for Multiway Cut with the above stated
parameter by using Theorem 1. We note that although Theorem 1 is defined only
when H is a family of graphs, in order to capture such problems, we can express
them in terms of appropriate notions of structures and then give a reduction to
a pure graph problem on which Theorem 1 can be invoked. These results make
concrete advances in the direction proposed by Jansen et al. [33] to develop FPT
algorithms for Multiway cut parameterized by the elimination distance to a
graph where each component has at most one terminal. We remark that such
results can also be obtained for problems like Subset FVS and Subset OCT.

Modulators to Scattered Families. Recent years have seen another new direction
of research on Vertex Deletion to H – instead of studying the computa-
tion of a modulator to a single family of graphs H, one can focus to compute
small vertex sets whose deletion leaves a graph where each connected compo-
nent comes from a particular pre-specified graph class [27,30,31]. For example,
given a graph G and a number k, find a vertex set S of size at most k (or
decide whether one exists) such that in G − S, each connected component is
either chordal or bipartite. Let us call such an S, a scattered modulator. Such
scattered modulators (if small) can be used to design new FPT algorithms for
certain problems by taking separate FPT algorithms for the problems on each
of the pre-specified graph classes and then combining them in a non-trivial way
“through” the scattered modulator. The quality of the modulators considered in
this line of research has mainly been in terms of the size. We can extend the idea
of studying graph problems with hybrid parameters like scattered elimination
distance or scattered tree decompositions as well.

The first study of scattered modulators was undertaken by Ganian et al. [27],
who introduced this notion in their work on constraint satisfaction problems.
Recently, Jacob et al. [30,31] initiated the study of scattered modulators explic-
itly for “scattered” families of graphs. In particular, let H1, . . . ,Hd be families of
graphs. Then, the scattered family of graphs ⊗(H1, . . . ,Hd) is defined as the set
of all graphs G such that every connected component of G belongs to

⋃d
i=1 Hi.

That is, each connected component of G belongs to some Hi. As their main
result, Jacob et al. [30] showed that Vertex Deletion to H is FPT whenever
Vertex Deletion to Hi, i ∈ {1, . . . , d}, is FPT, and each of Hi is CMSO
expressible. Here, H is the scattered family ⊗(H1, . . . ,Hd). Notice that if each
of Hi is CMSO expressible then so is H. Further, it is easy to observe that if
each of Hi is closed under disjoint union then so is H. The last two properties
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together with the result of Jacob et al. [30] enable us to invoke Theorem 1 even
when H is a scattered graph family.

Cross Parameterizations. Another direction of research in Parameterized Com-
plexity is cross parameterizations: parameterization of one problem with respect
to alternate parameters. For example, consider Odd Cycle Transversal
(OCT) on chordal graphs. Let H denote the family of chordal graphs. It is
well known that OCT is polynomial-time solvable on chordal graphs. Further,
given a graph G and a modulator to chordal graphs of size modH(G), OCT
admits an algorithm with running time 2O(modH(G)))nO(1). It is therefore natu-
ral to ask whether OCT admits an algorithm with running time f(edH(G))nO(1)

or f(twH(G))nO(1), given an H-elimination forest of G of depth edH(G) or
an H-tree decomposition of G of width twH(G), respectively. The question is
also relevant, in fact more challenging, when an H-elimination forest of G of
depth edH(G) or an H-decomposition of G of width twH(G), respectively, is
not given. Jansen et al. [33] specifically mentioned this research direction in
their paper.

A step in this direction of research can be seen in the work of Eiben et
al. [18, Thm. 4]. They present a meta-theorem that yields non-uniform FPT
algorithms when Π satisfies several conditions, which require a technical gener-
alization of an FPT algorithm for Π parameterized by deletion distance to H.
If the problem satisfies certain requirements (see [2], for more details), then in
fact it enables existence of FPT algorithms for vertex-deletion problems param-
eterized by edH(G) (or twH(G)) when given an H-elimination forest of G of
depth edH(G) (resp., an H-decomposition of G of width twH(G)).

Towards Uniform FPT Algorithms. Recall that the FPT algorithms obtained
via Theorems 1 and the extension to families of structures are non-uniform. In
fact, all of the current known FPT algorithms for Elimination Distance to
H or Treewidth Decomposition to H, are non-uniform; except for Elim-
ination Distance to H, when H is the family of empty graphs (which, as
discussed earlier, is simply the problem of computing treedepth). However, we
note that the FPT-approximation algorithms in Jansen et al. [33] (in fact, all
the algorithms obtained in [33]) are uniform.

The paper [2], presents a general set of requirements that, when satisfied,
shows that Elimination Distance to H parameterized by edH(G) is uni-
formly FPT. Like before, we need H to be hereditary, CMSO definable, closed
under disjoint union and Vertex Deletion to H is FPT, where the additional
requirement is a strengthening of the last two demands. These strengthening is
based on certain equivalence classes obtained over boundaried graphs, for more
details on this, we refer the reader to [2].

We remark that these strengthened requirements in [2] are “simple” because
many of the known algorithms for the several problems already implicitly yields
them as part of their analysis. So, the satisfaction of these conditions do not
seem (in various cases) to require much “extra” work compared to the design of
an FPT algorithm (or a kernel) to the problem at hand. Using these sufficient
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conditions, uniform FPT algorithms for computing edH can be obtained, when
H is defined by excluding a finite number of connected (a) minors, or (b) topo-
logical minors, or (c) induced subgraphs, or when H is any of bipartite, chordal
or interval graphs. For most of these problems, the existence of a uniform (and
even non-uniform) FPT algorithm previously was open in the literature.

7 Conclusion and Open Problems

We looked at the studies pushing the boundaries of tractability in Parameter-
ized Complexity for the two recently introduced hybrid parameters that combine
solution size and width measures (H-elimination distance and H-treewidth). We
saw a surprising result that these parameters are effectively only as powerful
as the standard parameterization by the size of the modulator to H for a host
of commonly studied graph classes H. This unifies several recent results in the
literature. We also looked at implications of this equivalence result for problems
like Multiway Cut and how similar results can be obtained for cross parame-
terizations of problems. Furthermore, as many of the algorithms are non-uniform
algorithms, we have saw that there is a framework to design uniform FPT algo-
rithms to compute elimination distance to H when H has certain properties.

Hybrid parameterizations have been the subject of a flurry of interesting
results in the last half-a-decade and it would be interesting to identify new,
algorithmically useful, hybrid parameterizations that are provably stronger than
existing ones. We restate some of the interesting future research directions
from [2].

– Is Elimination Distance to H parameterized by twH(G) equivalent to the
eight problems in Theorem 1 for hereditary, union-closed and CMSO definable
H? We conjecture that the answer is yes.

– Can we design uniform FPT algorithms for Treewidth Decomposition
to H in the same spirit as the framework to design uniform FPT algorithms
for Elimination Distance to H?

Finally, the fact still remains that twH(G) ≤ edH(G) ≤ modH(G) and that
each parameter could be arbitrarily smaller than the parameters to its right.
Thus, it is an interesting direction of research to study Vertex Deletion to
H for specific classes H parameterized by edH(G) and twH(G) and aim to
optimize the running time, in the spirit of Jansen et al. [33].
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Abstract. We focus on a fundamental problem in discrete fair divi-
sion, where the goal is to divide indivisible goods among a set of agents
“fairly”. Ideally, one would aim to divide the goods such that no agent
envies another agent. However, since the goods are indivisible, such allo-
cations may not always exist (a simple scenario involving two agents and
a single good). Therefore, relaxations of envy-freeness have been pro-
posed and extensively studied. We focus on one of the most fundamental
and sought out relaxations – envy-freeness up to any good (EFX), where
no agent envies another, following the removal of any single good from
the other’s bundle. Despite substantial effort from the community, the
existence of EFX allocations has not been settled. In this paper, we
sketch the proof of existence of “almost” EFX allocations and the exis-
tence of EFX allocations when there are only three agents. In the end, we
reduce the problem of finding improved guarantees on EFX allocations
to a problem in zero sum extremal combinatorics.

Keywords: Fair division · EFX allocations · Extremal graph theory

Fair division is a fundamental branch of mathematical economics over the last
seven decades (since the seminal work of Hugo Steinhaus in the 1940s [19]). In
a classical fair division problem, the goal is to “fairly” allocate a set of items
among a set of agents. Such problems even find a mention in ancient Greek
mythology and the Bible. Even today, several real-life scenarios are paradig-
matic of the problems in this domain, e.g., division of family inheritance [17],
divorce settlements [6], spectrum allocation [13], air traffic management [20],
course allocation [4] and many more1. For the past two decades, the computer
science community has developed concrete formulations and tractable solutions
to fair division problems and thus contributing substantially to the develop-
ment in the field. With the advent of the Internet and the rise of centralized
electronic platforms that intend to impose fairness constraints on their decisions
(e.g., Airbnb would like to fairly matching hosts and guests, and Uber would like
to fairly match drivers and riders etc.), there has been an increasing demand for
computationally tractable protocols to solve fair division problems.

In an instance of a fair division problem, we have a set of agents and a set of
items, and the goal is to determine an allocation of the items among the agents
1 Check [1] and [2] for more detailed explanation of fair division protocols used in day

to day problems.
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that makes every agent content i.e., is “fair” and achieves high welfare, i.e., is
“efficient”. The items to be divided can be divisible or indivisible, and they can
be desirable (goods) or undesirable (bads or chores). Motivated by applications,
there are several notions of fairness and efficiency, which lead to several distinct
problems (see Fig. 1).

The most extensively studied setting is that of divisible goods. An allocation
through a Competitive Equilibrium with Equal Incomes (CEEI) is often consid-
ered a canonical way to achieve fairness and efficiency. In a CEEI, one creates
a virtual market with the agents and the goods and equips each agent with
the same amount of money, say 1 dollar. At a CE, one determines a price for
each item and an allocation of the items to the agents such that (i) each agent
gets her most preferred bundle of items2 in exchange for her initial budget of 1
dollar and (ii) all items are completely allocated. Such an allocation is fair and
efficient. To be precise, it is envy-free, i.e., no agent strictly prefers any other
agent’s bundle to her own and Pareto-optimal, i.e., there exists no allocation
where some agent can be made happier without making any other agent worse.
At first glance, it is not clear why such prices and allocations exist. However,
there is an extensive line of work on competitive equilibrium (also referred to
as market equilibrium) that not only shows the existence of such prices and
allocations but also describes several fast algorithms to compute them. In fact,
competitive equilibrium theory has a long history going back to the works of Léon
Walras in 1874 [21]. However, the emphasis always, was on determining prices at
which demand equals supply and it is not until quite recently the techniques and
concepts from competitive equilibrium theory have been leveraged to find fair
and efficient allocation of items that go beyond divisible goods. Most notably,
fair and efficient division of indivisible goods has got some recent attention from
the CS and the economics community in the past decade. This setting is also
practically relevant: For instance, jewellery, artworks, estates, and electronics are
indivisible goods that frequently require allocation. Despite the similarity in the
nature of the problems, both settings pose far more challenges than the setting
with divisible goods. In this paper, we highlight the aforementioned challenges
and answer some fundamental questions in this setting. Our main contributions
are elaborated in the upcoming section.

1 Fair and Efficient Allocation of Indivisible Goods

Fair division problems involving indivisible goods have been relatively under-
studied, primarily because classic fairness notions such as envy-freeness cannot
be guaranteed even in trivial instances, such as a setting with two agents and
a single indivisible good that both agents find valuable. However, over the last
decade, several relaxations of envy-freeness and proportionality have been pro-
posed and studied. In this paper, we consider one of the most important relax-
ations of envy-freeness: envy-freeness up to any good (EFX).
2 Bundle that minimizes disutility in the case of bads or the bundle that maximizes

utility in the case of goods.
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Items

Desirable Undesirable

Divisible

goods

Indivisible

goods
Divisible

bads

Indivisible

bads

f1 fk f1 fk f1 fk f1 fk each fi = fairness notion

Fig. 1. Spectrum of problems in fair division. The setting with divisible goods has been
extensively studied. In this paper, we elaborate answers to some fundamental questions
in fair division of indivisible goods.

Envy-freeness up to any good (EFX). “The closest analogue of envy-freeness” in
the context of indivisible goods is that of envy-freeness up to any good (EFX) [7].
An allocation is said to be EFX if no agent envies another agent following the
removal of any single good from the other agent’s bundle. Until now, it is not
known whether EFX allocations exist even when agents have additive valuations,
despite “significant effort” by the research community [7,15]. Ariel Procaccia, in
an editorial note in Communications of the ACM [18], refers to the question as

“fair division’s biggest open problem”.

1.1 EFX with Bounded Charity [11]

As the foundational result in this paper, we show that even when agents have
much more general valuations than additive valuations3, an EFX allocation
always exists if we allow a small number of goods to remain unallocated [11].
Formally, there exists a partition 〈X1,X2, . . . , Xn, P 〉 of the good set M such
that

– X = 〈X1,X2, . . . , Xn〉 is EFX,
– vi(Xi) ≥ vi(P ) for all i ∈ [n], and
– |P | ≤ n − 14,

where vi : 2M → R≥0 denotes the valuation function of agent i. We remark that
prior to this result, the only settings in which EFX allocations were known to
exist for general valuations were the setting with only two agents or the setting
in which all agents have the same valuation [16].

3 A valuation v is additive if v(S) =
∑

s∈S v({s}) for all S.
4 Note that n is the number of agents which is typically much smaller than the number

of goods.
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Our proof is algorithmic. At a high-level, our algorithm always maintains a
partial EFX allocation5 X and a set of unallocated goods P . As long as the set of
unallocated goods are very valuable to some agent i.e., vi(Xi) < vi(P ) for some i,
or the set of unallocated goods is very large, i.e., |P | ≥ n, our algorithm allocates
some of the unallocated goods and reallocates some of the unallocated goods to
determine a new partial EFX allocation X ′ = 〈X ′

1,X
′
2, . . . , X

′
n〉 where each agent

is at least as happy as they were in allocation X and few agents being strictly
happier, i.e., vi(X ′

i) ≥ vi(Xi) for all i ∈ [n] and a strict inequality holds for
atleast one agent. Equivalently the valuation vector of the partial EFX allocation
improves on the pareto-frontier throughout the course of the algorithm and since
each agent’s maximum valuation in any allocation is integral and upper-bounded,
such a procedure will converge to a partial EFX allocation where no agent envies
the number of unallocated goods is at most n − 1.

1.2 Complete EFX Allocations for Three Agents [8]

Despite the above results on EFX with bounded charity, the existence of com-
plete EFX allocation (where no good is unallocated) remained a hard problem,
even with only three agents with additive valuations (“highly non trivial” prob-
lem according to [16]). As the main result of this paper, we show that EFX
allocations always exist when there are three agents with additive valuations [8].

Note that the existence of EFX allocations with bounded charity already
implies the existence of a partial EFX allocation with at most two unallocated
goods when there are only three agents. However, allocating these remaining two
goods may require some massive reallocation of the already allocated goods and
can also render some agents worse off in the final allocation. In particular, we
construct an instance with three agents, seven goods and an EFX allocation on
six goods such that no complete EFX allocation pareto-dominates the existing
partial EFX allocation, i.e., in any complete EFX allocation, there will always be
some agent whose valuation will strictly decrease. This rules out the possibility of
generalizing the approach used for proving the existence of EFX allocations with
bounded charity. We circumvent this issue by defining a new potential function:
Let a, b and c be the three agents and Xa, Xb and Xc be any partial EFX
allocation. We define φ(X) = 〈va(Xa), vb(Xb), vc(Xc)〉. We show that given any
partial EFX allocation X and an unallocated good, we can always find another
partial EFX allocation X ′ where either va(X ′

a) > va(Xa) or va(X ′
a) = va(Xa)

and vb(X ′
b) > vb(Xb) or va(X ′

a) = va(Xa) and vb(X ′
b) = vb(Xb) and vc(X ′

c) >
vc(Xc), i.e., φ(X ′) �lex φ(X). Since the valuation function are upper-bounded
and integral, such an update procedure will finally converge to a complete EFX
allocation. The update rules that determine X ′ from X involve significantly more
reallocation than the update rules used in the context of EFX with bounded
charity.

5 An allocation where not all the goods are allocated.
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1.3 EFX with Bounded Charity and High Nash Welfare [10]

As mentioned earlier, alongside fairness, another desirable property of an allo-
cation is “efficiency” i.e., a measure of the overall welfare that the allocation
achieves. One of the most common measures of economic efficiency is Nash wel-
fare6– defined as the geometric mean of the valuations of the agents. It is intuitive
that an allocation having high Nash welfare will have less skew in the valuation
functions of the agents. At a high-level, Nash welfare captures the natural bal-
ance between fairness and efficiency and therefore is widely regarded as a direct
indicator of the fairness and efficiency of an allocation. As a result, the problem
of maximizing Nash welfare has independently received a great deal of attention
from the research community [3,5,12,14]. Therefore, our goal now is to get all
the aforementioned fairness guarantees, with high Nash welfare.

We show that in polynomial-time, we can determine an EFX allocation with
bounded charity that also has high Nash welfare. In particular, our allocation
achieves a 2e1/e approximation of the maximum Nash welfare when agents have
additive valuation functions and an O(n) approximation when agents have sub-
additive valuation functions [10]. The approximation achieved when agents have
subadditive valuation functions improves upon the previous best approximation
guarantees (even for the further restricted class of submodular valuation func-
tions) and is tight under value queries7.

1.4 Reduction to a Problem in Extremal Graph Theory [9]

Finding better relaxations of EFX allocations (improving the approximation
factor or reducing the number of unallocated goods in a partial EFX allocation)
is a systematic way to approach the problem, when there are arbitrary number
of agents. To this end, we show the existence of (1 − ε)-EFX allocations8 with
sublinear charity. In particular, we establish a connection between the number
of unallocated goods and a problem in extremal graph theory. Formally, given
any integer d > 0, we define the rainbow cycle number R(d) as the largest k
such that there exists a k-partite graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) and

– each part has at most d vertices, i.e., |V�| ≤ d for all � ∈ [k],
– for all parts V� and V�′ , each vertex in V� has an incoming edge from some

vertex in V�′ and vice-versa, and
– there exists no cycle in G that visits each part at most once.

We show that any finite upper-bound on R(d) will already give us a polyno-
mial time algorithm that finds (1 − ε)-EFX allocations with sublinear charity.

6 An allocation with maximum Nash welfare is also Pareto-optimal (an alternate mea-
sure of efficiency).

7 One would need exponentially many value queries to get any sublinear approximation
of Nash welfare when agents have subadditive valuation functions.

8 An allocation X = 〈X1, X2, . . . , Xn〉 is a (1 − ε)-EFX allocation if and only if for all
pairs of agents i and i′, we have vi(Xi) ≥ (1 − ε) · vi(Xi′ \ {g}) for all g ∈ Xi′ .
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In particular, there is a polynomial time algorithm that finds (1 − ε)-EFX allo-
cations with n/(εh−1(n/ε)) charity, where h−1(d) is the smallest k such that
h(k) = k · R(k) > d [9]. We show that R(d) ∈ O(d4), implying the existence
of (1 − ε)-EFX with O((n/ε)4/5) charity. We suspect that R(d) is linear, which
would then show the existence of (1 − ε)-EFX with O(

√
n/ε) charity. However,

we leave finding tighter upper-bounds on the rainbow cycle number as an inter-
esting question for future research. Lastly, we believe that the idea of reducing
a fair division problem (which involves cardinal preferences of agents) to a pure
graph theoretic problem (without any numerical quantities) might find broader
applicability in the future.
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Abstract. In the adaptive bitprobe model answering membership
queries in two bitprobes, we consider the class of restricted schemes as
introduced by Kesh and Sharma [1]. In that paper, the authors showed

that such restricted schemes storing subsets of size 2 require Ω(m
2
3 )

space. In this paper, we generalise the result to arbitrary subsets of size
n, and prove that the space required for such restricted schemes will be

Ω(
(
m
n

)1− 1
�n/4�+2 ).

1 Introduction

In the bitprobe model, we store subsets S of size n from an universe U of size m
in a data structure taking s amount of space, and answer membership queries by
reading t bits of the data structure. The conventional notation to denote such
schemes is as an (n,m, s, t)-scheme. Each such scheme has two components – the
storage scheme sets the bits of the data structure according to the given subset
S, and the query scheme probes at most t bits of the data structure to answer
membership queries. Schemes are categorised as adaptive if the location of each
bitprobe in their query scheme depends on the answers obtained in the previous
bitprobes. If the location of the bitprobes in the query scheme is independent of
the answers obtained in the earlier bitprobes, the corresponding scheme is called
non-adaptive. For further reading about bitprobe and other related models and
their associated results, Nicholson et al. [2] has quite a detailed survey of the
area.

In this paper, we restrict ourselves to those bitprobe schemes that answer
membership queries using two adaptive bitprobes, i.e. t = 2. The data structure
of such schemes can be thought of as having 3 tables, namely A,B, and C. The
first bitprobe is made in table A, and if the bit probed in table A has been set to
0 the next bitprobe is made in table B. On the other hand, the second bitprobe
is made in table C if the bit queried in table A has been set to 1. The answer to
the membership query is “Yes” if the second bitprobe returns 1, “No” otherwise.

The best known scheme for storing subsets of size two and answering mem-
bership queries using two adaptive bitprobes is due to Radhakrishnan et al. [3]
which takes O(m

2
3 ) amount of space; the best known lower bound for the prob-

lem is Ω(m
4
7 ) [4]. Though the problem is yet to be settled for subsets of size
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two, it has recently been shown for subsets of size three that the space required
is Θ(m

2
3 ) [5,6]. Garg and Radhakrishnan [7] proved that for arbitrary sized sub-

sets, the space bounds for two adaptive bitprobe schemes are Ω(m1− 1
�n/4� ) and

O(m1− 1
4n+1 ), where n ≤ c · log m.

Due to space constraints, some of the proofs and figures have been omitted
in this paper. The full version of the paper has been uploaded to Arxiv [8] and
has been referenced to wherever the proof has been omitted.

2 Restricted Schemes

Kesh and Sharma [1] proved that Ω(m
2
3 ) is indeed the lower bound for two

adaptive bitprobe schemes storing subsets of size two, albeit for a restricted
class of schemes. We now introduce the restriction that characterises this class
of schemes.

In the literature, elements of the universe U that query, or equivalently map
to, the same bit in table A are said to form a block. We label the elements of a
block uniquely as 1, 2, 3, . . . , which we will refer to as the index of the element
within a block. The element with index i of a block a will be denoted as ai.
Elements of U that query, or map to, the same bit in tables B or C form a set.
This departure in labels is made to distinguish the collections of elements in
tables B and C from those of table A, which will prove useful henceforth. The
set to which the element ai belongs to in table B will be denoted as SB(ai);
similarly for sets of table C.

We impose the following restriction on the schemes designed to store subsets
S and answer membersip queries using two bitprobes.

Restriction 2.1. If two elements belong to the same set either in table B or in
table C, then their indices are the same.

To take an example, in the schemes that we consider if ai ∈ SC(bj), then it
must be the case that i = j. We further simplify our premise by imposing the
following restrictions on the schemes we are addressing. They are being made
for the sake of simplicity and do not affect the final result.

Restriction 2.2. Our class of schemes satisfy the following constraints.

1. The three tables A, B, and C do not share any bit.
2. All the three tables are of the same size.
3. All the blocks in table A are of equal size. Let that size be b.
4. There are no singleton sets in tables B and C.
5. All of the sets in the tables B and C are clean [6], i.e. no two elements of a

block belong to the same set.
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As discussed in Sect. 1.5 of [1], the motivation for these kind of restrictions is
from the schemes presented in such works as by Radhakrishnan et al. [3], Lewen-
stein et al. [9], and Radhakrishnan et al. [4]. The final restriction is motivated
from Sect. 3 of Kesh [6], where it is shown that any scheme can be converted to
a scheme with only clean sets with no asymptotic increase in the size of the data
structure.

The main result of the paper (Theorem 8.3) is as follows.

Theorem. Two adaptive bitprobe schemes for storing subsets of size at most n

and satisfying Restriction 2.1 require Ω(
(
m
n

)1− 1
�n/4�+2 ) space.

In this restricted setting, as one might expect, the lower bound of Theorem 8.3
improves upon the bound proposed by Garg and Jaikumar [7] for all schemes,

which is Ω(m1− 1
�n/4� ) for n ≤ c ·

√
logm
log n , and the comparison can be found in

Sect. 8. To generalise the proof presented, Lemma 5.3, which shows that indices
increase as the i in i-Universe (Definition 5.1) increases, and Lemma 6.2, which
works because the subsets S and X (defined in Sect. 3) are disjoint, need to be
proven for the generalised setting. Other lemmas, including those of Sect. 8, lend
itself to generalisation without much effort.

3 Premise

As mentioned earlier, the subset of the universe U that we want to store in our
data structure will be referred to as S. In the subsequent discussion, it will be
necessary to build certain subsets that we would like to store in the data structure
of the restricted schemes and, consequently, arrive at certain contradictions –
such subsets will be denoted at various places as S,S ′,S ′′,S1,S2, etc. As we build
the subsets to store, it will also be required to keep track of certain elements
that cannot be part of S – such subsets will be denoted as X ,X ′,X ′′,X1,X2,
etc.

As Restriction 2.1 forces sets in tables B and C to contain elements of only a
certain index, it will prove helpful to refer to the various structures in the two
tables by their indices. To start with, Ui will denote those elements of U which
have index i. Bi will refer to the collection of all sets of table B comprised of
elements of Ui; similarly Ci. Sometimes, we will also use T and T ′ to refer to
either of the tables B or C. Hence, if we have two distinct tables T and T ′, then
one of them will be B and the other C, which is not important. On the other
hand, table A will always be referred to by its name.

In the literature the size of the data structure has always been denoted by
s. As the sizes of the three tables are equal (Restriction 2.2), we would instead
use s to denote the size of any particular table; this would alleviate the need of
using the fraction s

3 whenever we refer to the table sizes. So, the schemes will
henceforth be referred to as an (n,m, 3 · s, 2)-schemes.

In the following two results, we present some self-evident and one essential
property of the notations as defined above. They will be referenced to later, as
needed.
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Observation 3.1. The size s of a table and the elements of index i are related
as follows.

1. |A| = |B| = |C| = |Ui| = s.
2. Ui =

⋃

S∈Bi

S.

Proof. The first of the two observations follows from the fact that each block of
table A has exactly one element of any particular index. The second observation
follows from the definition of Bi. ��

Lemma 3.2. The correctness of a scheme remains unaffected under a permu-
tation of the indices.

Proof. Consider an (n,m, 3s, t)-scheme that satisfies Restrictions 2.1 and 2.2.
Suppose π is some permutation on the indices of the blocks of table A. We
observe that a permutation of the indices do not affect the membership of a
block – two elements which belonged to block a before, still belongs to a but
with their indices changed according to π. The same is true for any set of table
B or C – elements of a set all had the same index, say i, to start with, and
they will now have the index π(i). So, the data structure of a scheme remains
unaffected under the permutation, only the labels of the sets have changed. Thus,
if a scheme was correct to begin with, it will remain so after a permutation of
the indices. ��

We end the section with a final notational convenience. We would, in the
discussion to follow, require to perform some arithmetic on index i, like i + 1 or
2i+2. As the range of indices lie between 1 and b, inclusive, all such expressions
should be considered (mod b) + 1. This would help us to keep the expressions
simple and avoid repetition.

4 Nodes and Paths

In this section we define nodes, edges, and paths, structures that are defined on
top of the elements belonging to a set.

Definition 4.1. A node of table T , denoted as (ek, fk)T , is an ordered pair of
distinct elements ek and fk such that they belong to the same set in T .

Each of the components of a node are called its terms, the first being referred
to as the antecedent and the second as the consequent.

We say that a block a is stored in table B if the bit corresponding to the
block a in table A is set to 0. Then any query for any element of block a will be
made in table B, and the sets corresponding to those elements in table B should
be set to 1 or 0 according as the elements are in S or not. We can, hence, say
that the elements of block a are being stored in table B. Storing a block or an
element in table in C can similarly be defined as when the the bit in table A
corresponding to the block a is set to 1.



Lower Bounds for Restricted Schemes in the Two-Adaptive Bitprobe Model 35

Observation 4.2. Suppose a node be such that one of its terms is in the subset
S and the other in X . Then, if the antecedent of the node is stored in its own
table, the consequent of the node cannot be stored in its table.

Proof. Consider the node (ek, fk)T . If we store the antecedent in its table, namely
T , then there is way to ensure that the consequent cannot be stored in its table.
To that end, we put ek in S and fk in X . Then as we are storing ek in table T ,
the set corresponding to ek in the table must be set to 1. The element fk belongs
to the same set in T yet it is not part of S. So, fk, and consequently its block
f , cannot be stored in table T , because if we do the query for element fk will
incorrectly return “Yes”.

An equally good choice to force the antecedent and the consequent to separate
tables is to have ek ∈ X and fk ∈ S. ��
Definition 4.3. There is said to be an edge from the node (ek, fk)T1 to the node
(gl,hl)T2 if the following holds.

1. The nodes belong to distinct tables, i.e. T1 �= T2.
2. l = k + 1.
3. The consequent of the first node and the antecedent of the second node belong

to the same block, i.e. f = g.

The second node above can be rewritten as (fk+1,hk+1)T2 . The nodes with
the edge between them are connected via the common block f , and hence will
be will be shown as

(ek, fk)T1

f−→ (fk+1,hk+1)T2 .

Definition 4.4. A sequence of nodes is said to be a path if between every pair
of adjacent nodes there is an edge from the former to the latter. The length of a
path is the number of edges it contains.

A path will be denoted as

(ek, fk)T1

f−→ (fk+1,gk+1)T2

g−→ (gk+2,hk+2)T1

h−→ . . .

For our discussion, we will only consider paths of length at most � b
2	 − 1; we

will see in Sect. 7 as to the reason why.

Observation 4.5. Any element occurs at most once in a path.

Proof. It follows from the definition of a path which dictates that indices increase
(mod b) + 1 from the first node onwards, and from our upper bound on the

length of a path. On the other hand, it should be noted that a block may occur
multiple times along a path. ��
Lemma 4.6. Suppose for every node in a path one of the terms of the node is in
S and the other is in X . Then, if the antecedent of the first node is stored in its
own table, antecedents of all the nodes will have to be stored in their respective
tables and the consequents of the nodes cannot be stored in their respective tables.

Proof. The lemma is a direct consequence of Observation 4.2, and the lemma
and its proof appears as Lemma A.1 in [8]. ��
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5 Universe of Elements

In this section, we define the universe of an element of U recursively, and establish
its relation with nodes and paths.

Definition 5.1. The i-Universe of an element ek w.r.t. table T , denoted as
U i

T (ek), is defined as follows.

U i
T (ek) =

⎧
⎪⎪⎨

⎪⎪⎩

{ uk+1 | uk ∈ ST (ek) \ {ek} } , for i = 1;

⋃

ul ∈ Ui−1
T (ek)

U1
T ′(ul), for i > 1.

The table T ′ is defined as follows.

T ′ = T , if i is odd;
T ′ �= T , otherwise.

Similar to the upper bound on paths, we will consider i-universes for 1 ≤ i ≤
� b
2	 − 1, and, as stated before, we will see in Sect. 7 as to the reason why.

The i-Universe of an element is the union of the 1-Universes of all the elements
in its (i− 1)-Universe. So, as i increases so does the size of the universe. We will
show that the elements of the i-Universe must necessarily belong to distinct sets
in a table, so the larger the i the larger has to be the size of the data structure
to accomodate the i-Universe. We start with a few properties of the elements
belonging to the i-Universe of an element.

Observation 5.2.
∣
∣U1

T (ek)
∣
∣ = |ST (ek) \ {ek}|.

Lemma 5.3. If an element xl belongs to the i-Universe of ek, then l = k + i.

Proof. The statement of the lemma can be established by induction on i, and
the lemma and its proof appears as Lemma A.2 in [8]. ��
Lemma 5.4. If the element xk+i belongs to the i-Universe of ek w.r.t. table T ,
then there is a path such that

1. The first node is in table T with its antecedent being ek.
2. The last node is in table T ′ with its antecedent being xk+i. The table T ′ is

defined as follows.
T = T ′, if i is even
T �= T ′, otherwise.

3. The length of the path is i.

It is important to observe that the nature of the table T ′ in the lemma above
is contrary to that in Definition 5.1 in that T ′ is the same as T when i is even
in the lemma above, whereas they are equal when i is odd in the definition of
the i-Universe.

Proof. We will prove the aforementioned statement by induction on i, and the
lemma and its proof appears as Lemma A.3 in [8]. ��
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6 Bad Elements

In this section, we show that large universes of elements give rise to bad elements,
which put constraints on how and what subsets can be stored.

Definition 6.1. An element ek is said to be i-bad w.r.t. table T if for any j
between 1 and i, inclusive, there exist distinct elements uk+j and vk+j in U j

T (ek)
s.t.

vk+j ∈ ST ′(uk+j).

The table T ′ is defined as follows.

T = T ′, if j is even
T �= T ′, otherwise.

Elements which are not i-bad are said to be i-good.

The above definition suggests that if l is some constant less than or equal to
i and the element ek is l-bad, then it is also i-bad.

Lemma 6.2. If an element ek is i-bad w.r.t. table T , then there exists a choice
of the sets S and X , each of size at most 2i, s.t. the block e cannot be stored in
table T .

Proof. This lemma and its proof appears as Lemma A.4 in [8]. ��

7 Modified Schemes

Consider any restricted adaptive (n,m, 3s, 2)-scheme, the last component 2
denoting the number of bitprobes allowed. Let some element e1 of its universe
U be i-bad w.r.t. table B. Lemma 6.2 states that there exist sets S1 and X1,
each of size at most 2i, s.t. the block e cannot be stored in table B. Also, as an
element becomes i-bad due to the elements of its i-Universe, the indices of the
elements in the either of the sets S1 and X1 lie between 1 and i + 1. Consider
the element ei+2. If this element is i-bad w.r.t. table C there will exist sets S2

and X2, again of size at most 2i each, s.t. the block e cannot be stored in table
C. The range of the indices in the two sets in this case would be from i + 2 to
2i + 2.

We already know that the sets S1 and X1 are disjoint, as are the sets S2 and
X2. Furthermore, as the range of indices in the two pairs of sets do not overlap,
we can deduce that all the four sets are disjoint. Let us then consider the sets

S = S1 ∪ S2 and X = X1 ∪ X2,

each of their sizes being at most 4i. As discussed above, this pair of sets imply
that the block e cannot be stored in either of the tables B or C, which is absurd
as the scheme is deemed to be correct. So, we may conclude the following.
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Lemma 7.1. For any block of table A, say e, if the element e1 is i-bad w.r.t.
table B, then the element ei+2 cannot be i-bad w.r.t. table C.

Let us partition the universe U based on good and bad elements w.r.t. table
B. One part will be the union of all those blocks whose index 1 elements are
good. The other part will be union of the remaining blocks.

U ′ =
⋃

a1 is i-good

w.r.t. B

a; U ′′ =
⋃

a1 is i-bad
w.r.t. B

a.

According to Lemma 7.1, we know that though the index 1 elements of the blocks
of U ′′ are bad w.r.t. table B, the index i + 2 elements must necessarily be good
w.r.t. table C.

We now split our data structure in the following way. For any set X in either
of table B or C, we split it into two sets, one containing the elements of U ′ and
the other containing the elements of U ′′. More formally,

X = X ′ ∪ X ′′; X ′ ⊂ U ′, X ′′ ⊂ U ′′.

It is important to note that the indices of the elements in the two sets X ′ and
X ′′ are the same as that of X. Consequently, the table B has been split into two
parts, namely B′ containing the sets with elements from U ′, and B′′ containing
sets with elements from U ′′. Thus, the collection of all sets in table B containing
elements with index k, namely Bk, is now B′

k ∪ B′′
k . The table C have similarly

been split into two parts - C′ and C′′.

Observation 7.2. The size of Bk has at most doubled due to the above modifi-
cation.

The table A is also split into two tables, namely A′ and A′′, containing
elements of U ′ and U ′′, respectively. As per our definition of U ′ and U ′′, either
a block belongs entirely in U ′ or entirely in U ′′, and thus individual blocks are
not split.

We now have two sets of data structures, one corresponding to the elements
of U ′ and the other corresponding to U ′′ –

(A′,B′, C′) and (A′′,B′′, C′′) .

This also means that within the original scheme, we have two independent
schemes, one for the elements of U ′ and the other for the elements of U ′′. Any
subset S that is to be stored can now be split into S ′ ⊂ U ′ and stored in the
data structure corresponding to U ′, and S ′′ ⊂ U ′′ which can be stored in the
data structure corresponding to U ′′. The storage and query schemes remain as
before for each of the parts of the data structure. So, to store a subset, if any
block was earlier set to 0, in the new data structure it will still be set to 0. If
any set X was being set to 1, now both X ′ and X ′′ will be set to 1; and so on.

We further modify the new data structure as follows. For the part
(A′′,B′′, C′′), we interchange the parts B′′ and C′′ in the tables B and C so that
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B′′ will now be part of table C and C′′ will now be part of table B. With this
modification, for any index k the tables will be as follows.

Bk = B′
k ∪ C′′

k ; Ck = C′
k ∪ B′′

k

As the part pertaining to U ′, i.e. (A′,B′, C′), is unaffected, the query scheme and
storage scheme for it remains unchanged. For the part (A′′,B′′, C′′), if a block
was earlier set to 0 and thus sent to table B, it should now be set to 1 and sent
to table C. Similarly, a block which was earlier set to 1 will now have to be set
to 0.

Let us consider the sizes of the tables. For lack of a better notation, we
will use T (0), T (1), T (2) to refer to the original table, the table after the first
modification, and after the second modification, respectively. Observation 7.2
tells us that

|T (1)
k | ≤ 2 · |T (0)

k |.
After the second modification, we note that

|B(2)
k | + |C(2)

k | = |B(1)
k | + |C(1)

k |.

We make the third and final modification to our scheme. Before the second
modification, all the elements of index 1 in B′ were good w.r.t. table B. After the
second modification, all the elements of index i+2 in C′′, which were earlier good
w.r.t. table C, are now good w.r.t. table B because C′′ is now part of table B. In
Lemma 3.2, we have seen that the correctness of a scheme remains unaffected
under a permutation of its indices. We now apply the following permutation over
the indices of the data structure corresponding to U ′′ – the labels k and k+ i+1
are interchanged, where 1 ≤ k ≤ i + 1, whereas the rest of the indices remain
unchanged. With this further modification, all the indices labelled from i + 2
to 2i + 2 will now be labelled 1 to i + 1 in that order, whereas the previously
labelled indices 1 and i + 1 will now be labelled i + 2 to 2i + 2, in that order.

With this final modification, we now have a scheme where all the elements
of index 1 are good w.r.t. table B.

Lemma 7.3. Any given restricted (n,m, 3s, 2)-scheme can be modified into a
(n,m, 6s, 2)-scheme such that in the modified scheme all the elements of index 1
are i-good w.r.t. table B.

As the third and final modification does not affect indices larger than 2i + 2,
we can say that

|B(3)
k | + |C(3)

k | = |B(2)
k | + |C(2)

k | ≤ 2 · (|B(0)
k | + |C(0)

k |),

for k > 2i + 2. As for the indices 1 to 2i + 2, the sets have been relabelled but
not created, and as a result the total number of sets remain unchanged, i.e.

2i+2∑

k=1

(
|B(3)

k | + |C(3)
k |

)
=

2i+2∑

k=1

(
|B(2)

k | + |C(2)
k |

)
≤ 2 ·

2i+2∑

k=1

(
|B(0)

k | + |C(0)
k |

)
. (1)
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Finally, all of this can only be proven for subsets S and X whose sizes are at
least 4i, and for the range of indices 1 to 2i+2. So, for the first condition we can
set n = 4i. As for the range of indices, the size of a block b has to be larger than
2i + 2, which implies that universes and path lengths are bounded by � b

2	 − 1.

8 Lower Bound

In this section, we will present our theorem on the space lower bound on
restricted schemes. We start by presenting an estimate of the total sizes of all
the t-universes of good elements.

Lemma 8.1. Suppose all the elements with index 1 are t-good w.r.t. table B.
Then the sizes of their t-Universes satisfy the following inequality.

∑

e ∈ A

∣
∣U t

B(e1)
∣
∣ ≥ c · st+1

(∑t
i=1(|Bi| + |Ci|)

)t ,

for some constant c.

Proof. In this lemma, for the sake of convenience, we introduce two new nota-
tions. If h is a block then hi was meant to denote that element of h which has
index i. We now abuse the notation and use hi,j to denote the element with index
j in the block hi. We also introduce PT (ek) to denote the set ST (ek) \ {ek}.
These notations will help us keep the expressions to follow succint.

Let us assume that t is odd. The sum of the sizes of the t-universes of all
index 1 elements can be expressed as follows.

∑

e ∈ A

∣
∣U t

B(e1)
∣
∣ =

∑

e∈A

∣
∣
∣
∣
∣
∣

⎛

⎝
⋃

ht−1,t∈Ut−1
B (e1)

U1
B(ht−1,t)

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∑

e∈A

⎛

⎝
∑

ht−1,t∈Ut−1
B (e1)

∣
∣U1

B(ht−1,t)
∣
∣

⎞

⎠

=
∑

e ∈ A

∑

ht−1,t ∈ Ut−1
B (e1)

|PB(ht−1,t)|

The above derivation follows from the definition of t-universe, the fact that all
elements of index 1 are t-good, and Observation 5.2 about the size of 1-universes.
We have now arrived at a summation indexed by the elements of U t−1

B (e1), and
applying Lemma A.5 in [8], we get –

∑

e ∈ A

∣
∣U t

B(e1)
∣
∣ =

∑

e ∈ A

∑

h1,1 ∈ PB(e1)

∑

h2,2 ∈ PC(h1,2)

∑

h3,3 ∈ PB(h2,3)

. . .
∑

ht−1,t−1 ∈ PC(ht−2,t−1)

|PB(ht−1,t)| .
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The summation
∑

e∈A can be equivalently expressed as
∑

S∈B1

∑
e1∈S . As

the elements e1 and h1,1 both belong to the set S and are distinct from each
other, we can now reorder the first three indices of the summation as

∑

S∈B1

∑

h1,1∈S

∑

e1∈PB(h1,1)

.

By pushing the summation indexed by e1 inside, we can finally rewrite down
the summation as –

∑

e ∈ A

∣
∣U t

B(e1)
∣
∣ =

∑

h1 ∈ A

∑

h2,2 ∈ PC(h1,2)

∑

h3,3 ∈ PB(h2,3)

. . .

∑

ht−1,t−1 ∈ PC(ht−2,t−1)

|PB(h1,1)| · |PB(ht−1,t)| . (2)

Each term of this summation is determined by a tuple such as

(h1 ∈ A, h2,2 ∈ PC(h1,2), h3,3 ∈ PB(h2,3), . . . , ht−1,t−1 ∈ PC(ht−2,t−1))

where each block, except for the first, is dependent on the previous blocks. On
the other hand, if any of the sets in the tuple is fixed, then the other blocks and
the terms of the summation they index are fixed by the set. With this insight,
we are going to put a lower bound on the sum of all t-universes.

Suppose X1 be the smallest set that occurs in the summation above (Eq. 2),
either as one of its terms or as one of its indices. We first consider the case when
X1 occurs as the index under the ith summation. Let us also consider that i
is odd, which would imply that X1 belongs to table B. Thus the terms of the
summation in which X1 participates is determined as follows – the indices under
the ith summation and beyond is determined as

( hi,i ∈ X1, hi+1,i+1 ∈ PC(hi,i+1), hi+2,i+2 ∈ PB(hi+1,i+2), . . . ) ,

and the indices prior to that is determined as

(hi−1,i ∈ PB(hi,i),hi−2,i−1 ∈ PC(hi−1,i−1), . . . ,h2,3 ∈ PB(h3,3),h1,2 ∈ PC(h2,2)) .

It is important to note that in the latter of the two tuples, PB(hi,i) is the set
X1 \ {hi,i}.

The sum of all the terms in which the set X1 participates is as follows.
∑

hi−1,i∈PB(hi,i)

∑

hi−2,i−1∈PC(hi−1,i−1)

∑

hi−3,i−2∈PB(hi−2,i−2)

. . .
∑

h2,3∈PB(h3,3)

∑

h1,2∈PC(h2,2)

⎛

⎝
∑

hi,i∈X1

∑

hi+1,i+1∈PC(hi,i+1)

. . .
∑

ht−1,t−1∈PC(ht−1,t−2)

(|PB(h1,1)| · |PB(ht−1,t)|)
⎞

⎠
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As all of the sets involved have sizes ≥ |X1|, the above sum is at least
c1 · |X1|t+1, for some constant c1. From the remaining terms and index sets
of the summation in Eq. 2, we remove all the blocks that belong to set X1. So, if
the initial sum in Eq. 2 is denoted by S0, and the remaining sum after the above
procedure is S1, we have

S0 ≥ S1 + c1|X1|t+1.

We next identify the smallest set, say X2, in the summation S1 and repeat the
above proceduce which ends up in an estimation of all the terms associated with
X2, the estimation being ≥ c2 · |X2|t+1, and removing the terms and blocks
associated with X2 from the remainder. We repeat this until all the blocks have
thus been removed, upon which we will have a family of sets labelled Xis and
they partition the blocks of table A. The number of sets would, in the worst
case, be the total number of sets in the tables B and C with index at most t.
Consequently, we have

∑

e ∈ A

∣
∣U t

B(e1)
∣
∣ ≥ c·

∑

i

|Xi|t+1 ≥ c·
∑

i

(∑
i |Xi|∑
i 1

)t+1

≥ c· st+1

(∑t
i=1(|Bi| + |Ci|)

)t ,

where c is some suitable constant. The final bound arises using the Cauchy-
Schwarz inequality.

All the other scenarios including the case where t is presumed to be even,
can be similarly argued. ��
Lemma 8.2. If all elements of U1 are t-good w.r.t. table B, then

t+1∑

j=1

(|Bj | + |Cj |) ≥ c · s
t

t+1 ,

for some constant c.

Proof. As before, we will establish the statement of the lemma assuming that t is
odd. The case when t is even will follow similarly. According to the definition of
bad elements (Definition 6.1), a necessary property for an element to be t-good
w.r.t. table B is that the elements of its t-Universe belong to distinct sets in
Ct+1, t being odd. Consequently, we have

∑

e1 ∈ U1

|U t
B(e1)| ≤

∑

e1 ∈ U1

|Ct+1| = s · |Ct+1| (Observation 3.1)

From Lemma 8.1, the inequalities follows.

s · |Ct+1| ≥
∑

e1∈U1

|U t
B(e1)| ≥ c · st+1

(∑t
i=1(|Bi| + |Ci|)

)t

=⇒
(

t+1∑

i=1

(|Bi| + |Ci|)
)t+1

≥ c · st,

and the lemma follows. ��



Lower Bounds for Restricted Schemes in the Two-Adaptive Bitprobe Model 43

Lemma 7.3 states that given a restricted (n,m, 3s, 2)-scheme, it can be modi-
fied into a (n,m, 6s, 2)-scheme such that in the modified scheme all the elements
of U1 are i-good for some constant i. Furthermore, in that case we require the
subset size, n, should be at least 4i. So, from Eq. 1 and Lemma 8.2, we can
deduce the following.

2i+2∑

k=1

(
|B(0)

k | + |C(0)
k |

)
≥ 1

2

2i+2∑

k=1

(
|B(2)

k | + |C(2)
k |

)
=

1
2

2i+2∑

k=1

(
|B(3)

k | + |C(3)
k |

)

≥ c · (2s)
i

i+1 , (3)

where 2s comes from the fact that the first modification splits the sets of tables
B and C (Observation 7.2).

Let the indices in the original scheme be so chosen that the sum on the first
2i+2 indices in Eq. 3 is the minimum among all choices. We can then derive the
following.

b∑

k=1

(
|B(0)

k | + |C(0)
k |

)
≥ b

2i + 2

2i+2∑

k=1

(
|B(0)

k | + |C(0)
k |

)

=⇒ 2 · s ≥ 1
2i + 2

m

s
· c · (2s)

i
i+1 ,

which upon simplification gives us

s ≥ c′ ·
(m

n

)1− 1
�n/4�+2

,

for some suitable constant c′. Hence, the main result of the paper is as follows.

Theorem 8.3. Two adaptive bitprobe schemes for storing subsets of size at most
n and satisfying Restriction 2.1 require Ω(

(
m
n

)1− 1
�n/4�+2 ) space.

Comparing our result in this restricted setting with the bound proposed by
Garg and Jaikumar [7] for all schemes, we see that our result improves on [7] for

n ≤ c ·
√

logm
log n .

Our lower bound is better if the following holds –

c1 ·
(m

n

)1− 1
�n/4�+2 ≥ c2 · m1− 1

�n/4�

Taking logarithm on both sides, we have
(

1
n
4

− 1
(n4 + 2)

)
log m ≥ c′ ·

(
1 − 1

(n4 + 2)

)
log n

for some constant c′.
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Upon further simplification,

log m ≥ c′ · n2 log n

n ≤ c ·
√

log m

log n

for some constant c, and thus our claim holds.

9 Conclusion

In this paper, we addressed a class of schemes, as devised by Kesh and Sharma [1],
in the two adaptive bitprobe model and provided a space lower bound on such
schemes for subsets of arbitrary sizes, thereby generalising the lower bound pre-
sented in that paper. As discussed earlier, one of the key lemmas that our lower
bound proof hinges upon is Lemma 6.2, which demonstrates the generation of
bad elements, and establishing this lemma is crucial in generalising the proof to
arbitrary schemes. We hope that this issue can be resolved and the structure
of our proof could serve as a template to provide bounds stronger that those
presented by Garg and Jaikumar [7].
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Abstract. For sets of n = 2m points in general position in the plane
we consider straight-line drawings of perfect matchings on them. It is
well known that such sets admit at least Cm different plane perfect
matchings, where Cm is the m-th Catalan number. Generalizing this
result we are interested in the number of drawings of perfect match-
ings which have k crossings. We show the following results. (1) For every
k ≤ 1

64
n2−O(n

√
n), any set of n points, n sufficiently large, admits a per-

fect matching with exactly k crossings. (2) There exist sets of n points
where every perfect matching has fewer than 5

72
n2 crossings. (3) The

number of perfect matchings with at most k crossings is superexponen-
tial in n if k is superlinear in n. (4) Point sets in convex position minimize
the number of perfect matchings with at most k crossings for k = 0, 1, 2,
and maximize the number of perfect matchings with

(
n/2
2

)
crossings and

with
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n/2
2

)−1 crossings.
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1 Introduction

The question of how many different plane (that is, crossing-free) straight-line
perfect matchings can be drawn on a point set P in general position (that is, no
three points are colinear) has been extensively studied; see for example [4,5,9,13,
14]. It is known that n = 2m points in general position admit at least Cm plane
perfect matchings, where Cm = 1

m+1

(
2m
m

) ∈ 2Θ(n) is the mth Catalan number.
This bound is tight, as point sets of size n in convex position (for short, convex
point sets) allow exactly Cn/2 = Cm plane perfect matchings, and (almost) all
other point sets allow strictly more [4,9]. On the other hand, for general point
sets the number of plane perfect matchings is at most O(10.05n) [13]. Finally,
there exist point sets which allow Ω(3.09n) many plane perfect matchings [5].

If we allow crossings, then we can draw every possible perfect matching. On
n vertices there exist (n − 1)!! ∈ 2Θ(n log n) such drawings, each having at most(
n/2
2

) ∈ O(n2) crossings. However, not much is known about the existence or
number of straight-line perfect matchings with k crossings. For convex point
sets there are several results on the distribution of crossings over all perfect
matchings [8,11,12]. Considering general point sets, Pach and Solymosi [10] gave
a complete characterization of point sets admitting perfect matchings with the
maximum of μ :=

(
n/2
2

)
crossings.

In this work, we analyze the number of straight-line perfect matchings with
exactly or at most k crossings that a point set can admit. All considered point sets
are in general position and have an even number of points. Further, k-crossing
matchings and (≤k)-crossing matchings refer to perfect matchings with exactly
k and at most k crossings, respectively.

We denote by pmk(P ) the number of k-crossing matchings on a point set P ,
by pmmax

k (n) the maximum of pmk(P ), taken over all sets of n points P , and
by pmmin

k (n) the minimum of pmk(P ), also taken over all sets of n points P .
Similarly, we denote with pm≤k(P ) the number of (≤k)-crossing matchings on
a point set P and let pmmax

≤k (n) and pmmin
≤k (n) be defined analogously as before.

Finally, pmconv
k (n) is the number of k-crossing matchings on a set of n points in

convex position.
We start by investigating matchings with exactly k crossings in Sect. 2. There

we prove that for every k ≤ 1
64n2 − O(n

√
n), any set of n points, n sufficiently

large, admits a perfect matching with exactly k crossings (Theorem 1) and that
there exist sets of n points where every perfect matching has fewer than 5

72n2

crossings (Theorem 2). We also investigate point sets where the values of num-
bers of crossings in matchings are not consecutive. In Sect. 3 we then consider
matchings with at most k crossings. We show that the number of perfect match-
ings with at most k crossings is superexponential in n if k is superlinear in n
(Theorem 3), but only exponential if k is in O( n

log n ) (Corollary 1). Finally, in
Sect. 4, we show that convex position is an extremal configuration in several
cases. More specifically, we show that point sets in convex position minimize the
number of perfect matchings with at most k crossings for k = 0, 1, 2 (Theorem
7), and maximize the number of perfect matchings with

(
n/2
2

)
crossings and with
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(
n/2
2

)−1 crossings (Theorem 6). Due to space restrictions, we are sometimes only
able to sketch our proofs. The interested reader can find complete proofs in the
full paper.

2 Exactly k Crossings

In this section, we show that for every set P of n points (sufficiently large) and
every k ∈ {0, . . . , 1

64n2 − O(n
√

n)}, P admits a k-crossing matching, while this
is not the case for k ≥ 5n2

72 .
For even values of n ≤ 10, we have computed the numbers of perfect match-

ings with k crossings for all combinatorially different sets of n points using the
order type data base; see [1] for details on order types. Table 1 lists the obtained
numbers for sets of n = 6, 8, and 10 points, and for 0 up to the maximum number
of

(
n/2
2

)
crossings. We obtain the following observation.

Table 1. Number of k-crossing matchings for n = 6, 8, 10 points. Given is the number
k of crossings, the minimum number of matchings, the number of matchings for the
convex set, and the maximum number of matchings.

n = 6 n = 8 n = 10

k Min. Conv. Max. k Min. Conv. Max. k Min. Conv. Max.

0 5 5 12 0 14 14 56 0 42 42 311

1 2 6 10 1 20 28 60 1 120 120 442

2 0 3 3 2 4 28 33 2 135 180 350

3 0 1 1 3 0 20 28 3 39 195 308

4 0 10 10 4 0 165 165

5 0 4 4 5 0 117 117

6 0 1 1 6 0 70 72

7 0 35 35

8 0 15 15

9 0 5 5

10 0 1 1

Observation 1. For any k ≤ 3, every set of 10 points admits a k-crossing
matching.

Proposition 1. For a sufficiently large value of n every set P of n points admits
a (rectilinear drawing of a) perfect matching with at least 1

64n2 crossings.

Sketch of proof. We use a probabilistic approach to calculate the expected number
of crossings in a random matching. Then we use the bound for the rectilinear
crossing number to reach the lower bound of 1

64n2. ��
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We next show two technical lemmas which we afterwards use to show in
Theorem 1 that for sufficiently large n and any 0 ≤ k ≤ 1

64n2 − O(n
√

n) there
always exists a perfect matching with k crossings.

Lemma 1. Let P be a point set with n points and a matching M with cr(M) =
m crossings. Let 0 < k ≤ m. Then P has a matching M ′ with k − n + 3 ≤
cr(M ′) ≤ k crossings.

Proof. Let M0 := M and let p0, . . . , pn−1 be the points of P ordered from top to
bottom. We obtain a matching Mi+1 from matching Mi as follows. If p2i is matched
to p2i+1, then Mi+1 = Mi. Otherwise, let q2i, q2i+1 be the points of P matched to
p2i and p2i+1, respectively, in Mi. We replace the edges (p2i, q2i) and (p2i+1, q2i+1)
by the edges (p2i, p2i+1) and (q2i, q2i+1). Note that the edges (p0, p1), . . . ,
(p2i, p2i+1) have no crossing in Mi+1. Furthermore, the number of crossings of the
edges (p2i, q2i) and (p2i+1, q2i+1) is at most n−2i−3 in Mi: in the worst case, each
edge crosses all ((n−2i)/2)−1 other edges, but the crossing between (p2i+1, q2i+1)
and (p2i, q2i) is counted twice. Hence, we have cr(Mi+1) ≥ cr(Mi) − n + 2i + 3 ≥
cr(Mi) − n + 3 and cr(Mn/2) = 0. Then, the bound follows from choosing M ′ =
Mi+1 such that k ≥ cr(Mi+1) ≥ cr(Mi) − n + 3 ≥ k − n + 3. ��

Lemma 2. For sufficiently large even n, and 0 ≤ k ≤ 9
169

n2

64 crossings, we have
pmmin

k (n) ≥ 1.

Proof. Let n2 := 10� 1
13n	, and let n1 := 
 3

13n� if 
 3
13n� is even, or n1 := 
 3

13n�+1
otherwise. Note that n1 +n2 ≤ n, since n is even. We linearly separate the point
set P into a point set P1 of the leftmost n1 points and a point set P2 of the
rightmost n2 points.

Let M1 be the matching of P1 with the largest number of crossings; then M1

has at least n2
1

64 ≥ 9
169

n2

64 crossings by Proposition 1.
By Lemma 1, P1 has a matching M ′

1 with k −n1 +3 ≤ cr(M ′
1) ≤ k crossings.

Let � = k − cr(M ′
1) ≤ 
 3

13n� + 1 − 3 < 3
13n − 1. As � is an integer, we get

� ≤ 3
13n − 2.

By Observation 1, every set of 10 points can be matched such that the match-
ing has 0, 1, 2 or 3 crossings. We linearly separate P2 into � 1

13n	 sets of 10 points
each. This way, we can find a matching of P2 with exactly x crossings for every
0 ≤ x ≤ 3� 1

13n	. Since 3� 1
13n	 ≥ 3

13n − 2 ≥ �, we can find a matching M2 of
P2 with exactly � crossings. Thus, there is a matching M = M ′

1 ∪ M2 of P with
exactly cr(M) = cr(M ′

1) + cr(M2) = k − � + � = k crossings. If n1 + n2 < n we
match the remaining points (which lie between P1 and P2) without additional
crossings. ��
Theorem 1. For sufficiently large even n and 0 ≤ k ≤ 1

64n2 − O(n
√

n) cross-
ings, pmmin

k (n) ≥ 1.
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Proof. We linearly separate the point set P into a point set P1 of the leftmost
n1 = n − 2 · � 52

3

√
n	 points and a point set P2 of the rightmost n2 = 2 · � 52

3

√
n	

points. Here note that n1 is even since n is even. Let M1 be the matching of P1

with the largest number of crossings; then M1 has at least

1
64

n2
1 =

1
64

(n − 2 · �52
3

√
n	)2

(n > 1225)

≥ 1
64

(n − 105
3

√
n)2

≥ 1
64

n2 − 35
32

n
√

n +
1225
64

n ≥ 1
64

n2 − O(n
√

n)

crossings by Proposition 1.
By Lemma 1, P1 has a matching M ′

1 with k−(n−2·� 52
3

√
n	)+3 = k−n1+3 ≤

cr(M ′
1) ≤ k crossings. Let � = k − cr(M ′

1) ≤ n − 2 · � 52
3

√
n	 − 3.

By Lemma 2, P2 has a matching with exactly x crossings for every 0 ≤ x ≤
9

169
n2
2

64 . Note that

9
169

n2
2

64
=

9
169 · 64

(2 · �52
3

√
n	)2

≥ 9
169 · 16

(
52
3

√
n − 1

)2

= n − 9
169 · 16

(
2 · 52

3
√

n − 1
)

≥ n − 9
169 · 16

(
2 · �52

3
√

n	 + 1
)

≥ n − 2 · �52
3

√
n	 − 3.

Hence, there is a matching M2 of P2 with exactly � crossings. Thus, there is a
matching M = M ′

1∪M2 of P with exactly cr(M) = cr(M ′
1)+cr(M2) = k−�+� =

k crossings. ��
Theorem 2. For n ≡ (0 mod 6) and k ≥ 5n2

72 crossings, pmmin
k (n) = 0.

Sketch of proof. We show that the number of crossings that can be reached by a
set of n points in a form of a windmill (see Fig. 1) is less than 5n2

72 . This result
is obtained by carefully analysing the maximum possible number of crossings of
internal (Ii) and outgoing (Oi) matching edges of each wing. ��

2.1 Gaps in the Number of Crossings

In the above two theorems we considered all sets of n points. Now we are focusing
on a fixed set P of n points and analyze for which values of k there exists a perfect
matching with k crossings. By Theorem 1, it holds for all k ≤ 1

64n2 − O(n
√

n).
For some point sets P , for example points in convex position, there exist perfect
matchings with all possible numbers of crossings (see Lemma 3). On the other
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0

1

2

O1
O0I1

1

Fig. 1. Illustration for the proof of Theorem 2: A point set P for which every perfect

matching has < 5n2

72
crossings (left). Interior (I1) and outgoing (O0, O1) matching edges

for wing 1 of P (right).

hand, Fig. 3 gives an example of a set of n points with exactly n/2 halving edges
which does not have a perfect matching with

(
n/2
2

)−1 crossings but has a perfect
matching with

(
n/2
2

)
crossings. For any two integers r, t with r < t, if a set P

of n points has perfect matchings with r and t crossings and does not have a
perfect matching with s crossings for any r < s < t, then we say that the point
set P has a gap between r and t (or, equivalently, for k ∈ {r +1, . . . , t− 1}). For
example, the point set in Fig. 3 has a gap between 102 and 105, as we will show
in the proof of Proposition 2.

Lemma 3. Every set of n points in convex position admits a perfect k-crossing
matching for every 0 ≤ k ≤ μ =

(
n/2
2

)
.

Proof. Let P be a set of n points in convex position and label them in cyclic
order from 1 to n. A crossing-family of size c is a set of c edges which all
pairwise cross and thus has c(c−1)

2 crossings. Let c′ be the largest integer such that
c′(c′−1)

2 ≤ k. To obtain k crossings in total observe that the number of crossings
we still need to add to a crossing family of size c′ is x = k − c′(c′−1)

2 < c′.
We first construct the crossing-family of size c′ by connecting the points i and
(c′ + i + 1), for i ∈ {1, . . . , x}, and by connecting the points i and (c′ + i + 2),
for i ∈ {x + 1, . . . , c′}. See Fig. 2 for an example. Next we connect points c′ + 1
and c′ + x + 2 which were not yet connected within the crossing family and
contribute the remaining x crossings. Finally, we match all remaining points (if
any, with indices 2c′ +3 to n) without crossings. Then M has in total k crossings
as desired. ��

We next construct point sets with a large gap. Let n = 4g2 + 6g + 2 where
g ≥ 1 is an integer. Consider a regular n-gon with vertices p0, . . . , pn−1 and
circumcenter c. For the description we consider all indices modulo n. Let Cε

be a circle with center c and small enough such that no line spanned by pi and
pn

2 +i±1 for 1 ≤ i ≤ n
2 intersect Cε. We push the points p((2g+2)·i)+1 onto Cε along

the line spanned by p((2g+2)·i)+1 and p((2g+2)·i)+1±n
2

(see Fig. 3). Note that the
points p((2g+2)·i)+1 form a regular 2g + 1-gon and are on Cε. We call this set Pg.
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1

2

· · ·

n

c′ + 1

x

c′ + x + 2

c′

Fig. 2. Proof of Lemma 3: Match-
ing with 42 crossings obtained from
a crossing family of size c′ = 9 plus
x = 6 extra crossings.

p1

p2
p3

p4

p5

p6

p7 p8

p9

p10

p11

p12

p13

p14p16p17
p18

p19

p20

p21

p22

p23

p24
p25

p26

p27

p28

p15

p0p29

Fig. 3. A set of 30 points with exactly 15
halving edges and a perfect matching with(
15
2

)
= 105 crossings, but with no perfect

matching with k ∈ {103, 104} crossings.

Obviously, Pg spans a crossing family of size n
2 . In the following proposition we

prove that Pg, although we can draw a maximal crossing family on it, does not
admit a matching with

(
n/2
2

) − i crossings for any 1 ≤ i ≤ g.

Proposition 2. For infinitely many values of n, there exists a set of n points
which admits a matching with

(
n/2
2

)
crossings, but does not admit a matching

with
(
n/2
2

) − i crossings for any 1 ≤ i ≤
√

n
2 − O(1).

Sketch of proof. We take the point set Pg. We show first that if our matching
contains an edge of the form (px, py) with py �= px+n

2
where px and py are on

the boundary of the convex hull, then the matching has at most
(
n/2
2

) − g + 1
crossings. So some edges are forced if there exists a matching with more than(
n/2
2

) − g + 1 crossings. We then show if our matching also contains an edge of
the form (px, py) with py �= px+n

2
(px and py not neccessarily on the boundary

of the convex hull), then the matching has again at most μ− g +1 crossings. ��

3 At Most k Crossings

We next show that if k is superlinear in n, then the number of (≤ k)-crossing
matchings is superexponential for every set of n points.

Theorem 3. For k ∈ ω(n) crossings, pmmin
≤k (n) ∈ 2Ω(n log( k

n )).

Proof. Let P be any set of n points. Process the points from left to right and
partition them into n2

k groups. Since we have n points, each group is of size k
n .

Consider some group Pi. As we have mentioned in the introduction, we can draw
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2Θ( k
n log( k

n )) perfect matchings on Pi, and each of them has at most
(
k/n
2

)
< k2

n2

crossings. Thus, the number of perfect matchings where all edges are within
some Pi is in

(2Θ( k
n log( k

n )))(
n2
k ) = 2Θ(n log( k

n )).

Further, each such matching has at most n2

k · k2

n2 = k crossings. ��
Note that for a (≤k)-crossing matching, at most 4k points can be incident to

crossing edges. Hence, the next theorem implies the upper bound on pmmax
≤k (n)

stated in Corollary 1.

Theorem 4. For a set P of n points and 0 ≤ x ≤ n, let pmx(n) be the number
of perfect matchings whose crossing edges are incident to at most x points. Then
pmx(n) ∈ 2O(n+x log x).

Proof. Consider some subset P ′ ⊂ P of size x. We want to count the number of
perfect matchings on P whose crossing edges are incident to points in P ′. There
are 2Θ(x log x) perfect matchings on P ′. We extend the matching in P ′ to P by
adding matching edges of P\P ′ such that the matching on P\P ′ is plane. It
is known that on any point set in general position with n points, the number
of plane perfect matching is in 2Θ(n). Thus for each choice of matchings on P ′,
there are at most 2O(n−x) plane perfect matchings on P\P ′. Note, however, that
edges of the matching on P\P ′ might intersect with edges from the matching on
P ′. But as we are only interested in an upper bound of the number of matchings
where all edges with intersections are incident to points in P ′ it is sufficient that
these matchings are a subset of the matchings we consider in our construction.
Finally, the choices for P ′ are

(
n
x

) ≤ 2n. Hence, we get pmx(n) ≤ 2n · 2Θ(x log x) ·
2O(n−x) ≤ 2O(n+x log x). ��
Corollary 1. pmmax

≤k (n) ∈ 2O(n+k log k).

For k ∈ Ω(n), this bound is worse than the trivial upper bound from the
number of all perfect matchings. For k ∈ O( n

log n ) we get a bound of 2O(n),
which is asymptotically tight.

4 Convex Position

In this section, we study the number pmconv
k (n) of k-crossing matchings on a set

of n points in convex position. Obviously, pmmin
k (n) ≤ pmconv

k (n) ≤ pmmax
k (n). It

is well known that convex sets minimize the number of plane perfect matchings;
see for example [3,9]. Hence, we have pmmin

0 (n) = pmconv
0 (n). On the other

hand, considering the maximum number μ =
(
n/2
2

)
of crossings, we can show

that for k ∈ {μ, μ − 1}, convex sets maximize the number of different k-crossing
matchings, and that all sets of n points achieving these maximum numbers have
exactly n

2 halving edges (edges that have n−2
2 points of the set on each side of

their supporting line). The result for k = μ is a direct consequence of Theorems 1
and 2 by Pach and Solymosi [10].
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Theorem 5. For μ =
(
n/2
2

)
crossings, pmconv

μ (n) = pmmax
μ (n) = 1.

Proof. Let P be a set of n points in convex position and label them in cyclic
order from 1 to n. By Pach and Solymosi [10, Theorem 1], a point set P admits
a μ-crossing matching if and only if P has exactly n

2 halving edges. Thus, we
construct our matching M to entirely consist of halving edges by connecting the
points i and (n

2 +i), for i ∈ {1, . . . , n
2 }. Then any two edges of M cross and hence

M has μ crossings. This is the only possible μ-crossing matching as [10, Theorem
2] shows that every set P of n points has at most one μ-crossing matching. ��

Theorem 6. For n ≥ 6 and μ − 1 =
(
n/2
2

) − 1 crossings,

(1) pmconv
μ−1 (n) = pmmax

μ−1(n) = n
2 , obtained by any set of n points with exactly n

2
halving edges.

(2) Any set P of n points with more than n
2 halving edges has pmμ−1(P ) ≤ 2.

Proof. Consider a perfect matching M on n points with μ − 1 crossings and let
P denote its underlying point set. Then there is exactly one pair of non-crossing
edges, say e and f , in M . There are two cases on how e and f can be positioned:
they can be parallel (their endpoints are in convex position) or stabbing (their
endpoints are not in convex position). In the stabbing case, we call the endpoint
that is inside the convex hull of e and f as the stabbing vertex.

Case 1: The edges e and f are parallel. In this case, we remove e and f
and add the diagonals of the quadrilateral defined by their endpoints to find a
matching M ′ with μ crossings. Since before the change all other edges crossed e
and f , they also cross the diagonals of this quadrilateral and thus the new edges.
So we do not lose any crossing, but gain a crossing between e and f . Thus, by [10,
Theorem 1], the underlying point set has exactly n/2 different halving edges.

Case 2: The edges e and f are stabbing. We assume w.l.o.g. that e is
horizontal and incident to the stabbing vertex, that f is vertical, and that no
other edges are horizontal or vertical; see Fig. 4 for an illustration.

There are two types of edges other than e and f in the matching: a family A
that cross e from above (edges with negative slope) and a family B that cross e
from below (edges with positive slope). Consider the lines through the stabbing
vertex and the endpoints of f . As both e and f cross all the other edges of M , so
does each of these lines. In particular, the stabbing vertex is incident to at least
3 halving edges, and thus the underlying point set has more than n/2 different
halving edges. By the result of Pach and Solymosi [10], this implies that P does
not admit any matching with μ crossings. Further, by the reasoning in Case 1, in
all matchings of P with μ−1 crossings, the two non-crossing edges are stabbing.

Claim. The stabbing vertex is incident to exactly 3 halving edges of P and all
other points are incident to exactly one halving edge of P .

Proof of Claim. Clearly, every edge of M except f and the two edges between
the stabbing vertex and the endpoints of f are halving edges of P . Assume for
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Fig. 4. The case where the non-crossing edges e and f are stabbing.

a contradiction that some other edge g spanned by P is a halving edge as well.
Let Me = M\{e}, Mf = M\{f}, and Me,f = M\{e, f}. Similarly, let Pe, Pf ,
and Pe,f be the point sets obtained from P by removing the endpoints of e,
f , or e and f , respectively. Note that Me, Mf , and Me,f are pairwise crossing
perfect matchings of Pe, Pf , and Pe,f , respectively, and hence contain exactly
all halving edges for their underlying point sets. Thus, g cannot cross e (or f or
both), as otherwise g would be a halving edge of Pe (or Pf or Pe,f ) and hence
an edge of Me (or Mf or Me,f ) contained in M . If e and f lie in the same closed
halfspace of g then each edge of Me,f must have at least one endpoint in that
halfspace as well, which gives a count of at least 2 + n−4

2 > n−2
2 points of P in

the open halfspace, a contradiction to g being a halving edge. If e and f lie in
opposite closed halfspaces of g, then at most one endpoint of g is incident to e
or f (as otherwise, g would be one of the halving edges incident to the stabbing
vertex). Let p be the endpoint of g that is not incident to e and f . The edge
in M incident to p lies in exactly one closed halfspace of g and hence crosses at
most one of e and f , again a contradiction. �

From our claim, it follows that the stabbing vertex is the same for every
matching of P with μ−1 crossings. Further, in any such matching, the stabbing
vertex must be incident to a halving edge. Thus, for matchings other than M , it
can only be matched with one of the endpoints of f . In particular, to obtain a
matching with μ−1 crossings, there are at most three choices for an edge incident
to the stabbing vertex, each choice uniquely determines the whole matching, and
the edges in A and B must appear in any such matching.

As the edge incident to the stabbing vertex must cross the edges in both A
and B, a different matching exists exactly if A or B are empty. If both A and B
are empty, there are three possible matchings, but the underlying point set has
only 4 points. We have thus shown that if n ≥ 6 and there are more than n/2
different halving edges, there can be at most two matchings with μ−1 crossings.

We still have to show that if there are exactly n/2 different halving edges,
then there are n/2 matchings with μ − 1 crossings. For this, note that a perfect
crossing family (a perfect matching of pairwise crossing edges) defines a natural
rotational order on its edges by sorting them by slopes. For any matching with
μ − 1 crossings as in the Case 1, that is, with the non-crossing edges parallel,
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Fig. 5. Comparison of pmmin
k (n), pmmax

k (n), and pmconv
k (n) for n = 10 and 0 ≤ k ≤ 10.

the construction above gives a mapping from matchings with μ − 1 crossings to
perfect crossing families with two neighboring edges marked. Clearly, this map is
a bijection, showing that there are exactly n/2 matchings of the type of Case 1.
On the other hand, as we have shown that in Case 2 there are more than n/2
different halving edges, we get no additional matchings from this case. ��

It is natural to ask for which values of k and n it holds that pmconv
k (n) ∈

{pmmin
k (n),pmmax

k (n)}; exhaustive computations for all point sets of small size
indicate that this might be true for more than just k ∈ {0, μ−1, μ}; Fig. 5 shows
the results for n = 10, c.f. Table 1.

As a variant of the above question, we consider for which values of k the
convex set minimizes the number of matchings with at most k crossings, that is,
pmconv

≤k (n) = pmmin
≤k (n)? In the following, we prove the statement for any n and

k ≤ 2. We start by showing a useful technical lemma.

Lemma 4. Let S1 and S2 be two point sets in general position which are sepa-
rated by a line h. W.l.o.g. let h be horizontal, S1 above h and S2 below h. Then
for any a, b, c, d ∈ N0, a + b = |S1| − 1 and c + d = |S2| − 1, there is a unique
pair of points p1 ∈ S1 and p2 ∈ S2 such that the supporting line � spanned by p1
and p2 splits S1 such that there are a points to the left of � and b points to the
right of �, and at the same time � splits S2 so that there are c points to the left
of � and d points to the right of �.

Proof. W.l.o.g. assume that no two points of S1∪S2 have the same x-coordinate
and no three points of S1 ∪ S2 are collinear. The existence of line � follows from
variants of the ham sandwich theorem. For self-containment, we give a short
argumentation here. Consider the points of S1 ordered from left to right and let
p be the point with index a + 1 in this order. Let � be the vertical line through
p and note that � splits S1 in the required way. If � has c points of S2 to its left,
we are done. W.l.o.g. assume that � has more than c points of S2 to its left, and
start rotating � clockwise around p. (The case that � has less than c points of S2

to its left can be handled analogously by rotating � counter clockwise around p.)



Perfect Matchings with Crossings 57

Whenever � touches a point q ∈ S1, we set p = q and continue the rotation
around the new point p. Note that the splitting of S1 remains a : b. If � touches
a point q ∈ S2, then the number of points of S2 to the left of � is reduced by 1. If
this number is c, then we stop the process and set p1 = p and p2 = q. Otherwise,
we continue the rotation. Before � becomes horizontal, there are no points of S2

to the left of �, so the process terminates.
We now show that there is only one pair of points p1 and p2 that spans a line �

which splits the sets in the required way. Assume for the sake of contradiction
that there are two such lines �′ and �′′. Then �′ and �′′ intersect at most once,
w.l.o.g. above h and below h line �′ is to the left of �′′. If �′ has, as required, c
points of S2 to its left, then �′′ has at least c + 1 points to its left, as also the
point q ∈ S2 which spans �′ is to the left of �′′; a contradiction. ��
Theorem 7. For a set of n points, the number of perfect matchings with at most
k crossings, for k = 0, 1, 2, is minimized by convex point sets.

Sketch of proof. Let SC and P be sets of n points with leftmost points v and v′,
respectively, where SC is in convex position. For each matching M with k ≤ 2
crossings on SC , we construct as follows a unique matching M ′ on P with at
most k crossings. Consider the edge vw in M . The line through v and w splits SC

into an upper half U and a lower half L. There is a unique edge v′w′ in P whose
supporting line splits P into parts of the same size as U and L. We add this edge
to M ′. If vw is not crossed by any edge in M , we iterate the construction on the
smaller parts. Otherwise, consider the leftmost crossing, where we denote the
endpoints of the crossing edge l ∈ L and u ∈ U . By Lemma 4, there are unique
points l′ and u′ in P such that the sizes of the induced parts agree in SC and P .
We add the edge l′u′ to M ′. Note that this edge does not necessarily cross v′w′.
If vw is crossed by a second edge, we repeat this step. Now, we can again iterate
on the smaller parts. ��

5 Conclusion

We have given bounds for the number of perfect matchings with k crossings on
sets of n points. As with many other counting problems in discrete geometry and
some decision problems on point sets in the plane, the computational complexity
of deciding the existence of and counting the number of perfect matchings with
k crossings is in general unknown.

We have shown that if k ≤ 1
64n2−O(n

√
n), every set of n points, n sufficiently

large, admits a perfect matching with k crossings. For those values of k the
existential question is therefore settled but, as stated in [7], it is not even know
whether counting the number of plane perfect matchings on a set of n points is
hard (#P-complete).

Given a set P of n points, the problem of deciding whether it admits a per-
fect matching with k crossings can be reformulated in terms of the intersection
graph G of line segments connecting points in P . This graph contains a ver-
tex for each segment connecting two points in P and edges connect intersecting
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segments, where an intersection is either a proper crossing or a common end-
point. We consider a 2-edge-coloring of this graph where edges corresponding
to segments sharing an endpoint are colored blue and edges corresponding to
crossing segments are colored red. The point set P admits a perfect matching
with k crossings if and only if G has an induced subgraph with n/2 vertices, k
red edges, and no blue edge. This graph problem is in general NP-complete for
segment intersection graphs by a reduction from the clique problem [6] However,
the input parameters and the subset of segment intersection graphs that we are
interested in, are very specific (though not so well understood) and it is therefore
possible that the problem is polynomial-time solvable.
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Abstract. A representation of an n-vertex graph G is implicit if it
assigns to each vertex of G a binary code of length O(log n) so that
the adjacency of two vertices is a function of their codes. A necessary
condition for a hereditary class X of graphs to admit an implicit repre-
sentation is that X has at most factorial speed of growth. This condition,
however, is not sufficient, as was recently shown in [10]. Several sufficient
conditions for the existence of implicit representations deal with bound-
edness of some parameters, such as degeneracy or clique-width. In the
present paper, we analyse more graph parameters and prove a number
of new results related to implicit representation and factorial properties.
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1 Introduction

A representation of an n-vertex graph G is implicit if it assigns to each vertex of G
a binary code of length O(log n) so that the adjacency of two vertices is a function
of their codes. The idea of implicit representation was introduced in [11]. Its
importance is due to various reasons. First, it is order-optimal. Second, it allows
one to store information about graphs locally, which is crucial in distributed
computing. Finally, it is applicable to graphs in various classes of practical or
theoretical importance, such as graphs of bounded vertex degree, of bounded
clique-width, planar graphs, interval graphs, permutation graphs, line graphs,
etc.
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To better describe the area of applicability of implicit representations, let us
observe that if graphs in a class X admit an implicit representation, then the
number of n-vertex labelled graphs in X , also known as the speed of X , must be
2O(n log n), since the number of graphs cannot be larger than the number of binary
words representing them. In the terminology of [5], hereditary classes containing
2Θ(n log n) n-vertex labelled graphs have factorial speed of growth. The family of
factorial classes, i.e. hereditary classes with a factorial speed of growth, is rich
and diverse. In particular, it contains all classes mentioned earlier and a variety
of other classes, such as unit disk graphs, classes of graphs of bounded arboricity,
of bounded functionality [1], etc. The authors of [11], who introduced the notion
of implicit representation, ask whether every hereditary class of speed 2O(n log n)

admits such a representation.
Recently, Hatami and Hatami [10] answered this question negatively by prov-

ing the existence of a factorial class of bipartite graphs that does not admit an
implicit representation. This negative result raises the following question: if the
speed is not responsible for implicit representation, then what is responsible
for it?

Looking for an answer to this question, we observe that most positive results
on implicit representations deal with classes where certain graph parameters are
bounded. In an attempt to produce more positive results, in Sect. 3 we analyse
more graph parameters and in Sect. 4 we reveal new classes of graphs that admit
an implicit representation.

In spite of the negative result in [10], factorial speed remains a necessary
condition for an implicit representation in a hereditary class X , and determining
the speed of X is the first natural step towards deciding whether such a repre-
sentation exists. A new result on this topic is presented in Sect. 5. All relevant
preliminary information can be found in Sect. 2.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops or multiple
edges. The vertex set and the edge set of a graph G are denoted V (G) and E(G),
respectively. The neighbourhood of a vertex x ∈ V (G), denoted N(x), is the set
of vertices adjacent to x, and the degree of x, denoted deg(x), is the size of its
neighbourhood. The codegree of x is the number of vertices non-adjacent to x.

As usual, Kn, Pn and Cn denote a complete graph, a chordless path and a
chordless cycle on n vertices, respectively. By nG we denote the disjoint union
of n copies of G.

The subgraph of G induced by a set U ⊆ V (G) is denoted G[U ]. If G does
not contain an induced subgraph isomorphic to a graph H, we say that G is
H-free and that H is a forbidden induced subgraph for G. A homogeneous set is
a subset U of V (G) such that G[U ] is either complete or edgeless.

A graph G = (V,E) is bipartite if its vertex set can be partitioned into two
independent sets. A bipartite graph given together with a bipartition of its vertex
set into two independent sets A and B will be denoted G = (A,B,E), where
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E ⊆ A × B. The bipartite complement of a bipartite graph G = (A,B,E) is
the bipartite graph ˜G := (A,B, (A × B) − E). By Kn,m we denote a complete
bipartite graph with parts of size n and m. The graph K1,n is called a star. The
bi-codegree of a vertex x in a bipartite graph G = (A,B,E) is the degree of x

in ˜G.
Given two bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), we say

that G1 does not contain a one-sided copy of G2 if all induced occurrences of G2

in G1 have the vertices of A2 in the same part of G1.

2.1 Graph Classes

A class of graphs is hereditary if it is closed under taking induced subgraphs. It
is well known that a class X is hereditary if and only if X can be described by a
set of minimal forbidden induced subgraphs. In this section, we introduce a few
hereditary classes that play an important role in this paper.

Motivated by the negative result in [10], which proves the existence of a fac-
torial class of bipartite graphs that does not admit an implicit representation,
we focus on hereditary subclasses of bipartite graphs. In particular, we study
monogenic classes of bipartite graphs, i.e. classes defined by a single forbid-
den induced bipartite subgraph. The results in [2] and [13] provide a complete
dichotomy for monogenic classes of bipartite graphs with respect to their speed.
This dichotomy is presented in Theorem 1 below, where S1,2,3 and Ft,p are the
graphs represented in Fig. 1.

x1 . . . xt y1 . . . yp

Fig. 1. The graphs S1,2,3 (left) and Ft,p (right)

Theorem 1. [2,13] For a bipartite graph H, the class of H-free bipartite graphs
has at most factorial speed of growth if and only if H is an induced subgraph of
one of the following graphs: P7, S1,2,3 and Ft,p.

2.2 Tools

Several useful tools to produce an implicit representation have been introduced
in [3]. In this section, we mention two such tools, and generalise one of them.

The first result deals with the notion of locally bounded coverings, which can
be defined as follows. Let G be a graph. A set of graphs H1, . . . , Hk is called
a covering of G if the union of H1, . . . , Hk coincides with G, i.e. if V (G) =
k
⋃

i=1

V (Hi) and E(G) =
k
⋃

i=1

E(Hi).
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Theorem 2. [3] Let X be a class of graphs and c a constant. If every graph G ∈
X can be covered by graphs from a class Y admitting an implicit representation
in such a way that every vertex of G is covered by at most c graphs, then X also
admits an implicit representation.

The second result deals with the notion of partial coverings and can be stated
as follows.

Theorem 3. [3] Let X be a hereditary class. Suppose there is a constant d and a
hereditary class Y which admits an implicit representation such that every graph
G ∈ X contains a non-empty subset A ⊆ V (G) with the properties that G[A] ∈ Y
and each vertex of A has at most d neighbours or at most d non-neighbours in
V (G) − A. Then X admits an implicit representation.

Next we provide a generalisation of Theorem 3 that will be useful later.

Theorem 4. Let X be a hereditary class. Suppose there is a constant d and a
hereditary class Y which admits an implicit representation such that every graph
G ∈ X contains a non-empty subset A ⊆ V (G) with the following properties:

(1) G[A] ∈ Y,
(2) V (G) − A can be split into two non-empty subsets B1 and B2 with no edges

between them, and
(3) every vertex of A has at most d neighbours or at most d non-neighbours in

B1 and at most d neighbours or at most d non-neighbours in B2.

Then X admits an implicit representation.

Proof. Let G be an n-vertex graph in X . We assign to the vertices of G pairwise
distinct indices recursively as follows. Let {1, 2, . . . , n} be the index range of
G, and let A, B1, and B2 be the partition of V (G) satisfying the conditions
(1)-(3) of the theorem. We assign to the vertices in A indices from the interval
{|B1| + 1, |B1| + 2, . . . , n − |B2|} bijectively in an arbitrary way. We define the
indices of the vertices in B1 recursively by decomposing G[B1] and using the
interval {1, 2, . . . , |B1|} as its index range. Similarly, we define the indices of the
vertices in B2 by decomposing G[B2] and using the interval {n − |B2| + 1, n −
|B2| + 2, . . . , n} as its index range.

Now, for every vertex v ∈ A its label consists of six components:

1. the label of v in the implicit representation of G[A] ∈ Y;
2. the index of v;
3. the index range of B1, which we call the left index range of v;
4. the index range of B2, which we call the right index range of v;
5. a boolean flag indicating whether v has at most d neighbours or at most d

non-neighbours in B1 and the indices of those at most d vertices;
6. a boolean flag indicating whether v has at most d neighbours or at most d

non-neighbours in B2 and the indices of those at most d vertices.
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For the third and the fourth component we store only the first and the last
elements of the ranges, and therefore the total label size is O(log n). The labels
of the vertices in B1 and B2 are defined recursively.

Note that two vertices can only be adjacent if either they have the same left
and right index ranges or the index of one of the vertices is contained in the left
or right index range of the other vertex. In the former case, the adjacency of the
vertices is determined by the labels in the first components of their labels. In
the latter case, the adjacency is determined using the information stored in the
components 5 and 6 of the labels. ��

In the context of bipartite graphs, Theorem 4 can be restated as follows.

Theorem 5. Let X be a hereditary class of bipartite graphs. Suppose there is
a constant d and a hereditary class Y which admits an implicit representation
such that every graph G ∈ X contains a non-empty subset A ⊆ V (G) with the
following properties:

(1) G[A] ∈ Y,
(2) V (G) − A can be split into two non-empty subsets B1 and B2 with no edges

between them, and
(3) every vertex v of A has at most d neighbours or at most d non-neighbours

in the part of B1, which is opposite to the part of A containing v, and at
most d neighbours or at most d non-neighbours in the part of B2, which is
opposite to the part of A containing v.

Then X admits an implicit representation.

3 Graph Parameters

It is easy to see that classes of bounded vertex degree admit an implicit rep-
resentation. More generally, bounded degeneracy in a class provides us with an
implicit representation, where the degeneracy of a graph G is the minimum k
such that every induced subgraph of G contains a vertex of degree at most k.

Spinrad showed in [14] that bounded clique-width also yields an implicit
representation. The recently introduced parameter twin-width generalises clique-
width in the sense that bounded clique-width implies bounded twin-width, but
not vice versa. It was shown in [6] that bounded twin-width also implies the
existence of an implicit representation.

The notion of graph functionality, introduced in [1], generalizes both degener-
acy and twin-width in the sense that bounded degeneracy or bounded twin-width
implies bounded functionality, but not vice versa. As we mentioned earlier, the
graphs of bounded functionality have at most factorial speed of growth. However,
whether they admit an implicit representation is wide-open. To approach this
question, in Sect. 3.1 we analyse a parameter intermediate between twin-width
and functionality. Then in Sect. 3.2, we introduce one more parameter.
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3.1 Symmetric Difference

Let G be a graph. Given two vertices x, y, we define the symmetric difference of
x and y in G as the number of vertices in G − {x, y} adjacent to exactly one of
x and y, and we denote it by sd(x, y). We define the symmetric difference sd(G)
of G as the smallest number such that any induced subgraph of G has a pair of
vertices with symmetric difference at most sd(G).

This parameter was introduced in [1], where it was shown that bounded
clique-width implies bounded symmetric difference. Paper [1] also identifies a
number of classes of bounded symmetric difference. Below we show that sym-
metric difference is bounded for Ft,p-free bipartite graphs (see Fig. 1 for an illus-
tration of Ft,p). These classes have unbounded clique-width for all t, p ≥ 2. To
show that they have bounded symmetric difference, we assume without loss of
generality that t = p.

Theorem 6. For each t ≥ 2, every Ft,t-free bipartite graph G = (B,W,E) has
symmetric difference at most 2t.

Proof. It is sufficient to show that G has a pair of vertices with symmetric
difference at most 2t. For two vertices x, y, we denote by dd(x, y) the degree
difference |deg(x) − deg(y)| and for a subset U ⊆ V (G), we write dd(U) :=
max{dd(x, y) : x, y ∈ U}. Assume without loss of generality that dd(W ) ≤
dd(B) and let x, y be two vertices in B with dd(x, y) = dd(B), deg(x) ≥ deg(y).

Write X := N(x) − N(y). Clearly, dd(B) ≤ |X|. If |X| ≤ 2, then sd(x, y) ≤
4 ≤ 2t and we are done.

Now assume |X| ≥ 3. Since dd(X) ≤ dd(W ) ≤ dd(B) ≤ |X|, the set X con-
tains two vertices p and q with dd(p, q) ≤ 1. Then sd(p, q) ≤ 2t, since otherwise
both P := N(p) − N(q) and Q := N(q) − N(p) have size at least t, in which
case x, y, p, q together with t vertices from P and t vertices from Q induce the
forbidden graph Ft,t. ��

Symmetric difference is also bounded in the class of S1,2,3-free bipartite
graphs, since these graphs have bounded clique-width [12]. For the remaining
class from Theorem 1, i.e. the class of P7-free bipartite graphs, the boundedness
of symmetric difference is an open question.

Conjecture 1. The symmetric difference is bounded in the class of P7-free bipar-
tite graphs.

We also conjecture that every class of graphs of bounded symmetric difference
admits an implicit representation and verify this conjecture for the classes of
Ft,p-free bipartite graphs in Sect. 4.

Conjecture 2. Every class of graphs of bounded symmetric difference admits an
implicit representation.
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3.2 Double-Star Partition Number

Let us say that a class X of bipartite graphs is double-star-free if there is a
constant p such that no graph G in X contains an unbalanced copy of 2K1,p, i.e.
an induced copy of 2K1,p in which the centres of both stars belong to the same
part of the bipartition of G. In particular, every class of double-star-free graphs
is Ft,p-free for some t, p.

We will say that a class X of graphs is of bounded double-star partition
number if there are constants k and p such that the vertices of every graph in
X can be partitioned into at most k homogeneous subsets so that the edges
between any pair of subsets form a bipartite graph that does not contain an
unbalanced copy of 2K1,p.

The classes of bounded double-star partition number have been defined in
the previous paragraph through two constants, k and p. By taking the maximum
of the two, we can talk about a single constant, which can be viewed as a
graph parameter defining the family of classes of bounded double-star partition
number. This parameter has never been formally defined in the literature. Our
motivation is based on the results in [4], where the author identifies ten minimal
hereditary classes of graphs, which, in our terminology, have unbounded double-
star partition number. One of them is the class S of star forests in which the
centers of all stars belong to the same part of the bipartition. One more class
is the class of bipartite complements of graphs in S. Moreover, S and the class
of bipartite complements of graphs in S are the only two minimal hereditary
classes of bipartite graphs of unbounded double-star partition number.

Theorem 7. [4] A hereditary class X of bipartite graphs is of bounded double-
star partition number if and only if X excludes a graph from S and the bipartite
complement of a graph from S.

Our interest to this parameter is due to the fact that any class of bounded
double-star partition number admits an implicit representation, as we show in
Sect. 4.

4 Implicit Representations

In this section, we identify a number of new hereditary classes of graphs that
admit an implicit representation.

4.1 Ft,p-Free Bipartite Graphs

In this section we show that Ft,p-free bipartite graphs admit an implicit repre-
sentation for any t and p. Together with Theorem 6 this verifies Conjecture 2
for these classes.

Without loss of generality we assume that t = p and split the analysis into
several intermediate steps. The first step deals with the case of double-star-free
bipartite graphs.



Graph Parameters, Implicit Representations and Factorial Properties 67

Theorem 8. Let G = (A,B,E) be a bipartite graph that does not contain an
unbalanced induced copy of 2K1,t. Then G has a vertex of degree at most t − 1
or bi-codegree at most (t − 1)(t2 − 4t + 5).

Proof. Let x ∈ A be a vertex of maximum degree. Write Y for the set of neigh-
bours of x, and Z for its set of non-neighbours in B (so B = Y ∪ Z). We may
assume |Y | ≥ t and |Z| ≥ (t − 1)(t2 − 4t + 5) + 1, since otherwise we are done.

Note that any vertex w ∈ A is adjacent to fewer than t vertices in Z. Indeed,
if w ∈ A has t neighbours in Z, then it must be adjacent to all but at most t− 1
vertices in Y (since otherwise a 2K1,t appears), so its degree is greater than that
of x, a contradiction.

We now show that Z has a vertex of degree at most t − 1. Pick members
z1, . . . , zt−1 ∈ Z in a non-increasing order of their degrees, and write Wi for
the neighbourhood of zi. Since G is 2K1,t-free and deg(zi+1) ≤ deg(zi), for all
1 ≤ i ≤ t − 2, |Wi+1 − Wi| ≤ t − 1. It is not difficult to see that in fact,

|Wi+1 −
i
⋂

s=1
Ws| ≤ (t − 1)i, and in particular, |Wt−1 −

t−2
⋂

i=1

Wi| ≤ (t − 1)(t − 2).

With this, we can compute an upper bound on the number of vertices in Z
which have neighbours in Wt−1: by the degree condition given above, each vertex

in Wt−1 ∩
t−2
⋂

i=1

Wi is adjacent to no vertices in Z other than z1, . . . , zt−1. Each of

the at most (t−1)(t−2) vertices in Wt−1−
t−2
⋂

i=1

Wi has at most t−2 neighbours in

Z other than zt−1. This accounts for a total of at most (t−1)+(t−1)(t−2)2 =
(t− 1)(t2 − 4t+5) vertices which have neighbours in Wt−1, including zt−1 itself.
By assumption on the size of Z, there must be a vertex z ∈ Z which has no
common neighbours with zt−1. Since 2K1,t is forbidden, one of z and zt−1 has
degree at most t − 1, as claimed. ��

An immediate implication of this result, combined with Theorem 5, is that
double-star-free bipartite graphs admit an implicit representation.

Corollary 1. The class of 2K1,t-free bipartite graphs admits an implicit repre-
sentation for any fixed t.

Together with Theorem 2, this yields yet another interesting conclusion.

Corollary 2. The classes of graphs of bounded double-star partition number
admit an implicit representation.

In the context of bipartite graphs, this corollary together with Theorem 7
implies the following generalization of Corollary 1.

Corollary 3. Every class of bipartite graphs excluding a star forest and the
bipartite complement of a star forest admits an implicit representation.

Our next step towards implicit representations of Ft,t-free bipartite graphs
deals with the case of F 1

t,t-free bipartite graphs, where F 1
t,t is the graph obtained

from Ft,t by deleting the isolated vertex.
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Theorem 9. The class of F 1
t,t-free bipartite graphs admits an implicit represen-

tation.

Proof. It suffices to prove the result for connected graphs (this follows for
instance from Theorem 2). Let G be a connected F 1

t,t-free bipartite graph and
let v be a vertex of maximum degree in G. We denote by Vi the set of vertices
at distance i from v.

First, we show that the subgraph G[V1∪V2] admits an implicit representation.
To this end, we denote by u a vertex of maximum degree in V1, by U the
neighbourhood of u in V2, W := V2 − U , and V ′

1 := V1 − {u}.
Let x be a vertex in V ′

1 and assume it has t neighbours in W . Then x has
at least t non-neighbours in U (due to maximality of u), in which case the t
neighbours of x in W , the t non-neighbours of x in U together with x, u and
v induce an F 1

t,t. This contradiction shows that every vertex of V ′
1 has at most

t − 1 neighbours in W , and hence the graph G[V ′
1 ∪ W ] admits an implicit

representation by Theorem 5.
To prove that G[V ′

1 ∪ U ] admits an implicit representation, we observe that
this graph is 2K1,t-free. Indeed, if the centers of the two stars belong to V ′

1 , then
they induce an F 1

t,t together with vertex v, and if the centers of the two stars
belong to U , then they induce an F 1

t,t together with vertex u. Therefore, the
graph G[V1 ∪V2] can be covered by at most three graphs (one of them being the
star centered at u), each of which admits an implicit representation, and hence
by Theorem 2 this graph admits an implicit representation.

To complete the proof, we observe that every vertex of V2 has at most t − 1
neighbours in V3. Indeed, if a vertex x ∈ V2 has t neighbours in V3, then x has
at least t non-neighbours in V1 (due to maximality of v), in which case the t
neighbours of x in V3, the t non-neighbours of x in V1 together with x, v, and
any neighbour of x in V1 (which must exist by definition) induce an F 1

t,t.
Now we apply Theorem 3 with A = {v} ∪ V1 ∪ V2 to conclude that G admits

an implicit representation, because every vertex of A has at most t−1 neighbours
outside of A. ��

The last step towards implicit representations of Ft,t-free bipartite graphs is
similar to Theorem 9 with some modifications.

Theorem 10. The class of Ft,t-free bipartite graphs admits an implicit repre-
sentation.

Proof. By analogy with Theorem 9 we consider a connected Ft,t-free bipartite
graph G, denote by v a vertex of maximum degree in G and by Vi the set of
vertices at distance i from v. Also, we denote by u a vertex of maximum degree
in V1, by U the neighbourhood of u in V2, W := V2 − U , and V ′

1 := V1 − {u}.
Let x be a vertex in V ′

1 and assume it has t neighbours and one non-neighbour
y in W . Then x has at least t non-neighbours in U (due to maximality of u), in
which case the t neighbours of x in W , the t non-neighbours of x in U together
with x, y, u and v induce an Ft,t. This contradiction shows that every vertex of
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V ′
1 has either at most t − 1 neighbours or at most 0 non-neighbours in W , and

hence the graph G[V ′
1 ∪ W ] admits an implicit representation by Theorem 5.

To prove that G[V ′
1 ∪U ] admits an implicit representation, we show that this

graphs is ˜F 1
t,t-free. Indeed, if the centers of the two stars of ˜F 1

t,t belong to V ′
1 ,

then ˜F 1
t,t together with vertex v induce an Ft,t, and if the centers of the two stars

of ˜F 1
t,t belong to U , then ˜F 1

t,t together with vertex u induce an Ft,t. Therefore,
the graph G[V1 ∪ V2] can be covered by at most three graphs, each of which
admits an implicit representation, and hence by Theorem 2 this graph admits
an implicit representation.

To complete the proof, we observe that every vertex of V2 has either at most
t − 1 neighbours or 0 non-neighbours in V3. Indeed, if a vertex x ∈ V2 has t
neighbours and one non-neighbour y in V3, then x has at least t non-neighbours
in V1 (due to maximality of v), in which case the t neighbours of x in V3, the t
non-neighbours of x in V1 together with x, y, v, and any neighbour of x in V1

induce an Ft,t.
Finally, we observe that if a vertex x ∈ V2 has t neighbours in V3, then V5

(and hence Vi for any i ≥ 5) is empty, because otherwise an induced Ft,t arises
similarly as in the previous paragraph, where vertex y can be taken from V5.
Now we apply Theorem 5 with A = {v} ∪ V1 ∪ V2 to conclude that G admits an
implicit representation. Indeed, if each vertex of V2 has at most t−1 neighbours
in V3, then each vertex of A has at most t − 1 neighbours outside of A, and if
a vertex of V2 has at least t neighbours in V3, then Vi = ∅ for i ≥ 5 and hence
every vertex of A has at most t − 1 neighbours or at most 0 non-neighbours in
the opposite part outside of A. ��

4.2 One-Sided Forbidden Induced Bipartite Subgraphs

In the context of bipartite graphs, some hereditary classes are defined by forbid-
ding one-sided copies of bipartite graphs. Consider, for instance, the class of star
forests, whose vertices are partitioned into an independent set of black vertices
and an independent set of white vertices. If the centers of all stars have the
same colour, say black, then this class is defined by forbidding a P3 with a white
center. Very little is known about implicit representations for classes defined by
one-sided forbidden induced bipartite subgraphs. It is known, for instance, that
bipartite graphs without a one-sided P5 admit an implicit representation. This is
not difficult to show and also follows from the fact P6-free bipartite graphs have
bounded clique-width and hence admit an implicit representation (note that P6

is symmetric with respect to swapping the bipartition). Below we strengthen the
result for one-sided forbidden P5 to one-sided forbidden Ft,1, where again F 1

t,1 is
the graph obtained from Ft,1 by deleting the isolated vertex.

Lemma 1. The class of bipartite graphs containing no one-sided copy of F 1
t,1

admits an implicit representation.

Proof. Let G = (U, V,E) be a bipartite graph containing no copy of F 1
t,1 with

the vertex of largest degree in U . Let u be a vertex of maximum degree in U .
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We split the vertices of V into the set V1 of neighbours and the set V0 of non-
neighbours of u. Consider a vertex x ∈ U such that x has a neighbour in V1

and a neighbour in V0 and denote by V10 the set of non-neighbours of x in V1

and by V01 the set of neighbours of x in V0. We note that |V01| ≤ |V10|, since
deg(x) ≤ deg(u). Besides, |V10| < t, since otherwise t vertices in V10, a vertex
in V01 and a common neighbour of u and x (these vertices exist by assumption)
together with u and x induce a forbidden copy of F 1

t,1. Therefore, x has at most
k − 1 non-neighbours in V1 and at most k − 1 neighbours in V0.

Now we define three subsets A,B1, B2 as follows:

A consists of vertex u and the set of vertices of U that have neighbours both
in V1 and in V0,
B1 consists of V1 and the vertices of U that have neighbours only in V1,
B2 consists of V0 and the vertices of U that have neighbours only in V0.

With this notation, the result follows from Theorem 5. ��
Theorem 11. The class of bipartite graphs containing no one-sided copy of Ft,1

admits an implicit representation.

Proof. Let G = (U, V,E) be a connected bipartite graph containing no one-sided
copy of Ft,1 with the vertex of largest degree in U . Let v be a vertex in V and
let Vi the set of vertices at distance i from v. Then the graph G1 := G[V1 ∪ V2]
does not contain a one-sided copy of ˜F 1

t,1 with the vertex of largest degree in
V1, since otherwise together with v this copy would induce a one-sided copy of
Ft,1 with the vertex of largest degree in U . Therefore, by Lemma 1 the graph
G1 admits an implicit representation.

For any i > 1, the Gi := G[Vi ∪ Vi+1] does not contain a one-sided copy
of F 1

t,1 with the vertex of largest degree in Vi (for odd i) or with the vertex
of largest degree in Vi+1 (for even i), since otherwise together with v this copy
would induce a one-sided copy of Ft,1 with the vertex of largest degree in U .
Therefore, by Lemma 1 the graph Gi admits an implicit representation for all
i > 1. Together with Theorem 2 this implies an implicit representation for G. ��

For larger indices of one-sided forbidden Ft,p the question remains open.
Moreover, it remains open even for one-sided forbidden 2P3. It is interesting to
note that if we forbid 2P3 with black centers and all black vertices have incom-
parable neighbourhoods, then the graph has bounded clique-width [7] and hence
admits an implicit representation. However, in general the clique-width of 2P3-
free bipartite graphs is unbounded and the question of implicit representation
for one-sided forbidden 2P3 remains open.

Problem 1. Determine whether the class of bipartite graphs containing no one-
sided induced 2P3 admits an implicit representation.
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5 Factorial Properties

We repeat that bounded functionality implies at most factorial speed of growth.
Whether the reverse implication is also valid was left as an open question in
[1]. It turns out that the answer to this question is negative. This is witnessed
by the class Q of induced subgraphs of hypercubes. Indeed, in [1] it was shown
that Q has unbounded functionality. On the other hand, it was proved in [8]
that there exists an implicit representation for Q and, in particular, the class
is factorial; in fact, a result from recent work [9] implies that, more generally,
the hereditary closure of Cartesian products of any finite set of graphs admits
an implicit representation. These results however are non-constructive and they
provide neither explicit labeling schemes, nor specific factorial bounds on the
number of graphs. Below we give a concrete bound on the speed of Q.

Theorem 12. There are at most n2n n-vertex graphs in Q.

Proof. Let Qn denote the n-dimensional hypercube, i.e. the graph with vertex
set {0, 1}n, in which two vertices are adjacent if and only if they differ in exactly
one coordinate. To obtain the desired bound, we will produce, for each labelled
n-vertex graph in Q, a sequence of 2n numbers between 1 and n which allows
us to retrieve the graph uniquely.

As a preliminary, let G ∈ Q be a connected graph on n vertices. By definition
of Q, G embeds into Qm for some m. We claim that, in fact, G embeds into Qn−1.
If m < n, this is clear. Otherwise, using an embedding into Qm, each vertex of
G corresponds to an m-digit binary sequence. For two adjacent vertices, the
sequences differ in exactly one position. From this, it follows inductively that
the n vertices of G all agree in at least m− (n−1) positions. The coordinates on
which they agree can simply be removed; this produces an embedding of G into
Qn−1. Additionally, by symmetry, if G has a distinguished vertex r, we remark
that we may find an embedding sending r to (0, 0, . . . , 0).

We are now ready to describe our encoding. Let G ∈ Q be any labelled
graph with vertex set {x1, . . . , xn}. We start by choosing, for each connected
component C of G:

– a spanning tree TC of C;
– a root rC of TC ;
– an embedding ϕC of TC into Qn−1 sending rC to (0, 0, . . . , 0).

Write Ci for the component of xi. We define two functions p, d : V (G) →
{1, . . . , n} as follows:

p(xi) =

{

i, ifxi = rCi ;
j, ifxi �= rCi , and xj is the parent ofxi in TCi .

d(xi) =

{

1, ifxi = rCi ;
j, ifxi �= rCi , and ϕ(xi) and ϕ(p(xi)) differ in coordinate j.
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One easily checks that the above maps are well-defined; in particular, when
xi is not a root, the embeddings of xi and of its parent do, indeed, differ in
exactly one coordinate. The reader should also know that the value of d on the
roots is, in practice, irrelevant – setting it to 1 is an arbitrary choice.

We now claim that G can be restored from the sequence

p(x1), d(x1), . . . , p(xn), d(xn).

To do so, we first note that this sequence allows us to easily determine the parti-
tion of G into connected components. Moreover, for each connected component,
we may then determine its embedding ϕC into Qn−1: ϕC(rC) is by assump-
tion (0, 0, . . . , 0); we may then identify its children using p, then compute their
embeddings using d; we may then proceed inductively. This information allows
us to determine the adjacency in G as claimed, and the encoding uses 2n integers
between 1 and n as required. ��
Problem 2. Find specific implicit representation for the class Q of induced sub-
graphs of hypercubes.
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Abstract. We present a new FPTAS for the Subset Sum Ratio prob-
lem, which, given a set of integers, asks for two disjoint subsets such that
the ratio of their sums is as close to 1 as possible. Our scheme makes use
of exact and approximate algorithms for the closely related Subset Sum
problem, hence any progress over those—such as the recent improvement
due to Bringmann and Nakos [SODA 2021]—carries over to our FPTAS.
Depending on the relationship between the size of the input set n and
the error margin ε, we improve upon the best currently known algorithm
of Melissinos and Pagourtzis [COCOON 2018] of complexity O(n4/ε). In
particular, the exponent of n in our proposed scheme may decrease down
to 2, depending on the Subset Sum algorithm used. Furthermore, while
the aforementioned state of the art complexity, expressed in the form
O((n + 1/ε)c), has constant c = 5, our results establish that c < 5.

Keywords: Approximation scheme · Combinatorial optimization ·
Knapsack problems · Subset Sum · Subset Sum Ratio

1 Introduction

One of Karp’s 21 NP-complete problems [18], Subset Sum has seen astounding
progress over the last few years. Koiliaris and Xu [21], Bringmann [7] and Jin and
Wu [17] have presented pseudopolynomial algorithms resulting in substantial
improvements over the long-standing standard approach of Bellman [6], and
the improvement by Pisinger [29]. Moreover, the latter two algorithms [7,17]
match the SETH-based lower bounds proved in [1]. Additionally, recently there
has been progress in the approximation scheme of Subset Sum, the first such
improvement in over 20 years, with a new algorithm introduced by Bringmann
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and Nakos [9], as well as corresponding lower bounds obtained through the lens
of fine-grained complexity.

The Equal Subset Sum problem, which, given an input set, asks for two
disjoint subsets of equal sum, is closely related to Subset Sum. It finds appli-
cations in multiple different fields, ranging from computational biology [10,13]
and computational social choice [22], to cryptography [30], to name a few. In
addition, it is related to important theoretical concepts such as the complexity
of search problems in the class TFNP [28].

The centerpiece of this paper is the Subset Sum Ratio problem, the opti-
mization version of Equal Subset Sum, which asks, given an input set S ⊆ N,
for two disjoint subsets S1, S2 ⊆ S, such that the following ratio is minimized

max
{∑

si∈S1
si,

∑
sj∈S2

sj

}

min
{∑

si∈S1
si,

∑
sj∈S2

sj

}

We present a new approximation scheme for this problem, highlighting its
close relationship with the classical Subset Sum problem. Our proposed algo-
rithm is the first to associate these closely related problems and, depending
on the relationship of the cardinality of the input set n and the value of the
error margin ε, achieves better asymptotic bounds than the current state of the
art [23]. Moreover, while the complexity of the current state of the art approxi-
mation scheme expressed in the form O((n + 1/ε)c) has an exponent c = 5, we
present an FPTAS with constant c < 5.

1.1 Related Work

Equal Subset Sum as well as its optimization version called Sub-
set Sum Ratio [5] are closely related to problems appearing in many scientific
areas. Some examples include the Partial Digest problem, which comes from
computational biology [10,13], the allocation of individual goods [22], tourna-
ment construction [20], and a variation of Subset Sum, called Multiple Inte-
grated Sets SSP, which finds applications in the field of cryptography [30]. Fur-
thermore, it is related to important concepts in theoretical computer science;
for example, a restricted version of Equal Subset Sum lies in a subclass of
the complexity class TFNP, namely in PPP [28], a class consisting of search
problems that always have a solution due to some pigeonhole argument, and no
polynomial time algorithm is known for this restricted version.

Equal Subset Sum has been proven NP-hard by Woeginger and Yu [31]
(see also the full version of [25] for an alternative proof) and several variations
have been proven NP-hard by Cieliebak et al. in [11,12]. A 1.324-approximation
algorithm has been proposed for Subset Sum Ratio in [31] and several FPTASs
appeared in [5,23,27], the fastest so far being the one in [23] of complexity
O(n4/ε), the complexity of which seems to also apply to various meaningful
special cases, as shown in [24].
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As far as exact algorithms are concerned, recent progress has shown that
Equal Subset Sum can be solved probabilistically in1 O∗(1.7088n) time [25],
faster than a standard “meet-in-the-middle” approach yielding an O∗(3n/2) ≤
O∗(1.7321n) time algorithm.

These problems are tightly connected to Subset Sum, which has seen impres-
sive advances recently, due to Koiliaris and Xu [21] who gave a deterministic
Õ(

√
nt) algorithm, where n is the number of input elements and t is the target,

and by Bringmann [7] who gave a Õ(n+t) randomized algorithm, which is essen-
tially optimal under SETH [1]. See also [2] for an extension of these algorithms to
a more general setting. Jin and Wu subsequently proposed a simpler randomized
algorithm [17] achieving the same bounds as [7], which however seems to only
solve the decision version of the problem. Recently, Bringmann and Nakos [8]
have presented an O(|St(Z)|4/3poly(log t)

)
algorithm, where St(Z) is the set

of all subset sums of the input set Z that are smaller than t, based on top-k
convolution.

Regarding approximation schemes for Subset Sum, recently Bringmann and
Nakos [9] presented the first improvement in over 20 years, since the scheme
of [19] had remained the state of the art. Making use of modern techniques, they
additionally provide lower bounds based on the popular min-plus convolution
conjecture [14]. Furthermore, they present a new FPTAS for the closely related
Partition problem, by observing that their techniques can be used to approxi-
mate a slightly more relaxed version of the Subset Sum problem, firstly studied
in [25].

1.2 Our Contribution

We present a novel approximation scheme for the Subset Sum Ratio prob-
lem. Our algorithm makes use of exact and approximation algorithms for Sub-
set Sum, thus, any improvement over those carries over to our proposed scheme.
Additionally, depending on the relationship between n and ε, our algorithm
improves upon the best existing approximation scheme of [23].

We start by presenting some necessary background in Sect. 2. Afterwards,
in Sect. 3 we introduce an FPTAS for a restricted version of the problem. In
the following Sect. 4, we explain how to make use of the algorithm presented
in the previous section, in order to obtain an approximation scheme for the
Subset Sum Ratio problem. The complexity of the final scheme is thoroughly
analyzed in Sect. 5, followed by some possible directions for future research in
Sect. 6.

2 Preliminaries

Let, for x ∈ N, [x] = {0, . . . , x} denote the set of integers in the interval [0, x].
Given a set S ⊆ N, denote its largest element by max(S) and the sum of its

1 Standard O∗ notation is used to hide polynomial and Õ to hide polylogarithmic
factors.
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elements by Σ(S) =
∑

s∈S s. If we are additionally given a value ε ∈ (0, 1),
define the following partition of its elements:

– The set of its large elements as L(S, ε) = {s ∈ S | s ≥ ε · max(S)}. Note that
max(S) ∈ L(S, ε), for any ε ∈ (0, 1).

– The set of its small elements as M(S, ε) = {s ∈ S | s < ε · max(S)}.

In the following, since the values of the associated parameters will be clear from
the context, they will be omitted and we will refer to these sets simply as L and
M .

The following definitions will be useful for the rest of this paper.

Definition 1 (Closest Set and pair). Given a set Si ⊆ A, we define as its
closest set a set Si,opt such that Si,opt ⊆ A\Si and Σ(Si) ≥ Σ(Si,opt) ≥ Σ(S′)
for all S′ ⊆ A\Si. The pair (Si, Si,opt) is called closest pair.

Definition 2 (ε-close set and pair). Given a set Si ⊆ A, we define as its ε-
close set a set Si,ε such that Si,ε ⊆ A\Si and Σ(Si) ≥ Σ(Si,ε) ≥ (1−ε)·Σ(Si,opt).
The pair (Si, Si,ε) is called ε-close pair.

Remark 1. Note that Si,opt is also an ε-close set of Si for any ε ∈ (0, 1).

Definition 3 (Subset Sum). Given a set X and target t, compute a subset
Y ⊆ X, such that Σ(Y ) = max{Σ(Z) | Z ⊆ X,Σ(Z) ≤ t}.
Definition 4 (Approximate Subset Sum). Given a set X, target t and error
margin ε, compute a subset Y ⊆ X such that (1 − ε) · OPT ≤ Σ(Y ) ≤ OPT ,
where OPT = max{Σ(Z) | Z ⊆ X,Σ(Z) ≤ t}.
By solving Subset Sum or its approximate version, one can compute an ε-close
set for a given subset Si ⊆ A as follows.

1. Closest set (Si,opt) computation
Compute the subset sums of set A\Si with target Σ(Si) and keep the largest
non exceeding. This can be achieved by a standard meet in the middle [16]
algorithm.

2. ε-close set (Si,ε) computation
Run an approximate Subset Sum algorithm [9,19] with error margin ε on
set A\Si with target Σ(Si).

3 Approximation Scheme for a Restricted Version

In this section, we present an FPTAS for the constrained version of the Sub-
set Sum Ratio problem where we are only interested in approximating solu-
tions that involve large subset sums. By this, we mean that for at least one of
the subsets of the optimal solution, the sum of its large elements must be no less
than max(A) = an (assuming that A = {a1, . . . , an} is the sorted input set); let
ropt denote the subset sum ratio of such an optimal solution. Our FPTAS will
return a solution of ratio r, such that 1 ≤ r ≤ (1 + ε) · ropt, for a given error
margin ε ∈ (0, 1); however, we allow that the sets of the returned solution do
not necessarily satisfy the aforementioned constraint (i.e. the sum of their large
elements may be less than an).
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3.1 Outline of the Algorithm

We now present a rough outline of the algorithm, along with its respective pseu-
docode:

– At first, we search for approximate solutions involving exclusively large ele-
ments from L(A, ε).

– To this end, we produce the subset sums formed by these large elements. If
their number exceeds n/ε2, then we can easily find an approximate solution.

– Otherwise, for each of the produced subsets, we find its corresponding ε′-close
set, for some appropriate ε′ defined later.

– Then, it suffices to consider only these pairs of subsets when searching for an
approximate solution.

– In the case that the optimal solution involves small elements, we can approx-
imate it by adding elements of M(A, ε) in a greedy way.

Algorithm 1. ConstrainedSSR(A, ε, T )
Input : Sorted set A = {a1, . . . , an}, error margin ε and table of partial sums T .
Output : (1 + ε)-approximation of the optimal solution respecting the constraint.
1: Partition A to M = {ai ∈ A | ai < ε · an} and L = {ai ∈ A | ai ≥ ε · an}.
2: Split interval [0, n · an] to n/ε2 bins of size ε2 · an.
3: while filling the bins with the subset sums of L do
4: if two subset sums correspond to the same bin then
5: return an approximation solution based on these. � O(n/ε2) complexity.
6: end if
7: end while
8: 2|L| ≤ n/ε2 ⇐⇒ |L| ≤ log(n/ε2).
9: for each subset in a bin do � O(n/ε2) subsets.

10: Find its ε′-close set. � Complexity analysis in Section 5.
11: Add small elements accordingly. � O(log n) complexity, see Subsection 3.3.
12: end for

3.2 Regarding only Large Elements

We firstly search for an (1 + ε)-approximate solution with ε ∈ (0, 1), without
involving any of the elements that are smaller than ε · an. Let M = {ai ∈ A |
ai < ε · an} be the set of small elements and L = A\M = {ai ∈ A | ai ≥ ε · an}
be the set of large elements.

After partitioning the input set, we split the interval [0, n · an] into smaller
intervals, called bins, of size l = ε2 · an each, as depicted in Fig. 1.

Thus, there are a total of B = n/ε2 bins. Notice that each possible subset of
the input set will belong to a respective bin constructed this way, depending on
its sum. Additionally, if two sets correspond to the same bin, then the difference
of their subset sums will be at most l.
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Fig. 1. Split of the interval [0, n · an] to bins of size l.

The next step of our algorithm is to generate all the possible subset sums,
occurring from the set of large elements L. The complexity of this procedure is
O(

2|L|), where |L| is the cardinality of set L. Notice however, that it is possible
to bound the number of the produced subset sums by the number of bins B,
since if two sums belong to the same bin they constitute a solution, as shown in
Lemma 1, in which case the algorithm terminates in time O(n/ε2).

Lemma 1. If two subsets correspond to the same bin, we can find an (1 + ε)-
approximation solution.

Proof. Suppose there exist two sets L1, L2 ⊆ L whose sums correspond to the
same bin, with Σ(L1) ≤ Σ(L2). Notice that there is no guarantee regarding the
disjointness of said subsets, thus consider L′

1 = L1\L2 and L′
2 = L2\L1, for

which it is obvious that Σ(L′
1) ≤ Σ(L′

2).
Additionally, assume that L′

1 �= ∅. Then it holds that

Σ(L′
2) − Σ(L′

1) = Σ(L2) − Σ(L1) ≤ l

Therefore, the sets L′
1 and L′

2 constitute an (1 + ε)-approximation solution,
since

Σ(L′
2)

Σ(L′
1)

≤ Σ(L′
1) + l

Σ(L′
1)

= 1 +
l

Σ(L′
1)

≤ 1 +
ε2 · an

ε · an
= 1 + ε

where the last inequality is due to the fact that L′
1 ⊆ L is composed of elements

≥ ε · an, thus Σ(L′
1) ≥ ε · an.

It remains to show that L′
1 �= ∅. Assume that L′

1 = ∅. This implies that
L1 ⊆ L2 and since we consider each subset of L only once and the input is a
set and not a multiset, it holds that L1 ⊂ L2 =⇒ L′

2 �= ∅. Since L1 and L2

correspond to the same bin, it holds that

Σ(L2) − Σ(L1) ≤ l =⇒ Σ(L′
2) − Σ(L′

1) ≤ l =⇒ Σ(L′
2) ≤ l

which is a contradiction, since L′
2 is a non empty subset of L, which is comprised

of elements greater than or equal to ε · an, hence Σ(L′
2) ≥ ε · an > ε2 · an = l,

since ε < 1.
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Consider an ε′ such that 1/(1 − ε′) ≤ 1 + ε for all ε ∈ (0, 1), for instance
ε′ = ε/2 (the exact value of ε′ will be computed in Sect. 5). If every produced
subset sum of the previous step belongs to a distinct bin, then, we compute their
respective ε′-close sets, as described in Sect. 2. We can approximate an optimal
solution that involves exclusively large elements using these pairs.

Before we prove the previous statement, observe that, if the optimal solution
involves sets L1, L2 ⊆ L composed only of large elements, where Σ(L1) ≤ Σ(L2),
then Σ(L1) = Σ(L2,opt), where L2,opt is a closest set of L2, with respect to the
set L\L2.

Lemma 2. If the optimal ratio ropt involves sets consisting of only large ele-
ments, then there exists an ε′-close pair with ratio r ≤ (1 + ε) · ropt.

Proof. Assume that the sets S∗
1 , S∗

2 ⊆ L form the optimal solution (S∗
2 , S∗

1 )
and Σ(S∗

2 )
Σ(S∗

1 )
= ropt ≥ 1 is the optimal ratio. Then, as mentioned, it holds that

Σ(S∗
1 ) = Σ(S∗

2,opt). For each set of large elements, there exists an ε′-close set
and a corresponding ε′-close pair; let (S∗

2 , S∗
2,ε′) be this pair for set S∗

2 . Then,

Σ(S∗
2 ) ≥ Σ(S∗

1 ) = Σ(S∗
2,opt) ≥ Σ(S∗

2,ε′) ≥ (1 − ε′) · Σ(S∗
1 )

Thus, it holds that

1 ≤ Σ(S∗
2 )

Σ(S∗
2,ε′)

≤ 1
(1 − ε′)

· Σ(S∗
2 )

Σ(S∗
1 )

≤ (1 + ε) · ropt

Therefore, we have proved that in the case where the optimal solution con-
sists of sets comprised of only large elements, it is possible to find an (1 + ε)-
approximation solution. This is achieved by computing an ε′-close set for each
subset Li ⊆ L belonging in some bin, using the algorithms described in the pre-
liminaries, with respect to set L\Li and target Σ(Li). The total cost of these
algorithms will be thoroughly analyzed in Sect. 5 and depends on the algorithm
used.

It is important to note that by utilizing an (exact or approximation) algo-
rithm for Subset Sum, we establish a connection between the complexities of
Subset Sum and approximating Subset Sum Ratio in a way that any future
improvement in the first carries over to the second.

3.3 General (1 + ε)-Approximation Solutions

Whereas we previously considered optimal solutions involving exclusively large
elements, here we will search for approximations for those optimal solutions that
use all the elements of the input set, hence include small elements, and satisfy our
constraint. We will prove that in order to approximate those optimal solutions,
it suffices to consider only the ε′-close pairs corresponding to each distinct bin
and add small elements to them. In other words, instead of considering any two
random disjoint subsets consisting of large elements2 and subsequently adding
2 Note that the number of these random pairs is 3|L|.
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to these the small elements, we can instead consider only the pairs computed
in the previous step, the number of which is bounded by the number of bins
B = n/ε2. Moreover, we will prove that it suffices to add the small elements to
our solution in a greedy way.

Since the algorithm has not detected a solution so far, due to Lemma 1 every
computed subset sum of set L belongs to a different bin. Thus, their total number
is bounded by the number of bins B, i.e.

2|L| ≤
( n

ε2

)
⇐⇒ |L| ≤ log

( n

ε2

)
.

We proceed by involving small elements in order to reduce the difference between
the sums of ε′-close pairs, thus reducing their ratio.

Lemma 3. Given the ε′-close pairs, one can find an (1+ε)-approximation solu-
tion for the constrained version of Subset Sum Ratio, in the case that the
optimal solution involves small elements.

Proof (sketch). Due to page limitations, we only give a short sketch of the proof
here; the complete proof is included in the full version of the paper.

Let S∗
1 = L∗

1∪M∗
1 and S∗

2 = L∗
2∪M∗

2 be disjoint subsets that form an optimal
solution, where Σ(S∗

1 ) ≤ Σ(S∗
2 ), L∗

1, L
∗
2 ⊆ L and M∗

1 ,M∗
2 ⊆ M .

For Σ(L∗
1) < Σ(L∗

2) (respectively Σ(L∗
2) < Σ(L∗

1)), we show that is suffices
to add an appropriate subset Mk ⊆ M to L∗

2,ε′ (respectively L∗
1,ε′) in order to

approximate the optimal solution ropt = Σ(S∗
2 )

Σ(S∗
1 )

, where Mk = {ai ∈ M | i ∈ [k]}
and k ≤ |M |.

Therefore, by adding in a greedy way small elements to an ε′-close set of the
set with the largest sum among L∗

1 and L∗
2, we can successfully approximate the

optimal solution.

Adding Small Elements Efficiently. Here, we will describe a method to
efficiently add small elements to our sets. As a reminder, up to this point the
algorithm has detected an ε′-close pair (L2, L1), such that L1, L2 ⊆ L with
Σ(L1) < Σ(L2). Thus, we search for some k such that Σ(L1 ∪ Mk) ≤ Σ(L2) +
ε · an, where Mk = {ai ∈ M | i ∈ [k]}. Notice that if Σ(M) ≥ Σ(L2) − Σ(L1),
there always exists such a set Mk, since by definition, each element of set M is
smaller than ε ·an. In order to determine Mk, we make use of an array of partial
sums T [k] = Σ(Mk), where k ≤ |M |. Notice that T is sorted; therefore, since T
is already available (see Algorithm 2), each time we need to compute a subset
with the desired property, this can be done in O(log k) = O(log n) time.

4 Final Algorithm

The algorithm presented in the previous section constitutes an approximation
scheme for Subset Sum Ratio, in the case where at least one of the solution
subsets has sum of its large elements greater than, or equal to the max element
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of the input set. Thus, in order to solve the Subset Sum Ratio problem, it
suffices to run the previous algorithm n times, where n depicts the cardinality
of the input set A, while each time removing the max element of A.

In particular, suppose that the optimal solution involves disjoint sets S∗
1 and

S∗
2 , where ak = max{S∗

1 ∪S∗
2}. There exists an iteration for which the algorithm

considers as input the set Ak = {a1, . . . , ak}. In this iteration, the element ak is
the largest element and the algorithm searches for a solution where the sum of
the large elements of one of the two subsets is at least ak. The optimal solution
has this property so the ratio of the approximate solution that the algorithm of
the previous section returns is at most (1 + ε) times the optimal.

Consequently, n repetitions of the algorithm suffice to construct an FPTAS
for Subset Sum Ratio.

Notice that if at some repetition, the sets returned due to the algorithm of
Sect. 3 have ratio at most 1 + ε, then this ratio successfully approximates the
optimal ratio ropt ≥ 1, since 1 + ε ≤ (1 + ε) · ropt, therefore they constitute an
approximation solution.

Algorithm 2. SSR(A, ε)
Input : Sorted set A = {a1, . . . , an} and error margin ε.
Output : (1 + ε)-approximation of the optimal solution for Subset Sum Ratio.
1: Create array T such that T [k] =

∑k
i=1 ai. � Θ(n) time.

2: for i = n, . . . , 1 do
3: ConstrainedSSR({a1, . . . , ai}, ε, T )
4: end for

5 Complexity

The total complexity of the final algorithm is determined by three distinct oper-
ations, over the n iterations of the algorithm:

1. The cost to compute all the possible subset sums occurring from large ele-
ments. It suffices to consider the case where this is bounded by the number
of bins B = n/ε2, due to Lemma 1.

2. The cost to find the ε′-close pair for each subset in a distinct bin. The cost
of this operation will be analyzed in the following subsection.

3. The cost to include small elements to the ε′-close pairs. There are B ε′-
close pairs, and each requires O(log n) time, thus the total time required is
O(

n
ε2 · log n

)
.

5.1 Complexity to Find the ε′-Close Pairs

Using Exact Subset Sum Computations. The first algorithm we mentioned
is a standard meet in the middle algorithm. Here we will analyze its complexity.
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Let subset L′ ⊆ L such that |L′| = k. The meet in the middle algorithm on
the set L\L′ costs time

O
( |L\L′|

2
· 2

|L\L′|
2

)
.

Notice that the number of subsets of L of cardinality k is
(|L|

k

)
and that |L| ≤

log(n/ε2). Additionally,

|L|∑
k=0

(|L|
k

)
· 2

|L|−k
2 · |L| − k

2
= 2|L|/2 ·

|L|∑
k=0

(|L|
k

)
· 2−k/2 · |L| − k

2

≤ 2|L|/2 · |L|
2

·
|L|∑
k=0

(|L|
k

)
· 2−k/2

Furthermore, let c = (1 + 2−1/2), where log c = 0.7715... < 0.8. Due to Binomial
Theorem, it holds that

|L|∑
k=0

(|L|
k

)
· 2−k/2 = (1 + 2−1/2)|L| = c|L| ≤ clog(n/ε2) = (n/ε2)log c

Consequently, the complexity to find a closest set for every subset in a bin is

O
(

2|L|/2 · |L|
2

· (n/ε2)log c

)
= O

(
(n/ε2)1/2 · log(n/ε2) · (n/ε2)log c

)

= O
(

n1.3

ε2.6
· log(n/ε2)

)

Using approximate Subset Sum computations. Here we will analyze the
complexity in the case we run an approximate Subset Sum algorithm in order
to compute the ε′-close pairs.

For subset Li ⊆ L of sum Σ(Li), we run an approximate Subset Sum algo-
rithm ([9,19]), with error margin ε′ such that

1
1 − ε′ ≤ 1 + ε ⇐⇒ ε′ ≤ ε

1 + ε

By choosing the maximum such ε′, we have that

ε′ =
ε

1 + ε
=⇒ 1

ε′ =
1 + ε

ε
=

1
ε

+ 1 =⇒ 1
ε′ = O

(
1
ε

)

Thus, if we use for instance the approximation algorithm3 presented at [19], the
complexity of finding all the ε′-close sets (one for every subset in a bin, for a
total of a maximum of B = n/ε2 subsets) is

3 Of complexity O(
min

{
n
ε
, n + 1

ε2
· log(1/ε)

})
for n elements and error margin ε.
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O
(

n

ε2
· min

{ |L|
ε′ , |L| +

1
(ε′)2

· log(1/ε′)
})

=

O
(

n

ε2
· min

{ |L|
ε

, |L| +
1
ε2

· log(1/ε)
})

=

O
(

n

ε2
· min

{
log(n/ε2)

ε
, log(n/ε2) +

1
ε2

· log(1/ε)
})

5.2 Total Complexity

The total complexity of the algorithm occurs from the n distinct iterations
required and depends on the algorithm chosen to find the ε′-close pairs, since
both of the presented algorithms dominate the time of the rest of the operations.
Thus, by choosing the fastest one (depending on the relationship between n and
ε), the final complexity is

O
(

min
{

n2.3

ε2.6
· log(n/ε2),

n2

ε3
· log(n/ε2),

n2

ε2

(
log(n/ε2) +

1
ε2

· log(1/ε)
)})

6 Conclusion and Future Work

The main contribution of this paper, apart from the introduction of a new
FPTAS for the Subset Sum Ratio problem, is the establishment of a con-
nection between Subset Sum and approximating Subset Sum Ratio. In par-
ticular, we showed that any improvement over the classic meet in the middle
algorithm [16] for Subset Sum, or over the approximation scheme for Sub-
set Sum will result in an improved FPTAS for Subset Sum Ratio.

Additionally, we establish that the complexity of approximating Sub-
set Sum Ratio, expressed in the form O((n + 1/ε)c) has an exponent c < 5,
which is an improvement over all the previously presented FPTASs for the prob-
lem.

It is important to note however, that there is a distinct limit to the complexity
that one may achieve for the Subset Sum Ratio problem using the techniques
discussed in this paper.

As a direction for future research, we consider the notion of the weak approx-
imation of Subset Sum, as discussed in [9,26], which was used in order to
approximate the slightly easier Partition problem, and may be able to replace
the approximate Subset Sum algorithm in the computation of the ε′-close sets.

Another possible direction could be the use of exact Subset Sum algorithms
parameterized by a concentration parameter β, as described in [3,4], where they
solve the decision version of Subset Sum. See also [15] for a use of this parameter
under a pseudopolynomial setting. It would be interesting to investigate whether
analogous arguments could be used to solve the optimization version.
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Abstract. We revisit the problem of finding a 1-restricted simple 2-
matching of maximum cardinality. Recall that, given an undirected graph
G = (V,E), a simple 2-matching is a subset M ⊆ E of edges such that
each node in V is incident to at most two edges in M . Clearly, each such
M decomposes into a node-disjoint collection of paths and circuits. M
is called 1-restricted if it contains no isolated edges (i.e. paths of length
one).

A combinatorial polynomial algorithm for finding suchM of maximum
cardinality and also a min-max relation were devised by Hartvigsen. It
was shown that finding such M amounts to computing a (not neces-
sarily 1-restricted) simple 2-matching M0 of maximum cardinality and
subsequently altering it into M (with |M | = |M0|) so as to minimize the
number of isolated edges. While the first phase (which computes M0)
runs in O(E

√
V ) time, the second one (turning M0 into M) requires

O(V E) time.
In this paper we apply the general blocking augmentation approach

(initially introduced, e.g., for bipartite matchings by Hopcroft and Karp,
and also by Dinic) and present a novel algorithm that reduces the time
needed for the second phase to O(E

√
V ) thus completely closing the gap

between 1-restricted and unrestricted cases.

1 Introduction

Let G = (V,E) be an undirected graph. Recall that a simple 2-matching M is a
subset M ⊆ E such that at most two edges of M are incident to any node in V .
By an M -component we mean a connected component induced by the edge set
M ; clearly, each such component is either a simple path or a circuit.

Consider the k-restricted problem as follows: find a maximum cardinality
simple 2-matching M , where each M -component contains more than k edges.
The notion of restricted simple 2-matchings is motivated, e.g., by the Hamilto-
nian cycle problem: such cycles are exactly k-restricted simple 2-matchings for
k > |V |/2. Since deciding if G admits a Hamiltonian cycle is NP-hard, look-
ing for a polynomial algorithm for arbitrary k is essentially hopeless. But the
problem remains non-trivial even for small positive values of k.
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C. Bazgan and H. Fernau (Eds.): IWOCA 2022, LNCS 13270, pp. 86–100, 2022.
https://doi.org/10.1007/978-3-031-06678-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06678-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-06678-8_7


Faster Algorithm for Finding Maximum 1-Restricted Simple 2-Matchings 87

In the present paper we focus on maximum 1-restricted simple 2-matchings,
i.e. matchings without isolated edges (hereinafter we shall be using the term
maximum to denote objects of maximum cardinality). In [2] it was shown that
a maximum 1-restricted simple 2-matching can be found in polynomial time.
Moreover, the problem is closely related to its unrestricted counterpart as follows:

Theorem 1 ([2], Th. 6). Every graph admits a maximum 1-restricted simple
2-matching that is a subset of some maximum unrestricted simple 2-matching.

For a subset X ⊆ E, let iso(X) be the number of connected components of
(V,X) that are isolated edges. Theorem 1 implies that solving the 1-restricted
problem amounts to finding (among maximum unrestricted simple 2-matchings)
some M minimizing iso(M); then the needed maximum 1-restricted simple 2-
matching is just M without its isolated edges.

Let ν0(G) (resp. ν1(G)) be the cardinality of a maximum unrestricted (resp.
1-restricted) simple 2-matching in G. A min-max formula for ν1(G) (relating it
to ν0(G)) is also known:

Theorem 2 ([2], Th. 4).

ν0(G) − ν1(G) = max
W⊆V

(iso(G − W ) − 2|W |) .

All of the above indicates a deep and intricate connection between 1-restricted
and unrestricted problems, at least in the structural sense. As for the algorith-
mic aspects, Hartvigsen [2] provides a polynomial algorithm for solving the 1-
restricted problem as follows. First, solve the unrestricted problem (which can
be done in O(m

√
n) time, see, e.g. [1]; hereinafter we define n := |V |, m := |E|

and assume m ≥ n) and let M be the resulting simple 2-matching. Second, apply
a number of alternating transformations so as to minimize iso(M). The second
stage can be done in polynomial time; a careful analysis (omitted in [2]) leads
to an O(mn) bound.

The first stage involves blossom manipulations while the second one resembles
an O(mn)-algorithm for computing maximum bipartite matchings (in particu-
lar, it never has to deal with blossoms or similar nested contracted structures).
Altogether the algorithm runs in O(mn) time, which is unsatisfactory since the
first, seemingly more involved stage, takes just O(m

√
n) time.

In this paper we give a novel approach for implementing the second stage by
showing how the general idea of blocking augmentations [3] enables minimizing
iso(M) in O(m

√
n) time (Theorem 3). Due to the lack of space, some (mostly

technical) proofs are omitted and will appear in the full version of the paper.

2 Algorithm

2.1 Outline

Let G0 = (V0, E0) be an undirected graph; our ultimate goal is to compute a
maximum 1-restricted simple 2-matching in G0. As mentioned earlier, we start
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by computing a maximum simple 2-matching M0 in G0. Then M0 is updated by
applying certain augmenting transformations. These transformations preserve
|M0| (hence, in the sense of the unrestricted problem, they are merely alterna-
tions) and gradually decrease iso(M0). At the end, no augmentations remain
and a maximum 1-restricted simple 2-matching can be extracted from M0 by
dropping all of its isolated edges. A suitably chosen subset W ⊆ V0 (Lemma 7)
certifies that the latter matching is optimal by Theorem 2.

The sequence of augmentations is divided into phases. Each phase deals with
augmenting paths of certain length, and the latter length strictly increases over
phases (Lemma 12). Each phase can be implemented to run in linear time and the
number of phases is O(

√
n). Altogether this yields an O(m

√
n)-time algorithm

(Theorem 3).

2.2 Alternations and Augmentations

We assume that the reader is familiar with the basic ideas and notions of match-
ing theory (see [4] for a survey). Let us discuss transformations that can be
applied to a general simple 2-matching to decrease the number of isolated edges
while preserving its cardinality. Our transformations are similar in spirit to those
described in [2] but for the sake of completeness we present a self-contained
description below.

Instead of working with M0 in G0 directly it is more enlightening to work
with a certain simple 2-matching M in graph G obtained from M0 and G0 by
contractions as described below. Initially let M := M0 and G := G0. These
contractions take a certain node-disjoint collection of edges in G0 and replace
each such edge e with a single node ve.

First contract each isolated edge ev of M0 into a single node v. We call these
contracted nodes sources.

Second, consider an M0-component that is a path of length exactly 4 formed
by edges e1, e2, e3, e4, numbered along the path (Remark 1 below explains why
these paths are important). We simultaneously contract edges e1 and e4 into
nodes a′ and c′ in G and replace the initial path of length 4 with path F of
length 2 formed by edges e2 and e3. (Hereinafter we identify edges in G with
their pre-images in G0.) Path F is called a fork ; nodes a′ and c′ are called the
endpoints of F . The (unique) common node b of e2 and e3 (which is also a node
of the original graph G0) is called the center of F . See Fig. 1.

e1 e2 e3 e4

b

(a) M0-component of length 4 in G0

e2 e3a

b

c

(b) Fork F with center b in G

Fig. 1. Fork contraction
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Once all isolated edges of M0 are contracted into sources and all paths of
length 4 are contracted into forks, simple 2-matching M and graph G are ready.
The subsequent algorithm updates M in G and returns to G0 at the very end,
when the number of sources in M is minimized. The following invariant is main-
tained:

(1) For each contracted node v in G, at most one edge in M is incident to v.

Property (1) implies that at any moment any contracted node v in G can be
replaced with its pre-image (edge ev in G0) and M can be extended by adding ev.
Also if all contracted nodes of G are expanded (turning M into M0 by adding
edges ev) the isolated edges in the resulting simple 2-matching M0 exactly cor-
respond to sources in M . This justifies the idea to alter M so as to minimize the
number of sources.

Also it turns out crucial to strengthen (1) as follows:

(2) Each contracted node v in G is either not incident to any edge of M (i.e. is
a source) or is incident to exactly one such edge e; moreover, in the latter
case e belongs to a fork and v is one of its endpoints.

Consider source s = v0 and a sequence of (distinct) forks F1, . . . Fk such that
s is connected to the center v1 of F1, some endpoint v2 of F1 is connected to
the center v3 of F2, and, in general, some endpoint v2i of fork Fi is connected to
the center v2i+1 of fork Fi+1 (for i = 1, . . . , k − 1). The nodes v0, . . . , v2k form a
path P of even length called alternating. See Fig. 2.

s = v0
v1

v2

v3

v4

v5

v6

(a) Alternating path in G

v0
v1

v2

v3

v4

v5

s = v6

(b) s becomes a new source vertex in G

Fig. 2. Alternation. hereinafter, solid edges belong to the current 2-matching, dashed
edges are free from the current 2-matching.

Inspired by the standard matching techniques, one can replace M with a new
simple 2-matching M ′ constructed by adding each first, third, and etc. edge of
P to M and removing each second, forth and etc. edge. See Fig. 2.

This transformation clearly preserves the cardinality of M . Forks F1, . . . , Fk

are, essentially, replaced with new forks F ′
1, . . . , F

′
k and an M -source s moves

to s′ = v2k, which becomes an M ′-source. In a sense, alternating paths enable
moving sources of simple 2-matchings across the graph.

Alternations preserve property (2), and also obey the following:
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Lemma 1. Let U and U ′ be the sets of endpoints of forks before and after
alternation along (v0, . . . , v2k). Then U ′ = U ∪ {v0} − {v2k}.

In addition to alternation, the problem admits the notion of augmentation.
Like for other matching problems, augmentation is just an alternation plus some
final local step that improves the solution. In our case, the goal of a single
augmentation is to reduce the number of sources by one.

Let t be a (possibly contracted) node in G. We call t a sink if one of the
following cases applies:

(3) (a) t is an endpoint of a fork F (thus t is contracted); or
(b) t belongs to a circuit component C of M (and, thus, t is not contracted

by (2)); or
(c) t is an inner node of a non-fork path component P of M (and, thus, t

is not contracted by (2) again).

We now describe the structure of source-to-sink augmenting paths and elab-
orate on how augmentations are performed. Let us start with the following basic
case: assume that s is a source and t is its neighbor that happens to be a sink.
Then one can add the edge st to M and remove some edge tr from M ((3) implies
there is at least one) forming a new simple 2-matching M ′.

Unfortunately (2) may cease to hold for M ′ but its weaker counterpart (1)
still holds. Indeed, s becomes incident to exactly one edge of M ′. If t happens
to be contracted then t must be an endpoint of a fork; the above augmentation
replaces edge tr with edge st.

We immediately fix this by first expanding all suffering contracted nodes and
then contracting all new path components of length 4 into forks.

The above transformation eliminates source s and thus brings us hope to
improve M . However, the component of M containing t gets altered and can
potentially give rise to more isolated edges. Fortunately, a careful choice of edge
tr prevents this.

Indeed, in case (3)(a) the fork loses one of its edges but the remaining edge
enters a contracted endpoint and thus becomes a path of length 2 after uncon-
traction (see Fig. 3).

In case (3)(b) circuit C turns into a path of length at least 4 after uncontrac-
tion (see Fig. 4). If the resulting length is exactly 4 (which happens if the length
of C was 3) then we also contract this path into a fork.

s

rt u

(a) Before transformation:
reaching fork endpoint

s

rt u

(b) (2) is now violated for
vertices s, t and u

s s

rt1 t2 u1 u2

(c) (2) is valid again after
uncontractions

Fig. 3. Augmentation, case (3)(a)
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s

t

r

(a) Before transformation:
reaching circuit C of
length 3

s s

t

r

(b) Path of length 4 after
transformation and uncon-
traction

s

t

(c) Contracting newly cre-
ated path of length 4 into
a fork

Fig. 4. Augmentation, case (3)(b)

Finally, in case (3)(c) let P be the (non-fork) path component of M contain-
ing t and let l1, l2 be the distances along P from t to the endpoints v1, v2 of P
(measured in edges). Clearly l1 = l2 = 2 is impossible (since the length of P is
not equal to 4). W.l.o.g. l2 �= 2. Now pick r as the next node along P from t in
the direction to v2. This way, the augmentation alters P into paths of lengths
l2 − 1 �= 1 and l1 + 2 ≥ 3 (after uncontraction). (If l2 = 1 then the former path
vanishes. Also one or even both of the resulting paths may be of length 4 and
thus must be contracted into a fork.) See Fig. 5.

Remark 1. One can easily see that the above analysis fails to hold for l1 = l2 = 2
as no choice of r can prevent forming a new isolated edge. This is exactly the
reason why paths of length 4 are so special.

Let us introduce another notion that is similar to sinks: call node v unsatu-
rated if v is not contracted and is incident to at most one edge of M .

Remark 2. A careful reader may wonder why in (3) we do not regard unsatu-
rated nodes as sinks. In particular, in (3)(c) we restrict t to be an inner node
of P . The reason is that if t is unsaturated then just adding st to M (and not
deleting any edge at all) would produce an unrestricted simple 2-matching of a
larger cardinality, which is impossible by the initial choice of M0 and the fact
that its cardinality is preserved during the execution of the algorithm. Hence
such edge st cannot appear. Note that for similar reasons the G0-preimages of

s

v1 t r = v2

(a) Before transforma-
tion: reaching path P of
length 3, l1 = 2, l2 = 1

s s

v1 t r = v2

(b) Paths of length 4 and 0
after transformation and
uncontraction

s

t r = v2

(c) Contracting newly cre-
ated path of length 4 into
a fork

Fig. 5. Augmentation, case (3)(c)
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contracted edges st and tr in Fig. 3 must share a common endpoint, for otherwise
M0 would not be maximum.

Consider a simple alternating path (v0, . . . , v2k) as above (given by a sequence
of nodes), where v0 is a source and v2k is either v0 (for k = 0) or an endpoint of
a fork (for k > 0). Next, let v2k be connected to some sink t = v2k+1 (distinct
from nodes v0, . . . , v2k). Then path P = (v0, . . . , v2k, v2k+1) is called augmenting.
One can apply P to M by first alternating along (v0, . . . , v2k) and thus moving
the source from s to v2k and then finally applying the transformations explained
above (note that t remains a sink even after alternation by Lemma 1). Altogether
the augmentation maintains (2), preserves the cardinality of M but decreases
the number sources by one.

2.3 Edge Directions

Since our approach incorporates certain blocking augmentations, it should be of
no surprise that rather than considering arbitrary augmenting paths one must
focus on shortest ones. To this aim, we first introduce edge directions: some (but
not all) undirected edges xy are turned into directed ones (x, y). It is possible
that some undirected edges xy become directed both as (x, y) and (y, x), i.e. e
may give rise to a pair of oppositely directed edges.

The exact rules of assigning directions are as follows:

(4) (a) for a source s and an edge sv such that v is a sink or the center of a
fork, sv is directed as (s, v);

(b) for a fork with edges uv, vw (where u, w are endpoints and v is the
center), these edges are directed as (v, u) and (v, w);

(c) for an endpoint u of a fork F and an edge uv such that v is either a sink
or the center of another fork F ′ �= F , edge uv is directed as (u, v).

In particular, the only case when an edge uv is directed both as (u, v) and
(v, u) is when u and v are endpoints of some (possibly coinciding) forks.

Let
−→
G be the digraph obtained by assigning directions to the edges of G as

above (clearly
−→
G may contain fewer edges than G since not all edges become

directed). Note that this graph will be changing as we update M in G. Clearly
(4) implies

Lemma 2. Each alternating or augmenting path consists of directed edges in−→
G .

Lemma 3. Each odd directed source-to-sink path P = (v0, . . . , v2k, v2k+1) in−→
G , such that v1, v3, . . . , v2k−1 are not sinks, is augmenting.

2.4 Blocking Augmentations

Lemma 3 implies a combinatorial algorithm for computing augmenting paths
that extracts a single augmenting path per BFS or DFS run, which is inefficient.
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Instead we describe a method for extracting a blocking (i.e. inclusion-wise max-
imal) collection of such paths. Like in most blocking augmentation algorithms,
ours executes a series of phases each dealing with augmenting paths of some
fixed length.

We next focus on a single phase. It first runs a BFS-like algorithm Build-
Levels assigning certain levels to nodes (denoted by level(v) for v ∈ V ) as
follows. Nodes v with assigned level(v) are called labeled, others are called unla-
beled.

Initially, let D := 0, define level(s) := 0 for all sources s and run a sequence of
iterations. Each iteration considers a node subset Q ⊆ V such that level(v) = 2D
for each v ∈ Q. The set Q will consist of all sources for D = 0 and of all endpoints
of some forks for D > 0. Moreover, there will be an alternating path of length
2D to each node u ∈ Q.

For each u ∈ Q, the algorithm scans all edges (u, v) ∈ E(
−→
G). First note that

v cannot be unsaturated since otherwise one could have increased the cardinality
of M by applying an alternating path to u and then adding uv.

If v is a sink then Build-Levels stops as it has discovered an augmenting
path. It also labels all currently unlabeled nodes x as level(x) := 2D.

Otherwise (none of v is a sink) all these v must be centers of some forks
(either still unlabeled or already labelled). Let R be all such centers v that are
not labelled yet. Assign level(v) := 2D+1 for each v ∈ R and level(w) := 2D+2
for all endpoints w of forks in R, update D := D + 1, and repeat.

Build-Levels also stops if Q = ∅; in this case we fail to discover an aug-
menting path. Update D := D + 1 and assign level(x) := 2D for all unlabeled
nodes x thus leaving level 2D − 1 empty. Expand all contracted nodes (insert-
ing appropriate edges into M) and terminate claiming that the resulting M is
optimal, see Lemma 7 below.

Edges (x, y) in
−→
G obeying level(y) = level(x) + 1 are called geodesic. Node

levels establish the following structure of
−→
G described by the invariants below

that will be preserved during the phase and that are easily proven to hold right
after the invocation of Build-Levels by induction:

(5) (a) all sources are at level 0, moreover, if D > 0 then all nodes at level 0 are
sources or endpoints of forks; all sinks that are not endpoints of forks
are at level 2D;

(b) nodes at levels 1, 3, . . . , 2D − 1 are exactly centers of forks; nodes at
levels 2, 4, . . . , 2D − 2 are exactly endpoints of forks;

(c) for each edge (x, y) in
−→
G , level(y) ≤ level(x) + 1;

(d) there is no edge (x, y) in
−→
G with level(x) = level(y) = 2i for some

i = 0, . . . , D − 1.

Remark 3. For D > 0, level 0 contains just sources after Build-Levels ter-
minates. However, subsequent augmentations turn some of these sources into
endpoints of forks. This explains the somewhat complicated structure of (5)(a).
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Remark 4. Among all of 2D + 1 levels the last one 2D is the most “chaotic”: if
D = 0 then it contains all nodes. If D > 0 then it may contain virtually anything
except for sources: sinks (in particular, endpoints of forks), centers of forks, and
also unsaturated nodes.

We call an augmenting path P = (v0, . . . , v2k, v2k+1) proper if level(vi) = i
for i = 0, . . . , 2k and level(v2k) = level(v2k+1) = 2D (i.e. all of its edges except
for the last one are geodesic and follow “downward” and the last one follows
“horizontally” within level 2D).

Lemma 4. Suppose that Build-Levels discovers an edge (u, v) ∈ E(
−→
G) from

the current node u with level(u) = 2D to some sink v. Then level(v) = 2D, i.e.
Build-Levels discovers a proper augmenting path.

The following lemmas indicate that although levels are constructed w.r.t.
−→
G ,

edges of the whole G obey certain properties:

Lemma 5. There is no edge uv ∈ E(G) such that level(u) and level(v) are both
even and less than 2D.

Proof. First, let level(u) = level(v) = 0. Then both u and v are either sources
or endpoints of forks; moreover, both u and v were sources at the beginning
of the phase by (5)(a). Then uv could have been added to M increasing its
cardinality, which is impossible.

Second, suppose level(u) = 0 while level(v) ≥ 2 (or vise versa); then by
(5)(a, b) u is a source or an endpoint of a fork and v is an endpoint of a fork and,
in particular, is a sink; then by (4)(a) (u, v) ∈ E(

−→
G) and level(v) ≤ level(u)+1 =

1 by (5)(a, c), which contradicts level(v) being positive and even.
Third, suppose level(u) ≥ 2 and level(v) ≥ 2; then by (5)(a, b) both u and

v are endpoints of some (possibly coinciding) forks, and, in particular, both
are sinks; then by (4)(c) (u, v), (v, u) ∈ E(

−→
G). Hence |level(u) − level(v)| ≤ 1

by (5)(c). Since both levels are even, they must be the same; this contradicts
(5)(d). ��
Lemma 6. Consider the beginning of a phase with D > 0. For each node u
with level(u) = 2i, i = 0, . . . , D − 1 and edge uv ∈ E(G), level(v) = 2j + 1 for
some j ≤ i.

Proof. First and foremost, v cannot be unsaturated since otherwise, as usual,
one could have increased the cardinality of M by first alternating along some
even source-to-u path consisting of geodesic edges and then adding uv. (Note
that here we rely on the fact that the phase has just started and hence an
alternating path ending at u exists.)

Node v cannot be a source by Lemma 5 (all sources are at level 0 by (5)(a)).
Therefore, v is either a sink of a center of a fork.

If i = 0 then by (5)(a) u is a source or an endpoint of a fork. By (4)(a, c)
edge uv is directed as (u, v) and thus level(v) ≤ 1 by (5)(c), as required.
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Now let i > 0. By (5)(b) node u is an endpoint of some fork F . If v is the
center of F then level(v) = 2i−1, and we are done. Otherwise by (4)(c) we have
a directed edge (u, v).

Note that level(v) < 2D, otherwise the difference of levels between v and u
would be at least 2 in contradiction to (5)(c). Also level(v) cannot be even by
Lemma 5. Now we know that level(v) = 2j +1 for some j = 0, . . . , D−1. Finally
(5)(c) implies j ≤ i due to existence of edge (u, v). ��
Lemma 7. Suppose Build-Levels fails to discover an augmenting path. Then
the current M corresponds to a maximum 1-restricted simple 2-matching.

Proof. Let Vi := {v | level(v) = i}. Consider W := V1 ∪ V3 ∪ . . . V2D−1. Note
that W contains no contracted nodes by (5)(b) and hence may be regarded a node
set in G0. Then by Theorem 2 one has ν0(G0) − ν1(G0) ≥ iso(G0 − W ) − 2|W |.

We claim that iso(G0−W ) ≥ |V0|+|V2|+. . .+|V2D−2|. Indeed, after removing
W in G nodes in V0 ∪ V2 ∪ . . . ∪ V2D−2 become isolated by Lemma 6. Expanding
these contracted nodes one gets this many isolated edges.

Also note that |V2i+2| = 2|V2i+1| for all i = 0, . . . , D − 2 (since each fork has
one center in V2i+1 and two endpoints in V2i+2).

Then plugging these estimates in, one gets ν0(G0) − ν1(G0) ≥ |V0| + |V2| +
. . . + |V2D−2| − 2(|V1| + |V3| + . . . + |V2D−1|) = |V0| − 2|V2D−1|, hence |V0| ≤
ν0(G0) − ν1(G0) + 2|V2D−1|. Recall that in case Build-Levels discovers no
augmenting path, it produces V2D−1 = ∅. Therefore |V0| ≤ ν0(G0) − ν1(G0).
Also V0 is just the set of sources, so after expanding M and G one gets a 1-
restricted simple 2-matching M0 in G0 with exactly ν0(G0) − ν1(G0) isolated
edges, as needed. ��

The algorithm extracts augmenting paths in
−→
G one by one, applies these

paths to M , and finally expands and re-contracts the relevant portions of G
touched by augmentations as described in Subsect. 2.2. These contractions and
expansions are consistent with levels in the following sense. Whenever a con-
tracted node x is expanded into x′ and x′′, then x′, x′′ receive the level of x. When
we contract certain y′ and y′′ into y, it is guaranteed that level(y′) = level(y′′)
and this number will be regarded as level(y). Also, the algorithm will be adjust-
ing levels of some nodes by pushing them down to level 2D.

To describe this in details, we perform a case splitting that is parallel to
(3). Consider a proper augmenting path (s = v0, . . . , v2k, v2k+1 = t) and let
F1, . . . , Fk be the sequence of forks traversed by P (in the order from s to t).

(6) (a) t is an endpoint of some fork F . Note that it is possible that F = Fk

but clearly F �= F1, . . . , Fk−1 (since endpoints of the latter forks are at
levels < 2D). Two subcases are possible.

(a’) If F = Fk then forks F1, . . . , Fk−1 are altered into F ′
1, . . . , F

′
k−1 and

Fk dissolves. We move nodes v2k−2, v2k−1, v2k, and v2k+1 to level 2D
and handle expansions and re-contractions there; see Fig. 6.

(a”) If F �= F1, . . . , Fk then forks F1, . . . , Fk are altered into F ′
1, . . . , F

′
k

and none of them dissolves; all nodes of F are moved to level 2D and
are similarly expanded and re-contracted if needed; see Fig. 7.
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(b) t belongs to a circuit component C of M (and is, thus, not contracted).
Forks F1, . . . , Fk are altered into F ′

1, . . . , F
′
k and none of them dissolves.

All nodes of C are already at level 2D, the needed expansions and
re-contractions happen there; see Fig. 8.

(c) t is an inner node of a non-fork path component P of M (and is, thus,
also not contracted). Like in (6)(b), forks F1, . . . , Fk are altered into
F ′
1, . . . , F

′
k and none of them dissolves. All nodes of P are already at level

2D, the needed expansions and re-contractions happen there; see Fig. 9.

0

1

2

3

4

s = v0

v1

v2

v3

v4 t = v5

(a) Before augmentation

0

1

2

3

4

s = v0

v1

v2 v2
v3

v4 v4

v5 v5

(b) After augmentation

Fig. 6. Case (6)(a’). We mostly focus on how edge directions and node levels are
updated; the transformation is described in detail above.
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Fig. 7. Case (6)(a”)

Lemma 8. The above augmentation preserves (5).

Now let us discuss how paths P are extracted. We start with
Find-Alternating(v) routine that, given a node v with level(v) = 2D,
aims to find an alternating path of length 2D from some source to v. By
Lemma 2 and (5)(c) such a path must solely consist of geodesic edges in

−→
G .
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Fig. 8. Case (6)(b)
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Fig. 9. Case (6)(c)

Find-Alternating(v) applies backward graph traversal: if v is already a source
then we are done. Otherwise, fetch an incoming geodesic edge (u, v). If one is
found then reset v := u thus climbing one level up. Otherwise (no incoming
geodesic edge exists for v) backtrack.

The algorithm explicitly maintains the set of directed edges
−→
E 0 in

−→
G that are

geodesic and uses this set in Find-Alternating. Note that after augmentation
edges belonging to path P found by the above procedure and all newly-added
edges are not-geodesic: edges (u, v), where u is a source or is an endpoint of a
fork and v is the center of another fork, become parts of altered forks and switch
direction to (v, u); edges (u, v), where u is the center and v is an endpoint of
some fork, are removed from M ; since u is still a fork center these can only
be directed as (v, u). Hence, we prune all edges of P from

−→
E 0 and, moreover, if

Find-Alternating ever backtracks from node u down to node v along geodesic
edge (u, v) (after discovering that u is not reachable by alternating paths) we
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also prune (u, v) from
−→
E 0. This enables amortizing the time spent by Find-

Alternating calls during the phase.
Now let us discuss how to extract augmenting paths rather than just alter-

nating. The difficulty is that the set of potential final edges of these paths is
highly dynamic: such edges may appear and vanish as the phase progresses. We
assign directions to some edges of G and introduce the set

−→
E 1 of “final” directed

edges (u, v) such that: (i) level(u) = 2D; (ii) u is either a source (for D = 0) or
is an endpoint of a fork with center at level 2D − 1 (for D > 0).

We stress that not every edge (u, v) of
−→
E 1 belongs to

−→
G (but this is certainly

the case if v is a sink). For convenience, we identify edges of
−→
E 1 in G with their

pre-images in G0; this enables us to compare
−→
E 1 at various moments during the

phase.

Lemma 9. Augmentations can only decrease
−→
E 1. Moreover, if e ∈ −→

E 1 is the
final edge of an augmenting path P then e vanishes from

−→
E 1 upon augmenting

along P .

Let us split
−→
E 1 into parts E1

v , where
−→
E 1

v consists of all edges of the form
(u, v) ∈ −→

E 1. In fact, instead of maintaining the whole
−→
E 1, the algorithm main-

tains
−→
E 1

v for each v.
The algorithm also maintains set T of nodes t that are sinks with level(t) =

2D. Set T may grow and shrink during the phase. This may happen since t
may change its status (become a new sink or cease to be one), but also due to
contractions and uncontractions.

Let T �= ∅. Extract an arbitrary node t ∈ T . If
−→
E 1

t = ∅ then the current
t is pruned from T (by Lemma 9 this set remains empty for the remainder of
the phase) and another t is considered. Otherwise (v, t) is extracted from

−→
E 1

t

and Find-Alternating(v) is invoked. If the latter finds an alternating path P
then appending (v, t) we have obtained an augmenting path P by Lemma 3. We
update M along it. Note that (v, t) no longer belongs to

−→
E 1 by Lemma 9.

Otherwise (Find-Alternating fails to find P ) we prune (v, t) from
−→
E 1

t and
try fetching another edge from there, and so on. The correctness of the algorithm
pruning edge (v, t) from

−→
E 1 is justified by

Lemma 10. If Find-Alternating(v) fails then (v, t) ∈ −→
E 1

v can be ignored
for the rest of the phase.

When the current phase completes, all sets
−→
E1

t are fully pruned for all sinks
t with level(t) = 2D. This implies

Lemma 11. When a phase terminates, no proper augmenting path remains
w.r.t. the final levels of this phase.

Lemma 12. Suppose the next phase runs Build-Levels and computes D′.
Then D′ > D.
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Proof. Consider the moment the former phase terminates. Suppose D = 0 and
assume for the sake of contradiction that D′ = 0. Note that augmenting paths
in both of these phases are just source-to-sinks edges and the former phase must
have eliminated all of these by Lemma 11.

Now let D > 0 and assume for the sake of contradiction that D′ ≤ D and let
P = (v0, . . . , v2D′ , v2D′+1) be an augmenting path of length 2D′ + 1. We follow
along P and prove inductively that level(vi) ≡ i (mod 2) and level(vi) ≤ i for
all i = 0, . . . , 2D′ (recall that levels are regarded w.r.t. the former phase).

This is obviously true for v0 since all sources are at level 0 by (5)(a).
Let level(v2i) be even and not exceed 2i for some i = 0, . . . , D′−1. Node v2i is

a source or an endpoint of fork while node v2i+1 is the center of (another) fork F ;
hence (v2i, v2i+1) ∈ E(

−→
G) by (4)(a, c). This implies level(v2i+1) ≤ level(v2i)+1 ≤

2i + 1 by (5)(c). Also level(v2i+1) cannot be even since no level 0, 2, . . . , 2D − 2
may contain fork centers by (5)(a, b). Hence the induction follows for v2i+1.

Moving from v2i+1 to v2i+2, note that v2i+2 is some endpoint of fork F

(defined above). By (4)(b) (v2i+1, v2i+2) ∈ E(
−→
G) and by (5)(c) level(v2i+2) ≤

level(v2i+1)+1 ≤ 2i+2. It remains to prove that level(v2i+2) is even; this follows
from (5)(b) since no odd level may contain endpoints of forks.

Recall that we are assuming (towards contradiction) that D′ ≤ D. If D′ <
D then the above induction implies that level(v2D′) ≤ 2D − 2. By (4)(a, c)
(v2D′ , v2D′+1) ∈ E(

−→
G), hence by (5)(c) level(v2D′+1) ≤ 2D − 1. Since v2D′+1

is a sink, it must be a fork endpoint by (5)(a, b) and thus level(v2D′) and
level(v2D′+1) must both be even and be less than 2D. Property (5)(d) forbids
level(v2D′+1) = level(v2D′), therefore level(v2D′+1) ≤ level(v2D′) − 2. Now both
v2D′ and v2D′+1 are endpoints of forks (possibly coinciding), hence by (4)(c)
one must have (v2D′+1, v2D′) ∈ E(

−→
G), contradicting (5)(c) and the above level

inequality.
Now suppose D′ = D. If level(v2D) ≤ 2D −2 then we get a contradiction the

same way as above. Hence level(v2D) = 2D and, moreover, the alternating prefix
of P must solely consist of geodesic edges. It remains to prove that level(v2D+1) =
2D as this would indicate that P is a proper augmenting path, which must have
been found by the former phase by Lemma 11.

Suppose level(v2D+1) < 2D. Since levels 1, 3, . . . , 2D − 1 only contain fork
centers by (5)(b), level(v2D+1) = 2i for some i = 0, . . . , D − 1; in particular,
level(v2D+1) ≤ 2D − 2 = level(v2D)− 2. Now v2D+1 and v2D are both endpoints
of some (possibly coinciding) forks, hence by (4)(a, c) (v2D+1, v2D) ∈ E(

−→
G),

contradicting (5)(c) and the above level inequality. ��

2.5 Bounding the Number of Phases

Let us establish an O(
√

n) bound for the number of phases. Like in other match-
ing problems, it amounts to showing that once D becomes large enough, the
current solution is close to the optimum.
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Consider the moment a phase started, computed D > 0 by running BFS, and
established the levels of nodes. Also recall that G is obtained from the initial
graph G0 by contraction of certain edges.

Lemma 13. At the beginning of a phase with D > 0 the number of sources in
M is at most ν0(G0) − ν1(G0) + 2n/D.

Proof. This is, in fact, a refined version of Lemma 7. Let Vi :=
{v | level(v) = i}. Fix some k = 0, . . . , D − 1 and consider W := V1 ∪ V3 ∪
. . . V2k+1. Note that W contains no contracted nodes by (5)(b) and hence may
be regarded a node set in G0. Then by Theorem 2 one has ν0(G0) − ν1(G0) ≥
iso(G0 − W ) − 2|W |.

We claim that iso(G0 −W ) ≥ |V0|+ |V2|+ . . .+ |V2k|. Indeed, after removing
W in G nodes in V0 ∪ V2 ∪ . . . ∪ V2k become isolated by Lemma 6. Expanding
these contracted nodes one gets this many isolated edges.

Also note that |V2i+2| = 2|V2i+1| for all i = 0, . . . , D − 1 (since each fork has
one center in V2i+1 and two endpoints in V2i+2).

Then plugging these estimates in, one gets ν0(G0)−ν1(G0) ≥ |V0|+|V2|+. . .+
|V2k|−2(|V1|+|V3|+. . .+|V2k+1|) = |V0|−2|V2k+1|, hence |V0| ≤ ν0(G0)−ν1(G0)+
2|V2k+1|. Since |V1| + . . . + |V2D−1| ≤ n, if one chooses k among 0, . . . , D − 1 so
as to minimize |V2k+1| then |V2k+1| ≤ n/D. Also V0 is just the set of sources, so
the needed bound follows. ��
Theorem 3. Converting a maximum unrestricted simple 2-matching into a
maximum 1-restricted simple 2-matching can be done in O(m

√
n) time.

Proof. Run the initial �√n� phases and start a new one (assuming the algo-
rithm did not finish earlier). Then D ≥ �√n� by Lemma 12. By Lemma 13
and Theorem 2 the current solution contains at most O(n/D) = O(

√
n) more

sources than the optimum one. Therefore additional O(
√

n) phases will suffice
(each phase eliminates at least one source). Assuming appropriate implementa-
tion, each phase takes O(m) time. Hence the proof follows. ��
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Abstract. We prove new lower bounds for suitable competitive ratio
measures of two relaxed online packing problems: online removable mul-
tiple knapsack, and a recently introduced online minimum peak appoint-
ment scheduling problem. The high level objective in both problems is
to pack arriving items of sizes at most 1 into bins of capacity 1 as effi-
ciently as possible, but the exact formalizations differ. In the appoint-
ment scheduling problem, every item has to be assigned to a position,
which can be seen as a time interval during a workday of length 1. That is,
items are not assigned to bins, but only once all the items are processed,
the optimal number of bins subject to chosen positions is determined,
and this is the cost of the online algorithm. On the other hand, in the
removable knapsack problem there is a fixed number of bins, and the goal
of packing items, which consists in choosing a particular bin for every
packed item (and nothing else), is to pack as valuable a subset as possi-
ble. In this last problem it is possible to reject items, that is, deliberately
not pack them, as well as to remove packed items at any later point in
time, which adds flexibility to the problem.

Keywords: Bin packing · Online algorithms · Competitive ratio

1 Introduction

We study two online problems, for which the offline version is a classic problem,
with well-known efficient near-optimal solutions [12,15,18]. Our online problems
are not the most natural variants that one can define, but they are more relaxed.
This models reality in the sense that often there is some flexibility even in online
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environments. Flexibility obviously allows the design of better online algorithms,
though such algorithms typically cannot find optimal solutions. Here, we focus
on the limitations of online algorithms for relaxed models.

We use the competitive ratio and asymptotic competitive ratio measures for
analysis of online algorithms. The competitive ratio for minimization problems
is the worst-case ratio between the cost of an online algorithm and the cost of
an optimal offline algorithm for the same input. For maximization problems,
the roles of the algorithm and an optimal offline solution are reversed. The
asymptotic competitive ratio is the supreme limit of the competitive ratio for
inputs with optimal costs or profits growing to infinity.

In offline bin packing [12,17,18], there are items of indices 1, 2, . . . , n, where
item j has a rational size sj ∈ (0, 1]. The goal is to partition the items into the
minimum number of sets called bins, where the total size for every bin does not
exceed 1. One can see this as a scheduling problem where items are assigned to
machines that are available during the time interval [0, 1), but it is not necessary
to assign the specific time slots in advance, since this can always be done. The
length of the time slot for item j is required to be of length sj , where the interval
has the form [x, x + sj) for x ≥ 0 and x ≤ 1 − sj . Alternatively, one can assign
the time slots, and not the bins, where the assignment to bins can be done
by a simple process of coloring an interval graph. In the standard online bin
packing problem [2,5,6] items are to be assigned to bins sequentially, and it is
assumed that items just receive consecutive time slots in the bin, starting from
time zero. An alternative online model was defined recently by Escribe, Hu, and
Levi [11], where the online feature is the assignment to time slots rather than
the bins. The problem is called minimum peak appointment scheduling (MPAS).
In both models, items are presented one by one, such that each item is assigned
irrevocably before the next item arrives.

In the work by Escribe, Hu, and Levi [11], a randomized algorithm with
asymptotic competitive ratio at most 1.5 was designed, which was recently
improved to 16

11 ≈ 1.455 by Smedira and Shmoys [20]. A lower bound of 1.5 on
the competitive ratio of deterministic algorithms was proved [11], while Smedira
and Shmoys [20] proved a lower bound of 1.2 for the asymptotic competitive
ratio of all randomized (and deterministic) algorithms. These results contrast
with those known for the standard online bin packing. While the best known
lower bound of 1.54278 [5] holds only for deterministic algorithms, earlier results
hold for randomized algorithms, where the best such result is 1.5403 [6]. The
current best upper bound for standard online bin packing [2] is 1.57829. A sim-
ple way to see the difference between the problems is the following. Consider a
large even number of items of size 0.4, possibly followed by the same number
of items of size 0.6. A bin packing algorithm has to decide how many pairs of
items of size 0.4 to create in order to have a good performance in both cases.
However, in the case of MPAS, one can assign half of the items of size 0.4 to
the time interval [0, 0.4) and the other half to [0.6, 1). This is optimal if there
are no further items, but if there are such items, one can assigned half of them
to [0, 0.6) and the other half to [0.4, 1), also obtaining an optimal solution. The
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problem is not meaningful as a separate offline problem, though generalizations
were recently studied as offline problems [10,14,19]. This variant is one of those
studied here.

A related problem is the so called dual bin packing [1,8], which may also
be seen as a variant of the knapsack problem with multiple knapsacks avail-
able [9,16]: The processing of arriving items is similar, except here the number
of available bins (or knapsacks) is fixed in advance, and the goal is rather to
maximize the profit associated with those items that are successfully packed. In
the multiple knapsack as studied originally, the profit associated with a set of
packed items was the maximum over all the bins of the total value of all items
packed in the bin [16], but later studies [7,9] extended this to the sum of values of
all the items packed, which is in line with dual bin packing. We are interested in
this objective, so we will not specify the results concerned solely with the single
bin of maximum value. The packing consists in assigning an item to a particular
bin, which is in contrast to MPAS, where instead a “position” or “interval” (on a
horizontal axis) within a bin (which is yet to be determined) is specified. An item
may also be rejected by an algorithm, i.e., not packed at all. Moreover, in the so
called removable online variant of the knapsack problem it is allowed to remove
a previously packed item (e.g., to accommodate the one arriving ), which from
then on counts as rejected. As is the case in vast amount of literature, we will
consider two restricted settings, in which there is a particular natural relation
between the profit associated with an item and its size (or processing time); note
that as we focus on lower bounds, considering these makes our results stronger.
The two cases, which we call as in [9], are proportional, in which the value of an
item equals its size, and unit, in which every item is worth 1 regardless of its
size.

The dual bin packing problem corresponds to the unit case with no removals,
for which no algorithm can attain constant competitive ratio [8]. Thus the stud-
ies of this problem focused on “accommodating” instances, in which all items
can be packed by the offline solution, for which constant-competitive algorithms
were designed. Moreover, it is known that whether an algorithm is allowed to
reject an item that it could pack in some bin (thus being “unfair”) affects
what ratio can be attained [1]. In the later studies of the multiple knapsack
problem, it was noted that proportional instances, even non-accommodating,
allow constant-competitive ratio, which was eventually determined to be exactly
1 + ln 2 ≈ 1.6903 [7,9]. Moreover, with removals allowed, a deterministic algo-
rithm of asymptotic competitive ratio at most 3 is known even for general
instances, and the proportional and unit instances admit algorithms with much
better competitive ratios of 1.6 and 1.5 respectively [9]. The corresponding lower
bounds for these two settings, applicable even to randomized algorithms are only
8
7 ≈ 1.14 [9] and 7

6 ≈ 1.17 [1] respectively. No better lower bounds are known
for general instances. For special cases with a small number of bins and the pro-
portional case, lower bounds of 4

3 and 6
5 are known for the competitive ratio of

deterministic algorithms with two and three bins, respectively [9], and in some
special cases the lower bound on the competitive ratio as a function of the num-



104 J. Balogh et al.

ber of bins is slightly inferior to the bounds of 8
7 and 7

6 [1,9]. This problem is
also not of interest as a separate offline problem, though the knapsack prob-
lem and its variants are being studied continuously, and a near-optimal solution
is known for almost fifty years [15]. Removable knapsack is the second variant
studied here.

1.1 Our Results

In this work, we prove the following lower bounds on the performance of online
algorithms:

– A lower bound of 1.2287 on the competitive ratio for deterministic algorithms
for either the proportional or the unit case of the removable knapsack prob-
lem, improving upon the previous bounds of 8

7 ≈ 1.14 [9] and 7
6 ≈ 1.17 [1]

respectively,
– A lower bound of 1.2 on the competitive ratio for randomized algorithms

for the proportional case of the removable knapsack problem, also improving
upon the previous bound of 8

7 ≈ 1.14 [9],
– A lower bound of 1.2691 on the asymptotic competitive ratio for randomized

algorithms for the minimum peak appointment scheduling problem (MPAS),
improving upon the previous bound of 1.2 [20].

We also consider some special cases for the online removable knapsack problem.
For example, our results improve the known lower bound for three bins and
deterministic algorithms.

1.2 Adaptive Item Sizing in Designing Hard Instances for Online
Algorithms

Those of our lower bounds that are designed specifically for deterministic algo-
rithms employ the “adaptive item sizing” technique [5], which we now describe.
This approach and more advanced approaches (in particular, one where there
is a multiplicative gap between sizes) were used for other online bin packing
problems [3,4,13].

This is a procedure in which a sequence S of items arrives, all with sizes in
a predetermined interval [α, β], where α and β are parameters. This allows the
items from S to be partitioned into a set of smallish items with sizes in the
interval [α, θ) and largish items with sizes in the interval (θ, β]. The threshold
θ satisfies α < θ < β, and the classification of each item as either smallish or
largish occurs immediately after its packing by the deterministic algorithm, but
the value of θ is determined later.

Such classification and partitioning can be ensured by a procedure resembling
the binary search. Let a and b be variables such that α ≤ a < b ≤ β. All items
thus far classified as smallish have sizes in [α, a], and all items thus far classified
as largish have sizes in [b, β]. Initially, we let a = α and b = β. Then, the next
item to arrive can have any size in (a, b), e.g., a+b

2 . Once it is dealt with (packed
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or rejected) by the algorithm, and hence classified as either smallish or largish,
the value of a or b respectively is set to this item’s size. Once all items in S
are processed, θ can take any value that could be the size of a next item in the
sequence and thus separates the sizes of smallish and largish items, e.g., θ = a+b

2
for the final values of the variables a and b.

2 Online Removable Knapsack

In our lower bound proofs, we assume without loss of generality that the online
algorithm is lazy in that it defers removing (or rejecting) items as long as the
packing is valid. Namely, we assume that upon the arrival of an item e, the
algorithm decides to either reject it outright without packing it or chooses any
bin B to which e is packed. If the bin B then overflows, the algorithm chooses a
subset of items from B, excluding e, for removal; this subset has to be minimal
such that its removal makes the total size of the items remaining in bin B at
most 1. Additionally, the algorithm is only allowed to reject the item e outright
if there is no bin where it fits without removals; note that this does not mean no
removals take place when such bin exists, as the algorithm can choose to pack e
in another bin.

2.1 Deterministic Online Algorithms for the Proportional and Unit
Cases

We start with a deterministic lower bound. The next theorem is valid for both
variants (the proportional case and the unit case).

Theorem 1. Any deterministic online algorithm that works for any number of
bins k ≥ 2, has competitive ratio of at least 1.228713.

Proof. We focus on the proportional case, and remark that the proof also applies
to the unit case because all items in the strategy have sizes that deviate from 1

2
only by negligible amounts.

The input consists of two phases. The first phase employs the adaptive sizing
framework for k items, with 1

2 − ε < α < β < 1
2 for arbitrarily small ε > 0. As

there are k bins, the algorithm is lazy, and item sizes are slightly below 1
2 , every

item will be packed upon arrival (though possibly causing removal of another
item), every non-empty bin at all times will contain either one or two items,
and the number of items in any bin cannot decrease over time. The items are
classified as follows upon packing: The first item to be placed in a bin is largish,
the second one to be placed in a bin is smallish, and an item that replaces another
inherits the replaced item’s class.

As a result, at the end of the first phase, each bin has at most two items,
if is it non-empty, then it contains one largish item, and if it contains another
one, then that item is smallish. Let Γ denote the number of bins with two items,
where Γ ≤ �k

2 �, since k items were presented. If Γ = 0, there are no smallish
items, but the threshold θ is still well defined.
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In the second phase, there are two possible continuations of the input, and
the adversary’s choice depends on Γ . The first one, applied when Γ is suitably
large, is to issue k items of size 1 − β > 1

2 each. Since all previous items have
sizes at most β, the optimal offline solution packs these items in pairs, and its
profit is at least k · (12 − ε)+k · (1−β) > k · (1− ε). Now consider the algorithm’s
packing. As each item in the second phase has size strictly larger than 1

2 , any bin
that was empty at the beginning of this phase, may contain at most one item
at its end. The number of bins for the algorithm with exactly one item before
the arrival of the new items is at most k − 2 · Γ , and therefore the profit of the
algorithm is below

(1 − β) · (k + Γ + (k − 2 · Γ )) < (
1
2

+ ε) · (2k − Γ ) .

For ε → 0, the competitive ratio in this case tends to 2k
2k−Γ .

The other strategy for the second phase, applied when Γ is suitably small,
is to issue Γ + �k−Γ

2 � items of size 1 − θ. Each such item has size slightly above
1
2 , and can be packed together with a smallish item but not with a largish item.
Clearly, no bin can have more than one such item. Note that the number of
smallish items in the input is at least Γ , and thus the number of largish items
is at most k − Γ , because exactly k items were issued in the first phase. It is
possible that the number of smallish items is larger than Γ if the algorithm
removed a smallish item to pack another, which is then smallish as well. Offline,
it is possible to pack Γ bins by placing one smallish item together with one of
size 1 − θ in each bin, �k−Γ

2 � bins with the remaining items of size 1 − θ, one
per bin, and packing all the now remaining items, i.e., largish and yet unpacked
smallish ones in pairs into 	k−Γ

2 
 bins; note that if k − Γ is odd, one of those
last bins will contain only a single item. Again assuming that ε → 0, in the limit
the total size of items packed this way is

Γ +
1
2

⌊
k − Γ

2

⌋
+

⌊
k − Γ

2

⌋
+

1
2
(k − Γ mod 2) .

For the online algorithm, an item of size 1− θ cannot be added to a bin with
only a single item, since such item is largish by the adaptive item sizing used by
the adversary. So the algorithm has only Γ bins with total size approximately 1,
and its profit is approximately k+Γ

2 (up to negligible terms). Routine inspection
of the cases of odd and even k − Γ yields that the competitive ratio is at least

3k + Γ − (k − Γ mod 2)
2k + 2Γ

.

If Γ ≥ k ·
√
33−5
2 , we have 2k

2k−Γ ≥ 0.75 +
√

33/12 ≈ 1.228713, and otherwise,
3k+Γ
2k+2Γ ≥ 0.75 +

√
33/12 ≈ 1.228713. Since for large k, the fraction 1

2k+2Γ ≤ 1
2k

tends to zero, the lower bound follows.
In the cases k = 2, 3, 4, 5, 6, 7, 8, 9, 10 we get:

4
3
,

5
4
,

6
5
,

5
4
,

5
4
,

11
9

,
16
13

,
5
4
, and

16
13

,
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by testing all values of 0 ≤ Γ ≤ �k
2 �, the bounds of the first case and the suitable

bound for the second case.
Again, we note that as all items have sizes almost equal to 1

2 , the proofs
works also for unit profits (where these profits are approximately twice as large
as the proportional profits). �

2.2 Randomized Online Algorithms for the Proportional Case

In this section we provide an alternative easier construction, which in general
provides weaker bounds, though with the exception of two values of k, for which it
improves the result of Theorem 1 (which was for deterministic online algorithms).
Unlike that theorem, this one applies to randomized algorithms as well. Another
difference is that here the input sequence is not “accommodating”, i.e., the
optimal offline solution does not always pack all the items. The advantages of
this construction are that it is fairly simple, and that it provides a lower bound
for the case of randomized online algorithms.

The next theorem is valid for the proportional case.

Theorem 2. Any randomized online algorithm for k ≥ 2 bins has competitive
ratio of at least 1.2.

Proof. Let ε > 0 be a very small constant. The input starts with 2k items of
each of the two sizes: 2

3 − ε, 1
3 + 3ε. Since items are removable, and since there

are sufficiently many items, we can assume that every bin will either have one
item of size 2

3 − ε or two items of sizes 1
3 + 3ε.

Let X be the expected number of bins with one item of size 2
3 − ε. The input

continues in one of two ways. The first one is k items of sizes 1
3 + ε, and the

second one is k items of sizes 2
3 − 3ε. The optimal offline solution has k full bins

in either case. Consider the online algorithm. In the first case, its best approach
is to add one item to each bin with an item of size 2

3 − ε. These bins are full, so
there is no better packing for them. For each bin of the other kind, even if some
replacements are made, the total size of the items it holds is at most 2

3 + 6ε. By
linearity of expectation, the expected profit of the algorithm is k − k−X

3 (letting
ε tend to zero and neglecting those terms).

In the other case, there is no reason for the algorithm to replace items of
size approximately 2

3 . (Besides, such replacements change only the negligible ε

terms.) Every bin without such an item can become full when the algorithm
replaces one item of size 1

3 + 3ε with the item of size 2
3 − 3ε. The expected profit

of the algorithm is k − X
3 .

The threshold for X is k
2 . The first input is used if X ≤ k

2 , and the second
one is used otherwise, if X > k

2 . The competitive ratio is at least 1.2.
For odd values of k, in the deterministic case we can use the integrality of

X. The first input is used if X ≤ k−1
2 , and the second one is used otherwise, i.e.,

for X ≥ k+1
2 . The ratio is at least

k

k − k+1
6

=
6k

5k − 1
> 1.2 .
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For k = 3, 5, 7, 9 we get lower bounds of 9
7 , 1.25, 21

17 , and 27
22 , which improves

slightly upon the lower bound from Theorem 1 for k = 3 and k = 7. �

3 The Online Minimum Peak Appointment Scheduling
Problem

In this section we study the problem MPAS. On high level, the aim in this prob-
lem is the same as in the multiple knapsack problem, i.e., to pack the items
efficiently, which possibly explains why our results are similar in spirit and tech-
niques. However, the setup is rather different, and it is a minimization problem
rather than maximization. Here, every item has to be packed, and the goal is to
minimize the number of the bins. The algorithm is not required to specify the bin
for packing, but it has to specify the item’s position in any bin it will eventually
be packed in, i.e., for an arriving item of size γ (where 0 < γ ≤ 1), the algorithm
has to specify an interval of the form [x, x + γ) such that 0 ≤ x ≤ 1 − γ.

3.1 Warm-Up: Deterministic Online Algorithms for MPAS

We start with a simple construction for deterministic algorithms that uses the
adaptive item sizing technique. Afterwards, we improve it into a lower bound for
randomized algorithms.

Theorem 3. The asymptotic competitive ratio for deterministic online algo-
rithms for MPAS is at least 1.25.

Proof. The input consists of one or two phases, depending on the algorithm. In
the first phase, for sufficiently large N > 0, 12N items arrive with sizes chosen
adaptively using α = 1

3 − 2ε and β = 1
3 − ε for an arbitrarily small value ε > 0.

We define the partition into smallish and largish items now. Those items whose
intervals after packing contain the point 1

2 are classified as smallish, and the
remaining items (whose intervals do not contain the point 1

2 ) are classified as
largish. Recall that the adaptive sizing guarantees that there exists a threshold
θ ∈ (α, β) such that smallish items have sizes in [α, θ) and largish items have
sizes in (θ, β]. Let Q denote the number of smallish items.

We further classify the largish items as either “low” or “high”, depending on
whether their intervals lie completely to the left or to the right of the point 1

2 , if
the positions are defined on the horizontal axis. Note that all high items contain
the point 3

4 in their intervals and similarly all low items contain the point 1
4 .

If Q ≥ 5N or Q ≤ 2N , then a solution that distributes the items evenly, i.e.,
places 4N items in each of the intervals

[
0,

1
3

)
,

[
1
3
,
2
3

)
,

[
2
3
, 1

)
,

and thus has cost of 4N , proves that the algorithm’s competitive ratio is at least
5
4 : For Q ≥ 5N , there are Q ≥ 5N smallish items, all containing the point 1

2 ,
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whereas for Q ≤ 2N , there are must be at least 5N low or at least 5N high
items (by the pigeonhole principle), which then all contain the point 1

4 or 3
4

respectively. Otherwise, when Q ∈ (2N, 5N), there is a second phase, which
depends on Q’s relation to 3N .

If Q ≥ 3N , 12N items of size 2
3 each are issued. An optimal offline solution

places the first phase items in the interval [0, 1
3 ), and it places the second phase

12N items in the interval [13 , 1), yielding optimal cost of 12N . For the algorithm,
all 12N second phase items must have the point 1

2 as an internal point of their
intervals, as do the Q smallish items, so the cost of the algorithm is at least 15N .
Thus the asymptotic competitive ratio is at least 1.25 in this case.

Finally, if Q ≤ 3N , Q′ items of size 1 − θ are issued, where Q′ is divisible by
3 and Q − 2 ≤ Q′ ≤ Q. Note that all low items have the point θ as an internal
point of their intervals, and similarly, all high items have the point 1 − θ as an
internal point. We find that the second phase items have a common point with
every interval of the low and high items from the first phase. By the pigeonhole
principle, there are at least 12N−Q

2 low items or at least this many high items.
Thus, for at least one of the points θ and 1−θ, there are at least 12N−Q

2 +Q′ items
whose intervals contain it, for a cost of at least 12N+Q′

2 −1 for the algorithm. An
optimal offline solution has Q′ intervals of [0, θ) for smallish items, Q′ intervals
of [θ, 1) for items of size 1 − θ, and for the remaining 12N − Q′ items (where
this number is divisible by 3) there are 4N − Q′

3 intervals of every form out of
[0, 1

3 ), [13 , 2
3 ), [23 , 1). Note that all smallish items have sizes not exceeding θ, and

the intervals assigned to such items by an optimal offline solution are sometimes
slightly too long (because they have lengths of θ).

The cost of an optimal offline solution is therefore at most 12N+2Q′

3 . For large
value of N , we can neglect the additive term and find a lower bound on the ratio

(12N + Q′)/2
(12N + 2Q′)/3

for Q′ ≤ Q < 3N . This ratio is indeed at least 5
4 for Q′ < 3N since

3(12 + Q′

N )

2(12 + 2Q′
N )

is a monotonically decreasing function of Q′

N , and for Q′ ≤ 3N it is minimized
for Q′

N = 3, in which case

(12N + Q′)/2
(12N + 2Q′)/3

= 1.25 .

As in each of the four cases analyzed in the proof, the competitive ratio is at
least 1.25, possibly in the limit as N grows to infinity, 1.25 is a lower bound on
asymptotic competitive ratio. �



110 J. Balogh et al.

3.2 A Lower Bound for Randomized Algorithms for MPAS

Now, instead of using an adaptive classification of items, we show how to use
very small items instead. This construction, which yields a superior bound, also
applies to randomized algorithms.

Theorem 4. The deterministic and randomized asymptotic competitive ratios
for the peak problem are at least 1.2691534.

Proof. Let N,M > 0 be large integers, such that N is even, and M is divisible
by N !.

To prove the lower bound for randomized algorithms, we use Yao’s approach,
where one considers the best deterministic online algorithm for a known proba-
bility distribution over inputs. We denote the algorithm by ALG, and its cost for
a specific input I by ALG(I). An optimal offline algorithm is defined by OPT,
and we denote its cost for a specific input I by OPT(I).

Each input starts with a fixed prefix of N · M items of size 1
N each. For

every point z such that 0 ≤ z < 1, define f(z) to be the number of items whose
assigned intervals contain the point z as an interior point or the left endpoint
of the interval. Since the length of every interval is 1

N , its contribution to the
definite integral

∫ 1

0
f(z) dz is 1

N , and therefore

∫ 1

0

f(z) dz =
MN

N
= M .

The integration is possible since the number of discontinuity points of f is at most
2MN , i.e., a constant for every fixed pair (N,M). In fact, f is constant between
every two consecutive discontinuity points, including the boundary points 0 and
1 among those. This implies that we can find the total length of intervals where
f has the integer value i for 0 ≤ i ≤ MN , which we denote by βi. Clearly,∑MN

i=0 βi = 1. Imagine sorting the intervals with fixed values of f , so that, going
from right to left along the [0, 1) interval, we have, in this order, a sequence of
intervals, the i+1-th of which, where 0 ≤ i ≤ MN , has length βi and associated
value i. This is captured by a non-increasing step function g defined as follows:
For every point z where 0 ≤ z < 1, let g(z) the unique i such that

MN∑
j=i+1

βj ≤ z and
MN∑
j=i

βj > z ;

the function g is well-defined, since naturally
∑MN

j=MN+1 βj = 0. Moreover, it
holds that ∫ 1

0

g(z) dz =
MN∑
i=0

iβi =
∫ 1

0

f(z) dz = M . (1)

We further note that it follows from the definition of g that any (left-closed)
interval of length at least � contains a point z such that g(z) ≥ f(1 − �), i.e., a
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point z which is contained in at least f(1−�) intervals assigned by the algorithm
to the items from the input prefix.

Next, the input may continue in one of many ways. Specifically, consider an
eventually fixed t such that 1 ≤ t ≤ N

2 −1. Then, for every q = t, t+1, . . . , N
2 −1,

there is an input Iq which continues after the prefix with MN
q items of length

1 − q
N . Since q ≤ N

2 − 1, we have

1 − q

N
≥ 1 −

N
2 − 1
N

=
1
2

+
1
N

>
1
2

.

An optimal offline solution assigns all these items the interval [ q
N , 1], and it

partitions the MN items of size 1
N from the prefix into q subsets of MN

q , to
be assigned the intervals [ j−1

N , j
N ) for j = 1, 2, . . . , q, i.e., all items from a j-th

subset are assigned the j-th interval. Clearly, the cost of such solution is MN
q ,

i.e.,

OPT(Iq) =
MN

q
. (2)

As for the algorithm, no matter what intervals it assigned to the items of
size 1 − q

N , they must all contain the interval Jq = [ q
N , 1 − q

N ), whose length is
1 − 2q

N . Thus, by aforementioned properties of the function g, there is a point
z ∈ Jq such that f(z) ≥ g

(
2q
N

)
, which implies that

ALG(Iq) ≥ g

(
2q

N

)
+

MN

q
. (3)

In addition, we consider the prefix of items by itself, i.e., with no further items
released, and denote such instance IN/2. The optimal offline solution partitions
items into N subsets and uses all intervals [ j−1

N , j
N ) for q ≤ j ≤ N , so

OPT(IN/2) = M , (4)

while by definition and properties of the function g, for the online algorithm we
have

ALG(IN/2) ≥ g (0) . (5)

Suppose that the algorithm is asymptotically R-competitive. Then, for some
additive constant C, the following inequality holds for any probability distribu-
tion {pq}N/2

q=t over the instances {Iq}N/2
q=t :

Eq [ALG(Iq)] ≤ R · Eq [OPT(Iq)] + C . (6)

Plugging in the upper bounds on the costs of OPT, i.e., (2) and (4), as well as
the lower bounds on the costs of ALG, i.e., (3) and (5), we get

pN
2

· g(0) +

N
2 −1∑
q=t

pq

(
g

(
2q

N

)
+

MN

q

)
≤ R

⎛
⎝pN

2
· M +

N
2 −1∑
q=t

pq
MN

q

⎞
⎠ + C ,
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which after moving the terms without g to the right hand side becomes

pN
2

· g(0) +

N
2 −1∑
q=t

pq · g

(
2q

N

)
≤ R · pN

2
· M + (R − 1)

N
2 −1∑
q=t

pq
MN

q
+ C .

Letting pN
2

= 2t
N and pi = 2

N for t ≤ i < N/2, the left hand side becomes an
upper bound on the integral of g over [0, 1), so by (1),

M =
∫ 1

0

g(t) dt ≤ 2t

N
·g(0)+

2
N

N
2 −1∑
q=t

g

(
2q

N

)
≤ 2

N
·(t·R·M+

N
2 −1∑
q=t

(R−1)
N

q
)+C .

Dividing by 2M , the term C
2M tends to 0 for M → ∞, so letting τ = t

N , this
inequality becomes

τ · R + (R − 1)

N
2 −1∑

q=τ ·N

1
q

≥ 1
2

.

With N growing to infinity, the sum
∑N

2 −1

q=τ ·N
1
q tends to − ln(2τ). Rearranging,

we have
(R − 1) (τ − ln (2τ)) ≥ 1

2
− τ ,

where finally letting τ ≈ 0.212072 yields the desired lower bound on R.

For the definition of an asymptotic competitive ratio via additive terms that
are not necessarily constant (and we write in the introduction), the additive
constant C is replaced by a value of the form o(OPT), where OPT is the cost
of an optimal offline solution.

We note that even though we did not specify the probability distribution
over instances upfront, it is fixed, and in particular it does not depend on the
deterministic online algorithm, which thus may know the distribution a priori,
as stipulated by Yao’s principle. �
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Abstract. In this paper we look at the problem of adjacency labeling of
graphs. Given a family of undirected graphs the problem is to determine
an encoding-decoding scheme for each member of the family such that
we can decode the adjacency information of any pair of vertices only
from their encoded labels. Further, we want the length of each label to
be short (logarithmic in n, the number of vertices) and the encoding-
decoding scheme to be computationally efficient. We propose a simple
tree-decomposition based encoding scheme and use it give an adjacency
labeling of size O(k log k log n)-bits. Here k is the clique-width of the
graph family. We also extend the result to a certain family of k-probe
graphs.

Keywords: Clique-widths · Hereditary classes · Implicit
representation

1 Introduction

Adjacency labeling is a method to store adjacency information implicitly within
vertex labels such that we can determine the adjacency between two vertices just
from their labels. To be useful in practice we want these labels to be compact
and easy to encode-decode. This is a powerful technique for lossless compression
of graphs. Since the decoding is fully local, it makes these schemes particularly
useful for storing graphs on distributed systems. It is an active area of research
to determine adjacency labeling schemes for various graph families of practical
importance.

1.1 Preliminaries

Let G = (V,E) be an undirected graph with vertex set V (|V | = n) and edge
set E (|E| = m). We assume G has no self-loops or parallel edges. Let Fn be
a family of graphs on the vertex set V of size n. For any u, v ∈ V , we define
adj(u, v) = 1 if {u, v} ∈ E and 0 otherwise.
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Definition 1 (modified from [5]). An L-bit adjacency labeling scheme of a
graph family Fn is a pair of functions enc : Fn → (V → {0, 1}L) and dec :
{0, 1}L×{0, 1}L → {0, 1} such that for all G = (V,E) ∈ Fn and for all u, v ∈ V ,

adj(u, v) = dec(enc(G)(u), enc(G)(v)).

We say there is an L-bit adjacency labeling for Fn.

We write enc(G)(u) = enc(u) when the graph G is clear from the context.
According to the above definition a labeling scheme is local; as it determines
the adjacency only based on the vertex labels. For a labeling scheme (enc, dec)
to be useful in practice we want both functions, enc and dec, to be efficiently
computable. Here we use the qualifier “adjacency” labeling to distinguish it
from other types of labeling schemes (see below). However, in their seminal
paper, authors in [20] referred to such a scheme simply as an L-labeling of G. In
general the (enc, dec)P pair may be used as an efficient storage-retrieval scheme
for Fn with respect to some predicate P. For example P could be the predicate
that a triple of three vertices forms a triangle in G. Another example is the
distance labeling problem [4] where given a pair of vertex labels the decoder
outputs the shortest path distance between them.

In this paper we are only concerned with adjacency labeling. There is a
simple yet beautiful connection between adjacency labeling and induced universal
graphs of a hereditary graph family.

Definition 2. A graph property P is said to be hereditary if it is closed under
taking induced subgraphs.

Definition 3 [1–3]. A graph GP of size f(n) (for some time-constructible1 func-
tion f : N → N) is called universal for P if every graph G ∈ P with at most n
vertices is an induced subgraph of GP .

An adjacency labeling for a hereditary family is said to be efficient if k =
O(log n). It is an easy exercise to note that having an efficient adjacency label-
ing for a hereditary family implies that there is an induced universal graph GP
with O(nO(1)) vertices. In this paper we give an adjacency labeling for graphs
parameterized over its clique-width. Up to a constant factor, this scheme is effi-
cient for graphs of bounded clique-width.

Definition 4 [14]. The clique-width (denoted by cw(G)) of a graph G is the
minimum number of distinct labels (of vertices) to construct G using the follow-
ing four operations:

1. Create a vertex in v with label i (denoted by (v, i))
2. Disjoint union G1 ⊕ G2

2 of two labeled graphs G1 and G2

1 f(n) can be computed in time O(f(n)).
2 The vertex set of V (G1 ⊕ G2) of G1 ⊕ G2 is V (G1) ∪ V (G2) and the edge set

E(G1 ⊕ G2) = E(G1) ∪ E(G2).
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3. Join operation ηi,j : adds edges between every pair of vertices one with label i
and another with label j (i �= j)

4. Relabel operation ρi→j relabels vertices having label i with label j

A construction of G using the above operations is known as a k-expression
where cw(G) = k. A k-expression can be equivalently represented as a rooted
binary tree3 T (called a union tree [19]) as follows. Leaves of T corresponds to
the labeled (with their initial labels) vertices (v, i)’s of G. Each internal node
corresponds to a union operation. Lastly, each internal node is decorated with
a (possibly empty) sequence of join and relabel operations. We use the notation
dz to denote the decorator for the node z.

Fig. 1. T is a union tree of the graph G. However, T is not a proper union tree.
Gx = G[{a, b, c}] has edges ac and bc but Hx, the graph corresponding to the subtree
Tx rooted at x, has no such edges.

We say k is the width of T . For some internal vertex x of T let Tx be the subtree
rooted at x. Let Gx be a induced subgraph of G determined by the leaves of
Tx. Then Tx (including any join or relabel operations in dx) is a union tree for
some spanning subgraph4 Hx of Gx. Borrowing the terminology from [19] we
say T is a proper union tree of G if for every internal vertex x ∈ T , Hx = Gx

(see example in Fig. 1). It is an easy exercise (see lemma 1 in [19]) to show that
we can transform any union tree in linear time to a proper one of the same
width representing the same graph. Henceforth we shall assume without loss of
generality that we are working with proper union trees.

In this paper, we also look at a generalization of k-expressions and study
adjacency labeling of the corresponding graph family. Recently, a new width
parameter was proposed [10,18].

3 It is a tree and not a DAG as the same graph does not take part in two separate
union operations.

4 H is a spanning subgraph of G if V (H) = V (G) and E(H) ⊆ E(G).
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Fig. 2. Top right graph H corresponds to the k-expression t = η1,3(t1 ⊕ t2) where
t1 = ρ1→2η2,3(η1,2((a, 1) ⊕ (b, 2)) ⊕ (c, 3)) and t2 = ρ3→2η1,2η2,3((η1,2((d, 1)⊕ (e, 2))) ⊕
(η2,3((f, 3) ⊕ (g, 2)))). G can be embedded into H using two independent sets N1, N2

as illustrated by the union tree T of G.

Definition 5 (from [12]). Let F be a family of graphs. The F-width of a graph
G is the minimum number k of independent sets N1, . . . , Nk in G = (V,E) such
that there exists H = (V,E′) ∈ F where the following holds: 1) G is a spanning
subgraph of H and 2) for every edge (u, v) ∈ E′\E there exists an i ∈ [k]5 with
u, v ∈ Ni.

A graph which has an F-width of k is known as a k-probe F-graph6. In this
paper we consider the adjacency labeling of wk-probe Ck- graphs. Here Ck is the
family of graphs with clique-width ≤ k. We can represent a tree decomposition of
wk-probe Ck- graphs via a minor modification to the proper union tree structure
(Fig. 2). The label of each leaf now has an additional wk-length binary vector
(Mu). Specifically, each leaf corresponds to a tuple (u, i,Mu) where Mu[j] =
1 ⇐⇒ u ∈ Nj and i is u’s initial label in the k-expression (as before). Adjacency
is determined as follows (using Definition 4 and 5). Let z = lca(u, v). Then u, v
are adjacent if and only if: 1) there is a join operation in dz between the current
labels of u and v and 2) Mu and Mv do not have a common 1. It should be noted
that a wk-probe Ck- graph has a clique-width ≤ k2wk .

The motivation for studying adjacency labelling of k-probe F-graphs are
threefold. Firstly, they are a generalization of probe-graphs [12], which can model
some natural problems. For example a type of DNA mapping problem can be for-
mulated as a recognition problem for probe-graphs of intervals [11]. Secondly, this
family of graphs do not have a bounded genus. This may make finding a compact
adjacency labeling a challenge; especially if graphs in F are not “decomposable”
(like a union tree). Existing approaches such as those developed in [16] does not
extended to graph families whose genus is not bounded. We leave this as an open
problem. Finally, depending on F , many computationally hard problems exhibit
efficient algorithms when the F-width is bounded. For example, the recognition
5 Here [n] = {1, . . . , n}.
6 Some authors call them probe-k F-graph [12].
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problem for graphs of bounded B-width is fixed parameter tractable [12]. Here
B is the class of block graphs [6]. A graph is a block graph if it is chordal and
has no induced subgraph isomorphic to the diamond graph (K4 − e).

1.2 Summary of Our Results

Our main result is as follows.

Theorem 1. Suppose Ck,n is a family of graphs with n-vertices having a
clique-width at most k. Then Ck,n has an adjacency labeling scheme of size
O(k log k log n). If k is bounded the above result is optimal up to a constant fac-
tor. Further, given a union tree the labels can be computed in O(kn log k log n)
total time and decoding takes time linear in the size of the labels.

Briefly, we apply a recursive transformation on the union tree to obtain a tree
of O(log n) depth. This transformation preserves the lowest common ancestor
relations between the leaves and allows us to encode the adjacency information
contained within the internal nodes and the leaves with O(k log k) bits. We also
get the following generalization as a corollary.

Corollary 1. There is an O(k log k log n+wk)-bits labeling scheme for wk-probe
Ck- graphs of size n.

Proof. This immediately follows from Theorem 1 and the fact that we need an
additional wk-bits to encode the vectors Mu. 	


1.3 Previous and Related Work

Adjacency labeling schemes studied in this paper closely follow the paradigm
introduced in [20,23]. However, the study of adjacency labeling schemes goes
back more than half a century [7,8]. Since then many results have been discov-
ered for a wide variety of graph classes. A comprehensive overview and some
interesting open problems can be found in [24,26] and the references therein. So
we restrict our discussion to results which are closely related to ours. A folklore
result7 is that cographs have O(log n)-bit adjacency labeling. This follows from
the fact that a cograph is a permutation graph and for which an adjacency label-
ing follows trivially (for each vertex store (i, π(i))) [26]. In [17] authors gave a
(log n + O(k log log n

k ))-bits adjacency labeling scheme for graphs of tree-width
k.

Only a handful of results are known with respect to the clique-width parame-
ter. There is a parallel line of research based on ordered binary decision diagrams
(OBDD). OBDD’s are a generalization of union trees in the setting of boolean
functions. In [21] authors gave an O(n k2

log k )-sized, O(log n)-depth OBDD with
an encoding size of O(log k log n)-bits. This scheme is based on a bottom up tree

7 We thank an anonymous reviewer for pointing this out.
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decomposition approach originally introduced in [22]. In contrast our decom-
position scheme is top-down. An improvement was proposed based on a tree-
decomposition approach similar to ours [19]. Here the author gave an O(kn)-sized
data structure that supported O(1)-time adjacency quires. A more recent result
on OBDD-type storage schemes for small clique-width graph can be found in
[9]. However, these representations are not local and the adjacency queries are
performed with the help of a global data structure (the OBDD or something
similar). The result closest to ours can be found in [15]. The paper uses the
language of monodic second-order logic. There, authors gave an adjacency label-
ing scheme, which in the language of this paper, translates to a label of size
O(f(k) log n) bits. In their paper authors did not give an explicit expression for
f(k). In [26] (chapter 11) the author hinted at an O(log n) adjacency labeling for
graphs with bounded clique-width. The proposal uses a recursive decomposition
by successively finding balanced k-modules for any graph with clique-width k.
Although explicit bounds were not provided with respect to k, we expect that
working out the details can give a bound similar to ours.

2 A Caterpillar-Type Balanced Decomposition

In this section we give a simple balanced decomposition (discussed shortly) of a
rooted tree (not necessarily binary). Here we work with a generic rooted tree T
having n leaves (hence ≤ n − 1 internal nodes). We identify the root of T with
r. Later in Sect. 3 we will use this result to prove Theorem 1.

It is clear that every tree can be constructed starting from K1 by repeatedly
adding pendent edges. However, it may require O(n) iterations to construct a
tree with n vertices. We show that each tree on n leaves can be constructed
within O(log n) iterations using a slightly more relaxed operation. We assume
each non-root vertex v has either no children or at least two children (that is, v
does not have exactly one child). Let Ln denote the set of all trees with at most
n leaves. See Fig. 3 for all trees in L3, where the root is colored red.

Fig. 3. Trees in L3. (Color figure online)

Definition 6. A caterpillar (see Fig. 4) is a tree for which there exists a root-leaf
path P such that all vertices outside P are leaves.

Let T0, T1, ..., Tk be disjoint trees. The operation of adding T1, ..., Tk to T0 creates
a tree obtained by identifying the roots of T1, ..., Tk with k distinct leaves of T0,
respectively (see Fig. 5). Let C0 denote the class of all caterpillars. For each
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Fig. 4. A rooted caterpillar tree. (Color figure online)

Fig. 5. Adding the three bottom trees with red roots by attaching (identifying) them
with the corresponding green leaves of the top tree. (Color figure online)

positive integer p, let Cp consist of trees obtained by adding trees from Cp−1 to
trees from C0. Note that Cp−1 ⊆ Cp since K1 ∈ C0. A path P of a tree T is called
an r-path if r is an end of P . Let P be an r-path of a tree T . Suppose T �= P . Let
T \P denote the graph obtained by deleting V (P ) from T . Then each component
of T\P must be one of the following two types: those that have no edges, which
we call trivial, and those that have at least one edge, which we call nontrivial.
Let T0 consist of all edges that are incident with at least one vertex of P . Then
T0 is a caterpillar (with root r). Suppose T �= T0. Then at least one component
of T\P is nontrivial. Let T1, ..., Tk be all such components. Then,

(i) the root of Ti is the vertex of Ti that is closest to r (in T ).
(ii) E(T0), E(T1), . . . , E(Tk) form a partition of E(T )
(iii) T can be obtained by adding T1, . . . , Tk to T0.

The following theorem gives a structural relationship between Ln and Cp.

Theorem 2. For every integer n ≥ 1, we have Ln ⊆ Cp, where p = log2 n�

To prove the theorem we use the following lemma.

Lemma 1. Let T be a tree with n ≥ 1 leaves. Then T has an r-path P such that
each component of G\P has at most n/2 leaves.

Proof. If n = 1 then the path with only one vertex r satisfies the requirement.
So we assume n ≥ 2. Under this assumption, for any r-path P , T\P must have
at least one component. This allows us to define for any r-path P :

h(P ) = max{t | T\P has a component with t leaves}

Let P be an r-path that minimizes h(P ). We prove that P satisfies the lemma.
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T1
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w

Fig. 6. The tree used in the proof of Lemma 1. (Color figure online)

Suppose on the contrary that P does not satisfy the lemma. That is, T\P has a
component T1 with n1 > n/2 leaves. Let the ends of P be r and w and let the
root of T1 be z, as illustrated in the Fig. 6 above. Let Q be the unique path of
T between r and z. We prove that h(Q) < n1 ≤ h(P ), which will be a desired
contradiction.

To estimate h(Q) we observe that T\Q has two types of components: those
that are disjoint from T1 and those that are contained in T1. For the ones that
are disjoint from T1, the number of leaves each of them may have is bounded
by n − n1, which is smaller than n1. Next, we consider a component T ′ of T\Q
with T ′ ⊆ T1. Since T1 has n1 > n/2 ≥ 1 leaves, z is not a leaf of T . By the
assumption we made in the beginning of Sect. 2, z has at least two children.
It follows that T ′ does not contain all leaves of T1, which implies that T ′ has
fewer than n1 leaves. Therefore, we have shown that every component of T\Q
has fewer than n1 leaves. Consequently, h(Q) < n1, contradicting the choice of
P . This contradiction proves the lemma. 	


Proof of Theorem 2.

Proof. As we observed earlier, every tree in L3 is a caterpillar, so we have Ln ⊆
C0, for n = 1, 2, 3, and thus the theorem holds for n = 1, 2, 3. Suppose the
theorem holds for n − 1, where n ≥ 4. We prove that the theorem holds for n,
and this would prove the theorem.

Let T be a tree with n ≥ 4 leaves. We need to show T ∈ C�log2 n�. We
may assume that T is not a caterpillar because otherwise T ∈ C0 ⊆ C�log2 n�.
By Lemma 1, T has an r-path P such that each component of T\P has at
most n/2 leaves. Since T is not a caterpillar, T\P has at least one nontrivial
component. Let T1, ..., Tk be all such components. By our induction hypothesis,
each Ti belongs to C�log2(n/2)� = C�log2 n�−1. It follows that T ∈ C�log2 n� since
T is obtained by adding T1, ..., Tk to T0. This completes our induction and it
proves the theorem. 	


Remark 1. The decomposition in the above theorem can be computed in linear
time as follows. First we apply depth first search to compute for each node u
in T the number of leaves in the subtree Tu. Then we apply a slightly modified
heavy-light decomposition (see for example [25]) to obtain a decomposition of T
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into disjoint paths P. If there is a r-path in P (there can be at most one) then
use it as P . Otherwise pick any child u of r and take (r, u) as P . We do not need
to recompute the heavy-light decomposition for the recursive case and rather
use the one computed for T . The heavy-light decomposition can be computed in
linear time and hence also the caterpillar decomposition.

3 An Adjacency Labeling Scheme

Recall that a proper union tree T is a rooted binary tree with root r and n
leaves. The initial label of a leaf u will be denoted by c0(u). For an internal node
x ∈ T let Lx be the set of leaves in the subtree Tx rooted at x. We begin with a
lemma.

Fig. 7. We want to determine the information needed to compute the adjacency
between u and v given we already know their lowest common ancestor x.

Lemma 2. Suppose G is a graph of clique-width k and T be a proper union tree
of G. We consider a node x of T as shown in Fig. 7. Let x = lca(u, v), where
u and v are two leaf nodes. Given x, c0(u) and c0(v) we can determine adj(u, v)
with an additional O(k log k) bits of information stored locally at vertices of G.

This O(k log k)-bits of information will serve to perform adjacency queries
between u and the set Lz. In Theorem 1 we show that we can partition V
to O(log n) such sets for each vertex in V .

Proof. We consider the situation shown in Fig. 7. Let Bx be the set of unique
labels assigned to the leaves of the subtree rooted at x after applying dx. In
order to determine adj(u, v) it is sufficient to know; 1) the labels of u and v after
application of the decorators dy and dz respectively and 2) the decorator dx.
However, we do not need to know the entirety of dx but only whether cx(v) ∈
Cx(u), which is defined next. Suppose cx(u) (resp. cx(v)) are the labels of u
(resp. v) before applying dx. From dx we can easily determine the set of labels
Cx(u) ⊆ By ∪ Bz such that,

∀i ∈ Cx(u) ∃ηi,cx(u) or ηcx(u),i ∈ dx
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It is important to note that when defining the set Cx(u) we consider the labels
from the set By ∪ Bz before any re-labeling due to dx

8. As an example, suppose
By = {1, 2}, Bz = {3, 5}, cx(u) = 1 and

dx = ρ3→2η1,2ρ2→5η5,1

then Cx = {2, 3, 5} and not simply {2, 5}. Clearly |Cx(u)| ≤ k − 1 and it takes
O(k log k)-bits to store |Cx(u)|. Next, we need to retrieve cx(v) for any v ∈ Lz.
This can be done by storing an additional O(k log k)-bits at u. This follows from
the fact that, given an initial labeling of Lz, the sub-k-expression induced by
Tz (including applying the decorator dz) is just a re-labeling (more precisely a
function in [k][k]9). This re-labeling can be stored as a list (Fx(u)) of size k where
each value is between 1 and k. The c0(v)th entry of this list gives cx(v). Finally,
we use O(log k) bits to store cx(u) at u. 	


Going forward, we will describe an encoding of each leaf as an alternating
sequence of labels of two types. One containing path information and the other
containing adjacency information. For the latter, we will use Cx(u), Fx(u) and
cx(u). We let Ax(u) = (Cx(u), Fx(u), cx(u)).

Theorem 1. Suppose Ck,n is a family of graphs with n-vertices having a
clique-width at most k. Then Ck,n has an adjacency labeling scheme of size
O(k log k log n). If k is bounded the above result is optimal up to a constant fac-
tor. Further, given a union tree the labels can be computed in O(kn log k log n)
total time and decoding takes time linear in the size of the labels.

Proof. First we start from the r-path decomposition of T as described in the
previous section. Let P be a r-path. From Lemma 1 we know that the subtrees
attached to P have ≤ n/2 leaves. Let Tlarge be a possibly empty collection of sub-
trees which have between n/4 and n/2 leaves. These subtrees are identified with
light blue color in Fig 8-a. Note that 0 ≤ |Tlarge| ≤ 4. Consider the sequence(s)
of smaller subtrees (we will call them bushes) between the trees in Tlarge. These
bushes are highlighted with orange regions in the figure. There may be no such
bushes between two large trees. Now we collate the bushes between two succes-
sive large subtrees (while descending along P ) to create larger bushes until the
total number of leaves among them is ≥n/4 but ≤n/2. At this point we call it a
super-bush and restart the gathering process on the remaining bushes until we
get another super-bush or we reach the end of the bushes. In the latter case we
create a super-bush with whatever we have gathered up to that point. That is, we
group the bushes (if any) between two successive large subtrees into ≥n/4 sized
super-bushes (but no larger than n/2) except for at most a constant number of
groups which can have <n/4 leaves. We identify each super-bush with a tree, the
root of which is the node closest to r. Further, we attach the tree to P using the
node of the super-bush which was closest to r. For example, in Fig. 8-a for the
8 Alternatively, we may assume that all relabeling operations in dx proceed all join

operations [13].
9 [k] = {1, . . . , k}.



124 A. Banerjee

Fig. 8. The figure shows the tree T ′ obtained from T after collating the smaller bushes
into subtrees. For example, we create the tree Ts, rooted at s from the set of small
trees attached to the r-path P via s, z, x. To make Ts a proper union tree, the node x
is removed and y is made a child of z. (Color figure online)

super-bush starting from the node s we create a tree Ts with s as the root. We
attach Ts to P where the node s was previously located. From our construction,
the number of such attachments will also be a constant. The decorators remain
with the original vertices and the new (orange vertices in Fig. 8-b) vertices on P
do not contain any decorators. The resulting tree, denoted by T ′, is not neces-
sarily a valid union tree. However, we ensure that each subtree attached to P is
a proper union tree (Fig. 8-b).

First we informally describe the decoding scheme; this will give us an idea of
what information to encode within the labels. Let u, v be a pair of leaves in T
(Fig. 8). Let x = lca(u, v). From lemma 2 we see that labels of size O(k log k)-bits
are sufficient to determine adj(u, v) given x, c0(u) and c0(v). It remains to deter-
mine the number of such labels we need to determine adjacency between u and
any other vertex in G. Trivially, we can maintain one such label for each node
on the root-leaf path (in T ) terminating in u. Since a path (in the caterpillar-
decomposition) can have arbitrary length we will need Ω(log n)-bits to locate a
node in each level of the caterpillar decomposition. Since there are O(log n) lev-
els, we may end up needing O(log2 n)-bits to encode the path information in the
final label. To reduce the encoding size and get our claimed bound we make the
following crucial observation. It is not necessary to determine the lca(u, v) explic-
itly. It suffices to know Ax(u), c0(u) and c0(v) to determine adj(u, v). By taking
a recursive approach, we show that we only need to remember O(log n) many
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adjacency-type labels per vertex u. Since, each adjacency information requires
O(k log k) bits labels, we get the bound claimed in the theorem. This recursive
encoding scheme is determined based on T ′. Let l1(u) be the position of the node
(w.r.t. the root r) attaching the subtree, which u is a leaf of, to the path P in
T ′. For example, in Fig. 8 we have l1(u) = 3 and l1(v) = 5. There are two cases:

(i)( l1(u) = l1(v)) Then u, v ∈ Ls for some node s ∈ P . To determine adj(u, v),
we recurse on the subtree Ts. According to our construction Ts is a proper
union tree corresponding to the induced subgraph G[Ls]. Then we determine
an adjacency labeling scheme for G[Ls] using Ts. This is used to determine
adj(u, v). This recursive construction is possible, since any induced subgraph
of G has a clique-width ≤ k and T is a proper union tree.

(ii)( l1(u) �= l1(v)) (Fig. 8-b) We assume without loss of generality that l1(u) <
l1(v) (the case l1(u) > l1(v) is symmetric). In this case we use Ax(u), c0(u)
and c0(v) to determine adj(u, v).

This completes the informal description of the decoding. From this, an encoding
scheme emerges naturally.

Encoder: Generate T ′ from T and for each u ∈ V we compute (l1(u), AP (u)(u)).
Here, P (u) is the lowest ancestor of u on the path P (in Fig. 8-a P (u) = x).
For notational simplicity we denote AP (u)(u) = A1(u). Then, perform the
encoding recursively on each induced subgraph of G corresponding to the sub-
trees attached to P . For the vertex u this process gives a sequence of labels
((li(u), Ai(u))’s. Appending to this sequence its initial label c0(u) gives the final
encoding:

enc(u) = (c0(u), (l1(u), A1(u)), . . . , (lp(u), Ap(u))),

where p = O(log n) (from Theorem 2). It is clear from the construction that enc
uses O(k log k log n)-bits.

Decoder: Given two strings enc(u) and enc(v) first we check the labels
(l1(u), A1(u)) and (l1(v), A1(v)). If l1(u) < l1(v) then we use A1(u), c0(u)
and c0(v) to determine adj(u, v). The case l1(u) > l1(v) is symmetric. Other-
wise, l1(u) = l1(v). In this case we proceed to check the next pair of labels
(l2(u), A2(u)) and (l2(v), A2(v)) and so on. In general, let i be the smallest num-
ber such that li(u) �= li(v). Then, using either Ai(u) or Ai(v) and c0(u), c0(v)
we can determine adj(u, v). By our construction there is always such an i ≤ p
such that li(u) �= li(v).

Correctness: We use induction on the depth of the recursive construction. For
the base case, we take p = 0 and the correctness follows trivially. Assume the
encoder-decoder works correctly whenever the decomposition has depth ≤ p−1.
This takes care of the case l1(u) = l1(v). For the remaining case assume l1(u) <
l1(v). Then correctness follows from Lemma 2.

Running Time: Recall from Remark 1, given a union tree T we can determine
the recursive decomposition in O(|T |) time. Additionally, O(k log k log n) time is
spent processing each leaf of T . Thus enc can be computed in O(kn log k log n)
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time. Decoding can be done in linear time in the size of the labels (i.e., in
O(k log k log n) time). 	
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Abstract. Given a string T with length n whose characters are drawn
from an ordered alphabet of size σ, its longest Lyndon subsequence is a
longest subsequence of T that is a Lyndon word. We propose algorithms
for finding such a subsequence in O(n3) time with O(n) space, or online
in O(n3σ) space and time. Our first result can be extended to find the
longest common Lyndon subsequence of two strings of length n in O(n4σ)
time using O(n3) space.

Keywords: Lyndon word · Subsequence · Dynamic programming

1 Introduction

A recent theme in the study of combinatorics on words has been the general-
ization of regularity properties from substrings to subsequences. For example,
given a string T over an ordered alphabet, the longest increasing subsequence
problem is to find the longest subsequence of increasing symbols in T [2,25].
Several variants of this problem have been proposed [10,20]. These problems
generalize to the task of finding such a subsequence that is not only present in
one string, but common in two given strings [15,23,26], which can also be viewed
as a specialization of the longest common subsequence problem [17,19,27].

More recently, the problem of computing the longest square word that is
a subsequence [22], the longest palindrome that is a subsequence [6,18], the
lexicographically smallest absent subsequence [21], and longest rollercoasters [4,
11,12] have been considered.

Here, we focus on subsequences that are Lyndon, i.e., strings that are lexico-
graphically smaller than any of its non-empty proper suffixes [24]. Lyndon words
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are objects of longstanding combinatorial interest (see e.g., [13]), and have also
proved to be useful algorithmic tools in various contexts (see, e.g., [1]). The
longest Lyndon substring of a string is the longest factor of the Lyndon factor-
ization of the string [5], and can be computed in linear time [9]. The longest
Lyndon subsequence of a unary string is just one letter, which is also the only
Lyndon subsequence of a unary string. A (naive) solution to find the longest
Lyndon subsequence is to enumerate all distinct Lyndon subsequences, and pick
the longest one. However, the number of distinct Lyndon subsequences can be
as large as 2n considering a string of increasing numbers T = 1 · · · n. In fact,
there are no bounds known (except when σ = 1) that bring this number in a
polynomial relation with the text length n and the alphabet size σ [16], and
thus deriving the longest Lyndon subsequence from all distinct Lyndon subse-
quences can be infeasible. In this paper, we focus on the algorithmic aspects
of computing this longest Lyndon subsequence in polynomial time without the
need to consider all Lyndon subsequences. In detail, we study the problems of
computing

1. the lexicographically smallest (common) subsequence for each length online,
cf. Sect. 3, and

2. the longest subsequence that is Lyndon, cf. Sect. 4, with two variations con-
sidering the computation as online, or the restriction that this subsequence
has to be common among two given strings.

The first problem serves as an appetizer. Although the notions of Lyndon and
lexicographically smallest share common traits, our solutions to the two problems
are independent, but we will reuse some tools for the online computation.

2 Preliminaries

Let Σ denote a totally ordered set of symbols called the alphabet . An element of
Σ∗ is called a string. The alphabet Σ induces the lexicographic order ≺ on the
set of strings Σ∗. Given a string S ∈ Σ∗, we denote its length with |S|, its i-th
symbol with S[i] for i ∈ [1..|S|]. Further, we write S[i..j] = S[i] · · · S[j], and we
write S[i..] = S[i..|S|] for the suffix of S starting at position i. A subsequence of
a string S with length � is a string S[i1] · · · S[i�] with i1 < . . . < i�.

Let ⊥ be the empty string. We stipulate that ⊥ is lexicographically larger
than every string of Σ+. For a string S, appending ⊥ to S yields S.

A string S ∈ Σ∗ is a Lyndon word [24] if S is lexicographically smaller than
all its non-empty proper suffixes. Equivalently, a string S is a Lyndon word if
and only if it is smaller than all its proper cyclic rotations.

The algorithms we present in the following may apply techniques limited to
integer alphabets. However, since the final space and running times are not better
than O(n) space and O(n lg n) time, respectively, we can reduce the alphabet of
T to an integer alphabet by sorting the characters in T with a comparison based
sorting algorithm taking O(n lg n) time and O(n) space, removing duplicate
characters, and finally assigning each distinct character a unique rank within
[1..n]. Hence, we assume in the following that T has an alphabet of size σ ≤ n.
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Algorithm 1: Computing the lexicographically smallest subsequence
D[i, �] in T [1..i] of length �.

1 D[0, 1] ← ⊥
2 for i = 1 to n do � Initialize D[·, 1]
3 D[i, 1] ← minj∈[1..i] T [j] = min(D[i − 1, 1], T [i]) � O(1) time per

entry

4 for � = 2 to n do � Induce D[·, �] from D[·, � − 1]
5 for i = 2 to i do � Induce D[i, �]
6 if � < i then D[i, �] ← ⊥
7 else D[i, �] ← min(D[i − 1, �],D[i − 1, � − 1]T [i])

⊥
⊥ ⊥
⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥

� i 1 2 3 4 5 · · ·
1 · · ·
2 · · ·
3 · · ·
4 · · ·
5 · · ·
...

. . .

Fig. 1. Sketch of the proof of Lemma 1. We can fill the fields shaded in blue (the first
row and the diagonal) in a precomputation step. Further, we know that entries left of
the diagonal are all empty. A cell to the right of it (red) is based on its left-preceding
and diagonal-preceding cell (green). (Color figure online)

3 Lexicographically Smallest Subsequence

As a starter, we propose a solution for the following related problem: Compute
the lexicographically smallest subsequence of T for each length � ∈ [1..n] online.

3.1 Dynamic Programming Approach

The idea is to apply dynamic programming dependent on the length � and the
length of the prefix T [1..i] in which we compute the lexicographically smallest
subsequence of length �. We show that the lexicographically smallest subsequence
of T [1..i] length �, denoted by D[i, �] is D[i − 1, �] or D[i − 1, � − 1]T [i], where
D[0, ·] = D[·, 0] = ⊥ is the empty word. See Algorithm 1 for a pseudo code.

Lemma 1. Algorithm 1 correctly computes D[i, �], the lexicographically smallest
subsequence of T [1..i] with length �.

Proof. The proof is done by induction over the length � and the prefix T [1..i].
We observe that D[i, �] = ⊥ for i < � and D[i, i] = T [1..i] since T [1..i] has only
one subsequence of length i. Hence, for (a) � = 1 as well as for (b) i ≤ �, the
claim holds. See Fig. 1 for a sketch.
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Now assume that the claim holds for D[i′, �′] with (a) �′ < � and all i ∈ [1..n],
as well as (b) �′ = � and all i′ ∈ [1..i − 1]. In what follows, we show that the
claim also holds for D[i, �] with i > � > 1. For that, let us assume that T [1..i]
has a subsequence L of length � with L ≺ D[i, �].

If L[�] �= T [i], then L is a subsequence of T [1..i−1], and therefore D[i−1, �] �
L according to the induction hypothesis. But D[i, �] � D[i−1, �], a contradiction.

If L[�] = T [i], then L[1..� − 1] is a subsequence of T [1..i − 1], and therefore
D[i − 1, � − 1] � L[1..� − 1] according to the induction hypothesis. But D[i, �] �
D[i − 1, � − 1]T [i] � L[1..� − 1]T [i] = L, a contradiction. Hence, D[i, �] is the
lexicographically smallest subsequence of T [1..i] of length �.

Unfortunately, the lexicographically smallest subsequence of a given length
is not a Lyndon word in general, so this dynamic programming approach does
not solve our problem finding the longest Lyndon subsequence. In fact, if T has
a longest Lyndon subsequence of length �, then there can be a lexicographically
smaller subsequence of the same length. For instance, with T = aba, we have
the longest Lyndon subsequence ab, while the lexicographically smallest length-2
subsequence is aa.

Analyzing the complexity bounds of Algorithm 1, we need O(n2) space for
storing the two-dimensional table D[1..n, 1..n]. Its initialization costs us O(n2)
time. Line 7 is executed O(n2) time. There, we compute the lexicographical min-
imum of two subsequences. If we evaluate this computation with naive character
comparisons, for which we need to check O(n) characters, we pay O(n3) time in
total, which is also the bottleneck of this algorithm.

Lemma 2. We can compute the lexicographically smallest substring of T for
each length � online in O(n3) time with O(n2) space.

3.2 Speeding up String Comparisons

Below, we improve the time bound of Lemma 2 by representing each cell of
D[1..n, 1..n] with a node in a trie, which supports the following methods:

– insert(v, c): adds a new leaf to a node v with an edge labeled with character c,
and returns a handle to the created leaf.

– precedes(u, v): returns true if the string represented by the node u is lexico-
graphically smaller than the string represented by the node v.

Each cell of D stores a handle to its respective trie node. The root node of the
trie represents the empty string ⊥, and we associate D[0, �] = ⊥ with the root
node for all �. A node representing D[i − 1, � − 1] has a child representing D[i, �]
connected with an edge labeled with c if D[i, �] = D[i − 1, � − 1]c, which is a
concept similar to the LZ78 trie. If D[i, �] = D[i − 1, �], then both strings are
represented by the same trie node. Since each node stores a constant number of
words and an array storing its children, the trie takes O(n2) space.

Insert. A particularity of our trie is that it stores the children of a node in
the order of their creation, i.e., we always make a new leaf the last among its
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siblings. This allows us to perform insert in constant time by representing the
pointers to the children of a node by a plain dynamic array. When working with
the trie, we assure that we do not insert edges into the same node with the same
character label (to prevent duplicates).

We add leaves to the trie as follows: Suppose that we compute D[i, �]. If we
can copy D[i − 1, �] to D[i, �] (Line 7), we just copy the handle of D[i − 1, �]
pointing to its respective trie node to D[i, �]. Otherwise, we create a new trie
leaf, where we create a new entry of D by selecting a new character (� = 1),
or appending a character to one of the existing strings in D. We do not create
duplicate edges since we prioritize copying to the creation of a new trie node:
For an entry D[i, �], we first default to the previous occurrence D[i − 1, �], and
only create a new string D[i − 1, � − 1]T [i] if D[i − 1, � − 1]T [i] ≺ D[i − 1, �].
D[i − 1, � − 1]T [i] cannot have an occurrence represented in the trie. To see
that, we observe that D obeys the invariants that (a) D[i, �] = minj∈[1..i] D[j, �]
(where min selects the lexicographically minimal string) and (b) all pairs of rows
D[·, �] and D[·, �′] with � �= �′ have different entries. Since Algorithm 1 fills the
entries in D[·, �] in a lexicographically non-decreasing order for each length �,
we cannot create duplicates (otherwise, an earlier computed entry would be
lexicographically smaller than a later computed entry having the same length).
The string comparison D[i−1, �−1]T [i] ≺ D[i−1, �] is done by calling precedes,
which works as follows:

Precedes. We can implement the function precedes efficiently by augmenting
our trie with the dynamic data structure of [7] supporting lowest common ances-
tor (LCA) queries in constant time and the dynamic data structure of [8] sup-
porting level ancestor queries level-anc(u, d) returning the ancestor of a node u
on depth d in amortized constant time. Both data structures conform with our
definition of insert that only supports the insertion of leaves. With these data
structures, we can implement precedes(u, v), by first computing the lowest ances-
tor w of u and v, selecting the children u′ and v′ of w on the paths downwards
to u and v, respectively, by two level ancestor queries level-anc(u, depth(w) + 1)
and level-anc(v, depth(w) + 1), and finally returning true if the label of the edge
(w, u′) is smaller than of (w, v′).

We use precedes as follows for deciding whether D[i−1, �−1]T [i] ≺ D[i−1, �]
holds: Since we know that D[i−1, �−1] and D[i−1, �] are represented by nodes u
and v in the trie, respectively, we first check whether u is a child of v. In that
case, we only have to compare T [i] with D[i − 1, �][�]. If not, then we know that
D[i − 1, � − 1] cannot be a prefix of D[i − 1, �], and precedes(u, v) determines
whether D[i − 1, � − 1] or the � − 1-th prefix of D[i − 1, �] is lexicographically
smaller.

Theorem 3. We can compute the table D[1..n, 1..n] in O(n2) time using O(n2)
words of space.
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1 2 3 4 5 6 7 8 9 10 11 12

T = b c c a d b a c c b c d

Fig. 2. Longest Lyndon subsequences of prefixes of a text T . The i-th row of bars below
T depicts the selection of characters forming a Lyndon sequence. In particular, the i-th
row corresponds to the longest subsequence of T [1..9] for i = 1 (green), T [1..11] for
i = 2 (blue), and of T [1..12] for i = 3 (red). The first row (green) corresponds also
to a longest Lyndon subsequence of T [1..10] and T [1..11] (by extending it with T [11]).
Extending the second Lyndon subsequence with T [12] gives also a Lyndon subsequence,
but is shorter than the third Lyndon subsequence (red). Having only the information
of the Lyndon subsequences in T [1..i] at hand seems not to give us a solution for
T [1..i + 1]. (Color figure online)

3.3 Most Competitive Subsequence

If we want to find only the lexicographically smallest subsequence for a fixed
length �, this problem is also called to Find the Most Competitive Subsequence1.
For that problem, there are linear-time solutions using a stack S storing the
lexicographically smallest subsequence of length � for any prefix T [1..i] with
� ≤ i. Let top denote the top element of S. The idea is to scan T from left to
right linearly. Given we are at a text position i, we recursively pop top as long as
(a) S is not empty, (b) T [top] > T [i], and (c) n− i ≥ (�−|S|). The last condition
ensures that when we are near the end of the text, we still have enough positions
in S to fill up S with the remaining positions to obtain a sequence of � text
positions. Finally, we put T [i] on top of S if |S| < �. Since a text position gets
inserted into S and removed from S at most once, the algorithm runs in linear
time. Consequently, if the whole text T is given (i.e., not online), this solution
solves our problem in the same time and space bounds by running the algorithm
for each � separately.

Given T = cba as an example, for � = 3, we push all three characters of T
onto S and output cba. For � = 2, we first push T [1] = c onto S, but then pop
it and push b onto S. Finally, although T [3] < T [2], we do not discard T [2] = b
stored on S since we need to produce a subsequence of length � = 2.

3.4 Lexicographically Smallest Common Subsequence

Another variation is to ask for the lexicographically smallest subsequence of each
distinct length that is common with two strings X and Y . Luckily, our ideas of
Sects. 3.1 and 3.2 can be straightforwardly translated. For that, our matrix D
becomes a cube D3[1..L, 1..|X|, 1..|Y |] with L := min(|X|, |Y |), and we set

1 https://leetcode.com/problems/find-the-most-competitive-subsequence/.

https://leetcode.com/problems/find-the-most-competitive-subsequence/
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D3[�, x + 1, y + 1] = min

⎧
⎪⎨

⎪⎩

D3[� − 1, x, y]X[x + 1] if X[x + 1] = Y [y + 1],
D3[�, x, y + 1],
D3[�, x + 1, y],

with D3[0, ·, ·] = D3[�, x, y] = ⊥ for all �, x, y with LCS(X[1..x], Y [1..y]) < �,
where LCS denotes the length of a longest common subsequence of X and Y . This
gives us an induction basis similar to the one used in the proof of Lemma 1, such
that we can use its induction step analogously. The table D3 has O(n3) cells, and
filling each cell can be done in constant time by representing each cell as a pointer
to a node in the trie data structure proposed in Sect. 3.2. For that, we ensure that
we never insert a subsequence of D3 into the trie twice. To see that, let L ∈ Σ+

be a subsequence computed in D3, and let D3[�, x, y] = L be the entry at which
we called insert to create a trie node for L (for the first time). Then � = |L|, and
X[1..x] and Y [1..y] are the shortest prefixes of X and Y , respectively, containing
L as a subsequence. Since D3[�, x, y] = minx′∈[1..x],y′∈[1..y] D3[�, x′, y′], all other
entries D3[�, x′, y′] = L satisfy D3[�, x′ − 1, y′] = L or D3[�, x′, y′ − 1] = L, so
we copy the trie node handle representing L instead of calling insert when filling
out D3[�, x′, y′].

Theorem 4. Given two strings X,Y of length n, we can compute the lexico-
graphically smallest common subsequence for each length � ∈ [1..n] in O(n3)
time using O(n3) space.

4 Computing the Longest Lyndon Subsequence

In the following, we want to compute the longest Lyndon subsequence of T . See
Fig. 2 for examples of longest Lyndon subsequences. Compared to the former
introduced dynamic programming approach for the lexicographically smallest
subsequences, we follow the sketched solution for the most competitive subse-
quence using a stack, which here simulates a traversal of the trie τ storing all
pre-Lyndon subsequences. A pre-Lyndon subsequence is a subsequence that is
Lyndon or can be extended with characters at its right end to become Lyndon.
τ is a subgraph of the trie storing all subsequences, sharing the same root. This
subgraph is connected since, by definition, there is no string S such that WS
forms a pre-Lyndon word for a non-pre-Lyndon word W (otherwise, we could
extend WS to a Lyndon word, and so W , too). We say that the string label
of a node v is the string read from the edges on the path from root to v. We
associate the label c of each edge of the trie with the leftmost possible position
such that the string label V of v is associated with the sequence of text positions
i1 < i2 < · · · < i|V | and T [i1]T [i2] · · · T [i|V |] = V .

4.1 Basic Trie Traversal

Problems already emerge when considering the construction of τ since there are
texts like T = 1 · · · n for which τ has Θ(2n) nodes. Instead of building τ , we
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simulate a preorder traversal on it. With simulation we mean that we enumerate
the pre-Lyndon subsequences of T in lexicographic order. For that, we maintain
a stack S storing the text positions (i1, . . . , i�) with i1 < · · · < i� associated
with the path from the root to the node v we currently visit i.e., i1, . . . , i� are
the smallest positions with T [i1] · · · T [i�] being the string label of v, which is
a pre-Lyndon word. When walking down, we select the next text position i�+1

such that T [i1] · · · T [i�]T [i�+1] is a pre-Lyndon word. If such a text position
does not exist, we backtrack by popping i� from S, and push the smallest text
position i′� > i�−1 with T [i′�] > T [i�] onto S and recurse. Finally, we check at
each state of S storing the text positions (i1, . . . , i�) whether T [i1] · · · T [i�] is a
Lyndon word. For that, we make use of the following facts:

Facts About Lyndon Words. A Lyndon word cannot have a border , that is,
a non-empty proper prefix that is also a suffix of the string [9, Prop. 1.1]. A
pre-Lyndon word is a (not necessarily proper) prefix of a Lyndon word. Given a
string S of length n, an integer p ∈ [1..n] is a period of S if S[i] = S[i + p] for
all i ∈ [1..n − p]. The length of a string is always one of its periods. We use the
following facts:

(Fact 1) Only the length |S| is the period of a Lyndon word S.
(Fact 2) The prefix S[1..|p|] of a pre-Lyndon word S with period p is a Lyndon

word. In particular, a pre-Lyndon word S with period |S| is a Lyndon
word.

(Fact 3) Given a pre-Lyndon word S with period p and a character c ∈ Σ, then
– Sc is a pre-Lyndon word of the same period if and only if S[|S| −

p + 1] = c and S is not the largest character in Σ.
– Sc is a Lyndon word if and only if S[|S| − p + 1] < c. In particular,

if S is a Lyndon word, then Sc is a Lyndon word if and only if S[1]
is smaller than c.

Proof. Fact 1 If S has a period less than |S|, then S is bordered.
Fact 2 If S[1..|p|] would not be Lyndon, then there was a suffix X of S with

X ≺ S[1..|X|], hence XZ ≺ SZ for every Z ∈ Σ∗, so S cannot be pre-Lyndon.
Fact 3 “⇒”: If T := Sc is a pre-Lyndon word with the same period as S, then

T has a border T [p + 1..|T |] = T [1..|T | − p]. “⇐”: Follows from Fact 2 and
[9, Corollary 1.4].

Checking Pre-Lyndon Words. Now suppose that our stack S stores the text
positions (i1, . . . , i�). To check whether T [i1] · · · T [i�]c for a character c ∈ Σ is a
pre-Lyndon word or whether it is a Lyndon word, we augment each position ij
stored in S with the period of T [i1] · · · T [ij ], for j ∈ [1..�], such that we can
make use of Fact 3 to compute the period and check whether T [i1] · · · T [ij ]c is a
pre-Lyndon word, both in constant time, for c ∈ Σ.

Trie Navigation. To find the next text position i�+1, we may need to scan
O(n) characters in the text, and hence need O(n) time for walking down from
a node to one of its children. If we restrict the alphabet to be integer, we can



136 H. Bannai et al.

augment each text position i to store the smallest text position ic with i < ic
for each character c ∈ Σ such that we can visit the trie nodes in constant time
per node during our preorder traversal.

This gives already an algorithm that computes the longest Lyndon subse-
quence with O(nσ) space and time linear to the number of nodes in τ . However,
since the number of nodes can be exponential in the text length, we present
ways to omit nodes that do not lead to the solution. Our aim is to find a rule
to judge whether a trie node contributes to the longest Lyndon subsequence
to leave certain subtrees of the trie unexplored. For that, we use the following
property:

Lemma 5. Given a Lyndon word V and two strings U and W such that UW
is a Lyndon word, V ≺ U , and |V | ≥ |U |, then V W is also a Lyndon word with
V W ≺ UW .

Proof. Since V ≺ U and V is not a prefix of U , U � V W . In what follows, we
show that S � V W for every proper suffix S of V W .

– If S is a suffix of W , then S  UW  U � V W because S is a suffix of the
Lyndon word UW .

– Otherwise, (|S| > |W |), S is of the form V ′W for a proper suffix V ′ of V .
Since V is a Lyndon word, V ′ � V , and V ′ is not a prefix of V (Lyndon
words are border-free). Hence, V ′W  V ′ � V W .

Note that U in Lemma 5 is a pre-Lyndon word since it is the prefix of the Lyndon
word UW .

Our algorithmic idea is as follows: We maintain an array L[1..n], where L[�]
is the smallest text position i such that our traversal has already explored a
length-� Lyndon subsequence of T [1..i]. We initialize the entries of L with ∞
at the beginning. Now, whenever we visit a node u whose string label is a pre-
Lyndon subsequence U = T [i1] · · · T [i�] with L[�] ≤ i�, then we do not explore the
children of u. In this case, we call u irrelevant . By skipping the subtree rooted
at u, we do not omit the solution due to Lemma 5: When L[�] ≤ i�, then there
is a Lyndon subsequence V of T [1..i�] with V ≺ U (since we traverse the trie
in lexicographically order) and |V | = |U |. Given there is a Lyndon subsequence
UW of T , then we have already found V W earlier, which is also a Lyndon
subsequence of T with |V W | = |UW |.

Next, we analyze the complexity of this algorithm, and propose an improved
version. For that, we say that a string is immature if it is pre-Lyndon but not
Lyndon. We also consider a subtree rooted at a node u as pruned if u is irrelevant,
i.e., the algorithm does not explore this subtree. Consequently, irrelevant nodes
are leaves in the pruned subtree, but not all leaves are irrelevant (consider a
Lyndon subsequence using the last text position T [n]). Further, we call a node
Lyndon or immature if its string label is Lyndon or immature, respectively. (All
nodes in the trie are either Lyndon or immature.)

Time Complexity. Suppose that we have the text positions (i1, . . . , i�) on S
such that U := T [i1] · · · T [i�] is a Lyndon word. If L[�] > i�, then we lower
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L[�] ← i�. We can lower an individual entry of L at most n times, or at most
n2 times in total for all entries. If a visited node is Lyndon, we only explore
its subtree if we were able to lower an entry of L. Hence, we visit at most n2

Lyndon nodes that trigger a decrease of the values in L. While each node can
have at most σ children, at most one child can be immature due to Fact 3. Since
the depth of the trie is at most n, we therefore visit O(nσ) nodes between two
updates of L (we pop at most n nodes from the stack, and try to explore at most
σ siblings of each node on the stack). These nodes are leaves (of the pruned trie)
or immature nodes. Thus, we traverse O(n3σ) nodes in total.

Theorem 6. We can compute the longest Lyndon subsequence of a string of
length n in O(n3σ) time using O(nσ) words of space.

4.2 Improving Time Bounds

We further improve the time bounds by avoiding visiting irrelevant nodes due
to the following observation: First, we observe that the number of relevant (i.e.,
non-irrelevant) nodes that are Lyndon is O(n2). Since all nodes have a depth
of at most n, the total number of relevant nodes in O(n3). Suppose we are at
a node u, and S stores the positions (i1, . . . , i�) such that T [i1] · · · T [i�] is the
string label of u. Let p denote the smallest period of T [i1] · · · T [i�]. Then we do
not want to consider all σ children of u, but only those whose edges to u have a
label c ≥ T [i�−p+1] such that c occurs in T [i� + 1..L[� + 1] − 1] (otherwise, there
is already a Lyndon subsequence of length � + 1 lexicographically smaller than
T [i1] · · · T [i�]c). In the context of our preorder traversal, each such child can be
found iteratively using range successor queries: starting from b = T [i�−p+1] − 1,
we want to find the lexicographically smallest character c > b such that c occurs
in T [i�+1..L[�+1]−1]. In particular, we want to find the leftmost such occurrence.
A data structure for finding c in this interval is the wavelet tree [14] returning
the position of the leftmost such c (if it exists) in O(lg σ) time. In particular,
we can use the wavelet tree instead of the O(nσ) pointers to the subsequent
characters to arrive at O(n) words of space. Finally, we do not want to query
the wavelet tree each time, but only whenever we are sure that it will lead us
to a relevant Lyndon node. For that, we build a range maximum query (RMQ)
data structure on the characters of the text T in a preprocessing step. The RMQ
data structure of [3] can be built in O(n) time; it answers queries in constant
time. Now, in the context of the above traversal where we are at a node u with S
storing (i1, . . . , i�), we query this RMQ data structure for the largest character c
in T [i� + 1..L[� + 1] − 1] and check whether the sequence S := T [i1] · · · T [i�]c
forms a (pre-)Lyndon word.

– If S is not pre-Lyndon, i.e., T [i�−p+1] > c for p being the smallest period
of T [i1] · · · T [i�], we are sure that the children of u cannot lead to Lyndon
subsequences [9, Prop. 1.5].

– If S is immature, i.e., T [i�−p+1] = c, u has exactly one child, and this child’s
string label is S. Hence, we do not need to query for other Lyndon children.
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– Finally, if S is Lyndon, i.e., T [i�−p+1] < c, we know that there is at least one
child of u that will trigger an update in L and thus is a relevant node.

This observation allows us to find all relevant children of u (including the single
immature child, if any) by iteratively conducting O(k) range successor queries,
where k is the number of children of u that are relevant Lyndon nodes. Thus, if we
condition the execution of the aforementioned wavelet tree query with an RMQ
query result on the same range, the total number of wavelet tree queries can be
bounded by O(n2). This gives us O(n3 + n2 lg σ) = O(n3) time for σ = O(n)
(which can be achieved by an O(n log n) time re-enumeration of the alphabet in
a preliminary step).

Theorem 7. We can compute the longest Lyndon subsequence of a string of
length n in O(n3) time using O(n) words of space.

In particular, the algorithm computes the lexicographically smallest one
among all longest Lyndon subsequences: Assume that this subsequence L is
not computed, then we did not explore the subtree of the original trie τ (before
pruning) containing the node with string label L. Further, assume that this
subtree is rooted at an irrelevant node u whose string label is the pre-Lyndon
subsequence U . Then U is a prefix of L, and because u is irrelevant (i.e., we
have not explored u’s children), there is a node v whose string label is a Lyndon
word V with V ≺ U and |V | = |U |. In particular, the edge of v to v’s parent
is associated with a text position equal to or smaller than the associated text
position of the edge between u and u’s parent. Hence, we can extend V to the
Lyndon subsequence V L[|U | + 1]..] being lexicographically smaller than L, a
contradiction.

4.3 Online Computation

If we allow increasing the space usage in order to maintain the trie data structure
introduced in Sect. 3.2, we can modify our O(n3σ)-time algorithm of Sect. 4.1
to perform the computation online, i.e., with T given as a text stream. To this
end, let us recall the trie τ of all pre-Lyndon subsequences introduced at the
beginning of Sect. 4. In the online setting, when reading a new character c, for
each subsequence S given by a path from τ ’s root (S may be empty), we add a
new node for Sc if Sc is a pre-Lyndon subsequence that is not yet represented
by such a path. Again, storing all nodes of τ explicitly would cost us too much
space. Instead, we explicitly represent only the visited nodes of the trie τ with
an explicit trie data structure τ ′ such that we can create pointers to the nodes.
(In other words, τ ′ is a lazy representation of τ .) The problem is that we can
no longer perform the traversal in lexicographic order, but instead keep multiple
fingers in the trie τ ′ constructed up so far, and use these fingers to advance the
trie traversal in text order.

With a different traversal order, we need an updated definition of L[1..n]:
Now, while the algorithm processes T [i], the entry L[�] stores the lexicographi-
cally smallest length-� Lyndon subsequence of T [1..i] (represented by a pointer
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to the corresponding node of τ ′). Further, we maintain σ lists storing pointers to
nodes of τ ′. Initially, τ ′ consists only of the root node, and each list stores only
the root node. Whenever we read a new character T [i] from the text stream,
for each node v of the T [i]-th list, we add a leaf λ connected to v by an edge
with label T [i]. Our algorithm adheres to the invariant that λ’s string label S
is a pre-Lyndon word so that τ ′ is always a subtree of τ . If S is a Lyndon word
satisfying S ≺ L[|S|] (which can be tested using the data structure of Sect. 3.2),
we further set L[|S|] := S. This completes the process of updating L[1..n]. Next,
we clear the T [i]-th list and iterate again over the newly created leaves. For each
such leaf λ with label S, we check whether λ is relevant, i.e., whether S � L[|S|].
If λ turns out irrelevant, we are done with processing it. Otherwise, we put λ
into the c-th list for each character c ∈ Σ such that Sc is a pre-Lyndon word. By
doing so, we effectively create new events that trigger a call-back to the point
where we stopped the trie traversal.

Overall, we generate exactly the nodes visited by the algorithm of Sect. 4.1.
In particular, there are O(n3) relevant nodes, and for each such node, we issue
O(σ) events. The operations of Sect. 3.2 take constant amortized time, so the
overall time and space complexity of the algorithm are O(n3σ).

Theorem 8. We can compute the longest Lyndon subsequence online in O(n3σ)
time using O(n3σ) space.

5 Longest Common Lyndon Subsequence

Given two strings X and Y , we want to compute the longest common subse-
quence of X and Y that is Lyndon. For that, we can extend our algorithm
finding the longest Lyndon subsequence of a single string as follows. First, we
explore in depth-first order the trie of all common pre-Lyndon subsequences of
X and Y . A node is represented by a pair of positions (x, y) such that, given the
path from the root to a node v of depth � visits the nodes (x1, y1), . . . , (x�, y�)
with L = X[x1] · · · X[x�] = Y [y1] · · · Y [y�] being a pre-Lyndon word, L is neither
a subsequence of X[1..x� − 1] nor of Y [1..y� − 1], i.e., x� and y� are the left-
most such positions. The depth-first search works like an exhaustive search in
that it tries to extend L with each possible character in Σ having an occurrence
in both remaining suffixes X[x� + 1..] and Y [y� + 1..], and then, after having
explored the subtree rooted at v, visits its lexicographically succeeding sibling
nodes (and descends into their subtrees) by checking whether L[1..|L| − 1] can
be extended with a character c > L[|L|] appearing in both suffixes X[x�−1 + 1..]
and Y [y�−1 + 1..].

The algorithm uses again the array L to check whether we have already found
a lexicographically smaller Lyndon subsequence with equal or smaller ending
positions in X and Y than the currently constructed pre-Lyndon subsequence.
For that, L[�] stores not only one position, but a list of positions (x, y) such that
X[1..x] and Y [1..y] have a common Lyndon subsequence of length �. Although
there can be n2 such pairs of positions, we only store those that are pairwise non-
dominated. A pair of positions (x1, y1) is called dominated by a pair (x2, y2) �=
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(x1, y1) if x2 ≤ x1 and y2 ≤ y1. A set storing pairs in [1..n] × [1..n] can have at
most n elements that are pairwise non-dominated, and hence |L[�]| ≤ n.

At the beginning, all lists of L are empty. Suppose that we visit a node v
with pair (x�, y�) representing a common Lyndon subsequence of length �. Then
we query whether L[�] has a pair dominating (x�, y�). In that case, we can skip
v and its subtree. Otherwise, we insert (x�, y�) and remove pairs in L[�] that
are dominated by (x�, y�). Such an insertion can happen at most n2 times. Since
L[1..n] maintains n lists, we can update L at most n3 times in total. Checking for
domination and insertion into L takes O(n) time. The former can be accelerated
to constant time by representing L[�] as an array R� storing in R�[i] the value y
of the tuple (x, y) ∈ L[�] with x ≤ i and the lowest possible y, for each i ∈ [1..n].
Then a pair (x, y) �∈ L[�] is dominated if and only if R�[x] ≤ y.

Example 9. For n = 10, let L� = [(3, 9), (5, 4), (8, 2)]. Then all elements in L�

are pairwise non-dominated, and R� = [∞,∞, 9, 9, 4, 4, 4, 2, 2, 2]. Inserting (3, 2)
would remove all elements of L�, and update all entries of R�. Alternatively,
inserting (7, 3) would only involve updating R�[7] ← 3; since the subsequent
entry R�[8] = 2 is less than R�[7], no subsequent entries need to be updated.

An update in L[�] involves changing O(n) entries of R�, but that cost is
dwarfed by the cost for finding the next common Lyndon subsequence that
updates L. Such a subsequence can be found while visiting O(nσ) irrelevant
nodes during a naive depth-first search (cf. the solution of Sect. 3.1 computing
the longest Lyndon sequence of a single string). Hence, the total time is O(n4σ).

Theorem 10. We can compute the longest common Lyndon subsequence of a
string of length n in O(n4σ) time using O(n3) words of space.

Open Problems. Since we shed light on the computation of the longest (com-
mon) Lyndon subsequence for the very first time, we are unaware of the opti-
mality of our solutions. It would be interesting to find non-trivial lower bounds
that would justify our rather large time and space complexities.
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Abstract. Combinatorial group testing (CGT) is used to identify defec-
tive items from a set of items by grouping them together and performing
a small number of tests on the groups. Recently, group testing has been
used to design efficient COVID-19 testing, so that resources are saved
while still identifying all infected individuals. Due to test waiting times,
a focus is given to non-adaptive CGT, where groups are designed a priori
and all tests can be done in parallel. The design of the groups can be done
using Cover-Free Families (CFFs). The main assumption behind CFFs is
that a small number d of positives are randomly spread across a popula-
tion of n individuals. However, for infectious diseases, it is reasonable to
assume that infections show up in clusters of individuals with high con-
tact (children in the same classroom within a school, households within
a neighbourhood, students taking the same courses within a university,
people seating close to each other in a stadium). The general structure
of these communities can be modeled using hypergraphs, where vertices
are items to be tested and edges represent clusters containing high con-
tacts. We consider hypergraphs with non-overlapping edges and overlap-
ping edges (first two examples and last two examples, respectively). We
give constructions of what we call structure-aware CFF, which uses the
structure of the underlying hypergraph. We revisit old CFF construc-
tions, boosting the number of defectives they can identify by taking the
hypergraph structure into account. We also provide new constructions
based on hypergraph parameters.

1 Introduction

Group testing literature dates back to the Second World War as an efficient
way of testing blood samples for syphilis screening [3,4]. The idea consists of
grouping blood samples together before testing, so that negative results could
save hundreds of individual tests. This idea was then applied to many other
areas: screening vaccines for contamination, building clone libraries for DNA
sequences, data forensics for altered documents, modification tolerant digital
signatures [6,8,14–17,19,20]. Currently, it is considered a promising scheme for
c© Springer Nature Switzerland AG 2022
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saving time and resources in COVID-19 testing [5,25–27,31]. In fact, several
countries, such as China, India, Germany and the United States, have adopted
group testing as a way of saving time and resources [25].

In combinatorial group testing (CGT), we are given n items of which at most
d are defective (or contaminated). We assume we can test any subset of items,
and if the result of the test is positive the subset contains at least one defective
(contaminated) item, and if it is negative all items in the subset are non-defective
(uncontaminated). The main goal is to minimize the number t of tests for given
n and d, while determining all defective items. For a comprehensive treatment,
see the text by Du and Hwang [4].

Group testing may be adaptive or non-adaptive [4]. Adaptive CGT allows us
to decide the next tests according to the results of previous tests. This is the case
of the binary spliting algorithm, which meets the information theoretical lower
bound of d log(n/d) tests. In this paper, we focus on non-adaptive CGT. Due
to test waiting times, non-adaptive CGT is a useful approach, since we decide
all groups at once and can run tests in parallel. In addition, in non-adaptive
CGT, we can have more balanced sizes of the groups (items in each test), which
is limited in some real applications. For COVID-19 screening, researchers are
testing how many samples can be grouped together without compromising the
detection of positive results [25,31].

Items and tests in CGT can be represented by a binary matrix where items
correspond to columns and tests correspond to rows, where a 1 means a test uses
an item. A d-cover free family (or d-CFF(t, n)) is a t × n matrix with special
properties that guarantee the identification of d defective items among n items
using t tests and a simple decoding algorithm that takes time O(tn) (see Sect. 2).

In this paper, we are interested in applications where the defective items
are more likely to appear together in predictable subsets of items, which are
given as edges of a hypergraph. For example, if we want to monitor a highly
transmissible disease among students in a school, classrooms can be the edges
(or regions) where it is more likely that if there is one infected individual we
may find many. In this way, outbreaks may be detected early while only a few
classrooms have infected students. In this model, we are given a hypergraph
where items are vertices and regions are edges such that there are at most r edges
that together contain all defective vertices. The objective is still to minimize the
number of tests while identifying all defective items. A weaker version of the
problem consists of simply identify all infected edges. In this paper we initiate
a more systematic study of how to build CFFs for combinatorial group testing
under the hypergraph model, which we call structure-aware cover-free families.

Recent Related Work. A similar hypergraph model has been recently proposed
as group testing in connected and overlapping communities in the context of
COVID-19 testing [26,27], as group testing on general set systems [12], and as
variable cover-free families motivated by problems in cryptography [14]. The
work in [12,26,27] span both adaptive and nonadaptive CGT algorithms, but
there is not much emphasis on CGT matrix constructions. Our work is on effi-
cient cover-free family constructions for the hypergraph model. The idea of
structure-aware CFF was introduced in the first author’s PhD thesis [14] under
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the name of variable CFFs (VCFFs) with an equivalent definition. This was
inspired by applications in cryptography, where they would allow for location of
clustered modifications in a signed document when using modification-tolerant
digital signatures. The hypergraphs considered here and the ones in [26,27] are
equivalent to the ones in [12,14], but differ in that the edges directly model the
communities and a separate parameter r bounds the number of defective edges.

Our Results and Paper Structure. Basic concepts for cover-free families are given
in Sect. 2. The new definitions of structure-aware cover free families and edge-
identifying CFFs are given in Sect. 3 along with related decoding algorithms.
CFF constructions for hypegraphs with non-overlaping edges are given in Sect. 4.
In particular, we revisit known d-CFF constructions (Sperner, product, array
group testing, polynomials in finite fields) and show how they can be viewed as
a structure-aware CFF, allowing a much larger defect identification when items
are clustered into conveniently chosen hypergraphs. We exemplify how these
hypergraphs relate to realistic community-like structures. In a generalization of
the Sperner construction (r = 1) we also give results under the more realistic
assumption of limited number of samples per tests (Sect. 4.1). CFF constructions
for the more general case of hypergraphs with overlapping edges are given in
Sect. 5. We give constructions for both r = 1 and r > 1 using edge-colouring
and strong edge-colouring of hypergraphs, to partition the hypergraph into non-
overlapping subgraphs that can be constructed using results from the previous
section. Some proofs and pictures omitted here are in [18].

2 Cover-Free Families

CFFs were first introduced by Kautz and Singleton [21] in the context of super-
imposed codes. They are equivalent to d-disjunct matrices and strongly selective
families [4,29]. We can define d-CFF via a matrix or a set system.

Definition 1 (CFF via matrix). Let d be a positive integer. A d-cover-free
family, denoted d-CFF(t, n), is a t × n 0–1 matrix where the submatrix given by
any set of d+1 columns contains a permutation matrix (each row of an identity
of order d + 1) among its rows.

A set system F = (X,B) consists of a set X and a collection B of subsets of
X. The set system associate to matrix M is the set system FM = (X,B) with
X corresponding to rows and B corresponding to columns of M, where Bi ⊆ B
has column i as its characteristic vector, 1 ≤ i ≤ n. A d-CFF can be equivalently
defined in terms of its set system FM, by specifying that no set of d columns
“covers” any other column.

Definition 2 (CFF via set system). Let d be a positive integer. A d-cover-
free family, denoted d-CFF(t, n), is a set system F = (X,B) with |X| = t and
|B| = n such that for any d + 1 subsets Bi0 , Bi1 , . . . , Bid ∈ B, we have

|Bi0\
d⋃

j=1

Bij | ≥ 1. (1)
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For a given n and d, we are interested in constructing d-CFFs with the
smallest possible t, so we define t(d, n) = min{t : ∃ d-CFF(n, t)}.

Next we show an example of a 2-CFF(9, 12), which can be used to test n = 12
items with t = 9 tests and identify up to d = 2 defective items.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

X = {1, 2, . . . , 9}
B1 = {1, 2, 3}, B2 = {4, 5, 6}, . . . , B12 = {3, 5, 7}
B = {B1, B2, . . . , B12}

After running the tests on groups of items according to the rows of a d-CFF
matrix M, we can run a simple algorithm to identify the invalid items. When
we apply Algorithm 1 with a d-CFF matrix M and the number of defectives is
indeed bounded by d, then after the first loop x has at most d nonzero compo-
nents. So for d-CFF, the second loop can be removed and substituted by a simple
check that the number of 1’s in x does not exceed d; in this case, the output
will be Boolean, i.e. every component is in {0, 1}, and correct. We give this more
general algorithm, used in Sect. 3. In the case of other types of matrices or when
the number of defective items exceeds d, the algorithm classifies the items into
three types of defective status (yes, no, maybe) according to the information
provided by test results. Assuming correct outcome for group testing, the items
with xi ∈ {0, 1} do not give false positive/negative results.

Algorithm 1. Non-adaptive CGT algorithm to identify invalid items
Input: Group testing matrix M and test result y = (y1, . . . , yt), with yi = 1 iff the
i-th test was positive.
Output: x = (x1, . . . , xn), xj = 1, 0, 0.5 if the j-th item is defective, nondefective,
unknown, respectively.
x ← (1, ..., 1)
for i = 1, . . . , t do

for j = 1, . . . , n do
if Mi,j = 1 and yi = 0 then xj ← 0

for j such that xj = 1 do
if ∃i such that (Mi,j = 1 and (x� = 0, ∀� �= j with Mi,� = 1)) then

xj ← 1 � Item j is on a failing test together with only non-defective items
else xj ← 0.5 � Can’t guarantee j is the cause of failures but maybe defective

return x

For d = 1, Sperner’s theorem gives an optimal construction for 1-CFFs. The
value t grows as log2 n as n → ∞, which meets the information theoretical
lower bound. For d ≥ 2, the best known lower bound on t for d-CFF(t, n) is
given by t(d, n) ≥ c d2

log d log n for some constant c [9,30,32], with c proven to
be ≈ 1/4 in [9] and ≈ 1/8 in [30]. For d ≥ 2, there are several approaches
to construct d-CFFs using codes and combinatorial designs [24]. Probabilistic
methods usually provide the best existence results known, and derandomization
techniques yield polynomial time algorithms to construct a d-CFF(n, t) with
t = Θ(d2 log n) [2,10,11,29].
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3 Structure-Aware Cover-Free Families

In this section, we define structure-aware cover-free families (SCFFs) by adding
a hypergraph structure to a CFF. Vertices correspond to columns and edges
specify sets of columns where defective items may appear more likely together.
We use the assumption that defective items are contained in a small number
r of edges inside of which any number of defective items may be found. For
example, the outbreak of a disease in a school/university could be detected by
associating vertices with students, edges with classrooms/courses; even if the
number of infected students is high, the CFF would detect them as long as they
are concentrated in a small number of classrooms/courses. A hypergraph is a pair
(V,S) where V is a finite set called vertices and S is a set of nonempty subsets
of V called edges. We use [1, n] to denote the set {1, . . . , n}.

Definition 3 (Structure-aware CFFs). Let n, t > 0 and r ≥ 0 be inte-
gers. Let H = ([1, n],S) be a hypergraph with n vertices and m edges, and
let M be a t × n binary matrix with associated set system FM = ([1, t],B),
B = {B1, . . . , Bn}. Matrix M is a structure-aware cover-free family, denoted
(S, r)-CFF(t, n), if for any r-set of edges {S1, . . . , Sr} ⊆ S, and for any
I ⊆ ∪r

j=1Sj and any i0 ∈ [1, n]\I, we have
∣∣∣∣Bi0

∖( ⋃

i∈I

Bi

)∣∣∣∣ ≥ 1. (2)

We observe that a d-CFF(t, n) is equivalent to an (S, d)-CFF(t, n) where
edges are singleton vertices S = {{1}, {2}, . . . {n}}.

We now consider how the status of edges influence the detectability of defec-
tive items. An edge is defective if it contains a defective vertex and non-defective,
otherwise. A set of edges is a defect cover if the set of defective vertices is con-
tained in the union of these edges; such a defect cover is minimal if no proper
subset is a defect cover. A minimal defect cover is always contained in the set of
defective edges, but the number of defective edges may be much larger than the
size of a defect cover for hypergraphs with overlaping edges. The next proposi-
tion shows that a structure-aware CFF ability to detect defectives only depends
on the cardinality of a minimum defect cover being bounded by r.

Proposition 1. Let H = ([1, n],S) be a hypergraph, M be an (S, r)-CFF(t, n)
and y ∈ {0, 1}t be the result of tests given by M on items 1, . . . , n. If H has a
defect cover with at most r edges then Algorithm 1 on inputs (M, y) returns a
Boolean output x such that xi = 1 if and only if item i is defective.

We are also interested in identifying infected edges when the output of Algo-
rithm 1 is not Boolean, which can happen if defective items are spread over too
many edges (defective covers have size > r). For example, in schools the tests
may not provide full information on infected students, but we still may extract
information on which classrooms are infected. The following algorithm provides
edge information based on ternary vertex information for a hypergraph H.
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Algorithm 2. Edge information from vertices
Input: Hypergraph H = (V, E) with n vertices and m edges; Group testing matrix
M, boolean results y = (y1, y2, . . . , yt); Vector x = (x1, x2, . . . , xn), xj = 1, 0, 0.5 if
the j-th item is defective, non-defective, unknown, respectively.
Output: Vector z = (z1, z2, . . . , zm), ze = 1, 0, 0.5 if the e-th edge is defective,
nondefective, unknown, respectively.
for s = 1, . . . , m do � this loop gets edge status from vertices

zs ← 0;
for each vertex vi in edge es do

if xi = 1 then zs ← 1
else

if xi = 0.5 and zs = 0 then zs ← 0.5

for i = 1, . . . , t do � this loop gets edge status from test results
if yi = 1 then

E = {j : Mi,j = 1 and xj �= 0}
for s = 1, . . . , m do

if (zs = 0.5) and (E ⊆ es) then zs ← 1

return z

Some CFFs may have a value of r for vertex status identification but have a
larger value r for edge status identification (see for example Proposition 7 and
Theorem 3). This can be useful for applications, in that infected communities
are identifiable even though we do not have perfect individual identification. To
capture this property, we define edge-identifying CFFS (ECFFs), which has a
weaker coverage requirement than SCFFs.

Definition 4 (Edge-identifying CFFs). Let r, t, n, M, H and FM be as
in Definition 3. We say M is an (S, r)-ECFF(t, n) if for any �-subset of edges
{S1, . . . , S�} ⊆ S, � ≤ r, and any i0 /∈ S = ∪�

j=1Sj, we have
∣∣∣∣Bi0

∖( ⋃

i∈S

Bi

)∣∣∣∣ ≥ 1. (3)

Proposition 2. Let H = ([1, n],S) be a hypergraph, M be a (S, r)-ECFF(t, n),
and y be the test results for M. Let x be the output of Algorithm 1 for inputs
(H,M,y). Then, if H has a defect cover with at most r edges then Algorithm 2
applied to (H,M, x,y) returns an output z such that {Sj ∈ S : zj = 1} forms a
defect cover that only contains defective edges.

For any CFF, structure-aware CFF, or ECFF matrix M we denote by LM
the number of ones in each row of M. We keep track of this quantity in some
constructions, since we may have limit Lmax on the number of ones per row, in
cases where combining too many samples can result on a false negative.
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4 Structure-Aware CFFs: Non-overlapping Edges

We revisit old CFF constructions and show we can boost the number of defectives
it can identify by taking a suitable hypergraph structure into account. We also
propose some new constructions. Here we consider the case of non-overlapping
edges, meaning that items do not participate in more than one edge.

4.1 Sperner-Type Constructions for r = 1

A Sperner set system is a set system where no set is contained in any other
set in the set system. Sperner’s theorem states that the largest Sperner set
system on an t-set is formed by taking all subsets of cardinality �t/2�. Given
n, a 1-CFF(t, n) with minimum t is obtained from Sperner theorem by taking
t = min{s :

(
s

�s/2�
) ≤ n} and the corresponding matrix having the characteristic

vectors of �t/2�-subsets as columns. We note that t ∼ log n and this is the best
possible, since being 1-CFF is equivalent to being Sperner.

Some applications have a maximum allowed number of items per test,
LM ≤ Lmax, to prevent loss of test precision. A Sperner set system with sets of
cardinality a < t/2 can be used as a 1-CFF whenever

(
t−1

�t/2�−1

)
exceeds Lmax.

For nonoverlapping hypergraphs and r = 1, we give constructions for SCFF for
both unlimited and limited LM.

Proposition 3 (r = 1, unlimited LM). Let H = ([1, n],S) be a hypergraph
with m disjoint edges of cardinality at most d that span [1, n]. Let M be the
vertical concatenation of matrices M1 and M2. Let M1 be obtained from a 1-
CFF(t1,m) matrix A with t1 = min{s :

(
s

�s/2�
) ≤ m} in such a way that if

vertex vi is incident to edge bj column i of M1 repeats column j of A. Let M2

be a d × n matrix with an identity matrix of dimension |S| pasted under the
items of each edge S ∈ S. Then, M1 is an (S, 1)-ECFF(t1, n) and M is an
(S, 1)-CFF(t1 + d, n).

For uniform hypergraphs the construction above gives t ∼ log m + d =
log n/d + d, but does not limit LM. The next proposition is useful for limited
LM, as shown in the example that follows it.

Proposition 4 (r = 1, LM ≤ Lmax). Let Lmax be a positive integer that limits
the number of 1s in each row of the CFF. Let H = ([1, n],S) be a hypergraph
with m disjoint edges of cardinality at most d that span [1, n], where d ≤ Lmax.
Let t1 = min{s :

(
s

�s/2�
) ≤ m}. Then,

1 If d × (
t1−1

�t1/2�−1

) ≤ Lmax and m ≤ Lmax then M given in Proposition 3 is an
(S, 1)-CFF(t1 + d, n) with LM ≤ Lmax.

2 Otherwise, let q = �m/Lmax�. Take t, a such that
(

t
a

) ≥ m and d × (
t−1

�a�−1

) ≤
Lmax. Then, there exists a (S, 1)-CFF(t + qd, n) matrix M with LM ≤ Lmax.
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Example 1 (Proposition 4 used for m classrooms with d students each). Suppose
n students are divided into m classrooms of size up to d. Then Proposition 4
can be used to identify all infected students, provided they are all in a single
classroom (r = 1). The table below reports on number of tests for each scenario
depending on value of Lmax for the construction on Proposition 4. The line
with L = ∞ shows the number of tests for the construction for unlimited L
(Proposition 3). The last line shows the lower bound given in [9] for the number
of rows t on a d-CFF(t, n) required for location of any set of d infected students,
not necessarily concentrated on a single classroom.

n/100 .5 1 2 3 1 2 4 6 1.5 3 6 9 2 4 8 12 2.5 5 10 15 3 6 12 18
m 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 60 60 60 60
d 5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30 5 10 20 30

L =
10 11 16 26 36 17 27 47 67 23 38 68 98 28 48 88 128 33 58 108 158 39 69 129 189
15 11 16 26 36 17 27 47 67 18 28 48 68 23 38 68 98 28 48 88 128 29 49 89 129
20 11 16 26 36 12 17 27 37 18 28 48 68 18 28 48 68 23 38 68 98 24 39 69 99
25 10 16 26 36 12 17 27 37 18 28 48 68 18 28 48 68 18 28 48 68 24 39 69 99
30 10 16 26 36 12 17 27 37 14 18 28 38 18 28 48 68 18 28 48 68 19 29 49 69

L = ∞ 10 15 25 35 11 16 26 36 12 17 27 37 13 18 28 38 13 18 28 38 13 18 28 38
t(d, n) > 21 66 180 270 21 66 231 496 21 66 231 496 21 66 231 496 23 66 231 496 25 66 231 496

4.2 Kronecker Product Constructions (General r)

Let Ak be an mk × nk binary matrix, for k = 1, 2, and 0 be the matrix of all
zeroes with same dimension as A2. The Kronecker product P = A1 ⊗ A2 is a
binary matrix formed of blocks Pi,j such that Pi,j = A2 if A1i,j = 1 and Pi,j = 0,
otherwise. We denote by Rk the row matrix with k ones and by Ik the identity
matrix of dimension k. The propositions given after each theorem specializes the
theorem construction and generalizes to SCFF, boosting the defective detection.

Theorem 1 (Li et al. [24] for d = 2, Idalino and Moura [17]). Let
A1 be a d-CFF(t1, n1) and A2 be a d-CFF(t2, n2), then C = A1 ⊗ A2 is a
d-CFF(t1t2, n1n2).

Proposition 5. Let H = ([1, n],S) be a hypergraph formed by m disjoint edges
of cardinality k, n = k × m. Let r be a positive integer, and let A be an r-
CFF(t,m). Then A ⊗ Rk is an (S, r)-ECFF(t, km) and A ⊗ Ik is an (S, r)-
CFF(kt, km) (Fig. 1).

The vertical concatenation of matrices A and B (with the same number of
columns) is the matrix consisting of rows of A followed by the rows of B.

Theorem 2 (Li et al. [24] for d = 2, Idalino and Moura [17]). Let d ≥
2, A1 be a d-CFF(t1, n1), A2 be a d-CFF(t2, n2), B be a (d − 1)-CFF(s, n2).
Let C be the vertical concatenation of B ⊗ A1 and A2 ⊗ Rn1 . Then C is a
d−CFF(st1 + t2, n1n2).

Proposition 6. Let H = ([1, n],S) be a hypergraph formed by m disjoint edges
of cardinality k, n = k×m. Let r be a positive integer, A be an r-CFF(tA,m), and
B be an (r−1)-CFF(tB ,m). Then the vertical concatenation of A ⊗ Rk and B ⊗
Ik is an (S, r)-CFF(tA +ktB , km). Moreover, if edges have different cardinalities
bounded by k, a similar construction yields an (S, r)-CFF(tA + ktB, n) (Fig. 1).
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Fig. 1. Two (S, 2)-CFF(27, 36), S consists of 12 disjoint edges of size 3. Up to six
defective items concentrated within 2 edges can be identified.

4.3 Array and Hypercube Constructions

An array-based scheme for group testing uses an n1 ×n2 array, where each entry
of the array corresponds to an item to be tested and the tests are performed on
rows and columns, for a total of n1 + n2 tests. This can be used on a 2-stage
algorithm, where all items at the intersection of a positive row and column should
be individually tested in a second stage to solve ambiguities [13,22,28]. For d = 1
defective item, one stage is enough. Fig. 2(a) shows a 5 × 5 array with defective
items in red. This idea can be generalized to higher dimensions, constructing an
n1 × . . . × nk hypercube [1,23], which is a 1-CFF(n1 + . . . + nk, n1 × . . . × nk).
Figure 2(b) shows a 3-dimensional hypercube, where each point represents an
item and tests are given by fixing the value of one dimension. If all defective
items are clustered in either a row or a column in a 2-dimensional array, we
can precisely identify all of them in one round, thus this is a structure-aware
(S, 1)-CFF(2n, n2) for S corresponding to rows and columns. We generalize this
for higher dimensions in the next proposition. To simplify the notation, we take
n1 = . . . = nk = n, but the next results are valid for the general case. An [n]k-
hypercube group testing matrix is an 1-CFF(kn, nk) matrix defined as follows.
Items are in Z

k
n and rows/tests are given by Tv,a = {x ∈ Z

k
n : xv = a}, 1 ≤ v ≤ k,

a ∈ Zn. Denote x(v) = (x1, . . . , xv−1, xv+1, . . . , xk) for x ∈ Z
k
n, 1 ≤ v ≤ k.

Proposition 7. Let A be an [n]k-hypercube group testing matrix. Let Hv =
([1, n],Sv) where Sv = {{x ∈ Z

k
n : x(v) = (a1, . . . , ak−1)} : (a1, · · · , ak−1) ∈

Z
k−1
n }, 1 ≤ v ≤ k, and let H = ([1, n],S) where S = S1 ∪ · · · ∪ Sk. Then,

for any 1 ≤ v ≤ k, A is an (Sv, 1)-CFF(kn, nk) and if k = 2, A is also an
(Sv, |Sv| = n)-ECFF(2n, n2). Moreover, A is an (S, 1)-CFF(kn, nk).
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Fig. 2. (a) A 5 × 5 array GT with 25 items and 10 tests. (b) A 3 × 3 × 3 hypercube
GT with 27 items and 9 tests.

Proof (sketch). For ECFF, note that when k = 2 each edge is tested in a different
test containing only the vertices of the edge. For SCFF, if defectives are contained
in an edge of Sv, vertices in all other edges of Sv will be in passing tests, and
tests Tv,a, a ∈ Zn, reveal the defective status of each item in Sv. ��

4.4 Construction from Polynomials

Now we look at a construction of d-CFFs from polynomials over finite fields,
given by Erdös et al. [7]. Let q be a prime power, k a positive integer, and Fq =
{e1, . . . , eq} be a finite field. We define F =(X,B) as follows, for each polynomial
f ∈ Fq[x]≤k of degree at most k: X = Fq×Fq, Bf = {(e1, f(e1)), . . . , (eq, f(eq))},
B = {Bf : f ∈ Fq[x]≤k}. Then, F is a d-CFF(t = q2, n = qk+1) for d ≤ q−1

k .
This d-CFF has an interesting structure, which allows us to discard some rows

when smaller values of d are enough [16]. We restrict the CFF matrix to i blocks of
rows by considering X = {e1, . . . , ei} × Fq, Bf (i) = {(e1, f(e1)), . . . , (ei, f(ei))}
and B(i) = {Bf (i) : f ∈ Fq[x]≤k}, which yields the following result.

Proposition 8 (Idalino and Moura [16], Theorem 3.2). Let q be a prime
power, k ≥ 1 and q ≥ dk + 1, and let M be the d-CFF(q2, qk+1) obtained from
the polynomial construction. If we restrict M to the first (d′k+1) blocks of rows,
we obtain a d′-CFF((d′k + 1)q, qk+1), for any d′ ≤ d.

For instance, for q = 5 and k = 1, if we restrict a 4-CFF(52, 52) to its first
2 blocks of rows, we get a 1-CFF(2 × 5, q2), with 3 blocks of rows we get a 2-
CFF(3 × 5, q2), etc. Next we show that this construction is an structure-aware
CFF that can tolerate as many as q defective items with as few as (k +1)q tests.

Theorem 3. Let k ≥ 1 and q be a prime power such that q ≥ k + 1. Let
S = {S1, . . . , Sqk} be a set-partition of [1, n] such that |Si| = q for all 1 ≤ i ≤ qk.
Then, there exists an (S, 1)-CFF((k + 1)q, q(k+1)). If k = 1, it is also an (S, q)-
ECFF(2q, q2).

As an example, for q = 5 and k = 1 we have edges S1 =
{
0, x, 2x,

3x, 4x
}
, S2 = {1, x + 1, 2x + 1, 3x + 1, 4x + 1}, S3 = {2, x + 2, 2x + 2, 3x + 2, 4x +

2}, S4 = {3, x+3, 2x+3, 3x+3, 4x+3}, and S5 = {4, x+4, 2x+4, 3x+4, 4x+4}.
This gives us an (S, 1)-CFF(2q = 10, q2 = 25) with S = {S1, S2, S3, S4, S5},
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which allows us to find as many as q = 5 defective items, as long as they are all
in one of the edges Si. In addition, since k = 1, each edge will form a different
test, so we can determine which edges are defective.

Note that the construction in Theorem 3 is equivalent to a [q]k+1-hypercube,
but it is more flexible since we can add more tests (Proposition 8) for a total of
(dk + 1)q tests, where q ≥ dk + 1, to obtain both a (S, 1)-CFF((dk + 1)q, qk+1)
and a d-CFF((dk + 1)q, qk+1), so any d defects anywhere or q > d defects inside
an edge can be found.

5 Structure-Aware CFFs: Overlapping Edges

Here, edge colouring of hypergraphs is used to partition the edges of the graph
into sets of non-overlapping edges (colour classes) allowing the use of previous
constructions to deal with each colour class. An �-edge-colouring of a hypergraph
H = (V,S) is a mapping from S to {1, . . . , �} such that no vertex is incident to
more than one edge mapping to the same colour. Let χ′(H) be the edge chromatic
number of hypergraph H, which is the minimum � among all �-edge-colourings.

Theorem 4. Let H = ([1, n],S) be a hypergraph and let C1, C2, . . . , C� be the
sets of edges in each colour class of an �-edge-colouring of H. For each i, 1 ≤
i ≤ �, let ki = max{|A| : A ∈ Ci} and let fi = |Ci| + δi , where δi = 0 if the
Ci spans [1, n] and δi = 1, otherwise. Then, given 1-CFF(ti, fi) for 1 ≤ i ≤ �,
we can construct a (S, 1)-CFF(t, n) where t =

∑�
i=1(ti + ki); moreover we can

construct an (S, 1)-ECFF(ti, n).

Corollary 1. Let H = ([1, n],S) be a k-uniform hypergraph. Denote by t(1, x)
the number of tests y in the Sperner construction of a 1-CFF(y, x) (See Sect. 4.1).
Then, there exists an (S, 1)-CFF(t, n) with t = χ′(H) × (t(1, �(n/k)�) + k) ∼
χ′(H)((log n/k) + k), and a (S, 1)-ECFF(t′, n) with t′ = χ′(H) × t(1, �(n/k)� ∼
χ′(H) log n/k.

Example 2. Consider a high school where each student takes P courses per term,
in P weekly time periods where in each time period each student attends one
courses of their choice. Consider a hypergraph with n vertices corresponding to
students and each edge corresponding to students in a course. In this example
� = P , since each time period forms a colour class. We give a tiny example, with
n = 18 students spread of over P = 2 time periods morning/afternoon each
with 6 optional courses with 3 students each. This hypergraph has m = 12 edges
(partitioned into 2 colour classes) and n = 18 vertices shown in the table below.

students: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
course 1 X X X
course 2 X X X
course 3 X X X
course 4 X X X
course 5 X X X
course 6 X X X
course 7 X X X
course 8 X X X
course 9 X X X
course 10 X X X
course 11 X X X
course 12 X X X

test 1: 111 111 111 000 000 000
test 2: 111 000 000 111 111 000
test 3: 000 111 000 111 000 111
test 4: 000 000 111 000 111 111
test 5: 100 100 100 100 100 100
test 6: 010 010 010 010 010 010
test 7: 001 001 001 001 001 001
test 8:
test 9: permute columns
test 10: of above array
test 11: so that blocks
test 12: of 3 columns are
test 13: placed under edges
test 14: of second period
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Example 3. Consider the setup of Example 2. Let us consider a more realistic
scenario of a high school with students taking 4 courses each term like the ones in
Ontario, Canada. Suppose n = 900 students take P = 4 courses each, each course
having 30 students for a total of m = 120 courses. We vertically concatenate
2P matrices. For time period i we use Mi (built by repeating columns of a
1-CFF(7, 30 = 120/4)) and Ni (formed by identities of order 30 side-by-side,
pasted under the edges in i). Assume there is an outbreak in a single course,
involving any number of students (≤ 30) in that course. We only need 7×4 = 28
tests to determine the course where the outbreak took place (Mi build from
1-CFF(7, 30), 1 ≤ i ≤ 4). A total of 28 + 30 × 4 = 148 tests can be used to
identify all infected individuals (up to 30) in this set of 900 students. Note that
our assumption is that there is r=1 course that contains all infected individuals,
even thought there may be many infected courses (say up to 90 other courses
that the infected students also take in other time periods). In other words the
hypergraph is assumed to have a defective cover of size r = 1, but it is possible
that up to 91 edges are defective.

For r > 1, we need to use strong edge-colourings to be able to split the prob-
lem according to colour classes without too many infected edges appearing in the
same colour class. A strong edge-coloring of a hypergraph H is an edge-coloring
such that any two vertices belonging to distinct edges with the same colour are
not adjacent. The strong chromatic index s′(H) is the minimum number of colors
in a strong edge-coloring of H.

Theorem 5. Let H = ([1, n],S) be a hypergraph and let r ≥ 2 be an upper
bound on the number of edges of a minimal defective cover. Let C1, C2, . . . , Cs′

be the sets of edges in each colour class of an s′-strong-edge-colouring of H.
Let ki = max{|S| : S ∈ Ci}. Then there exists an (S, r)-CFF(t, n) with t ≤∑s′

i=1(t(r, |Ci|) + kit(r − 1, |Ci|)).
Corollary 2. Let H = ([1, n],S) be a k-uniform hypergraph and let Δ be the
maximum degree of a vertex. Then, we can build a (S, r)-CFF(t, n) with t ≤
s′(H) × (t(r, �n/k�) + kt(r − 1, �n/k�)) ≤ (kΔ + 1) × (t(r, �n/k�) + kt(r −
1, �n/k�)).
Example 4. Consider the scenario of Example 2 and r = 2. We can find a
strong colouring for the hypergraph of that example with s′ = 6 colours
with colour classes: {course1, course4}, {course2, course5}, {course3, course6},
{course7, course10}, {course8, course11}, {course9, course12}. For each colour
class we can use identity matrices I3 as the 2-CFF(3, 3) and 1-CFF(3, 3) required.
If there are outbreaks in 2 courses, any set of up to 6 students in these 2 courses
can be detected with 36 tests. This is a toy example, and of course 36 tests is
more tests than testing the 18 students individually. If we keep the same edge
configuration, but multiply the number of students in each box by 6, then each
edge has 18 students. The 1-CFF(3, 3) can be substituted by an 1-CFF(6, 15).
In this case 54 tests are sufficient to detect up to 36 infected students from an
outbreak in 2 classes among these 108 students. To just find which 2 classes
cover the outbreak of cases, we only need 18 tests.
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Example 5. Consider a venue with 4356 people sitting in a square auditorium of
66 rows with 66 seats per row. Edges are sets of individuals sitting nearby. We
consider edges of size 9 consisting of all possible contiguous 3×3 squares. There is
a strong colouring with � = 36 colour classes of 11×11 = 121 edges each: we need
4 colours to “tile” the room with edges and 9 such tilings to cover all edges. The-
orem 5 construction vertically concatenates matrices M1, . . . ,M36, N1, . . . , N36.
For each colour class i, we use a 2-CFF(25, 125) using the polynomial con-
struction from Proposition 8 for q = 5 and k = 2 to build each Mi, totalling
36 × 25 = 900 tests. For N1, . . . , N36, each of which is supposed to be a 1-
CFF(t, 121) multiplied by I9, we use instead a single matrix N built as follows.
Take A as a 1-CFF(12, 484) obtained from the Sperner construction and do
N = A⊗I9 with 108 rows. Carefully assign vertices in the grid to the columns of
matrix N so that each 3 × 3 square corresponds to a block of identity matrix I9
in a tiling fashion. This is enough to identify each non-defective vertex that lies
inside one of the two defective edges, which is the purpose of N . Therefore with
a total of 1008 tests we can screen 4356 people for any 18 infected people that
appear within any 2 regions of size 3 × 3. See pictures for this example in [18].
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Abstract. We continue the study of the area requirement of convex
straight-line grid drawings of 3-connected plane graphs, which has been
intensively investigated in the last decades. Motivated by applications,
such as graph editors, we additionally require the obtained drawings to
have bounded edge-vertex resolution, that is, the closest distance between
a vertex and any non-incident edge is lower bounded by a constant that
does not depend on the size of the graph. We present a drawing algorithm
that takes as input a 3-connected plane graph with n vertices and f
internal faces and computes a convex straight-line drawing with edge-
vertex resolution at least 1

2
on an integer grid of size (n−2+a)×(n−2+a),

where a = min{n−3, f}. Our result improves the previously best-known
area bound of (3n−7)×(3n−7)/2 by Chrobak, Goodrich and Tamassia.

Keywords: Graph drawing · Convex grid drawings · Area
requirement · Edge-vertex resolution

1 Introduction

Fáry’s theorem [20] is a fundamental result in planar graph drawing, as it guar-
antees the existence of a planar straight-line drawing for every planar graph.
In such a drawing, the vertices of the graph are mapped to distinct points of
the Euclidean plane in such a way that the edges are straight, non-intersecting
line-segments. This central result has been independently proved by several
researchers in early works [30,31,36], some of which also suggested correspond-
ing constructive algorithms requiring high-precision arithmetics; see, e.g., [9,33].
In this regard, a breakthrough has been introduced by de Fraysseix, Pach and
Pollack [13] in the late 80’s, who proposed a method that additionally guarantees
the obtained drawings to be on an integer grid (thus making the high-precision
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Fig. 1. Two planar straight-line grid drawings of the same graph; the drawing in (a)
contains an edge-vertex intersection (on vertex C), while the one in (b) does not as it
has edge-vertex resolution at least 1

2
.

operations unnecessary). A linear-time implementation of this method was pro-
posed by Chrobak and Payne [12]. Over the years, several works have studied the
area requirement of planar graphs under different settings, by providing bounds
on the required size of the underlying grid; see, e.g., [16,18,21,24,29]. In the orig-
inal work by de Fraysseix et al. the size of the underlying grid is (2n−4)×(n−2)
with n being the number of vertices of the graph; such a bound is asymptotically
worst-case optimal, as it is known that there exist n-vertex planar graphs that
need Ω(n) × Ω(n) area in any of their planar drawings [13,22].

The corresponding best-known1 upper bound is due to Chrobak and
Kant [11], who presented a linear-time algorithm to embed any n-vertex pla-
nar graph into a grid of size (n − 2) × (n − 2); see also [29]. In contrast to
the work by de Fraysseix, Pach and Pollack [13], which requires an augmenta-
tion of the input planar graph to maximal planar, the algorithm by Chrobak
and Kant [12] requires just 3-connectivity. Furthermore, it guarantees an addi-
tional property, which is desired when drawing 3-connected planar graphs (see,
e.g., [32]): the obtained drawings are convex, i.e., the boundary of each face is a
convex polygon.

Back in 1996, Chrobak, Goodrich and Tamassia [10] studied the area require-
ment of 3-connected planar graphs under an additional requirement, which is
essential in practical applications. In particular, they introduced the notion of
edge-vertex resolution, which measures how close a vertex is to any non-incident
edge, and required that the obtained drawings have bounded edge-vertex res-
olution. This requirement becomes essential in several practical situations, for
instance, consider graph editors which usually represent each vertex by an object
of a certain size (rather than a point) containing a distinguishing label. Having
high edge-vertex resolution allows to avoid potential overlaps between vertices
and edges, in particular, having edge-vertex resolution at least 1

2 allows each
vertex to be represented as an open disk of unit diameter, such that overlaps
between vertices and non-incident edges are completely avoided, and simultane-
ously vertices centered at neighboring grid-points do not overlap (although may
touch); see Fig. 1. In their work [10], Chrobak, Goodrich and Tamassia claimed
that every 3-connected planar graph admits a convex planar straight-line grid

1 Note that improvements on this bound are known but they are obtained by exploiting
either the structure of the input graph [8,16,18,37] or higher connectivity [21,24].
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drawing on a grid of size (3n − 7) × (3n − 7)/2 with edge-vertex resolution at
least 1

2 . However, the details of the algorithm (and of its proof) supporting this
claim never appeared in the literature. In this regard, very recently, Bekos et
al. [5] referred to the drawings with edge-vertex resolution at least 1

2 as disk-
link and proved (among other results) that every planar graph admits a planar
straight-line disk-link drawing on a grid of size (3n − 7) × (3n − 7)/2. However,
the obtained drawing is not necessarily convex.

We improve both results mentioned above by providing a linear-time algo-
rithm to compute planar straight-line disk-link drawings that are convex and
that fit on a grid of size (n − 2 + a) × (n − 2 + a), where a = min{f, n − 3}
and f denotes the number of internal faces of the input graph. In particular, if
the input graph is maximal planar (that is, f = 2n − 5), our technique yields
drawings of area (2n − 5) × (2n − 5). On the other hand, if the input graph is
3-connected cubic (that is, f = n

2 + 1), then our technique yields drawings of
area ( 3n

2 − 1) × ( 3n
2 − 1). Our result is summarized in the next theorem.

Theorem 1. Every 3-connected plane graph with n vertices and f internal faces
admits a convex planar straight-line grid drawing with edge-vertex resolution at
least 1

2 on a grid of size (n− 2+a)× (n− 2+a), where a = min{f, n− 3}. Also,
the drawing can be computed in O(n) time.

Related Work. Bárány and Rote [2] prove that every 3-connected planar graph
has a strictly convex drawing on a quartic grid, improving a previous result by
Rote [27]. We recall that a planar drawing is strictly convex if each face is
bounded by a strictly convex polygon. We point the interested reader to the
surveys by Di Battista and Frati [14,15] for additional references and results
concerning convex and strictly-convex drawings of planar graphs in small area.

Concerning the edge-vertex resolution requirement there exist multiple
related streams of research. A closed rectangle-of-influence (closed RI for short)
drawing is a planar straight-line drawing such that no vertex lies in the axis-
parallel rectangle (including the boundary) defined by the two ends of every
edge [1,4,6,7,23,28]. Any closed RI drawing whose vertices are at integer coor-
dinates can be seen as a disk-link drawing. This implies that disk-link draw-
ings (not necessarily convex) in quadratic area exist for several classes of plane
graphs [4,6,28]. However, any plane graph with a filled 3-cycle does not admit a
closed RI drawing [6]. Another related direction considers drawings where ver-
tices are objects with integer coordinates and the edges are fat segments [3]. In
such drawings the edges do not connect the centers of the incident vertex-disks
but rather simply enter these vertex-objects through varying angles. Duncan et
al. [17] also use fat edges but, in contrast to [3], they do not compute a drawing
from scratch but rather try to extend an existing one without modifying the
area of the layout. Van Kreveld [34] studies bold drawings, in which vertices are
drawn as disks of radius r and edges as rectangles of width w, where r > w/2. A
bold drawing is good if all of its vertices and edges are at least partially visible
(neither a vertex disk nor an edge-rectangle is completely hidden by overlap-
ping edges). Although disk-link drawings form a special case of bold drawings in
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which r = 1
2 − ε and w = 2ε (for some sufficiently small ε > 0), the research on

bold drawings has mainly focused on finding feasible values of r and w, rather
than on area bounds for fixed values of r and w.

2 Preliminaries

Basic Definitions. A drawing of a graph maps each vertex to a distinct point
of the plane, and each edge to a Jordan arc connecting its endpoints. A drawing
is planar if no two edges intersect, except possibly at a common endpoint. A
planar drawing partitions the plane into topologically connected regions, called
faces. The unbounded region is called outer face; any other face is an internal
face. A graph is planar if it admits a planar drawing. A planar embedding of
a planar graph is an equivalence class of topologically-equivalent (i.e., isotopic)
planar drawings. A planar graph with a given planar embedding is a plane graph.

A drawing is straight-line if the Jordan arcs representing the edges are
straight-line segments. The slope of a line � is the tangent of the minimum-
angle that a horizontal line needs to be rotated in order to make it overlap with
�; a positive slope corresponds to a counter-clockwise rotation, while a negative
one corresponds to a clockwise rotation. The slope of a segment is the slope of
the supporting line containing it. A grid drawing of a graph is a straight-line
drawing whose vertices are at integer coordinates. We say that the grid size of
a grid drawing Γ is W × H (or, equivalently, the area of Γ is W × H), if the
minimum axis-aligned box containing Γ has side lengths W − 1 and H − 1.
Moreover, for a vertex v of a graph G, we denote by xΓ (v) and by yΓ (v) the x-
and y-coordinate of v in drawing Γ of G, respectively. When the reference to Γ
is clear from the context, we simply write x(v) and y(v).

Disk-Link Drawings. The edge-vertex resolution of a grid drawing of a graph
is the minimum Euclidean distance between a point representing a vertex and
any edge that is not incident to that vertex. A disk-link drawing of a graph
is a grid drawing of edge-vertex resolution at least 1

2 . Observe that, in a disk-
link drawing Γ , for each vertex v one can draw an open disk with radius ρ ≤
1
2 centered at the point of Γ representing v, and this results in a diagram in
which no two disks intersect, and no disk is intersected by a non-incident edge.
For simplicity, we assume that ρ = 1

2 , i.e., the disks have unit diameter. This
assumption is not restrictive, since our results carry over for any constant radius
up to some multiplicative constant factor for the area.

Canonical Order. Even though we assume familiarity with basic concepts of
planar graph drawing [26,35], we recall in this section a key concept that is
central in several algorithms for producing planar grid drawings of plane graphs,
e.g., [10,13,22]. Namely, the canonical order [22] for 3-connected plane graphs,
which is defined as follows: Let G be a 3-connected plane graph with n vertices
and let π = (P0, . . . , Pm) be a partition of the vertex-set of G into paths, such
that P0 = {v1, v2}, Pm = {vn}, and edges (v1, v2) and (v1, vn) exist and belong
to the outer face of G. For k = 0, . . . ,m, let Gk be the subgraph induced by
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Fig. 2. Introducing a singleton Pk in Γk−1 according to the algorithm by Chrobak and
Kant [11]; the white-filled vertices are the critical vertices w�′ and wr′ . (Color figure
online)

∪k
i=0Pi and denote by Ck the contour of Gk defined as follows: If k = 0, then C0

is the edge (v1, v2), while if k > 0, then Ck is the path from v1 to v2 obtained
by removing (v1, v2) from the cycle delimiting the outer face of Gk. We say that
π is a canonical order of G if for each k = 1, . . . , m − 1 the following properties
hold: (P.1) Gk is biconnected and internally 3-connected, (P.2) all neighbors
of Pk in Gk−1 are on Ck−1, (P.3) either Pk is a singleton (that is, |Pk| = 1), or
Pk is a chain (that is, |Pk| > 1) and the degree of each vertex of Pk is 2 in Gk,
and (P.4) all vertices of Pk with 0 ≤ k < m have at least one neighbor in Pj

for some j > k. A canonical order of G can be computed in linear time [22]. A
vertex on contour Ck is called saturated in Gk if and only if it is not adjacent to
a vertex belonging to a path Pk′ with k′ > k.

3 Convex Planar Grid Disk-Link Drawings

In this section, we present our algorithm to compute convex planar grid disk-
link drawings of 3-connected plane graphs. As our algorithm builds upon an
algorithm by Chrobak and Kant [11] yielding convex planar grid drawings (that
are not necessarily disk-link) of 3-connected plane graphs with n vertices on grids
of size (n − 2) × (n − 2), for completeness, we first recall its basic ingredients.

The Algorithm by Chrobak and Kant [11]. This algorithm is incremen-
tally computing a convex planar drawing Γ of a 3-connected plane graph G
using a canonical order π = (P0, . . . , Pm) of G. The drawing Γ has integer grid
coordinates and fits in a grid of size (n − 2) × (n − 2). In order to ease the pre-
sentation, we define a Schnyder-like [19,29] 4-coloring of the edges of G based
on the canonical order π. G0 consists of a single edge (v1, v2), which is assigned
the black color. Assuming that a 4-coloring has been constructed for Gk−1 with
k = 1, . . . ,m, we extend it for Gk as follows (see Fig. 2a): We first color the edges
of Gk that do not belong to Gk−1 and are on contour Ck. We color the first such
edge encountered in a traversal of Ck from v1 to v2 blue, the last one green and
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all remaining ones (i.e., those having both endpoints in Pk, when Pk is a chain)
black. Similar to the Schnyder coloring of maximal planar graphs, we assign the
color red to the remaining edges of Gk that do not belong to Gk−1 (i.e., those
that are incident to Pk and are not part of contour Ck). Note that the latter
case only arises if Pk is a singleton by Property P.3 of the canonical order.

Based on the canonical order π of G, Γ is constructed as follows: Initially,
the vertices v1 and v2 of P0 are placed at points (0, 0) and (1, 0), respectively.
For k = 1, . . . , m, assume that a planar convex grid drawing Γk−1 of Gk−1 has
been constructed in which the edges of contour Ck−1 are drawn as straight-line
segments with slopes 0, −1 or in [1,+∞] (contour condition; see Fig. 2a); in
particular, the slope of each blue edge of Ck−1 is at least 1, the slope of each
black edge of Ck−1 is 0, while the slope of each green edge of Ck−1 is −1 (note
that Ck−1 does not contain any red edge by definition). Also, each vertex v in
Gk−1 has been associated with a so-called shift-set S(v); the shift-sets of v1 and
v2 of path P0 are singletons such that S(v1) = {v1} and S(v2) = {v2}.

Let (w1, . . . , wp) be the vertices of Ck−1 from left to right in Γk−1, where
w1 = v1 and wp = v2. For the next path Pk = {z1, . . . , zq} in π, let w� and
wr be the leftmost and rightmost neighbors of Pk on Ck−1 in Γk−1, where 1 ≤
� < r ≤ p. For the definition of the shift-set S(v) of each vertex v in Pk, the
algorithm identifies two critical vertices on the contour Ck−1, which we denote
by w�′ and wr′ , such that � < �′ ≤ r and � ≤ r′ < r (refer to the white-filled
vertices of Fig. 2); note that it is possible to have w�′ = wr′ . Vertex w�′ is the
first vertex encountered in the traversal of Ck−1 starting from w�+1 towards wr

that either has a neighbor in Pk or the edge (w�′ , w�′+1) is blue or black; note
that it is possible to have w�′ = wr. Symmetrically, vertex wr′ is the first vertex
encountered in the traversal of Ck−1 starting from wr−1 towards w� that either
has a neighbor in Pk or the edge (wr′−1, wr′) is green or black; note that it
is possible to have wr′ = w�. We refer to w�′ and wr′ as the left-critical and
right-critical vertices of Pk. More importantly, since each internal face of Γk is
convex, in the case where Pk is either a chain or a singleton of degree 2 in Gk,
vertices w�′ and wr′ are either consecutive along Ck−1 or w�′ = wr′ holds. Once
w�′ and wr′ have been identified, the algorithm sets the shift-sets of the vertices
z1, . . . , zq of Pk as follows:

S(z1) = {z1} ∪
r′⋃

i=�′
S(wi), and S(zi) = {zi}, for i = 2, . . . , q (1)

Furthermore, to guarantee that the resulting drawing is convex, the algorithm
updates the shift-sets of w� and wr of Gk−1 as follows:

S(w�) =
�′−1⋃

i=�

S(wi), and S(wr) =
r⋃

i=r′+1

S(wi). (2)

To compute the drawing Γk, the algorithm distinguishes two cases. If w� is
saturated in Gk (i.e., z1 is the last neighbor of w� that has not been drawn),



Convex Grid Drawings of Planar Graphs 163

Fig. 3. Illustration of (a) Property 1 and (b) Property 2. (Color figure online)

then the x-coordinate of z1 is the same as the one of w�, that is, x(z1) = x(w�).
Otherwise, x(z1) = x(w�) + 1. To accommodate the vertices of Pk and to avoid
edge-overlaps, the algorithm shifts each vertex in

p⋃

i=r

S(wi). (3)

by q units to the right (see Fig. 2b). Then, the algorithm places vertex zq at
(x(z1) + q − 1, y(wr) + x(wr) − (x(z1) + q − 1)), i.e., at the intersection of the
line of slope −1 through wr with the vertical line through point x(z1) + q − 1.
Note that this is a grid point above w� and wr due to the contour condition and
the shifting of S(wr). For i = 1, . . . , q − 1, vertex zi of Pk is placed q − i units to
the left of zq. Since (w�, z1) is blue, (zq, wr) is green, and the internal edges of
Pk (if any) are black, the contour condition of the algorithm is, by construction,
maintained after the placement of the vertices of Pk in Γk.

The contour condition together with the shifting procedure described above
guarantee Property 1 for the slopes of the edges in Γk.

Property 1 (Chrobak and Kant [11]). A shift can only decrease the slope of a
blue edge, increase the slope of a green edge, while the black and the red edges
are rigid, i.e., they maintain their slope. As a result, in Γk (see Fig. 3a):

– the slope of each blue edge ranges in (0,+∞],
– the slope of each black edge is 0,
– the slope of each green edge ranges in [−1, 0), and
– the slope of each red edge ranges in [−∞,−1).

Since each face of Γk is formed when a path Pk′ with k′ ≤ k of canonical order π is
introduced, Property 1 combined with the contour condition and Property P.4 of
the canonical order imply the following property for the shape of each face in Γk.

Property 2. Let f be a face in Γk. Then, a counter-clockwise traversal of f
starting from its leftmost vertex that is the bottommost when it is not uniquely
defined consists of the following boundary parts (see Fig. 3b):

i. a strictly descendant path of green edges (possibly empty),
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ii. a black edge (possible non existent),
iii. a strictly ascendant path of blue edges (possible empty),
iv. a green or red edge,
v. a horizontal path of black edges (possibly empty), and
vi. a blue or red edge.

Boundary parts (i)–(iii) in Property 2 form the lower envelope of f (solid in
Fig. 3b). The upper envelope of f is formed by boundary parts (iv)–(vi) (dotted
in Fig. 3b). The latter is introduced in Γk when a path of the canonical order is
placed. Thus, the upper envelope cannot contain black and red edges simultane-
ously (by Property P.3 of canonical order). Finally, boundary parts (iii) and (iv)
form the right envelope of f , while (vi) and (i) form the left envelope of f (gray-
highlighted in Fig. 3b).

We next state some lemmata regarding the “behavior” of the algorithm by
Chrobak and Kant [11] that are employed in the proof of correctness of our
modification. Due to space limitations, their proofs are omitted.

Lemma 1. Let u and v be two distinct vertices of Gk belonging to the same
face f of Γk. If u and v have the same y-coordinate in Γk with x(u) < x(v), then
either u and v are connected by a path of black edges of f or the x-coordinate of
the bottommost vertex/vertices of f is/are in the interval (x(u), x(v)].

Lemma 2. Let Sk be the vertices of Gk−1 that were shifted during the introduc-
tion of Pk in Γk, and let c be a positive integer. Let Γ ′

k be the drawing obtained
from Γk−1 by first shifting the vertices of Sk by c units to the right and then
attaching Pk as in the algorithm by Chrobak and Kant [11]. Then, Γ ′

k is a con-
vex planar grid drawing of Gk.

Lemma 3. Let f be a face of Γk−1 that contains a black edge (u, v) at its lower
envelope, such that u is to the left of v in Γk−1, and assume that some vertices
of f are not shifted during the introduction of Pk in Γk. Then, neither u nor
v are shifted, unless (u, v) is the rightmost edge of the lower envelope of f , in
which case u is not shifted, while v is shifted.

Our Modification. We start by placing v1 and v2 of path P0 as in the algorithm
by Chrobak and Kant [11], that is, at points (0, 0) and (1, 0), respectively. Assume
now that Γk−1 is a convex planar disk-link drawing of Gk−1. For placing path Pk

in drawing Γk−1, k = 1, . . . , m, we distinguish two cases. In the first case, Pk is a
chain and we proceed as in the algorithm by Chrobak and Kant [11]. Hence, we
focus on the more elaborated case, in which Pk is a singleton, i.e., Pk = {z1}. In
this case, our algorithm first shifts the vertices of Γk−1 appropriately to guarantee
that the obtained drawing Γk is a disk-link drawing (to be shown in Lemma 5).
Let wx0 , . . . , wxρ+1 be the neighbors of Pk along Ck−1, such that � = x0 < x1 <
. . . < xρ < xρ+1 = r. Note that, based on this notation, ρ denotes the number
of neighbors of Pk between w� and wr on Ck−1. Besides critical vertices w�′ and
wr′ , our modification introduces the following ρ+1 pivot vertices wx′

1
, . . . , wx′

ρ+1
,

where wx′
1

= w�′ and wx′
ρ+1

= wr. For j = 2, . . . , ρ, the pivot vertex wx′
j

(with
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Fig. 4. (a) Introducing a singleton Pk in Γk−1 according to our modification of the
algorithm by Chrobak and Kant [11]; the white-filled vertices are the identified pivot
vertices, and (b) edge-vertex configurations used in the proof of Lemma 5. (Color figure
online)

xj−1 < x′
j ≤ xj) is defined as the first vertex encountered in the traversal of Ck−1

starting from wxj−1+1 towards wxj
that either is neighboring z1 or is followed by

an edge of Ck−1 that is blue or black. In other words, pivot vertex wx′
j

would be
the vertex that the algorithm by Chrobak and Kant [11] identifies as left-critical,
when attaching a singleton with exactly two neighbors wxj−1 and wxj

on Ck−1.
The algorithm modifies Γk−1 by performing ρ+1 consecutive refinements of the
vertex positions. In the j-th refinement, j = 1, . . . , ρ + 1, the algorithm shifts
each vertex in

⋃p
i=x′

j
S(wi) by one unit to the right; see Fig. 4a. This implies that

vertices wr, . . . , wp of Ck−1 have been shifted in total by ρ+1 units to the right.
Note that in the algorithm by Chrobak and Kant [11] these vertices would be
shifted by only one unit. The next observations follow from our shifting strategy.

Observation 1. If Pk is a chain, then our shifting strategy and the one by
Chrobak and Kant [11] are identical.

Observation 2. If Pk is a singleton, then the horizontal distance between any
two consecutive neighbors of Pk in Ck−1 gets increased by one unit in Γk, while
in the algorithm by Chrobak and Kant [11] this would only be the case for wxρ

and wxρ+1 = wr.

The construction of Γk is completed by placing the vertices of Pk as in the
algorithm by Chrobak and Kant [11], i.e., we set either x(z1) = x(w�) or x(z1) =
x(w�) + 1 (depending on whether z1 is saturated or not, respectively), we place
zq at the intersection of the line of slope −1 through wr with the vertical line
through point x(z1) + q − 1 and for i = 1, . . . , q − 1, vertex vi of Pk is placed
q − i units to the left of zq. Thus, the contour condition is maintained in Γk.

Lemma 4. The drawing Γk produced by our modification of the algorithm by
Chrobak and Kant [11] is planar and convex.
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Proof. The fact that drawing Γk is planar is implied by the original proof of
Chrobak and Kant [11], since the contour condition is maintained for Γk.

We next argue about the convexity of Γk. Since Γk−1 is convex, if Pk is a
chain, then Γk is also convex by Observation 1. Assume that Pk is a singleton,
i.e., Pk = {z1}. In this case, we claim that the extra shifts that our modifica-
tion performs (see Observation 2) do not affect the convexity of Γk. To prove
the claim, consider any two consecutive neighbors wxj

and wxj+1 of z1 along
(w1, . . . , wp) of Ck−1 with 0 ≤ j ≤ ρ. If the algorithm by Chrobak and Kant
were about to place a singleton connecting only wxj

and wxj+1 to derive Γk, then
it would perform a shift using as left-critical vertex the one that our modifica-
tion identifies as pivot wx′

j
, and as right-critical vertex either the same vertex or

its right neighbor (since the singleton is of degree 2). Thus, convexity would be
maintained. Applying the same reasoning to any pair of consecutive neighbors
of Pk, proves that the subdrawing of Γk induced by Gk−1 is indeed convex. In
addition, the same reasoning implies that Properties 1 and 2 of the algorithm
by Chrobak and Kant [11] also hold. To complete the proof of our claim, we
note that the fact that the faces incident to Pk in Γk are convex follows using
the same approach as in the algorithm by Chrobak and Kant, as the contour
condition is maintained.

Note that since the contour condition is maintained and we do not modify the
shift-sets, the fact that Properties 1 and 2 hold in our modification implies
that Lemmas 1, 2 and 3 also hold. To complete the proof of correctness of our
algorithm, we prove in the following lemma that Γk is a disk-link drawing of Gk.
To ease the proof, we denote by Γ ′

k−1 the drawing of Gk−1 obtained after the
preparatory shifting in drawing Γk−1 for the introduction of Pk.

Lemma 5. The following statements hold: (i) the edge-vertex resolution of Γ ′
k−1

is no less than that of Γk−1, and (ii) introducing the new edges of Γk, which are
either part of Pk or incident to the endpoints of Pk, preserves the edge-vertex
resolution to at least 1

2 .

Proof. Since the drawing of Gk−1 is planar in Γk, it is sufficient to only consider
its faces in order to prove statement (i). To this end, consider any arbitrary face
f in Γ ′

k−1. If either none or all of the vertices of f are shifted by the same amount,
then statement (i) obviously holds. Consider now the case where f contains at
least one vertex that is shifted and one vertex that remains stationary in Γ ′

k−1.
Suppose, for a contradiction, that f contains an edge (u, v) and a vertex w that
is not incident to (u, v) such that (u, v) intersects the disk of w in Γ ′

k−1. Since
Γ ′

k−1 is a grid drawing of Gk−1, it follows by Property 1 that (u, v) cannot be
a black edge. Assume that the slope of (u, v) is negative (i.e., (u, v) is green or
red), as the case in which it is positive (i.e., (u, v) is blue) is similar. W.l.o.g.,
further assume that u is above v in Γ ′

k−1 (see Fig. 4b).
Since Γ ′

k−1 is a grid drawing of Gk−1, it follows that, regardless of whether
w was shifted or not, w is neither above nor below the horizontal strip delimited
by the two horizontal lines through u and v in Γ ′

k−1 (green in Fig. 4b). Similarly,
one observes that w is neither to the left nor to the right of the vertical strip
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delimited by the two vertical lines through u and v (blue in Fig. 4b). It follows
that w is either in the interior (yellow in Fig. 4b) or on the boundary of the
axis-aligned bounding box Buv of the edge (u, v) in Γ ′

k−1.
We next argue that w can be neither in the interior of Buv nor along its two

vertical sides, which implies that w is necessarily on one of the two horizontal
sides of Buv (purple in Fig. 4b). To see this, assume for a contradiction that w is
in the interior of Buv or along one of its two vertical sides but not at its corners.
Since Γk−1 is a disk-link drawing of Gk−1 while Γ ′

k−1 is not, it follows that the
distance between w and (u, v) decreased after the shifting (by one unit) to obtain
Γ ′

k−1 from Γk−1. If the shifting were sufficiently large (and greater than one unit),
then w would be on different sides of (u, v) in Γk−1 and in Γ ′

k−1, violating the
planarity of the drawing (which is implied by Lemma 2); a contradiction.

It follows that w is on any of the two horizontal sides of Buv, as we initially
claimed. We proceed by considering two subcases depending on whether (u, v) is
on the upper or lower envelope of f . Consider first the case where (u, v) is on the
upper envelope of f . By Property 2, it follows that w is on the lower envelope of
f and, thus, on the lower edge of Buv. If w and v are not adjacent, the fact that w
and v have the same y-coordinate implies that the x-coordinate of the bottomost
vertex/vertices of f is delimited by w and v (by Lemma 1). This further implies
that w and v are on the left and right envelopes of f , respectively. Since not
all vertices of f are shifted in Γ ′

k−1, it follows that, among the vertices of the
lower envelope of f , the ones that are shifted are those in the shift-set of the
rightmost vertex of the lower envelope of f , which implies that w has not been
shifted. On the other hand, if w and v are adjacent, then the edge connecting
them is black (by Property 1), and thus by Lemma 3, we conclude again that w
is not shifted. In both cases, however, the edge-vertex resolution of Γ ′

k−1 cannot
be smaller than the one of Γk−1; a contradiction.

Consider now the case where (u, v) is on the lower envelope of f . In this case,
w can be either on the lower or upper envelope of f . The former case can be
ruled out by adopting an argument similar to the one of the previous paragraph.
In the latter case, w is on the top side of Buv. By Property 2, u and w are
connected by a path of black edges contradicting the fact that (u, v) is green,
since, by Property 2.vi, the left edge connecting to a black path on the upper
envelope is blue.

We now prove statement (ii). Assume for a contradiction that an edge (u, v)
added in Γk during the introduction of Pk intersects the disk of a vertex w.
Clearly, w belongs to Gk−1, since by construction we have no edge-disk inter-
sections between elements of Pk. Thus, one endpoint of (u, v), say u, belongs
to Pk and the other, say v, to Gk−1, i.e., (u, v) is not a black edge. If (u, v) is
green, then its slope in Γk is −1, and hence it cannot intersect any non-adjacent
disk. Assume first that (u, v) is blue, and observe that the construction is such
that the horizontal distance between u and v is either 0 or 1. In the former case,
(u, v) is vertical and cannot intersect any non-adjacent vertex-disk. In the latter
case, the shifting performed by the algorithm guarantees that the part of the
grid column along which vertex u is placed that is contained in the horizontal
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strip bounded by the horizontal lines through u and v in Γk contains no vertex of
Ck−1, and therefore edge (u, v) again cannot intersect any non-adjacent vertex
disk. The argument for the case in which (u, v) is red is analogous. ��
We conclude the proof of our main result by analyzing the area of the produced
drawings and the time complexity of the algorithm.

Proof of Theorem 1. Let G be an n-vertex 3-connected plane graph with f
internal faces. Let Γ be a planar drawing of G computed by our algorithm. By
Lemma 4, drawing Γ is convex, and, by Lemma 5, its edge-vertex resolution
is at least 1

2 . By the contour condition, Γ is inside a right isosceles triangle,
such that it has a horizontal side (which corresponds to edge (v1, v2)) and a
vertical side (which contains edge (v1, vn)) that have the same length and meet
at point (0, 0). In the algorithm by Chrobak and Kant, the value of the width
and the height of this triangle is n− 2 [11]. The additional unit-shifts due to the
introduction of singletons performed by our modification increase the value of
the width and the height by the same amount a (see Observations 1 and 2). We
focus on the width of Γ , and we distinguish two cases: either min{f, n−3} = n−3
or min{f, n − 3} = f .

Assume first that min{f, n − 3} = n − 3. We develop a charging argument
that charges each additional one-unit shift to the red edges of G. In particular,
consider a singleton Pk. The additional shifts due to this singleton are two less
than its degree in Gk, which equals the number of red edges incident to Pk in
Gk. It is immediate to see that each red edge is charged to exactly one additional
shift. Hence, the total number of additional shifts is at most the number of red
edges in G, which is at most n − 3 (recall that the red subgraph of G is a forest
with at most n − 3 edges). Consequently, in this case a ≤ n − 3.

Assume now that min{f, n−3} = f . In this case we develop a similar charging
argument, in which we charge each additional one-unit shift to the internal faces
of G, rather than to its red edges. Again, consider a singleton Pk, and observe
that the additional shifts due to this singleton are two less than its degree in
Gk. This value equals the number of internal faces incident to Pk in Gk minus
one, in particular, we can avoid charging the shift to the rightmost internal face
incident to Pk. It is not difficult to see that each internal face is charged to at
most one additional shift. Hence, the total number of additional shifts is at most
the number of internal faces f in G. Consequently, in this case a ≤ f .

Finally, we discuss the time complexity. The algorithm by Chrobak and Kant
can be implemented to run in linear time [11]. In particular, the key ingredient
to achieve linear time complexity, is the use of relative coordinates for the ver-
tices, which avoids shifting entire subgraphs. Since our algorithm only requires a
linear number of additional one-unit shifts and it does not modify the shift-sets
of the vertices, this translates into different relative coordinates and requires
neither additional operations nor different data structures. Therefore it can be
implemented to also run in linear time. ��
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4 Open Problems

In this work, we present improvements upon results in [5,10]. The following
research directions naturally stem from our work. (i) Can the bounded edge-
vertex resolution requirement be incorporated into an area lower bound so to
improve the one given in [13,22]? (ii) Can the area bound of Theorem 1 be
improved in the case where the input graph is 4-connected? Note that such
graphs admit W × H drawings with W + H ≤ n − 1 [25] but their edge-vertex
resolution may be arbitrarily small. (iii) Finally, it is of interest to study the
edge-vertex resolution requirement for strictly convex drawings.
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2. Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Doc. Math. 11,
369–391 (2006). http://eudml.org/doc/53043

3. Barequet, G., Goodrich, M.T., Riley, C.: Drawing planar graphs with large vertices
and thick edges. J. Graph Algorithms Appl. 8, 3–20 (2004). https://doi.org/10.
7155/jgaa.00078

4. Barrière, L., Huemer, C.: 4-labelings and grid embeddings of plane quadrangula-
tions. Discret. Math. 312(10), 1722–1731 (2012). https://doi.org/10.1016/j.disc.
2012.01.027

5. Bekos, M.A., Gronemann, M., Montecchiani, F., Pálvölgyi, D., Symvonis, A.,
Theocharous, L.: Grid drawings of graphs with constant edge-vertex resolution.
Comput. Geom. 98, 101789 (2021). https://doi.org/10.1016/j.comgeo.2021.101789

6. Biedl, T., Bretscher, A., Meijer, H.: Rectangle of influence drawings of graphs
without filled 3-cycles. In: Kratochv́ıyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp.
359–368. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7 37

7. Biedl, T.C., Lubiw, A., Mehrabi, S., Verdonschot, S.: Rectangle-of-influence trian-
gulations. In: Shermer, T.C. (ed.) CCCG, pp. 237–243 (2016)

8. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane
graphs. Algorithmica 47(4), 399–420 (2007). https://doi.org/10.1007/s00453-006-
0177-6

9. Chiba, N., Onoguchi, K., Nishizeki, T.: Drawing planar graphs nicely. Acta Inform.
22, 187–201 (1985). https://doi.org/10.1007/BF00264230

10. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two
and three dimensions (preliminary version). In: Whitesides, S. (ed.) SoCG, pp.
319–328. ACM (1996). https://doi.org/10.1145/237218.237401

11. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs.
Int. J. Comput. Geom. Appl. 7(3), 211–223 (1997). https://doi.org/10.1142/
S0218195997000144

12. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph
on a grid. Inf. Process. Lett. 54(4), 241–246 (1995). https://doi.org/10.1016/0020-
0190(95)00020-D

https://doi.org/10.1007/978-3-642-36763-2_10
https://doi.org/10.1007/978-3-642-36763-2_10
http://eudml.org/doc/53043
https://doi.org/10.7155/jgaa.00078
https://doi.org/10.7155/jgaa.00078
https://doi.org/10.1016/j.disc.2012.01.027
https://doi.org/10.1016/j.disc.2012.01.027
https://doi.org/10.1016/j.comgeo.2021.101789
https://doi.org/10.1007/3-540-46648-7_37
https://doi.org/10.1007/s00453-006-0177-6
https://doi.org/10.1007/s00453-006-0177-6
https://doi.org/10.1007/BF00264230
https://doi.org/10.1145/237218.237401
https://doi.org/10.1142/S0218195997000144
https://doi.org/10.1142/S0218195997000144
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1016/0020-0190(95)00020-D


170 M. A. Bekos et al.

13. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fáry embeddings of
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Abstract. In the 70s, Berge introduced 1-extendable graphs (also called
B-graphs), which are graphs where every vertex belongs to a maximum
independent set. Motivated by an application in the design of wireless
networks, we study the computational complexity of 1-extendability,
the problem of deciding whether a graph is 1-extendable. We show that,
in general, 1-extendability cannot be solved in 2o(n) time assuming
the Exponential Time Hypothesis, where n is the number of vertices
of the input graph, and that it remains NP-hard in subcubic planar
graphs and in unit disk graphs (which is a natural model for wireless
networks). Although 1-extendability seems to be very close to the
problem of finding an independent set of maximum size (a.k.a.Maximum
Independent Set), we show that, interestingly, there exist 1-extendable
graphs for which Maximum Independent Set is NP-hard. Finally, we
investigate a parameterized version of 1-extendability.

Keywords: 1-extendable graphs · B-graphs · Independent set

1 Introduction and Motivation

1.1 Definitions and Related Work

Understanding the structure of independent sets is among the most studied
subjects in algorithmics and graph theory, and finding graph classes where a
maximum independent set (MIS for short) can be found efficiently is an impor-
tant theoretical and practical problem. In 1970, Plummer [20] defined the class
of well-covered graphs, which are graphs where every independent set which is
maximal for inclusion is also an MIS. In other words, they are exactly the graphs
for which the greedy algorithm always returns an optimal solution. Well-covered
graphs were studied mostly from an algorithmic perspective: their recognition
was proven coNP-hard [8,26] in general graphs, but polynomial-time solvable for
claw-free graphs [27], and perfect graphs of bounded clique number [11].
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A related notion, introduced by Berge [5], is the definition of B-graphs, which
are those graphs where every vertex belongs to an MIS. B-graphs were mostly
introduced in order to study well-covered graphs [24,25]. Later, the notion of
B-graphs was generalized to that of k-extendable graphs [11]: a graph is k-
extendable, for a positive integer k, if every independent set of size (exactly)
k is contained in an MIS. Thus, B-graphs are exactly the 1-extendable graphs
and a graph is well-covered if and only if (iff) it is k-extendable for every k ∈
{1, 2, . . . , α(G)}, where α(G) denotes the size of an MIS of G. Dean and Zito [11]
obtained a number of results on 1-extendable graphs; for instance, they proved
that a bipartite graph is 1-extendable iff it admits a perfect matching and, hence,
bipartite 1-extendable graphs can be recognized in polynomial time. Recently,
certain structural properties of k-extendable graphs were stated [2,3].

We should note that the notion of k-extendability was also studied in the con-
text of maximum matchings [21,22]. Recently, it was shown that the recognition
of (matching) k-extendable graphs is co-NP-complete [15].

In the remainder, B-graphs will be called 1-extendable graphs, as it is the
terminology used by the most recent papers on the topic. In this article, our
objective is to determine the computational complexity of the recognition of
1-extendable graphs.

This question is motivated not only by the state of the art described above
but also by an application on Wi-Fi networks. Indeed, 1-extendable graphs play
an important role in the performance of CSMA/CA (Carrier Sense Multiple
Access/Collision Avoidance) networks [17]. Graphs stand as a natural model
for CSMA/CA wireless networks. Two vertices, i.e. nodes of the CSMA/CA
network, are adjacent if the two corresponding nodes are able to detect the
transmissions from each others. Transmissions from two vertices can occur in
parallel iff they are not adjacent. A set of instantaneous transmitters is thus
an independent set of the graph. The throughput of a node (the number of bits
per second it is able to send) is strongly correlated to the number of MISs it
belongs to divided by the total number of MISs of the graph [17]. Hence, the
fact, for each vertex, of belonging or not to an MIS is of prior importance in
such networks if we aim at ensuring a minimal fairness between the vertices and
avoiding starvation, i.e. very low throughput. Figure 1 shows the throughput
obtained in a CSMA/CA network for paths on 4 and 5 vertices using the network
simulator ns-3 [19]. The 5-vertex path is not 1-extendable: observe that the two
vertices that do not belong to any MIS are in starvation. In the 4-vertex path,
which is 1-extendable, there is no starvation.

1.2 Contribution

Most of the outcomes of this paper concern the complexity of 1-Extendability,
the problem of deciding whether an input graph is 1-extendable. First,
we focus on the relationship between maximum independent set and 1-
Extendability. We observe that any polynomial-time algorithm for maxi-
mum independent set on some hereditary family of graphs C provides us
with a polynomial-time algorithm for 1-Extendability on C. Based on this
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(a) 4 vertices (b) 5 vertices

Fig. 1. Wi-Fi network simulated with ns-3 for paths on 4 and 5 vertices.

result, we could imagine that, perhaps, maximum independent set and 1-
Extendability are equivalent problems in terms of complexity. However, we
show that Maximum Independent Set is NP-hard on a certain subfamily of
1-extendable graphs (Theorem 1). This result highlights a gap for the complexity
of these two problems.

Second, we establish the hardness of solving 1-Extendability. We show
that 1-Extendability is ETH-hard, i.e. cannot be solved in time 2o(n) (Corol-
lary 1). Then, we prove that the problem is NP-hard even in planar subcubic
graphs (Theorem 3) and in unit disk graphs (Theorem 4), a natural model for
CSMA/CA networks.

Eventually, we focus on a parameterized version of 1-Extendability, where
we ask whether every vertex belongs to an independent set of size at least some
parameter k. We show that this problem, param-1-Extendability, is W[1]-
hard (Theorem 5). Nevertheless, it admits a polynomial kernel if restricted to
planar graphs or Kr-free graphs for fixed r > 0 (Corollary 2).

1.3 Organization of the Paper

Section 2 is dedicated to the notation, definitions and some basic results; in par-
ticular, we explore the relationship between the Maximum Independent Set
and 1-Extendability problems. In Sect. 3, we study three graph transforma-
tions and their impact on the 1-extendability property. In Sect. 4, we show that
1-Extendability cannot be solved in time 2o(n) on n-vertex graphs unless the
ETH is false. We also prove that 1-Extendability remains NP-hard in planar
graphs of maximum degree 3 and in unit disk graphs. Then, Sect. 5 presents
the parameterized version param-1-Extendability and the results associated
with it.

2 Notation and Basic Results

2.1 Notation and Definitions

For a positive integer k, we note [k] = {1, . . . , k}. In this paper, all graphs are
simple, unweighted and undirected. We denote by V (G) the vertex set of a graph
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G and by E(G) its edge set. Edges (u, v) ∈ E(G) can sometimes be denoted by
uv to improve readability. When the identity of the graph considered is clear,
we set n = |V (G)| and m = |E(G)|. For a vertex v ∈ V (G), we denote by NG(v)
its set of neighbors (we will sometimes omit the subscript if G is clear from the
context). Let dG(v) = |NG(v)| be the degree of v. For a subset R ⊆ V (G), let
G[R] be the subgraph of G induced by R. A family of graphs C is called hereditary
if, for every graph G ∈ C, every induced subgraph of G also belongs to C. An
�-vertex path is denoted by P�. A clique cover of a graph G is a partition of
V (G) into sets C1, . . . , Cq such that G[Ci] is a clique for every i ∈ [q]. A
set of pairwise non-adjacent vertices in a graph is called an independent set.
A maximum independent set (MIS) is an independent set of maximum size.
We denote by α(G) the size of an MIS of G. The decision problem of finding
an independent set of size at least k ≥ 1 in a graph G is called Maximum
Independent Set. A graph G is 1-extendable [5] if, for every u ∈ V (G), there
is an MIS S of G such that u ∈ S.

The subject of this paper is to investigate the computational complexity of
the following decision problem.

1-Extendability
Input: Graph G
Question: Does every vertex of G belong to an MIS of G?

An embedding of a graph G is a representation of G in the plane, where
vertices are points in the plane and edges are curves which connect their two
endpoints. A plane embedding of G is an embedding of G where no two edges
cross. A graph G is planar if it admits a plane embedding.

2.2 Links Between 1-Extendability and Maximum Independent Set

In this section, we investigate to what extent the problems 1-Extendability
and Maximum Independent Set are close to each other. We show a “Turing
equivalence” of the two problems in general graphs. More precisely, we prove
that solving 1-Extendability on an input graph G can be done by solving
Maximum Independent Set on several induced subgraphs of G, while solving
Maximum Independent Set on an input graph G can be done by solving
1-Extendability on several induced supergraphs of G.

Solving 1-extendability using Maximum Independent Set. The idea
relies on the following lemma, whose straightforward proof is left to the reader.

Lemma 1. Let G be a graph, and k be a non-negative integer. Then a vertex v
of G is contained in an independent set of G of size k iff G[V (G)\N(v)] contains
an independent set of size k.

This lemma allows 1-extendability to inherit many positive results from
Maximum Independent Set. In particular, it implies that 1-extendability
is polynomial-time solvable in any hereditary class where Maximum Indepen-
dent Set is polynomial-time solvable. This is for instance the case for perfect
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graphs, P6-free graphs [14], chordal graphs and claw-free graphs. Moreover, it
is Fixed-Parameter Tractable (FPT) when parameterized by the tree-width or
even the clique-width of the input graph.

Solving Maximum Independent Set using 1-extendability. The con-
verse of Lemma 1 does not appear to be as straightforward, and we leave as open
whether solving 1-extendability in a hereditary graph class C in polynomial-
time allows one to solve Maximum Independent Set in C in polynomial-time.
We can show, however, that this is true if the class satisfies much more conditions
than just being hereditary.

Let G = (V,E) be a graph and r ≤ |V | be a non-negative integer. Let G+
r be

the graph obtained from G by adding

– an independent set S of size |V | − r to G,
– for each vertex v of G, a new vertex πv adjacent to v only, and
– all possible edges between S and the set T = {πv : v ∈ V }.

Proposition 1. G+
r is 1-extendable iff α(G) = r.

The ETH [16] states that no algorithm can decide whether a 3SAT formula
on n variables is satisfiable in time 2o(n). As 3-SAT, maximum independent
set is ETH-hard. Hence, based on Proposition 1, the same statement holds for
1-Extendability.

Corollary 1. Testing whether an n-vertex graph is 1-extendable cannot be done
in time 2o(n) unless the ETH is false.

This lower bound is matched by the trivial brute-force algorithm which con-
sists in enumerating all subsets of vertices, and testing whether all MISs cover
the entire vertex set.

Another question related to the previous one is whether being 1-extendable
helps finding a MIS. The next result suggests that this is unlikely, by show-
ing that 1-extendability and Maximum Independent Set can sometimes
behave very differently from a computational point of view.

Theorem 1. Maximum Independent Set remains NP -hard and W [1]-hard
(parameterized by k) in 1-extendable graphs.

3 Generic Transformations

In this subsection, we present three graph transformations. They are related in
some sense to the 1-extendability property: the first one produces a 1-extendable
graph, the second one preserves the 1-extendability of the input graph and the
third one decreases the maximum degree of the input graph and keeps it 1-
extendable. These transformations (or similar ideas) will be used later in some
reductions.

Transformation (T1). The graph G(1) is obtained from G by adding a pendant
vertex πu for any u ∈ V (G). The vertex πu has degree one and is adjacent to u.
The graph G(1) has thus 2n vertices and m + n edges. This provides us with a
trivial linear-size vertex-addition scheme to obtain 1-extendable graphs.
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Lemma 2. For any graph G, G(1) is 1-extendable.

Transformation (T2). The graph G(2) is obtained from G by subdividing each
of its edges an even number of times, i.e. each edge becomes an induced P2�.
In fact, (T2) is a well-known graph transformation which provides, for instance,
the proof that Maximum Independent set remains NP -hard on graphs for-
bidding a fixed graph H as an induced subgraph, for any H different from a
path or a subdivided claw [1,23]. This transformation preserves in some sense
all independent sets of the input graph G.

Observation 2 ([1,23]). Consider any MIS X ′ of G(2) and pick all its vertices
X � X ′ which were already present in G, i.e. which do not belong to the subdi-
vided edges. Then X is an MIS of the input graph G. Additionally, the set X ′\X
contains exactly half of the vertices formed by the subdivisions.

One can see that G(2) is planar iff G is planar (subdivisions do not influence
planar embeddings). Moreover, (T2) also preserves the 1-extendability.

Lemma 3. G is 1-extendable iff G(2) is 1-extendable.

Transformation (T3). The graph G(3) is obtained from G by replacing each of
its vertices by a path in order to decrease the maximum degree of the graph. It
is a folklore transformation which also works for other classical problems.

First, we replace each vertex u ∈ V (G) by an induced odd path Pu of length
� = 2Δ − 1, where Δ is the maximum degree of G. We denote by u1, . . . , u�

the vertices of Pu. The vertex set of G(3) is V (G(3)) = {u1, . . . , u� : u ∈ V (G)}.
Second, let Qu ⊆ Pu be the set of vertices in Pu with odd index: Qu = {u2i+1 :
0 ≤ i ≤ Δ − 1}. For any 1 ≤ i ≤ d(u), we assign arbitrarily to each vertex u2i+1

of Qu a neighbor ρ(u2i+1) ∈ V (G) of u, so that ρ is bijective. There are two
types of edges in G(3):

– edges of induced paths Pu, u ∈ V (G),
– edges u2i+1v2j+1 when ρ(u2i+1) = v and ρ(v2j+1) = u.

In this way, the maximum degree G(3) is at most 3.
One may observe that Qu is an independent set of Pu of maximum size Δ.

This is the key property which allows us to show that this structure maintains
the 1-extendability of the input graph.

Lemma 4. Let n = |V (G)|. We have α(G(3)) = n(Δ − 1) + α(G). Moreover, if
G is 1-extendable, then G(3) is 1-extendable.

Assume graph G is planar. One can, by defining function ρ in a good way,
produce a graph G(3) which is still planar, according to [18]. Unfortunately, one
can find examples of graphs G such that G(3) is 1-extendable while G is not.
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4 Hardness of 1-Extendability on Subcubic Planar
Graphs

The main goal of this section is to study the computational hardness of 1-
Extendability. We show that the problem remains NP-hard in subcubic planar
graphs and unit disk graphs.

4.1 Gadget

We now focus on restricted graph classes. There exists a well-known gadget [13]
which allows, for any graph G, to produce a planar graph G′ with O(n) vertices
which is equivalent to G for the Maximum Independent set problem. Con-
cretely, G′ is obtained by replacing each crossing appearing in an embedding
of G in the plane by this gadget. In this article, we call it the GJS-gadget (for
Garey-Johnson-Stockmeyer) and denote it by HGJS (see Fig. 2a). Unfortunately,
this trick does not work directly for 1-Extendability. In order to make it work,
our idea is to define a first reduction producing a non-planar graph, but where
the crossings satisfy some interesting properties. Secondly, we add GJS-gadgets
on this intermediate graph. Lastly, we use well-known tricks from the literature
in order to reduce the maximum degree of the reduced graph, and to obtain both
subcubic planar and unit disk graphs.

x

x′

y

y′

zy
x ay

x ay′
x zy′

x

zy
x′ ay

x′ ay′
x′ zy′

x′

(a) A planar embedding of HGJS together with an
MIS of it (in blue)

|S ∩ X| = 0 = 1 = 2
|S ∩ Y | = 0 7 8 8
|S ∩ Y | = 1 8 9 9
|S ∩ Y | = 2 7 8 9

(b) Largest MISs S of HGJS
containing a certain subset

Fig. 2. The GJS-gadget [13]

Description of the Gadget. Figure 2a represents HGJS. Let X = {x, x′},
Y = {y, y′}, Z =

{
zy

x, zy′
x , zy

x′ , z
y′
x′

}
, A =

{
ay

x, ay′
x , ay

x′ , a
y′
x′

}
. We denote by by

x the
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common neighbor of zy
x and ay

x. Vertices by′
x , by

x′ , b
y′
x′ are defined similarly. We fix

B =
{

by
x, by′

x , by
x′ , b

y′
x′

}
. The “C6” of HGJS refers to the vertices which are not

in sets X,Y,Z,A, and B. The size of the MIS of HGJS is 9, according to [13].
Blue vertices give an example of such MIS. Vertices x, x′, y and y′ are called the
endpoints of HGJS.

Figure 2b indicates the sizes of a largest independent set S we obtain if we
fix the intersection size with X and Y . For example, a largest independent set S
which contains vertices x, y, y′ is of size 8: one of them is such that it also contains
ay

x, ay
x′ and 3 vertices from the C6. Another example: a largest independent set

S containing exactly one vertex of X and one vertex of Y has size 9. The blue
vertices of Fig. 2a form this kind of independent sets, with S ∩ X = {x} and
S ∩ Y = {y′}.

Consider an embedding of some graph G in the plane, and a crossing con-
sisting of two edges uu′ and vv′. By replacing the crossing by a gadget, we mean
removing the edges uu′ and vv′, adding a subgraph isomorphic to HGJS, and
adding the edges vx, uy′, v′x′, and u′y. By replacing each crossing of G by a
gadget, we obtain a graph G+ which is not only planar, but also equivalent to
G for the Maximum Independent Set problem, in the sense that G contains
an independent set of size k iff G+ contains an independent set of size k + 9λ,
where λ is the number of crossings in G [13].

The idea behind this statement is the following: if S is an independent set
of G, then there exists an independent set S+ of G+ of size |S| + 9λ which is
made up of the vertices of S and 9 vertices per crossing. As S is independent,
one can select, for each gadget, one vertex of {x, x′} (and one vertex of {y, y′})
which is not adjacent to an element of S. We know that a largest independent
set of HGJS intersecting both {x, x′} and {y, y′} in exactly one element has size
9, which corresponds to the MIS size of HGJS.

Lemma 5 (Equivalence of G and G+ for Maximum Independent
Set [13]). Any MIS S of G can be completed into an MIS S+ ⊇ S of G+ which
contains exactly 9 vertices per crossing gadget. Conversely, given any MIS S∗ of
G+, the vertices of S∗ which do not belong to a crossing gadget form an MIS of
G.

Preservation of 1-Extendability. Our initial idea was to use the same gadget
to transform every graph into a planar one which preserves the 1-extendability
of G. Unfortunately, the property described above for Maximum Independent
Set does not hold for 1-Extendability. Indeed, one can find examples of
graphs G such that G is 1-extendable and G+ is not. For this reason, we state a
weaker characterization involving the GJS-gadget. We will see further that this
result is enough to prove that 1-Extendability is NP-hard on planar graphs.

Proposition 2. Let G be a graph embedded in the plane and uu′ ∈ E(G). Let
v1v

′
1, v2v

′
2, . . . , v�v

′
� be the edges of G which cross uu′. Assume, for any 1 ≤ i ≤ �,

the following statements:
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– there is an MIS S
(i)
u of G such that S

(i)
u ∩ {u, u′, vi, v

′
i} = {u},

– there is an MIS S
(i)
u′ of G such that S

(i)
u′ ∩ {u, u′, vi, v

′
i} = {u′},

Let G+ be the graph obtained from G by replacing each crossing {uu′, viv
′
i} with

a GJS-gadget. Then, G+ is 1-extendable iff G is 1-extendable.

Observe that the assumptions concerning the MISs of G+ are essential if we want
pairs {xi, yi}, {xi, y

′
i}, {x′

i, yi}, and {x′
i, y

′
i} of each gadget Hi to be covered by

MISs. This property is not achieved by all 1-extendable graphs G. Take for
instance an embedding of some complete bipartite graph Kn,n, n ≥ 3: every
MIS intersects each crossing on exactly two vertices.

4.2 Planar Embedding

The GJS-gadget is a key tool in our proof that 1-Extendability is NP-hard
on subcubic planar graphs. We reduce from an NP-hard variant of 3SAT called
Planar Monotone Rectilinear 3SAT, abbreviated PMR 3SAT. Given an
input ϕ of PMR 3SAT, we design a graph Gϕ such that ϕ is satisfiable iff Gϕ is
1-extendable. Furthermore, Gϕ is planar and its maximum degree is 3. We begin
with the construction of Gϕ step by step. Then, we show that the 1-extendability
of Gϕ depends on the satisfiability of the formula ϕ.

Starting Point of the Reduction. We reduce from PMR 3SAT, which is
NP-hard [4]. In this variant of 3SAT, clauses and variables can be represented
in the plane in a certain way. The input is a set of variables X = {x1, . . . , xn}
and a CNF-SAT formula ϕ over X with exactly three variables per clause. The
clauses C1, . . . , Cm are monotone: they contain either three positive literals or
three negative literals. Moreover, ϕ admits a rectilinear representation, that we
now explain. Each variable is a point on the x-axis. The positive (resp. negative)
clauses are represented by horizontal segments above (resp. below) the x-axis.
When a variable xi appears in a given clause, a vertical edge must connect
the point xi on the x-axis with the segment of this clause (at any point of the
segment). Such a representation is rectilinear if no edge crosses a clause segment.
Figure 3 provides an example of a formula ϕ, with m = 5, which admits a
rectilinear representation.

Let ϕ be an input of PMR 3SAT provided with its rectilinear representa-
tion. The construction of Gϕ depends on the rectilinear representation of ϕ. We
proceed with two intermediate steps: first graph G′′

ϕ, second graph G′
ϕ.

Construction of G′′
ϕ. The first step is inspired from Mohar’s reduction [18]

for Maximum Independent Set. We replace each variable xi on the x-axis
by a cycle. Let r be the number of appearances of xi (as a literal xi or ¬xi) in
the clauses C1, . . . , Cm of ϕ. The point representing variable xi becomes a cycle
x1

i , x̄
1
i , x

2
i , x̄

2
i , . . . , x

r
i , x̄

r
i of length 2r, drawn as an axis-parallel rectangle (see

Fig. 4a). We denote by c∗ the total number of vertices in the variable cycles. Each
clause Cj = �1j ∨�2j ∨�3j is replaced by a triangle Tj of three vertices v1

j , v2
j , v3

j . The
edges of these triangles are called T -edges. Each vertex of the clause is placed at
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x
x1 x2 x3 x4 x5

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x5

¬x1 ∨ ¬x2 ∨ ¬x3 ¬x3 ∨ ¬x4 ∨ ¬x5

¬x1 ∨ ¬x3 ∨ ¬x5

Fig. 3. A rectilinear representation of a PMR 3SAT instance C1, . . . , C5

the intersection between the clause segment and vertical edges of the rectilinear
representation. In this way, vertices v1

j , v2
j and v3

j are aligned horizontally and,
w.l.o.g, we assume v1

j (resp. v3
j ) is the leftmost (resp. rightmost) vertex of Tj on

the clause segment. Edges v1
j v2

j and v2
j v3

j are drawn as straight lines. The third
one, v1

j v3
j , can be represented as an almost flat curve, passing above (resp. below)

vertex vj
2 for positive (resp. negative) clauses. If �q

j = xi for some 1 ≤ j ≤ m and
q ∈ {1, 2, 3}, then vertex vq

j is connected to some cycle vertex x̄s
i of the top of

the rectangle. Otherwise, if �q
j = ¬xi, then vertex vq

j is connected to some cycle
vertex xs

i of the bottom of the rectangle. For now, the described embedding is
planar. Figure 4a shows the embedding of the instance of Fig. 3. Vertices x̄s

i are
drawn in grey to distinguish them from vertices xs

i (in white).
Less formally, each parity of a variable cycle represents a certain assignation

of this variable. Picking up x1
i , x

2
i , . . . (resp. x̄1

i , x̄
2
i , . . .) into an independent set

will correspond to assigning xi to False (resp. True).
We add a “pendant” vertex πj for any triangle Tj , 1 ≤ j ≤ m, that is, πj

is adjacent to all vertices of Tj . The edges created by this operation, i.e. all
vq

j πj , are called pendant edges. Consider the following embedding. We fix two
horizontal axes x+ and x−: the first one above the x-axis and all segments of the
positive clauses, the second one below the x-axis and all segments of the negative
clauses. The pendants issued from the positive clauses are placed on the x+-axis
such that every edge (v2

j , πj) is vertical. We represent edges (v1
j , πj) and (v3

j , πj)
as straight lines (they cannot be vertical). We proceed similarly with pendants
of the negative clauses on the x−-axis. We denote by G′′

ϕ the obtained graph.
Its embedding is not planar. Figure 4b shows graph G′′

ϕ corresponding to the
instance ϕ of Fig. 3. Pendant edges are drawn in red. We claim that each vertex
of G′′

ϕ belongs to an MIS. This might seem counter-intuitive, but the equivalence
between the 1-extendability of the output instance and the satisfaction of ϕ will
appear later (when we will eventually define Gϕ).
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(a) Planar embedding in Mohar’s style

x+

x−

(b) Embedding of G′′
ϕ (not planar)

Fig. 4. Graph G′′
ϕ with and without pendant vertices.

Lemma 6. The graph G′′
ϕ is 1-extendable.

Construction of G′
ϕ. The second step consists in transforming G′′

ϕ into some
equivalent graph G′

ϕ which is planar and has maximum degree 3. Two types
of crossings appear in the embedding of G′′

ϕ. Each of them necessarily involve
pendant edges.

– Type A: a pendant edge vq
j πj crosses a T -edge vp′

j′ v
q′
j′ (we may have j = j′),

– Type B: a pendant edge vq
j πj crosses another pendant edge vq′

j′ πj′ , j 	= j′.

We observe that for any of these types of crossings in the embedding of G′′
ϕ,

the assumptions of Proposition 2 are fulfilled.

Lemma 7. Let {uu′, vv′} be a crossing of the embedding of G′′
ϕ. There exist two

MISs Su, Su′ of G′′
ϕ which intersect {u, u′, v, v′} respectively in {u} and {u′}.

As a consequence of Lemma 7 together with Proposition 2, one can replace
each crossing of the embedding of G′′

ϕ by a gadget HGJS without altering its
1-extendability. The graph obtained is thus planar and has maximum degree 6
(which is the maximum degree of graph HGJS). Then, we apply transformation
(T3) with Δ = 6 to decrease its maximum degree. Finally, we obtain the graph
G′

ϕ, which is planar and has maximum degree 3.

Lemma 8. The graph G′
ϕ is 1-extendable.

Construction of Gϕ. We are now ready to describe the final graph Gϕ which
consists in a small extension of G′

ϕ. We add a cycle z1, z̄1, . . . , zm, z̄m of size 2m

to the graph G′
ϕ. Let Z = {z1, z2, . . . , zm} and Z̄ = {z̄1, z̄2, . . . , z̄m}. We connect

zj to πj for every 1 ≤ j ≤ m - concretely, as πj became an induced path via
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transformation (T3), we add an edge between zj and a vertex of Pπj
. The graph

obtained is Gϕ and its size is polynomial in |ϕ|. The graph Gϕ is planar: consider
the embedding of G′

ϕ, draw the cycle Z ∪ Z̄ as a rectangle surrounding it and
such that all edges πjzj are vertical. Its maximum degree is 3.

As shown in details in the proof of Theorem 3 (see Appendix), the graph
Gϕ is 1-extendable iff ϕ is satisfiable. Indeed, as G′

ϕ is 1-extendable, all vertices,
except the ones in Z, already belong to a MIS of Gϕ, where α(Gϕ) = α(G′

ϕ)+m.
Therefore, Gϕ is 1-extendable iff it admits a MIS of the form Z ∪ S′, where S′

is a MIS of G′
ϕ. Such property is fulfilled iff there is a MIS of G′′

ϕ which does
not contain pendant vertices and, equivalently, iff there is an assignation of the
variables x1, x2, . . . satisfying ϕ.

Theorem 3. 1-Extendability remains NP-hard on planar graphs of maxi-
mum degree 3.

Unit disk graphs [9] stand as a natural model for wireless networks. Sub-
divided planar graphs with degree at most 4 can be represented as unit disk
graphs [28], hence, combining Theorem 3 with Transformation (T2), we obtain
the following.

Theorem 4. 1-Extendability is NP-hard, even on unit disk graphs.

5 Parameterized Algorithms

In this section we study a parameterized version of the 1-extendability problem:

param-1-Extendability Parameter: k
Input: A graph G, an integer k
Question: Does every vertex of G belong to an independent set of size k?

Theorem 5. param-1-Extendability is W [1]-hard.

Observe that Lemma 1 does not preserve the existence of polynomial kernels.
Hence, it is natural to ask whether 1-Extendability admits a polynomial ker-
nel in graph classes where Maximum Independent Set does. We answer pos-
itively for some of them. We say that a hereditary graph class C is MIS-(c, t)-
friendly, for two non-zero constants c and t, if every graph of the class on n
vertices contains an independent set of size at least t · nc, and such an indepen-
dent set can be found in polynomial-time.

Theorem 6. Let C be an MIS-(c, t)-friendly class. param-1-Extendability
on C admits a kernel with O(k

1
c+

1
c2 ) vertices.

Since planar graph are MIS-(1, 1/4)-friendly, d-degenerate graphs are MIS-
(1, 1

d+1 )-friendly and Kr-free graphs (for r � 3) are MIS-
(

1
r−1 , 1

)
-friendly, we

have the following:

Corollary 2. param-1-Extendability admits a kernel with O(k2) vertices
on planar graphs and more generally d-degenerate graphs for bounded d, and a
kernel with O(kr2−r) vertices on Kr-free graphs for every fixed r � 3.
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6 Conclusion and Further Research

We investigated the computational complexity of 1-Extendability. We showed
that in general graphs it cannot be solved in subexponential-time unless the ETH
fails, and that it remains NP-hard in subcubic planar graphs and in unit disk
graphs. Although this behavior seems to be the same as Maximum Indepen-
dent Set, we proved that Maximum Independent Set remains NP-hard
(and even W[1]-hard) in 1-extendable graphs. It seems challenging to find a
larger class of graphs where 1-Extendability is polynomial-time solvable (but
not trivial) while Maximum Independent Set remains NP-hard.

Another interesting subject would be to characterize 1-extendable graphs of
graph classes where Maximum Independent Set is polynomial-time solvable:
e.g. chordal graphs, cographs, claw-free graphs. Such outcomes would extend the
result of Dean and Zito [11] which state that bipartite graphs are 1-extendable
iff they admit a perfect matching.

We also studied param-1-Extendability, a parameterized version of 1-
Extendability and showed that some results for Maximum Independent
Set could also be obtained for param-1-Extendability (although not being
as direct). It would be interesting to determine whether this is also the case
for other results about Maximum Independent Set [6,7,10], for instance: is
param-1-Extendability W[1]-hard in C4-free graphs and in K1,4-free graphs?
Does it admit a polynomial kernel in diamond-free graphs?

Finally, because of its applications in network design, finding an efficient
algorithm which works well in practice is of high importance. Toward this, a
first step would be to determine in which cases a vertex addition (or deletion)
preserves the property of being 1-extendable. We note that such results have
already been obtained for the related property of being well-covered [12].
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Abstract. Combinatorial representations of point sets play an impor-
tant role in discrete and computational geometry. In this work, we inves-
tigate a new combinatorial quantity of a point set, called Tukey depth
histogram. The Tukey depth histogram of k-flats in R

d with respect to a
point set P , is a vector Dk,d(P ), whose i’th entry Dk,d

i (P ) denotes the
number of k-flats spanned by k + 1 points of P that have Tukey depth i
with respect to P . It turns out that several problems in discrete and com-
putational geometry can be phrased in terms of such depth histograms.
As our main result, we give a complete characterization of the depth
histograms of points, that is, for any dimension d we give a description
of all possible histograms D0,d(P ). This then allows us to compute the
exact number of different histograms of points.

Keywords: Computational geometry · Depth statistics · Tukey
depth · Point sets

1 Introduction

Many fundamental problems on point sets, such as the number of extreme points,
the number of halving lines, or the crossing number do not depend on the actual
location and distances of the points, but rather on some underlying combina-
torial structure of the point set. There is a vast body of work of combinatorial
representations of point sets, at the beginning of which are the seminal series of
papers by Goodman and Pollack [6–8], where many important objects such as
allowable sequences and order types are introduced. In particular, order types
have proven to be a very powerful representation of point sets. For many prob-
lems however, less information than what is encoded in order types is sufficient.
One example for such a problem is the determination of the depth of a query
point with respect to a planar point set.
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Depth measures are a tool to capture how deep a query point lies within a
given point set. There is a number of depth measures that have been introduced,
most famously Tukey depth [18] (also called halfspace depth), Simplicial depth
[10] or Convex hull peeling depth (see [1,9] or Chap. 58 in [17] for an overview of
depth measures). In this paper, we are mainly concerned with Tukey depth. The
Tukey depth of a query point q with respect to a point set P is the minimum
number of points of P that lie in a closed halfspace containing q. For Tukey
depth (and Simplicial depth), the depth of a query point in the plane can be
computed knowing the order type of the point set, but also knowing the line
rotational order of the points around the query point. The line rotational order
of the points of a point set P around a query point q is the order in which a
directed line rotating around q passes over the points of P , where we distinguish
whether a point of P is passed in front of, or behind q.

In fact, the Tukey depth of a query point q in the plane can be computed
using even less information than the line rotational order around q: it suffices
to know for each k, how many directed lines through q and a point of P have
exactly k points to their left. This defines the �-vector of q. The Tukey depth of
q is now just the smallest k for which the corresponding entry in the �-vector is
non-zero. It turns out, that many other depth measures can also be computed
knowing only the �-vector of q [3]. Another quantity that can be computed
from this information only is the number of crossing-free perfect matchings on
P ∪{q}, if P is in convex position and q is in the convex hull of P [15]. In [15], a
characterization of all possible �-vectors is given, phrased in terms of frequency
vectors, which is an equivalent object. Knowing the �-vector of every point in
a point set P thus still gives us a lot of information about this point set. For
example, as this allows us to compute the simplicial depth sd(P, q) of each point
q in P , that is, the number of triangles spanned by P\{q} that have q in their
interior, this also allows us to compute the crossing number of the complete
straight-line graph induced by P , which is just

cr(P ) =
(

n

4

)
−

∑
q∈P

sd(P, q).

In this paper, we study objects that emerge after forgetting yet another piece
of information: instead of knowing the �-vector of each point, we only know the
sum of all �-vectors. This corresponds to knowing for each j the number of j-
edges that is, knowing the histogram of j-edges. Note that an edge uv is called
a j-edge if there are exactly j points to the right of the line uv. The number of
j-edges that a point set admits is a fundamental question in discrete geometry
and has a rich history, see e.g. [19], Chap. 4 in [5] or Chap. 11 in [11] and the
references therein. We generalize the histogram of j-edges to a histogram of j-
flats (i.e., affine subspaces of dimension j) in any dimension. For this, we first
define the Tukey depth of a flat:

Definition 1. Let Q be a set of k + 1 points in R
d, k < d, which span a unique

k-flat F . The affine Tukey depth of Q with respect to a point set P , denoted by
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atdP (Q), is the minimum number of points of P in any closed halfspace contain-
ing F . The convex Tukey depth of Q with respect to P , denoted by ctdP (Q), is
the minimum number of points of P in any closed halfspace containing conv(Q).

Note that for k = 0 both definitions coincide with the standard definition of
Tukey depth, and we just write tdP (q) in this case. Further note that if P ∪Q is
in convex position, then atdP (Q) = ctdP (Q). Several results in discrete geometry
can be phrased in terms of this generalized Tukey depth. For example, the center
transversal theorem [2,20] states that for any j + 1 point sets P0, . . . , Pj in R

d,
there exists a j-flat (not necessarily spanned by points of the point sets) that has
affine Tukey depth |Pi|

d+1−j with respect to Pi, for each i ∈ {0, . . . , j}. For j = 0
and j = d − 1, we retrieve the centerpoint theorem [13] and Ham-Sandwich
theorem [16] as boundary cases.

Definition 2. Let P be a set of points in R
d. The affine Tukey depth histogram

of j-flats, denoted by Dj,d(P ), is a vector whose entries Dj,d
i (P ) are the number

of subsets Q ⊂ P of size j +1 whose affine Tukey depth is i. Similarly, replacing
affine Tukey depth with convex Tukey depth, we define the convex Tukey depth
histogram of j-flats, denoted by cDj,d(P ).

In the following, we will also call affine Tukey depth histograms just depth
histograms, that is, unless we specify the convex, we always mean an affine Tukey
depth histogram. Note however that for j = 0 or if P is in convex position, the
two histograms coincide.

Many problems in discrete geometry can also be phrased in terms of depth
histograms. For example, the number of extreme points of a point set P just
corresponds to the entry D0,d

1 (P ) (note that each (extreme) point of P has
Tukey depth at least 1). Further, the number of j-edges or, more generally, j-
facets corresponds to the entry Dd−1,d

j (P ). For a further example consider the
following problem, studied in [4,12,14]: let P be a set of n points in general
position in the plane. Are there always two points in P such that any circle
through both of them contains at least n

4 points of P both inside and outside of
the circle? Using parabolic lifting, proving that for any point set P of size n in
convex position in R

d, we have D1,3
n/4(P ) > 0 would imply a positive answer to

the above question [14].
In this paper, we will mainly focus on Tukey depth histograms of points, that

is, histograms of the form D0,d. We give a complete characterization of possible
such histograms for point sets in general position. In particular, we will show
the following:

Theorem 1. A vector D0,d is a depth histogram of a point set of size at least
d + 1 in general position in R

d if and only if for all nonzero entries D0,d
i with

i ≥ 2 we have
i−1∑
j=1

D0,d
j ≥ 2i + d − 3.
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Note that if a point set has fewer than d + 1 points, then they must all
be extreme points, as we assume general position. Thus, their depth histogram
only has a single non-zero entry D0,d

1 . In particular, the above theorem covers
all interesting cases. In the following, we will always silently assume that P has
at least d + 1 points.

2 The Condition is Necessary

The goal of this section is to show that the condition
∑i−1

j=1 D0,d
j ≥ 2i+ d− 3 for

all i ≥ 2 with D0,d
i > 0 is necessary for any depth histogram. To prove this, we

first give an upper bound on the depth of any single point.

Lemma 1. For any point set P ⊆ R
d on at least d + 1 points, and any point

p ∈ P we have tdP (p) ≤ n−d+2
2 .

Proof. Let P ⊆ R
d and let p ∈ P be any point with tdP (p) = k. We will show

that P consists of at least 2k − 2 + d points.
Consider a witnessing halfspace hp of p and its bounding hyperplane h ⊆ hp.

We may assume that h contains p and no other point from P ; otherwise we
just rotate h a little. As tdP (p) = k, we know that hp contains k points. Now,
rotate h in any direction (s.t. p stays on h) until one point, say q, changes
halfspaces. If q was in hp before, then we found a halfspace containing p and
k − 1 points, contradicting the depth of p. Therefore q was in R

d\hp. We can
repeat this rotating step until there are d points on h (one of them being p).
Both halfspaces still need to contain at least k − 1 points; thus, we need at least
2(k − 1) + d points. �	

A similar line of reasoning can be applied to k-faces and convex Tukey depth:

Proposition 1. Let P be a point set in R
d and assume that P spans a k-face F

with ctdP (F ) = i. Then P spans at least 2
(
i−k−1
m+1

)
m-faces of smaller depth. In

other words, for any depth histogram cDk,d and all nonzero entries cDk,d
i with

i ≥ 2 we have
i−1∑
j=1

cDm,d
j ≥ 2

(
i − k − 1
m + 1

)
.

Proof. Consider a witnessing halfspace hF of F and its bounding hyperplane h.
As ctdP (F ) = i and F is spanned by k + 1 points, the halfspace hF contains
i − k − 1 other points. Looking at the complement of hF and translating h, we
can find another halfspace h2 containing i−k − 1 points of P , with hF ∩h2 = ∅.
We have thus found two disjoint subsets of P , each of size i − k − 1. Further,
each m-face spanned by m + 1 points in a subset has depth at most i − 1, as
witnessed by a translation of hF or h2, respectively. �	

To show the necessity of the condition in Theorem 1 we need to be able to
delete points of high depth without changing the depth of points of lower depth.
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Lemma 2. For any point set P ⊆ R
d and any two points p, q ∈ P with tdP (p) ≤

tdP (q) we have tdP (p) = tdP\q(p).

Proof. Let hp be a witnessing halfspace of p with only p on the boundary (fol-
lowing the same reasoning as in the proof of Lemma 1). If q′ ∈ hp then we
translate hp parallel until q′ lies on the boundary. The new halfspace contains
at most |hp ∩ P | − 1 points of P and so tdP (q′) < tdP (p). Hence, for points p, q
with tdP (p) ≤ tdP (q) we have q /∈ hp and deleting q can never change the depth
of p. �	

This lemma has direct applications for histograms of points, that is, by
repeatedly applying the lemma one can easily show the following.

Proposition 2. Let [a1, a2, . . . , am−1, am] be a depth histogram for points, then
for i ≤ m both [a1, a2, . . . , ai−1, ai] and if ai ≥ 1 then also [a1, a2, . . . , ai−1, 1]
are depth histograms.

We are now able to prove that the condition in Theorem 1 is necessary.

Proof (that the condition in Theorem 1 is necessary). For the sake of contradic-
tion, let us assume that D0,d is a depth histogram with a nonzero entry D0,d

i

and
∑i−1

j=1 D0,d
j < 2i + d − 3.

Using Proposition 2, we can “cut off” D0,d at any point, therefore let
D′ := [D0,d

1 , . . . , D0,d
i−1, 1] and denote the corresponding point set as P ′. From the

assumption we know that there are fewer than 2i+d−3 points of depth less than
i and by definition there is one point of depth i. Thus, we have |P ′| < 2i+d−2.
But, by Lemma 1, points in P ′ have depth less than (2i+d−2)−d+2

2 = i. �	
Similarly, we can say something about k-faces and affine Tukey depth. For a

proof, we refer the interested reader to the full version of this paper.

Corollary 1. For any depth histogram Dk,d and all nonzero entries Dk,d
i with

i ≥ 2 we have

i−1∑
j=1

D0,d
j ≥ 2i + d + k − 3.

In other words, if a point set P in R
d spans a k-face F with atdP (F ) = i, then

P contains at least 2i + d + k − 3 points of smaller depth.

2.1 Two Special Configurations

Let us revisit Lemma 1 about the maximum possible depth. It is worth noting
that the bound given in the lemma is tight. We will give an intuition using point
sets in so-called symmetric configuration [15]. These point sets will be useful in
proving that the condition of Theorem 1 is sufficient.
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Definition 3. A point set P ⊆ R
d in general position is in

1. symmetric configuration if and only if there exists a central point c ∈ P such
that every hyperplane through c and d − 1 other points of P separates the
remaining points into two halves of equal size.

2. eccentric configuration if and only if there exists a central point c ∈ P such
that every hyperplane through c and d−1 other points of P divides the remain-
ing points in two sets with difference in cardinality of at most 1.

We will denote point sets in symmetric (or eccentric, resp.) configuration as
symmetric (eccentric, resp.). Depending on the dimension and the size of P , only
one of the definitions can be applied, see Fig. 1 for an example.

c

p

c

p

q

Fig. 1. Two point sets in symmetric and eccentric configuration, respectively. The lines
through c and p or c and q, respectively, (almost) divide the remaining point set.

Lemma 3. The symmetric central point c in a symmetric (or eccentric) point
set P has depth tdP (c) = �n−d+2

2 .
For a proof of this, we refer the interested reader to the full version of this

paper.
At first glance, it is not clear that symmetric and eccentric point sets of any

size exist in any dimension. We will show that they do in the next section.

3 The Condition is Sufficient

To prove that the condition we gave in Theorem 1 is sufficient, we build up point
sets according to their histograms by adding points one-by-one. In other words,
given a histogram, we start from the points in convex position (as many as there
are of depth 1). We then add new points at places, where they have the maximal
possible depth, that is, we will add them in the “center” of the point set. We
then push them outwards until they have the right depth, without changing the
depth of any other point. In this way we successively add all points of depth 2,
then the ones of depth 3 and so on. In this section we show what happens to
the histogram when pushing points outwards (Sect. 3.1) and where to add new
points and in which direction we push them (Sect. 3.2).



192 D. Bertschinger et al.

3.1 Moving Points

First, we make an easy observation that is key to see how moving points affects
the Tukey depth histogram of a point set.

Observation 2. The depth of a point q ∈ P can only change if the order type
of the point set changes.

Note that the Tukey depth of q can only change if q is involved in the change
in the order type. In other words, q was moved over a hyperplane formed by d
other points of the point set.

Proposition 3. Let P ∈ R
d be a point set and q ∈ P be an arbitrary point. Let

q′ be a point close to q, such that the order types of P and P ′ := P\{q} ∪ {q′}
only differ in one simplex S, that is in S := conv{p1, . . . , pd, q} and S ′ (with
q′ instead of q, resp.). Let h be the hyperplane spanned by p1, . . . , pd and let
q̂ := h ∩ qq′.

– If q̂ /∈ conv{p1, . . . , pd}, then tdP (q) = tdP ′(q′), and
– otherwise, if q̂ ∈ conv{p1, . . . , pd}, then |tdP (q) − tdP ′(q′)| ≤ 1.

For a proof of this, we refer the interested reader to the full version of this
paper.

We not only know what happens to the depth of q but whenever q has the
highest depth among all points, we also know that the depths of the other points
do not change. By first removing q and then reinserting q′ we get the following
observation as a direct consequence of Lemma 2. Thus, we know how the Tukey
depth histogram behaves when moving points of large depths.

Observation 3. Whenever we have tdP (q) > tdP (p) for all points p in the
point set except q, then tdP (p) = tdP ′(p) (for q, q′ and P ′ as in Proposition 3).

3.2 Inserting a New Point

We have already seen symmetric (and eccentric) point sets, containing a point
of maximum possible depth. These sets will help us placing new points, s.t. they
have large depth. Let P be a symmetric (eccentric) point set in general position
missing the symmetric central point. We place a new point q at the location of
the (previously inexistent) central point, and by Lemmas 1 and 3, we know that
q has the maximal possible depth. Now we are able to push q outwards until it
has the desired depth and the resulting point set is eccentric (symmetric, resp.)
again missing the central point. An example of what happens in dimension two
can be found in Fig. 2. It is pretty easy to see that in R

2, this always works.

Lemma 4. For any symmetric (eccentric) point set P ⊆ R
2 in general position

there exists a direction in which we can move the central point, s.t. after adding
a new center we have an eccentric (symmetric) point set in general position.
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Fig. 2. A symmetric point set (left). After pushing the central point out (second),
we arrive at an eccentric point set in missing the symmetric central point. We add a
new point at maximum possible depth (third) and by pushing it out again we get a
symmetric point set missing the central point (right).

Proof. First, note if P is symmetric, almost any direction does the job. The only
crucial bit is ensuring that the resulting point set (after adding a new center) is
in general position again; however, this is always possible.

If P is eccentric, then there exist two neighbors in the rotational order of
points around q (the central point to be pushed) without a symmetric central
line (e.g. a line going through the central point) dividing them. Let us denote
these points as p1 and p2 and move q outwards on an “opposite” halfline, see
Fig. 3, right. This ensures that the point set is in general position and symmetric
again (i.e. the line rotational order around the new center is alternating between
points passing in front of, and behind q). �	

Fig. 3. The central point q to be pushed and the directions in which we push.

In higher dimensions it is not easy to see how to get the directions and why
they always exist. We will do an induction argument on the dimension of the
point set; to understand the necessary ideas we start in three-dimensional space.
Let us further denote a point set as spherical, if every point (except maybe one
central point) lies on a sphere around the origin. We further extend the definition
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of symmetric (eccentric, resp.) point sets to spherical point sets, that is, they are
symmetric (eccentric, resp.) with respect to the origin (instead of a symmetric
central point).

Proposition 4. For every spherical symmetric point set P ⊆ R
3 in general

position there exist two points p1, p2 such that adding any one of them to P
results in a spherical eccentric point set and adding both, p1 and p2, results in a
spherical symmetric point set in general position.

Here general position means that no three points of P lie on a common
plane through the origin. In particular, no two points are exactly opposite on
the sphere. The reason we add two points at a time is that they heavily depend
on one another.

Proof. Let us assume without loss of generality that there is a point pN at the
north pole of the sphere. Note that following assumption of general position this
means that there is no point of P at the south pole.

Let us define PS := P ∪ {pS}, where pS is a new point added at the south
pole of the sphere. Note that this defines one position to add a point to P ;
however, the resulting point set is not in general position anymore and therefore
not eccentric. To get an eccentric point set, we will therefore slightly move pN
and call the moved point pÑ . We will then be able to add another point p′

N close
to the north pole such that the resulting point set in the end is symmetric again.

For this movement, consider the stereographical projection of P at the north
pole (that is undefined for the south pole). Let us denote the projection of
pi ∈ P as qi and the resulting (two-dimensional) point set as Q. Note that for
the symmetric central point pc ∈ P there is no projection and thus we have
|Q| = |P | − 1. We claim that Q is symmetric with respect to qN (that is at the
origin). To see that, consider any line lQ through qN and another point. Note
that lQ corresponds to a plane hP ⊂ R

3 through the origin, pN and another
point. Since P is symmetric with respect to the origin we know that there are
equally many points of P on either side of hP . Therefore lQ also halves the point
set Q and Q is indeed symmetric with respect to qN .

By Lemma 4 it follows that there exist two directions w1, w2 such that we
can push qN into either direction and the resulting point set QÑ is eccentric.
Further, we can add a new point qN ′ to QÑ at the origin; push it into the other
direction and the resulting point set QÑÑ ′ is symmetric once again (missing the
symmetric central point).

By reversing the stereographic projection we can map the moved points
qÑ , qÑ ′ to the sphere and get points pÑ , pÑ ′ close to the north pole. Note that
when we moved qN we could have moved it in such a way, that pÑ is very close
to pN . In particular by replacing pN in P we did not destroy the symmetric
configuration of P . Let us denote the resulting point set as P ′. Note that we
add pÑ ′ afterwards very close to the north pole so that it lies above every other
point (including pÑ ).

It remains to show that P ′′ := P ′ ∪ {pS , pÑ ′} is a symmetric spherical point
set (with respect to the origin). For that we consider every possible plane h
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through the origin and another point of P ′′ and show that there are equally
many points on both sides of h.

First, consider a plane h through pS and another point. Note that h also goes
through the north pole and thus in the stereographic projection corresponds to
a line through the origin. From the fact that QÑÑ ′ is symmetric it follows that
the plane h is halving the point set P .

Second, if h does not go through pS and also not through pÑ ′ , then since P ′

was in symmetric position we know that there are equally many points of P ′ on
either side of h. Additionally, we know that pS is below h and pÑ ′ is above h for
sure, thus we are fine.

Finally, let h be a plane that does not go through pS but through pÑ ′ . This
is the hardest case to argue and we will do a proof by contradiction. Let us
assume that h does not halve the point set P ′′ but has more points on one than
the other side. Note that by parity the difference is even and at least two, let
us assume that on one side there are k points whereas on the other there are
k + 2 points of P ′′. We rotate h away from pÑ ′ in such a way that pÑ ′ falls onto
the side with more points. Thus, we get a plane h′ going through some point
of P ′′ having k + 3 points on one side and k on the other. We rotate further in
the same direction until we hit a point again. The resulting plane h′′ cannot be
halving the point set as it has at least k + 2 points on one of its sides. However,
h′′ is a plane through 2 points and the origin and does not go through pÑ ′ . Thus,
it is covered by one of the previous cases and must be halving P ′′. We found
a contradiction and therefore h has indeed the same number of points on both
sides. �	

Note that this proof heavily relied on the facts that we have a spherical point
set and that we can find the needed directions for point sets in R

2. While the
former condition can easily be avoided (see Lemma 5 below), the latter can be
ensured with doing an induction over the dimension.

Formally, for a point set P that is not spherical but in symmetric or eccentric
configuration, let S be a surrounding sphere of P with center q (the symmetric
central point of P ). For all points p ∈ P such that p �= q, we push p out onto S
on the line pq and denote the resulting point set as the induced spherical point
set P ′. Note that P ′ is clearly spherical and we additionally know the following.

Observation 4. The induced spherical point set P ′ of P is symmetric (eccen-
tric, respectively) if and only if P is symmetric (eccentric, respectively).

This follows from the construction of P ′ as all necessary hyperplanes remain
unchanged and in particular they split the point sets P and P ′ in the same way.

Lemma 5. For every symmetric point set P ⊆ R
3, there exist two directions

v1 and v2 such that we can push the central point into either direction; add a
new central point and arrive at an eccentric point set P ′. We can then push the
newly added point into the other direction, and arrive at a symmetric point set
P ′′ missing the symmetric central point.
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Proof. Let SP be the induced spherical point set of P . By Proposition 4 there
exist two positions s1 and s2 where we can add new points to SP such that
the resulting point sets are eccentric (symmetric, resp.). Define v1 and v2 to be
the directed lines from the origin to s1 and s2, respectively. Pushing the central
point of P out yields the same induced spherical point set, independently of how
far we push. Hence, using Observation 4, it follows that the point sets P ′ and
P ′′ are eccentric (symmetric, resp.). �	

The arguments used not only work in R
3 but in any dimension. For a proof,

we again refer to the full version of this paper.

Theorem 5. For every symmetric point set P ⊆ R
d, there exist two directions

v1 and v2 such that we can push the central point into either direction; add a
new central point and arrive at an eccentric point set P ′. We can then push the
newly added point into the other direction, and arrive at a symmetric point set
P ′′ missing the symmetric central point.

3.3 Putting Everything Together

We are now able to prove that the condition given in Theorem 1 is sufficient.

Proof (that the condition in Theorem 1 is sufficient). Let D0,d be a vector sat-
isfying the condition. If all entries of D0,d

i with i ≥ 2 are zero, then we can
just put points in general, convex position. Let us therefore assume that there
is at least one nonzero entry. Let P be the vertices of a simplex in R

d around
the origin and note that P is (spherical) symmetric. We will now add points to
P (in pairs) and maintain the condition that P is symmetric. We first add all
points of depth 1, then all points of depth 2 and so on.

Assume that P consists of n points and assume further that there are points
missing in P (i.e. P does not have histogram D0,d

i ). Let us denote the smallest
missing depth by j and note that this means that all points in P have depth
at most j. We now add a point p in the origin to P . Note that p has depth
� (n+1)−d+2

2 , see Lemma 3. By the condition of the Theorem, we know that
n ≥ 2j + d − 3 and thus j ≤ n−d+3

2 . Therefore, we can push p outwards into
a direction given by Theorem 5. We continue pushing p until it has depth j.
Proposition 3 and Observation 3 guarantee that the only depth that changed
while moving p is the one of point p, as all other points of the point set have
lower depth. Theorem 5 gives us not only the needed direction but also shows
that we can maintain the property of having symmetric (and eccentric) point
sets throughout the entire process. �	

4 Number of Depth Histograms

The characterization of Tukey depth histograms D0,d(P ) allows to compute the
exact number of different histograms for point sets consisting of n points in R

d.
For this, let D(n, d) denote the number of different Tukey depth histograms
D0,d(P ), for point sets P ⊆ R

d consisting of n points.
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Theorem 6. For any dimension d ≥ 2 and any n ≥ d + 1, we have

D(n, d) =

⎧⎨
⎩

2
n−d+2

(3n−d
2 +1
n−d

2

)
, if n − d is even and

3
n−d+2

(3n−d
2 + 1

2
n−d−1

2

)
, if n − d is odd.

(1)

The proof is a single (long) calculation, and can be found in the full version
of this paper.

5 Conclusion

We have introduced and studied Tukey depth histograms of j-flats. For his-
tograms of points, we were able to give a full characterization. This character-
ization allowed us to give an exact number of possible histograms. This is a
contrast to other representations of point sets, such as order types, where the
exact numbers are not known.

It is an interesting open problem to find better necessary and also sufficient
conditions, perhaps even characterizations, of histograms of j-flats for j > 0.
We hope that the ideas in this paper might be useful in this endeavor. Another
interesting open problem is to relate depth histograms to other representations
of point sets. For example, in the plane, the order type determines the �-vectors
for each point, but not vice versa, that is, there are point sets that have the
same sets of �-vectors but different order types. Similarly, the set of �-vectors
determines the histograms D0,2 and D1,2. Is the reverse also true or are there
point sets for which both D0,2 and D1,2 are the same but whose sets of �-vectors
are different?

Due to their relation to many problems in discrete geometry, we are convinced
that the study of depth histograms has the potential to lead to new insights for
many problems.
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Abstract. Given a set P of n points in the plane, the k-center problem
is to find k congruent disks of minimum possible radius such that their
union covers all the points in P . The 2-center problem is a special case of
the k-center problem that has been extensively studied in the recent past
[7,20,22]. In this paper, we consider a generalized version of the 2-center
problem called proximity connected 2-center (PCTC) problem. In this
problem, we are also given a parameter δ ≥ 0 and we have the additional
constraint that the distance between the centers of the disks should be
at most δ. Note that when δ = 0, the PCTC problem is reduced to the 1-
center(minimum enclosing disk) problem and when δ tends to infinity, it
is reduced to the 2-center problem. The PCTC problem first appeared in
the context of wireless networks in 1992 [12], but obtaining a nontrivial
deterministic algorithm for the problem remained open. In this paper,
we resolve this open problem by providing a deterministic O(n2 log n)
time algorithm for the problem.

1 Introduction

The k-center problem in the plane is a fundamental facility-location problem in
which we are given a set of n demand points P and we are going to find a set
S of k center points such that cost(S) := maxp∈P mins∈S dist(p, s) is minimized
(dist(p, s) is the Euclidean distance between p and s). The k-center problem is
known to be NP-hard [3]. However, there is a simple greedy 2-approximation
algorithm for the problem which can not be improved unless P = NP [3]. So,
the studies on the problem went in the direction of obtaining polynomial-time
algorithms where k is not considered as a part of the problem input. As an
example, in 2002, Agarwal and Procopiuc [1] gave a nO(

√
k) time algorithm to

solve the k-center problem. Solving the problem for specific values of k like k = 1
and k = 2 received attention due to the geometric properties that can be applied
to solve these problems efficiently. The 1-center problem is indeed equivalent to
the problem of covering P with a disk with minimum area. This problem is also
called the minimum enclosing disk (MED) problem. In 1983, Megiddo [17] used
the prune and search technique to give an optimal linear time algorithm to solve
the MED problem.

For k = 2, Drenzer [9] gave the first nontrivial algorithm for the problem with
O(n3) time complexity. Later in 1994, Agarwal and Sharir [2] improved the time
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complexity for the problem to O(n2 log3 n). In 1996, Eppstein [10] gave a ran-
domized algorithm for the problem with O(n log2 n) expected running time. In
1997, Katz and Sharir [15] proposed the novel expander-based parametric search
technique and showed that applying it to the 2-center problem using the O(n2)
time feasibility test of Hershberger [11], gives an O(n2 log3 n) time algorithm for
the problem. Later in the year, Sharir [20] designed an O(n log3 n) time algo-
rithm for the decision version of the 2-center problem using the breakthrough
observation of breaking the problem into three separate cases(far distant, dis-
tant and nearby cases). Next, he parallelized the decision algorithm and put it
into the Megiddo’s parametric search schema [18] to obtain an O(n log9 n) time
algorithm. Soon, it turned out that solving the problem in the nearby case is
the bottleneck to reduce the time complexity. Later, Sharir’s running time was
improved by Chan [5] and Wang [22] to O(n log2 n log2 log n) and O(n log2 n)
respectively. Very recently, Choi and Ahn [7] (independently Cho and Oh [6])
obtained an O(n log n) time algorithm for the nearby case which led to an opti-
mal O(n log n) time algorithm for the 2-center problem.

We say that a set S of k center points in the plane satisfies the proximity
connectedness condition (PCC) with respect to a parameter δ if the δ-distance
graph of S (the graph with vertex set S such that there is an edge between two
vertices if and only if the distance between them is at most δ) is connected. The
proximity connected k-center problem is defined as a generalized version of the
k-center problem for which, in addition to P , a parameter δ ≥ 0 is also given.
The objective is to find k center points S such that S satisfies the PCC and
cost(S) ≤ cost(S′) for any k center points S′ that satisfies PCC (cost(S) is the
same cost as in the k-center problem). Note that when δ tends to zero (resp.
infinity), the problem reduces to the 1-center (resp. k-center) problem. Also,
when δ tends to zero and k tends to infinity the problem becomes the Euclidean
Steiner tree problem (connecting the points of P by lines of minimum total
length in such a way that any two points can be connected by the lines). This
is because in this configuration, the centers should be placed along the lines of
the minimum Steiner tree in order to minimize the cost. The Euclidean Steiner
tree problem is also NP-hard but it has a PTAS approximation algorithm [4].

In practice, the parameter δ usually specifies the range for which one center
can communicate with other centers. So, when S satisfies the PCC, any pair of
centers can communicate with each other via the other centers. The proximity
connected 2-center (PCTC) problem first emerged in the works of Huang [12] in
1992 while he was studying packet radio networks. In the network terminology,
the PCTC problem is the problem of locating two wireless devices as close as pos-
sible to the demand points P such that they can send/receive messages between
each other. He originally gave an O(n5) time algorithm for the 2-center prob-
lem having proximity constraints between their centers. Later in 2003, Huang et
al. [14] studied a very close problem to the PCTC problem called α-connected
2-center problem. In this problem, instead of δ, a parameter 0 ≤ α ≤ 1 is given
and the distance between the center of the disks should be at most 2(1 − α)r
where r is the radius of the disks. They gave an O(n2 log2 n) time algorithm for
the decision version (given an r whether it is possible to cover the points with two
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disks of radius r satisfying the desired conditions) of the problem. Note that this
problem is a special case of the PCTC decision problem where δ = 2(1 − α)r.
Later in 2006, they gave a randomized algorithm with the same O(n2 log2 n)
expected running time to solve the α-connected 2-center problem [13]. In this
paper, we consider the PCTC problem and propose a deterministic O(n2 log n)
time algorithm for it.

Here, we need to mention that although we use Sharir’s observation [20] of
breaking the problem into three different cases(far distant, distant and nearby),
the reason we can’t get a sub-quadratic algorithm like [5,7,20,22] is that the
PCTC problem is structurally different from the 2-center problem. In the 2-
center problem, the optimal cost is determined by at most three points of P [20]
while in the PCTC problem the cost may be determined by more than three
points because of the PCC. This means that our search space has a higher dimen-
sion than the search space of the 2-center problem. Also, all the sub-quadratic
algorithms for the 2-center problem use Megiddo’s [18] or Cole’s [8] parametric
search schema to reduce the time complexity which makes the resulting algo-
rithm impractical [2] while our algorithm exploits the geometric properties of
the problem which make it straightforward to be implemented using standard
data structures in computational geometry.

A solution for a given PCTC problem instance is defined as a pair of disks
whose centers satisfy the PCC and their union covers P . We call a disk with
the larger (or equal) radius the determining disk of the solution and its radius
the cost of the solution. An optimal solution is a solution with minimum cost
among the set of all solutions for the problem. Note that there might be an
infinite number of optimal solutions with different pairs of radii because we have
freedom on the smaller disk. So, we try to find an optimal solution such that
the radius of its smaller disk is minimum among all optimal solutions. We call
such a solution a best optimal solution (BOS) for the problem. Therefore, if the
problem has more than one BOS, they would have the same pair of radii. We
can also compare two solutions S1 and S2 as follows: we say that S1 is a better
solution than S2 if cost(S1) < cost(S2) and if cost(S1) = cost(S2), the radius of
the non-determining disk of S1 is smaller than the radius of the non-determining
disk of S2. In this paper, our algorithm not only gives us an optimal solution
but it computes a BOS for the problem.

2 Preliminaries and Definitions

Let (P, δ) be the given PCTC problem instance where P is a set of n demand points
in the plane and δ is a given non-negative number. We assume that the points are in
general position, by which we mean no four points of P lie on a circle. Let (P1, P2)
be a partition of P obtained by dividing the plane by a line or two half-lines from
a point (henceforth, when we use the term partition of the plane, we mean a par-
tition that satisfies this condition). We say that a pair of disks (D1,D2) with cen-
ters (c1, c2) respectively is a solution for the partition if D1 covers P1, D2 covers P2

and dist(c1, c2) ≤ δ. Optimal and best optimal solutions (BOSs) for the partition
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are defined similarly. Let (D∗
1 ,D

∗
2) be a BOS for the partition with centers (c∗

1, c
∗
2)

respectively. We say that a point p ∈ P1 is a dominating point of D∗
1 if (D∗

1 ,D
∗
2) is

not a BOS for the partition (P1\p, P2). The dominating points of D∗
2 are defined

similarly. Note that the dominating points of D∗
1 and D∗

2 are on their boundaries.
By assuming that the points are in general position, if D∗

1(resp. D∗
2) is the MED of

P1(resp. P2), its dominating points are either three points on the boundary such
that their induced triangle contains c∗

1(resp. c∗
2) or two points on the boundary

such that their connecting segment passes through c∗
1(resp. c∗

2). In order to sim-
plify the presentation of our algorithm, in the latter case, we consider one of the
dominating points as two infinitely close points and so, if D∗

1 or D∗
2 is the MED of

their corresponding points, we assume that it has exactly three dominating points.
Similarly, if D∗

1(resp. D∗
2) is not the MED of P1(resp. P2), in the case that it only

has one dominating point, we can consider it as two infinitely close points. But, if it
has three points on its boundary such that their induced triangle does not contain
c∗
1, we might have no dominating point for D∗

1 . We can assume that such a situa-
tion never happens by slightly perturbing the points. So, henceforth, if D∗

1(resp.
D∗

2) is not a MED, we assume that it has exactly two dominating points.
We call the problem of computing a BOS for a given partition (P1, P2) the

restricted PCTC problem. We can solve the restricted PCTC using the intersec-
tion hulls and the farthest-point Voronoi diagrams of P1 and P2 (the intersection
hull of a set of points with respect to some radius r is defined as the intersection of
all disks of radius r around the points of the set). Here, we briefly explain the main
ideas of our algorithm to solve the restricted PCTC problem. Details can be found
in the full version of the paper [19]. We first compute the MED of each part and if
the resulting centers satisfy the PCC we are done. Otherwise, we can see that the
distance between the centers should be exactly δ. Now, we first compute the opti-
mal cost of the problem and then use this value to build a BOS. In order to obtain
the optimal cost, we first build the farthest-point Voronoi diagrams of P1 and P2.
Next, we design a feasibility test (a procedure that for a given value, determines
whether it is smaller, equal or greater than the optimal cost for the partition) and
apply it to perform a binary search on the weights of the vertices of the diagrams
(the weight of a vertex is its distance to its farthest Voronoi site). Let I be the final
interval which contains no vertex weight. The structure of the intersection hulls of
P1 and P2 at radius r does not change when r varies in I. This property enables
us to compute the radius for which the distance between the two intersection hulls
becomes δ. We see that this radius is indeed the optimal cost. The time complexity
of the algorithm is dominated by the cost of computing the farthest-point Voronoi
diagrams which is O(n log n) [21].

We denote the optimal cost for the PCTC problem by r∗ and a BOS for the
problem by (D∗

1 ,D
∗
2) with centers (c∗

1, c
∗
2) respectively. We can assume that c∗

1

and c∗
2 lie on the x-axis and c∗

1 is on the left side of c∗
2. In [20], Sharir broke the 2-

center decision problem (given a parameter r determine whether it is possible to
cover the points with two disks of radius r) into three cases -far distant, distant
and nearby- with respect to the given parameter r. He showed that providing
separate algorithms for these cases will reduce the overall time complexity to
solve the decision problem. Although our problem is an optimization problem
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and the parameter r∗ is unknown, we will show that breaking the PCTC problem
into the same cases will simplify our algorithm and reduce the overall time
complexity. So, our algorithm separately considers each of the following three
assumptions about (D∗

1 ,D
∗
2).

1. Nearby: dist(c∗
1, c

∗
2) ≤ r∗.

2. Distant: r∗ < dist(c∗
1, c

∗
2) ≤ 3r∗.

3. Far distant: dist(c∗
1, c

∗
2) > 3r∗.

Denote the smallest cost we can get having the nearby, distant and far distant
assumptions by rNA, rDA and rFA respectively. We also use the same nota-
tion for a BOS and their corresponding centers having each assumption. So, we
can obtain (D∗

1 ,D
∗
2) by comparing (DNA

1 ,DNA
2 ), (DDA

1 ,DDA
2 ) and (DFA

1 ,DFA
2 )

(note that these solutions may not exist or satisfy their corresponding case con-
ditions. For example, dist(cNA

1 , cNA
2 ) might be greater than rNA but if (D∗

1 ,D
∗
2)

satisfies the nearby case, then rNA = r∗ and (DNA
1 ,DNA

2 ) would be a BOS
for the problem and we have dist(cNA

1 , cNA
2 ) ≤ rNA = r∗). Henceforth, while

studing each of the cases, when we say a BOS, we mean a best solution we can
get having the corresponding case assumption. Given two points x and y in the
plane, we denote the line passing from x and y by line(x, y). The direction of
this line is considered from x to y. Also, we denote the half-line from x passing
y by half -line(x, y) and the line segment with end points x and y by seg(x, y).

3 Computing a BOS in the Nearby Case

First, we can see that if (D∗
1 ,D

∗
2) ≤ r∗, then there is an optimal partition R∗

(may not be unique) such that (D∗
1 ,D

∗
2) is a BOS of R∗. In fact, such a partition

can be obtained by considering a point in D∗
1 ∩ D∗

2 and two half-lines from it
passing the intersection points of ∂D∗

1 (boundary of D∗
1) and ∂D∗

2 . In this section,
when we say the dominating points of (D∗

1 ,D
∗
2), we mean its dominating points

with respect to R∗. Without loss of generality, we can assume that D∗
2 is the

determining disk. We first compute the convex-hull(P ) and scale the problem
such that it fits in a unit square (multiple both x and y coordinates of the points
by the greatest constant such that the convex hull remains inside the square).
This step can be done in O(n log n) time. Note that the scaling will not change
the solutions.

Proposition 1. If (D∗
1 ,D

∗
2) ≤ r∗, then the area of D∗

1 ∩ D∗
2 must be greater

than a constant factor of the area of D∗
2 (the determining disk).

Proof. We proceed by contradiction. Suppose that such a factor does not exist.
This means that we can build a problem instance such that it has a BOS (D∗

1 ,D
∗
2)

in which the radius of the non-determinig disk (D∗
1) becomes infinitely small

(because of the nearby assumption and scaling). So, D∗
1 should have at least one

dominating point that is not covered by D∗
2 . Because the radius of D∗

1 is infinitely
small, δ should tend to radius(D∗

2) (which tends to the radius of the MED of
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Fig. 1. Enlarging the non-determining disk D∗
1 to cover one of the dominating points

of D∗
2 and get a better solution.

P ). Now, D∗
2 should have at least one dominating point (point c in Fig. 1) with

the x-coordinate less than or equal to c∗
2 (otherwise, we can move both c∗

1 and
c∗
2 to the right and reduce the radius of D∗

2 which determines the cost). In this
configuration, we can enlarge D∗

1 by moving c∗
1 toward this dominating point of

D∗
2 while satisfying the PCC in order to cover it and release it from D∗

2 (D∗
1 does

not lose any of its own points and its radius still remains less than the radius of
D∗

2). Now, we can reduce the radius of D∗
2 which contradicts the optimallity of

(D∗
1 ,D

∗
2) (see Fig. 1). �

Proposition 2. D∗
1 (similarly D∗

2) should have a pair of dominating points such
that:

1. They lie on different sides of line(c∗
1, c

∗
2).

2. Their connecting segment does not intersect seg(c∗
1, c

∗
2).

The proof is straightforward using elementary geometry (see the paper’s full
version for details). Considering the four dominating points in the above propo-
sition, we can say that D∗

1 ∩ D∗
2 should cover at least a constant factor of

the area of convex-hull(P ). Furthermore, D∗
1 ∩ D∗

2 ∩ convex-hull(P ) is convex
because it is the intersection of convex objects. So, we can build a constant size
set of points M uniformly distributed on convex-hull(P ) such that (assuming
dist(c∗

1, c
∗
2) ≤ r∗) for at least one point m̂ ∈ M, m̂ ∈ D∗

1 ∩ D∗
2 ∩ convex-hull(P ).

Because m̂ is unknown, for each m ∈ M, we build a BOS (Dm
1 ,Dm

2 ) assum-
ing m ∈ D∗

1 ∩ D∗
2 and finally pick a best solution in {(Dm

1 ,Dm
2 ) : m ∈ M}

and set it as (DNA
1 ,DNA

2 ). Based on this idea, we present our algorithm to find
(Dm

1 ,Dm
2 ) for a given point m ∈ convex-hull(P ).

Let X be a set of 360 directed lines (each line has a positive direction) passing
through m such that the angle between each directed line and its neighbour
lines is 1◦. Now, there should be a directed line in X such that its angel with
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line(c∗
1, c

∗
2) is at most 1◦ and c∗

1 lies on the negative side of c∗
2 on the line (note

that D∗
2 is the determining disk according to our assumption). We call this

directed line the correct directed line which is unknown. So, we assume each line
l ∈ X as the correct directed line and compute a BOS (Dm,l

1 ,Dm,l
2 ) having this

assumption and finally pick the best one as (Dm
1 ,Dm

2 ).
So, assume that a directed line l ∈ X called the m-line is given. Here we

explain how to compute (Dm,l
1 ,Dm,l

2 ). The m-line divides the points of P into
two disjoint sets one on the right side and the other on the left side of the m-line.
We sort these sets according to the polar angles of their points (from m) with
respect to the positive direction of the m-line. These angles should lie between
−180◦ and 180◦ and we sort them by increasing magnitude (see Fig. 2 for an
illustration). Based on these orders, we denote the two sequences of points on
the left and right side of the m-line by (p1, . . . , pn′) and (q1, . . . , qn′′) respectively.
We call a point p-type (resp. q-type) if it is in the first(resp. second) sequence.
We also call a half-line from m that separates {p1, . . . , pi} from {pi+1, . . . , pn′}
an ith-separator of the p-type points. A jth-separator of q-type points is defined
similarly (we assume that the 0th and n′th(resp. n′′th) separators have the entire
p-type(resp. q-type) points in one side). The ith and jth separators of the p-
type and q-type points partition the plane into two parts. We call this partition
the (i, j)-partition of the plane. One part of this partition contains the positive
direction of the m-line which we call it the positive side of the partition and we
call the other part the negative side of the partition.

Observation 1. If dist(c∗
1, c

∗
2) ≤ r∗, m = m̂ and the m-line is correct, then an

(i, j)-partition can be considered as R∗ and (D∗
1 ,D

∗
2) is its BOS.

Note that in the above observation, the two separators from m passing the
intersection points of D∗

1 and D∗
2 give us the desired (i, j)-partition. We denote

the set of points in the positive and negative sides of the partition by P i,j
+

and P i,j
− respectively. Based on our algorithm for restricted PCTC problem, a

BOS for an (i, j)-partition can be computed in O(n log n) time. Let (Di,j
− ,Di,j

+ )
(with centers (ci,j

− , ci,j
+ ) respectively) be the output of this algorithm for the

(i, j)-partition (see Fig. 2 for an example). We refer to the first(resp. second)
disk the negative disk(resp. positive disk) of the partition. A naive approach to
obtain (D∗

1 ,D
∗
2) is to apply our restricted PCTC problem algorithm to each of

the (i, j)-partitions and pick the best one. This will give us an O(n3 log n) time
complexity as there are quadratic partitions. In the following we show how we
can get (Dm,l

1 ,Dm,l
2 ) by evaluating a sub-quadratic number of partitions. The

idea is first computing rm,l which is the best cost we can get assuming m and l
are correct. Then, we use it to compute (Dm,l

1 ,Dm,l
2 ).

3.1 Computing rm,l

Let’s define M+ as a (n′ + 1) × (n′′ + 1) matrix whose [i, j]-element (0 ≤ i ≤ n′

and 0 ≤ j ≤ n′′) is radius(Di,j
+ ). We call M+[i, j] non-critical if Di,j

+ is the
MED of P i,j

+ . Otherwise, we call it critical. We call M+[i, j] a valid element if
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Fig. 2. An (i, j)-partition of a set of points and its corresponding BOS.

M+[i, j] ≥ radius(Di,j
− ) and we call it non-valid otherwise. Because we assumed

that l is correct, we can assume that positive disks determine rm,l. This means
that rm,l is indeed the minimum valid element of M+.

Proposition 3. For any 0 ≤ i ≤ n′ and 0 ≤ j ≤ n′′, we have:

1. If M+[i, j] is non-critical, then M+[i′, j′] ≥ M+[i, j] for all i′ ≥ i and j′ ≥ j.
2. If M+[i, j] > radius(Di,j

− ), M+[i, j] is non-critical.
3. If M+[i, j] is valid and critical, then M+[i, j] = radius(Di,j

− ) and
dist(ci,j

− , ci,j
+ ) = δ.

Briefly, case 1 is clear and if each of the cases 2 or 3 is not true, by moving
the centers we can get a better solution. We search M+ to find rm,l as follows:
we maintain a set of candidate values. During the search, when we evaluate an
element M+[i, j] (computing (Di,j

− ,Di,j
+ ) and its dominating points), if M+[i, j]

is valid, we add it to the candidate values and finally we set rm,l as the minimum
candidate value.

In order to search M+, we maintain two variables I and J where I stores the
index of the current row that we are searching and J stores the column index
for which we can discard any column with index greater than that. Initially, we
set I = 0, J = n′′ (n′′ is the number of columns of M+). We search the Ith-row
by evaluating its elements backward starting from its J th-element (if J = −1,
the matrix search is done) toward its first element. Because we are looking for
a minimum valid element of the matrix, we can use Proposition 3 to improve
our search as follows: during the traversal of the row, if M+[I, j] is valid and
non-critical, we set J = j − 1 (because DI,j

+ is the MED of P I,j
+ , when we add

more points to the positive side we can’t get a smaller positive disk). We finish
traversing the row and increase I by one if either the row is exhausted or we
reach an index j such that M+[I, j] becomes non-valid. Note that in this case,
DI,j

− is the MED of P I,j
− (similar to Proposition 3 part 3). Here we might have

a valid element on some index j′ < j but, the cost of this solution can not be
less than radius(DI,j

− ) (we add points to the negative side as we move left wise
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on a row). In order to make sure that we will count such costs in our algorithm,
we can add radius(DI,j

− ) to the candidate set of the directed line in X with the
opposite direction of the current m-line.

We continue this procedure until no element is left. Note that when none of
Di,j

− and Di,j
+ are a MED, we can’t discard any element from the matrix because

it is possible that when we move a point from one side to the other, the radii of
both disks become greater or smaller while they remain equal (this situation can
happen because of the PCC). So the number of evaluations in the above schema
might be still quadratic. Next, we explain how to fix this problem.

Proposition 4. If M+[i, j] is valid-critical and qj is not a dominating point of
Di,j

+ , then M+[i, j − 1] ≥ M+[i, j].

Proof. Because Di,j
+ is not a MED, its center can’t get closer to its farthest

points in P i,j
+ (dominating points of Di,j

+ ) namely d1 and d2 because of the PCC.
Now, by adding qj to P i,j

− , Di,j−1
− needs to cover more points. If its radius gets

bigger, the proposition follows. Otherwise, according to the fact that qj is not
a dominating point of Di,j

+ , it is not possible to put ci,j−1
− on a place such that

allow ci,j−1
+ to get closer to d1 and d2 due to best optimality of (Di,j

− ,Di,j
+ ). �

Note that in this proposition, if qj does not become a dominating point of Di,j−1
− ,

then M+[i, j−1] = M+[i, j]. A similar statement is also correct for two consecu-
tive valid-critical elements in a column. Based on the above proposition, we can
improve our matrix search as follows: while traversing a row (left wise), when we
hit a valid-critical element M+[i, j], if both dominating points of Di,j

+ are p-type,
we discard the rest of the row (because by traversing a row, only q-type points
will move to the other part of the partition) and continue the search on the next
row. Similarly, if both dominating points of Di,j

− are q-type, we can discard the
rest of its column. Otherwise, we jump to the first (largest index) element of
the row for which a q-type dominating point of Di,j

+ moves to the negative side
and discard all the elements in between (because of Proposition 4). Similarly, we
discard the portion of the rest of the column of M+[i, j] with row index smaller
than the index of the p-type dominating point(s) of Di,j

− (applying the column
version of Proposition 4).

When we evaluate a valid-critical element M+[i, j], if we didn’t discard the
entire rest of its row or column, we mark the portion of its column that is not
discarded after the evaluation of M+[i, j]. Now, when we traverse the rows, we
ignore and jump discarded and marked elements. Specially, if after evaluating
an element M+[i, j], the largest index of the q-type dominating point of Di,j

+ is
j′ and M+[i, j′] is marked, we continue searching from the first(biggest index)
unmarked or undiscarded element of the ith-row after M+[i, j′]. Applying this
marking schema in the matrix search will guarantee that the number of evalua-
tions is linear. The problem of our matrix search with marking schema is that
we may mark the minimum valid element of M+ and so get an incorrect rm,l.
In the rest, we will show how to overcome this problem.
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We call the above matrix search initial search of M+ from top-right. Another
way of searching M+ is starting the search from M+[n′, 0] (the first element of
the last row). But this time, instead of traversing the rows from right to left,
we traverse the columns from bottom to top. The way we search the matrix is
exactly symmetrical to the top-right search but here we mark sub-rows instead of
sub-columns. We call this matrix search the initial search of M+ from bottom-
left. After performing two initial searches on M+ one from the top-right and
one from the bottom-left, still there might be some elements that are marked
in both initial searches. We call these elements as doubly-marked elements. The
next theorem enables us to search the doubly-marked elements in an efficient
way which leads us to find rm,l. Lets denote the doubly-marked elements of M+

by Doubly-Marked(M+).

Theorem 1. By evaluating a doubly-marked element M+[i, j], we can discard
one of the following sub-rows or sub-columns of M+:

1. Elements above [i, j] (M+[i′, j] with i′ ≤ i).
2. Elements below [i, j] (M+[i′, j] with i′ ≥ i).
3. Elements in front of [i, j] (M+[i, j′] where j′ ≥ j).

Suppose that M+ [̂i, j̄] is a given doubly-marked element which is marked when
we evaluate M+ [̄i, j̄] and M+ [̂i, ĵ] in the initial top-right and bottom-left search
respectively. When we evaluate M+ [̂i, j̄], we get Dî,j̄

+ and Dî,j̄
− and their domi-

nating points. For the sake of simplicity, let’s denote the first disk by D′
+ and

the second disk by D′
−. If D′

− is MED, then either radius(D′
−) ≥ radius(D′

+)
or radius(D′

−) < radius(D′
+). In the former, case 1 in Theorem 1 happens and

in the latter, D′
+ should be MED (otherwise we can reduce its cost and the

solution can’t be optimal) and so cases 2 and 3 of the theorem happen. We have
a similar argument when D′

+ is a MED. So, the only left case is when none
of the disks is a MED. Note that in this case each of D′

+ and D′
− has exactly

two dominating points. Let h1, h2 be the dominating points of D′
+ and h′

1, h
′
2

be the dominating points of D′
−. If both h′

1 and h′
2 are p-type, case 3 happens

(when we traverse the îth-row from left to right, we only add q-type points to
the positive side). Also, if they are both q-type, case 2 happens. The bottleneck
of proving Theorem 1 is when h′

1 and h′
2 have different types. In order to prove

Theorem 1 in this special case, we use two key properties. First M+ [̂i, j̄] should
be doubly-marked and second, m should be inside the convex hull of the points.
We leave this proof for the full version of the paper [19] and in the rest, we focus
on how to use Theorem 1 to search Doubly-Marked(M+) efficiently.

3.2 Searching the Doubly-Marked Elements

For simplicity, we assume that n′ = 2g − 1 for some integer value g > 1 (so
the number of rows is a power of 2). We define the kth-division of M+ as the
sub-matrix consisting of the rows from n′/2k to n′/2k−1 − 1 (we search the first
row independently by evaluating all of its doubly-marked elements). We search
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Algorithm 1. SEARCH-DM(M)
1: Let M be a n × m matrix.
2: Split M into log n divisions {DIV1, . . . , DIVlogn}.
3: for k = 1, . . . , log n do // We search the divisions in order.
4: Set I = J = 1.
5: repeat
6: Evaluate DIVk[I, J ] and discard the portion of M according to Theorem 1.
7: if (case 1 or 2 happens) and J < m then J = J + 1.
8: else
9: I = I + 1.

10: end if
11: until I > n/2k // number of rows in DIVk.
12: SEARCH-DM(DIVk) if DIVk has an unevaluated/undiscarded element.
13: end for
14: Evaluate all non-discarded elements of the first row of M . // Until the case 3

happens.

the divisions of M+ in order from its first division. Let’s denote the kth-division
sub-matrix by DIVk. Here, we explain how to search DIVk. Let I and J be
the row and column indices (with respect to DIVk) of the element that we are
processing at each time. Initially, we have I = J = 1 (the first row and column of
DIVk). We evaluate the non-discarded elements of the Ith-row from left to right
starting from the column index J . If the result of an evaluation is case 1 or 2 in
Theorem 1, we discard the corresponding portion of M+ (in all divisions) and
increase J by one. But if case 3 happens, we go to the next row and increase I
(we always move rightwise). After we proceed with all divisions, some elements
might left unevaluated and undiscarded in each division due to the occurrence
of case 1. We recursively perform the entire above process on these unevaluated
elements in each division until all elements are either discarded or evaluated. So,
if only doubly-marked elements remained in M+ (we have discarded all other
elements in the two initial searches), then the procedure SEARCH-DM(M+) in
Algorithm 1 will give us a minimum valid element of M+.

Theorem 2. SEARCH-DM(M+) evaluates O(n log n) elements of M+.

Proof. First, if only cases 2 and 3 happen in the algorithm, then we don’t need
the recursion part and so the total number of evaluations becomes O(n log n) (in
each iteration of searching DIVk either I or J would be increased). Now, suppose
that any of the cases 1, 2, or 3 can happen. Note that the number of case 3s in
all divisions of a same recursion level (the original log n divisions has recursion
level zero and the level of the divisions in the recursion part of the algorithm
is defined based on their depth in the recursion tree) is at most n because
two divisions of a same level have disjoint rows. So, because we have O(log n)
levels, the total number of case 3 evaluations is O(n log n). Now, if after the
evaluation of some DIVk[i, j], case 1 happens, we can’t discard any new element
from DIVk but all the elements above DIVk[i, j] in M should be discarded. This
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means that while searching each of the divisions DIVk+1, . . . , DIVlog n and the
first row, we don’t need to evaluate the jth-column. On the other hand, DIVk

has log(n/2k) = log n − k divisions and a row. Each of these divisions can have
at most one cases 1 or 2 in the jth-column. So, we can have a correspondence
between the extra cases 1 and 2 evaluations in searching the divisions and the
first row of DIVk (not its recursion part) and the matrix elements that we
didn’t evaluate in DIVk+1, . . . , DIVlog n. So, the total number of evaluations
would remain O(n log n). �

Note that in a constant time, we can check whether an element is discarded
or not. Because in each recursion level, the divisions are disjoint, at each level
we check each element of M at most once and because we have O(log n) levels,
the total cost of matrix element checking would be O(n2 log n). On the other
hand, our algorithm to solve the restricted PCTC problem costs O(n log n), if
we directly use it to evaluate matrix elements, the total time complexity of
SEARCH-DM(M+) becomes O(n2 log2 n). As we mentioned in Sect. 2, the bot-
tleneck of solving the restricted PCTC problem is computing the farthest-point
Voronoi diagram of each part of the partition which costs O(n log n). So, if we
can reduce this cost by performing a preprocessing step, we can reduce the over-
all time complexity of SEARCH-DM(M+). In order to speed up matrix element
evaluation, we use the following lemma from [16]:

Lemma 1 [16]. If X and Y are arbitrary sets of points in the plane, then
F(X ∪Y ) can be constructed from F(X) and F(Y ) in O(|X|+ |Y |) time (F(X)
represents the farthest-point Voronoi diagram of X).

The Preprocessing Step: Let (X+
i ,X−

i ) (resp. (Y +
j , Y −

j )) be the partition
of the p-type (resp. q-type) points induced by the ith-separator (resp. jth-
separator). In the preprocessing phase, we compute the farthest-point Voronoi
diagram of all X+

i , X−
i , Y +

j and Y −
j for 0 ≤ i ≤ n′ and 0 ≤ j ≤ n′′. This step

can be done in O(n2) using Lemma 1 because as i or j increases or decreases by
one, a point from one side would be added to the other side.

Now, we can reduce the cost of matrix element evaluation as follows: In
order to evaluate M+[i, j], we construct F(P i,j

+ )(resp. F(P i,j
− )) in O(n) time

by applying Lemma 1 to F(X+
i ) and F(Y +

j ) (resp. F(X−
i ) and F(Y −

j )). So,
the total complexity of matrix evaluation would be O(n). This reduces the time
complexity of SEARCH-DM(M+) and so the cost of finding rm,l to O(n2 log n).

3.3 Obtaining (Dm,l
− , Dm,l

+ ) Having rm,l

Note that we already have an initial solution that is optimal and its cost is
rm,l (from our search for rm,l). But, there might be another optimal solution
with the same cost and a smaller non-determining disk that we discarded during
the search. If this initial solution is not best optimal, then the non-determining
disk of a BOS must be strictly smaller than its determining disk. So, we can
assume that the positive disk of the BOS should be the MED of the points in
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the positive side. Consider a matrix M̄ for which its (i, j)th-element is the radius
of the MED of the points on the positive side of the (i, j)-partition. We search
M̄ from the last element of its first row and traverse the rows backwards (similar
to the initial top-right search). After evaluating an element (i, j) of the matrix
(which can be done in linear time according to [17]), if it is bigger than rm,l,
we discard all elements (i, j′) of the matrix with j′ ≥ j because they are all
greater than rm,l and if it is less than rm,l, we discard the elements with i′ ≤ i
because they are all less than rm,l. But, when it is exactly rm,l, we compute
its non-determining disk using the restricted PCTC problem algorithm (costs
O(n log n)) and store its radius. Here, we can also discard all elements (i′, j) of
the matrix with i′ ≤ i. This is because as we advance more left into the row,
we would have more points on the negative side and so if there is any optimal
solution on the left of (i, j) in the row, its non-determining disk should cover
more points and thus can’t give us a better solution. So, by each evaluation, we
discard a row or a column of the matrix which means that the total number of
evaluations is linear. Therefore, the total complexity of finding a BOS given rm,l

would be O(n2 log n). Combining it with the complexity of computing rm,l gives
us the total time complexity O(n2 log n) to obtain (DNA

1 ,DNA
2 ).

4 Computing a BOS in the Far Distant and Distant Cases

For the far distant case, we assume that dist(c∗
1, c

∗
2) > 3r∗. In this situation,

the approach of Sharir’s far distant case [20] for the decision 2-center problem
still works as follows: set an arbitrary point in the plane as the origin and build
360 directed lines X passing from the origin such that the degree between each
line and its neighbours is 1◦. Then for one unknown correct line �xc ∈ X , the
angle between line(c∗

1, c
∗
2) and �xc is at most 1◦. Suppose that we set �xc is the

x-axis and sort the x-coordinates of the points in P as a sequence (x1, . . . , xn).
Now, if we consider the set of lines L�xc

F = {xi⊥xi+1 : 1 ≤ i < n} (xi⊥xi+1 is
the vertical line on �xc at the mid-point of [xi, xi+1]), at least one l ∈ L�xc

F will
separate D∗

1 from D∗
2 . Because �xc is unknown, we build L�x

F for all �x ∈ X and
set LF =

⋃
�x∈X L�x

F . Note that the number of lines in LF is linear. Here, each
line l ∈ LF induces a partition on P . We apply our algorithm for the restricted
PCTC problem to each of such partitions and set the best one as (DFA

1 ,DFA
2 ).

So, the time complexity of the far distant case would be O(n2 log n).
For the distant case, here we provide the main ideas of our O(n2 log n) time

algorithm, leaving the complete presentation and analysis for the full version of
the paper [19]. We first compute rDA and then use it to compute (DDA

1 ,DDA
2 ).

To do this, we first impose that the optimal disks should be congruent and build
a constant size set of vertical lines LD such that for at least one l ∈ LD, all
points of P on the left side of l namely P−

l should be covered by D∗
1 . We see

that c∗
1 should be on the boundary of an intersection hull of P−

l . Let’s denote
the intersection hull of P−

l at radius r by H−(r). Now, the optimal cost rDA

is the smallest radius r for which there is a point x ∈ ∂H−(r) such that the
distance between x and H+

x (r) is at most δ where H+
x (r) is the intersection hull
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of the points in P not covered by disk(x, r) at radius r (disk(x, r) is the disk
with center x and radius r). The idea to find rDA is first designing a feasibility
test for it and use it to do a binary search on the weights of the farthest-point
Voronoi diagram of P−

l to get some interval I containing rDA. So, the structure
of H−(r) (its consisting arcs) does not change when r varies in I. Next, we define
partitioning ∂H−(r) into a set of sub-regions such that for each sub-region R,
all disks {disk(x, r) : x ∈ R} cover a same set of points. Note that the endpoints
of these sub-regions change when we change r. We compute a sequence of radii
(r1, . . . , rt) ⊂ I such that at each ri (1 ≤ i ≤ t), a sub-region emerges or vanishes
on the boundary of the intersection hull of P−

l . Finally, we do another round
of binary search on this sequence to find another interval I ′ ⊆ I such that
when r varies in I ′, no such sub-regions appear or disappear on ∂H−(r). Now
for each sub-region, it is straightforward to compute the smallest radius such
that its distance from intersection hull of the points not covered by it at most
δ. Comparing all such radii and pick the smallest one will give us rDA which
enables us to compute (DDA

1 ,DDA
2 ).
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Abstract. The NP-complete graph problem Cluster Editing seeks
to transform a static graph into disjoint union of cliques by making the
fewest possible edits to the edge set. We introduce a natural interpreta-
tion of this problem in the setting of temporal graphs, whose edge-sets
are subject to discrete changes over time, which we call Editing to
Temporal Cliques. This problem is NP-complete even when restricted
to temporal graphs whose underlying graph is a path, but we obtain two
polynomial-time algorithms for special cases with further restrictions.
In the static setting, it is well-known that a graph is a disjoint union
of cliques if and only if it contains no induced copy of P3; we demon-
strate that there can be no universal characterisation of cluster temporal
graphs in terms of subsets of at most four vertices. However, subject to a
minor additional restriction, we obtain a characterisation involving for-
bidden configurations on five vertices. This characterisation gives rise to
an FPT algorithm parameterised simultaneously by the permitted num-
ber of modifications and the lifetime of the temporal graph, which uses
a simple search-tree strategy.

Keywords: Temporal graphs · Cluster editing · Graph clustering ·
Parameterised complexity

1 Introduction

The Cluster Editing problem encapsulates one of the simplest and best-
studied notions of graph clustering: given a graph G, the goal is to decide whether
it is possible to transform G into a disjoint union of cliques – a cluster graph – by
adding or deleting a total of at most k edges. While this problem is known to be
NP-complete in general [2,11,15,20], it has been investigated extensively through
the framework of parameterised complexity, and admits efficient parameterised
algorithms with respect to several natural parameters [1,3,6–8,12,16] (for more
details see Sect. 1.1).
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Motivated by the fact that many real-world networks of interest are subject
to discrete changes over time, there has been much research in recent years into
the complexity of graph problems on temporal graphs, which provide a natural
model for networks exhibiting these kinds of changes in their edge-sets. A first
attempt to generalise Cluster Editing to the temporal setting was made by
Chen, Molter, Sorge and Suchý [9], who recently introduced the problem Tem-
poral Cluster Editing: here the goal is to ensure that graph appearing at
each timestep is a cluster graph, subject to restrictions on both the number of
modifications that can be made at each timestep and the differences between
the cluster graphs created at consecutive timesteps. A dynamic version of the
problem, Dynamic Cluster Editing, has also recently been studied by Luo,
Molter, Nichterlein and Niedermeier [17]: here we are given a solution to a partic-
ular instance, together with a second instance (that which will be encountered at
the next timestep) and are asked to find a solution for the second instance that
does not differ too much from the first. One drawback of previous approaches
is that they require each snapshot to be a cluster graph. In the static case, the
notion of cluster graph is far too rigid for any meaningful application to commu-
nity detection [22], as it is unreasonable that all pairs in a community are linked
by an edge. For temporal graphs this assumption is even more restrictive.

We take a different approach, using a notion of temporal clique that already
exists in the literature [13,21]. Under this notion, a temporal clique is specified
by a vertex-set and a time-interval, and we require that each pair of vertices is
connected by an edge frequently, but not necessarily continuously, during the
time-interval. An example could be emails within a company, where vertices
are employees and there is an edge at time t between two employees if they are
senders/recipients of an email at time t. Pairs of employees may correspond more
or less frequently, however each pair is included in regular company-wide circular
emails. We say that a temporal graph is a cluster temporal graph if it is a union of
temporal cliques that are pairwise independent : here we say that two temporal
cliques are independent if either their vertex sets are disjoint, or their time
intervals are sufficiently far apart (similar to the notion of independence used to
define temporal matchings [19]). Equipped with these definitions, we introduce
a new temporal interpretation of cluster editing, which we call Editing to
Temporal Cliques (ETC): the goal is to add/delete a collection of at most k
edge appearances so that the resulting graph is a cluster temporal graph.

We prove that ETC is NP-hard, even when the underlying graph is a path;
this reduction, however, relies on edges appearing at many distinct timesteps,
and we show that, when restricted to paths, ETC is solvable in polynomial
time when the maximum number of timesteps at which any one edge appears
in the graph is bounded. It follows immediately from our hardness reduction
that the variant of the problem in which we are only allowed to delete, but
not add, edge appearances, is also NP-hard in the same setting. On the other
hand, the corresponding variant in which we can only add edges, which we
call Completion to Temporal Cliques (CTC), admits a polynomial-time
algorithm on arbitrary inputs.
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In the static setting, a key observation – which gives rise to a simple
FPT search-tree algorithm for Cluster Editing parameterised by the num-
ber of modifications – is the fact that a graph is a cluster graph if and only if
it contains no induced copy of the three-vertex path P3 (sometimes referred to
as a conflict triple [5]). We demonstrate that cluster temporal graphs cannot be
fully characterised by any local condition that involves only sets of at most four
vertices; however, in the most significant technical contribution of this paper, we
prove that (subject to a minor additional restriction on the relationship between
the spacing parameters that define temporal cliques and independence) a tem-
poral graph is a cluster temporal graph if and only if every subset of at most
five vertices induces a cluster temporal graph. Using this characterisation, we
obtain an FPT algorithm for ETC parameterised simultaneously by the number
of modifications and the lifetime (# of timesteps) of the input temporal graph.

1.1 Related Work

Cluster Editing is known to be NP-complete [2,11,15,20], even for graphs
with maximum degree six and when at most four edge modifications incident
to each vertex are allowed [14]. On the positive side, the problem can be solved
in polynomial time if the input graph has maximum degree two [6] (recently
improved to degree three [3]) or is a unit interval graph [18]. Further complexity
results and heuristic approaches are discussed in a survey article [5].

Variations of the problem in which only deletions or additions of edges respec-
tively are allowed have also been studied. The version in which edges can only
be added is trivially solvable in polynomial time, since an edge must be added
between vertices u and v if and only if u and v belong to the same connected
component of the input graph but are not already adjacent. The deletion ver-
sion, on the other hand, remains NP-complete even on 4-regular graphs, but is
solvable in polynomial time on graphs with maximum degree three [14].

Cluster Editing has received substantial attention from the parameterised
complexity community, with many results focusing on the natural parameterisa-
tion by the number k of permitted modifications. Fixed-parameter tractability
with respect to this parameter can easily be deduced from the fact that a graph
is a cluster graph if and only if it contains no induced copy of the three-vertex
path P3, via a search tree argument; this approach has been refined repeatedly in
non-trivial ways, culminating in an algorithm running in time O(1.76k +m+n)
for graphs with n vertices and m edges [6]. More recent work has considered
as a parameter the number of modifications permitted above the lower bound
implied by the number of modification-disjoint copies of P3 (copies of P3 such
that no two share either an edge or a non-edge) [16]. Other parameters that have
been considered include the number of clusters [12] and a lower bound on the
permitted size of each cluster [1].
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1.2 Organisation of the Paper

We begin in Sect. 2 by introducing some notation and definitions, and formally
defining the ETC problem. In Sect. 3 we collect several results and fundamental
lemmas which are either used in several other sections or may be of independent
interest. In Sect. 4 we restrict to temporal graphs which have a path as the
underlying graph: in Sect. 4.1 we show that ETC is NP-hard even in this setting,
however in Sect. 4.2 we then show that if we further restrict temporal graphs
on paths to only have a bounded number of appearances of each edge then
ETC is solvable in polynomial time. In Sect. 5 we consider a variant of the
ETC problem where edges can only be added, and show that this can be solved
in polynomial time on any temporal graph. Finally in Sect. 6 we present our
main result which gives a characterisation of cluster temporal graphs by induced
temporal subgraphs on five vertices. We prove this result in Sect. 6.1 before
applying it in Sect. 6.2 to show that (subject to minor additional restrictions)
ETC is in FPT when parameterised by the lifetime of the temporal graph and
number of permitted modifications. Due to space constraints, many proofs are
omitted but can be found in the full version of the paper [4].

2 Preliminaries

In this section we first give basic definitions and introduce some new notions
that are key to the paper, before formally specifying the ETC problem.

2.1 Notation and Definitions

Elementary Definitions. Let N denote the natural numbers (with zero) and
Z
+ denote the positive integers. We refer to a set of consecutive natural num-

bers [i, j] = {i, i + 1, . . . , j} for some i, j ∈ N with i ≤ j as an interval, and
to the number j − i + 1 as the length of the interval. Given an undirected
(static) graph G = (V,E) we denote its vertex-set by V = V (G) and edge-set
by E = E(G) ⊆

(
V
2

)
. We work in the word RAM model of computation, so that

arithmetic operations on integers represented using a number of bits logarithmic
in the total input size can be carried out in time O(1). We use standard notions
from parameterised complexity, following the notation of [10].

Temporal Graphs. A temporal graph G = (G, T ) is a pair consisting of a static
(undirected) underlying graph G = (V,E) and a labeling function T : E →
2Z

+\{∅}. For a static edge e ∈ E, we think of T (e) as the set of time appearances
of e in G and let E(G) := {(e, t) | e ∈ E and t ∈ T (e)} denote the set of edge
appearances, or time-edges, in a temporal graph G. We consider temporal graphs
G with finite lifetime given by T (G) := max{t ∈ T (e) | e ∈ E}, that is, there
is a maximum label assigned by T to an edge of G. We assume w.l.o.g. that
min{t ∈ T (e) | e ∈ E} = 1. We denote the lifetime of G by T when G is clear
from the context. The snapshot of G at time t is the static graph on V with
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edge set {e ∈ E | t ∈ T (e)}. Given temporal graphs G1 and G2, let G1 � G2 be
the set of time-edges appearing in exactly one of G1 or G2. For the purposes
of computation, we assume that G is given as a list of (static) edges together
with the list of times T (e) at which each static edge appears, so the size of G is
O(max{|E|, |V |}) = O(|V |2T ).

Templates and Cliques. For an edge e ∈ E(G) in the underlying graph of a
temporal graph G = (G, T ), an interval [a, b], and Δ1 ∈ Z

+, we say that e is
Δ1-dense in [a, b] if for all τ ∈ [a,max{a, b − Δ1 + 1}] there exists a t ∈ T (e)
with t ∈ [τ, τ + Δ1 − 1]. This formalises the idea of two vertices being connected
‘frequently, but not continuously’ from the introduction. We define a template
to be a pair C = (X, [a, b]) where X is a set of vertices and [a, b] is an interval.
For a set S of time-edges we let V (S) denote the set of all endpoints of time-
edges in S, and the lifetime L(S) = [s, t], where s = min{s : (e, s) ∈ S} and
t = max{t : (e, t) ∈ S}. We say that S generates the template (V (S), L(S)). A
set S ⊂ E(G) forms a Δ1-temporal clique if for every pair x, y ∈ V (S) of vertices
in the template (V (S), L(S)) generated by S, the edge xy is Δ1-dense in L(S).
We can assume that the lifetime of any template generated by a set S is minimal,
that is, a time-edge from S occurs at each end-point of L(S).

Independence and Cluster Temporal Graphs. For Δ2 ∈ Z
+ we say that two

templates (X, [a, b]) and (Y, [c, d]) are Δ2-independent if

X ∩ Y = ∅ or min
s∈[a,b],t∈[c,d]

|s − t| ≥ Δ2.

Thus, two templates are independent if they share no vertices, or their time
intervals are at least Δ2 time steps apart. Let T(G,Δ2) be the class of all col-
lections of pairwise Δ2-independent templates where each (X, [a, b]) ∈ T(G,Δ2)
satisfies X ⊆ V (G) and 1 ≤ a ≤ b ≤ T (G). Two sets S1, S2 of time-edges are
Δ2-independent if the templates they generate are Δ2-independent. As a spe-
cial case of this, two time-edges (e, t), (e′, t′) are Δ2-independent if e ∩ e′ = ∅
or |t − t′| ≥ Δ2. A temporal graph G realises a collection {(Xi, [ai, bi])}i∈[k] ∈
T(G,Δ2) of pairwise Δ2-independent templates if

– for each (xy, t) ∈ E there exists i ∈ [k] such that x, y ∈ Xi and t ∈ [ai, bi],
– for each i ∈ [k] and x, y ∈ Xi, the edge xy is Δ1-dense in [ai, bi].

The first condition specifies that every time-edge of G is contained in a single
template. The second states that for any template, and any pair of vertices in
vertex set of the template, there is a time edge between the vertices contained
in any time window of length Δ1 contained in the lifetime of the template.

If there exists some C ∈ T(G,Δ2) such that G realises C then we call G a
(Δ1,Δ2)-cluster temporal graph. Throughout we assume that Δ2 > Δ1, since
if Δ2 ≤ Δ1 then one Δ1-temporal clique can realise many different sets of
Δ2-independent templates. For example, if Δ2 = Δ1 then the two time-edges
(e, t) and (e, t + Δ1) are Δ2-independent but also e is Δ1-dense in the interval
[t, t + Δ1].
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Induced, Indivisible, and Saturated Sets. Let S be a set of time edges and A be
a set of vertices, then we let S[A] = {(xy, t) ∈ S : x, y ∈ A} be the set of all the
time-edges in S induced by A. Similarly, given a temporal graph G and A ⊂ V ,
we let G[A] be the temporal graph with vertex set A and temporal edges E [A].
For an interval [a, b] we let G|[a,b] be the temporal graph on V with the set of
time-edges {(e, t) ∈ E(G) : t ∈ [a, b]}. We will say that a set S of time-edges
is Δ2-indivisible if there does not exist a pairwise Δ2-independent collection
{S1, . . . , Sk} of time-edge sets satisfying ∪i∈[k]Si = S. A Δ2-indivisible set S is
said to be Δ2-saturated in G if after including any other time-edge of E(G) it
would cease to be Δ2-indivisible.

2.2 Problem Specification

Editing to Temporal Cliques. We can now introduce the ETC problem which,
given as input a temporal graph G and natural numbers k,Δ1,Δ2 ∈ Z

+, asks
whether it is possible to transform G into a (Δ1,Δ2)-cluster temporal graph by
applying at most k modifications (addition or deletion) of time-edges. Given any
temporal graph G, the set Π of time-edges which are added to or deleted from
G is called the modification set. We note that the modification set Π can be
defined as the symmetric difference between the time-edge set E(G) of the input
graph and that of the same graph after the modifications have been applied.
More formally, our problem can be formulated as follows.

Editing to Temporal Cliques (ETC):
Input: A temporal graph G = (G, T ) and positive integers k,Δ1,Δ2 ∈ Z

+.
Question: Does there exist a set Π of time-edge modifications, of cardinality
at most k, such that the modified temporal graph is a (Δ1,Δ2)-cluster
temporal graph?

We begin with a simple observation about the hardness of ETC which shows
we can only hope to gain tractability in settings where the static version is
tractable. However, we shall see in Sect. 4.1 that ETC is hard on temporal
graphs with paths as their underlying graphs, and thus the converse is false.

Proposition 1. Let C be a class of graphs on which Cluster Editing is NP-
complete. Then ETC is NP-complete on the class of temporal graphs {(G, T ) :
G ∈ C}.

3 Basic Observations on ETC

In this section we collect many fundamental results on the structure of tempo-
ral graphs and the cluster editing problem. We will use many of these results
frequently throughout the proofs of results in this paper; we include all lemma
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statements here as they provide some insight into the behaviour of (Δ1,Δ2)-
cluster temporal graphs and may be of use in the further study of cluster editing
in the temporal setting.

Lemma 1 shows that there is a way to uniquely partition any temporal graph.

Lemma 1. For any Δ2 ∈ Z
+, any temporal graph G has a unique decomposition

of its time-edges into Δ2-saturated subsets.

The next three elementary lemmas are useful for relating indivisible sets to
Δ1-temporal cliques to clusters in the proof of the characterisation, Theorem 4.

Lemma 2. If two Δ2-indivisible sets S1 and S2 of time-edges satisfy S1 ∩ S2 �=
∅, then S1 ∪ S2 is Δ2-indivisible.

Lemma 3. Let G be a temporal graph, S ⊆ E(G) be a Δ2-saturated set of time-
edges, and K a Δ1-temporal clique such that K ⊆ E(G) and K ∩ S �= ∅. Then
K ⊆ S.

Lemma 4. Let G be any (Δ1,Δ2)-cluster temporal graph. Then, any Δ2-
indivisible set S ⊆ E(G) must be contained within a single Δ1-temporal clique.

However, the first application of these lemmas is the following result, which
shows that the partition from Lemma 2 can be found in polynomial time.

Lemma 5. Let G = (G = (V,E), T ) be a temporal graph, and let E = {(e, t) :
e ∈ E, t ∈ T (e)} be the set of time-edges of G. Then, there is an algorithm which
finds the unique partition of E into Δ2-saturated subsets in time O(|E|3|V |).

Since any temporal graph has a unique decomposition into Δ2-saturated
sets by Lemma 1, and using the fact that any pair of Δ2-saturated sets is Δ2-
independent by definition, we obtain the following corollary to Lemma 4.

Lemma 6. A temporal graph G is a (Δ1,Δ2)-cluster temporal graph if and only
if every Δ2-saturated set of time-edges forms a Δ1-temporal clique.

Lemmas 5 and 6 allow us to deduce the following result.

Lemma 7. Let G = (G = (V,E), τ) be a temporal graph, and let E = {(e, t) :
e ∈ E, t ∈ T (e)} be the set of time-edges of G. Then, we can determine in time
O(|E|3|V |) whether G is a (Δ1,Δ2)-cluster temporal graph.

The next three Lemmas concern induced structures in cluster temporal
graphs.

Lemma 8. Let G be a (Δ1,Δ2)-cluster temporal graph and S ⊆ V (G). Then,
G[S] is also a (Δ1,Δ2)-cluster temporal graph.

Lemma 9. Let G = (G, T ) be a temporal graph, and C ∈ T(G,Δ2) be a collection
minimising minGC realises C |G � GC |. Then, for any template C = (X, [a, b]) ∈ C,
the static underlying graph of G[X]|[a,b] is connected.

Lemma 10. Let G be a temporal graph. Then, there exists a (Δ1,Δ2)-cluster
temporal graph G′, minimising the edit distance |G � G′| between G and G′, such
that the lifetime of G′ is a subset of the lifetime of G.
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4 ETC on Paths

Throughout Pn will denote the path on V (Pn) = {v1, . . . , vn} with E(Pn) =
{vivi+1 : 1 ≤ i < n}. Define Fn be the set of all temporal graphs Pn = (Pn, T )
on n vertices which have the path Pn as the underlying static graph.

4.1 NP-Completeness

Clearly, ETC is in NP because, for any input instance (G,Δ1,Δ2, k), a non-
deterministic algorithm can guess (if one exists) the modification set Π and,
using Lemma 7, verify that the modified temporal graph is a (Δ1,Δ2)-cluster
temporal graph in time polynomial in k and the size of G. We show that ETC
is NP-hard even for temporal graphs with a path as underlying graph.

Theorem 1. ETC is NP-complete, even if the underlying graph G of the input
temporal graph G is a path.

To prove this result we construct a reduction to ETC from the NP-complete
problem Temporal Matching. For a fixed Δ ∈ Z

+, a Δ-temporal matching
M of a temporal graph G is a set of time-edges of G which are pairwise Δ-
independent. It is easy to note that if G = M, then G is a (Δ1,Δ)-cluster
temporal graph for any value of Δ1 ≥ 1, because then each time-edge in G can
be considered as a Δ1-temporal clique with unit time interval, and these cliques
are by definition Δ-independent. We can now state this problem formally.

Temporal Matching (TM):
Input: A temporal graph G = (G, T ) and two positive integers k,Δ ∈ Z

+.
Question: Does G admit a Δ-temporal matching M of size k?

It was shown in [19] that Temporal Matching is NP-complete even if
Δ = 2 and the underlying graph G is a path. The reduction fixes Δ1 = 1 and
Δ2 = 5. It then takes our input temporal graph Pn and transforms it into an
new instance P ′

n by adding empty “filler” snapshots between each snapshot Pn,
see Fig. 1. It is shown that a matching in the original instance corresponds to
a (1, 5)-cluster temporal graph, which gives one direction of the reduction. We
then show that, if enough filler snapshots are added, then there exists an optimal
solution to ETC where time-edges are only deleted from P ′

n. We can then deduce
from this that, since the underlying graph is a path, a solution to ETC using
only deletions must be a matching of the required size.

4.2 Bounding the Number of Edge Appearances

We now show that, if additionally the number of appearances of each edge in
Pn is bounded by a fixed constant, then ETC can be solved in time polynomial
in the size of the input temporal graph.
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Fig. 1. An instance P of TM is shown on the left and the stretched graph P ′
n on

which we solve Editing to Temporal Cliques is on the right. Non-filler snapshots
are shown in white and filler snapshots are grey. Dotted edges show edges that were
removed to leave a (1, 5)-temporal cluster graph (which is also a 5-temporal matching,
and corresponds to a 2-temporal matching in P).

Theorem 2. Let (Pn,Δ1,Δ2, k) be any instance of ETC where Pn ∈ Fn and
there exists a natural number σ such that |T (e)| ≤ σ for any e ∈ E(Pn). Then,
ETC on (Pn,Δ1,Δ2, k) is solvable in time O(T 4σσ2 · n2σ+1).

This theorem is proved using a fairly standard dynamic programming approach,
where we go along the underlying path Pn uncovering one vertex in each step.
In particular, at the ith vertex we try to extend the current set of templates on
the first i − 1 vertices of the path to an optimal set of templates also including
the ith vertex.

5 Completion to Temporal Cluster Graphs

In this section we consider the following variant of ETC, in which we are only
allowed to add time-edges.

Completion to Temporal Cliques (CTC):
Input: A temporal graph G = (G, T ) and positive integers k,Δ1,Δ2 ∈ Z

+.
Question: Does there exist a set Π of time-edge additions, of cardinality at
most k, such that the modified temporal graph is a (Δ1,Δ2)-cluster temporal
graph?

The main result of this section is to show that the above problem can be
solved in time polynomial in the size of the input temporal graph.

Theorem 3. There is an algorithm solving Completion to Temporal
Cliques on any temporal graph G in time O

(
|E(G)|3|V |

)
.

As observed in [20], the cluster completion problem is also solvable in poly-
nomial time on static graphs. In this case the optimum solution is obtained
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by transforming each connected component of the input graph into a complete
graph. The situation is not quite so simple in temporal graphs, however a similar
phenomenon holds with Δ2-saturated sets taking the place of connected compo-
nents; our algorithm relies heavily on the fact (Lemma 5) that we can find these
Δ2-saturated sets efficiently.

6 A Local Characterisation of Cluster Temporal Graphs

In Sect. 6.1 we give a characterisation of cluster temporal graphs. We then use
this characterisation in Sect. 6.2 to give an FPT algorithm for ETC.

6.1 The Five-Vertex Characterisation

In this section we show the following characterization of (Δ1,Δ2)-cluster tempo-
ral graphs in terms of their induced five-vertex subgraphs. The characterisation
relies on a fairly natural additional condition which says clusters cannot appear
too close to each other in time. We discuss the potential to improve this charac-
terisation in more detail in Sect. 7.

Theorem 4. Let Δ2 > 2Δ1. Then any temporal graph G is a (Δ1,Δ2)-cluster
temporal graph if and only if G[S] is a (Δ1,Δ2)-cluster temporal graph for every
set S ⊆ V (G) of at most five vertices.

One direction of Theorem 4 follows easily from Lemma 8. The other direction
is far more challenging. The following lemma illustrates a key idea in the proof
of this more challenging direction of Theorem 4: the five vertex condition allows
us to ‘grow’ certain sets of time-edges.

Lemma 11. Let G be any temporal graph satisfying the property that G[S] is
a (Δ1,Δ2)-cluster temporal graph for every set S ⊆ V (G) of at most five
vertices. Let H be a Δ1-temporal clique realising the template (H, [c, d]), and
x, y ∈ H. Suppose that xy is Δ1-dense in the set [a, b] ⊇ [c, d] and let
r1 = min (T (xy) ∩ [a, b]) and r2 = max (T (xy) ∩ [a, b]). Then there exists a
Δ1-temporal clique H′ which realises the template (H, [r1, r2]) where [r1, r2] ⊇
[a + Δ1 − 1, b − Δ1 + 1].

We are now ready to prove the final direction of Theorem 4; full details of
this proof, including proofs of the claims, can be found in the full version [4].

Lemma 12. Let G be any temporal graph such that G[S] is a (Δ1,Δ2)-cluster
temporal graph for every set S ⊆ V (G) of at most five vertices. Then G is a
(Δ1,Δ2)-cluster temporal graph.

Proof. Let PG be the partition of E(G) into Δ2-saturated subsets; we know that
this partition exists and is unique by Lemma 1. Fix any subset S ∈ PG and
denote L(S) = [s, t]. We want to show that S forms a Δ1-temporal clique in G.
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To prove this, we introduce a collection κS = {S1, . . . , Sm} of subsets of S,
such that each Si is a Δ1-temporal clique for any i ∈ {1, . . . , m}, S =

⋃m
i=1 Si

and for any Si ∈ S there does not exist any other Δ1-temporal clique K ⊆ S
such that Si ⊂ K; we will say that each Si is a maximal Δ1-temporal clique
within S. First of all, we note that this collection exists: in fact, because even
the singleton set containing any time-edge is a Δ1-temporal clique, every time-
edge in S belongs to at least one Δ1-temporal clique. Note that the subsets Si

with i ∈ {1, . . . , m} are not required to be pairwise disjoint.
We will assume for a contradiction that m ≥ 2. Because S is Δ2-saturated,

it is not possible that all the Δ1-temporal cliques contained in κS are pairwise
Δ2-independent, since this would imply that S is not Δ2-indivisible. Thus, as
we assume m ≥ 2, let us consider any distinct Si, Sj ∈ κS that are not Δ2-
independent. We shall then show that they must both be contained within a
larger Δ1-temporal clique, which itself is contained in S, contradicting maxi-
mality. It will then follow that m = 1 and thus S is itself a Δ1-temporal clique,
which establishes the theorem.

The next claim shows that if two maximal Δ1-temporal cliques in S are
not Δ2-independent, then there is a small sub-graph witnessing this non-
independence.

Claim 1. Let Si, Sj ∈ κS be any pair of Δ1-temporal cliques which are not Δ2-
independent. Then, there exists a set W ⊆ V (Si)∪V (Sj) with |W | ≤ 5 such that
(Si ∪ Sj)[W ] is Δ2-indivisible and contains at least one time-edge from each of
Si and Sj.

Recall that Si and Sj are both Δ2-indivisible as they are Δ1-temporal cliques.
It therefore follows from Claim 1 and Lemma 2 that both Si[W ] ∪ Sj and
Sj [W ] ∪ Si are Δ2-indivisible. As their intersection is (Si ∪Sj)[W ] �= ∅, invoking
Lemma 2 once again gives that Si ∪ Sj is Δ2-indivisible.

Claim 2. Let Si and Sj be as above with L(Si) = [si, ti] and L(Sj) = [sj , tj ].
Then, there exists some K ⊆ V and s′, t′ ∈ Z

+ such that G contains a Δ1-
temporal clique K realising the template (K, [s′, t′]) where:

– s′ ∈ [s,min{si, sj} + Δ1 − 1] and t′ ∈ [max{ti, tj} − Δ1 + 1, t],
– there exist x, y ∈ K and a time ri ∈ [s′, t′] such that (xy, ri) ∈ Si, and
– there exist w, z ∈ K and a time rj ∈ [s′, t′] such that (wz, rj) ∈ Sj.

Let us now consider K, the Δ1-temporal clique of Claim 2. From this we
want to extend Si and Sj to a Δ1-temporal clique with vertex set V (Si)∪V (Sj)
and lifetime at least L(K) ∪ L(Si) ∪ L(Sj) = [min{si, sj , s

′},max{ti, tj , t
′}]. We

do this in two stages, via the following claims.

Claim 3. There exist h1 ≤ h2 satisfying

[h1, h2] ⊇ [min{si, sj , s
′} + Δ1 − 1,max{ti, tj , t

′} − Δ1 + 1]

such that (V (Si) ∪ V (Sj), [h1, h2]) clma Δ1-temporal clique.
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Claim 4. (V (Si) ∪ V (Sj), [min{si, sj , s
′},max{ti, tj , t

′}]) is a Δ1-temporal
clique in G.

Observe that Claim 4 contradicts the initial assumption that Si and Sj were
maximal in S. Thus the assumption that m ≥ 2 must be incorrect and thus
S consists of a single Δ1-temporal clique. Because S was a generic set of the
partition PG of the given temporal graph G into Δ2-saturated subsets, then G
must be a (Δ1,Δ2)-cluster temporal graph by Lemma 6, giving the result. ��

6.2 A Search-Tree Algorithm

Using the characterisation from the previous section, we are now able to prove
the following result using a standard bounded search tree technique.

Theorem 5. Let Δ2 > 2Δ1. Then ETC can be solved in time (10T )k · T 3|V |5.

7 Conclusions and Open Problems

In this paper we introduced a new temporal variant of the cluster editing prob-
lem, ETC, based on a natural interpretation of what it means for a temporal
graph to be divisible into “clusters”. We showed hardness of this problem even
in the presence of strong restrictions on the input, but identified two special
cases in which polynomial-time algorithms exist: firstly, if underlying graph is a
path and the number of appearances of each edge is bounded by a constant, and
secondly if we are only allowed to add (but not delete) time-edges. One natural
open question arising from the first of these positive results is whether bound-
ing the number of appearances of each edge can lead to tractability in a wider
range of settings: we conjecture that the techniques used here can be generalised
to obtain a polynomial-time algorithm when the underlying graph has bounded
pathwidth, and it may be that they can be extended even further.

Our main technical contribution was Theorem 4, which gives a characterisa-
tion of (Δ1,Δ2)-cluster temporal graphs in terms of five vertex subsets, whenever
the condition Δ2 > 2Δ1 holds. The assumption that Δ2 > 2Δ1 is needed in two
places in the proof of Theorem 4, but we believe that with care it may be possible
to modify the proof so that this condition is not required. If it is indeed possi-
ble to remove this condition on Δ1 and Δ2, then the resulting characterisation
would be best possible, as the graph illustrated in Fig. 2 demonstrates that no
such characterisation involving only four-vertex subsets can exist.

In addition to providing substantial insight into the structure of (Δ1,Δ2)-
cluster temporal graphs, Theorem 4 also gives rise to a simple search tree algo-
rithm, which is an FPT algorithm parameterised simultaneously by the number
k of permitted modifications and the lifetime of the input temporal graph. An
interesting direction for further research would be to investigate whether this
result can be strengthened: does there exist a polynomial kernel with respect to
this dual parameterisation, and is ETC in FPT parameterised by the number of
permitted modifications alone?
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Fig. 2. A temporal graph which is not a (2, 3)-cluster temporal graph, whose every
induced temporal subgraph on at most four vertices is a (2, 3)-cluster temporal graph.
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9. Chen, J., Molter, H., Sorge, M., Suchý, O.: Cluster editing in multi-layer and
temporal graphs. In: Hsu, W.-L., Lee, D.-T., Liao, C.-S. (eds.) 29th International
Symposium on Algorithms and Computation, ISAAC 2018, 16–19 December 2018,
Jiaoxi, Yilan, Taiwan, volume 123 of LIPIcs, pp. 24:1–24:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018)

10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-319-03780-6_25
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3


A New Temporal Interpretation of Cluster Editing 227

11. Delvaux, S., Horsten, L.: On best transitive approximations to simple graphs. Acta
Inform. 40(9), 637–655 (2004)

12. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds
for parameterized complexity of cluster editing with a small number of clusters. J.
Comput. Syst. Sci. 80(7), 1430–1447 (2014)

13. Himmel, A.-S., Molter, H., Niedermeier, R., Sorge, M.: Adapting the Bron-
Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Soc.
Netw. Anal. Min. 7(1), 35:1–35:16 (2017)

14. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discret. Appl. Math. 160(15), 2259–2270 (2012)
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Abstract. A graph covering projection, also known as a locally bijective
homomorphism, is a mapping between vertices and edges of two graphs
which preserves incidencies and is a local bijection. This notion stems
from topological graph theory, but has also found applications in combi-
natorics and theoretical computer science.

It has been known that for every fixed simple regular graph H of
valency greater than 2, deciding if an input graph covers H is NP-
complete. In recent years, topological graph theory has developed into
heavily relying on multiple edges, loops, and semi-edges, but only par-
tial results on the complexity of covering multigraphs with semi-edges are
known so far. In this paper we consider the list version of the problem,
called List-H-Cover, where the vertices and edges of the input graph
come with lists of admissible targets. Our main result reads that the
List-H-Cover problem is NP-complete for every regular multigraph H
of valency greater than 2 which contains at least one semi-simple vertex
(i.e., a vertex which is incident with no loops, with no multiple edges
and with at most one semi-edge). Using this result we almost show the
NP-co/polytime dichotomy for the computational complexity of List-
H-Cover of cubic multigraphs, leaving just five open cases.

1 Introduction

Graph Covering Projections and Related Notions. For simple graphs G and H, a
covering projection from G to H is a mapping f : V (G)∪E(G) → V (H)∪E(H),
such that (i) vertices are mapped to vertices and edges are mapped to edges,
(ii) incidencies are retained, and (iii) f is bijective in the neighborhood of each
vertex. The last condition means that if for some v ∈ V (G) and x ∈ V (H) we
have f(v) = x, then for each edge e of H containing x there must be exactly one
edge containing v that is mapped to e. For a fixed graph H, in the H-Cover
problem we ask if an instance graph G admits a covering projection to H.
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The notion of a graph covering projection, as a natural discretization of the
covering projection used in topology, originates (not surprisingly) in topological
graph theory. However, since then it has found numerous applications elsewhere.
Covering projections were used for constructing highly symmetrical graphs [4,
9,21,24], embedding complete graphs in surfaces of higher genus [37], and for
analyzing a model of local computations [2].

Graph covering projections are also known as locally bijective homomor-
phisms and as such they fall into a family of locally constrained homomor-
phisms. Other problems from this family are locally surjective and locally injec-
tive graph homomorphisms, where we ask for the existence of a homomorphism
that is, respectively, surjective or injective in the neighborhood of each ver-
tex. Locally surjective homomorphisms play an important role in social sci-
ences [19] (there this problem is called the Role Assignment Problem). On the
other hand, a prominent special case of the locally injective homomorphism
problem is the well-studied L(2, 1)-labeling problem [23] and, more generally,
H(p, q)-coloring [14,29].

Computational Complexity. The complexity of finding locally constrained homo-
morphisms was studied by many authors. For locally surjective homomorphisms
we know a complete dichotomy [19]. The problem is polynomial-time solvable if
the target graph H either (a) has no edge, or (b) has a component that consists
of a single vertex with a loop, or (c) is simple and bipartite, with at least one
component isomorphic to K2. In all other cases the problem is NP-complete.

The dichotomy for locally injective homomorphisms is still unknown, despite
some work [11,17]. However, we understand the complexity of the list variant of
the problem [12]: it is polynomial-time solvable if every component of the target
graph has at most one cycle, and NP-complete otherwise.

To the best of our knowledge, Abello et al. [1] were the first to ask about
the computational complexity of H-Cover. Note that in order to map a vertex
of G to a vertex of H, they must be of the same degree, a natural interesting
special case is when H is regular. It is known that for every k ≥ 3, the H-Cover
problem is NP-complete for every simple k-regular graph H [26], [18]. Some other
partial results are known, mostly focusing on small graphs H [13,27,28]. Let us
point out that in all the above results it was assumed that H has no multiple
edges.

Recall further that there is also some more work concerning the complexity
of locally surjective and injective homomorphisms if G is assumed to come from
some special class [3,5,8,15,36]. We also refer the reader to the survey concerning
various aspects of locally constrained homomorphisms [18].

(Multi)graphs with Semi-edges. In the course of development of topological graph
theory, it became standard to consider loops and multiedges, but recently also
semi-edges are playing a more and more important role. Intuitively, a semi-
edge (sometimes also called a half-edge or a fin) is an edge with just one end
(this is in contrast with a loop, which has two ends, both in the same vertex).
To name just a few most significant examples, Malnič et al. [32] considered
semi-edges during their study of abelian covers to allow for a broader range of
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applications. Furthermore, the concept of graphs with semi-edges was introduced
independently and naturally in mathematical physics [22]. It is also natural
to consider semi-edges in the mentioned framework of local computations (we
refer to the introductory section of [6] for more details). Finally, a well-known
Leighton’s theorem [31] on finite common covers has been recently generalized
to the semi-edge setting in [38,39]. To highlight a few other contributions, the
reader is invited to consult [33,35], the surveys [30,34], and finally for more recent
results, the series of papers [15,16,20] and the introductions therein. From now
on, when we talk about graphs, we allow multiple edges, loops and semi-edges
without explicitly stating it.

The complexity study of H-Cover for graphs H that allow semi-edges has
been initiated only very recently in [6,7]. We continue this line of research. In
particular, our far-reaching goal is to prove the following conjecture.

Strong Dichotomy Conjecture. For every H, the H-Cover problem is
either polynomial-time solvable for general graphs, or NP-complete for simple
graphs.

Our Results. The goal of this paper is to push further the understanding of the
complexity of H-Cover for regular graphs. Recall that the problem is known to
be NP-complete for every fixed k-regular simple graph H of valency k ≥ 3 [26].
Though it was known already from [25] that in order to fully understand the
complexity of covering general simple graphs, it is necessary (and sufficient)
to prove a complete characterization for colored mixed multigraphs, the result
of [26] was formulated and proved only for simple graphs. In this paper we revisit
the method developed in [26] and we conclude that though it does not seem to
work for multigraphs in general, it is possible to modify it and – under certain
assumptions – prove hardness for the list variant of the problem, List-H-Cover,
where the vertices and edges of the instance graph are given lists of admissible
targets. Our main result is the following theorem (a vertex is semi-simple if it
belongs to no loops nor multiple edges, and is incident to at most one semi-edge).

Theorem 1. Let k ≥ 3 and let H be a k-regular graph. If H contains a semi-
simple vertex, then List-H-Cover is NP-complete for simple input graphs.

We do believe that the Strong Dichotomy Conjecture holds true for List-
H-Cover.

The second goal of the current paper is to show how Theorem 1 could be
used to prove the Strong Dichotomy Conjecture for cubic graphs. Recall that
for the closely related locally injective homomorphism problem, introducing lists
was helpful in obtaining the full complexity dichotomy [12]. In Theorem 4 we
fully characterize the computational complexity of List-H-Cover for almost all
cubic graphs, and identify just five exceptionally stubborn graphs H for which
the complexity of the problem is still open.
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2 Preliminaries

In the sequel, a graph is allowed to have loops, multiple edges and semi-edges,
and all these objects are referred to as edges. Edges are thus distinguished to
be of three types: ordinary edges that are incident with two distinct vertices,
loops that have two ends, both in the same vertex, and semi-edges that have
only one end. By saying that we allow multiedges we mean that our graph may
have more edges with the same set of endpoints (so we may have multiple loops
at the same vertex, multiple semi-edges at the same vertex, or multiple ordinary
edges incident with the same pair of vertices). Given a graph G and a vertex
u ∈ V (G), the set of edges of G incident with u will be denoted by EG(u).

The degree (or valency) of a vertex u is the number of edge endpoints equal
to u. In particular, each ordinary edge and each semi-edge contribute 1 to the
degree of each of its vertices, and each loop contributes 2. A graph is regular if
all of its vertices have the same degree. We further say that:

– a vertex is semi-simple if it belongs to no loops, no multiple edges and at
most one semi-edge,

– a graph is semi-simple if each of its vertices is semi-simple,
– a vertex is simple if it is semi-simple and is incident with no semi-edges,
– a graph is simple if each of its vertices is simple,
– a graph is bipartite if it has no loops, no semi-edges and no odd cycles.

Given graphs G and H, a mapping f : V (G)∪E(G) −→ V (H)∪E(H) is a graph
covering projection if vertices of G are mapped onto vertices of H, edges of G
are mapped onto edges of H so that incidences are retained, and in such a way
that the preimage of a loop is a disjoint union of cycles spanning the preimage of
the vertex incident with the loop, the preimage of a semi-edge is a disjoint union
of semi-edges and ordinary edges spanning the preimage of the vertex incident
with this semi-edge, and the preimage of a ordinary edge is a matching spanning
the preimage of the two vertices incident with this edge.

The computational problem of deciding whether an input graph G covers a
fixed graph H is denoted by H-Cover.

The mapping f : V (G) ∪ E(G) −→ V (H) ∪ E(H) is a partial covering pro-
jection when the preimages are not required to be spanning subgraphs, but all
other properties are fulfilled. I.e., the vertex- and edge-mappings are both surjec-
tive and the incidences are retained, the preimage of a ordinary edge connecting
vertices say u and v is a matching consisting of edges each connecting a vertex
from f−1(u) to a vertex from f−1(v), the preimage of a semi-edge incident with
vertex say u is a disjoint union of semi-edges and ordinary edges all incident only
with vertices from f−1(u), and the preimage of a loop incident with a vertex say
u is a disjoint union of cycles (including loops) and paths whose all edges are
incident only with vertices from f−1(u).

In the List-H-Cover problem the input graph G is given with lists L =
{Lu, Le : u ∈ V (G), e ∈ E(G)}, such that Lu ⊆ V (H) for every u ∈ V (G) and
Le ⊆ E(H) for every e ∈ E(G). A covering projection f : G −→ H respects the
lists of L if f(u) ∈ Lu for every u ∈ V (G) and f(e) ∈ Le for every e ∈ E(G).
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3 Proof of Theorem 1

In the first two subsections we will prove the theorem for the case when H is
bipartite (and hence does not contain loops) and has no semi-edges. By the
celebrated König-Hall theorem, such a graph is k-edge-colorable.

3.1 Multicovers

The following construction will be used to build gadgets for the hardness proof.1

Proposition 1 (♠). Let H be a connected k-regular k-edge-colorable graph with
no loops or semi-edges. Let x, y be two adjacent vertices of H. Then there exists
a connected simple k-regular k-edge-colorable graph G and u ∈ V (G), such that

(a) for any bijection from EG(u) onto EH(x), there exists a covering projection
from G to H which extends this bijection and maps u to x, and

(b) for any bijection from EG(u) onto EH(y) there exists a covering projection
from G to H which extends this bijection and maps u to y.

The main building block of our reduction is the graph Gu obtained from G
by splitting vertex u into k pendant vertices of degree 1. For each edge e of G
incident with u, we formally keep this edge with the same name in Gu, denote
its pendant vertex of degree 1 by ue and denote by we the other endpoint of e.
(Thus, with this slight abuse of notation, EG(u) =

⋃
e∈EG(u) EGu

(ue).) Then we
have the following proposition (Fig. 1).

Fig. 1. An illustration to the construction of Gu.

Proposition 2 (♠). The graph Gu constructed from the multicover G of H as
above satisfies the following:

(a) for every bijection σx:EG(u) → EH(x), there exists a partial covering pro-
jection of Gu onto H that extends σx and maps each ue, e ∈ EG(u) to x;

(b) for every bijection σy:EG(u) → EH(y), there exists a partial covering pro-
jection of Gu onto H that extends σy

1 The proofs of statements marked with (♠) will appear in the journal version of the
paper.
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(c) in every partial covering projection from Gu onto H, the pendant vertices
ue, e ∈ EG(u) are mapped onto the same vertex of H;

(d) in every partial covering projection from Gu onto H, the pendant edges are
mapped onto different edges (incident with the image of the pendant vertices).

3.2 Reduction from Hypergraph Coloring

The reduction is exactly the same as in [26], but the proof for the case when
multiple edges are allowed needs some extra analysis. Hence we need to describe
the reduction in full detail in here. We reduce from k-edge-colorability of (k−1)-
uniform k-regular hypergraphs. In the wording of the incidence graph of the
hypergraph, suppose we are given a simple bi-regular bipartite graph K = (A ∪
B,E) such that all vertices in A (which represent the edges of the hypergraph)
have degree k − 1 and all vertices in B (which represent the vertices of the
hypergraph) have degree k. The question is if the vertices of A can be colored by
k colors so that the neighborhood of each vertex from B is rainbow colored (i.e.,
each vertex from B sees all k colors on its neighbors, each color exactly once).
This problem is NP-complete for every fixed k ≥ 3 [26] (Fig. 2).

Fig. 2. An illustration to the construction of GK for k = 4.
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Given such a graph K, we build an input graph GK by local replacements.
Recall that we are working with a k-edge-colorable k-regular graph H with a
simple vertex x, and with respect to this vertex (and one of its neighbors y) we
are guaranteed the existence of a graph Gu which satisfies the properties stated
in Proposition 2. This Gu will be a key building block in our construction.

First, every vertex v ∈ B will be replaced by a copy of the so-called vertex
gadget, which is a disjoint union of a copy Gv

u of Gu and a single vertex Bv. For
every neighbor a ∈ A of v, one of the pendant vertices of Gv

u will be denoted by
uva, and its neighbor within Gv

u will be denoted by wva.
The hyperedge gadgets used to replace the vertices of A are more compli-

cated. This gadget consists of 2(k−1) copies of Gu linked together in the following
way. Let a ∈ A. We take 2(k − 1) vertices �a

i , ra
i , i = 1, 2, . . . , k − 1, and for every

neighbor v of a, we take two copies Gva
L and Gva

R of Gu. The pendant vertices
of Gva

L will be unified with Bv and �a
1 , �

a
2 , . . . , �

a
k−1, while the pendant vertices

of Gva
R will be unified with wva and ra

1 , ra
2 , . . . , ra

k−1. The neighbor of Bv in Gva
L

will be denoted by zva. Lastly, the matching �a
i ra

i , i = 1, 2, . . . , k − 1 is added.
The resulting graph GK is k-regular. To make it an instance of the List-

H-Cover problem, we prescribe that the vertices Bv, v ∈ B and �a
i , a ∈ A, i =

1, 2, . . . , k − 1 are all mapped onto x (this means, that for these vertices, their
lists of admissible target vertices are one-element and all the same, while for the
remaining vertices, their lists are full, as well as for all the edges).

The fact that x is simple implies the following observation: For every partial
covering projection from Gu to H which maps all the pendant vertices onto x,
their neighbors in Gu are mapped onto distinct vertices of H (this immediately
follows from property (d) of Proposition 2). Similarly, if any vertex of GK is
mapped onto x by a covering projection, then its neighbors are mapped onto
distinct vertices of H (the neighborhood NH(x) of x in H). We will exploit
these observations in the following argumentation.

Suppose f : GK −→ H is a covering projection such that all vertices Bv, v ∈
B and �a

i , a ∈ A, i = 1, 2, . . . , k − 1 are mapped onto x. Consider an a ∈ A, and
let f(ra

1) = y, whence y ∈ V (H) is a neighbor of x in H. Property c) applied to
any Gva

R , for v being a neighbor of a in K, implies that f(ra
i ) = f(wva) = y for

all i = 2, . . . , k−1. Since each �a
i has a neighbor ra

i mapped onto y, none of their
neighbors in Gva

L is mapped onto y. Property (d) then implies that f(zva) = y.
Define a coloring φ of A by colors NH(x) as φ(a) = f(ra

1). Consider a vertex
v ∈ B. The neighbors of Bv in GK are zva, a ∈ NK(v). Since f(Bv) = x and x is
simple, the vertices zva, a ∈ NK(v) are mapped onto different neighbors of x by
f , and hence the colors φ(a), a ∈ NK(v) are all distinct. Thus φ is a k-coloring
of A of the required property.

Suppose for the opposite direction that A allows a k-coloring φ such that
each vertex v ∈ B sees all k colors on its neighbors, and identify the colors with
the names of the neighbors of x in H. Set

f(Bv) = �ai = x for all v ∈ B, a ∈ A, i = 1, 2, . . . , k − 1 (as required by the lists),
f(uva) = x for all v ∈ B and a ∈ NK(v), and
f(rai ) = f(wva) = f(zva) = φ(a) for all a ∈ A and v ∈ NK(a).
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and define f on the edges incident to �a
i (ra

i , respectively) so that for every i,
these edges are mapped onto different edges incident to x (to φ(a), respectively),
and on the other hand for every v ∈ NK(a), the pendant edges of Gva

L (of Gva
R ,

respectively) are mapped onto distinct edges incident to x (to φ(a), respectively).
(This is a simple exercise.) The properties (a) and (b) of Proposition 2 imply
that this mapping can be extended to partial covering projections within each
copy of Gu used in the construction of GK . To see that they altogether provide a
covering projection from GK to H, note that for each v ∈ B, the edges incident
with the vertex Bv are mapped onto different edges because their other endpoints
are φ(a), a ∈ NK(v), and hence all different by the assumption on the coloring
φ, and also each copy Gv

u has its pendant edges mapped onto different edges
incident to x, since the pendant vertices uva, a ∈ NK(v) are all mapped onto x
and their neighbors wva in Gv

u are mapped onto distinct vertices φ(a), a ∈ NK(v).
This concludes the proof of the case of bipartite H.

3.3 The Non-bipartite Case

Suppose the graph H is not k-edge-colorable (this includes the case when H
contains loops and/or semi-edges). Consider H ′ = H × K2. This H ′ may still
continue multiple edges (the product of a multiple ordinary edge with K2 is again
a multiple edge, but also the product of a loop with K2 is a double ordinary edge,
and the product of a multiple semi-edge with K2 results in a multiple ordinary
edge as well), but it is bipartite (and thus has neither semi-edges nor loops) and
therefore is k-edge-colorable. In the product with K2, every semi-simple vertex
of H results in two simple vertices of H ′. Hence, by the result of the preceding
subsection, List-H ′-Cover is NP-complete.

It is proved in [18] that for simple graphs, G covers H × K2 if and only if G
is bipartite and covers H. This proof readily extends to graphs that allow loops,
semi-edges and multiple edges. The proof for the list version of the problem may
get more complicated in general. However, the list version that we have proven
NP-complete in the preceding subsection is very special: the lists of all edges are
full, and so are the lists of all the vertices except for those which are prescribed
to be mapped onto the same simple vertex, say x′. If we take such an instance
of List-H ′-Cover, this x′ is a copy of a semi-simple vertex x ∈ V (H), and
all vertices of the input graph G that are prescribed to be mapped onto x′ are
from the same class of its bipartition. We just prescribe them to be mapped
onto x as an instance of List-H-Cover. It is easy to see that this mapping can
be extended to a covering projection to H if and only if G allows a covering
projection to H ′ in which all these prescribed vertices are mapped onto x′. This
concludes the proof of Theorem 1.

4 Sausages and Rings

In this section we consider two special classes of cubic graphs. These graphs
play a special role in the classification in Theorem 4. The k-ring is the cubic



236 J. Bok et al.

graph obtained from the cycle of length 2k by doubling every second edge. We
call a k-sausage every cubic graph that is obtained from a path on k vertices by
doubling every other edge and adding loops or semi-edges to the end-vertices of
the path to make the graph 3-regular. Note that while for every k, the k-ring is
defined uniquely, there are several types of k-sausages, as depicted in Fig. 3.

Fig. 3. The two non-isomorphic 3-sausages (left), the four non-isomorphic 4-sausages
(middle), and the 3-ring (right).

Proposition 3. For every k ≥ 2, let Sk be a k-sausage. Then Sk × K2 is iso-
morphic to the k-ring.

Proof. The product H × K2 is a bipartite graph with no loops or semi-edges,
in which every ordinary edge in H gives rise to a pair of ordinary edges of the
same multiplicity, a loop, or a pair of semi-edges incident to the same vertex of
H gives rise to a double ordinary edge, and a single semi-edge in H gives rise to
a simple ordinary edge in H × K2. Thus Sk × K2 has a cyclic structure and the
number of double edges is equal to the number of vertices of Sk, see Fig. 4. �	

Fig. 4. The product of a 4-sausage with K2 is isomorphic to the 4-ring.

In the following two theorems we show that for every k 
= 4, the List-
k-ring-Cover problem is NP-complete in simple graphs.

Theorem 2 (♠). The k-ring-Cover problem is NP-complete for simple input
graphs for every k = 2α(2β + 3) such that α and β are non-negative integers.
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Theorem 3 (♠). The List-k-ring-Cover problem is NP-complete for simple
input graphs for every k = 2α such that α ≥ 3 is an integer.

The following observation shows that hardness for k-rings implies the hard-
ness for k-sausages.

Proposition 4 (♠). For every k ≥ 2 and every k-sausage Sk, k-ring-Cover
∝ Sk-Cover and List-k-ring-Cover ∝ List-Sk-Cover.

Proof. A graph G covers H ×K2 if and only if it is bipartite and covers H. Since
bipartiteness can be tested in polynomial time, testing if G covers the k-ring
polynomially reduces to testing if G covers Sk.

The proof for the list version is a bit more complicated and we defer it to
the journal version of the paper. �	

5 Towards Strong Dichotomy for Cubic Graphs

In this section we are getting close to proving the Strong Dichotomy Conjecture
for cubic graphs.

Theorem 4. Let H be a connected cubic graph which is neither the 4-ring nor a
4-sausage. Then List-H-Cover is polynomial-time solvable for general graphs
when H has only one vertex and at most one semi-edge, and it is NP-complete
even for simple input graphs otherwise.

Proof. The proof is divided into several cases, depending on the structure of H.

Case 1: |V (H)| = 1. We distinguish two subcases.

Case 1A - H Has One Semi-edge and One Loop. The preimage of the semi-edge
should be a disjoint union of the semi-edges of the input graph G and of a perfect
matching on the vertices not incident to a semi-edge. Then the remaining edges of
G form a spanning collection of cycles (including loops) which form the preimage
of the loop. The existence of a spanning subgraph of G that is a preimage of the
semi-edge can be tested in polynomial time.

If lists are present as part of the input, the situation gets a little more tricky.
We start with a preprocessing phase. We check the below conditions:

(a) G has a vertex or an edge with an empty list.
(b) G has a vertex incident to two or more semi-edges,
(c) G has a semi-edge whose list does not contain the semi-edge of H,
(d) G has a vertex incident to a semi-edge and an edge, whose list does not

contain the loop of H,
(e) G has a vertex incident to two ordinary edges, whose lists do not contain

the loop of H,
(f) G has a loop whose list does not contain the loop of H.



238 J. Bok et al.

It is clear that if any of the above conditions is satisfied, then (G,L) is a no-
instance. Thus we reject and quit.

Now we shall construct an auxiliary graph G′. We start our construction with
G and perform the following steps.

1. If some vertex v is incident to a semi-edge, then delete v with all its edges.
2. If some edge e does not have the semi-edge of H in its list, remove e from the

graph.
3. If some edge e does not have the loop of H in the list, leave e, but remove all

edges incident to e.

Let G′ be the graph after the exhaustive application of steps 1, 2, and 3. It is
straightforward to verify that steps 1 and 2 ensure that the union of a perfect
matching in G′ and the semi-edges removed in step 1. can be a preimage of the
semi-edge of H. Furthermore, by step 3 we ensure that if some edge has to be
mapped to the semi-edge, then it will be so.

We can verify in polynomial time if G′ has a perfect matching. If not, we
reject and quit. So let M be a perfect matching in G′, and let M ′ be the union of
M and the set of semi-edges removed in step 1. Observe that the graph G−M is
2-regular, i.e., is a disjoint union of cycles (including loops). Furthermore, every
edge of G − M has the loop of H in its list, this is guaranteed by step 3 and the
preprocessing phase. Thus in this case we report a yes-instance.

Case 1B - HHas Three Semi-edges. In this case already H-Cover is NP-
complete, as it is equivalent to 3-edge-colorability of cubic graphs.

Case 2: |V (H)| = 2. If H has neither loops nor semi-edges, then H is a bipar-
tite graph formed by a triple edge between two vertices. Only bipartite graphs
can cover a bipartite one. Hence a covering projection corresponds to a 3-edge-
coloring of the input graph. Thus H-Cover is polynomial-time solvable (every
cubic bipartite graph is 3-edge-colorable), but List-H-Cover is NP-complete,
because List 3-Coloring is NP-complete for line graphs of cubic bipartite
graphs [10]. If H has a loop or a semi-edge, then it is one of the four graphs in
Fig 5, and for each of these already the H-Cover problem is NP-complete [6].

Fig. 5. The non-bipartite 2-vertex graphs.

Case 3: |V (H)| ≥ 3. Here we split into several subcases.

Case 3A - H is Acyclic. If we shave all semi-edges off from H, we get a tree with
at least three vertices. At least one of them has degree greater than 1, and such
vertex is semi-simple in H. Thus List-H-Cover is NP-complete by Theorem 1.
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Case 3B - H Has a Cycle of Length Greater than 2 Which Does not Span all
of its Vertices. Then H has a vertex outside of this cycle, and thus H has a
semi-simple vertex and List-H-Cover is NP-complete.

Case 3C - H Has a Cycle of Length Greater than 2 with a Diagonal. Then again
H has a semi-simple vertex and List-H-Cover is NP-complete.

Case 3D - H Has a Cycle of Length Greater than 2, but None of the Previous
Cases Apply. Then H is the k-ring for some k ≥ 2. If k = 2, 2-ring-Cover is
NP-complete by [6]. If k 
= 2α for some α ≥ 2, k-ring-Cover is NP-complete by
Theorem 2. In the case of k = 2α with α ≥ 3, the List-k-ring-Cover problem
is NP-complete by Theorem 3. The case of k = 4 remains open.

Case 3E - H Has a Cycle, but all Cycles are of Length One or Two. If, in addition,
H has no semi-simple vertex, then H is a k-sausage for some k ≥ 2. If k 
= 4,
the NP-completeness of List-H-Cover follows from Case 3D via Proposition 4.
The case of k = 4 remains open. �	

6 Concluding Remarks

We have studied the complexity of the List-H-Cover problem in the setting
of graphs with multiple edges, loops, and semi-edges for regular target graphs.
We have shown in Theorem 1 a general hardness result under the assumption
that the target graph contains at least one semi-simple vertex. It is worth-
while to note that in fact we have proved the NP-hardness for the more spe-
cific H-Precovering Extension problem, when all the lists are either one-
element, or full. Actually, we proved hardness for the even more specific Vertex
H-Precovering Extension version, when only vertices may come with pre-
scribed covering projections, but all edges have the lists full.

On the contrary, the nature of the NP-hard cases that appear in the almost
complete characterization of the complexity of List-H-Cover of cubic graphs
given by Theorem 4 is more varied. Some of them are NP-hard already for
H-Cover, some of them are NP-hard for H-Precovering Extension, but
apart the Vertex H-Precovering Extension version in applications of The-
orem 1, this time we also utilize the Edge H-Precovering Extension ver-
sion for the case of the bipartite 2-vertex graph formed by a triple edge between
two vertices. Finally, for the cases of sausages and rings of length power of two,
nontrivial lists are required to make our proof technique work.

Needless to say, we are leaving the following problem open. An affirmative
answer would imply the hardness of List H-Cover for 4-sausages H, and thus
prove the list variant of the Strong Dichotomy Conjecture for cubic graphs.

Conjecture. The 4-ring-Cover problem is NP-complete for simple input
graphs.
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Note Added in Proof

After submitting the paper to IWOCA 2022, we have proved the above-stated
Conjecture. The proof will appear in the journal version of the paper. A prelim-
inary full version is available at http://arxiv.org/abs/2204.04280.
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Abstract. In the area of graph drawing, the One-Sided Crossing Min-
imization Problem (OSCM) is defined on a bipartite graph with both
vertex sets aligned parallel to each other and all edges being drawn as
straight lines. The task is to find a permutation of one of the node sets
such that the total number of all edge-edge intersections, called cross-
ings, is minimized. Usually, the degree of the nodes of one set is limited
by some constant k, with the problem then abbreviated to OSCM-k.

In this work, we study an online variant of this problem, in which
one of the node sets is already given. The other node set and the inci-
dent edges are revealed iteratively as requests and each node has to be
inserted into placeholders, which we call slots. The number of slots coin-
cides with the number of requests and their order is fixed. The goal is
again to minimize the number of crossings in the final graph. Minimiz-
ing crossings in an online way is related to the more empirical field of
dynamic graph drawing. Note that the slotted OSCM problem is harder
to solve for an online algorithm but in the offline case it is equivalent to
the version without slots.

We show that the online slotted OSCM-k is not competitive for any
k ≥ 2 and subsequently limit the graph class to that of 2-regular graphs,
for which we show a lower bound of 4/3 and an upper bound of 5 on the
competitive ratio.

Keywords: Online algorithms · Crossing minimization · Graph
drawing

1 Introduction

Online algorithms were introduced by Sleator and Tarjan [17] to solve problems
for which the instance is piecewise revealed to an algorithm, which must make
some irrevocable decision before the next element of the instance is presented.
Online algorithms are classically analyzed using competitive analysis, where the
performance of an online algorithm is compared to that of an optimal offline
algorithm working on the same instance. The worst-case ratio between any online
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algorithm and the optimal offline solution is the competitive ratio of a problem.
For a deeper introduction to online algorithms and competitive analysis we refer
the reader to the reference books [2,9].

In graph drawing problems, one usually wants to embed a given graph into
some space with limited dimensions. The most common and practical examples
are on the Euclidean plane. It is also usual to try to embed such graphs in a way
that minimizes the number of edges that cross each other, i.e., their depictions
overlap in a point that is not occupied by a vertex. If a graph can be embedded
in the Euclidean plane without any crossings, we say the graph is planar. A
survey on graph drawing and crossing minimization can be found in [1,15].

One common way to depict bipartite graphs is by arranging the vertices
in each partition on a straight (horizontal) line, making the lines for the two
partition sides parallel. In this scenario, the edges are drawn from one side of
the partition to the other as straight segments. The problem of minimizing the
crossings in this scenario is reduced, thus, to properly ordering the vertices in
each partition. However, in some practical applications it is enough to restrict
ourselves to ordering one set of the partition (the free side), while the other set
remains fixed (the fixed side). It is also usual to restrict the degree of the vertices
in the free side [10,11]. This (one sided) problem is formally defined as follows.

Definition 1. Given a bipartite Graph G = (S ∪̇V,E). Let the nodes of S and
V be aligned in some ordering on straight lines parallel to each other, where S is
on the top line and V on the bottom line. Let the edges E be drawn as straight
lines only. Let the degree of the nodes of S be bound by some k ∈ N. The One-
Sided Crossing Minimization Problem (OSCM-k) is defined as the problem of
finding a total ordering of the nodes of S such that the number of resulting edge
crossings in the graph is minimized.

We will assume that the ordering of V is part of the instance and fixed, such
that we can label and reference the nodes of V with ascending natural numbers,
starting from the “left”.

1.1 Related Work

The OSCM problem has already been extensively studied in the past under
different names, such as bipartite crossing number [7,15], crossing problem [5],
fixed-layer bipartite crossing minimization [10] and others. Eades and Wormald
[5] showed that the OSCM problem is NP-complete for dense graphs, while
Muñoz et al. [11] showed NP-completeness for sparse graphs. Muñoz et al. also
introduced the OSCM-k and showed that the OSCM-2 can be solved optimally
using the barycenter heuristic.

Li and Stallmann [10] showed that the approximation ratio of the barycenter
heuristic is in Ω(

√
n) on general bipartite graphs and also proved that OSCM-k

admits a tight k−1 approximation. This latter problem definition coincides with
the definition of the OSCM-k. Nagamochi presented a randomized approxima-
tion algorithm for general graphs [12] and another approximation algorithm for
bipartite graphs of large degree [13].
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Further researching the complexity, Dujmović and Whitesides [4] first showed
that OSCM is fixed parameter tractable, i.e., it can be solved in f(k)nO(1),
where the parameter k is the number of crossings. The currently best known
FPT running time is O(3

√
2k+n) and was given by Kobayashi and Tamaki [8].

To the best of our knowledge, the field of online analysis on crossing minimiza-
tion is hardly researched. A closely related problem arises in the field of graph
drawing, called dynamic graph drawing. Here, the task is to visually arrange a
graph that is iteratively expanded over time. The visualization follows certain
empirical criteria to make the data comprehensible, where crossing minimiza-
tion is one of these criteria. For a survey regarding dynamic graph drawing,
see [16]. Dynamic graph drawing has many applications, for instance, Frishman
and Tal [6] present an algorithm to compute online layouts for a sequence of
graphs and its application in discussion thread visualization and social network
visualization. In another example, North and Woodhull [14] focus on hierarchi-
cal graph drawing, a more restricted graph class that needs to be visualized in
a tree-like fashion, which overlaps with our topic regarding applications. While
one of the most mentioned applications of the offline OSCM is wire crossing
minimization in VLSI this is arguably less applicable when looking at an online
version of the problem. However, the results of an online analysis can be helpful
for the application fields of graph drawing, e.g., software visualization, decision
support systems and interactive graph editors.

While dynamic graph drawing and online graph problems are similar in that
parts of the graph are revealed in an iterative fashion and not previously known, a
central difference is that in dynamic graph drawing the manipulation of previous
decisions is usually allowed. This is not the case in the classical online model.
Thus, while theory and practice are looking at similar problems, with the goal
of aesthetic graph drawings, the methods to achieve this goal are different.

1.2 Our Contribution

In this paper, we look at the online version of the OSCM-k problem. Observe,
that the online version of OSCM-k can be defined in two different ways. The first
version is the online free OSCM-k, where given a bipartite graph (S ∪̇V,E), an
algorithm initially sees a fixed set of vertices V , and then, in each step a request
appears for a subset of vertices Ri ⊆ V , which must be adjacent to a vertex in
S. Thus, after the arrival of the request Ri, one has to place a vertex si ∈ S on
the top line and adjacent to the vertices in Ri. In this version, one chooses the
partial ordering of si with respect to the other vertices already present in S.

The online free OSCM-k problem is solvable with a competitive ratio of at
most k − 1, using the same barycenter algorithm as in the offline case [10].

In this paper, we focus on a different version of this problem, which we call
the online slotted OSCM-k, which is formally defined as follows.

Definition 2. Given a vertex set V , a request sequence for online slotted OSCM-
k is a sequence R1, . . . , Rn of subsets of V , each of size at most k. The set of
vertices S is initiated as S = {s1, . . . , sn}. Initially there are no edges between S
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and V . Once a request Rj ⊆ V arrives, an online algorithm solving online slotted
OSCM-k chooses a vertex si without any edges, and places an edge between si
and every vertex in Rj. The goal is to minimize the total number of crossings.

The slotted OSCM-k is a model that follows the aesthetic paradigms of the
area of dynamic graph drawing, where the so-called mental map and human
readability is sustained. The term mental map describes the goal to make current
visualization of the graph recognizable in later iterations of the graph. Compared
to the free OSCM-k no upper or lower bound on the competitive ratio is known.

We call the vertices si ∈ S slots moving forward. If a request Rj ⊆ V is
fulfilled by adding edges between every vertex in Rj and slot si we say that
request Rj is assigned to slot si. Moreover, we call a slot si unfulfilled or free
if no request has been satisfied using this slot, thus the slot has no edges yet.
Correspondingly, a fulfilled slot si is a slot in S with edges to a subset Rj ⊆ V .

Online slotted OSCM-k has the advantage of knowing in advance the number
of requests. However, one has the distinct constraint that, once two consecutive
slots are fulfilled, the algorithm will not be able to assign any request to a vertex
between the fulfilled slots, as such a vertex does not exist.

We prove that online slotted OSCM-k is not competitive for any k ≥ 2 in
general graph classes. However, if we focus on 2-regular graphs, we prove that
this problem has a constant competitive ratio. In particular, we prove a lower
bound of 4/3 in this case, and then present an algorithm with a competitive
ratio of at most 5 as an upper bound.

Due to space constraints most proofs and figures can only be found in the
full version [3].

2 Lower Bounds on General Graphs

We begin by looking at online slotted OSCM-k on general graphs, and show that
for every value of k ≥ 2, there is no algorithm with a constant competitive ratio.

Theorem 1. There is no online algorithm with a constant competitive ratio for
online slotted OSCM-k, for any k ≥ 2.

Proof. Let us consider an algorithm A solving online slotted OSCM-k. Given
the initial sets of vertices V = {v1, . . . , vn} and slots S = {s1, . . . , sn}, A is pre-
sented the following request sequence: {v1, v2}, {v2, v3}, . . . , {vn−1, vn}. Assume
without loss of generality that A has assigned these requests to slots in S with-
out producing a single crossing. Since we have n requests to fill n slots with,
and A has only one unfulfilled slot si for some i ∈ {1, ..., n}, the last request
will be assigned to si. We assume, without loss of generality, that i ≤ �n

2 	. The
adversary now presents the request {vn−1, vn} as the last request of the input.
This results in at least 2 ·2 · (n2 −1) crossings as opposed to the optimal solution,
which only results in a single crossing as depicted in Fig. 1. The competitive
ratio is thus at least 2·2·(n

2 −1)

1 = 2n − 4 and therefore not bounded by any fixed
constant c. 
�
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Fig. 1. Theorem 1: an algorithm is presented the requests colored in blue first. Some
slot has to be left open for which the request associated with the red edges is given.
(Color figure online)

The proof relies on the adversary being able to freely choose the degrees of
the vertices in V . If we require the degree of the vertices in V to be defined in
advance, the same strategy does not work. Thus, it makes sense to look at graph
classes where the degree of the vertices in the graph is fixed, i.e., regular graphs.

In what follows, we focus on online slotted OSCM-2 on 2-regular graphs, as
this particular case is already hard to analyze, and we prove that the competitive
ratio is within the range between 4/3 and 5.

We conjecture that for higher degrees, online slotted OSCM-k on k-regular
graphs also has a constant competitive ratio, with the constant depending on
k. A higher vertex degree means that even optimal solutions must have a lot of
crossings. Thus, even when an online algorithm makes a sub-optimal choice, the
crossings of the optimal solution that it is compared to compensate the mistakes.

3 Lower Bound for 2-Regular Graphs

It is important to note that an offline algorithm can find an optimal solution
in a greedy fashion, as we will see in Lemma 1. In the following lower bound,
we prove that online algorithms cannot find an optimal solution, greedily or
otherwise. The difficulty is that a request cannot be assigned in between two
consecutive fulfilled slots. Thus, an online algorithm has to fulfill a request by
assigning it to a sub-optimal slot. We can use this fact to construct a lower
bound for online slotted OSCM-2 on 2-regular graphs as follows.

Theorem 2. Every deterministic online algorithm, solving the slotted OSCM-2
on 2-regular graphs, has a competitive ratio of at least 4/3 − ε.

This lower bound proves that no online algorithm for online slotted OSCM-2
on 2-regular graphs can perform optimally on all instances. In the following, we
introduce some notions that are used to prove an upper bound for the competi-
tive ratio in the same setting.

4 Preliminaries and Notation

In order to prove upper bounds for online slotted OSCM-2 on 2-regular graphs,
we need to extract some structural properties of this problem. First, we introduce
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the notion of propagation arrows, which helps us to lower bound the total number
of crossings of the remaining graph if we only have a partial request sequence.
Then, we observe that finding an optimal placement only involves the order of
every pair of requests relative to each other.

The number of crossings of an optimal assignment for a request sequence
is the number of unavoidable crossings of the request sequence. The difference
between the number of crossings incurred by an algorithm A, and the number
of unavoidable crossings is consequently the number of avoidable crossings of A
on that request sequence.

Consider a 2-regular instance for online slotted OSCM-k with slots S =
{s1, . . . , sn} and vertices V = {v1, . . . , vn}, and a request sequence R1, . . . , Rn.
Let us assume that at some point after the k-th request has been fulfilled by
algorithm A, there are fulfilled slots, and the vertices in V have degree 2, 1 or 0,
depending on how many times these vertices have appeared in requests. Because
we know that the final graph will be 2-regular, for those vertices in V with degree
less than two we are still expecting a request that contains the vertex, and for
any unfulfilled slot, there will be a request which will be fulfilled using this slot.

Intuitively, we use propagation arrows to greedily match unfulfilled vertices
to available slots in a way that minimizes the number of crossings. For instance,
in an empty graph every vertex vi in V will have two propagation arrows to
the slot si, but once some slots are occupied, we take the leftmost vertex with
degree less than two and assign a propagation arrow to the left-most unfulfilled
slot. We know that the instance is 2-regular, so for every pair of missing edges
of vertices in V there must be an empty slot. We can define the propagation
arrows formally as follows.

First, we know that after k requests for a 2-regular graph, there are n − k
unfulfilled requests, which corresponds to 2(n−k) missing edges. We will double
count the missing edges with the following two lists.

The list of unfulfilled vertices LV of an instance after the k-th request, is an
ordered list that contains every vertex vi ∈ V from smallest to largest at most
twice. LV will contain no copies of a vertex vi ∈ V if it already has appeared
twice in the request sequence R1, . . . , Rk, i.e., if vi has degree 2, LV will contain
vi ∈ V once if vi has appeared only once in R1, . . . , Rk, i.e., if vi has degree 1 in
the partially fulfilled graph, finally, LV contains a vertex vi twice if vi does not
appear in R1, . . . , Rk, and thus has degree 0 at that point.

Observe, that the size of the list of missing edges is twice the number of
unfulfilled slots by an easy application of the handshaking lemma. We can, thus,
analogously consider the list of unfulfilled slots LS as an ordered list that contains
each unfulfilled slot twice, again from smallest to largest. From the previous
observation it should be clear that |LV | = |LS |.
Definition 3. Consider a 2-regular instance for online slotted OSCM-k with
slots {s1, . . . , sn} = S and vertices {v1, . . . , vn} = V , and a request sequence
R1, . . . , Rn. Let A be an algorithm that has fulfilled k requests. Let us consider
the corresponding LV and LS for this request. There is a propagation arrow
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from vertex v to slot s if both occupy the same place in the ordered lists LV and
LS, i.e., if v is the i-th element of LV and s is i-th element of LS for some
i ∈ [2(n − k)].

Observe that propagation arrows do not cross one another by construction. If
we count the crossings of a partial graph including the crossings between graph
edges and propagation arrows, we have a lower bound on the number of crossings
that the graph will have after the request sequence is completely fulfilled.

The next lemma observes that an instance is optimally solved if an only if,
for every pair of requests, the relative order of their slot assignments is opti-
mal, i.e., if the placement of these two requests is such that there are fewer
crossings between them than otherwise. This basically means, that a crossing is
unavoidable, if and only if, the relative order of the two requests involved in this
crossing is optimal, regardless of any other placement of any other request within
the graph. This provides us with a very powerful tool to analyze the performance
of online algorithms solving online slotted OSCM-2 on 2-regular graphs.

Lemma 1. Given two requests Rx = {x1, x2} and Ry = {y1, y2} assigned to
slots sx and sy. Without loss of generality assume that x1 ≤ y1 and x2 ≤ y2. An
assignment where sx < sy generates fewer or equally many crossings in the final
graph than an assignment where sy < sx if every other assigned slot remains
unchanged.

Lemma 1 plainly states that for each pair of requests, the optimal ordering
gives the left-most request a slot that is to the left of the slot assigned to the
right-most request. The notion of left and right requests only means here, that
if the requests are not for identical pairs of vertices, the left request contains the
left-most distinguished vertex.

In order to find an upper bound on the competitive ratio, we only have to
see that any pair of requests is either placed optimally or otherwise bound the
number of crossings generated by that pair with the number of unavoidable
crossings in the optimal solution.

(a) 1-1 (b) 3-1 (c) 2-1

(d) 4-0 (e) 3-0 (f) 2-2

Fig. 2. Case distinction for step one of Lemma 1. Each case is depicted before and after
the untangling. The request sx is drawn in red and sy in blue. (Color figure online)
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Algorithm 1. Chooses in each step the insertion with the lowest number of
additional edge-edge and edge-propagation arrow crossings.
1: free slots = {1, . . . , n};
2: for request in input do
3: least crossings := ∞;
4: best slot := 0;
5: for slot in free slots do
6: G.simulate node insertion(slot, request);
7: new crossings = G.edge edge crossings() + G.edge prop crossings();
8: if new crossings < least crossings then
9: least crossings = new crossings;

10: best slot = slot ;

11: G.revert simulated insertion(slot, request);

12: G.insert node(best slot, request);
13: free slots := free slots\best slot ;

5 Upper Bound for 2-Regular Graphs

We now present Algorithm 1 that, given a request, selects the slot that min-
imizes the total number of crossings – including crossings between edges and
propagation arrows – among all available slots.

Note that analyzing an algorithm in this setting is not completely trivial. Our
approach is to show that the types of crossings between two requests produced
by our algorithm are good-natured. Specifically, we look at pairs of requests for
which the crossings can be completely avoided if they are appropriately ordered,
i.e., 3-0 or 4-0 crossings as depicted in Fig. 2(e) and (d) respectively. This type
of crossing is either not produced by Algorithm 1 or we can show that a number
of unavoidable crossings is necessary to produce this configuration. With this,
we can upper bound the competitive ratio. Note that this is a relatively rough
estimate, but even this estimate already requires a lot of structural analysis.

First, we present some lemmas outlining relevant structural properties of
assignments made by Algorithm 1, then we consider each type of critical crossing,
4-0 crossings and then 3-0 crossings and show that the competitive ratio is still
bounded when these types of crossings appear.

5.1 Structural Properties

We first make a few observations on the changes of the propagation arrows after
a request is fulfilled. Consider a request {x1, x2}, which is assigned to slot sx by
some algorithm. Before this request arrived, there were two propagation arrows
from vertices y1 and y2 going to slot sx (note that it is possible that y1 = y2).
After the request is assigned to sx the propagation arrows pointing to sx have
to be shifted, as slot is not available anymore. Simultaneously, one propagation
arrow of each x1 and x2 disappears as the request is fulfilled. The rest of the
propagation arrows have to reflect this movement out of sx and into the two
empty positions left by x1 and x2, and they do so in the following way.
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Observation 1. Let R = {x1, x2} be a request assigned to slot sx. And let
y1 ≤ y2 be the vertices (or vertex) whose propagation arrows point to sx before
this request arrived. Only propagation arrows connected to nodes between the
leftmost vertex of x1 and y1 and the rightmost vertex of x2 and y2 will be shifted.

Observe that there are no propagation arrows connected to nodes between y1
and y2 as otherwise these would be connected to slots other than sx and produce
crossings between propagation arrows, which is impossible by definition.

v2 v3 v4

s1 s2

(a)
v1 v2 v3 v4

s1 s2 s3

(b)
v1 v2 v3 v4

s1 s2

(c)

Fig. 3. Types of crossings avoided by Algorithm 1, mentioned in Lemma 2. The propa-
gation arrows are in blue and the edges already in the graph are in black. (Color figure
online)

While Observation 1 is not specific to Algorithm 1, we can use it in the
proofs to come. We continue with a lemma that allows us to shorten a lot of case
distinctions in the following proofs.

Lemma 2. There is no instance during which two propagation arrows connected
to a slot s2 cross both edges adjacent to a fulfilled slot s1 when using Algorithm 1.

Lemma 2 forbids specific configurations, depicted in Fig. 3, of the propaga-
tion arrows when applying Algorithm 1. The following lemma uses a counting
argument to guarantee that a specific request between two (far apart) vertices
must eventually appear in a specific setting. Such requests from vertices that are
far apart, always guarantee the appearance of unavoidable crossings as depicted
in Fig. 2(f). The appearance of such requests guarantees, in later proofs, the exis-
tence of such unavoidable crossings, which can be counted in a way that bounds
the competitive ratio.

Lemma 3. Let there be two request {x1, x2} and {y1, y2} that are assigned to
slots sx and sy, with x1 < x2 < y1 < y2 and no free slot between sx and sy. If
there are two neighboring vertices u, v, with x2 ≤ u < v ≤ y1 and propagation
arrows pointing to two different slots sl, sr, with sl < sx < sy < sr, and the
request {u, v} appears, then there must be a future request {a, b}, with a ≤ x2

and y1 ≤ b, which unavoidably crosses all edges of u and v.

Figure 4 depicts the situation described in the statement of Lemma 3.
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s sx sy sr

x1 x2 u v y1 y2

Fig. 4. Sketch of the situation described in the statement of Lemma 3.

Proof. Our proof is a simple counting argument. The request {u, v} removes
two propagation arrows. One points to the left of the filled block between sx
and sy and the other one points to the right of it. The request, depending on
its placement, pushes one propagation arrow from one side of the fulfilled block
between sx and sy to the other one.

W.l.o.g. we assume that {u, v} is placed on sl. The second propagation arrow
pointing to sl comes from x2 (if u �= x2) or a vertex even more to the left. It
is not possible that is comes from a vertex between x2 and v due to Lemma 2.
When the request {u, v} is placed, it pushes this second propagation arrow to
the slot sr. This propagation arrow represents a mismatch between open slots
and “open/remaining” edges. The number of “open/remaining” edges to the left
of u and to the right of v is odd, but the slots always consume two of these
“open/remaining” edges. This has to be compensated by some request {a, b}
that is placed right of sy, where a is to the left hand side of u and b is to the
right hand side of v. This request crosses all edges of u and v. 
�

Where Lemma 2 and 3 are applicable for specific configurations, the following
lemma provides a tool that gives a set of edges or propagation arrows that are
necessary to make a local configuration (e.g., a crossing of two requests) feasible
in the context of the remaining graph.

Lemma 4. For every edge or propagation arrow, starting at a vertex vi of V
and pointing to a slot sj with i < j (analogously j < i), there is one edge or
propagation arrow pointing from a vertex vk to a slot sl with i < k and l ≤ i
(analogously k < i and i ≤ l).

With our structural observations regarding the propagation arrows we can
now start to analyze the critical crossings depicted in Fig. 2(d) and (e). These
crossings are critical in the sense that they have only avoidable crossings and no
unavoidable ones. So, they decrease the performance of our algorithm and do not
guarantee a constant competitive ratio like the other crossings depicted in Fig. 2.
In the following sections, we overcome this problem by showing that for each of
these critical crossings there must exist some other request that unavoidably
crosses one of the requests, involved in the critical crossing.
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5.2 The 4-0 Crossings

Recall that, by Lemma 1, the optimal solution for a 2-regular instance of the
online OSCM-2 consists of minimizing crossings between every pair of requests.
Thus, we can look at a pair of requests and exhaustively classify them as
depicted in Fig. 2, and analyze the competitive ratio of an algorithm depend-
ing on how many of these types of crossings appear. In particular, if no 3-0
crossings (Fig. 2(e)) or 4-0 crossings (Fig. 2(d)) were produced by an algorithm,
the algorithm would be 3-competitive at worst, as any sub-optimal placement
would be trivially compensated by at least one unavoidable crossing. Thus, we
only have to look at 3-0 and 4-0 crossings.

Using Lemma 2 we can now prove that Algorithm 1 will not make too many
mistakes when producing 4-0 crossings. First we prove that Algorithm 1 will
never produce 4-0 crossings with gaps, i.e., unfulfilled slots between the 2 slots
generating the 4-0 crossing.

Lemma 5. Algorithm 1 never generates 4-0 crossings with gaps in between.
More precisely, for each pair si, sj with i < j assigned by Algorithm 1 that
generate a 4-0 crossing, every sk with i < k < j is already full.

If we have a request for a pair of vertices, such that every available slot
generates at least one 4-0 crossing, we call it a forced 4-0 crossing. We prove
now that Algorithm 1 only generates 4-0 crossings when they are forced or in a
very specific configuration. Observe, that it is possible that more than one 4-0
crossing is forced by the same request.

Lemma 6. If Algorithm 1 is used, for every forced 4-0 crossing there is at least
one uniquely identifiable and unavoidable crossing.

We just proved that forced 4-0 incur in one additional unavoidable crossing,
this means that we can consider 4-0 crossings as if they were, in a sense 5-1
crossings instead, with a competitive ratio of 5 instead of being unbounded.
However, this is not enough, there can be 4-0 crossings produced by Algorithm 1
that are not forced. In the following lemma we prove that non-forced 4-0 crossings
are only produced in a very specific configuration. Then we will proceed to look at
the number of uniquely identifiable unavoidable crossings of that configuration.

v1 v2 . . . v3 v4

sj si sk

. . .
v1 v2 . . . v3 v4

sj si sk

. . .

Fig. 5. If there is more than one slot positioned like the red ones (between the slots si
and sk with one vertex between v3 and v4, and one to the right of v4 each), Algorithm
1 may choose slot sj generating a 4-0 crossing. (Color figure online)
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Lemma 7. Given a request for a pair of vertices in a graph, whose 4-0 crossings
have either been forced or were served because any alternative placement would
cause two 3-1 crossings as sketched in Fig. 5. If a slot is available that will not
generate any 4-0 crossings this slot will be selected by Algorithm 1 over any
slot that will generate a 4-0 crossing, unless there are two additional requests
resulting in two 3-1 crossings for the alternative placement as depicted in Fig. 5.

The 4-0 crossings described in Lemma 7, also have uniquely identifiable
unavoidable crossings, just as the forced 4-0 crossings from Lemma 6.

Lemma 8. Any 4-0 crossing incurred by Algorithm 1, where any alternative
placement would result in two 3-1 crossings as sketched in Fig. 5, has two
uniquely identifiable unavoidable crossings.

We can finally conclude, using Lemmas 6 and 8, that any 4-0 crossings
incurred by Algorithm 1 have at least one unavoidable crossing.

Theorem 3. Forced and non-forced 4-0 crossings incurred by Algorithm 1 have
at least one unavoidable crossing.

5.3 The 3-0 Crossings

It remains to prove that Algorithm 1 only generates a 3-0 crossing – depicted in
Fig. 2(e) – if there is at least one unavoidable crossing for one of the two requests
responsible for the 3-0 crossing. The following proofs use case distinctions like
in the proofs from the previous section, handling the 4-0 crossings.

Similar to the 4-0 case, we start by proving that Algorithm 1 never produces
a 3-0 crossing with a gap.

Lemma 9. Algorithm 1 never generates 3-0 crossings with gaps in between.
More precisely, for each pair sj, si assigned by Algorithm 1 with j < i that
generate a 3-0 crossing, every slot sk with j < k < i is already full.

Next, we explore the situation that 3-0 crossings happen at the edge of the
graph, i.e., a placement on any remaining slot causes a 3-0 crossing.

Lemma 10. Given two requests {v1, v2} and {v2, v3} with v1 < v2 < v3.
Assume w.l.o.g. that Algorithm 1 creates a 3-0 crossing between these requests,
with the first request for vertices {v1, v2} being placed in slot si and during the
placement of the second request there is no available slot sk > si. Then there is
at least one uniquely identifiable unavoidable crossing with the request {v2, v3}.

What remains is an exhaustive case distinction analogous to the analysis
done for the 4-0 crossings.

Theorem 4. If Algorithm 1 creates a 3-0 crossing between two requests, there
is at least one uniquely identifiable unavoidable crossing for at least one of the
two requests.

This theorem shows that 3-0 crossings incurred by Algorithm 1 only happen
in conjunction with two extra unavoidable crossings with the request generating
the 3-0 crossing, this means, that any 3-0 crossing is in effect a 5-2 crossing,
which would be better than 5-competitive.



Slotted Online OSCM on 2-Regular Graphs 255

5.4 The Upper Bound

We can now put all results together to give an upper bound for the competitive
ratio of Algorithm 1 to solve online slotted OSCM-2 on 2-regular graphs.

Theorem 5. Algorithm 1 solves the online slotted OSCM-2 on 2-regular graphs
with a competitive ratio of at most 5.

Proof. In order to calculate the competitive ratio of Algorithm 1 we simply
compare for every pair of requests, what the optimal placement compared to the
placement chosen by Algorithm 1 would be.

We exhaustively look at possible placements of pairs of requests, as depicted
in Fig. 2. Observe, that except for the 3-0 crossings and 4-0 crossings, the rest of
possible request pairs are no worse than 3-competitive regardless of the algorithm
used. Moreover, Theorem 3 ensures that for every 4-0 crossing incurred by Algo-
rithm 1, there is at least one uniquely identifiable unavoidable crossing, meaning
that the number of crossings incurred by Algorithm 1 is 5, but optimally there
must be at least 1 unavoidable crossing. Finally, Theorem 4 guarantees that there
are also two uniquely identifiable unavoidable crossings for every occurrence of
a 3-0 crossing. Thus, Algorithm 1 is at most 5-competitive. 
�

6 Conclusion

In this work we have shown that the general slotted OSCM-k is not competitive
for any k ≥ 2, which led us to analyze the case of the slotted OSCM-k on 2-
regular graphs. On this graph class, we have given a construction which proved
a lower bound on the competitive ratio of 4/3. Algorithm 1, which utilizes the
information of the remaining space and unavoidable crossings in the graph in the
form of our so-called propagation arrows, was proven to be at most 5-competitive.
This was done by limiting the number of total crossings generated by pairs of
requests that do not cross one another in an optimal solution.

There are several open questions which we were not able to answer in the
scope of this work. First, there is still a considerable gap between the lower
and upper bound of the competitive ratio that we have given. We assume that
Algorithm 1 performs better than analyzed and that the upper bound can be
made tighter.

While Theorem 1 proves non-competitiveness on general graphs for any
k ≥ 2, the case of regular graphs with degree 3 or higher is still open. We
suggest to analyze this graph class further.
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Abstract. In Partition Into Complementary Subgraphs (Comp-
Sub) we are given a graph G = (V, E), and an edge set property Π, and
asked whether G can be decomposed into two graphs, H and its comple-
ment H, for some graph H, in such a way that the edge cut [V (H), V (H)]
satisfies the property Π. Motivated by previous work, we consider Comp-
Sub(Π) when the property Π = PM specifies that the edge cut of the
decomposition is a perfect matching. We prove that Comp-Sub(PM)
is GI-hard when the graph G is {Ck≥7, Ck≥7}-free. On the other hand,
we show that Comp-Sub(PM) is polynomial time solvable on hole-free
graphs and on P5-free graphs. Furthermore, we present characterizations
of Comp-Sub(PM) on chordal, distance-hereditary, and extended P4-
laden graphs.

Keywords: Graph partitioning · Complementary subgraphs · Perfect
matching · Matching cut · Graph isomorphism

1 Introduction

Finding graph partitions with some special properties has been a topic of exten-
sive research. Several combinatorial problems can be viewed as partition prob-
lems, such as Vertex Coloring and Clique Cover. In addition, many graph
classes, e.g. bipartite and split graphs, can also be defined through a partition of
its vertex set. In particular, the class of complementary prisms [11] are defined
over complementary parts. The complementary prism GG of a graph G arises
from the disjoint union of the graph G and its complement G by adding the edges
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of a perfect matching between vertices with same label in G and G. Studies con-
cerning the computational complexity of classical graph problems restricted to
the class of complementary prisms graphs can be found in [4,9].

We say that a graph G = (V,E) is decomposed into two graphs G1 and G2

if V (G) can be partitioned into V1 and V2, where G[V1] = G1 and G[V2] = G2.
The edge cut [V1, V2] is called the edge cut of this decomposition.

As a generalization of complementary prisms, Nascimento, Souza and Szwar-
cfiter [16] introduced the problem defined as follows.

Partition Into Complementary Subgraphs (Comp-Sub)

Instance: A graph G = (V,E), and an edge set property Π.
Question: Can G be decomposed into two graphs, H and its complement H,
for some graph H, in such a way that the edge cut M of the decomposition
satisfies the property Π?

For short, we abbreviate Partition Into Complementary Subgraphs
with the edge set property Π as Comp-Sub(Π). We write G ∈ Comp-Sub(Π)
to denote that G is a yes-instance of Comp-Sub(Π) and we call (H,H) as a
complementary decomposition of G.

The Comp-Sub(Π) problem also finds motivation in parameterized com-
plexity. Recognizing whether a graph has a complementary decomposition can
be useful for solving problems in FPT-time, as pointed out in [16]. Nascimento,
Souza and Szwarcfiter [16] considered the cases where the edge cut M is empty
or induces a complete bipartite graph. They also presented some remarks when
Π is a general edge set property. In particular, when M is empty, they make
some links between Comp-Sub(Π) and the Graph Isomorphism problem, from
which they show that Comp-Sub(Π) is GI-hard.

It is known that the recognition of complementary prisms can be done in
polynomial time [5]. This implies that, when the property Π is a perfect match-
ing M between corresponding vertices in H and H, the Comp-Sub(Π) problem
is polynomial-time solvable. So, a natural question is the study of Comp-Sub(Π)
when Π specifies that M is any perfect matching. In this context, two related
problems arise: Matching Cut [13,17] and Perfect Matching Cut [12]. A
(perfect) matching cut is a partition of vertices of a graph into two parts such
that the set of edges crossing between the parts forms a (perfect) matching. Con-
sidering Π = PM as the property of being a perfect matching, Comp-Sub(PM)
can be seen as a variant of Perfect Matching Cut with the additional restric-
tion that the two parts must induce complementary subgraphs. Note that studies
regarding matchings satisfying particular constraints have received wide atten-
tion in the literature (c.f. [10,14,15,19,20]).

Motivated by Nascimento, Souza and Szwarcfiter [16], in this paper we deal
with Comp-Sub(Π), when Π = PM considers M as a perfect matching. We
show that Comp-Sub(PM) is GI-hard when the graph G is {Ck≥7, Ck≥7}-free.
On the other hand, we present polynomial time algorithms able to solve Comp-
Sub(PM) when the input graph G is hole-free or P5-free. In addition, we char-
acterize graphs G ∈ Comp-Sub(PM) when G is chordal, distance-hereditary, or
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extended P4-laden. Although extended P4-laden graphs generalize cographs, we
also show a simpler characterization for cographs.

The paper is organized as follows. Section 2 contains some fundamental con-
cepts and an auxiliary result. Sections 3 and 4 contains our results on some
cycle-free graphs and graphs with few P4’s, respectively. Further discussions are
presented in Sect. 5.

2 Preliminaries

We consider only finite, simple, and undirected graphs, and we use standard
terminology and notation. See [1] for graph-theoretic terms not defined here.

Let G be a graph. For a vertex v ∈ V (G), we denote its open neighborhood
by NG(v), and its closed neighborhood, denoted by NG[v] := NG(v) ∪ {v}. For
a set U ⊆ V (G), let NG(U) =

⋃
v∈U NG(v) \ U , and NG[U ] = NG(U) ∪ U . The

subgraph of G induced by U , denoted by G[U ], is the graph whose vertex set is U
and whose edge set consists of all the edges in E(G) that have both endvertices
in U .

Let G be a graph. A set U ⊆ V (G) is called a clique (resp. independent set) if
the vertices in U are pairwise adjacent (resp. nonadjacent). We denote by Kn a
complete graph, In an independent set, Pn a path graph, and Cn a cycle graph on
n vertices. Let r be a positive integer. An r-partite graph is one whose vertex set
can be partitioned into r subsets, in such a way that no edge has both ends in the
same subset. An r-partite graph is complete if any two vertices in different subsets
are adjacent. When r is not specified, we simply say (complete) multipartite. A
split graph G is one whose vertex set admits a partition V (G) = C ∪ I into a
clique C and an independent set I. The complement G of a graph G is the graph
defined by V (G) = V (G) and uv ∈ E(G) if and only if uv /∈ E(G).

Let P = v1v2 . . . vn be a path. We call v2, . . . , vn−1 as inner vertices of P .
Two or more paths in a graph are independent if none of them contains an inner
vertex of another. A graph G is �-connected if any two of its vertices can be
joined by � independent paths. A 2-connected graph is called biconnected.

A vertex v in a graph G is a cutvertex or cutpoint, if G \ {v} is disconnected.
A maximal connected subgraph without a cutpoint is a block. The block-cutpoint
tree of a graph G is a bipartite graph whose vertex set consists of the set of
cutpoints of G and the set of blocks of G. A cutpoint is adjacent to a block
whenever the cutpoint belongs to the block in G.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted as G � H,
if and only if there is a bijection, called isomorphism function, ϕ : V → V ′ such
that uv ∈ E if and only if ϕ(u)ϕ(v) ∈ E′, for every u, v ∈ V . A graph G is
self-complementary if G � G. The Graph Isomorphism problem receives as
input two graphs G and G′ and asks whether G � G′. We denote by GI the class
of problems that admit a polynomial-time reduction to Graph Isomorphism.

A problem Q is GI-complete if the two conditions are satisfied: (i) Q is a
member of GI; and (ii) Q is GI-hard, that is, for every problem Q′ ∈ GI, Q′ is
polynomially reducible to Q.
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We denote the set of positive integers {1, . . . , k} by [k]. Let G and G1, . . . , Gk

be graphs. We say that G is {G1, . . . , Gk}-free if G does not contain Gi as an
induced subgraph, for every i ∈ [k].

Let G and H be two graphs such that V (G) ∩ V (H) = ∅. The disjoint union
of G and H, denoted by G ∪ H, is the graph with V (G ∪ H) = V (G) ∪ V (H)
and E(G ∪ H) = E(G) ∪ E(H). The join of G and H, denoted by G + H, is the
graph with V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪ {uv :
u ∈ V (G) and v ∈ V (H)}.

Let G be a graph and C a class of graphs. A set S ⊆ V (G) is a C-modulator
if G \ S belongs to C. We define the distance of G to class C as the size of a
minimum S which is a C-modulator.

Let G be a graph that has a complementary decomposition (G1, G2) with
perfect matching cut M = {u1v1, . . . , unvn}, where ui ∈ V (G1) and vi ∈ V (G2),
i ∈ [n]. We say that ui (resp. vi) is the corresponding vertex of vi (resp. ui), for
every i ∈ [n]. For X ⊆ V (G1), we call XG2 = {vi ∈ V (G2) : ui ∈ X} as the
corresponding set of X over G2. Similarly, for X ⊆ V (G2), we call XG1 = {ui ∈
V (G1) : vi ∈ X} as the corresponding set of X over G1.

Next, we present an auxiliary result, defined for Comp-Sub(PM) with a
restriction on the graphs of the decomposition. A cograph is a P4-free graph.

Lemma 1. Let G be a graph. The problem of determining whether G can be
decomposed into two graphs, G1, and its complement G2, such that G1 is a
cograph and the edge cut of the decomposition is a perfect matching, can be
solved in polynomial time.

Proof. Let C be the class of cographs and G a 2n-vertex graph. Suppose that G
is decomposable into complementary subgraphs G1 and G2, such that G1 ∈ C

and the edge cut M of the decomposition is a perfect matching.
Since C is closed under complement, we have that G2 ∈ C. Given that

Graph Isomorphism is linear-time solvable on cographs [7], we perform a brute
force algorithm to check every relevant partition V (G1), V (G2) of V (G). For that,
we propose Algorithm 1, explained in sequel.

Algorithm 1: Partition-Into-Complementary-Cographs(G)

Input: A graph G.
Output: Whether G admits a complementary decomposition such that

the edge cut of the decomposition is a perfect matching.

1 forall x1, x2, y1, y2 ∈ V (G) do
2 V (G1) := NG[{x1, x2}] \ {y1, y2}
3 V (G2) := V (G) \ V (G1)
4 M := {xy ∈ E(G) : x ∈ V (G1), y ∈ V (G2)}
5 if M is a perfect matching and G1 is a cograph and G2 is a cograph

and G1 � G2 then
6 return yes

7 return no
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We know that a cograph is connected if and only if its complement is dis-
connected [8]. Consequently, if a complementary decomposition (G1, G2) exists,
then either G1 or G2 is disconnected, say G2. Then G1 can be obtained by
a join between the corresponding connected components of G2. Thus, there
exist two adjacent vertices x1, x2 ∈ V (G1), such that NG1 [{x1, x2}] = V (G1).
Furthermore, the edge set M of the decomposition implies that there exist
y1, y2 ∈ V (G2) such that x1y1, x2y2 ∈ M .

By the above arguments, it is possible to find V (G1) by means of NG[{x1, x2}]
except for two vertices y1, y2 ∈ NG[{x1, x2}] that must belong to V (G2). This
way, V (G2) is obtained by {y1, y2}∪{v ∈ V (G) : v /∈ NG[{x1, x2}]}. Once found
V (G1), V (G2), and M , we test whether M is a perfect matching and whether
G1 and G2 are cographs. If so, we compute G2 and then we check isomorphism
between G1 and G2.

The correctness of the algorithm follows from the fact that all the possible
relevant partitions (for the emergence of the cographs, if any) are considered.

Now, we show that Algorithm 1 runs in polynomial time.
For enumerating every 4-tuple of vertices x1, x2, y1, y2 ∈ V (G) it is required

O(n4) time. After, in O(n + m) time we can check whether M is a perfect
matching, as well as checking whether G1 and G2 are cographs. Finally, for
computing G2 and checking isomorphism between G1 and G2 is also required
O(n + m) time. Therefore, the running time of Algorithm1 takes O(n5 + n4m)
time. 	


3 Results on Some Ck-Free Graphs

We begin by showing a hardness result, in Theorem1.

Theorem 1. Comp-Sub(PM) is GI-hard on {Ck≥7, Ck≥7}-free graphs.

Proof. Given that Graph Isomorphism is GI-hard on split graphs [6], we show
a polynomial-time reduction from such a problem to Comp-Sub(PM).

Note that a split graph is connected if and only if it does not contain isolated
vertices. Therefore, we may assume that the instances of Graph Isomorphism
on split graphs are pairs of connected split graphs.

Let A and B be connected split graphs such that |V (A)| = |V (B)| = n, for
some n ≥ 3. From an instance (A,B) of Graph Isomorphism, we construct an
instance G of Comp-Sub(PM).

Let G arise from the disjoint union between A, B, Kn, and In. Denote Kn

by K and In by I. We make every vertex in V (A) adjacent to every vertex in
V (K). Furthermore, we add an arbitrary perfect matching between V (A) and
V (I) and between V (K) and V (B). An example of graph G follows in Fig. 1.
Additionally, let H1 = G[V (A) ∪ V (K)] and H2 = G[V (B) ∪ V (I)]. Clearly, the
construction can be done in polynomial time.

We first show that G is {Ck≥7, Ck≥7}-free.

Claim 1. Let G be the graph obtained from the construction. It holds that G is
a {Ck≥7, Ck≥7}-free graph.
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Proof (of Claim 1). We prove that (I) G is Ck≥7-free, and (II) G is Ck≥7-free.
(I) Suppose by contradiction that G contains a Ck≥7, denoted as C, as

induced subgraph. We may assume that k is minimum.
By construction, H1 and H2 are split graphs and it is clear that H1 and H2

are C�+4-free, for every � ≥ 0. Then V (C) �⊆ V (H1) and V (C) �⊆ V (H2). So,
we assume that V (C) ∩ V (H1) �= ∅ and V (C) ∩ V (H2) �= ∅. Since I is a set of
vertices with degree one in G, we have that V (C) ∩ I = ∅. So, we may suppose
that V (C) ∩ V (B) �= ∅ and since C is a cycle, |V (C) ∩ V (B)| ≥ 2. Since B is
split, we have that |V (C) ∩ V (B)| ≤ 4.

Since C is a cycle and K is a complete graph, C must contain exactly two
vertices from K and no vertex of A. Then, |V (C)| ≥ 7 implies that |V (C) ∩
V (B)| ≥ 5, a contradiction.

(II) Suppose by contradiction that G contains a Ck≥7, denoted as D, as
induced subgraph. Let V (D) = {d1, . . . , d�}, for some � ≥ 7, and E(D) = {didj :
1 ≤ i < j ≤ �} \ ({didi+1 : 1 ≤ i ≤ � − 1} ∪ {d�d1}).

By definition of D, {d1, d2, d4, d5} induces a C4. Then, since H1 and H2 are
split graphs, V (D) �⊆ V (H1) and V (D) �⊆ V (H2). So, we assume that V (D) ∩
V (H1) �= ∅ and V (D) ∩ V (H2) �= ∅. Then, there exists i, j ∈ [�] such that
di ∈ V (H1), dj ∈ V (H2) and didj ∈ E(D).

Without loss of generality, suppose that i = 1. Since {d1, d3, d5} induces a
K3, we may assume that {d1, d3, d5} ⊆ V (H1). Thus, d1dj ∈ E(D), for some
j ∈ {4, 6, . . . , � − 1}. Notice that, if j = 4 (resp. j ≥ 6), then {d1, d4, d6} (resp.
{d1, d3, dj}) induces a K3 which intersects both V (H1) and V (H2), a contradic-
tion. Therefore G is Ck≥7-free. 	


In what follows, we prove that (A,B) is a yes-instance of Graph Isomor-
phism if and only if G is a yes-instance of Comp-Sub(PM).

Suppose that A � B. Since In = Kn, B � A, and there is no edge between a
vertex in I and a vertex in V (B), it is easy to see that H1 and H2 are isomorphic.
Therefore, G is a yes-instance of Comp-Sub(PM).

For the converse, we suppose that G is a yes-instance of Comp-Sub(PM).
Let (V ′, V ′′) be a partition of V (G) into complementary parts such that [V ′, V ′′]
is a perfect matching. Since I is a set of vertices with degree one in G and A
is connected, it holds that either (I ⊂ V ′ and V (A) ⊂ V ′′) or (V (A) ⊂ V ′

and I ⊂ V ′′). Suppose that V (A) ⊂ V ′. This implies that V ′ = V (A) ∪ K
and V ′′ = V (B) ∪ I. Since G[V ′] and G[V ′′] are complementary, we have that
G[V ′] � G[V ′′]. Hence, due to the automorphism of universal vertices, it holds
that A � B. 	


See in Fig. 1 an example of the construction presented in Theorem 1.
Despite the hardness results presented in Theorem 1, next we show that

Comp-Sub(PM) can be solved in polynomial time on hole-free graphs. Recall
that a hole is a cycle on 5 or more vertices.
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Fig. 1. Graph G constructed for Theorem 1.

Theorem 2. Comp-Sub(PM) is polynomial-time solvable on hole-free graphs.

Proof. Let G be a hole-free graph having 2n-vertices. We assume that n is at
least 5; otherwise, the problem can be solved in O(1) time.

Suppose that G ∈ Comp-Sub(PM), then G is decomposable into comple-
mentary subgraphs G1 and G2, such that the edge cut M of the decomposition
is a perfect matching.

Recall that G1 or G2 is a connected graph. Thus, we assume that G1 is
connected.

We go through the proof by analysing the structure of the graphs of the
decomposition by means of their connectivity (Claims 1 and 2), and we conclude
by showing how to find that decomposition when it exists.

Claim 1. Let G1 be a connected graph with at least five vertices and F ⊆ V (G1).
If G[F ] is biconnected, then G[FG2 ] is a cluster graph.

Proof (of Claim 1). Suppose, by contradiction, that G[FG2 ] is not a cluster
graph and let v1v2v3 be a P3 in G[FG2 ]. Since G[F ] is 2-connected, there exist
two independent paths between any two vertices in F . Consider u1, u2, u3 ∈ F
as the corresponding vertices of v1, v2, v3, respectively. Let P and P ′ be two
independent paths between u1 and u3 in F . Since P and P ′ are independent, u2

does not belong to P or P ′, say P . Then P ∪ {v1, v2, v3} induces a hole in G, a
contradiction. 	


Next, we see more on the structure of G1 and G2.

Claim 2. Let G1 be a connected graph having at least five vertices. If G1 is
non-biconnected, then either there is S ⊂ V (G1) with |S| ≤ 2 such that G1 \S is
biconnected; or there is S′ ⊂ V (G2) with |S′| ≤ 2 such that G2\S′ is biconnected.

Proof (of Claim 2). Suppose that G1 is non-biconnected and let T be a block-
cut-point tree of G1. Let B = {B1, . . . , Bs} and C = {c1, . . . , ct} be the sets of
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blocks and cutpoints in G1, respectively. The proof is divided in two cases: (I)
|B| ≥ 2, |C | = 1; and (II) |B| ≥ 2, |C | ≥ 2.

Recall that if |B| = 1, then |C | = 0 and G1 is biconnected.
(I) Suppose that |B| ≥ 2 and |C | = 1. Let C = {c}. We have that G1 \ {c}

is the disjoint union (B1 \ {c}) ∪ · · · ∪ (Bs \ {c}). This implies that G1 \ {c} is
the join (B1 \ {c}) + · · · + (Bs \ {c}).

– If s ≥ 3 then G2 \ {c} = (B1 \ {c}) + · · · + (Bs \ {c}) is biconnected.
– If s = 2, |B1\{c}| ≥ 2, and |B2\{c}| ≥ 2 then G2\{c} = (B1\{c})+(B2\{c})

is also biconnected.
– If s = 2 and |B1 \ {c}| = 1 then |B2 \ {c}| ≥ 2. Otherwise, G1 (and G2)

has only three vertices. Thus, B2 is a block of G1 with size |V (G1)| − 1, and
S = B1 \ {c} is as required.

(II) Now, consider that |B| ≥ 2 and |C | ≥ 2. Let B,B′ ∈ B two distinct
leaves in T and c, c′ ∈ C be two distinct cutpoints such that Bc,B′c′ ∈ E(T ).

Let D = V (G1) \ (B ∪ B′). Since B (resp. B′) is a leaf in T , we have that
V (B) \ {c} (resp. V (B′) \ {c′}) is not adjacent to B′ ∪ D (resp. B ∪ D). This
implies that G1 \ {c, c′} is the join (B \ {c}) + (B

′ \ {c′}) + D.

– If D �= ∅, we have that (B \ {c}) + (B
′ \ {c′}) + D is biconnected. Thus,

G2 \ {c, c′} is biconnected as required.
– If D = ∅, |B \ {c}| ≥ 2, and |B′ \ {c′}| ≥ 2, then G2 \ {c, c′} = (B \ {c}) +

(B
′ \ {c′}) is also biconnected.

– If D = ∅ and |B \ {c}| = 1, then |B′ \ {c′}| ≥ 2. Otherwise, G1 (and G2) has
only four vertices. Thus, G1 \ B is biconnected (notice that |B| = 2).

This completes the proof of Claim 2. 	

By Claim 1, if G1 is biconnected, then G2 is a cluster graph. Since G1 � G2,

we have that G1 is a complete multipartite graph. Hence, G1 and G2 are cographs
and, by Lemma 1, we can find the complementary partition of G in polynomial
time.

Now, if G1 is non-biconnected, recall that by Claim 2, either there is S ⊂
V (G1) with |S| ≤ 2 such that G1 \S is biconnected; or there is S′ ⊂ V (G2) with
|S′| ≤ 2 such that G2 \ S′ is biconnected.

Thus, there is a fixed number of vertices (at most 2) such that removing
from G1 or G2 leaves a biconnected graph. We deal with the case that there
exist c, c′ ∈ V (G2) such that G2 \ {c, c′} is biconnected. The approach for the
other case is similar.

If there exist c, c′ ∈ V (G2) such that G2 \ {c, c′} is 2-connected, by Claim 1
(dual), we have that the graph induced by (V (G2) \ {c, c′})G1 is a cluster graph.
Then G1 and G2 have distance to cluster equals 2. We proceed by Algorithm 2.
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Algorithm 2: Partition-Into-Complementary-Subgraphs(G)

Input: A graph G.
Output: Whether G is partitionable into two complementary graphs G1

and G2 such that G1 and G2 have distance to cluster equals 2
and the edge cut of the decomposition is a perfect matching.

1 forall x1, . . . , x4, y1, . . . , y4 ∈ V (G) do
2 V (G2) := NG[{y1, . . . , y4}] \ {x1, . . . , x4}
3 V (G1) := V (G) \ V (G2)
4 M := {xy ∈ E(G) : x ∈ V (G1), y ∈ V (G2)}
5 if M is a perfect matching then
6 forall cluster-modulator S1 of G1, such that |S1| ≤ 2 do
7 forall cluster-modulator S2 of G2, such that |S2| = |S1| do
8 forall mapping f : S1 �→ S2 do
9 if f can be extended to an isomorphism from G1 to G2

then
10 return yes

11 return no

Since G2 has distance to complete multipartite equals 2, there exist four
vertices y1, . . . , y4 ∈ V (G2) such that NG2 [{y1, . . . , y4}] = V (G2). Then, if a
complementary decomposition (G1, G2) exists, we have that |NG[{y1, . . . , y4}]| =
n + 4. Thence, it is possible to find V (G2) which is NG[{y1, . . . , y4}] except for
four vertices x1, . . . , x4 ∈ NG[{y1, . . . , y4}]. We put x1, . . . , x4 in V (G1) as well as
the remaining vertices {v ∈ V (G) : v /∈ NG[{y1, . . . , y4}]}. Given V (G1), V (G2),
and M , we check whether M is a perfect matching. If so, we compute G2 and we
proceed to the step of finding cluster-modulators S1 for G1 and S2 for G2, that
are done by Lines 6–7. In a naive manner, all the possible pair of modulators
can be found in O(n4), but we show how to find them in a more efficient way.

We first find a P3 = w1w2w3 in G1. We know that at least one vertex in
{w1, w2, w3} must be included in a cluster-modulator for G1. Then, for every
w ∈ {w1, w2, w3} we put w ∈ S1 and we branch by searching (if any) for a
P3 = w′

1w
′
2w

′
3 in G1 \ {w}. Again, given that at least one vertex in {w′

1, w
′
2, w

′
3}

must be included in a cluster-modulator for G1, for every w′ ∈ {w1, w2, w3} we
put w′ ∈ S1. If G1 \ S1 is a cluster graph, we proceed to finding, in the same
manner, a cluster-modulator S2 for G2. Note that this is basically a bounded
search tree algorithm for finding cluster vertex deletion sets.

Given a pair of modulators S1 and S2 such that |S1| = |S2|, and a mapping
from S1 to S2, the final task is checking if such a mapping can be extended to an
isomorphism between G1 and G2. Note that, by the bounded search tree tech-
nique, the number of pairs of modulators and mappings that must be considered
is bounded by a constant.

Recall that G1 (resp. G2) is a disjoint union of complete graphs H1 ∪· · ·∪Hp

(resp. H ′
1 ∪ · · · ∪ H ′

p), for some p ≥ 2, with the addition of two vertices w,w′
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(resp. z, z′) arbitrarily adjacent to H1 ∪ · · · ∪Hp (resp. H ′
1 ∪ · · · ∪H ′

p). With this
structure, an isomorphism from G1 to G2 can be determined as follows.

For a mapping w �→ z, w′ �→ z′, we can map Hi to H ′
j , i, j ∈ [p], if and only

if

|V (Hi)| = |V (H ′
j)| and

|NHi
(w) \ NHi

(w′)| = |NH′
j
(z) \ NH′

j
(z′)| and

|NHi
(w′) \ NHi

(w)| = |NH′
j
(z′) \ NH′

j
(z)| and

|NHi
(w) ∩ NHj

(w′)| = |NH′
i
(z) ∩ NH′

j
(z′)|.

Therefore, each mapping w �→ z, w′ �→ z′ defines “types” of cliques, from
which the mapping can be extended to an isomorphism from G1 to G2 if and
only if G1 and G2 have the same number of cliques per type.

Next, we analyse the running time of Algorithm 2.
First, in Line 1, we check every 8-tuple of vertices in V (G) to separate those

x1, . . . , x4 ∈ V (G1) and y1, . . . , y4 ∈ V (G2), which requires O(n8) time. Lines 2–
4 define V (G1), V (G2), and M , which run in O(n + m) time. Checking whether
M is a perfect matching (Line 5) can be done in O(n + m) time.

Recall that a P3 in G can be found in O(n + m) time. By the method previ-
ously described, Line 6 can be done by finding a P3 = w1w2w3 in G1; for every
w ∈ {w1, w2, w3} finding a P3 = w′

1w
′
2w

′
3 in G1 \{w} in G1; and finally, for every

w′ ∈ {w1, w2, w3}, checking whether G1 \ S1 = {w,w′} is a cluster graph. This
produces a ternary search tree with height equals 2. Hence with 9 leaf nodes,
that are at most 9 possible cluster-modulators {w,w′} for G1. This requires a
running time of O(m + n). For every of those possible cluster-modulators for
G1 we proceed to finding every cluster-modulator for G2 (Line 7) by the same
method. This gives an amount of at most 81 possible 4-tuples w,w′, z, z′ that
must be checked, hence Lines 6–8 run in O(n + m) time.

Finally, for Line 9, checking whether an isomorphism from G1 to G2 can be
extended from f can be done by checking sizes of cliques and neighborhoods,
which can be done in O(n + m) time.

Therefore, the overall running time of Algorithm 2 is of order O(n8(n+m)) =
O(n9 + n8m). 	


Next, it follows a characterization for Comp-Sub(PM) in the class of dis-
tance hereditary graphs, which is a subclass of hole-free graphs. A distance-
hereditary graph is a {domino, house, gem, hole}-free graph. See a domino, a
house and a gem in Fig. 2. For the next result, let � be the graph in Fig. 2.

Proposition 1. Let G be a distance-hereditary graph of order 2n. It holds that
G ∈ Comp-Sub(PM) if and only if G ∈ {KnKn,�}.

We close this section with a characterization of Comp-Sub(PM) on chordal
graphs. Recall that a chordal graph is a Ck≥4-free graph.

Proposition 2. Let G be a chordal graph of order 2n. Then, G ∈ Comp-
Sub(PM) if and only if G = KnKn.
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Fig. 2. Some small subgraphs.

4 Results on Some Pk-Free Graphs

In this section, we still consider Π = PM as the property that considers M
as a perfect matching. We begin by showing how to solve Comp-Sub(PM) in
polynomial time when the input graph G is P5-free.

Theorem 3. Comp-Sub(PM) is polynomial-time solvable on P5-free graphs.

Proof. Let G be a 2n-vertex P5-free graph. Recall that if G ∈ Comp-Sub(PM),
then G is decomposable into complementary subgraphs G1 and G2, such the
edge cut M of the decomposition is a perfect matching. Since G is P5-free, the
existence of M implies that G1 and G2 are P4-free, that is, G1 and G2 are
cographs. Then, the conclusion follows by applying Lemma 1. 	


A graph is extended P4-laden if every induced subgraph with at most six
vertices that contains more than two induced P4’s is {2K2, C4}-free. Extended
P4-laden graphs generalize cographs, P4-sparse, P4-lite, P4-laden and P4-tidy
graphs, and they were considered under the perspective of partitioning. For
instance, Bravo et al. [2] show that partitioning an extended P4-laden graph
into at most k independent sets and at most � cliques is linear-time solvable, for
k, � ≥ 1 and Bravo et al. [3] show a linear time algorithm for recognizing graphs
that can be partitionable into a clique and a forest. In addition, Pedrotti and
De Mello [18] describe a linear-time algorithm that lists the minimal separators
of extended P4-laden graphs.

Another related result to partitioning is implied by considering that extended
P4-laden graphs are P6-free. The result on 3-colorability by Randerath and
Schiermeyer [21] implies that the problem of partitioning a graph into 3 inde-
pendent sets is polynomial-time solvable on extended P4-laden graphs.

We present in Proposition 3 a characterization concerned to Comp-Sub(PM)
on extended P4-laden graphs.

Proposition 3. Let G be an extended P4-laden graph of order 2n. It holds that
G ∈ Comp-Sub(PM) if and only if G = KnKn.

Proof. Let G = KnKn. We analyse the subgraphs of G with at most 6 vertices
to show that G is an extended P4-laden graph. Let G′ be a subgraph of G such
that |V (G′)| ≤ 6. If G′ is a subgraph of Kn or Kn, it is clear that G′ does
not have induced P4’s. Then, we suppose that V (G′) intersects both V (Kn) and
V (Kn). Notice that two induced P4’s arise in G′ only if |V (G′) ∩ V (Kn)| ≥ 3
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and |V (G′) ∩ V (Kn)| ≥ 3. Since G is a split graph, G′ is also a split graph. This
implies that G′ is {2K2, C4}-free and hence, G is extended P4-laden.

Now, we show that G ∈ Comp-Sub(PM) implies that G = KnKn. Suppose
that G ∈ Comp-Sub(PM), and, by contradiction, that G �= KnKn. Since G ∈
Comp-Sub(PM) there exist a complementary decomposition (G1, G2) of G,
such that the edge cut M of the decomposition is a perfect matching. Let M =
{u1v1, . . . , unvn} where ui ∈ V (G1) and vi ∈ V (G2), for every i ∈ [n].

Given that G �= KnKn, let u1u2u3 be a P3 in G1 and G′ = G[{ui, vi : i ∈ [3]}].
Since uivi ∈ E(G′), for every i ∈ [3], we have that {u1, v1, u3, v3} induces a

2K2 in G′. Then, we may suppose that v1v3 ∈ E(G′). Notice that {u2, v2, u1, v3}
induces a 2K2 in G′, then we consider that v1v2 ∈ E(G′) or v2v3 ∈ E(G′). In
both possibilities we have an induced C4 in G′, by {u1, v1, u2, v2} in the first,
and by {u2, v2, u3, v3} in the latter, a contradiction. 	


Our last result characterizes cographs yes-instances of Comp-Sub(PM).
Recall that a cograph is a P4-free graph.

Proposition 4. Let G be a cograph of order 2n. Then, G ∈ Comp-Sub(PM)
if and only if G = K2.

5 Concluding Remarks

We have considered Comp-Sub(PM) problem when PM states the edge cut of
the decomposition as a perfect matching. We have presented polynomial-time
algorithms for solving Comp-Sub(PM) when the input graph G is hole-free
or P5-free and we have shown characterizations on chordal, distance-hereditary,
and extended P4-laden graphs.

With respect to complexity results, despite its resemblance with the NP-
complete problem Perfect Matching Cut, we show that Comp-Sub(PM)
is GI-hard when the given input graph G is {Ck≥7, Ck≥7}-free.

We remark that our results by Theorem 1 and Theorem 2 address the cases
when G is a C�≥k-free graph, for every k ≥ 3, except for k = 6. Then, we leave
the following conjecture.

Conjecture 1. Comp-Sub(PM) is GI-hard on Ck≥6-free graphs.

We also leave the complexity of Comp-Sub(PM) on C5-free graphs and P6-
free graphs open. Furthermore, we still do not know whether Comp-Sub(PM)
is GI-complete.
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Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2 26

18. Pedrotti, V., De Mello, C.P.: Minimal separators in extended p4-laden graphs.
Discret. Appl. Math. 160(18), 2769–2777 (2012). https://doi.org/10.1016/j.dam.
2012.01.025

19. Penso, L.D., Rautenbach, D., Souza, U.S.: Graphs in which some and every max-
imum matching is uniquely restricted. J. Graph Theory 89(1), 55–63 (2018).
https://doi.org/10.1002/jgt.22239

20. Protti, F., Souza, U.S.: Decycling a graph by the removal of a matching: new
algorithmic and structural aspects in some classes of graphs. Discret. Math. Theor.
Comput. Sci. 20(2) (2018). https://doi.org/10.23638/DMTCS-20-2-15

21. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P6-free graphs. Discret. Appl.
Math. 136(2–3), 299–313 (2004). https://doi.org/10.1016/S0166-218X(03)00446-3

https://doi.org/10.46298/dmtcs.616
https://doi.org/10.1142/S0129054121500027
https://doi.org/10.1016/j.tcs.2013.11.006
https://doi.org/10.1016/j.tcs.2013.11.006
https://doi.org/10.1137/0606026
https://doi.org/10.1002/net.3230110103
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1007/s10878-015-9968-5
https://doi.org/10.1007/s10878-015-9968-5
https://doi.org/10.1016/j.tcs.2015.04.001
https://doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1007/s10479-021-03966-9
https://doi.org/10.1016/j.ipl.2017.04.003
https://doi.org/10.1016/j.ipl.2017.04.003
https://doi.org/10.1007/s00373-021-02319-4
https://doi.org/10.1007/s00373-021-02319-4
https://doi.org/10.1007/3-540-45477-2_26
https://doi.org/10.1016/j.dam.2012.01.025
https://doi.org/10.1016/j.dam.2012.01.025
https://doi.org/10.1002/jgt.22239
https://doi.org/10.23638/DMTCS-20-2-15
https://doi.org/10.1016/S0166-218X(03)00446-3


On the Intractability Landscape
of Digraph Intersection Representations

Andrea Caucchiolo and Ferdinando Cicalese(B)

Department of Computer Science, University of Verona, Verona, Italy
{andrea.caucchiolo,ferdinando.cicalese}@univr.it

Abstract. We study the classical graph intersection number problem
[Erdős et al., CJM1966] for directed acyclic graphs as recently proposed
in [Kostochka et al., ISIT2019]. We prove a strong inapproximability
result for arbitrary DAGs. We show that the problem is NP-hard when
restricted to arborescences, which strongly contrasts with the existence of
a trivial linear time solution for the corresponding problem on undirected
trees. For the restriction of the problem to the case of arborescences,
we complement the hardness result with an asymptotic FPTAS, which
significantly improves on a previously known 2-approximation algorithm.

Keywords: Intersection number · NP-hardness · Arborescences ·
Inapproximability · Asymptotic fully polynomial time approximation
schemes

1 Introduction

Motivated by the study of networks of webpages generated by their information
content, and of cardinality dependent generative models of networks [6,19], Kos-
tochka et al. [11] (see also [13]) introduced the novel notion of directed intersec-
tion representation of a directed acyclic graph (DAG). In this model, a directed
acyclic graph G = (V (G), E(G)) is represented by a family of subsets of a ground
set C via an assignment ϕ : V (G) �→ 2C such that (u, v) ∈ E(G) if and only if
ϕ(u)∩ϕ(v) �= ∅ and |ϕ(u)| < |ϕ(v)|. The authors of [11] studied the correspond-
ing notion of directed intersection number of a DAG G, denoted by DIN(G),
defined as the minimum cardinality of a ground set C such that there exists a
directed intersection representation ϕ : V (G) �→ 2C .

The main results of [11] are about extremal values of DIN(G), more pre-
cisely: (i) DIN(G) ≤ 5n2

8 − 3n
4 + 1 for every DAG G with n vertices; and (ii)

for each n there exist DAGs G with n vertices such that DIN(G) ≥ n2

2 . These
results, however, only bound the extremal approximation one can get in the
worst possible case for a given size n = |V (G)|. The results of [11] leave open
the question of the tractability of the problem and the authors limited them-
selves to observing that DIN(G) is lower bounded by the length of the longest
path in G, which is, however, an easy problem on DAGs. In [2], Caucchiolo and
Cicalese started to study the computational complexity of determining DIN(G)
c© Springer Nature Switzerland AG 2022
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and showed that the problem is in fact NP -hard for general DAGs. They also
considered the restricted variant of computing DIN(G) when the input graph G
is an arborescence, providing a 2-approximation algorithm. This result, however,
left open the question whether for this restricted version of the problem an exact
polynomial time algorithm exists.

Our Results. In this paper, we contribute to the study of the computational
complexity landscape of the DIN problem. We significantly strengthen both
results of [2]. We first show a strong inapproximability result on the compu-
tation of the directed intersection number of an arbitrary DAG. Then, in the
quest for islands of tractability, following [2], we focus on arborescence graphs.
In strong contrast to the case of undirected graphs, where the intersection num-
ber of a tree is trivially given by the cardinality of its edge set, we show that
computing the directed intersection number is NP-hard even when the input
graph is restricted to be an arborescence. Moreover, on the positive/algorithmic
side, we are able to complement this negative result with a strong approximation
guarantee. In fact, we give an asymptotic FPTAS for computing the DIN of an
arborescence.

Related Work. Every finite undirected graph is representable by a family of
finite sets such that each vertex is associated to one of the sets of the family and
two vertices are adjacent if and only if their associated sets intersect. The inter-
section number (IN(G)) of an undirected graph G, is the minimum cardinality
of a set U such that G is representable by a family of subsets of U . Erdős, Good-
man and Pósa [7] showed that IN(G) equals the minimum number of cliques
needed to cover the edges of G, i.e., the size of a minimum edge clique cover of
G. Determining the size of a minimum edge clique cover—and equivalently the
intersection number—was proved to be NP-hard in [16] (see also [12]). By [8,14],
both problems are not approximable within a factor of |V |ε for some ε > 0 unless
P = NP . On the other hand, by the result of [9], it follows that computing the
intersection number of a graph is fixed parameterized tractable (with respect to
the intersection number as parameter). Several applications of clique covers were
discovered over the years in areas as diverse as computational geometry, matrix
factorization, compiler optimization applied statistics, etc.: see, e.g., the survey
papers [17,18], and the comprehensive introduction of [4].

Several analogues of the above concepts have been proposed for the case of
directed graphs [1,5,15], based on the representation of a digraph by identifying
each vertex v with a pair of subsets Sv, Tv of a ground set U , with (u, v) ∈ E if
and only if Su ∩ Tv �= ∅. In [5], a characterization is provided on the intersection
number of a digraph, analogous to the one for undirected graphs given in [7].

2 Notation and Basic Definitions

Given a DAG G, we use coloring as metaphor of intersection representation
according to the definition of [11]. We say that ϕ : V (G) �→ 2Cϕ is a proper
coloring of a DAG G if for each u, v ∈ V (G), it holds that (u, v) ∈ E(G) if and
only if ϕ(v)∩ϕ(u) �= ∅ and |ϕ(u)| < |ϕ(v)|. We denote by Φ(G) the set of proper
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colorings of G. For a proper coloring ϕ, we denote by |ϕ| the cardinality of the
color ground set Cϕ and refer to |ϕ| = |Cϕ| as the size of the coloring ϕ. We are
interested in the problem of determining DIN(G) = min

ϕ∈Φ(G)
|ϕ|.

We say that ϕ is an optimal coloring of G if ϕ is a proper coloring of G and
|ϕ| = DIN(G).

For a set of vertices V ′ ⊆ V , we define ϕ(V ′) = ∪v∈V ′ϕ(v). Moreover, given
a proper coloring ϕ of graph G = (V,E), and a subgraph G′ = (V ′, E′) of G, we
denote by ϕ(G′) the set of colors used in G′, i.e., ϕ(G′) = ϕ(V ′).

Given a graph G = (V,E) and a subset of vertices V ′ ⊆ V , we denote by
G[V ′] the subgraph induced by V ′, i.e., G[V ′] = (V ′, E′) with E′ = {(u, v) ∈ E |
u, v ∈ V ′}.

For an integer n ≥ 1 we use [n] to denote the set {1, . . . , n}.

Fact 1. Let G be a directed graph and G′ an induced subgraph of G. Let ϕG be a
proper coloring of G and ϕG′ be an optimal coloring of G′. Then, |ϕG| ≥ |ϕG′ |.

Proof. The claim follows by the observation that every proper coloring for G is
also a proper coloring for G′.

Note that the fact does not hold when the subgraph G′ is not induced.

Arborescences. Recall that a directed graph T is an arborescence if there is
a vertex r called the root such that for all other vertices v there is exactly one
path from r to v. Equivalently, T is a directed rooted tree where all edges are
directed away from the root. A leaf is a vertex with out-degree 0; vertices with
out-degree different from 0 are referred to as internal vertices. For a vertex v, we
use d(v) to denote the distance of v from the root. For an edge (u, v), we refer
to u as the parent of v and v as a child of u.

The following lemma implies a simple lower bound on the cardinality of any
coloring restricted to a subgraph of an arborescence, based on the number of
internal nodes. It will be used later in order to obtain more precise lower bounds
by considering separately different parts of the arborescence.

Lemma 1. Let T be an arborescence and ϕ a proper coloring of T . Then, for
each internal vertex v of T , there is a color cv ⊆ ϕ(v) such that, for each vertex w
which is not a child of v, it holds that cv �∈ ϕ(w).

3 Hardness of Approximation for General DAGs

The first result we present is a strengthening of the NP-hardness of computing
the DIN of an arbitrary DAG, which was proved in [2]. We show that under
the standard complexity assumption P �= NP , the problem of computing the
directed intersection number of a DAG G = (V,E) does not admit an |V |1−ε

approximation algorithm. The proof employs a gap-reduction from the problem:

Biclique Cover: Given a bipartite undirected graph G = (V,E), find a mini-
mum cardinality collection {Bi = (Vi, Ei)}i∈[k] of k bicliques (bipartite complete
subgraph) of G that cover the edges of G, i.e., ∪iEi ⊇ E.
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Given a bipartite graph G we use bc(G) to denote the size of the minimum
biclique cover of G. We will use the following result from [3].

Theorem 1. Let η > 0. It is NP-hard to approximate Biclique Cover within
a factor of n1−η. In particular, there exists a polynomial algorithm that takes a
SAT instance φ and produces a bipartite graph Gφ = (V,E) with |V | = |φ|O(1)

such that the following properties hold: (i) If φ is satisfiable, then bc(G) ≤ |V |η;
(ii) if φ is not satisfiable, then bc(G) ≥ |V |1−η

The following theorem gives the desired hardness of approximability of the
DIN computation.

Theorem 2. Let ε > 0. It is NP-hard to approximate DIN within a factor of
n1−ε. In particular, there exists a polynomial algorithm that takes a SAT instance
φ and produces a bipartite graph Dφ = (V,E) with |V | = |φ|O(1) such that the
following properties hold: (i) If φ is satisfiable, then DIN(D) ≤ |V | ε

2 ; (ii) if φ
is not satisfiable, then DIN(D) ≥ |V |1− ε

2

Proof. Let η = η(ε) > 0 such that η ≤ ε/2 and for all sufficiently large instances
φ of SAT, the bipartite graph Gφ = (VG, EG) (instance of Biclique Cover)
guaranteed by Theorem1 satisfies 3nη + 1 ≤ n

ε
2 , where n = |VG|. From the

bipartite graph Gφ on parts A,B, create a directed graph Dφ by orienting the
edges from A to B. Then the number of vertices of D is also n.

We have that DIN(D) ≥ bc(G): For each edge uv there is a colour in common
for u and v. Moreover, each color shared by a vertex in A and a vertex in B
induces a biclique. The bicliques associated to the colours shared by at least a
vertex of A and a vertex of B (i.e. taking the set of vertices that have such a
colour c in their list) must cover the edges of G. In particular, if bc(G) ≥ n1−η

then DIN(D) ≥ n1−η ≥ n1− ε
2 .

For the other direction, it suffices to show that if bc(G) ≤ nη, then DIN(D) ≤
3nη + 1 ≤ n

ε
2 . For this, we start by giving each vertex a distinct colour for each

biclique it is in. Then we use at most nη additional colours for increasing the
cardinality of the color set of each color in A to nη and at most nη +1 additional
colours for having the cardinality of the color set of each vertex in B equal to
nη +1. This ensures the cardinality of the color sets of the vertices in A (resp B)
are all of the same size, with that of the vertices in A being strictly smaller than
that of the vertices in B. Therefore, the obtained coloring ensures there are no
edges within A or B, but all edges are correctly from A to B as |φ(u)| < |φ(v)|
for all uv ∈ E.

4 Hardness for Arborescences

In this section we show that the computation of the directed intersection number
is NP-hard also when the input graph is an arborescence. The main tools at the
basis of the proof are a special class of arborenscences given in Definition 1
and depicted in Fig. 1, and the characterization of optimal colorings of such
arborescences obtainable via Algorithm1.
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Algorithm 1: Canonical Coloring Algorithm
Input: A non-empty arborescence graph T with root r = root(T ); a level
function level : V �→ N such that: (i)
level(v) ≥ max{level(parent(v)), d(v)} + 1, where d(v) is the distance of node
v from the root; (ii) level(u) = level(w) if parent(u) = parent(w).

Output: a proper coloring ϕ of T such that for each v it holds |ϕ(v)| = level(v).
Set L ← maxv∈V level(v); C(1) = ∅; Ξ = {level(v) | v ∈ V } ;
for � ∈ Ξ \ {1} do

Define a new set of colors for level �: C(�) = {a
(�)
1 , . . . , a

(�)
�−2};

if there is at least one leaf f with level(f) = �
then Define a new color λ(�);

For each internal node v Define a new color c(v);

Set ϕ(root(T )) ← c(root(T )) ∪ Clevel(root(T ));
for each vertex v 	= root(T ) do

if v is not a leaf then Set ϕ(v) ← c(v) ∪ C(level(v)) ∪ c(parent(v));

else Set ϕ(v) ← λ(level(v)) ∪ C(level(v)) ∪ c(parent(v))

return ϕ

For the sake of the analysis, it is useful to think of the cardinality of the
color set that a coloring ϕ assigns to a node u as the level used by ϕ for u. The
following algorithm takes in input for each v the value level(v) and outputs a
coloring ϕ that uses level(v) as the level for v, i.e., such that |ϕ(v)| = level(v).

Lemma 2. Fix an arborescence T and a level function level : V �→ N satisfying
the condition in Input of Algorithm1. Let ι be the number of internal vertices
of T . Let Λ = |{level(f) | f is a leaf of T}|, be the number of levels assigned
to at least one leaf. Let Ξ = {level(v) | v ∈ V } be set of levels assigned to
vertices of T . Then, Algorithm1, on input T, level produces a coloring ϕ with
|ϕ| =

∑
�∈Ξ\{1}(
 − 2) + ι + Λ, in linear time (plus the time to write down the

sets of colors). In particular, if there exists h such that Ξ = {1, 2, . . . , h} then
|ϕ| = (h−2)(h−1)

2 + ι + Λ.

Let T = (V,E) be an arborescence. We say that a proper coloring ϕ of T is
canonical if there exists a choice of the level assignment, level : V �→ N, such
that up to renaming of the colors, ϕ coincides with the coloring produced by
Algorithm 1. In particular, for any pair of sibling nodes, ϕ uses the same level.

For any h ≥ 1, we denote by P3,h the directed graph consisting of three node-
disjoint paths with h nodes each, denoted by A = a2, . . . , ah+1; B = b2, . . . , bh+1;
C = c2, . . . , ch+1, and an additional node r which is a in-neighbour of each
one of the stating vertices of the three paths. Therefore P3,h = (V,E), where
V = {r, a2, . . . , ah+1, b2, . . . , bh+1, c2, . . . , ch+1} and E = {(r, a2), (r, b2), (r, c2)}∪
⋃h−1

i=1 {(ai, ai+1), (bi, bi+1), (ci, ci+1)}. We also refer to the common origin r as a1

(resp. b1, c1). Figure 1 contains an example of a P3,h, for h = 12. For a P3,h

graph, we can precisely characterize optimal colorings (details in the full version
of the paper) which will be important in the construction of the arborescence
realizing our reduction.
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Fig. 1. The structure T (W1, . . . , Wn, Z, P3,h), in the particular case h = 13, n = 2,
and a choice of the sets Q1, Q2, W , as indicated in the figure. The picture shows the
substructure denoted P3,12 (on the left); and the paths Q1, Q2, S. On the right, it is
also shown the way levels are counted assuming a coloring for which |ϕ(v)| = d(v) + 1.

Definition 1. Fix positive integers h, n, as well as n+1 sets W1, . . . ,Wn, Z, all
subsets of {4, . . . , h − 1}. Let T (W1, . . . ,Wn, Z, P3,h) be the arborescence graph
obtained by the following procedure: • start with graph P3,h; • create n new paths
with h − 1 nodes, each. For i = 1, . . . , n, denote by Qi = qi 2, . . . , qi h the ith
one of such paths; • for each i = 1, . . . , n, add an edge (r, qi 2) from the root
of P3,h to the first node of Qi; • create a new path with h nodes, denoted by
S = s2, s3, . . . , sh+1 and add an edge (r, s2) from the root of P3,h to the starting
vertex of S; • for each i = 1, . . . , n and j ∈ Wi, create a new leaf node 
i j

and an edge (qi j−1, 
i, j), i.e., the leaf 
i, j is a sibling of the jth node of path
Qi; • for each j ∈ Z, create a new node 
S j and an edge (si j−1, 
S, j), i.e., the
leaf 
S j is a sibling of the jth node of path S; For each i = 1, . . . , n, we define
Fi = {
i,j | j ∈ Wi}, i.e., the set of leaves with siblings in the path Qi. We define
FS = {
S,j | j ∈ Z}, i.e., the set of leaves with siblings in the path S. We let
F = FS ∪

⋃n
i=1 Fi. Then F is the set of all leaves of T (W1, . . . ,Wn, Z, P3,h) with

a sibling which is an internal node.

The following theorem says that some optimal colorings of arborescence T =
T (W1, . . . ,Wn, Z, P3,h) can be attained also by a canonical coloring.

Theorem 3. Fix integers h, n ≥ 1 and sets W1,W2, . . . ,Wn, Z. Let T be equal
to T (W1, . . . ,Wn, Z, P3,h), the arborescence as given by Definition 1. For every
proper coloring ϕ of T such that |ϕ| ≤ h2+5h−2

2 + h
2 + (n + 1)(h − 2) there is a

canonical coloring ϕ′ of T such that |ϕ′| ≤ |ϕ| and uses the levels {1, 2, . . . , h+1}.
In particular, for any pair of sibling nodes, ϕ′ uses the same level.

We can show (details in the full version) that (up to renaming of the colors) a
canonical coloring of T = T (W1, . . . ,Wn, Z, P3,h) that uses levels {1, 2, . . . , h+1}
is determined (via Algorithm 1) by the values g1, . . . , gn, where gi is the level from
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{1, . . . , h + 1} which is not used for any of the nodes of path Qi. This justifies
the following parameterized definition of a canonical coloring of T .

Definition 2. For any n-tuple of integers g1, . . . , gn, we denote by ϕcan(g1, . . . ,
gn) a canonical coloring of T = T (W1, . . . ,Wn, Z, P3,h) that is output by Algo-
rithm1 when the level assignment of the nodes is given by:

level(v) =

{
d(v) + 2 if for some i ∈ [n] v ∈ Qi ∪ Fi and d(v) + 1 ≥ gi

d(v) + 1 otherwise.
(1)

Dually, for any canonical coloring ϕ of T that uses levels {1, . . . , h + 1}, we
let gT

ϕ be the sequence of integers g1, . . . , gn such that ϕ = ϕcan(g1, . . . , gn).
We say that a canonical coloring ϕ is a g-Boolean canonical coloring if for

each i = 1, . . . , n, it holds that gi ∈ {3, h}.
If ϕ is a g-Boolean canonical coloring we let aϕ = a1, . . . , an ∈ {true, false}n

to be the Boolean assignments defined by ai = true (resp. ai = false) if gi = h
(resp. gi = 3).

The Structure of the Reduction. The reduction is from Min-2-Sat: given
a 2-CNF formula φ, find an assignment for φ that minimizes the number of
satisfied clauses.

We are going to show how we choose the sets W1, . . . ,Wn, Z in order to
encode a 2-CNF φ with n variables and m clauses (an instance of MIN-
2-Sat) as an instance of our problem given by an arborescence Tφ =
T (W1, . . . ,Wn, Z, P3,h), with h ≥ 16mn + 3m. In particular we will guaran-
tee that by Theorem 3 the arborescence Tφ has an optimal coloring ϕ which is
canonical.

Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be a 2-CNF over the variables x1, . . . , xn. We
assume that all clauses have two distinct literals of two distinct variables, i.e.,
for each i = 1, . . . ,m, it holds that Ci = 


(i)
1 ∨ 


(i)
2 where, for t = 1, 2, we have



(i)
t ∈ {x1, . . . , xn, x1, . . . , xn}, and 


(i)
1 �∈ {
(i)2 , 


(i)
2 }. We write xj ∈ Ci (resp.

xj ∈ Ci) if there is t ∈ {1, 2} such that xj = 

(i)
t (resp. xj = 


(i)
t ).

The idea of the reduction is to have that for each i = 1, . . . , n, the path Qi

represents the variable xi. The relationship between each variable xi and the
clauses Cj is encoded by the alignment of the leaves in Fi and the leaves in FS ,
i.e., respectively, the leaves with siblings in Qi and the leaves with siblings in
path S.

The idea is that the paths Q1, . . . , Qn behave like sliding locks that can be
shifted by just one level down. A canonical optimal coloring chooses which one
of such locks to shift down in order to minimize the number of leaves (stemming
out of the corresponding path) that are not aligned with the leaves of the path
S. Having path Qi shifted down corresponds to set xi to false because of the
way leaves in the middle of Qi get aligned with the leaves in the middle of S
(see also Fig. 2 for a pictorial explanation).
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For i = 1, . . . , n, let us define sets Hi, Ti,Mi, whose union will be used as
Wi, the set that represent the depths of leaves in Fi:

Hi = {4m(i − 1) + 2(j + 1) | j ∈ [2m]}, Ti = {4m(i − 1) + 4mn + 3m + 2(j + 1) | j ∈ [2m]},

Mi =
⋃

j:xi∈Cj

{4mn + 3j + 1} ∪
⋃

j:xi∈Cj

{4mn + 3j + 2}.

We set Wi = Hi ∪ Ti ∪ Mi.
Moreover, for each g ∈ {3, 4, . . . , h} we define the following variants of

Hi, Ti,Mi:

Hi|g = {j | j ∈ Hi, j < g} ∪ {j + 1 | j ∈ Hi, j ≥ g}, H⊥
i = Hi|3

Ti|g = {j | j ∈ Ti, j < g} ∪ {j + 1 | j ∈ Ti, j ≥ g}, T⊥
i = Ti|3

Mi|g = {j | j ∈ Mi, j < g} ∪ {j + 1 | j ∈ Mi, j ≥ g}, M⊥
i = Mi|3.

We have that Hi|g∪Ti|g∪Mi|g corresponds to the sets of levels used for the leaves
in Fi, by a canonical coloring ϕ such that ϕ = ϕcan(g1, . . . , gn) and gi = g. We let

MS =
m⋃

j=1

{4mn + 3j + 1, 4mn + 3j + 3}, and we set Z = MS ∪
n⋃

i=1

(H⊥
i ∪ Ti).

Finally, we let h = 16mn + 3m and Tφ = T (W1, . . . ,Wn, Z, P3,h).
The key relationship between a g-Boolean canonical coloring ϕ of Tφ and the

corresponding assignment a = aϕ can be summarized as follows: (i) the number
of clauses of φ satisfied by a equals the number of leaves of ∪iFi of depth in
∪iMi for which ϕ does not use a level used for some leaf of FS . Intuitively,
for each one of such leaves, a new color has to be accounted for by ϕ besides
the number of colors already necessary for the leaves in FS .; (ii) there is an
exact correspondence between the total number of colors used by the g-Boolean
canonical coloring ϕ and the number of clauses of φ satisfied by the corresponding
assignment aϕ.

We then show that there exist optimal colorings which are g-Boolean canon-
ical, hence we restrict the analysis to such colorings.

Finally, since MIN-2-SAT is NP -hard [10], from the following theorem and
the polynomiality of constructing of Tφ we have that DirIntNum on arbores-
cences is NP -hard.

Theorem 4. There exists an assignment for φ that satisfies at most κ clauses
if and only if there is a proper coloring ϕ of T = Tφ = T (W1, . . . ,Wn, Z, P3,h)

with |ϕ| ≤ h2 + 5h

2
+ (h − 2)(n + 1) + 6mn + 2m + κ.

5 An Asymptotic FPTAS for Arborescence Graphs

Our algorithmic result, presented in this section, is an asymptotic FPTAS for
computing the DIN of an arborescence. To the best of our knowledge, the
best approximation result known to date is the 2-approximation algorithm of
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[2]. In the context of our paper, the algorithm of 2 coincides with running our
Algorithm 1, with level(v) = d(v) + 1 for each v.

In order to discuss our strategy, let us keep on using the level terminology
introduced in the previous section, i.e., given a coloring ϕ of the input arbores-
cence, we refer to the size of the color set ϕ(v) as the level assigned to v by ϕ.
In this perspective, we can think of a coloring algorithm as a two step procedure
that first fixes the level of each vertex and then chooses the color sets, trying
to optimize the overall number of colors among all colorings that agree on the
levels choices made in the first step.

In the quest of an good algorithms following this scheme, we try to employ
some ideas from the analyses leading to the hardness results of the previous
sections. In particular, from the characterization of optimal colorings of the
arborescence P3,h used in the previous section, we can derive a sort of amortized
lower bound on the level-wise cost of a coloring for an arborescence: Assuming
level assignments have been fixed, an optimal coloring needs to use ∼i new colors
for each level i that is used for more than one node, and ∼i/2 new colors for
each level used for exactly one node (Lemma 3 gives a new lower bound based
on this intuition). Let us call a level private if it is used for only one node, and
otherwise, we call the level public.

With this new terminology, we can say that Algorithm1 (like the 2-
approximation of [2]) treats all levels as public, by reserving i − 2 new colors
for each level (independently of whether there is a single node or more nodes
assigned to it).

The idea at the basis of our algorithm is to refine the construction of Algo-
rithm1 in two ways: employing the two phase approach in order to optimize in
the selection of public and private levels and, hence, reducing the colors used for
nodes that are on a private level in order to more closely follow the amortized
lower bound estimate above.

We start with identifying a longest root-to-leaf path (let h be its length) and
assigning ith vertex on such path to level i. Then, the algorithm defines which
of the h levels will be public. The goal is to minimize the total number of public
levels and to have them among the ones that are closest to the root, since each
level i costs ∼i if public and ∼i/2 if private. Optimizing over the exponentially
many possible choices of the subset of public levels is generally hard, then we look
for an optimal set of public levels that consists of a fixed number z (a parameter
depending on the approximation guarantee we aim at) of disjoint intervals, and
whose cost (according to the above lower bound) is minimum. It is not hard to
see that such a set of public levels can be computed in polytime. Moreover, we
can show that its cost can be guaranteed to be close to the size of an optimal
coloring (Lemma 4).

Notation and the Choice of Public Levels. Let G be an arborescence rooted
in r, and let P̂ = {p̂0 = r, p̂1, . . . , p̂h−1} be a longest root-to-leaf path in G. Fix
a constant 2

h < α ≤ 1, and let z = 1
a . For the sake of simplifying notation

we assume this is an integer value. All the arguments are easily seen to hold
if we apply �� operators whenever necessary to guarantee integrality. We use
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[z]0 = {0, 1, . . . , z}. For each i = 1, . . . , z, we say that the interval of vertices pj

with j ∈ {hα(i− 1)+1, hα(i− 1)+2, . . . , hαi} is the ith segment of P̂ . For each
i = 1, . . . , z, let P i = {pi

0, p
i
1, . . . , p

i
li
} be a longest path starting from a node pi

0

within the ith segment of P̂ , i.e., pi
0 ∈ {p̂(i−1)αh+1, . . . , p̂iαh}. Then, pi

0 is a node
of the longest path P̂ , pi

1 is the first node on P i\P̂ , and li is the number of nodes
stemming out of P̂ on the path P i. We say that pi

0 is the stem of P i. Recall that
any coloring ϕ of G can be seen as assigning a level to the vertices, namely the
cardinality of the color set used for that vertex. We define hi to be the minimum
possible level that can be used for pi

0, hence h0 = 1 and hi = h0 + d(pi
0) where

d(pi
0) denotes the distance of pi

0 from the root p̂0. We also set hz+1 = h for the
sake of definiteness in later computations.

Let G′ be the subgraph of G induced by the vertices V (G′) = P̂ ∪
∑z

i=1 P i.

Lemma 3. For all proper colorings ϕ of G′, it holds that

|ϕ(G′)| ≥
h∑

i=1

i

2
+

⎛

⎜
⎜
⎜
⎝

min
I1,...,Iz

Ik⊆{hk+1,...,hk+1}
lk≤∑z

j=k |Ij |

z∑

j=1

∑

i∈Ij

i

2

⎞

⎟
⎟
⎟
⎠

−
z∑

k=1

|ϕ(pk
0)|

2
, (2)

where for each k = 1, . . . , z, the set Ik is an interval of {1, . . . , h}.

Let Î = {Î1, . . . , Îz} be a set of intervals, one for each segment of P̂ of length
hα, that achieves the minimum of the term in bracket in the right hand side of

(2), i.e., Î = {Î1, . . . , Îz} = argmin I1,...,Iz

Ik⊆{hk+1,...,hk+1}
lk≤∑z

j=k |Ij |

z∑

j=1

∑

i∈Ij

i

2
.

Remark 1. The set Î can be constructed with a greedy approach; for each k
such that Ik �= ∅, the minimum in Ik is hk + 1; the condition lk ≤

∑z
j=k |Ij |

guarantees that the levels in ∪j≥kIk suffice to accommodate the nodes of P k.

Let us now define a new set of intervals Ĩ = {Ĩ1, . . . , Ĩz}. We will construct a
coloring that uses levels {1, . . . , h} for the nodes in P̂ and levels in

⋃z
j=k Ĩk for

the nodes in the paths stemming from the k-th segment of P̂ . As by Remark 1,
the levels defined by intervals in Î are by definition sufficient for accommodating
the nodes of the stemmings P 1, . . . , P z. However, if in G there is some other
path Qk stemming from P̂ in segment k at some level below the stem of P k,
the conditions on Î do not guarantee that the levels in

⋃z
j=h Îj are enough to

accommodate all the vertices of Qk.
For solving this issue, the idea of our algorithm is to shift down the intervals

in Î, just as much as it is needed to guarantee that all vertices of G \ {P̂} can
be accommodated on them.

Let Δ = max1≤k≤z hαk − (hk + 1). Recall that each non-empty Îk starts at
hk + 1 ∈ {hα(k − 1) + 1, . . . , hαk}. Hence, we have Δ ≤ αh.
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For each k = z, z −1, . . . , 1, in decreasing order and setting shiftz+1 = 0, we
define shiftk = min{shiftk+1 + hk+1 − max(Ik),Δ}, and let Ĩk = {j + shiftk |
j ∈ Îk}. Each interval Ĩk ∈ Ĩ has the same cardinality as Îk and intervals in Ĩ
are pairwise disjoint, as it was the case for intervals in Î. Moreover, we can show
that they suffice to accommodate all the vertices in G \ {P̂}: Fix a segment k.
Let Qk = qk

0 , qk
1 , . . . , qk

l′ be a path stemming out of P̂ at some vertex qk
0 within

segment k. Let h′ = d(qk
0 ). By definition |Qk| ≤ |P k|. Hence,

⋃z
j=k Ĩj contains

enough levels to accommodate the vertices of Qk. In particular, if shiftk = Δ
or min(Ĩk) ≥ h′ +1, then the first level in

⋃z
j=k Ĩj is not before the first possible

level to accommodate the vertices of Qk \ P̂ = {qk
1 , . . . , qk

l′}.
On the other hand, if min(Ĩk) < h′ + 1 and shiftk < Δ then, because of the

latter, it must also hold that shiftj < Δ for all j > k. Therefore,
⋃z

j=k Ĩj =
{t, t + 1, . . . , h}, for some hk + 1 ≤ t < h′ + 1. Since P̂ is a longest path, then
h − h′ ≥ l′, and again we can conclude that

⋃z
j=k Ĩj can accommodate all the

nodes in Qk. We then compare the cost of levels in Ĩ to an optimal coloring.

Lemma 4. Let L̃B =
∑h

j=1
j
2 +

∑z
j=1

∑
k∈Ĩj

k
2 . Then, letting ι be the number of

internal vertices of G not in G′. we have L̃B ≤
(

OPT (G) − ι +
h

2α

)

(1 + 2α).

The Algorithm and Its Analysis. We only sketch the steps of the algorithm
in order to argue its correctness, complexity and approximation guarantee. A
complete analysis and pseudocode will be given in the full version of the paper.

The set Î can be computed by a straightforward greedy implementation of
the definition given above. Then, the intervals in Î are shifted in order to define
Ĩ, as described in the text above. Let Pub be the union of the intervals in Ĩ. We
refer to the elements of Pub as public levels, in the sense that the levels whose
index is in Pub will be shared by more than one node. The remaining levels
{1, . . . , h} \ Pub are referred to as private levels, meaning that each one of these
levels will be used by a single node of P̂ .

The algorithm uses the level partition (public/private) defined above to
assign, top-down, each node not in P̂ to the closest public level below the level
assigned to its parent. A node v �∈ P̂ assigned to a public level i is then colored
using: (i) a distinct color c(v) specifically created for v, the color c(parent(v))
distinctly created for v’s parent and U(i), a set of i − 2 colors created to be
shared by all nodes on level i. Nodes of P̂ on public levels are colored following
an analogous method, with the only difference that in order to create the inter-
section between a node’s and its parent’s color set, a different distinct color χ(v)
is defined and used for each v ∈ P̂ .

For a vertex v �∈ P̂ all the children of v are assigned to the same level,
hence they can share the color c(v) even if they have no edge between them.
Conversely, a node v in P̂ on level i has a child v′ ∈ P̂ which is on level i+1 and
any other children w of v is on the first public level > i which is possibly > i+1.
Therefore, we use c(v) for the intersection between ϕ(v) and ϕ(w) and χ(v) for
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the intersection between ϕ(v) and ϕ(v′). For otherwise, having ϕ(v′)∩ϕ(w) �= ∅
could clash with the absence of edges between these nodes.

For leaves we define a distinct color f(i) shared by all leaves assigned to
level i. Then, a leaf 
 on level i is assigned the colors c(parent(
)) created for its
parent, the leaf-level color f(i) and the level colors U(i).

For nodes v of P̂ assigned to a private level i, a separate set R(i) of colors
is used. The peculiarity of a private level is that a node v on a private level
can share the set R of its parent node if this is also on a private level. Hence,
since we want |ϕ(v)| = i, it is enough to have |R(i)| = i − |R(i − 1)| − 3, and
set ϕ(v) = {χ(v), χ(parent(v)), c(v)} ∪ R(i) ∪ R(i − 1). For a level i that is not
private we set R(i) = ∅.

We can now bound the number of colors used by the coloring ϕ produced
by the algorithm as the sum of the following quantities: (i) ι̃ = |{c(ν) |
ν is an internal node of G}| to color each internal node ν with c(ν), where ι̃

denotes the number of internal vertices of G; (ii) at most
∑1/α

i=1

∑
k∈Ĩi

(k − 2) for
the shared colors U of the public levels; (iii) at most h colors, one for each public
level where there is at least one leaf; (iv) h colors, one for each vertex ν ∈ P̂ , to
create the color χ(ν); (v) at most

∑
i	∈Pub

i
2 + h

α colors for the sets R(i) for each
private level i, that are used for the vertices of P̂ .

Finally, it is not difficult to see that all the steps can be implemented to run
in polynomial time. In fact, we can show a more precise time bound O( |V |

α + 1
α2 ).

The Approximation Guarantee. Let us write OPT for OPT (G). Let ϕA be
the coloring given by the algorithm. Then, we have

|ϕA| ≤
∑

i�∈Pub

i

2
+

h

α
+ 2h + ι̃ +

1/α∑

i=1

∑

k∈Ĩi

(k − 2) ≤
h∑

i=1

i

2
+

1/α∑

i=1

∑

k∈Ĩi

k

2
+ ι̃ + (2 +

1

α
)h

≤ L̃B + ι + h

(
3 +

3

2α

)
≤

(
OPT −ι+

h

2α

)
(1 + 2α) + ι + 3(1 + 2α)

h

2α
(3)

≤ OPT (1 + 2α) + 2(1 + 2α)
h

α
≤ OPT (1 + 2α) +

1 + 2α

α

√
OPT , (4)

where: the first inequality of (3) follows from ι̃ ≤
1/α∑

i=1

hiα+h+ι ≤ ι+h

(

1 +
1
2α

)

,

where ι denotes the number of internal vertices of G that are not vertices of G′;
the second inequality in (3) follows from Lemma 4; the last inequality follows
from the lower bound OPT ≥ h2

4 due to the fact that we have a path of length
h and the bound on the number of colors needed for a path from [2,11].

Having shown that ϕALGO(G) ≤ OPT (1 + 2α) +
√

OPT 1+2α
α we can now

provide an upper bound on the approximation guarantee. Arguing for h large,
so that OPT is also large, for any constant ε > 0, with α = 1

2ε,
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Fig. 2. • The left figure shows the arborescence Tφ for φ = x1 ∨ ¬x2. It also shows
the levels assigned to the nodes by a canonical coloring ϕ = ϕcan(g1 = h, g2 = h), i.e.
where the paths Q1, Q2 are not shifted down. Note that (i) the leaves attached to the
path Q1 and Q2 in the upper part are not aligned to the leaves of the upper part of the
S path; (ii) the leaves attached to the path Q1 and Q2 in the lower part are aligned
to the leaves of the lower part of the S path; (iii) since x1 = true satisfies φ, then the
leaf of the central part of Q1 is not aligned to any of the central leaves of S; (iv) since
x2 = true does not satisfies φ, then the leaf of the central part of Q2 is aligned to
the first leaf of the central part of S. • The central figure shows the arborescence Tφ

for a canonical coloring ϕ = ϕcan(g1 = 3, g2 = h), i.e., a coloring that shifts down Q1

starting from its 3rd node. Now (i) the leaves attached to the path Q1 in the upper
part are aligned to the leaves of the upper part of the S path, while the leaves attached
to the path Q1 in the lower part are not aligned to the leaves of the lower part of the S
path; (iii) the leaf of the central part of Q1 is now aligned to the second central leaf of
S; this is consistent with setting x1 = false and the fact that such assignment does not
satisfies φ. • The rightmost figure shows the arborescence Tφ for a canonical coloring
ϕ = ϕcan(g1 = 3, g2 = 3), i.e., a coloring that shifts down both Q1 and Q2 starting
from their 3rd node. Now (i) the leaves attached to both path Q1 and Q2 in the upper
part are aligned to the leaves of the upper part of the S path, while the leaves attached
to the path Q1, Q2 in the lower part are not aligned to the leaves of the lower part of
the S path; (iii) the leaf of the central part of Q1 is now aligned to the second central
leaf of S; this is consistent with setting x1 = false and the fact that such assignment
does not satisfies φ, but the leaf of the central part of Q2 is now not aligned anymore
to a leaf of the central part of S, which is consistent with setting x2 = false. Sliding
down a path Qi does not change the total number of leaves in the upper and lower
part that are aligned to leaves of S. It can be useful to optimize the number of leaves
of the central part that are aligned with leaves in S. Putting the gap on levels in the
central part of the path Qi is always less efficient than a complete shifting (gi = 3) or
a no shifting (gi = h) of the path.

ϕALGO

OPT
≤

OPT (1 + ε) +
√

OPT 2(1+ε)
ε

OPT
= (1 + ε) +

2(1 + ε)
ε
√

OPT
. (5)

Hence, we have an approximation guarantee 1+ ε for all sufficiently large values
of OPT . This together with the polynomiality in the size of the instance and 1

ε ,
implies that our algorithm is an asymptotic FPTAS.
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6 Open Problems

A natural question left open by our investigation is whether we can further nar-
row the gap between the two results for arborescences: Is it possible to strengthen
the hardness result also for arborescences and show APX-hardness? Or, con-
versely, can we improve the approximation guarantee possibly achieving a (non-
asymptotic) PTAS for the problem? Another direction for further investigation
is in the realm of fixed parameterized complexity.
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Abstract. We introduce the Red-Blue Separation problem on
graphs, where we are given a graph G = (V,E) whose vertices are col-
ored either red or blue, and we want to select a (small) subset S ⊆ V ,
called red-blue separating set, such that for every red-blue pair of ver-
tices, there is a vertex s ∈ S whose closed neighborhood contains exactly
one of the two vertices of the pair. We study the computational complex-
ity of Red-Blue Separation, in which one asks whether a given red-
blue colored graph has a red-blue separating set of size at most a given
integer. We prove that the problem is NP-complete even for restricted
graph classes. We also show that it is always approximable in polyno-
mial time within a factor of 2 lnn, where n is the input graph’s order. In
contrast, for triangle-free graphs and for graphs of bounded maximum
degree, we show that Red-Blue Separation is solvable in polynomial
time when the size of the smaller color class is bounded by a constant.
However, on general graphs, we show that the problem is W [2]-hard even
when parameterized by the solution size plus the size of the smaller color
class. We also consider the problem Max Red-Blue Separation where
the coloring is not part of the input. Here, given an input graph G, we
want to determine the smallest integer k such that, for every possible
red-blue-coloring of G, there is a red-blue separating set of size at most
k. We derive tight bounds on the cardinality of an optimal solution of
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Max Red-Blue Separation, showing that it can range from logarith-
mic in the graph order, up to the order minus one. We also give bounds
with respect to related parameters. For trees however we prove an upper
bound of two-thirds the order. We then show that Max Red-Blue Sep-
aration is NP-hard, even for graphs of bounded maximum degree, but
can be approximated in polynomial time within a factor of O(ln2 n).

1 Introduction

We introduce and study the Red-Blue Separation problem for graphs. Sep-
aration problems for discrete structures have been studied extensively from var-
ious perspectives. In the 1960s, Rényi [24] introduced the Separation problem
for set systems (a set system is a collection of sets over a set of vertices), which has
been rediscovered by various authors in different contexts, see e.g. [2,6,17,23].
In this problem, one aims at selecting a solution subset S of sets from the input
set system to separate every pair of vertices, in the sense that the subset of S
corresponding to those sets to which each vertex belongs to, is unique. The graph
version of this problem (where the sets of the input set system are the closed
neighborhoods of a graph), called Identifying Code [18], is also extensively
studied. These problems have numerous applications in areas such as monitor-
ing and fault-detection in networks [26], biological testing [23], and machine
learning [20]. The Red-Blue Separation problem which we study here is a
red-blue colored version of Separation, where instead of all pairs we only need
to separate red vertices from blue vertices.

In the general version of the Red-Blue Separation problem, one is given
a set system (V,S) consisting of a set S of subsets of a set V of vertices which
are either blue or red; one wishes to separate every blue from every red vertex
using a solution subset C of S (here a set of C separates two vertices if it contains
exactly one of them). Motivated by machine learning applications, a geometric-
based special case of Red-Blue Separation has been studied in the literature,
where the vertices of V are points in the plane and the sets of S are half-planes [7].
The classic problem Set Cover over set systems generalizes both Geometric
Set Cover problems and graph problem Dominating Set (similarly, the set
system problem Separation generalizes both Geometric Discriminating
Code and the graph problem Identifying Code). It thus seems natural to
study the graph version of Red-Blue Separation.

Problem Definition. In the graph setting, we are given a graph G and a red-blue
coloring c : V (G) → {red,blue} of its vertices, and we want to select a (small)
subset S of vertices, called red-blue separating set, such that for every red-blue
pair r, b of vertices, there is a vertex from S whose closed neighborhood contains
exactly one of r and b. Equivalently, N [r] ∩ S �= N [b] ∩ S, where N [x] denotes
the closed neighborhood of vertex x; the set N [x] ∩ S is called the code of x
(with respect to S), and thus all codes of blue vertices are different from all
codes of red vertices. The smallest size of a red-blue separating set of (G, c) is
denoted by sepRB(G, c). Note that if a red and a blue vertex have the same closed
neighborhood, they cannot be separated. Thus, for simplicity, we will consider
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only twin-free graphs, that is, graphs where no two vertices have the same closed
neighborhood. Also, for a twin-free graph, the vertex set V (G) is always a red-
blue separating set as all the vertices have a unique subset of neighbors. We have
the following associated computational problem.

Red-Blue Separation
Input: A red-blue colored twin-free graph (G, c) and an integer k.
Question: Do we have sepRB(G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is
not part of the input. For a given graph G, we thus define the parameter
max-sepRB(G) which denotes the largest size, over each possible red-blue color-
ing c of G, of a smallest red-blue separating set of (G, c). The associated decision
problem is stated as follows.

Max Red-Blue Separation
Input: A twin-free graph G and an integer k.
Question: Do we have max-sepRB(G) ≤ k?

In Fig. 1, to note the difference between sepRB and max-sepRB, a path of 6
vertices P6 is shown, where the vertices are colored red or blue.

Fig. 1. A path of 6 vertices where (a) sepRB(P6, c) = 1 and (b) max-sepRB(P6) = 3;
the members of the red-blue separating set are circled. Square vertices are blue, round
vertices are red. (Color figure online)

Our Results. We show that Red-Blue Separation is NP-complete even for
restricted graph classes such as planar bipartite sub-cubic graphs, in the setting
where the two color classes1 have equal size. We also show that the problem is
NP-hard to approximate within a factor of (1 − ε) ln n for every ε > 0, even for
split graphs2 of order n, and when one color class has size 1. On the other hand,
we show that Red-Blue Separation is always approximable in polynomial
time within a factor of 2 lnn. In contrast, for triangle-free graphs and for graphs
of bounded maximum degree, we prove that Red-Blue Separation is solvable
in polynomial time when the smaller color class is bounded by a constant (using
algorithms that are in the parameterized class XP, with the size of the smaller
color class as parameter). However, on general graphs, the problem is shown to
be W [2]-hard even when parameterized by the solution size plus the size of the
smaller color class. (This is in contrast with the geometric version of separating
points by half-planes, for which both parameterizations are known to be fixed-
parameter tractable [3,19]).
1 One class consists of vertices colored red and the other class consists of vertices

colored blue.
2 A graph G = (V,E) is called a split graph when the vertices in V can be partitioned

into an independent set and a clique.
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As the coloring is not specified, max-sepRB(G) is a parameter that is worth
studying from a structural viewpoint. In particular, we study the possible values
for max-sepRB(G). We show the existence of tight bounds on max-sepRB(G) in
terms of the order n of the graph G, proving that it can range from �log2 n� up to
n − 1 (both bounds are tight). For trees however we prove bounds involving the
number of support vertices (i.e. which have a leaf neighbor), which imply that
max-sepRB(G) ≤ 2n

3 . We also give bounds in terms of the (non-colored) sepa-
ration number. We then show that the associated decision problem Max Red-
Blue Separation is NP-hard, even for graphs of bounded maximum degree,
but can be approximated in polynomial time within a factor of O(ln2 n).

Related Work. Red-Blue Separation has been studied in the geometric setting
of red and blue points in the Euclidean plane [3,5,22]. In this problem, one wishes
to select a small set of (axis-parallel) lines such that any two red and blue points lie
on the two sides of one of the solution lines. The motivation stems from the Dis-
cretization problem for two classes and two features in machine learning, where
each point represents a data point whose coordinates correspond to the values of
the two features, and each color is a data class. The problem is useful in a prepro-
cessing step to transform the continuous features into discrete ones, with the aim
of classifying the data points [7,19,20]. This problem was shown to be NP-hard [7]
but 2-approximable [5] and fixed-parameter tractable when parameterized by the
size of a smallest color class [3] and by the solution size [19]. A polynomial time
algorithm for a special case was recently given in [22].

The Separation problem for set systems (also known as Test Cover and
Discriminating Code) was introduced in the 1960s [24] and widely studied
from a combinatorial point of view [1,2,6,17] as well as from the algorithmic
perspective for the settings of classical, approximation and parameterized algo-
rithms [8,10,23]. The associated graph problem is called Identifying Code [18]
and is also extensively studied (see [21] for an online bibliography with almost
500 references as of January 2022); geometric versions of Separation have been
studied as well [9,15,16]. The Separation problem is also closely related to the
VC Dimension problem [27] which is very important in the context of machine
learning. In VC Dimension, for a given set system (V,S), one is looking for a
(large) set X of vertices that is shattered, that is, for every possible subset of X,
there is a set of S whose trace on X is the subset. This can be seen as ”perfectly
separating” a subset of S using X; see [4] for more details on this connection.

Structure of the Paper. We start with the algorithmic results on Red-Blue
Separation in Sect. 2. We then present the bounds on max-sepRB in Sect. 3
and the hardness result for Max Red-Blue Separation in Sect. 4. Due to
space constraints, we have omitted some proofs or parts of proofs.

2 Complexity and Algorithms for RED-BLUE SEPARATION

We will prove some algorithmic results for Red-Blue Separation by reducing
to or from the following problems.
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Set Cover
Input: A set of elements U , a family S of subsets of U and an integer k.
Question: Does their exist a cover C ⊆ S, with |C| ≤ k such that

⋃
C∈C C = U?

Dominating Set
Input: A graph G = (V,E) and an integer k.
Question: Does there exist a set D ⊆ V of size k with ∀v ∈ V,N [v] ∩ D �= ∅?

2.1 Hardness

Theorem 1. Red-Blue Separation cannot be approximated within a factor
of (1 − ε) · ln n for any ε > 0 even when the smallest color class has size 1
and the input is a split graph of order n, unless P = NP. Moreover, Red-Blue
Separation is W[2]-hard when parameterized by the solution size together with
the size of the smallest color class, even on split graphs.

Proof. For an instance ((U,S), k) of Set-Cover, we construct in polynomial
time an instance ((G, c), k) of Red-Blue Separation where G is a split graph
and one color class has size 1. The statement will follow from the hardness of
approximating Min Set Cover proved in [11], and from the fact that Set
Cover is W[2]-hard when parameterised by the solution size [12].

We create the graph (G, c) by first creating vertices corresponding to all the
sets and the elements. We connect a vertex ui corresponding to an element i ∈ U
to a vertex vj corresponding to a set Sj ∈ S if ui ∈ Sj . We color all these vertices
blue. We add two isolated blue vertices b and b′. We connect all the vertices of
type ui ∈ U to each other. Also, we add a red vertex r and connect all vertices
ui ∈ U to r. Now, note that the vertices U ∪ {r} form a clique whereas the
vertices vj along with b and b′ form an independent set. Thus, our constructed
graph (G, c) with the coloring c is a split graph. See Fig. 2.

Fig. 2. Reduction from Set Cover to Red-Blue Separation of Theorem 1. All
vertices are blue, except vertex r, which is red. (Color figure online)

Claim 1. S has a set cover of size k if and only if G has a red-blue separating
set of size at most k + 1. �
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Theorem 2. Red-Blue Separation is NP-hard for bipartite planar sub-cubic
graphs of girth at least 12 when the color classes have almost the same size.

Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar
sub-cubic graphs with girth at least 12 that contain some degree-2 vertices [28].
We reduce any instance (G, k) of Dominating Set to an instance ((H, c), k′)
of Red-Blue Separation, where k′ = k + 1 and the number of red and blue
vertices in c differ by at most 2.

Fig. 3. Reduction from Dominating Set to Red-Blue Separation of Theorem 2.
Vertices vB and u4 are blue, the others are red. (Color figure online)

Construction. We create two disjoint copies of G namely HB and HR and color
all vertices of HB blue and all vertices of HR red. Select an arbitrary vertex v
of degree-2 in G (we may assume such a vertex exists in G by the reduction of
[28]) and look at its corresponding vertices vR ∈ V (HR) and vB ∈ V (HB). We
connect vR and vB with the head of the path u1, u2, u3, u4 as shown in Fig. 3.
The tail of the path, i.e. the vertex u4, is colored blue and the remaining three
vertices u1, u2 and u3 are colored red. Our final graph H is the union of HR,HB

and the path u1, u2, u3, u4 and the coloring c as described. Note that if G is a
connected bipartite planar sub-cubic graph of girth at least g, then so is H (since
v was selected as a vertex of degree-2). We make the following claim.

Claim 2. The instance (G, k) is a YES-instance of Dominating Set if and only
if sepRB(H, c) ≤ k′ = k + 1. �

In the previous reduction, we could choose any class of instances for which
Dominating Set is known to be NP-hard. We could also simply take two copies
of the original graph and obtain a coloring with two equal color class sizes (but
then we obtain a disconnected instance). In contrast, in the geometric setting,
the problem is fixed-parameter-tractable when parameterised by the size of the
smallest color class [3], and by the solution size [19]. It is also 2-approximable [5].

2.2 Positive Algorithmic Results

We start with a reduction to Set Cover implying an approximation algorithm.

Proposition 3. Red-Blue Separation has a polynomial time (2 ln n)-factor
approximation algorithm.
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Proposition 4. Let (G, c) be a red-blue colored triangle-free and twin-free graph
with R,B the two color classes. Then, sepRB(G, c) ≤ 3min{|R|, |B|}.
Proof. Without loss of generality, we assume |R| ≤ |B|. We construct a red-
blue separating set S of (G, c). First, we add all red vertices to S. It remains to
separate every red vertex from its blue neighbors. If a red vertex v has at least
two neighbors, we add (any) two such neighbors to S. Since G is triangle-free,
no blue neighbor of v is in the closed neighborhood of both these neighbors of
v, and thus v is separated from all its neighbors. If v had only one neighbor w,
and it was blue, then we separate w from v by adding one arbitrary neighbor of
w (other than v) to S. Since G is triangle-free, v and w are separated. Thus, we
have built a red-blue separating set S of size at most 3|R|. �
Proposition 5. Let (G, c) be a red-blue colored twin-free graph with maximum
degree Δ ≥ 3. Then, sepRB(G, c) ≤ Δmin{|R|, |B|}.
Proof. Without loss of generality, let us assume |R| ≤ |B|. We construct a red-
blue separating set S of (G, c). Let v be any red vertex. If there is a blue vertex
w whose closed neighborhood contains all neighbors of v (w could be a neighbor
of v), we add both v and w to S. If v is adjacent to w, since they cannot be
twins, there must be a vertex z that can separate v and w; we add z to S. Now,
v is separated from every blue vertex in G.

If such a vertex w does not exist, then we add all neighbors of v to S. Now
again, v is separated from every vertex of G. Thus, we have built a red-blue
separating set S of size at most Δ|R|. �

The previous propositions imply that Red-Blue Separation can be solved
in XP time for the parameter “size of a smallest color class” on triangle-free
graphs and on graphs of bounded degree (by a brute-force search algorithm).
This is in contrast with the fact that in general graphs, it remains hard even
when the smallest color class has size 1 by Theorem 1.

Theorem 6. Red-Blue Separation on graphs whose vertices belong to the
color classes R and B can be solved in time O(n3min{|R|,|B|}) on triangle-free
graphs and in time O(nΔmin{|R|,|B|}) on graphs of maximum degree Δ.

3 Extremal Values and Bounds for max-sepRB

We denote by sep(G) the smallest size of a (non-colored) separating set of
G, that is, a set that separates all pairs of vertices. We will use the relation
max-sepRB(G) ≤ sep(G), which clearly holds for every twin-free graph G.

3.1 Lower Bounds for General Graphs

We can have a large twin-free colored graph with solution size 2 (for example, in
a large blue path with a single red vertex, two vertices suffice). We show that in
every twin-free graph, there is always a coloring that requires a large solution.
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Theorem 7. For any twin-free graph G of order n ≥ 1 and n �∈ {8, 9, 16, 17},
we have max-sepRB(G) ≥ �log2(n)�.
Proof. Let G be a twin-free graph of order n with max-sepRB(G) = k. There
are 2n different red-blue colorings of G. For each such coloring c, we have
sepRB(G, c) ≤ k. Consider the set of vertex subsets of G which are separat-
ing sets of size k for some red-blue colorings of G. Notice that each red-blue
coloring has a separating set of cardinality k. There are at most

(
n
k

) ≤ nk such
sets.

Consider such a separating set S and consider the set I(S) of subsets S′ of S
for which there exists a vertex v of G with N [v] ∩ S = S′. Let iS be the number
of these subsets: we have iS ≤ 2|S| ≤ 2k. If S is a separating set for (G, c),
then all vertices having the same intersection between their closed neighborhood
and S must receive the same color by c. Thus, there are at most 2iS ≤ 22

k

red-blue colorings of G for which S is a separating set. Overall, we thus have
2n ≤ (

n
k

)
22

k ≤ nk22
k

, and thus n ≤ k log2(n) + 2k.
We now claim that this implies that k ≥ log2(n − log2(n) log2(n)). Suppose

to the contrary that this is not the case, then we would obtain:

n < log2(n − log2(n) log2(n)) log2(n) + n − log2(n) log2(n)
n < log2(n) log2(n) + n − log2(n) log2(n)

And thus n < n, a contradiction. Since k is an integer, we actually have k ≥
�log2(n − log2(n) log2(n))�. To conclude, one can check that whenever n ≥ 70,
we have �log2(n− log2(n) log2(n))� ≥ �log2(n)�. Moreover, if we compute values
for 2n − (

n
k

)
22

k

when 1 ≤ n ≤ 69 and k = �log2(n)� − 1, then we observe that
this is negative only when n ∈ {8, 9, 16, 17}. Thus, �log2(n)� is a lower bound
for max-sepRB(G) as long as n �∈ {8, 9, 16, 17}. �

The bound of Theorem 7 is tight for infinitely many values of n.

Proposition 8. For any integers k ≥ 1 and n = 2k, there exists a graph G of
order n with max-sepRB(G) = k.

We next relate parameter max-sepRB to other graph parameters.

Theorem 9. Let G be a graph on n vertices. Then, sep(G) ≤ min{�log2(n)� ·
max-sepRB(G), �log2(Δ(G) + 1)� · max-sepRB(G) + γ(G)}, where γ(G) is the
domination number of G and Δ(G) its maximum degree.

Proof. Let G be a graph on 2k−1 + 1 ≤ n ≤ 2k vertices for some integer k. We
denote each vertex by a different k-length binary word x1x2 · · · xk where each
xi ∈ {0, 1}. Moreover, we give k different red-blue colorings c1, . . . , ck such that
vertex x1x2 · · · xk is red in coloring ci if and only if xi = 0 and blue otherwise.
For each i, let Si be an optimal red-blue separating set of (G, ci). We have
|Si| ≤ max-sepRB(G) for each i. Let S =

⋃k
i=1 Si. Now, |S| ≤ k·max-sepRB(G) =

�log2(n)� · max-sepRB(G). We claim that S is a separating set of G. Assume to
the contrary that for two vertices x = x1x2 · · · xk and y = y1y2 · · · yk, N [x]∩S =
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N [y]∩S. For some i, we have yi �= xi. Thus, in coloring ci, vertices x and y have
different colors and hence, there is a vertex s ∈ ci such that s ∈ N [y]�N [x], a
contradiction which proves the first bound.

Let S be an optimal red-blue separating set for such a coloring c and let
D be a minimum-size dominating set in G; S ∪ D is also a red-blue separating
set for coloring c. At most Δ(G) + 1 vertices of G may have the same closed
neighborhood in D. Thus, we may again choose �log2(Δ(G) + 1)� colorings and
optimal separating sets for these colorings, each coloring (roughly) halving the
number of vertices having the same vertices in the intersection of separating
set and their closed neighborhoods. Since each of these sets has size at most
max-sepRB(G), we get the second bound. �

We do not know whether the previous bound is reached, but as seen next,
there are graphs G such that sep(G) = 2max-sepRB(G).

Proposition 10. Let G = Kk1,...,kt
be a complete t-partite graph for t ≥ 2,

ki ≥ 5 odd for each i. Then sep(G) = n − t and max-sepRB(G) = (n − t)/2.

3.2 Upper Bound for General Graphs

We will use the following classic theorem in combinatorics to show that we can
always spare one vertex in the solution of Max Red-Blue Separation.

Theorem 11 (Bondy’s Theorem [2]). Let V be an n-set with a family A =
{A1,A2, . . . ,An} of n distinct subsets of V . There is an (n − 1)-subset X of V
such that the sets A1 ∩ X,A2 ∩ X,A3 ∩ X, . . . ,An ∩ X are still distinct.

Corollary 12. For any twin-free graph G on n vertices, we have max-sepRB(G)
≤ sep(G) ≤ n − 1.

This bound is tight for every even n for complements of half-graphs (studied
in the context of identifying codes in [14]).

Definition 13 (Half-graph [13]). For any integer k ≥ 1, the half-graph Hk

is the bipartite graph on vertex sets {v1, . . . , vk} and {w1, . . . , wk}, with an edge
between vi and wj if and only if i ≤ j.

The complement Hk of Hk thus consists of two cliques {v1, . . . , vk} and
{w1, . . . , wk} and with an edge between vi and wj if and only if i > j.

Proposition 14. For every k ≥ 1, we have max-sepRB(Hk) = 2k − 1.

3.3 Upper Bound for Trees

We will now show that a much better upper bound holds for trees.
Degree-1 vertices are called leaves and the set of leaves of the tree T is L(T ).

Vertices adjacent to leaves are called support vertices, and the set of support
vertices of T is denoted S(T ). We denote �(T ) = |L(T )| and s(T ) = |S(T )|. The
set of support vertices with exactly i adjacent leaves is denoted Si(T ) and the
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set of leaves adjacent to support vertices in Si(T ) is denoted Li(T ). Observe
that |L1(T )| = |S1(T )|. Moreover, let L+(T ) = L(T ) \ L1(T ) and S+(T ) =
S(T ) \ S1(T ). We denote the sizes of these four types of sets si(T ), �i(T ), s+(T )
and �+(T ).

To prove our upper bound for trees, we need Theorems 15 and 16.

Theorem 15. For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ n+s(T )
2 .

Proof. Observe that the claim holds for stars (select the vertices of the smallest
color class among the leaves, and at least two leaves). Thus, we assume that
s(T ) ≥ 2. Let c be a coloring of T such that max-sepRB(T ) = sepRB(T, c).

We build two separating sets C1 and C2; the idea is that one of them is
small. We choose a non-leaf vertex x and add to the first set C ′

1 every vertex at
odd distance from x and every leaf. If there is a support vertex u ∈ S1(T ) ∩ C ′

1

and an adjacent leaf v ∈ L1(T ) ∩ N(u), we create a separating set C1 from C ′
1

by shifting the vertex away from leaf v to some vertex w ∈ N(u) \ L(T ). We
construct in a similar manner sets C ′

2 and C2, except that we add the vertices
at even distance from x to C ′

2 and do the shifting when u ∈ S1(T ) has even
distance to x.

Claim 3. Both C1 and C2 are separating sets.

Let us denote by NS3(T ) a smallest set of vertices in T such that for each
vertex v ∈ S3(T ) which has N(v) ∩ S+(T ) = ∅, we have at least one vertex
u ∈ N(v) \ L(T ) in NS3(T ) (such a set exists since T is not a star).

We assume that out of the two sets C ′
1 and C ′

2, C ′
a (a ∈ {1, 2}) has less vertices

among the vertices in V (T )\ (L(T )∪S+(T )∪NS3(T )). In particular, it contains
at most half of those vertices and we have |C ′

a \ (L(T ) ∪ S+(T ) ∪ NS3(T ))| ≤
(n − �(T ) − s+(T ) − |NS3(T )|)/2. Now, we will construct set C from C ′

a. Let us
start by having each vertex in C ′

a be in C. Let us then, for each support vertex
u ∈ S+(T ), remove from C every adjacent leaf w ∈ L+(T )∩N(u) such that w is
in the more common color class within the vertices in N(u) ∩ L+(T ) in coloring
c. We then add some vertices to C as follows. For u ∈ Si(T ), i ≥ 4, we add u to
C and some leaves so that there are at least two vertices in N(u) ∩ C. We have
at most |L(T ) ∩ N [u]|/2 + 1 vertices in C ∩ (N [u] ∩ L(T ) ∪ {u}).

For i = 3, we add u and any v ∈ NS3(T ) ∩ N(u) \ C, depending on which
one already belongs to C. Then, if all leaves in N(u) have the same color, we
add one of them to C. Hence, we have |C ∩ (L2(T ) ∪ NS3(T ))|/s3(T ) ≤ 2.

Finally, for i = 2, if the two leaves have same color and u �∈ C ′
a, we add u and

one of the two leaves to C. If the two leaves have the same color and u ∈ C ′
a,

we add a non-leaf neighbor of u to C. If the leaves have different colors, one of
them, say v, has the same color as u. We add u to C and shift the vertex in C
in the leaves so that v is in C. We added at most two vertices to C in this case.
Notice that now we have S+(T ) ⊆ C.

Each time, we added to C at most half the considered vertices in N(u), and
at most one additional vertex. After these changes, we shift some vertices in C
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away from L1(T ) the same way we built Ca from C ′
a. As |C ′

a \ (L(T ) ∪ S+(T ) ∪
NS3(T ))| ≤ (n − �(T ) − s+(T ) − |NS3(T )|)/2, we get:

|C| ≤ n − �(T ) − s+(T ) − |NS3(T )|
2

+ �1(T ) +
�+(T ) + |NS3(T )|

2
+ s+(T )

=
n + �1(T ) + s+(T )

2
=

n + s(T )
2

.

Claim 4. C is a red-blue separating set for coloring c. �
The upper bound of Theorem 15 is tight. Consider, for example, a path on

eight vertices. Also, the trees presented in Proposition 18 are within 1/2 from
this upper bound. In the following theorem, we offer another upper bound for
trees which is useful when the number of support vertices is large.

Theorem 16. For any tree T of order n ≥ 5, sep(T ) ≤ n − s(T ).

The following corollary is a direct consequence of Theorems 15 and 16.
Indeed, we have max-sepRB(T ) ≤ min{n − s(T ), (n + s(T ))/2}.

Corollary 17. For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ 2n
3 .

We next show that Corollary 17 (and Theorem 15) is not far from tight.

Proposition 18. For any k ≥ 1, there is a tree T of order n = 5k + 1 with
max-sepRB(T ) = 3(n−1)

5 = n+s(T )−1
2 .

4 Algorithmic Results for MAX RED-BLUE SEPARATION

The problem Max Red-Blue Separation does not seem to be naturally in
the class NP (it is in the second level of the polynomial hierarchy). Nevertheless,
we show that it is NP-hard by reduction from a special version of 3-SAT [25].

3-SAT-2l
Input: A set of m clauses C = {c1, . . . , cm} each with at most three literals, over
n Boolean variables X = {x1, . . . , xn}, and each literal appears at most twice.
Question: Is there an assignment of X where each clause has a true literal?

Theorem 19. Max Red-Blue Separation is NP-hard even for graphs of
maximum degree 12.

Proof. To show hardness we reduce from the 3-SAT-2l problem. Given an
instance σ of 3-SAT-2l with m clauses and n variables, we create an instance
(G, k) of Max Red-Blue Separation as follows.

First let us explain the construction of a domination gadget and its prop-
erties. A domination gadget on vertices v1 and v2 is represented in Fig. 4. The
vertices v1 and v2 may be connected to each other or to some other vertices
which is represented by the dashed edges. Both v1 and v2 are also connected to
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Fig. 4. Reduction from 3-SAT-2l to Max Red-Blue Separation.

the vertices u1, u2, u3 and u4 as shown in the figure. Next we have a clique K10

consisting of the vertices {p1, . . . , p6, q1, . . . , q4}. Every vertex pi is connected to
a unique pair of vertices from {u1, u2, u3, u4} and every vertex qj is connected
to a unique triple of vertices from {u1, u2, u3, u4}. For example in the figure we
have p4 connected with the pair of vertices u2 and u3 and q3 connected with the
triplet of vertices u1, u3 and u4.

Let H(v1, v2) be a subgraph of some graph G such that H is connected to
the rest of G only by the vertices v1 and v2. We define a worst-coloring of G as
any red-blue coloring of G where sepRB(G, c) = max-sepRB(G). We make the
following claim.

Claim 5. For any worst-coloring c of G the optimal red-blue separating code of
(G, c) will always contain the vertices u1, u2, u3 and u4.

The variable gadget for a variable x consists of the graph H(x1, x2) and
H(x, x) with additional edges (x1, x2), (x1, x) and (x1, x). If x1 and x2 are colored
differently, then either x or x needs to be in the red-blue separating set. Selecting
at least one of x or x also separates x and x themselves. The clause gadget for a
clause c = (x ∨ y ∨ z) is H(c1, c2), where c1 is connected to the vertices x, y and
z. If c1 and c2 are colored differently, then the red-blue separating set should
contain at least one of x, y or z in order to separate them. This is used to show
the following, and complete the proof.

Claim 6. σ is satisfiable if and only if max-sepRB(G) ≤ k = 4m + 9n. �
We can use Theorem 9 and a reduction to Set Cover to show the following.

Theorem 20. Max Red-Blue Separation can be approximated within a fac-
tor of O((ln n)2) on graphs of order n in polynomial time.
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5 Conclusion

We have initiated the study of Red-Blue Separation and Max Red-Blue
Separation on graphs, problems which seem natural given the interest that
their geometric version has gathered, and the popularity of its “non-colored”
variants Identifying Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Sep-
aration can be as small as 2, even for large instances; however, we have seen
that this is not possible for Max Red-Blue Separation since max-sepRB(G) ≥
�log2(n)� for twin-free graphs of order n. max-sepRB(G) can be as large as n−1
in general graphs, yet, on trees, it is at most 2n/3 (we do not know if this is
tight, or if the upper bound of 3n/5, which would be best possible, holds). It
would also be interesting to see if other interesting upper or lower bounds can
be shown for other graph classes.

We have shown that sep(G) ≤ �log2(n)� · max-sepRB(G). Is it true that
sep(G) ≤ 2max-sepRB(G)? As we have seen, this would be tight.

We have also shown that Max Red-Blue Separation is NP-hard, yet it
does not naturally belong to NP. Is the problem actually hard for the second
level of the polynomial hierarchy?

References

1. Bollobás, B., Scott, A.D.: On separating systems. Eur. J. Comb. 28, 1068–1071
(2007)

2. Bondy, J.A.: Induced subsets. J. Comb. Theory Ser. B 12(2), 201–202 (1972)
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Abstract. In the classic Target Set Selection problem, we are asked
to minimise the number of nodes to activate so that, after the application
of a certain propagation process, all nodes of the graph are active. Bazgan
and Chopin [Discrete Optimization, 14:170–182, 2014] introduced the
opposite problem, named Harmless Set, in which they ask to maximise
the number of nodes to activate such that not a single additional node
is activated.

In this paper we investigate how sparsity impacts the tractability of
Harmless Set. Specifically, we answer two open questions posed by the
aforementioned authors, namely a) whether the problem is FPT on planar
graphs and b) whether it is FPT parametrised by treewidth. The first
question can be answered in the positive using existing meta-theorems
on sparse classes, and we further show that Harmless Set not only
admits a polynomial kernel, but that it can be solved in subexponential
time. We then answer the second question in the negative by showing
that the problem is W[1]-hard when parametrised by a parameter that
upper bounds treewidth.

1 Introduction

How information and cascading events spread through social and complex net-
works is an important measure of their underlying systems, and is a well-
researched area in network science. The dynamic processes governing the diffu-
sion of information and “word-of-mouth” effects have been studied in many fields,
including epidemiology, sociology, economics, and computer science [3,14,19,20].

A classic propagation problem is the Target Set Selection problem, first
studied by Domingos and Richardson [10,27], and later formalised in the con-
text of graph theory by Chen [3,6]. Chen defines the problem as how to find k
initial seed vertices that when activated cascade to a maximum; this model is
called standard independent cascade model of network diffusion. It has also been
studied under the name of Influence Maximization [23,24] in the context
of lies spreading through a network [4,5], bio-terrorism [12], and the spread of
fires [28]. Information propagation is modelled as an activation process where
each individual is activated if a sufficient number of its neighbours are active.
Sufficient here means that the number of active neighbours of an individual v
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exceeds a given threshold t(v) which is assigned to each individual to capture
their resilience to being influenced.

Motivated by cascading of information we study vertices that are harmless,
i.e., a set of vertices that can be activated without any cascades whatsoever.
However, activating all vertices in a graph is a trivial solution in the standard
diffusion model, since we cannot cascade further. We therefore want to differen-
tiate between initially activated vertices and vertices that have been activated
by a cascade. In this setting, we can therefore say that we want a largest pos-
sible set of initially activated vertices that do not cascade at all, even to itself.
It was first studied by Bazgan and Chopin [1] under the name Harmless Set,
who showed that it is W[2]-complete in general and W[1]-complete if thresholds
are bounded by a constant. They observe (see Observation 1 below) that one
can bound the maximum threshold by the solution size and thus obtain a sim-
ple FPT algorithm when parametrised by the solution size k and the treewidth.
Bazgan and Chopin conclude their work with the following open questions: (1)
Is Harmless Set fixed-parameter tractable on general graphs with respect to
the parameter treewidth? (2) Is Harmless Set fixed-parameter tractable on
planar graphs with respect to the solution size?

Here we answer both these problems and simultaneously discover surprising
connections between Harmless Set and Dominating Set in sparse graphs.

Our Results. Let us distinguish two flavours of this problem: p-Bounded Harm-
less Set, where we consider the bound p a constant, and Harmless Set where
the threshold is unbounded.

Input: A graph G with a threshold function t : V (G) → N>0 and an
integer k.

Problem: Is there a vertex set S ⊆ V (G) of size at least k such that
every vertex v ∈ G has fewer than t(v) neighbours in S?

Harmless Set

Input: A graph G with a threshold function t : V (G) → [p] and an
integer k.

Problem: Is there a vertex set S ⊆ V (G) of size at least k such that
every vertex v ∈ G has fewer than t(v) neighbours in S?

p-Bounded Harmless Set

Note that harmless sets are hereditary in the sense that if S is a harmless set of
an instance (G, t), then any subset S′ ⊆ S is also harmless for (G, t). Therefore
instead of searching for a harmless set of size at least k, we can equivalently
search for a harmless set of size exactly k. In this scenario we can replace all
thresholds above k with k + 1:

Observation 1. Harmless Set parametrised by k is equivalent to (k + 1)-
Bounded Harmless Set parametrised by k.
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It turns out that a simple of application the powerful machinery of first-order
model checking1 in sparse classes [18] answers the first question of Bazgan and
Chopin in the positive.

Proposition 1 (�2). Harmless Set parametrised by k is fixed-parameter
tractable in nowhere dense classes.

These previous results and our observation regarding tractability in sparse classes
leave two important questions for us. First, does the problem admit a polynomial
kernel in sparse classes? And second, can the problem be solved on e.g. graphs of
bounded treewidth without parametrising by the solution size? In the following
we answer the kernelization question in the affirmative:

Theorem 1. Harmless Set admits a polynomial sparse kernel in classes of
bounded expansion. p-Bounded Harmless Set, for any constant p, admits a
linear sparse kernel in these classes.

Classes with bounded expansion include planar graphs (and generally graphs
of bounded genus), graphs of bounded degree, classes excluding a (topological)
minor, and more. The term sparse kernel is explained below in Sect. 2.1; It
alludes to the fact that the constructed kernel does not necessarily belong to the
original graph class but is guaranteed to be “almost as sparse”.

Bazgan and Chopin give an algorithm for Harmless Set parametrised by
treewidth and the solution size running in time O(kO(tw) · n), when provided
a tree decomposition as part of the input3. They conclude by asking whether
the problem is “fixed-parameter tractable on general graphs with respect to the
parameter treewidth [alone]” [1]. We answer this question in the negative:

Theorem 2. Harmless Set is W[1]-hard when parametrised by a modulator
to a 2-spider-forest4.

Since a 2-spider-forest has treedepth, pathwidth, and treewidth at most 3, a
graph with a modulator M to a 2-spider-forest has treedepth, pathwidth, and
treewidth at most |M | + 3. This very strong structural parametrisation means
that the problem is not only hard on general sparse graphs, but indeed also
W[1]-hard for parameters like treewidth, pathwidth, and even treedepth. We
complement this result by showing that a slightly stronger parameter, the vertex
cover number, does indeed make the problem tractable:

Theorem 3 (�). Harmless Set is fixed-parameter tractable when
parametrised by the vertex cover number of the input graph.
1 There exist some intricacies regarding the type of nowhere dense class and whether

the resulting FPT algorithm is uniform or not. This is just a technicality in our
context and we refer the reader to Remark 3.2 in [18] for details.

2 Omitted proofs can be found in the full version available at https://arxiv.org/abs/
2111.11834.

3 This can be relaxed using a constant factor, linear time approximation for computing
tree decompositions [2].

4 A 1-spider-forest is a starforest, and a 2-spider-forest is a subdivided starforest.

https://arxiv.org/abs/2111.11834
https://arxiv.org/abs/2111.11834
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Note. We obtained our results simultaneously with and independent from those
by Gaikwad and Maity [17]. They provide an explicit and potentially practical
FPT algorithm for planar graphs while we show that the problem is not only FPT
on planar graphs, but indeed on a much more general class of graphs, namely
those of bounded expansion. We also show that on apex-minor-free graphs (which
include planar graphs), there exists a subexponential time algorithm for the
problem. That is, we show the following results, which improves on Gaikwad
and Maity’s 2O(k log k)nO(1) algorithm for planar graphs:

Theorem 4. Harmless Set is solvable in time 2o(k) · n on apex-minor-free
graphs.

2 Preliminaries

2-spider A 2-spider is a graph obtained from a star by subdividing every edge at most
once. A 2-spider-forest is the disjoint union of arbitrarily many 2-spiders.

f(G),

f(X),

N(X),

Nr(•),
Nr [•]

For functions f : V (G) → R we will often use the shorthands f(X) :=∑
u∈X f(x) and f(G) := f(V (G)). Similarly, we use the shorthand N(X) :=

(
⋃

u∈X N(u)) \ X for all neighbours of a vertex set X. The rth neighbour-
hood Nr(u) contains all vertices at distance exactly r from u, the closed
rth neighbourhood Nr[u] all vertices at distance at most r from u (also known
as the r-ball of u). This corresponds to N(u) = N1(u) and N [u] = N1[u]. We
refer to the textbook by Diestel [9] for more on graph theory notation.

r-scat-

tered,

r-dom-

inating,

domr(G),

domr

(G,X)

A vertex set X ⊆ V (G) is r-scattered if for x1 ∈ X and x2 ∈ X, Nr[x1] ∩
Nr[x2] = ∅. A vertex set D ⊆ V (G) is r-dominating if Nr[D] = V (G) and
we write domr(G) to denote the minimum size of such a set. Similarly, we say
that D r-dominates another vertex set X ⊆ V (G) if X ⊆ Nr[D] and we write
domr(G,X) for the minimum size of such a set. In both cases we will omit the
subscript r for the case of r = 1.

Given a set X ⊆ V (G) we call a pathX-

avoiding,

r-proj-

ection

X-avoiding if its internal vertices are
not contained in X. A shortest X-avoiding path between vertices x, y is shortest
among all X-avoiding paths between x and y.

Definition 1 (r-projection). For a vertex set X ⊆ V (G) and a vertex u �∈ X
we define the r-projection of u onto X as the set P r

X(u) := {v ∈ X |
there exists an X-avoiding u-v-path of length � r}.
Two vertices with the same r-projection onto X do not, however, necessarily
have the same (short) distances to X. To distinguish such cases, it is useful to
consider the projection profile of a vertex to its projection:

Definition 2 (r-projection profile). For a vertex set X ⊆ V (G) and a vertex
u �∈ X we define the r-projection profile of u onto X as a function πr

G,X [u] : X →
[r] ∪ ∞ where πr

G,X [u](v) for v ∈ X is the length of a shortest X-avoiding path
from u to v if such a path of length at most r exists and ∞ otherwise.
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2.1 Bounded Expansion Classes and Kernels

Nešetřil and Ossona de Mendez [22] introduced bounded expansion as a general-
isation of many well-known sparse classes like planar graphs, graphs of bounded
genus, bounded-degree graphs, classes excluding a (topological) minor, and more.
The original definition of bounded expansion classes made use of the concept of
shallow minors inspired by the work of Plotkin, Rao, and Smith [25].

Definition 3. A graph H is an r-shallow minor of G, written as H �r
mG, if H

can be obtained from G by contracting disjoint sets of radius at most r.

Definition 4. grad,

∇r(•)
The greatest-reduced average degree (grad) ∇r of a graph G is

defined as ∇r(G) = supH�r
mG

‖H‖
|H| .

Definition 5. A graph class G has bounded expansion if there exists a func-
tion f such that ∇r(G) � f(r) for all G ∈ G.

In the following we will often make use of the property that the grad of a graph
does not change much under the addition of a few high-degree vertices: if G is
a graph and G′ is obtained from G by adding an apex-vertex, then ∇r(G′) �
∇r(G) + 1.

One principal issue with designing kernels for bounded expansion classes is
the uncertainty of whether certain gadget constructions preserve the class. When
working with concrete classes like planar graphs we can be certain that e.g.
adding pendant vertices will result in a planar graph; but when working with an
arbitrary bounded expansion class this is not necessarily possible. In such cases,
the addition of a pendant vertex takes us outside of the class even though the
grad did not increase. sparse

kernel
We resolve this issue as proposed in the paper [15]. Let Π

be a parametrised problem over graphs. A sparse kernel of Π is a kernelization for
which there exists a function g that, given an instance with graph G, outputs
a graph G′ that besides the usual constraints on the size |G| + ‖G′‖ further
satisfies that ∇r(G′) � g(∇r(G)) for all r ∈ N. Therefore if the input graphs are
taken from a bounded expansion class G, the outputs will also belong to some
bounded expansion class G′.

2.2 The Bounded Expansion Toolkit

In our kernelization result we will attempt to construct suitable scattered sets
which we can leverage to create a “win-win” argument. To that end, we use
Dvořák’s algorithm [13] which provides us either with a small r-dominating set
or a large r-scattered set. The following variant of the original algorithm is called
the warm-start variant (see e.g. [15]):

Theorem 5 (Dvořák’s algorithm [13]). For every bounded expansion class G
and r ∈ N there exists a polynomial-time algorithm that, given a vertex set X ⊆
V (G), computes an r-dominating set D of X and an r-scattered set I ⊆ D ∩ X
with |D| = O(|I|).
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Note that since an r-scattered set I ⊆ X provides a lower bound for the r-
domination of X we have that |D| = O(domr(G,X)). We further need the
following fundamental property of bounded expansion classes which refines their
characterisation by “neighbourhood complexity” [26]:

Lemma 1 (Adapted from [11,21]). For every bounded expansion class G and
r ∈ N there exists a constant cprojr such that for every G ∈ G and X ⊆ V (G),
the number of r-projection profiles realised on X is at most cprojr |X|.

2.3 Waterlilies

Reidl and Einarson introduced the notion of waterlilies as a structure which is
very useful in constructing kernels [15]. We simplify the definition here as we do
not need it in its full generality.

Definition 6 (Waterlily). A waterlily of radius r and depth d � r in a
graph G is a pair (R,C) of disjoint vertex sets with the following properties:
(1) C is r-scattered in G − R, (2) Nr

G−R[C] is d-dominated by R in G.
We call R the roots, C the centres, and the sets {Nr

G−R[x]}x∈C the pads
of the waterlily. A waterlily is uniform if all centres have the same d-projection
onto R, e.g. πd

R[x] is the same function for all x ∈ C.

We will frequently talk about the ratio of a waterlily which we define as a guaran-
teed lower bound of |C| in terms of |R|, e.g. a waterlily of ratio 2|R|+1 satisfies
|C| � 2|R| + 1. The authors in [15] used waterlilies with a constant ratio, but a
modification of their proof lets us improve this ratio to any polynomial.

Lemma 2 (�). For every bounded expansion class G and r, d ∈ N, d � r, the
following holds. There exists a polynomial pr such that for every G ∈ G, t ∈ N

and A ⊆ V (G) with |A| � pr(t)domd(G,A) there exists a uniform waterlily
(R,C ⊆ A) with depth d, radius r, and with |R| = O(1) and |C| � t, moreover,
such a waterlily can be computed in polynomial time.

3 A Sparse Kernel for p-BOUNDED HARMLESS SET

In order to give a sparse kernel we first show how to construct a bikernel into
the following annotated problem.

Input: A graph G with a threshold function t : V (G) → [p], an inte-
ger k, and a subset K ⊆ V (G).

Problem: Is there a vertex set S ⊆ K of size at least k such that every
vertex v ∈ G has fewer than t(v) neighbours in S?

Annotated p-Bounded Harmless Set

solution

core
We call the set K the solution core of the instance (see [15] for a general defini-
tion). Next, we present two lemmas whose application will step-wise construct
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smaller annotated instances. The first lemma lets us reduce the size of the solu-
tion core, the second the size of the graph. Afterwards, we demonstrate how
these two reduction rules serve to construct a bikernel.

fragileIn the following, we often need to treat vertices with a threshold equal to one
differently. For brevity, we will call these vertices fragile; observe that a fragile
vertex can be part of a solution but none of its neighbours can.

Lemma 3. Let (G, t, k,K) be an instance of Annotated p-Bounded Harm-
less Set where G is taken from a bounded expansion class and K is a solution
core. There exists a polynomial q(p) such that the following holds: If |K| � q(p)·k,
then in polynomial time we either find that (G, t, k,K) is a YES-instance or we
identify a vertex x ∈ K such that K \ {x} is a solution core.

Sketch of proof. If there is a vertex x ∈ K with a fragile neighbour u ∈ N(x).
Then x of course cannot be in any solution and K \ {x} is a solution core.

Assume that no vertex in K has a fragile neighbour. We use Dvořák’s algo-
rithm (Theorem 5) to compute a 1-dominating set for K; let D be the result-
ing dominating set and I ⊆ D ∩ K the promised 1-scattered set, i.e., with
|I| = Ω(|D|). Since the neighbourhoods of vertices in I are pairwise disjoint and
no vertex in I has a fragile neighbour, it follows that I itself is a harmless set.
So if |I| � k we conclude that (G, t, k,K) is a YES-instance.

Otherwise |I| < k and by Theorem 5 dom(G,K) = O(k). We apply Lemma 2
to compute a waterlily for the set K at depth 1 and with radius 2. Where we
choose q(k) large enough to ensure that the following arguments go through.

Let (R,C ⊆ K) be the resulting uniform waterlily with |C| � κ, where κ
is an appropriately large value that we choose later. For the centres v ∈ C,
define signature σ(v) = {(t(u), N(u) ∩ R) | u ∈ NG−R(v)} and the equivalence
relation ∼σ over C via v ∼σ w iff σ(v) = σ(w). Recall that, by Lemma 1 the
number of 1-projections onto R is at most cproj1 |R|. Therefore we can picture
σ(v) as a string of length at most cproj1 |R| over the alphabet {0, . . . , p} where
0 indicates that a certain neighbourhood is not contained in σ(v) and any non-
zero value a ∈ [p] indicates that this neighbourhood is realised by one of v’s
neighbours with weight a. Accordingly, we can bound the index of ∼σ by |C/ ∼σ

| � (p + 1)c
proj
1 |R| and thus by averaging there exists an equivalence class C ′ ∈

C/ ∼σ of size at least |C|/(p + 1)c
proj
1 |R|.

We choose |C| big enough so that |C ′| > (p − 1)|R|. Since the vertices in C ′

are uniform under σ, any vertex of C ′ can be safely removed from C. �
Lemma 4 (�). Let (G, t, k,K) be an instance of our Annotated p-Bounded
Harmless Set problem where G is taken from a bounded expansion class. Then,
if |K| < |G|/(cproj1 + 1), then there exists a vertex v ∈ V (G) \ K such that
(G − v, t|V (G)−v, k,K) is an equivalent instance.

With these two reduction rules in hand, we can finally prove the main result of
this section.
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Theorem 6 (�). p-Bounded Harmless Set over bounded expansion classes
admits a bikernel into Annotated p-Bounded Harmless Set of size f(p) ·k,
for some polynomial f .

Corollary 1 (�). Harmless Set admits a polynomial sparse kernel.

Corollary 2 (�). p-Bounded Harmless Set for any constant p admits a
linear sparse kernel.

4 Sparse Parametrisation

In this section we first prove Theorems 2 and 3, namely that Harmless Set is
intractable when parametrised by the size of a modulator to a 2-spider-forest but
is FPT when parametrised by the vertex cover number of the input graph. We
then show that a simple application of the bidimensionality framework [8,16]
proves Theorem 4, i.e. that Harmless Set can be solved in subexponential
linear FPT time on graphs excluding an apex-minor.

The first result of this section, whose proof has been omitted, is that Harm-
less Set is FPT parameterized on the size of a minimum vertex cover:

Theorem 3 (�). Harmless Set is fixed-parameter tractable when parame-
trised by the vertex cover number of the input graph.

4.1 Modulator to 2-Spider-Forest

An instance of Multicoloured Clique consists of a k-partite graph G =
(V1, . . . , Vk, E). The task is to find a clique that intersects each colour Vi in
exactly one vertex. Since Multicoloured Clique is W[1]-hard [7], our reduc-
tion establishes the same for Harmless Set.

In the following, we fix an instance (V1, . . . , Vk, E) of Multicoloured
Clique. By a simple padding argument, we can assume that the sizes of the sets
Vi are all the same and we will denote this cardinality by n (thus the graph has a
total of nk vertices). For convenience, we let vi

1, . . . , v
i
n be the vertices of the set

Vi. For indices 1 � i < j � k we denote by mij = |E(Vi, Vj)| the number of edges
between colours Vi and Vj . We further let m be the total number of edges.

Forbidden Vertices. Let F ⊆ V (G) be a set of vertices that we want to prevent
from being in any solution. To that end, we construct a global forbidden set
gadget which enforces that no vertex from F can be selected. The construction
is similar to the forbidden edge gadget by Bazgan and Chopin [1]:

We add two vertices aF and bF with threshold
one to the graph and connected them. Then
we connect aF to every vertex in F . In the fol-
lowing gadgets we will often mark vertices as
“forbidden”. We will denote this graphically
by drawing a thick red border around these
vertices.
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Observation 2. Let F, aF , bF be vertices as above in some instance (G, t, k) of
Harmless Set. Then for every harmless set S of (G, t) it holds that S ∩ (F ∪
{aF , bF }) = ∅.

XOR Gadget. We construct an XOR gadget for vertices u and v by adding a
new forbidden vertex x with threshold two and adding the edges xu and xv to
the graph. To simplify the drawing of the fol-
lowing gadgets, we will simply draw a thick
red edge between two vertices to denote that
they are connected by an XOR gadget.

Observation 3. Let u, x, v be as above in some instance (G, t, k) of Harmless
Set. Then for every harmless set S of (G, t) it holds that |S ∩ {u, v}| � 1.

Selection Gadget
The role of a selection gadget Si will be to
select a single vertex from one coloured set Vi.
The final construction will therefore contain k
of these gadgets S1, . . . ,Sk. The gadget consists
of n pairs of vertices ds, ls, s ∈ [n], where each
pair is connected by an XOR gadget. We call the
set D(Si) = {d1, . . . , dn} the dark vertices and
L(Si) = {l1, . . . , ln} the light vertices. We make
two simple observations about the behaviour of
this gadget:

Observation 4. Let Si be as above in some instance (G, t, k) of Harmless
Set. Then for every harmless set S of (G, t) it holds that |S ∩ (D(Si) ∪
L(Si))| � n.

Observation 5. Let Si be as above in some instance (G, t, k) of Harmless
Set. Then for every harmless set S of (G, t) with |S ∩ (D(Si) ∪ L(Si))| = n it
holds that |S ∩ D(Si)| + |S ∩ L(Si)| = n.

Port Gadget



308 P. G. Drange et al.

For every pair of selection gadgets Si, Sj we need to communicate the choices
these gadgets encode to further gadgets (described below) which verify that this
choice corresponds to an edge in E(Vi, Vj).

The port gadget Pij responsible for the pair Si, Sj consists of four forbidden
port vertices p+i , p−

i , p+j , and p−
j , each with a threshold of n + 1. For � ∈ {i, j},

we connect the port vertex p+� to the light vertices L(S�) and the port vertex p−
�

to the dark vertices D(S�). Note that every selection gadget will be connected
to k −1 port gadgets in this manner and our naming scheme of the variables p+• ,
p−

• does not reflect that. However, we will in the following only ever talk about
a single port gadget and therefore it will always be clear to which vertices we
refer.

Test Gadget. The final gadget Txy exists to test whether two selection gadgets
Si, Sj selected the edge vi

xvj
y ∈ E(Vi, Vj). If that is the case, the gadget allows

the inclusion of n vertices into the solution; otherwise it only allows the inclusion
of a single vertex.

The gadget consists of n ordered light vertices L(Txy) = {l1, . . . , ln} which are all
connected to a single dark vertex dxy via XOR gadgets. This already concludes
the structure of the gadget itself, but we need to discuss how it will be wired to
the selection gadgets Si and Sj via the port gadget Pij .

For i, j fixed as before, we connect the port p+i ∈ Pij to the first n−x light ver-
tices l1, . . . , ln−x and the port p−

i ∈ Pij to the last x light vertices ln−x+1, . . . , ln.
Similarly, we connect the port p+j ∈ Pij to the first n−y light vertices l1, . . . , ln−y

and the port p−
j ∈ Pij to the last y light vertices ln−y+1, . . . , ln.

The idea of this construction is as follows: If the selection gadget Si “selects”
the vertex x and Sj “selects” y, our test gadget Txy verifies that the edge xy
exists in the original graph G by allowing the inclusion of all n light vertices
L(Txy). All other test gadgets Tuv, uv �= xy, wired to Pij will only allow the
inclusion of their respective dark vertex duv.
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Full Construction. The full construction for the reduction looks as follows.

Given the instance G = (V1 � · · · � Vk, E) of Multicoloured Clique, we
construct an instance (H, t) of Harmless Set as follows:

1. We add k selection gadgets S1, . . . ,Sk.
2. For every pair of indices 1 � i < j � k:

• We add the port gadget Pij and connect it to Si and Sj as described
above.

• We add mij := |E(Vi, Vj)| test gadgets {Txy}xy∈E(Vi,Vj).
• We wire each test gadget Txy to Pij as described above.
• We add a forbidden vertex aij to H with threshold n + 1 and connect it

to all light vertices
⋃

xy∈E(Vi,Vj)
L(Txy).

3. Finally, we add the vertices aF and bF to H and connect aF to all vertices
marked as “forbidden” in the gadgets as well as to bF .

Lemma 5 (�). We can delete 5
(
k
2

)
+ 1 vertices from H to obtain a 2-spider

forest.

Lemma 6 (�). If G contains a multi-coloured clique on k vertices, then (H, t)
has a harmless set of size

(
k
2

)
(n − 1) + kn + m.

Lemma 7 (�). If (H, t) has a harmless set of size
(
k
2

)
(n − 1) + kn + m, then G

contains a multi-coloured clique on k vertices.

Lemmas 5, 6, and 7 together prove Theorem 2.

4.2 Subexponential Time Algorithm

In order to apply the bidimensionality framework we introduce an annotated
Avoiding 1-Scattered Set which takes an additional “forbidden” vertex sub-
set as input and asks to find a solution without forbidden vertices. We say that
a vertex x ∈ X is simplicially forbidden if it is forbidden and all its neighbours
are forbidden. Observe that we may safely remove any simplicially forbidden
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vertices for either of the two problems. We will assume in the following that this
preprocessing rule has been applied exhaustively and therefore every forbidden
vertex has at least one non-forbidden neighbour.

Observation 6 (�). Avoiding 1-Scattered Set is closed under contractions,
that is, if (G,X)/uv has a solution of size k then so does (G,X).

Observe that if (G,X, k) is a YES-instance of Avoiding 1-Scattered Set
then it is also a YES-instance of Avoiding Harmless Set, where this problem
is defined similarly. We are now ready to apply the bidimensionality framework.

Theorem 4. Harmless Set is solvable in time 2o(k) · n on apex-minor-free
graphs.

Proof. Fomin et al. [16, Theorem 1] proved that for every apex-graph H there
exists a constant cH such that if tw(G) � k and G excludes H as a minor,
then G has the graph ΓcH ·k as a contraction minor. Here Γt is the triangulated
t × t grid where additionally one corner vertex is attached to all border vertices
of the grid.

So assume that our input instance (G,X, k) has treewidth tw(G) � (5
√

k +
10)/cH , then G contains Γt as a contraction minor with t = 5

√
k +10. Let X ′ ⊆

V (Γt) be the contracted forbidden vertices as defined above. As we observed
earlier, every vertex in X ′ has at least one neighbour in Γt which is not in X ′.

Claim (�). Γt contains a 1-scattered set that avoids X ′ of size at least k.

We conclude that if G has treewidth at least w := (5
√

k + 10)/cH , then
(G,X, k) is a YES-instance. Using the single-exponential 5-approximation for
treewidth [2], we can in time 2O(w)n = 2O(

√
k)n either find that G has treewidth

at least w or we obtain a tree decomposition of width no larger than 5w. In the
latter case, we use the algorithm by Bazgan and Chopin to solve the problem
in time kO(w)n = 2O(

√
k log k)n. Note that the total running time is bounded by

2o(k) · n, as claimed. �

5 Conclusion

We observed that the problem Harmless Set is in FPT for sparse graph classes
and we investigated its tractability in the kernelization sense. We found that
Harmless Set admits a polynomial and p-Bounded Harmless Set a linear
sparse kernel. We expect these results to extend to nowhere dense classes. When
the graph class is restricted to apex-minor-free graphs, we are also able to solve
Harmless Set in subexponential parameterized time 2o(k)n.

On the negative side, we demonstrated that sparseness alone does not make
the problem tractable. While the problem is in FPT when parametrised by e.g.
treewidth and solution size, we showed that it is in fact W[1]-hard when only
parametrised by treewidth. Our reduction shows even more, namely that most
sparse parameters (treedepth, pathwidth, feedback vertex set) can be ruled out
as the problem is already hard when parametrised by a modulator to a 2-spider-
forest. We conjecture—and leave as an interesting open problem—that Harm-
less Set is already hard when parametrised by a modulator to a starforest.
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Abstract. The s-Club problem asks, for a given undirected graph G,
whether G contains a vertex set S of size at least k such that G[S], the
subgraph of G induced by S, has diameter at most s. We consider vari-
ants of s-Club where one additionally demands that each vertex of G[S]
is contained in at least � triangles in G[S], that G[S] contains a span-
ning subgraph G′ such that each edge of E(G′) is contained in at least
� triangles in G′, or that S contains a given set W of seed vertices. We
show that in general these variants are W[1]-hard when parameterized
by the solution size k, making them significantly harder than the uncon-
strained s-Club problem. On the positive side, we obtain some FPT
algorithms for the case when � = 1 and for the case when G[W ], the
graph induced by the set of seed vertices, is a clique.

1 Introduction

Finding cohesive subgroups in social or biological networks is a fundamental
task in network analysis. A classic formulation of cohesiveness is based on the
observation that cohesive groups have small diameter. This observation led to
the s-club model originally proposed by Mokken [15]. An s-club in a graph G =
(V, E) is a set of vertices S such that G[S], the subgraph of G induced by S
has diameter at most s. The 1-clubs are thus precisely the cliques and the larger
the value of s, the more the clique-defining constraint of having diameter one is
relaxed. In the s-Club problem we aim to decide whether G contains an s-club
of size at least k.

A big drawback of s-clubs is that the largest s-clubs are often not very cohe-
sive with respect to other cohesiveness measures such as density or minimum
degree. This behavior is particularly pronounced for s = 2: the largest 2-club in
a graph is often the vertex v of maximum degree together with its neighbors [10].
To avoid these so-called hub-and-spoke structures, it has been proposed to aug-
ment the s-club definition with additional constraints [5,14,16,18].

One of these augmented models, proposed by Carvalho and Almeide [5], asks
that every vertex is part of a triangle. This property was later generalized to
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the vertex-�-triangle property, which asks that every vertex of S is in at least �
triangles in G[S] [1].

Vertex Triangle s-Club
Input: An undirected graph G = (V, E), and two integers k, � ≥ 1.
Question: Does G contain an s-club S of size at least k that fulfills the

vertex-�-triangle property?

The vertex-�-triangle constraint entails some desirable properties for cohe-
sive subgraphs. For example, in a vertex-�-triangle s-club, the minimum degree
is larger than

√
2�. However, some undesirable behavior of hub-and-spoke struc-

tures remains. For example, the graph consisting of two cliques of size d + 1 that
are connected via one edge is a vertex-

(
d
2
)
-triangle 3-club but it can be made dis-

connected via one edge deletion. Thus, vertex-�-triangle s-clubs are not robust
with respect to edge deletions.

To overcome this problem, we introduce a new model where we put triangle
constraints on the edges of the s-club instead of the vertices. More precisely, we
say that a vertex set S of a graph G fulfills the edge-�-triangle property if G[S]
contains a spanning subgraph G′ := (S, E′) such that every edge in E(G′) is in
at least � triangles in G′ and the diameter of G′ is at most s.

Edge Triangle s-Club
Input: An undirected graph G = (V, E), and two integers k, � ≥ 1.
Question: Does G contain a vertex set S of size at least k that fulfills the

edge-�-triangle property?

Note that in this definition, the triangle and diameter constraints are imposed
on a spanning subgraph of G[S]. In contrast, for Vertex Triangle s-Club,
they are imposed directly on G[S]. The reason for this distinction is that we
would like to have properties that are closed under edge insertions. Properties
which are closed under edge insertions are also well-motivated from an appli-
cation point of view since adding a new connection within a group should not
destroy this group. If we would impose the triangle constraint on the induced
subgraph G[S] instead, then an edge-�-triangle s-club S would not be robust to
edge additions. For example, consider a graph G consisting of clique C to which
two vertices u and v are attached in such a way that both u and v have exactly
2 neighbors in C which are distinct. The V (G) is an edge-1-triangle 3-club, but
other adding the edge uv, the edge uv is contained in no triangle and thus any
edge-1-triangle 3-club cannot contain both uand v.

Observe that every set that fulfills the edge-�-triangle property also fulfills
the vertex-�-triangle property. Moreover, each vertex v ∈ S has at least � + 1
neighbors in S: Consider an arbitrary edge uv. Since uv is in at least � tri-
angles {u, v, w1}, . . . , {u, v, w�} we thus conclude that u and v have degree at
least �. We can show an even stronger statement: an edge-�-triangle s-club S is
robust against up to � edge deletions, as desired.

Proposition 1. Let G = (V, E) be a graph and let S be an edge-�-triangle s-club
in G. More precisely, let G′ be a spanning subgraph of G[S] such that every edge
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in E(G′) is in at least � triangles in G′ and the diameter of G′ is at most s. If
� edges are removed from G′, then S is still an (s + �)-club and a (2s)-club.

Proof. We show that if � edges are removed from G′, the diameter of the resulting
graph G̃ increases by at most �. Let P = (v1, . . . , vs+1) be a path of length s
in G′. Since G′ is an edge-�-triangle s-club, every edge vivi+1 of P is part of at
least � triangles in G′. Thus, for two vertices vi and vi+1 in P there is a path
of length at most two from vi to vi+1 in G′, either directly through the edge
vivi+1 or via a vertex u that forms one of the � triangles with vi and vi+1 in
G′. Thus, dist(vi, vi+1) increases by at most 1 after one edge deletion and only
if vivi+1 is removed. Since at most � of the edges in P are removed, we have
dist(v1, vs+1) ≤ dist(v1, v2) + . . . + dist(vs, vs+1) ≤ s + � in G̃. By the same
arguments, we also have dist(v1, vs+1) ≤ 2s.

Thus, after deleting � edges in G′, S is an (s + �)-club and a (2s)-club. ��
The following further variant of s-Club is also practically motivated but not

necessarily by concerns about the robustness of the s-club. Here the difference
to the standard problem is simply that we are given a set of seed vertices W and
aim to find a large s-club that contains all seed vertices.

Seeded s-Club
Input: An undirected graph G = (V, E), a subset W ⊆ V , and an

integer k ≥ 1.
Question: Does G contain an s-club S of size at least k such that W ⊆ S?

This variant has applications in community detection, where we are often
interested in finding communities containing some set of fixed vertices [12,19].

In this work, we study the parameterized complexity of the three above-
mentioned problems with respect to the standard parameter solution size k. Our
goal is to determine whether FPT results for s-Club [6,17] transfer to these
practically motivated problem variants.

Known Results. The s-Club problem is NP-hard for all s ≥ 1 [4], even when the
input graph has diameter s + 1 [2]. For s = 1, s-Club is equivalent to Clique
and thus W[1]-hard with respect to k. In contrast, for every s > 1, s-Club is
fixed-parameter tractable (FPT) with respect to the solution size k [6,17]. This
fixed-parameter tractability can be shown via a Turing kernel with O(k2) vertices
for even s and O(k3) vertices for odd s [6,17]. The complexity of s-Club has
been also studied with respect to different classes of input graphs [9] and with
respect to structural parameters of the input graph [11]. The s-Club problem
can be solved efficiently in practice, in particular for s = 2 [4,6,10].

Vertex Triangle s-Club is NP-hard for all s ≥ 1 and for all � ≥ 1 [1,
5]. We are not aware of any algorithmic studies of Edge Triangle s-Club
or Seeded s-Club. NP-hardness of Edge Triangle s-Club for � = 1 can
be shown via the reduction for Vertex Triangle s-Club for � = 1 [1]. Also,
the NP-hardness of Seeded s-Club for W 	= ∅ follows directly from the fact
that an algorithm for the case where |W | = 1 can be used as a black box to
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Table 1. Overview of our results of the parameterized complexity of the three problems
with respect to the parameter solution size k.

Vertex Triangle

s-Club

Edge Triangle

s-Club

Seeded s-Club

FPT � = 1 and s ≥ 4 � = 1 for each s W is a clique
W[1]-h � = 1 and s ≤ 3 � ≥ 2 for each s s = 2 and G[W ] contains at

least two non-adjacent vertices
� ≥ 2 for each s s ≥ 3 and G[W ] contains at

least 2 connected components

solve s-Club. Further robust models of s-clubs, which are not considered in this
work, include t-hereditary s-clubs [16], t-robust s-clubs [18], and t-connected s-
clubs [14,20]. For an overview on clique relaxation models and complexity issues
for the corresponding subgraph problems we refer to the relevant surveys [13,16].

Our Results. An overview of our results is given in Table 1. For Vertex Trian-
gle s-Club and Edge Triangle s-Club, we provide a complexity dichotomy
for all interesting combinations of s and �, that is, for all s ≥ 2 and � ≥ 1,
into cases that are FPT or W[1]-hard with respect to k, respectively. Our
W[1]-hardness reduction for Edge Triangle s-Club for � ≥ 2 also shows
the NP-hardness of this case. The FPT-algorithms are obtained via adaptions
of the Turing kernelization for s-Club. Interestingly, Vertex Triangle s-
Club with � = 1 is FPT only for larger s, whereas Edge Triangle s-
Club with � = 1 is FPT for all s. In our opinion, this means that the edge-
�-triangle property is preferable not only from a modelling standpoint but also
from an algorithmic standpoint as it allows to employ Turing kernelization as a
part of the solving procedure, at least for � = 1. It is easy to see that standard
problem kernels of polynomial size are unlikely to exist for Vertex Triangle s-
Club and Edge Triangle s-Club: s-clubs are necessarily connected and thus
taking the disjoint union of graphs gives a trivial or-composition and, therefore,
a polynomial problem kernel implies coNP ⊆ NP/poly [3].

For Seeded s-Club, we provide a kernel with respect to k for clique seeds W
and W[1]-hardness with respect to k for some other cases. For s = 2, our results
provide a dichotomy into FPT and W[1]-hardness with respect to k in terms of
the structure of the seed.

Our W[1]-hardness results, in particular those for Seeded s-Club, show that
the FPT results for s-Club are quite brittle since the standard argument that
we may assume k ≥ Δ fails and that adding even simple further constraints
makes finding small-diameter subgraphs much harder. Due to lack of space, the
proofs of several results (marked with (�)) are deferred to a full version of this
article.

Preliminaries. For integers p, q, we denote [p, q] := {p, p + 1, . . . , q} and [q] :=
[1, q]. For a graph G, we let V (G) denote its vertex set and E(G) its edge set. We
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let n and m denote the order of G and the number of edges in G, respectively.
A path of length p is a sequence of pairwise distinct vertices v1, . . . , vp+1 such
that vivi+1 ∈ E(G) for each i ∈ [p]. The distance distG(u, v) is the length of a
shortest path between vertices u and v. Furthermore, we define distG(u, W ) :=
minw∈W dist(u, w). We denote by diamG(G) := maxu,v∈V (G) distG(u, v) the
diameter of G. Let S ⊆ V (G) be a vertex set. We denote by Ni(S) := {u ∈
V | dist(u, S) = i} the open i-neighborhood of S and by Ni[S] :=

⋃
j≤i Ni(S) ∪ S

the closed i-neighborhood of S. For a vertex v ∈ V (G), we write Ni(v) := Ni({v})
and Ni[v]′′ := Ni[{v}]. A graph G′ := (V ′, E′) with V ′ ⊆ V , and E′ ⊆ E(G[V ′])
is a subgraph of G. By G[S] := (S, {uv ∈ E(G) | u, v ∈ S}) we denote the sub-
graph induced by S. Furthermore, by G − S := G[V \ S] we denote the induced
subgraph obtained after the deletion of the vertices in S. A vertex set such that
each pair of vertices is adjacent is called a clique and a clique consisting of three
vertices is a triangle.

For the definitions of parameterized complexity theory, we refer to the stan-
dard monographs [7,8]. All of our hardness results are shown by a reduction from
Clique which is the special case of s-Club with s = 1 and which is known to
be W[1]-hard with respect to k [7,8].

2 Vertex Triangle s-Club

First, we show that Vertex Triangle s-Club is fixed-parameter tractable
when � = 1 and s ≥ 4. Afterwards, we show W[1]-hardness for all remaining
cases. The first step of the FPT algorithm is to apply the following rule.

Reduction Rule 1. Let (G, k) be an instance of Vertex Triangle s-Club.
Delete all vertices from G which are not part of any triangle.

Clearly, Reduction Rule 1 is correct and can be exhaustively applied in poly-
nomial time. The application of Reduction Rule 1 has the following effect: if
some vertex v is close to many vertices, then (G, k) is a trivial yes-instance.

Lemma 1. Let (G, k) be an instance of Vertex Triangle s-Club with � = 1
and s ≥ 4 to which Reduction Rule 1 is applied. Then, (G, k) is a yes-instance
if |N�s/2�−1[v]| ≥ k for some vertex v ∈ V (G).

Proof. Let v ∈ V (G) be a vertex such that |N�s/2�−1[v]| ≥ k. We construct a
vertex-1-triangle s-club T of size at least |N�s/2�−1[v]| ≥ k. Initially, we set T :=
N�s/2�−1[v]. Now, for each vertex w ∈ N�s/2�−1(v) we do the following: Since
Reduction Rule 1 is applied, we conclude that there exist two vertices x and y
such that G[{w, x, y}] is a triangle. We add x and y to the set T . We call the set
of vertices added in this step the T -expansion.

Next, we show that T is indeed a vertex-1-triangle s-club for s ≥ 4.
Observe that each vertex in T is either in N�s/2�−1[v] or a neighbor of a vertex
in N�s/2�−1(v). Hence, each vertex in T has distance at most �s/2 to vertex v.
Thus, T is an s-club. It remains to show that each vertex of T is in a trian-
gle. Observe that for each vertex w ∈ N�s/2�−2[v] we have N(w) ⊆ N�s/2�−1[v].
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Recall that since Reduction Rule 1 is applied, each vertex in G is contained in
a triangle. Thus, each vertex of N�s/2�−2[v] is contained in a triangle in T . Fur-
thermore, all vertices in N�s/2�−1(v) ∪ (T \ N�s/2�−1[v]) are in a triangle because
of the T -expansion. Since |T | ≥ |N�s/2�−1[v]| ≥ k, the statement follows. ��

Next, we show that Lemma 1 implies the existence of a Turing kernel. This
in turn implies that the problem is fixed-parameter tractable.

Theorem 2. Vertex Triangle s-Club for � = 1 admits a k4-vertex Turing
kernel if s = 4 or s = 7, a k5-vertex Turing kernel if s = 5, and a k3-vertex
Turing kernel if s = 6 or s ≥ 8.

Proof. First, we apply Reduction Rule 1. Because of Lemma 1 we conclude
that (G, k) is a trivial yes-instance if |N�s/2�−1[v]| ≥ k for any vertex v ∈ V (G).
Thus, in the following we can assume that |N�s/2�−1[v]| < k for each vertex v ∈
V (G). We use this fact to bound the size of Ns[v] in non-trivial instances.

Note that if s = 4 or s = 5 we have �s/2 − 1 = 1. Hence, in this case
from |N�s/2�−1[v]| < k we obtain that the size of the neighborhood of each
vertex is bounded. Thus, we obtain a k4-vertex Turing kernel for s = 4 and
a k5-vertex Turing kernel for s = 5. Furthermore, if s = 7 we have �s/2−1 = 2.
Thus, we obtain a k4-vertex Turing kernel for s = 7 since N7[v] ⊆ N8[v] =
N2[N2[N2[N2[v]]]]. The cases s = 6 and s ≥ 8 can be shown similarly. ��

Note that s ≥ 4 is necessary to ensure �s/2 − 1 ≥ 1. In our arguments
to obtain a Turing kernel � = 1 is necessary for the following reason: if � ≥ 2,
then the remaining vertices of the other triangles of a vertex in the T -expansion
may be contained in N�s/2�+1 and, thus, adding them will not necessarily give
an s-club. This argument can be extended to show that using Nt[v] for some t <
�s/2 − 1 does not help.

Next, we provide W[1]-hardness for the remaining cases.

Theorem 3 (�). Vertex Triangle s-Club is W[1]-hard for parameter k
if � ≥ 2, and if � = 1 and s ∈ {2, 3}.

We prove the theorem by considering four subcases where we distinguish
different combinations of s and �. The proofs for the four cases all use a reduction
from the W[1]-hard Clique problem. In these constructions, each vertex v of
the Clique instance is replaced by a vertex gadget T v such that every vertex-�-
triangle s-club S either contains T v completely or contains no vertex of T v. This
property is obtained since each vertex in T v will be in exactly � triangles and
each of these triangles is within T v. The idea is that if uv /∈ E(G) then there
exists a vertex x ∈ T u and a vertex y ∈ T v such that dist(x, y) ≥ s + 1.

Here, we only provide a proof for the case s = 2. The proofs for all remaining
cases are deferred to the full version of this article.

Construction 4. Let (G, k) be an instance of Clique and let c be the smallest
number such that

(
c−1
2

) ≥ �. We construct an instance (G′, c(k + 1)) of Vertex
Triangle 2-Club as follows. For each vertex v ∈ V (G), we add a clique T v :=
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{xv
1, . . . , xv

c} of size c to G′. Furthermore, for each edge vw ∈ E(G), we connect
the cliques T v and T w by adding the edge xv

2i−1xw
2i and xw

2i−1xv
2i to G′ for

each i ∈ [�c/2]. Next, we add a clique Y := {y1, . . . , yc} of size c to G′. We also
add, for each i ∈ [c] and each v ∈ V (G), the edge xv

i yi to G′.

Note that the clique size c ensures that each vertex x ∈ V (G′) is contained
in at least

(
c−1
2

) ≥ � triangles in G′. Furthermore, note that the clique Y is only
necessary when c is odd to ensure that the vertices xv

c and xw
c have a common

neighbor. We add the clique Y in both cases to unify the construction and the
correctness proof. Next, we show that for each vertex gadget T v the intersection
with each vertex-�-triangle 2-club is either empty or T v.

Lemma 2 (�). Let S be a vertex-�-triangle 2-club in G′. Then,

a) S ∩ T v 	= ∅ ⇔ T v ⊆ S, and
b) S′ := S ∪ Y is also a vertex-�-triangle 2-club in G′.

Now, we prove the correctness of Construction 4. If � =
(

c−1
2

)
for some inte-

ger c, then Lemma 3 also holds for the restriction that each vertex is contained
in exactly � triangles in the input graph G′.

Lemma 3. For each � ∈ N, the Vertex Triangle 2-Club problem parame-
terized by k is W[1]-hard.

Proof. We prove that G contains a clique of size k if and only if G′ contains a
vertex-�-triangle 2-club of size at least c(k + 1).

Let C be a clique of size at least k in G. We argue that S := Y ∪ ⋃
v∈C T v is

a vertex-�-triangle 2-club of size c(k + 1) in G′. Note that for each vertex v ∈ T v

we have |T v| = c. Since T v is a clique, we conclude that each vertex in T v is
contained in exactly

(
c−1
2

) ≥ � triangles. The same is true for each vertex in Y .
Hence, each vertex in S is contained in at least � triangles. Thus, it remains
to show that S is a 2-club. Consider the vertices xv

i and xw
j for v, w ∈ C, i ∈

[c − 1], and j ∈ [c]. If i is odd, then xw
i+1 ∈ N(xv

i ) ∩ N(xw
j ). Otherwise, if i is

even, xw
i−1 ∈ N(xv

i ) ∩ N(xw
j ). In both cases, we obtain dist(xv

i , xw
j ) ≤ 2. Next,

consider two vertices xv
c and xw

c in S. Observe that yc ∈ N(xv
c )∩N(xw

c ). Since Y
is a clique, it remains to consider vertices xv

i and yj in S for i ∈ [c] and j ∈ [c].
Observe that xv

j ∈ N(yj) ∩ N [xv
i ]. Thus, G′ contains a vertex-�-triangle 2-club

of size at least c(k + 1).
Conversely, suppose that G′ contains a vertex-�-triangle 2-club S of size at

least c(k + 1). By Lemma 2, we can assume that Y ⊆ S and for each vertex
gadget T v ∈ G′ we either have T v ⊆ S or T v ∩ S = ∅. Hence, S contains at
least k cliques of the form T v. Assume towards a contradiction that S contains
two cliques T v and T w such that vw /∈ E(G) and consider the two vertices xv

1 ∈
T v and xw

2 ∈ T w. Note that these vertices always exist since c ≥ 3. Observe
that N [xv

1] = T v ∪ {xu
2 | uv ∈ E(G)} ∪ {y1} and N [xw

2 ] = T w ∪ {xu
1 | uw ∈

E(G)} ∪ {y2}. Thus, dist(xv
1, xw

2 ) ≥ 3, a contradiction. Hence, for each two
distinct vertex gadgets T v and T w that are contained in S, we observe that vw ∈
E(G). Consequently, the set {v | T v ⊆ S} is a clique of size at least k in G. ��
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3 Edge Triangle s-Club

Recall that a vertex set S is an edge-�-triangle s-club if G[S] contains a spanning
subgraph G′ = (S, E′) such that each edge in E(G′) is contained in at least
� triangles within G′ and the diameter of G′ is at most s. First, we show that
Edge Triangle s-Club is FPT with respect to k when � = 1 irrespective of
the value of s by providing a Turing kernel. To show this, it is sufficient to delete
edges which are not part of a triangle.

Theorem 5 (�). Edge Triangle s-Club for � = 1 admits a k2-vertex Turing
kernel if s is even and a k3-vertex Turing kernel if s is odd and s ≥ 3.

Now, for the remaining cases we show W[1]-hardness.

Theorem 6. Edge Triangle s-Club is W[1]-hard for parameter k if � ≥ 2.

Next, we describe the reduction to prove Theorem 6 (see Fig. 1).

Construction 7. Let (G, k) be an instance of Clique with k ≥ 3. We construct
an equivalent instance (G′, k′) of Edge-Triangle s-Club for some fixed � ≥ 2
as follows. Let �∗ := ��/2� and let x := 6 · �∗(s − 1) + ��/2. For each ver-
tex v ∈ V (G), we construct the following vertex gadget T v. For better readabil-
ity, all sub-indices of the vertices in T v are considered modulo x. Our construc-
tion distinguishes even and odd values of �. First, we describe the part of the
construction which both cases have in common.

1. We add vertex sets Av := {av
i | i ∈ [0, x]} and Bv := {bv

i | i ∈ [0, x]} to G′.
2. We add the edges av

i av
i+j , and bv

i bv
i+j for each i ∈ [0, x] and each j ∈

[−3�∗, 3�∗] \ {0} to G′.
3. We add the edge av

i bv
i+j for each i ∈ [0, x] and each j ∈ [−3�∗, 3�∗] to G′.

In other words, an edge av
i bv

j is added if the indices differ by at most 3�∗.
For even �, this completes the construction of T v. For odd �, we extend T v as
follows:

0-1 We add the vertex set Cv := {cv
i | i ∈ [0, x] and i ≡ 0 mod �∗} to G′. Note

that Cv consists of exactly 6s − 5 vertices.
0-2 We add the edges cv

i av
i+j and cv

i bv
i+j for each i ∈ [0, x] such that i ≡ 0

mod �∗ and each j ∈ [−3�∗, 3�∗] to G′.
0-3 Also, we add the edge cv

i cv
i+j to G′ for each i ∈ [0, x] such that i ≡ 0 mod �∗

and each j ∈ [−3�∗, 3�∗] \ {0} to G′ if the corresponding vertex cv
i+j exists.

In other words, an edge between cv
i and av

j , bv
j , or cv

j is added if the indices
differ by at most 3�∗. Now, for each edge uv ∈ E(G), we add the following to G′:

0-4 We add the edges av
i bu

i+j and au
i bv

i+j for each i ∈ [0, x] and j ∈ [0, ��/2].
0-5 If � is odd, we also add the edges cv

i bu
i+j and cu

i bv
i+j for each i ∈ [0, x] such

that i ≡ 0 mod �∗ and each j ∈ [0, ��/2] to G′.
Observe that each vertex bu

i+j is adjacent to exactly one vertex in Cv.
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Fig. 1. Construction for Theorem 6 when s = 3 and � = 2 and G is a P3 on {u, v, w}
with uv /∈ E(G). Only the gadgets Av, Bw, Aw, and Bu are shown. For simplicity, no
edges within Av, Bw, Aw, and Bu are drawn and edges between Bw and Aw are only
drawn if one endpoint is aw

3 , aw
4 , aw

9 , or aw
10. Blue encircled vertices are neighbors of av

0 ,
red encircled vertices have distance 2 to av

0 , and black encircled vertices have distance 3
to av

0 . Thus, av
0 and bu

7 = bu
0+1+3·1·2 = bu

0+��/2�+3�∗(s−1) have distance at least 4. (Color
figure online)

In other words, an edge between av
i or cv

i and bv
j is added if j exceeds i by

at most ��/2. Finally, if � is even, we set k′ := 2(x + 1)k = (�(6s − 5) + 2) · k,
and if � is odd, we set k′ := (2(x + 1) + 6s − 5)k = (� + 2)(6s − 5) · k.

Construction 7 has two key mechanisms: First, if uv /∈ E(G) then for each
vertex a ∈ Av there is at least one vertex b ∈ Bu such that dist(a, b) > s.
Second, each edge with one endpoint in Av and one endpoint in Bu is contained
in exactly � triangles. Furthermore, if � is odd, then this also holds for each edge
with one endpoint in Cv and one in Bu. Consider an edge-�-triangle s-club S
and let G̃ = (S, Ẽ) be a spanning subgraph of G[S] with the maximal number
of edges, such that each edge of Ẽ is contained in at least � triangles in G̃ and
the diameter of G̃ is s. As we will show, the two mechanics ensure that an edge
with one endpoint in Av (or Cv) and the other endpoint in Bu is contained in Ẽ
if and only if S contains all vertices of Av (and Cv) and Bu. We call this the
enforcement property. The proof of this property is deferred to the full version.

Proof (of Theorem 6). We show that G contains a clique of size at least k if and
only if G′ contains an edge-�-triangle s-club of size at least k′.

Let K be a clique of size k in G. Then S := {u ∈ V (T v) | v ∈ K} is an
edge-�-triangle s-club of size at least k′; the proof is deferred to the full version.

Conversely, let S be an edge-�-triangle s-club of size at least k′ in G′. More
precisely, let G̃ be a maximal spanning subgraph of G[S] which has diameter at
most s and such that each edge in E(G̃) is contained in at least � triangles is G̃.
We show that G contains a clique of size at least k. Here, we only consider the
case that s is even; the case that s is odd is deferred to the full version. First,
we show that for each vertex x ∈ Av ∪ Bv there exists a vertex y ∈ Au ∪ Bu

such that dist(x, y) ≥ s + 1 if uv /∈ E(G). For this, recall that by construction
each two vertices with sub-indices i′ and j′ are not adjacent if their difference
(modulo x) is larger than 3�∗.
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Claim 1. In G′ we have dist(xi, yj) ≥ s + 1 for each i ∈ [0, x], j := i + ��/2 +
3�∗(s − 1), xi ∈ {av

i , bv
i }, and yj ∈ {au

j , bu
j } if uv /∈ E(G).

The next statement follows from Claim 1 and the enforcement property.

Claim 2. If Av ⊆ S and Bu ⊆ S then uv ∈ E(G).

We now use Claims 1 and 2 to show that G contains a clique of size at least k.
We distinguish the cases whether S contains only parts of one of the gadgets Av

or Bv, or whether S contains all vertices of the gadgets Av or Bv completely.
First, assume that for some vertex v ∈ V (G) we have Av ∩S 	= ∅ and Av 	⊆ S.

In the following, we show that S only contains vertices of gadget T v and from
gadgets T u such that uv ∈ E(G). Since Av 	⊆ S, we conclude that in G̃ we
have N

G̃
(Av ∩ S) ⊆ Bv: Otherwise, vertex av has a neighbor bu ∈ Bu and

by the enforcement property we would obtain Av ⊆ S, a contradiction to the
assumption Av 	⊆ S. If Bv 	⊆ S, then by the enforcement property no vertex
in Bv can have a neighbor aw

i for some w 	= v. Hence, S ∩ T v would be a
connected component of size at most 2(x + 1), a contradiction to the size of S
since k ≥ 3. Thus, we may assume that Bv ⊆ S. Observe that if aw

i ∈ S for
some w ∈ V (G) such that vw ∈ E(G̃), that is, also vw ∈ E(G′), then we
have Aw ⊆ S by the enforcement property since each vertex aw

i has a neighbor
in Bv. Let W := {w1, . . . , wt} denote the set of vertices wj such that vwj ∈ E(G)
and Awj

⊆ S. If wxwy /∈ E(G) for some x, y ∈ [t] with x 	= y, then awx
0

and a
wy

��/2�+3�∗(s−1) have distance at least s + 1 by Claim 1. Thus wxwy ∈ E(G)
for each x, y ∈ [t] with x 	= y.

Assume towards a contradiction that ap
i ∈ S for some p ∈ V (G\W ) with p 	=

v. Note that pv /∈ E(G) since otherwise p ∈ W by the definition of W . Observe
that since Bv ⊆ S we also have bv

i+��/2�+3�∗(s−1) ∈ S. But since pv /∈ E(G) we
obtain from Claim 1 that dist(ap

i , bv
i+��/2�+3�∗(s−1)) ≥ s + 1, a contradiction. We

conclude that S does not contain any vertex ap
i with p 	= v or p 	= wj for j ∈ [t].

Next, assume towards a contradiction that bp
i ∈ S for some p ∈ V (G) with

p 	= v and p /∈ W . If pv /∈ E(G), then bp
i and bv

i+��/2�+3�∗(s−1) have distance
at least s + 1 again by Claim 1. Thus, we can assume that pv ∈ E(G). Recall
that bv

i+��/2�+3�∗(s−1) ∈ S. As defined by Claim 1, each shortest path from bp
i

to bv
i+��/2�+3�∗(s−1) can swap at most once between different vertex gadgets. In

this case, there is exactly one swap from T p to T v. From the above we know
that Ap ∩ S = ∅. Thus, each shortest path from bp

i to bv
i+��/2�+3�∗(s−1) uses at

least one vertex in Av. Since at least one edge with endpoint Av is contained
in S, we conclude from the enforcement property that Av ⊆ S, a contradiction
to the assumption Av 	⊆ S.

Hence, there is no vertex p 	= v and p /∈ W such that T p ∩ S 	= ∅. In
other words, S contains only vertices from the gadget T v and from gadgets T u

with vu ∈ E(G). Thus, S ⊆ T v ∪⋃t
j=1 T wj . By definition of k′, we have t ≥ k−1

and we conclude that G contains a clique of size at least k. The case that we
have Bv ∩S 	= ∅ and Bv 	⊆ S for some vertex v ∈ V (G) can be handled similarly.
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Second, consider the case that for each set Av with Av ∩S 	= ∅ we have Av ⊆
S, and that for each set Bv with Bv ∩ S 	= ∅ we have Bv ⊆ S. Let WA :=
{wj

A | Awj
⊆ S} and WB := {wj

B | Bwj
⊆ S}. If WA = ∅ or WB = ∅ then

each connected component in G′[S] has size at most x + 1 < k′. Thus, we may
assume that WA 	= ∅ and that WB 	= ∅. By Claim 2, we have wi

Awj
B ∈ E(G) for

each wi
A ∈ WA and wj

B ∈ WB . Furthermore, by Claim 1, we have wj
Bwj′

B ∈ E(G)
for wj

B , wj′
B ∈ WB and wi

Awi′
A ∈ E(G) for wi

A, wi′
A ∈ WA. Hence, we obtain

that min(|WA|, |WB |) ≥ k and thus G contains a clique of size k. ��

4 Seeded s-Club

In this section we study the parameterized complexity of Seeded s-Club with
respect to the standard parameter solution size k. For clique seeds, we provide
the following kernel.

Theorem 8. Seeded s-Club admits a kernel with O(k2|W |+1) vertices if W is
a clique.

To prove the kernel, we first remove all vertices with distance at least s + 1
to any vertex in W .

Reduction Rule 9. Let (G, W, k) be an instance of Seeded s-Club. If G con-
tains a vertex u such that dist(u, w) ≥ s + 1 for some w ∈ W , then remove u.

Clearly, Reduction Rule 9 is correct and can be applied in polynomial time.
Next, we show that if the remaining graph is sufficiently large then (G, W, k) is
a yes-instance of Seeded s-Club.

Lemma 4 (�). An instance (G, W, k) of Seeded s-Club with |Ns−1[W ]| ≥ k2

is a yes-instance.

Finally, we bound the size of Ns(W ). There we assume that |Ns−1[W ]| < k2

by Lemma 4 and that Reduction Rule 9 is applied. Afterwards, Theorem 8 follows
directly from Lemmas 4 and 5.

Lemma 5. An instance (G, W, k) of Seeded s-Club with |Ns(W )| ≥ k2|W |+1

which is reduced with respect to Reduction Rule 9 is a yes-instance.

Proof. Since Reduction Rule 9 has been applied exhaustively, each vertex p ∈
Ns(W ) has distance exactly s to each vertex in W . In other words, for each
vertex w� ∈ W there exists a vertex u�

s−1 ∈ Ns−1(w�) such that pu�
s−1 ∈ E(G).

Note that Ns−1(w�) ⊆ Ns−1[W ]. Moreover, by Lemma 4 we may assume that
|Ns−1[W ]| < k2. In particular: |Ns−1(W )| < k2. Since |Ns(W )| ≥ k2|W |+1,
by the pigeonhole principle there exists a set {u1

s−1, u2
s−1, . . . , u

|W |
s−1} with u�

s−1 ∈
Ns−1(w�) for � ∈ [|W |] such that the set P := Ns(W )∩⋂

�∈[|W |] N(u�
s−1) has size

at least k. The size bound follows from the observation that each Ns−1(w�) has
size at most k2 and we have exactly |W | many of these sets. By the definition
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of vertex u�
s−1, there exists for each i ∈ [s − 2] a vertex u�

i ∈ Ni(w�) such
that w�, u�

1, . . . , u�
s−1 is a path of length s − 1 in G. We define the set U := {u�

i |
� ∈ [|W |], i ∈ [s − 1]}. Next, we show that Z := P ∪ W ∪ U induces an s-club.

First, observe that all vertices in P have distance at most 2 to each other
since they have the common neighbor u1

s−1. Second, note that the vertices w�,
u�
1, . . . , u�

s−1, p, uj
s−1, . . . , uj

1, wj form a cycle with 2s + 1 vertices, for each p ∈ P
and each two indices j, � ∈ [|W |]. Each vertex in this cycle has distance at most s
to each other vertex in that cycle. Hence, Z is indeed an s-club. ��

Now, we show hardness for some of the remaining cases.

Theorem 10 (�). Let H be a fixed graph. Seeded s-Club is W[1]-hard param-
eterized by k even if G[W ] is isomorphic to H, when

– s = 2 and H contains at least two non-adjacent vertices, or if
– s ≥ 3 and H contains at least two connected components.

In this extended abstract, we only show W[1]-hardness for the case s ≥ 3
when the seed contains at least two connected components. Fix a graph H with
at least two connected components. We show W[1]-hardness for s ≥ 3 even
if G[W ] is isomorphic to H.

Construction 11. Let (G, k) be an instance of Clique. We construct an equiv-
alent instance (G′, k′) of Seeded s-Club as follows. Initially, we add the set W
to G′, and add edges such that G′[W ] is isomorphic to H. Let D1 be one con-
nected component of G′[W ]. By assumption, D2 := W \ D1 is not empty. Next,
we add two copies G1 and G2 of G to G′. Then, we add edges to G′ such that each
vertex in D1 is adjacent to each vertex in V (G1) and such that each vertex in D2
is adjacent to each vertex in V (G2). Furthermore, we add a path (p1, . . . , ps−1)
consisting of exactly s − 1 new vertices to G′, make p1 adjacent to each u ∈ D1,
and make ps−1 adjacent to each v ∈ D2. By P := {pi | i ∈ [s − 1]} we denote
the set of these newly added vertices. Now, for each x ∈ V (G) we do the follow-
ing. Consider the copies x1 ∈ V (G1) and x2 ∈ V (G2) of vertex x ∈ V (G).
We add a path (x1, qx

1 , . . . , qx
s−2, x2) consisting of s − 2 new vertices to G′.

By Qx := {qx
i | i ∈ [s − 2]} we denote the set of the new internal path ver-

tices. Finally, we set k′ := sk + |W | + s − 1.

Now, we prove the correctness of Construction 11.

Lemma 6. Let H be a fixed graph with at least two connected components.
Seeded s-Club parameterized by k is W[1]-hard even if G[W ] is isomorphic
to H.

Proof. We show that G contains a clique of size k if and only if G′ contains
a W -seeded s-club of size at least k′ = sk + |W | + s − 1. Let K be a clique of
size k in G and let K1 and K2 be the copies of K in G1 and G2. Then S :=
W ∪ P ∪ K1 ∪ K2 ∪ ⋃

x∈K Qx is a W -seeded s-club of size at least k′; the proof
of this fact is deferred to the full version of this article.
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Conversely, suppose that G′ contains a W -seeded s-club S of size at least k′.
Let Q′

v := {v1, qv
1 , . . . , qv

s−2, v2} for each v ∈ V (G). We show that Q′
v ∩ S 	= ∅ if

and only if Q′
v ⊆ S. Assume towards a contradiction, that Q′

v∩S 	= ∅ for some v ∈
V (G) such that Q′

v 	⊆ S. If v1 /∈ S, and also v2 /∈ S, then no vertex in S ∩ Q′
v

is connected to any vertex in S \ Q′
v. Thus, without loss of generality assume

that v1 ∈ S. Note that N(D2) = V (G2)∪{ps−1}. Observe that dist(v1, ps−1) = s,
that dist(v1, qv

s−2) = s−2, and that dist(v1, qu
s−2) ≥ s−1 for each u ∈ V (G)\{v}.

Thus, the unique path of length at most s from v1 to D2 contains all vertices
in Q′

v. Hence, Q′
v ∩ S 	= ∅ if and only if Q′

v ⊆ S. By the definition of k′ we may
thus conclude that Q′

v ⊆ S for at least k vertices v ∈ V (G).
Assume towards a contradiction that Q′

u ⊆ S and Q′
v ⊆ S such that uv /∈

E(G). We consider the vertices v1 and u2. Observe that by construction each
path from v1 to u2 containing any vertex pi has length at least s+1. Hence, each
shortest path from v1 to u2 contains the vertex set of Q′

w for some w ∈ V (G).
Since the path induced by each Q′

w has length s − 1, we conclude that w = u
or w = v. Assume without loss of generality that w = v. Hence, the (s − 1)th
vertex on the path from v1 is v2. Since uv /∈ E(G) we have by construction
that u2v2 /∈ E(G′). Hence, dist(v1, u2) ≥ s+1, a contradiction to the fact that S
is an s-club. Thus, {v | Q′

v ⊆ S} is a clique of size at least k in G. ��

5 Conclusion

We provided a complexity dichotomy for Vertex Triangle s-Club and
Edge Triangle s-Club for the standard parameter solution size k with respect
to s and �. We also provided a complexity dichotomy for Seeded 2-Club for k in
terms of the structure of G[W ]. In contrast, it remains an open question whether
Seeded s-Club with s ≥ 3 admits an FPT algorithm when G[W ] is connected
but W is not a clique. It is particularly interesting to study seeds of constant
size since this seems to be the most interesting case for applications.

For future work, it seems interesting to study the complexity of the considered
variants of s-Club with respect to further parameters, for example the treewidth
of G. Additionally, the parameterized complexity of further robust variants of
s-Club such as t-Hereditary s-Club [14,16] with respect to k remains open.
It is also interesting to study other problems for detecting communities with seed
constraints. One prominent example is s-Plex. This problem is also NP-hard
for W 	= ∅, since an algorithm for the case when |W | = 1 can be used as a black
box to solve the unseeded variants. From a practical perspective, we plan to
implement combinatorial algorithms for all three problem variants for the most
important special case s = 2. Based on experience with previous implementations
for 2-Club [10] and some of its robust variants [14] we are optimistic that these
problems can be solved efficiently on sparse real-world instances.
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Abstract. We study succinct variants of B trees in the word RAM
model that require s + o(s) bits of space, where s is the number of bits
essentially needed for storing keys and possibly other satellite values.
Assuming that elements are sorted by keys (not necessarily in the order
of their integer representations), our B trees support standard operations
such as searching, insertion and deletion of elements. In some applica-
tions it is useful to associate a satellite value to each element, and to
support aggregate operations such as computing the sum of values, the
minimum/maximum value in a given range, or search operations based
on those values. We propose a B tree representation storing n elements
in s + O(s/ lg n) bits of space and supporting all mentioned operations
in O(lg n) time.

Keywords: B tree · Succinct data structure · Predecessor data
structure

1 Introduction

A B tree [1] is the most ubiquitous data structure found for relational databases
and is, like the balanced binary search tree in the pointer machine model, the
most basic search data structure in the external memory model. A lot of research
has already been dedicated for solving various problems with B trees, and various
variants of the B tree have already been proposed (cf. [12] for a survey). Here, we
study a space-efficient variant of the B tree in the word RAM model under the
context of a dynamic predecessor data structure, which provides the following
methods:

predecessor(K) returns the predecessor of a given key K (or K itself if it is
already stored);

insert(K) inserts the key K; and
delete(K) deletes the key K.
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We call these three operations B tree operations in the following. Nowadays,
when speaking about B trees we actually mean B+ trees [4, Sect. 3] (also called
leaf-oriented B-tree [2]), where the leaves store the actual data (i.e., the keys).
We stick to this convention throughout the paper. Another variant we want to
focus on in this paper is the B∗ tree [16, Sect. 6.2.4], where a node split on
inserting a key into a full node has chances to be deferred by balancing the loads
of this node with one of its siblings.

1.1 Related Work

The standard B tree as well its B+ and B∗ tree variants support the above
methods in O(lg n) time, while taking O(n) words of space for storing n keys.
Even if each key uses only k = o(lg n) bits, the space requirement remains
the same since its pointer-based tree topology already needs O(n) pointers. To
improve the space while retaining the operational time complexity in the word
RAM model is main topic of this article. However, this is not a novel idea:

The earliest approach we are aware of is due to Blandford and Blelloch [3]
who proposed a representation of the leaves as blocks of size Θ(lg n). Assuming
that keys are integer of k bits, they store the keys not in their plain form,
but by their differences encoded with Elias-γ code [7]. Their search tree takes
O(n lg((2k + n)/n)) bits while conducting B tree operations in O(lg n) time.

More recently, Prezza [19] presented a B tree whose leaves store between
b/2 and b keys for b = lg n. Like [2, Sect. 3] or [6, Thm. 6], the main aim
was to provide prefix-sums by augmenting each internal node of the B tree
with additional information about the leaves in its subtree such as the sum of
the stored values. Given m is the sum of all stored keys plus n, the provided
solution uses 2n (lg(m/n) + lg lg n + O(lg m/ lg n)) bits of space and supports
B tree operations as well as prefix-sum in O(lg n) time. This space becomes
2nk + 2n lg lg n + o(n) bits if we store each key in plain k bits.

Data structures computing prefix-sums are also important for dynamic string
representations [13,17,18]. For instance, He and Munro [13] use a B tree as under-
lying prefix-sum data structure for efficient deletions and insertions of characters
into a dynamic string. If we omit the auxiliary data structures on top of the B
tree to answer prefix-sum queries, their B tree uses nk + O(nk/

√
lg n) bits of

space while supporting B tree operations in O(lg n/ lg lg n) time, an improve-
ment over the O(lg n) time of the data structure of González and Navarro [11,
Thm. 1] sharing the same space bound. In the static case, Delpratt et al. [5]
studied compression techniques for a static prefix-sum data structure.

Asides from prefix-sums, another problem is to maintain a set of strings,
where each node v is augmented with the length of the longest common prefix
(LCP) among all strings stored as satellite values in the leaves of the subtree
rooted at v [9].

Next, there is a line of research on implicit data structures supporting B tree
operations: Under the assumption that all keys are distinct, the data structure
of González and Navarro [10] supports O(lg n) time for predecessor and O(lg n)
amortized time for updates (delete and insert) while using only constant number
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of words of extra space to a dynamic array A of size kn bits storing the keys.
However, they assume a more powerful model of computation, where expanding
or contracting A at its end can be done in constant time. This model is more
powerful in the sense that the standard RAM model only supports the real-
location of a new array and copying the contents of the old array to the new
array, thus taking time linear in the size of the two arrays. In the standard RAM
model, arrays with such operations (extension or contraction at their ends) are
called extendible arrays, and the best solution in this model (we are aware of)
uses nk + O(w +

√
knw) bits of space for supporting constant-time access and

constant-time amortized updates [20, Lemma 1]. Allowing duplicate keys, Kata-
jainen and Rao [15] presented a data structure with the same time bounds as [10]
but using O(n lg lg n/ lg n) bits of extra space.

With respect to similar techniques but different aim, we can point out the
succinct dynamic tree representation of Farzan and Munro [8, Thm 2] who pro-
pose similar techniques like rebuilding substructures after a certain amount of
updates (cf. Sect. 4.1), or storing satellite data in blocks (cf. Sect. 4). They also
have a need for space-efficient prefix-sum data structures.

In what follows, we present a solution for B trees based on different known
techniques for succinct data structures such as [20] and the aforementioned B
tree representations.

1.2 Our Contribution

Our contribution (cf. Sect. 3) is a combination of a generalization of the rear-
rangement strategy of the B∗ tree with the idea to enlarge the capacity of the
leaves similarly to some approaches listed in the related work. With these tech-
niques we obtain:

Theorem 1. There is a B tree representation storing n keys, each of k bits, in
nk + O(nk/ lg n) bits of space, supporting all B tree operations in O(lg n) time.

We stress that this representation does not compress the keys, which can
be advantageous if keys are not simple data types but for instance pointers to
complex data structure such that equality checking cannot be done by merely
comparing the bit representation of the keys, but still can be performed in con-
stant time. In this setting of incompressible keys, the space of a succinct data
structure supporting predecessor, insert, and delete is nk + o(nk) bits for storing
n keys.

We present our space-efficient B tree in Sect. 3. Additionally, we show that we
can augment our B tree with auxiliary data such that we can address the prefix-
sum problem and LCP queries without worsening the query time (cf. Sect. 4).

2 Preliminaries

Our computational model is the word RAM model with a word size of w bits. We
assume that each key uses k = O(w) bits, and that we can compare two keys in
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Fig. 1. A B+ tree with degree t = 3 and height 3. A leaf can store at most b = t = 3
children. A child pointer is a gray field in the internal nodes. An internal node v stores
t − 1 integers in an array Iv where the value Iv[i] regulates that only those keys of at
most Iv[i] go to the children in the range from the first up to the i-th child. In what
follows (Fig. 2), we consider inserting the key 9 into the full leaf � (storing the keys 8,
10, and 12), and propose a strategy different from splitting � by considering its q = 3
siblings.

O(1) time. More precisely, we support the comparison to be more complex than
just comparing the k-bit representation bitwise as long as it can be evaluated
within constant time. Let n = O(2w) ∩ Ω((w lg2 n)/k) be the number of keys we
store at a specific, fixed time.

A B+ tree of degree t for a constant t ≥ 3 is a rooted tree whose nodes
have an out-degree between �t/2� and t. See Fig. 1 for an example. All leaves
are on the same height, which is Θ(lg n) when storing n keys. The number of
keys each leaf stores is between �t/2� and t (except if the root is a leaf). Each
leaf is represented as an array of length t; each entry of this array has k bits.
We call such an array a leaf array. Each leaf additionally stores a pointer to its
preceding and succeeding leaf. Each internal node v stores an array of length t for
the pointers to its children, and an integer array Iv of length t − 1 to distinguish
the children for guiding a top-down navigation. In more detail, Iv[i] is a key-
comparable integer such that all keys of at most Iv[i] are stored in the subtrees
rooted (a) at the i-th child u of v or (b) at u’s left siblings. Since the integers
of Iv are stored in ascending order (with respect to the order imposed on the
keys), to know in which subtree below v a key is stored, we can perform a binary
search on Iv.

A root-to-leaf navigation can be conducted in O(lg n) time, since there are
O(lg n) nodes on the path from the root to any leaf, and selecting a child of a
node can be done with a linear scan of its stored keys in O(t) = O(1) time.

Regarding space, each leaf stores at least t/2 keys. So there are at most 2n/t
leaves. Since a leaf array uses kt bits, the leaves can use up to 2nk bits. This
is at most twice the space needed for storing all keys in a plain array. In what
follows, we provide a space-efficient variant.
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3 Space-Efficient B Trees

To obtain a space-efficient B tree variant, we apply two ideas. We start with the
idea to share keys among several leaves (Sect. 3.1) to maintain the space of the
leaves more economically. Subsequently, we can adapt this technique for leaves
maintaining a non-constant number of keys efficiently (Sect. 3.2), leading to the
final space complexity of our proposed data structure (Sect. 3.3) and Theorem 1.

3.1 Resource Management by Distributing Keys

Our first idea is to keep the leaf arrays more densely filled. For that, we generalize
the idea of B∗ trees [16, Sect. 6.2.4]: The B∗ tree is a variant of the B tree (more
precisely, we focus on the B+ tree variant) with the aim to defer the split of a
full leaf on insertion by rearranging the keys with a dedicated sibling leaf. On
inserting a key into a full leaf, we try to move a key of this leaf to its dedicated
sibling. If this sibling is also full, we split both leaves up into three leaves, each
having 2/3 · b keys on average [16, Sect. 6.2.4], where b = t is the maximum
number of keys a leaf can store. Consequently, we have the number of leaves is
at most 3n/2b. We can generalize this bound by allowing a leaf to share its keys
with q ∈ Θ(lg n) siblings. For that, we introduce the following invariant:

Among the q siblings of every non-full leaf, there is at most one other non-full
leaf.

We can leave it open to precisely specify which q siblings are assigned to which
leaf. For instance, the following is possible: we can assign q/2 leaves to the right
and to the left side to each leaf. However, if the leaf in question has o(q) left
siblings like the leftmost leaf, we take more of its right siblings in considerations
(and by symmetry if the leaf has o(q) right siblings), such that each leaf gets q
siblings assigned. For this to work, we need at least q leaves, which is granted by
n = Ω(bq) as stated in Sect. 2. We note that it is possible to also accommodate
smaller numbers with our techniques; we defer this analysis to Sect. 3.4.

Let us first see why this invariant helps us to improve the upper bound on
the number of leaves; subsequently we show how to sustain the invariant while
retaining our operational time complexity of O(lg n): By definition, for every q
subsequent leaves, there are at most two leaves that are non-full. Consequently,
these q subsequent leaves store at least qb−2b keys. Hence, the number of leaves
is at most λ := nq/(qb − 2b), and all leaves of the tree use up to

λbk = nqbk/(qb − 2b) = nkq/(q − 2) = nk + 2nk/(q − 2)
= nk + O(nk/ lg n) bits for q ∈ Θ(lg n).

(1)

To obey the aforementioned invariant, we need to take action whenever we
delete a key from a full leaf or try inserting a key into a full leaf:

Deletion. When deleting a key from a full leaf � having a non-full leaf �′ as one
of its q siblings, we shift a key from �′ to � such that � is still full after the
deletion. If �′ becomes empty, then we delete it.
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Fig. 2. Figure 1 after inserting the key 9 into the leaf �. Top: The standard B+ and B∗

variants split � on inserting 9, causing its parent to split, too. Bottom: In our proposed
variant (cf. Sect. 3) for q ≥ 3, we shift the key 12 of � to its succeeding leaf, from which
we shift the key 18 to the next succeeding leaf, which was not yet full.

Insertion. Suppose that we want to insert a key into a leaf � that is full. Given
that one of the q sibling leaves of �, say �′, is not full, then we shift a key from
� to �′ such that � can store the new key. If there is no such �′, then we split
�. In that case, we create two new leaves, each inheriting half of the keys of
the old leaf. In particular, these two leaves are the only non-full leaves among
their q siblings.

It is left to analyze the time for the shifting of a key: Since each leaf stores up
to b = t = O(1) keys, shifting a key to one of the q siblings takes O(bq) = O(lg n)
time. That is because, for shifting a key from the i-th leaf to the j-th leaf with
i < j, we need to move the largest key stored in the g-th leaf to the (g+1)-th leaf
for g ∈ [i..j) (the moved key becomes the smallest key stored in the (g+1)-th leaf,
cf. Fig. 2). Since a shift changes the entries of O(q) leaves, we have to update the
information of those leaves’ ancestors. By updating an ancestor node v we mean
to update its integer array Iv as described in Sect. 2, which can be done in O(t)
time. There are at most

∑lgn
h=1

⌈
q(t/2)−h

⌉
= O(lg n + q) many such ancestors,

and all of them can be updated in time linear to the tree height, which is O(lg n)
for B trees with constant degree t = O(1). Thus, we obtain a B∗ tree variant
with the same time complexities, but higher occupation rates of the leaves.

3.2 Shifting Keys Among Large Leaves

Next, we want to reduce the number of internal nodes. For that, we increase
the number of elements a leaf can store up to b := (w lg n)/k. Since a leaf now
maintains a large number of keys, shifting a key to one of its q neighboring sibling
leaves takes O(bqk/w) = O(lg2 n) time. That is because, for an insertion into a
leaf array, we need to shift the stored keys to the right to make space for the
key we want to insert. We do not shift the keys individually (that would take
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Fig. 3. A circular buffer representation of a leaf array capable of storing 8 keys. The
pointers head and tail support prepending a key, removing the first key, appending a
key, and removing the last key, all in constant time. The right figure shows that the
circular buffer is actually implemented as a plain array with two pointers.

O(b) total time). Instead, we can shift Θ(w/k) keys in constant time by using
word-packing, yielding O(bk/w) time for an insertion or deletion of a key in a
leaf array. In what follows, we combine the word-packing technique with circular
buffers representing the leaf arrays to improve the time bounds to O(lg n).

A circular buffer supports, additionally to removing or adding the last ele-
ment in constant time like a standard (non-resizable) array, the same operations
for the first element in constant time as well. See Fig. 3 for a visualization. For
an insertion or deletion elsewhere, we still have to shift the keys to the right or
to the left. This can be done in O(bk/w) = O(lg n) time with word-packing as
described in the previous paragraph for the plain leaf array (only extra care has
to be taken when we are at the borders of the array representing the circular
buffer). Finally, on inserting a key into a full leaf �, we pay O(bk/w) = O(lg n)
time for the insertion into this full leaf, but subsequently can shift keys among
its sibling leaves in constant time per leaf. Similarly, on deleting a key of a full
leaf �, we first rearrange the circular buffer of � in O(bk/w) = O(lg n) time, and
subsequently shift a key among the O(q) circular buffers of �’s siblings to keep �
full, which takes also O(q) = O(lg n) time.

3.3 Final Space Complexity

Finally, we can bound the number of internal nodes by the number of leaves λ
defined in Sect. 3.1: Since the minimum out-degree of an internal node is t/2,
there are at most

λ
∞∑

i=1
(2/t)i = 2λ/(t − 2) = O(n(q + 1)/(qtb)) = O(n/tb) internal nodes.

Since an internal node stores t pointers to its children, it uses O(tw) bits. In
total we can store the internal nodes in

O(twn/tb) = O(wn/b) = O(nk/ lg n) bits. (2)
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Fig. 4. Change of aggregate values on shifting keys. A shift causes the need to recom-
pute the aggregate values of the satellite values stored in a leaf whose contents changed
due to the shift. The example uses the same B tree structure as Fig. 1, but depicts the
satellite values (plain characters) instead of the keys. Here, we used the minimum on
the canonical Latin alphabet order as aggregate function.

Each circular buffer (introduced in Sect. 3.2) requires Θ(lg b) bits (for the
pointers in Fig. 3). The additional total space is λ O(lg b) = O(nq lg b/(bq−2b)) =
O(n lg b/b) = o(n) bits. Together with Eq. (1), we finally obtain Theorem 1.

3.4 Low Number of Keys

For our B tree, we require that n = Ω((w lg2 n)/k). When n = O((w lg2 n)/k)
but k = o(n/ lg2 n), we can still provide a succinct solution within the same
operational time complexity, which consists of a single internal node (i.e., the root
node) governing the leaves. The leaves are defined as before, except that we set
the maximum number of keys a leaf can store to b = (w lg n)/k2. Consequently,
the root maintains O(k lg n) leaves, and for each leaf � the root stores a key to
delegate a search to �. By maintaining this key-leaf delegation in a binary search
tree, we can search and update these keys in the root in O(lg(k lg n)) = O(lg n)
time. We only keep at most one non-full leaf costing us (w lg n)/k bits. The
distribution of the keys among the leaves is performed as before, except that we
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consider, when shifting keys, all leaves instead of just the q siblings. In total, we
have an overhead of (w lg n)/k + O(k lg2 n) = o(n) bits.

4 Augmenting with Aggregate Values

As highlighted in the related work section (Sect. 1.1), B trees are often augmented
with auxiliary data to support prefix sum queries or LCP queries when storing
strings. We present a more abstract solution covering these cases with aggregate
values, i.e., values composed of the satellite values stored along with the keys
in the leaves. In detail, we augment each node v with an aggregate value that is
the return value of a decomposable aggregate function applied on the satellite
values stored in the leaves of the subtree rooted at v. A decomposable aggregate
function [14, Sect. 2A] such as the sum, the maximum, or the minimum, is a
function f on a subset of satellite values with a constant-time merge operation ·f
such that, given two disjoint subsets X and Y of satellite values, f(X ∪ Y ) =
f(X) ·f f(Y ), and the left-hand and the right-hand side of the equation can be
computed in the same time complexity. We further assume that each aggregate
value produced by f is storable in O(w) bits to fit into the O(tw)-bits space
bound of an internal node.

While sustaining the methods described in the introduction like predecessor
for keys, we enhance insert to additionally take a value as argument, and provide
access to the aggregate values:

insert(K, V ) inserts the key K with satellite value V ;
access(v) returns the aggregate value of the node v; and
access(K) returns the satellite value of the key K.

To make use of access(v), the B tree also provides access to the root, and a top-
down navigation based on the way predecessor(K) works, for a key K as search
parameter. To keep things simple, we assume that all keys are distinct1 (i.e., we
allow no duplicates).

For the computational analysis, let us assume that every satellite value uses
O(k) bits, and that we can evaluate the given aggregate function f bit-parallel
such that it can be evaluated in O(bk/w) = O(lg n) time for a leaf storing
b = Θ(w lg n/k) values.

Under this setting, we claim that we can obtain O(bk/w) = O(lg n) time
for every B tree operation while maintaining the aggregate values, even if we
distribute keys among q leaves on (a) an insertion of a key into a full leaf or (b)
the deletion of a key. This is nontrivial: For instance, when maintaining minima
as aggregate values, if we shift the key with minimal value of a leaf � to its sibling,
we have to recompute the aggregate value of � (cf. Fig. 4), which we need to do
from scratch (since we do not store additional information about finding the
next minimum value). So a shift of a key to a leaf costs O(bk/w) = O(lg n) time,
resulting in O(qbk/w) = O(lg2 n) overall time for an insertion.

1 Note that if all keys are distinct, then k ≥ lg n by the pigeonhole principle.
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Our idea is to decouple the satellite values from the leaf arrays where they
are actually stored. To explain this idea, let us conceptually think of the leaf
arrays as a global array—meaning that these arrays are still represented by
their respective circular buffers individually. Given our B tree has λ leaves, we
partition this global array into λ blocks, where the i-th block with i ∈ [1..λ]
starts initially at entry position 1+(i−1)b, corresponds to the i-th leaf, and has
initially the size equal to the capacity of the circular buffer of its corresponding
leaf. The crucial change is that we let the aggregate value of a leaf depend on
its corresponding block instead of its leaf array. While leaf arrays (represented
by circular buffers) have a fixed capacity, we can move block boundaries freely
to extend or shrink the size of a block.

Now suppose that we want to insert an element e into a full leaf �, and
that one of its q siblings is not full. Hence, we can redistribute one element of
�’s leaf array by shifting one element across O(q) leaf arrays as explained in
Sect. 3.2. After the redistribution, without the blocks, we would have to update
the aggregate values of O(q) siblings. Instead of that, we just enlarge the block
of � to cover e, and update the aggregate value of � with e. This allows us to
process an update operation by O(q) block boundary updates, and a constant
number of updates of the aggregate values stored in the leaves. In summary, we
can decouple the aggregate values from the leaf arrays with the aid of the blocks
in the global array, and therefore can use the techniques introduced in Sect. 3.2,
where we shift keys among q + 1 sibling leaves, without the need to recompute
the aggregate values of the sibling leaves when shifting keys.

Example 1. Let us assume for simplicity that b = 3 and that the keys are the
values. Suppose that our B tree consists of exactly three leaves �i for i = 1, 2, 3.
Each leaf �i has a leaf array Ai with the following contents: A1 = (1, 2, 4),
A2 = (5, 6, 7), and A3 = (8, 9, ⊥), where ⊥ denotes an empty slot. Further
assume that our aggregate function f is min such that f(A1) = 1, f(A2) =
5, f(A3) = 8. Now suppose that we want to insert 3 into A1. Without the block
reassignment, we would shift 4 to A2 and 7 to A3 such that we need to update
the aggregate values of �2 and �3 to f(A2) = 4, f(A3) = 7. Now, with the
block reassignment, we do the following: We think of the Ai’s as a single array
A[1..9] = (1, 2, 4, 5, 6, 7, 8, 9, ⊥) and partition it initially into blocks of equal
length B1 = A[1..3], B2 = A[4..6], B3 = A[7..9]. The blocks are basically just
pointers into A such that updates of A automatically update the contents of the
Bi’s. Now the aggregate values of the leaves are no longer based on the Ai’s,
but on the Bi’s, i.e., f(B1) = 1, f(B2) = 5, f(B3) = 8. If we perform the same
insertion as above inserting 3 into A1, we perform the shifting as before such
that A[1..9] = (1, 2, 3, 4, 5, 6, 7, 8, 9), but additionally increase the size of B1 and
shift B2 and B3 to the right such that B1 = A[1..4], B2 = A[5..7], B3 = A[8..9].
Consequently, the aggregate values of �1’s siblings do not have to be updated.
The key observation is that while the leaf array A1 of �1 governs b = 3 elements,
the block B1 of �1 is allowed to contain more/fewer than b elements.

To track the boundaries of the blocks, we augment each leaf � with an offset
value and the current size of its block. The offset value stores the relative offset
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Fig. 5. Valid and invalid blocks according to the definition given in Sect. 4.2. The
(conceptual) global array is symbolized by a horizontal line. The leaf arrays are intervals
of the global array separated by vertical dashes. A dot symbolizes a leaf � and the
intersection of the triangle spawning from � with the global array symbolizes the block
of �. A node has an invalid block if its dot is hollow. The rightmost picture shows the
border case that a block is invalid if its offset is b, while a block can be valid even if it
is empty.

of the block with respect to the initial starting position of the block (equal to
the starting position of �’s leaf array) within the global array. We decrement the
offset by one if we shift a key from � to �’s preceding sibling, while we increment
its offset by one if we shift a key of �’s preceding leaf to �.

If we only care about insertions (and not about deletions and blocks becoming
too large) we are done since we can update f(X) to f(X ∪{x}) in constant time
for a new satellite value x �∈ X per definition. However, deletions pose a problem
for the running time because we usually cannot compute f(X \ {x}) from f(X)
with x ∈ X in constant time. Therefore, we have to recompute the aggregate
value of a block by considering all its stored satellite values. However, unlike
leaf arrays whose sizes are upper bounded by b, blocks can grow beyond ω(b).
Supporting deletions, we cannot ensure with our solution up so far to recompute
the aggregate value of a block in O(lg n) time. In what follows, we show that we
can retain logarithmic update time, first with a simple solution taking O(lg n)
time amortized, and subsequently with a solution taking O(lg n) time in the
worst case.

4.1 Updates in Batch

Our amortized solution takes action after a node split occurs, where it adjusts
the blocks of all q + 2 nodes that took part in that split (i.e., the full node, its
q full siblings and the newly created node). The task is to evenly distribute the
block sizes, reset the offsets, and recompute the aggregate values. We can do all
that in O(q(bk/w + lg n)) = O(lg2 n) time, since

– there are O(q) leaves involved,
– each leaf stores at most b values, whose aggregate value can be computed in

O(bk/w) = O(lg n) time, and
– each leaf has O(lg n) ancestors whose aggregate values may need to be recom-

puted.

Although the obtained O(lg2 n) time complexity seems costly, we have increased
the total capacity of the b + 2 nodes involved in the update by Θ(b) keys in
total. Consequently, before splitting one of those nodes again, we perform at
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Fig. 6. Revalidation of multiple invalid blocks. The figure uses the same pictography as
Fig. 5, but additionally shows on the bottom (vertically mirrored) the outcome of our
algorithm fixing the invalid blocks (Sect. 4.2), where we empty the rightmost invalid
block and swap the blocks until we find a block that can be merged with the previous
block.

least b = Ω(lg n) insertions (remember that we split a node only if it and its q
siblings are full). Now, whenever a block becomes larger than 2b, we can afford
the above rearrangement costing O(lg n) amortized time.

4.2 Updates by Merging

To improve the time bound to O(lg n) worst case time, our trick is to merge
blocks and reassign the ownership of blocks to sibling leaves. For the former, a
merge of two blocks means that we have to combine two aggregate values, but
this can be done in constant time by the definition of the decomposable aggregate
function. To keep the size of the blocks within O(b), we watch out for blocks
whose shape underwent too much changes, which we call invalid (see Fig. 5 for a
visualization). We say a block is valid if it covers at most 2b keys, it has an offset
in (−b..b) (i.e., the block starts within the leaf array of the preceding leaf or of its
corresponding leaf), and the sum of offset and size is in [0..2b) (i.e., the block ends
within the leaf array of its corresponding leaf or its succeeding leaf). Initially, all
blocks are valid because they have size b and offset 0. If one of those conditions
for a block becomes violated, we say that the block is invalid, and we take action
to restore its validity. Blocks can become invalid when changing their sizes by
one, or when shifting their boundaries by one. A shift can cause O(q) blocks to
become invalid (i.e., the number of siblings considered when distributing keys).
Suppose that a block Bi has become invalid due to a tree update, which already
costed O(lg n) time (the time for a root-to-leaf traversal). Our goal is to rectify
the invalid block Bi within the same time bound. Bi has become invalid because
of the events that (a) it covers 2b + 1 keys, (b) has offset −b or the sum of offset
and size are negative, or (c) has offset +b or the sum of offset and size are at
least 2b.

For event (a), we redistribute sizes and offsets of Bi with Bi−1 and Bi+1. This
is possible since at least one block Bi−1 or Bi+1 has less than 2b keys. Otherwise,
since they are valid blocks2, there is no space left for Bi to have 2b + 1 keys. It
is therefore possible for Bi to consign at least one key to its neighbors without

2 More precisely, these blocks were valid at least before the enlargement of Bi, which
could have triggered a shifting that invalidated either Bi−1 or Bi+1.
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making them overfull. We finish by recomputing the aggregate values of the three
nodes and their ancestors, costing O(lg n) total time.

The events (b) and (c) can happen when shifting blocks by one to the left
(b) or to the right (c). Given Bi is the rightmost (for (b)) or the leftmost (for
(c)) invalid block, we swap boundaries with the preceding blocks (for (b)) or
succeeding blocks (for (c)) of Bi until finding a block whose boundaries can
be extended to cover the shifted part without becoming invalid. The number
of blocks we take into consideration is O(q), since we stop at a block Bj with
|Bj | + |Bj+1| ≤ 2b; if there are more blocks that do not satisfy this condition,
then more than q consecutive siblings leaves are full, and a leaf split must have
had occurred.

To solve (b), we proceed as follows—(c) can be solved symmetrically. First,
we put Bi on a stash S (storing Bi’s boundaries and its aggregate value), and
empty Bi. Next, we check whether Bi−1 can be extended to cover S without
becoming invalid. If this is possible, we let Bi−1 cover S, update the aggregate
value of Bi−1, and terminate. Otherwise (Bi−1 would become invalid), we swap
Bi−1 with S. Now Bi−1 stores the boundaries of S. By doing so, Bi−1 does not
become invalid since the offset of Bi was −b (and thus the offset of Bi−1 becomes
0), or the sum of offset and size was in [−b..0) (which becomes [0..b)), while the
changed offset poses no problem, since the sum of offset and size of Bi−1 is
now at most 2b − 1. Finally, we iteratively select the next preceding block Bi−2
to check whether it is mergeable with the stash S without becoming invalid
(cf. Fig. 6). Since each visit of a block takes constant time (either swapping
or merging contents), and we visit O(q) blocks, fixing all invalid blocks takes
O(q) = O(lg n) time.

5 Conclusion

We provided a space-efficient variation of the B tree that retains the time com-
plexity of the standard B tree. It achieves succinct space when the keys are
considered to be incompressible. Our main tools were the following: First, we
generalized the B∗ tree technique to exchange keys not only with a dedicated
sibling leaf but with up to q many sibling leaves. Second, we let each leaf store
Θ(b) elements represented by a circular buffer such that moving a largest (resp.
smallest) element of a leaf to its succeeding (resp. preceding) sibling can be
performed in constant time. Additionally, we could augment each node with an
aggregate value and maintain these values, either with a batch update weakening
the worst case time complexities to amortized time, or with a blocking of the
leaf arrays that can be maintained within the worst case time complexities.
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Abstract. We study the problem of efficiently and fairly allocating a
set of indivisible goods among agents with identical and additive valua-
tions for the goods. The objective is to maximize the Nash social welfare,
which is the geometric mean of the agents’ valuations. While maximizing
the Nash social welfare is NP-hard, a PTAS for this problem is presented
by Nguyen and Rothe. The main contribution of this paper is to design a
first additive PTAS for this problem, that is, we give a polynomial-time
algorithm that maximizes the Nash social welfare within an additive error
εvmax, where ε is an arbitrary positive number and vmax is the maximum
utility of goods. The approximation performance of our algorithm is bet-
ter than that of a PTAS. The idea of our algorithm is simple; we apply
a preprocessing and then utilize an additive PTAS for the target load
balancing problem given recently by Buchem et al. However, a nontrivial
amount of work is required to evaluate the additive error of the output.

Keywords: Additive approximation algorithm · Nash social welfare ·
Target load balancing problem

1 Introduction

1.1 Nash Social Welfare Maximization

We study the problem of efficiently and fairly allocating a set of indivisible
goods among agents with identical and additive valuations for the goods. There
are many ways to measure the quality of the allocation in the literature, and
in this paper, we aim to maximize the Nash social welfare [15], which is the
geometric mean of the agents’ valuations in the allocation.

Suppose we are given a set of agents A = {1, 2, . . . , n} and a set of goods
G = {1, 2, . . . ,m} with a utility vj > 0 for each j ∈ G. An allocation is a partition
π = (π1, . . . , πn) of G where πi ⊆ G is a set of goods assigned to agent i. For an
allocation π = (π1, . . . , πn), let v(πi) be the valuation of i that is defined as the
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sum of the utility of the goods assigned to i, i.e., v(πi) =
∑

j∈πi
vj . The goal is

to find an allocation π that maximizes the function

f(π) =

(
∏

i∈A
v(πi)

)1/n

,

which is called the Nash social welfare [4,22]. In this paper, we refer to this
problem as Identical Additive NSW.

Identical Additive NSW
Input: A set of agents A = {1, 2, . . . , n} and a set of goods G = {1, 2, . . . ,m}

with a utility vj > 0 for each j ∈ G.
Output: An allocation π that maximizes the Nash social welfare f(π).

The Nash social welfare can be defined in a more general setting where the
valuation of each agent i is determined by a set function vi : 2G → R≥0. In such
a case, the Nash social welfare of an allocation π = (π1, . . . , πn) is defined as
(∏

i∈A vi(πi)
)1/n. In Identical Additive NSW, we focus on the case where

the valuation function is additive and independent of the agent. Note that, by
removing goods with zero utility, we can assume that vj > 0 without loss of
generality.

The Nash social welfare was named after John Nash, who introduced and
studied the Nash social welfare in the context of bargaining in the 1950s s [21].
Later, the same concept was independently studied in the context of competitive
equilibria with equal incomes [23] and proportional fairness in networking [16].
It has traditionally been studied in the economics literature for divisible goods
[20]. For divisible goods, an allocation maximizing the Nash social welfare can
be computed in polynomial time when the valuation functions are additive [10].

In the context of goods allocation, the Nash social welfare is a measure that
captures efficiency and fairness at the same time. To see this, for a parameter q ∈
R and for an allocation π, one can define the generalized mean of the valuation
of each agent as fq(π) =

(
1
n

∑n
i=1 vi(πi)q

)1/q. The generalized mean can be a
variety of mean functions depending on the value of q. When q = 1, fq(π) is
the average valuation of the agents, and hence maximizing fq(π) is equivalent to
maximizing the social welfare. In this case, fq(π) is a measure of the efficiency of
an allocation. When q → −∞, fq(π) is the minimum value of vi(πi), namely the
valuation of the least satisfied agent. In this case, an allocation maximizing fq(π)
can be considered fair in a sense. It is known that in the limit as q → 0, fq(π)
coincides with the geometric mean, which is the Nash social welfare (see [7]).
Therefore, maximizing the Nash social welfare (i.e., q → 0) can be viewed as a
compromise between Maximum Social Welfare (i.e., q = 1) and Max-Min Welfare
(i.e., q → −∞).

The Nash social welfare is closely related to other concepts EF1 and Pareto
optimality that describe fairness and efficiency, respectively, which also supports
the importance of the Nash social welfare. An allocation is said to be EF1 (envy-
free up to at most one good) if each agent prefers its own bundle over the bundle
of any other agent up to the removal of one good. An allocation is called Pareto
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optimal if no one else’s valuation can be increased without sacrificing someone
else’s valuation. Caragiannis et al. [8] showed that an allocation that maximizes
the Nash social welfare is both EF1 and Pareto optimal when agents have addi-
tive valuations for the goods. This motivates studying the problem of finding an
allocation that maximizes the Nash social welfare.

1.2 Our Contribution: Approximation Algorithm

The topic of this paper is the approximability of the Nash social welfare maxi-
mization. By an easy reduction from the Subset Sum problem, we can see that
maximizing the Nash social welfare is NP-hard even in the case of two agents with
identical additive valuations. That is, Identical Additive NSW is NP-hard
even when n = 2. Furthermore, maximizing the Nash social welfare is APX-hard
for multiple agents with non-identical valuations even when the valuations are
additive [17].

On a positive side, several approximation algorithms are proposed for maxi-
mizing the Nash social welfare, and the difficulty of the problem depends on the
class of valuations vi. Under the assumption that the valuation set function is
monotone and submodular, Li and Vondrák [18] recently proposed a constant
factor approximation algorithm based on an algorithm for Rado valuations [12].
Better constant factor approximation algorithms are known for subclasses of
submodular functions [2,9,11,19]. When the valuation function is additive, a
1.45-approximation algorithm is known [3], and this is the current best approx-
imation ratio. When the valuation functions are additive and identical, the sit-
uation is much more tractable. Indeed, for Identical Additive NSW, it is
known that a polynomial-time approximation scheme (PTAS) exists [22] and a
simple fast greedy algorithm achieves a 1.061-approximation guarantee [4].

For Identical Additive NSW, the above results show the limit of the
approximability and so no further improvement seems to be possible in terms
of the approximation ratio. Nevertheless, a better approximation algorithm may
exist if we evaluate the approximation performance in a fine-grained way. The
main contribution of this paper is to show that this is indeed the case if we
evaluate the approximation performance by using the additive error. Formally,
our result is stated as follows.

Theorem 1. For an instance of Identical Additive NSW, let vmax =
maxj∈G vj and let OPT be the optimal value. For any ε > 0, there is an algo-
rithm Aε for Identical Additive NSW that runs in (nm/ε)O(1/ε) time and
returns an allocation π such that f(π) ≥ OPT − εvmax.

Recall that a PTAS for Identical Additive NSW is an algorithm that
returns an allocation π with f(π) ≥ OPT

1+ε . Since OPT
1+ε ≈ (1 − ε)OPT, the addi-

tive error of a PTAS is roughly εOPT, which can be much greater than εvmax.
Furthermore, as we will see in Proposition 2, our algorithm given in the proof of
Theorem 1 is also a PTAS. In this sense, we can say that our algorithm is better
than a PTAS if we evaluate the approximation performance in a fine-grained
way.
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We also note that there is no polynomial-time algorithm for finding an alloca-
tion π with f(π) ≥ OPT−ε unless P = NP. This is because the additive error can
be arbitrarily large by scaling the utility unless we obtain an optimal solution.
Therefore, parameter vmax is necessary to make the condition scale-invariant.

1.3 Related Work: Additive PTAS

The algorithm in Theorem 1 is called an additive PTAS with parameter vmax,
and so our result has a meaning in a sense that it provides a new example of
a problem for which an additive PTAS exists. In this subsection, we describe
known results on additive PTASs, some of which are used in our argument later.

An additive PTAS is a framework for approximation guarantees that was
recently introduced by Buchem et al. [5,6]. For any ε > 0, an additive PTAS
returns a solution whose additive error is at most ε times a certain parameter.

Definition 1. For an optimization problem, an additive PTAS is a family of
polynomial-time algorithms {Aε | ε > 0} with the following condition: for any
instance I and for every ε > 0, Aε finds a solution with value Aε(I) satisfying
|Aε(I) − OPT(I)| ≤ εh, where h is a suitably chosen parameter of instance I
and OPT(I) is the optimal value.

In some cases, an additive PTAS is immediately derived from an already
known algorithm. For example, by setting the error factor appropriately, a fully
polynomial-time approximation scheme (FPTAS) for the knapsack problem [13]
is also an additive PTAS where the parameter is the maximum utility of a good.
However, evaluating the additive error is difficult in general, and so additive
PTASs are known for only a few problems. In the pioneering paper on additive
PTASs by Buchem et al. [5,6], an additive PTAS was proposed for the completion
time minimization scheduling problem, the Santa Claus problem, and the envy
minimization problem. In order to derive these additive PTASs, they introduced
the target load balancing problem and showed that it is possible to determine
whether a solution exists by only slightly violating the constraints.

In the target load balancing problem, we are given a set of jobs J with a
processing time vj > 0 for each j ∈ J and a set of machines M with real
values li and ui for each i ∈ M. The goal is to assign each job j ∈ J to a
machine i ∈ M such that for each machine i ∈ M the load of i (i.e., the sum
of the processing times of the jobs assigned to i) is in the interval [li, ui]. In a
similar way to Identical Additive NSW, an assignment is represented by a
partition π = (πi)i∈M of J . Let vmax = maxj∈J vj and let K denote the number
of types of machines, that is, K = |{(li, ui) | i ∈ M}|. While the target load
balancing problem is NP-hard, Buchem et al. [5,6] showed that it can be solved
in polynomial time if we allow a small additive error and K is a constant.

Theorem 2 (Buchem et al. [5, Theorem 12]). For the target load balancing
problem and for any ε > 0, there is an algorithm (called LoadBalancing) that
either
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1. concludes that there is no feasible solution for a given instance, or
2. returns an assignment π = (πi)i∈M such that the total load

∑
j∈πi

vj is in
[li − εvmax, ui + εvmax] for each i ∈ M

in |M|K+1( |J |
ε )O(1/ε) time.

Note that the algorithm in this theorem is used as a subroutine in our additive
PTAS for Identical Additive NSW. Note also that the term “assignment” is
used in this theorem by following the convention, but it just means a partition
of the jobs. Therefore, we do not distinguish “assignment” and “allocation” in
what follows in this paper.

1.4 Technical Highlights

In this subsection, we describe the outline of our algorithm for Identical Addi-
tive NSW and explain two technical issues that are peculiar to additive errors.

The basic strategy of our algorithm is simple; we guess the valuation v(π∗
i )

of each agent i in an optimal solution π∗, and then seek for an allocation π
such that |v(πi) − v(π∗

i )| ≤ εvmax for each i ∈ A by using LoadBalancing in
Theorem 2.

The first technical issue is that even if the additive error of v(πi) is at
most εvmax for each i ∈ A, the additive error of f(π) is not easily bounded
by εvmax. This is in contrast to the case of the multiplicative error (i.e., if
v(πi) ≥ v(π∗

i )/(1 + ε) for each i ∈ A, then f(π) ≥ f(π∗)/(1 + ε)). The first
technical ingredient in our proof is to bound the additive error of f(π) under
the assumption that vmax is at most the average valuation of the agents; see
Lemma 5 for a formal statement. In order to apply this argument, we modify a
given instance so that vmax is at most the average valuation of the agents by a
naive preprocessing. In the preprocessing, we assign a good j with high utility
to an arbitrary agent i and remove i and j from the instance, repeatedly (see
Sect. 2.1 for details).

The second technical issue is that the preprocessing might affect the addi-
tive error of the output, whereas it does not affect the optimal solutions of the
instance (see Lemma 1). Suppose that an instance I is converted to an instance
I ′ by the preprocessing, and suppose also that we obtain an allocation π′ for
I ′. Then, by recovering the agents and the goods removed in the preprocessing,
we obtain an allocation π for I from π′. The issue is that the additive error
of the objective function value might be amplified by this recovering process,
which makes the evaluation of the additive error of f(π) hard. Nevertheless, we
show that the additive error of f(π) is bounded by O(εvmax) with the aid of the
mean-value theorem for differentiable functions (see Proposition 3), which is the
second technical ingredient in our proof. It is worth noting that the differential
calculus plays a crucial role in the proof, whereas the problem setting is purely
combinatorial.

The remaining of this paper is organized as follows. In Sect. 2, we describe
our algorithm for Identical Additive NSW. Then, in Sect. 3, we show its
approximation guarantee and prove Theorem 1.



346 A. Inoue and Y. Kobayashi

2 Description of the Algorithm

As we mentioned in Sect. 1.4, in our algorithm, we first apply a preprocessing
so that vmax is at most the average valuation of the agents. Then, we guess the
valuation of each agent in an optimal solution, and then seek for an allocation
that is close to the optimal solution by using LoadBalancing, which is the main
procedure. We describe the preprocessing and the main procedure in Sects. 2.1
and 2.2, respectively.

2.1 Preprocessing

Consider an instance I = (A,G,v) of Identical Additive NSW where v =
(v1, . . . , vm). If |A| > |G|, then the optimal value is zero, and hence any allocation
is optimal. Therefore, we may assume that |A| ≤ |G|, which implies that the
optimal value is positive. Let μ(I) be the average valuation of agents, that is,
μ(I) = 1

|A|
∑

j∈G vj . When I is obvious, we simply write μ for μ(I). The objective
of the preprocessing is to modify a given instance so that vj < μ for any j ∈ G.

Our preprocessing immediately follows from the fact that an agent who
receives a valuable good does not receive other goods in an optimal solution.
Note that similar observations were shown in previous papers (see e.g. [1,22]).

Lemma 1 (�1). Let j ∈ G be an item with vj ≥ μ. In an optimal solution π∗,
an agent who receives j cannot receive any goods other than j.

For A0 ⊆ A and G0 ⊆ G, let I \ (A0,G0) denote the instance obtained from
I by removing A0 and G0, that is, I \ (A0,G0) = (A \ A0,G \ G0,v \ G0), where
v \ G0 = (vj)j∈G\G0 . In the preprocessing, we assign a good j ∈ G with vj ≥ μ
to some agent i ∈ A and remove i and j from the instance, repeatedly. A formal
description is shown in Algorithm 1.

Algorithm 1. Preprocessing
Input: instance I = (A, G,v) where v = (v1, v2, . . . , vm)
Output: subsets A0 ⊆ A and G0 ⊆ G
1: Initialize A0 and G0 as A0 = G0 = ∅.
2: while there exists a good j ∈ G \ G0 with vj ≥ μ(I \ (A0, G0)) do
3: G0 ← G0 ∪ {j}
4: Choose i ∈ A \ A0 arbitrarily and add it to A0.

5: return A0, G0

Let A0 and G0 be the output of Preprocessing. Lemma 1 shows that if we
obtain an optimal solution for I \ (A0,G0), then we can immediately obtain an
optimal solution for I by assigning goods in G0 to agents in A0. Note that the

1 (�) indicates that the proof is given in the full version of this paper [14].
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inequality vj < μ(I \ (A0,G0)) holds for all j ∈ G \ G0 after the preprocessing.
Thus, the maximum utility of a good is less than the average valuation of the
agents in the instance I \ (A0,G0). Note also that, since the number of while
loop iterations is at most |A|, Preprocessing runs in polynomial time.

2.2 Main Procedure

We describe the main part of the algorithm, in which we guess the valuation of
each agent in an optimal solution and then apply LoadBalancing. In order
to obtain a polynomial-time algorithm, we have the following difficulties: the
number of guesses has to be bounded by a polynomial and the number of machine
types K has to be a constant when we apply LoadBalancing. To overcome
these difficulties, we get good upper and lower bounds on the valuation of each
agent in an optimal solution, which is a key observation in our algorithm. We
prove the following lemma by tracing the proof of Lemma 1.

Lemma 2 (�). For any instance I of Identical Additive NSW, let π∗ be
an optimal allocation of I. Then, μ − vmax < v(π∗

i ) < μ + vmax holds for any
i ∈ A.

We are now ready to describe our algorithm. Suppose we are given an instance
I = (A,G,v) with vmax < μ. To simplify the description, suppose that 1/ε is an
integer.

Our idea is to guess v(π∗
i ) with an additive error εvmax for each i ∈ A, where

π∗ is an optimal solution. By Lemma 2, we already know that the value of an
optimal solution is in the interval of width 2vmax. Let L be the set of points
delimiting this interval with width εvmax, that is, L = {μ − vmax + tεvmax |
t ∈ {0, 1, 2, . . . , 2/ε − 1}}. Let LA be the set of all the maps from A to L. For
τ, τ ′ ∈ LA, we denote τ ∼ τ ′ if τ ′ is obtained from τ by changing the roles of
the agents, or equivalently |{i ∈ A | τ(i) = x}| = |{i ∈ A | τ ′(i) = x}| for each
x ∈ L. In such a case, since each agent is identical, we can identify τ and τ ′.
This motivates us to define D := LA/ ∼, where ∼ is the equivalence relation
defined as above.

For each τ ∈ D, we apply LoadBalancing in Theorem 2 to the following
instance of the target load balancing problem: M := A, J := G, the processing
time of j ∈ J is vj , and the target interval is [τ(i), τ(i)+ εvmax] for each i ∈ M.
Then, LoadBalancing either concludes that no solution exists or returns an
assignment (allocation) πτ such that v(πτ

i ) ∈ [τ(i) − εvmax, τ(i) + 2εvmax] for
each i ∈ M.

Among all solutions πτ returned by LoadBalancing, our algorithm chooses
an allocation with the largest objective function value. A pseudocode of our
algorithm is shown in Algorithm2.
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Algorithm 2. MainProcedure

Input: instance I = (A, G,v) such that vmax < μ
Output: allocation π
1: Initialize π as an arbitrary allocation.
2: for τ ∈ D do
3: Apply LoadBalancing with the target interval [τ(i), τ(i) + εvmax] for i ∈ A.
4: if LoadBalancing returns an allocation πτ then
5: if f(π) < f(πτ ) then
6: π ← πτ

7: return π

Proposition 1. The running time of MainProcedure is (nm/ε)O(1/ε).

Proof. To obtain an upper bound on the number of for loop iterations, we
estimate the number of elements in D. Since each τ ∈ D is determined by
the number of agents i ∈ A such that τ(i) = x for x ∈ L, we obtain
|D| ≤ |{0, 1, . . . , n}|L ≤ (n + 1)2/ε = nO(1/ε).

We next estimate the running time of LoadBalancing. Since |M| = n,
|J | = m, and the number of machine types K is at most |L| = 2/ε, the running
time of LoadBalancing is n2/ε+1(m/ε)O(1/ε) by Theorem 2.

Thus, the total running time of MainProcedure is (nm/ε)O(1/ε). 
�
The entire algorithm for Identical Additive NSW consists of the following

steps: apply Preprocessing, apply MainProcedure, and recover the removed
sets. A pseudocode of the entire algorithm is shown in Algorithm 3.

Algorithm 3. MaxNashWelfare

Input: instance I = (A, G,v)
Output: allocation π′

1: Apply Preprocessing to I and obtain A0 and G0.
2: Apply MainProcedure to I \ (A0, G0) and obtain π.
3: Let σ be a bijection from A0 to G0.
4: Set π′

i = {σ(i)} for i ∈ A0 and set π′
i = πi for i ∈ A \ A0.

5: return π′

Since the most time consuming part is MainProcedure, the running time
of MaxNashWelfare is (nm/ε)O(1/ε) by Proposition 1.

3 Analysis of Approximation Performance

In this section, we show that MaxNashWelfare returns a good approximate
solution for Identical Additive NSW and give a proof of Theorem 1. We first
analyze the performance of MainProcedure in Sect. 3.1, and then analyze the
effect of Preprocessing in Sect. 3.2.
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3.1 Approximation Performance of MainProcedure

In this subsection, we consider an instance I = (A,G,v) of Identical Additive
NSW such that vmax < μ. The following lemma is easy, but useful in our analysis
of MainProcedure.

Lemma 3. Assume that vmax < μ. Let π be the allocation returned by Main-
Procedure. For any optimal solution π∗, there exists an allocation πτ such
that

1. |v(πτ
i ) − v(π∗

i )| ≤ 2εvmax for each i ∈ A, and
2. f(πτ ) ≤ f(π).

Proof. Let π∗ be a given optimal solution. Take τ∗ ∈ LA so that the valuation
v(π∗

i ) is in the interval [τ∗(i), τ∗(i) + εvmax] for each i ∈ A. Note that such τ∗

always exists by Lemma 2. Since we apply LoadBalancing with li = τ(i) and
ui = τ(i)+εvmax in MainProcedure for some τ with τ ∼ τ∗, we obtain an allo-
cation πτ that corresponds to τ . Then, the inequality |v(πτ

i ) − v(π∗
i )| ≤ 2εvmax

holds by reordering the agents appropriately. By the choice of π in MainPro-
cedure, the inequality f(πτ ) ≤ f(π) holds. 
�

In preparation for the analysis, we show another bound on the valuation of
an agent in an optimal solution. Note that a similar result is shown by Alon et
al. [1] for a different problem, and our proof for the following lemma is based on
their argument.

Lemma 4 (�). Assume that vmax < μ. Let π∗ be an optimal allocation of
goods. Then, μ

2 < v(π∗
i ) < 2μ holds for any i ∈ A.

We are now ready to evaluate the performance of MainProcedure.

Lemma 5. Assume that vmax < μ and 0 < ε ≤ 1/5. Let π be the allocation
returned by MainProcedure and let OPT be the optimal value. Then, it holds
that f(π) ≥ OPT − 48εvmax.

Proof. By Lemma 3, there exist an allocation πτ and an optimal solution π∗

such that
|v(πτ

i ) − v(π∗
i )| ≤ 2εvmax, (1)

and f(πτ ) ≤ f(π). Let S = f(πτ ). Since S ≤ f(π), in order to obtain f(π) ≥
OPT − 48εvmax, it suffices to show that OPT − S ≤ 48εvmax.

We first evaluate the ratio between OPT and S as follows:

OPT
S

=

(
∏

i∈A

v(π∗
i )

v(πτ
i )

)1/n

≤ 1
n

∑

i

v(π∗
i )

v(πτ
i )

≤ 1
n

∑

i

(

1 +
2εvmax

v(πτ
i )

)

= 1 +
2εvmax

n

∑

i

1
v(πτ

i )
, (2)
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where we use the inequality of arithmetic and geometric means (AM-GM inequal-
ity) in the first inequality and use (1) in the second inequality. By using (2), the
difference between OPT and S can be evaluated as follows:

OPT − S = S

(
OPT

S
− 1

)

≤ 2εvmax

(
1
n

∑

i

S

v(πτ
i )

)

= 2εvmax

(
S

H

)

, (3)

where we define 1/H = 1
n

∑
i 1/v(πτ

i ), that is, H is the harmonic mean of v(πτ
i ).

Therefore, to obtain an upper bound on OPT−S, it suffices to give upper bounds
on S and 1/H.

By (1), Lemma 4, and vmax < μ, we see that

v(πτ
i ) ≤ v(π∗

i ) + 2εvmax ≤ 2μ + 2εμ,

v(πτ
i ) ≥ v(π∗

i ) − 2εvmax ≥ μ/2 − 2εμ

for each agent i ∈ A. Since S and H are the arithmetic mean and the harmonic
mean of v(πτ

i ), respectively, we obtain S ≤ 2μ + 2εμ and H ≥ μ/2 − 2εμ, where
we note that v(πτ

i ) ≥ μ/2−2εμ > 0 if ε ≤ 1/5. Therefore, for ε ≤ 1/5, we obtain

S

H
≤ 2μ + 2εμ

μ/2 − 2εμ
=

4(1 + ε)
1 − 4ε

≤ 24. (4)

Hence, it holds that OPT − S ≤ 48εvmax by (3) and (4), which completes the
proof. 
�

This lemma shows that MainProcedure is an additive PTAS for Identi-
cal Additive NSW under the assumption that vmax < μ.

It is worth noting that MainProcedure is not only an additive PTAS, but
also a PTAS in the conventional sense.

Lemma 6. Assume that vmax < μ and 0 < ε ≤ 1/5. Let π be the allocation
returned by MainProcedure and let OPT be the optimal value. Then, it holds
that f(π) ≥ OPT

1+20ε .

Proof. Let S = f(πτ ) be the value as in the proof of Lemma 5. According to
inequality (2), we obtain

OPT
S

≤ 1 +
2εvmax

H
(by (2))

≤ 1 +
4εvmax

μ(1 − 4ε)
(by H ≥ μ/2 − 2εμ)

≤ 1 +
4ε

1 − 4ε
(by vmax < μ)

≤ 1 + 20ε. (by 0 < ε ≤ 1/5)

Since f(π) ≥ S, this shows that f(π) ≥ OPT/(1 + 20ε). 
�
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3.2 Approximation Performance of MaxNashWelfare

We have already seen in the previous subsection that MainProcedure is a
PTAS and an additive PTAS for Identical Additive NSW under the assump-
tion that vmax < μ. In this subsection, we analyze the effect of Preprocessing
and show that MaxNashWelfare is a PTAS and an additive PTAS. We first
show that MaxNashWelfare is a PTAS in the conventional sense.

Proposition 2. Let I = (A,G,v) be an instance of Identical Additive
NSW and suppose that 0 < ε ≤ 1/5. Let π be the allocation returned by
MaxNashWelfare and let OPT be the optimal value. Then, it holds that
f(π) ≥ OPT

1+20ε .

Proof. Let π∗ be an optimal allocation. Let A0 and G0 be the set of agents
and goods removed in Preprocessing respectively. Set I ′ = I \ (A0,G0). In an
optimal solution π∗, for each good j ∈ G0 there exists an agent i that satisfies
π∗

i = {j} by Lemma 1. By rearranging the agents and the goods appropriately,
we can assume that π∗

i = πi for each i ∈ A0. Then the following holds:

OPT
f(π)

=

(
∏

i∈A

v(π∗
i )

v(πi)

)1/n

=

⎛

⎝
∏

i∈A\A0

v(π∗
i )

v(πi)

⎞

⎠

1/n

.

Let A(I ′) be the objective function value of the solution returned by MainPro-
cedure for instance I ′, and let OPT(I ′) be the optimal value of instance I ′. Set
k = |A0|. Then, we obtain

⎛

⎝
∏

i∈A\A0

v(π∗
i )

v(πi)

⎞

⎠

1/n

=
(

OPT(I ′)
A(I ′)

)(n−k)/n

≤ (1 + 20ε)(n−k)/n ≤ 1 + 20ε

by Lemma 6, which completes the proof. 
�
The proof of Proposition 2 is easy, because the multiplicative error is not

amplified when we recover the agents and goods removed in Preprocessing.
However, this property does not hold when we consider the additive error, which
makes the situation harder. Nevertheless, we show that the additive error of f(π)
is bounded by O(εvmax) with the aid of the mean-value theorem for differentiable
functions.

Proposition 3. Let I = (A,G,v) be an instance of Identical Additive
NSW and suppose that 0 < ε ≤ 1/192. Let π be the allocation returned by
MaxNashWelfare and let OPT be the optimal value. Then, it holds that
f(π) ≥ OPT − 192εvmax.

Proof. Let A = f(π) and let π∗ be an optimal allocation. Let A0 and G0 be the
set of agents and goods removed in Preprocessing, respectively. Set k = |A0|.
In an optimal solution π∗, for each good j ∈ G0 there exists an agent i that
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satisfies π∗
i = {j} by Lemma 1. By rearranging the agents and the goods appro-

priately, we can assume that π∗
i = πi for each i ∈ A0. Set I ′ = I \ (A0,G0).

Let A(I ′) be the objective function value of the solution returned by Main-
Procedure for instance I ′, and let OPT(I ′) be the optimal value of instance
I ′.

We define a function g : R → R as

g(x) =

⎛

⎝
∏

j∈G0

vj

⎞

⎠

1/n

x(n−k)/n.

By using g, the expression to be evaluated can be written as follows:

OPT − A = g(OPT(I ′)) − g(A(I ′)). (5)

Since g is differentiable, by the mean value theorem, there exists a real number
c such that

A(I ′) ≤ c ≤ OPT(I ′), (6)
g(OPT(I ′)) − g(A(I ′)) = (OPT(I ′) − A(I ′))g′(c). (7)

By (5), (7), and Lemma 5, we obtain

OPT − A ≤ 48εvmax(I ′)g′(c), (8)

where vmax(I ′) = maxj∈G\G0 vj . Therefore, all we need to do is to evaluate g′(c).
For this purpose, we first give a lower bound on c as follows:

c ≥ A(I ′) (by (6))
≥ OPT(I ′) − 48εvmax(I ′) (by Lemma 5)

=

⎛

⎝
∏

i∈A\A0

v(π∗
i )

⎞

⎠

1/(n−k)

− 48εvmax(I ′)

≥
⎛

⎝
∏

i∈A\A0

μ(I ′)
2

⎞

⎠

1/(n−k)

− 48εvmax(I ′) (by Lemma 4)

≥ μ(I ′)
2

− 48εvmax(I ′) (by |A \ A0| = n − k)

≥
(

1
2

− 48ε

)

vmax(I ′). (by μ(I ′) > vmax(I ′)) (9)
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By using this inequality, we obtain the following upper bound on g′(c):

g′(c) =
n − k

n

⎛

⎝
∏

j∈G0

vj

⎞

⎠

1/n (
1
c

)k/n

≤
(vmax

c

)k/n

(by |G0| = k and vj ≤ vmax)

≤
(

vmax

(1/2 − 48ε)vmax(I ′)

)k/n

(by (9))

≤
(

4vmax

vmax(I ′)

)k/n

(by 0 < ε ≤ 1/192)

≤ 4vmax

vmax(I ′)
. (by vmax ≥ vmax(I ′)) (10)

Hence, we obtain OPT − A ≤ 192εvmax from (8) and (10), which completes the
proof. 
�

By setting ε appropriately, Theorem 1 follows from Proposition 3.

Proof (Proof of Theorem 1). Suppose that we are given an instance of Iden-
tical Additive NSW and a real value ε > 0. Define ε′ as the largest
value subject to 1/ε′ is an integer and ε′ ≤ min(1/192, ε/192). That is,
ε′ := 1/�max(192, 192/ε). Then, apply MaxNashWelfare in which ε is
replaced with ε′. Since 0 < ε′ ≤ 1/192, MaxNashWelfare returns an alloca-
tion π such that f(π) ≥ OPT − 192ε′vmax ≥ OPT − εvmax by Proposition 3. As
described in Sect. 2, the running time of MaxNashWelfare is (nm/ε′)O(1/ε′),
which can be rewritten as (nm/ε)O(1/ε). This completes the proof of Theorem 1.


�
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Abstract. Weighted voting games are a well-studied class of succinct simple
games that can be used to model collective decision-making in, e.g., legislative
bodies such as parliaments and shareholder voting. Power indices [5,10,23,28]
are used to measure the influence of players in weighted voting games. In such
games, it has been studied how a distinguished player’s power can be changed,
e.g., by merging or splitting players (the latter is a.k.a. false-name manipulation)
[2,24], by changing the quota [31], or via structural control by adding or deleting
players [25]. We continue the work on the structural control initiated by Rey and
Rothe [25] by solving some of their open problems. In addition, we also modify
their model to a more realistic setting in which the quota is indirectly changed
during the addition or deletion of players (in a different sense than that of Zuck-
erman et al. [31] who manipulate the quota directly without changing players’
set), and we study the corresponding problems in terms of their computational
complexity.

1 Introduction

Weighted voting games are an important class of compactly representable simple games
and have been thoroughly studied in cooperative game theory (see, e.g., the text-
books [9,22,29] and the book chapter [11]). Most crucially, WVGs have been ana-
lyzed in terms of power indices that describe how much influence a player has in a
game. Well-known power indices are the normalized Penrose-Banzhaf index due to
Penrose [23] and Banzhaf [5], the probabilistic Penrose-Banzhaf index due to Dubey
and Shubik [10], and the Shapley-Shubik index due to Shapley and Shubik [28]. We
will focus on the latter two. There are many applications of WVGs. They can be used
for collective decision-making in legislative bodies (e.g., in parliamentary voting), in
order to analyze the voting structures of the European Union Council of Ministers and
the International Monetary Fund [14,19], they are applied in joint stock companies
where each shareholder gets votes in proportion to the ownership of a stock and in
automated stock-trading systems [1,15], and widely used in many practical application
areas beyond social choice theory and game theory. Just as for voting rules in computa-
tional social choice [8,12,27], for judgment aggregation procedures [7], and for algo-
rithms and protocols in fair division, strategic behavior has attracted much attention for
WVGs. Bachrach and Elkind [4] were the first to study the complexity of false-name
c© Springer Nature Switzerland AG 2022
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manipulation (i.e., changing the players’ power indices by splitting a player into several
players and distributing the weight among them) or by merging several players into one.
These problems have then been further analyzed by Aziz et al. [2,3], Faliszewski and
Hemaspaandra [13], and Rey and Rothe [24]. Zuckerman et al. [31] studied the problem
of influencing power indices in WVGs by manipulating the quota.

Inspired by electoral control of voting rules [6,18], Rey and Rothe [25] introduced
problems of structural control by adding players to and by deleting players from WVGs
and studied them in terms of their computational complexity. Continuing their analysis,
in Sect. 3 we solve some of their open problems regarding control by deleting players
from WVGs, also fixing a minor flaw in their paper [25] for bounds of how much the
Shapley-Shubik index can change by deleting players.

In Sect. 4, we modify the model presented by Rey and Rothe [25] in a natural way:
While they assume that the quota remains the same even though players have been
added to or deleted from a weighted voting game, we will assume that the quota will
change accordingly in the modified game, i.e., the quota will be a fraction of the players’
total weight. This way of modifying the quota, however, differs from the model of
Zuckerman et al. [31] who manipulate the quota directly. We define the corresponding
problems of control by adding or deleting players with changing the quota, with the goal
to increase, to decrease, or to maintain a distinguished player’s power index. We study
these problems for the probabilistic Penrose-Banzhaf index and the Shapley-Shubik
index in terms of their computational complexity.

We conclude in Sect. 5 and mention some open problems for future work. All proofs
except one are omitted due to space limitations.

2 Preliminaries

In this section, we provide the needed notions from cooperative game theory and com-
putational complexity theory.

Definition 1. A coalitional game is a pair G = (N,v), where N = {1,2, . . . ,n} is a set
of players and v : 2N → R, with v( /0) = 0, is a characteristic function that assigns a
payoff to every coalition of players (i.e., subset of N). G = (N,v) is called simple if
v(C) ∈ {0,1} for every coalition C ⊆ N and v is monotonic, i.e., v(A) ≤ v(B) whenever
A ⊆ B ⊆ N.

We focus on a special class of simple coalitional games: weighted voting games
(WVGs, for short).

Definition 2. A WVG G = (w1, . . . ,wn;q) is a simple coalitional game that consists of
a quota q ∈ R+ and weights wi ∈ R+, where wi is the i-th player’s weight, i ∈ N. For
each coalition S ⊆ N, letting wS = ∑i∈S wi, S wins if wS ≥ q, and loses otherwise:

v(S) =
{

1 if wS ≥ q,
0 otherwise.

In Sect. 4, we will use the quota depending on the players’ total weight as q =
r ∑i∈N wi for a parameter r ∈ (0,1].
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We now define two of the most popular power indices that can be used to mea-
sure a player’s significance in a simple game, the probabilistic Penrose-Banzhaf index
(introduced by Dubey and Shapley [10] as an alternative to the normalized Penrose-
Banzhaf index that was originally introduced by Penrose [23] and later re-invented by
Banzhaf [5]) and the Shapley-Shubik index due to Shapley and Shubik [28].

Definition 3. Let n be the number of players in a simple game G = (N,v) and let i ∈ N
be a player. The probabilistic Penrose-Banzhaf index of player i in G is defined by

β(G , i) =
∑S⊆N\{i}(v(S ∪{i})− v(S))

2n−1 .

The Shapley-Shubik index of player i in G is defined by

ϕ(G , i) =
∑S⊆N\{i} |S|!(n−1−|S|)!(v(S ∪{i})− v(S))

n!
.

If v(S ∪ {i})− v(S) = 1, we say that i is pivotal for S. If a player is pivotal for all
coalitions, we call it a dictator, and if it is not pivotal for any set, we call it a dummy
player.

We will study structural control by adding and deleting players in WVGs, and we
adopt the notation of Rey and Rothe [25] who introduced these concepts. For control
by adding players, let G = (w1, . . . ,wn;q) be a given WVG and N = {1, . . . ,n} and let
M = {n+1, . . . ,n+m} be a set of m unregistered players with weights wn+1, . . . ,wn+m.
Adding M to G yields a new WVG that is denoted by G∪M = (w1, . . . ,wn+m;q). Sim-
ilarly, if M ⊆ N, deleting M from G yields a new WVG G\M = (w j1 , . . . ,w jn−m ;q),
where { j1, . . . , jn−m} = N \ M. For more background on cooperative game theory, we
refer to the books by Chalkiadakis et al. [9], Peleg and Sudhölter [22], and Taylor and
Zwicker [29], and to the chapter by Elkind and Rothe [11].

We assume familiarity with the most fundamental notions of computational com-
plexity, in particular with the complexity classes P (deterministic polynomial time), NP
(nondeterministic polynomial time), and PP (probabilistic polynomial time). Moreover,
we will also use the well-known complexity classes DP (consisting of differences of NP
sets, as introduced by Papadimitriou and Yannakakis [21]) and Θp

2 (a.k.a. PNP[log], the
class of sets accepted by a P algorithm accessing its NP oracle logarithmically often,
see [17]). The notion of hardness for these classes is based on the polynomial-time
many-one reducibility: X ≤p

m Y if there is a polynomial-time computable, total func-
tion f such that for each input x, x ∈ X if and only if f (x) ∈ Y . We refer the reader to
the textbooks by Garey and Johnson [16], Papadimitriou [20], and Rothe [26] for more
background on complexity theory.

We use the following two well-known NP-complete problems (see, e.g., [16]). In
PARTITION, given a set I = {1, . . . ,n}, a function a : I → N \ {0}, i �→ ai, such that
∑n

i=1 ai is even, we ask whether there exists a partition of I into two subsets of equal
weight, that is, whether there exists a subset I′ ⊆ I such that ∑i∈I′ ai = ∑i∈I\I′ ai. In
SUBSETSUM, we are given a set I = {1, . . . ,n}, a function a : I →N\{0}, i �→ ai, and a
positive integer q, and we ask whether there exists a subset I′ ⊆ I such that ∑i=I′ ai = q.

We also use the following two PP-complete problems that Rey and Rothe [24] used
in their work on false-name manipulation in WVGs.
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COMPARE-#SUBSETSUM-RR

Given: A set I = {1, . . . ,n}, a function a : I → N\{0}, i �→ ai, where α = ∑n
i=1 ai.

Question: Is the number of subsets of I with values summing up to α
2 − 2 greater

than the number of subsets of I with values summing up to α
2 − 1, i.e.,

#SUBSETSUM((a1, . . . ,an), α
2 −2) > #SUBSETSUM((a1, . . . ,an), α

2 −1)?

COMPARE-#SUBSETSUM- RR

Given: A set I = {1, . . . ,n}, a function a : I → N\{0}, i �→ ai, where α = ∑n
i=1 ai.

Question: Is the number of subsets of I with values summing up to α
2 − 2 smaller

than the number of subsets of I with values summing up to α
2 − 1, i.e.,

#SUBSETSUM((a1, . . . ,an), α
2 −2) < #SUBSETSUM((a1, . . . ,an), α

2 −1)?

In the NP-complete problem X3C, an input consists of a set of elements B , |B |= 3k
for k ∈ N, and a family of its three-element subsets S , and the question is whether there
exists a subfamily S∗ of S such that each element from B is contained in exactly one set
in S∗. Faliszewski and Hemaspaandra [13] proved the following useful property about
X3C (also using the fact that there exists a reduction from X3C to SUBSETSUM),
applied by them and by Rey and Rothe [24] and to be applied here as well later on.

Lemma 1. Every X3C instance (B ′,S ′) can be transformed into an X3C instance
(B ,S), where |B | = 3k and |S | = n, such that k

n = 2
3 without changing the number of

solutions. Consequently, we can assume that the size of each solution in a SUBSETSUM

instance is 2n
3 , that is, each subsequence summing up to the given quota contains the

same number of elements.

In our proofs, we will also apply the following two lemmas due to Wagner [30].

Lemma 2. Let A be some NP-complete problem and let B be an arbitrary problem. If
there exists a polynomial-time computable function f such that, for all input strings x1

and x2 for which x2 ∈ A implies x1 ∈ A, we have (x1 ∈ A∧ x2 /∈ A) ⇐⇒ f (x1,x2) ∈ B,
then B is DP-hard.

Lemma 3. Let A be some NP-complete set, and let B be any set. If there exists a
polynomial-time computable function g such that, for all k ≥ 1 and all input strings
x1, . . . ,x2k satisfying χA(x1)≥ ·· · ≥ χA(x2k) (where χA(xi) = 1 if xi ∈ A, and χA(xi) = 0
if xi �∈ A), it holds that |{i | xi ∈ A}| is odd ⇐⇒ g(x1, . . . ,x2k) ∈ B, then B is Θp

2 -hard.

We consider the following decision problem introduced by Rey and Rothe [25] for
a given power index PI as well as its analogous variants where the goal is to decrease,
to nonincrease, to nondecrease, or to maintain a power index by deleting players or by
adding players:

CONTROL BY DELETING PLAYERS TO INCREASE PI

Given: A WVG G with players N = {1, . . . ,n}, a distinguished player p ∈ N, and a
positive integer k.

Question: Can at least one and at most k players M ⊆ N \ {p} be deleted from G such
that for the new game G\M , it holds that PI(G\M , p) > PI(G , p)?
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3 Deleting Players from WVGs Without Changing the Quota

In this section, we consider the model of structural control by (adding or) deleting
players where the goal is to increase, to decrease, to nonincrease, to nondecrease, or
to maintain a power index, as proposed by Rey and Rothe [25]. First, we will show
upper and lower bounds of how much the Penrose-Banzhaf index and the Shapley-
Shubik index can change when players are deleted. Then we will study the problems
CONTROL BY DELETING PLAYERS TO INCREASE PI and CONTROL BY DELETING

PLAYERS TO DECREASE PI in terms of their complexity, solving open problems from
their work [25].

3.1 Change of Power Indices by Deleting Players

Rey and Rothe [25] analyzed how deleting players can change the Penrose-Banzhaf
and the Shapley-Shubik index, by providing upper and lower bounds for both power
indices. Unfortunately, their result on the lower bound of the Shapley-Shubik index is
not correct1 and we fix it in Theorem 1 below (which, for completeness, also contains
the correct upper bound for the Shapley-Shubik index and both bounds for the Penrose-
Banzhaf index due to Rey and Rothe [25]).

Theorem 1. After deleting the players of a subset M ⊆ N \ {i} of size m ≥ 1 from a
WVG G with n = |N| players, the difference between player i’s old and new

1. Penrose-Banzhaf index is at most 1−2−m and is at least −1+2−m (as shown by Rey
and Rothe [25]);

2. Shapley-Shubik index is at most 1− (n−m+1)!
2n! and is at least −1+ (n−m+1)!

2n! .

Let us look at the counter-examples for the (wrong) value of (n−m−1)!
2(n−2)! (see Foot-

note 1) for the difference between a player’s old and new Shapley-Shubik power index.

Example 1. Firstly, let us consider the game G = (2,2,2;2) and let 1 be a distinguished
player. Then, ϕ(G ,1) = 1

3 and if we remove two other players from the game, the index
will increase to 1, so ϕ(G ,1)−ϕ(G\{2,3},1) =− 2

3 . The lower bound due to Theorem 1

equals −1+ (3−2+1)!
2·3! = − 5

6 < − 2
3 , so the difference belongs to the new interval. The

old bound would equal −1+ (3−2−1)!
2(3−2)! = − 1

2 > − 2
3 , so the difference would be outside

the interval.
Let us consider now the game H = (4,1,1;5) and the player 1. Then, ϕ(H ,1) = 2

3
and if we remove the other players, the index will decrease to 0, so ϕ(H ,1) −
ϕ(H\{2,3},1) = 2

3 . If we consider the upper bound 1 − (3−2+1)!
2·3! = 5

6 , the index will

belong to the interval. If we assumed that 1 − (3−2−1)!
2(3−2)! = 1

2 is the upper bound, our
example would be outside the interval, so we would get a contradiction.

1 Under the assumptions of Theorem 1, their incorrect lower bound of the Shapley-Shubik

index [25] is −1+ (n−m−1)!
2(n−2)! . .
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The previous theorem describes the bounds of how much the power indices can
change depending only on the number of deleted players. In the next theorems, we will
see the bounds of changes for a given player which depend not only on the number
of deleted players but also on the power indices of the given player and of the deleted
players from the initial game. We start with the lower bounds.

Theorem 2. Let G = (w1, . . . ,wn;q) be a WVG with the set of the players N. Let M ⊆
N \{i} be a set of players which are going to be deleted and m = |M|.
1. β(G , i)−β(G\M, i) ≥ max((1−2m)β(G , i),β(G , i)−1).
2. ϕ(G , i)−ϕ(G\M, i) ≥ max((1− (n

m

)
)ϕ(G , i),ϕ(G , i)−1).

The following theorem shows how much smaller the power indices can be in new
games after deleting players.

Theorem 3. Let G = (w1, . . . ,wn;q) be a WVG with the set of the players N. Let M ⊆
N \{i} be a set of players which are going to be deleted and m = |M|.

1. β(G , i)−β(G\M, i) ≤ min
(
β(G , i),∑ j∈M β(G , j)+ (2m−1)2

2n−1

)
.

2. ϕ(G , i)−ϕ(G\M, i) ≤ min
(
ϕ(G , i),∑ j∈M ϕ(G , j)+ 1

(n−m)!

)
.

Proof Sketch. The idea of the proof is to consider the situation where player i shares
with the players from M as many coalitions as possible for which i is pivotal but, at
the same time, each player from M is not pivotal for the same coalitions as the others.
So, while deleting M from the game, we delete as many coalitions counted in i’s power
index as possible. ❑

Example 2. Let G = (4,2,1,1,1;4) be a WVG. We are going to remove the subset
M = {5} from the set of players. Let us consider player 2, whose old and new Penrose-
Banzhaf indices are β(G ,2) = 1

4 and β(G\M,2) = 1
8 , so the index decreases by 1

8 .
The upper bound from Theorem 1 is β(G ,2)− β(G\M,2) ≤ 1 − 1

2 = 1
2 and that from

Theorem 3 is β(G ,2)− β(G\M,2) ≤ min( 1
4 , 1

8 +
1

16 ) =
3

16 , so both upper bounds are
greater than the actual difference but the second one is more exact. Now, let us con-
sider player 2’s old and new Shapley-Shubik index: ϕ(G ,2) = 11

60 and ϕ(G\M,2) = 5
60 ,

so it decreases by 1
10 . The upper bound from Theorem 1 is ϕ(G ,2)−ϕ(G\M,2) ≤ 1 −

(5−1+1)!
2·5! = 1

2 and that from Theorem 3 is ϕ(G ,2)−ϕ(G\M,2)≤ min( 11
60 , 1

10 +
1
4! ) =

17
120 ,

which are greater again, but the second one is much closer to the true difference.

3.2 Control by Deleting Players

In this section, we will consider control by deleting players in WVGs, with the goal
of increasing or decreasing a distinguished player’s power index. Rey and Rothe [25]
analyzed these problems in terms of their complexity. While they obtained many results
for the case of control by adding players, they left many problems open for control by
deleting players. In the next two theorems, we solve two of these open problems: one for
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increasing the Penrose-Banzhaf index and the other for decreasing the Shapley-Shubik
index. In particular, Rey and Rothe [25] showed that the problem of control by deleting
a single player to increase a distinguished player’s Shapley-Shubik index is NP-hard.
We show the following result for the Penrose-Banzhaf index.

Theorem 4. Control by deleting players to increase a distinguished player’s Penrose-
Banzhaf index in a WVG is DP-hard.

Rey and Rothe [25] also showed that the problem of control by deleting a single
player to decrease a distinguished player’s Penrose-Banzhaf index is coNP-hard and
we improve this lower bound to Θp

2 -hardness with the following theorem.

Theorem 5. Control by deleting players to decrease a distinguished player’s Penrose-
Banzhaf index in a WVG is Θp

2 -hard.

Proof. Let us define a reduction using the NP-complete problem PARTITION (which
we will call A, just as the set from Lemma 3). Let xi = (ai,1, . . . ,ai,mi) be an instances
of PARTITION for i ∈ {1, . . . ,2n} and n ∈ N, let αi = ∑mi

j=1 ai, j, and let ξi be the number
of xi’s solutions for PARTITION.

Let �1, . . . , �2n ∈ N be chosen such that for all i ∈ {1, . . . ,2n−1}, we have

10�i >
2n−i

∑
j=1

α2n+1− j ·10i+1,

let y1 = 1, y2 = 2, and for all i ∈ {3, . . . ,2n}, let

yi =

{
∑

i−1
2

j=1 y2 j if i is odd,
yi−1 if i is even.

Furthermore, choose z ∈ N so that y2n · z < 10�2n , and define

q =
α1

2
·10�1 +

α2

2
·10�2 + · · ·+ α2n

2
·10�2n + z+1

and q′ = q−1. Consider the weighted voting game

G =
(

1,a1,1 ·10�1 , . . . ,a1,m1 ·10�1 , . . . ,a2n,1 ·10�2n , . . . ,a2n,m2n ·10�2n ,

x,r1,r2,r2,r3, . . . ,r3︸ ︷︷ ︸
y3

, . . . ,r2n−1, . . . ,r2n−1︸ ︷︷ ︸
y2n−1

,r2n, . . . ,r2n︸ ︷︷ ︸
y2n

;q
)

with ñ = ∑2n
i=1(mi + yi)+2 players, where x ∈ N, x < z, and for all i ∈ {1, . . . ,2n},

ri =

{
q′ − (∑i

j=1
α j
2 ·10� j)− x if i is odd,

q′ −∑i
j=1

α j
2 ·10� j if i is even.

Let the first player be the distinguished player and let the deletion limit be k = 1.
Assume that χA(x1) ≥ χA(x2) ≥ ·· · ≥ χA(x2n). We will now prove that

(∃i ∈ {2, . . . , ñ})[β(G ,1)−β(G\{i},1) > 0
] ⇐⇒ |{i | χA(xi) = 1}| is odd.
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First, suppose that |{i | χA(xi) = 1}| is even. If |{i | χA(xi) = 1}| = 0, then for all
i ∈ {2, . . . , ñ}, β(G ,1) = β(G\{i},1) = 0. If |{i | χA(xi) = 1}| > 0, then there exists some
i such that χA(x2i) = 1 and χA(x2i+1) = 0 (or i = 2n) and

β(G ,1) =
ξ1 +2ξ1ξ2 + · · ·+ y2iξ1 · · ·ξ2i

2ñ−1 .

If we delete any player j with weight a j
k · 10� j or r j for j > 2i, then the index will

increase:

β(G\{ j},1) =
ξ1 +2ξ1ξ2 + · · ·+ y2iξ1 · · ·ξ2i

2ñ−2 .

If we delete any player j with weight a j
k ·10� j for j ≤ 2i, then

β(G\{ j},1) =
ξ1 + · · ·+ y jξ1 · · · ξ j

2 + · · ·+ y2iξ1 · · · ξ j
2 · · ·ξ2i

2ñ−2

=
ξ1 + · · ·+ y j−1ξ1 · · ·ξ j−1

2ñ−2 +
y jξ1 · · ·ξ j + · · ·+ y2iξ1 · · ·ξ2i

2ñ−1 ≥ β(G ,1).

If we remove any player j with weight r j for j ≤ 2i, then

β(G\{ j},1) =
ξ1 + · · ·+(y j −1)ξ1 · · ·ξ j + · · ·+ y2iξ1 · · ·ξ2i

2ñ−2 ,

so the index does not decrease because 2y j −2 ≥ y j for j ≥ 2, as y j ≥ 2 and 2ξ1ξ2 > ξ1.
Finally, if we delete the player with weight x, we have

β(G\{∑2n
j=1 m j+2},1) =

2ξ1ξ2 + y4ξ1ξ2ξ3ξ4 + · · ·+ y2iξ1 · · ·ξ2i

2ñ−2

=
2ξ1ξ2 +2ξ1ξ2 + · · ·+ y2iξ1 · · ·ξ2i + y2iξ1 · · ·ξ2i

2ñ−1 > β(G ,1).

Summing up, if |{i | χA(xi) = 1}| is even, the Penrose-Banzhaf power index of the
first player increases or stays the same after removing a player from the game.

Let us assume now that |{i | χA(xi) = 1}| is odd. If |{i | χA(xi) = 1}| = 1, then
β(G ,1) = ξ1

2ñ−1 , and after removing the player with weight x, the index decreases to 0.
If |{i | χA(xi) = 1}| > 1, there exists some i such that χA(x2i−1) = 1 and χA(x2i) = 0
and

β(G ,1) =
ξ1 +2ξ1ξ2 + · · ·+ y2i−1ξ1 · · ·ξ2i−1

2ñ−1 .

After removing the player with weight x, we have

β(G\{∑2n
j=1 m j+2},1) =

2ξ1ξ2 + y4ξ1ξ2ξ3ξ4 + · · ·+ y2i−2ξ1 · · ·ξ2i−2

2ñ−2

and

β(G ,1)−β(G\{∑2n
j=1 m j+2},1)

=
ξ1 −2ξ1ξ2 + y3ξ1ξ2ξ3 −·· ·− y2i−2ξ1 · · ·ξ2i−2 + y2i−1ξ1 · · ·ξ2i−1

2ñ−1

>
ξ1 + · · ·+ y2i−1ξ1 · · ·ξ2i−1 −∑i−1

j=1 y2 jξ1 · · ·ξ2i−1

2ñ−1 > 0,



Controlling Weighted Voting Games by Deleting or Adding Players 363

since y2i−1 = ∑i−1
j=1 y2 j. Therefore, if |{i | χA(xi) = 1}| is odd, it is possible to decrease

the Penrose-Banzhaf index of the first player. ❑

For the Shapley-Shubik, we show NP-hardness for this problem.

Theorem 6. Control by deleting players to decrease a player’s Shapley-Shubik index
in a WVG is NP-hard.

4 A New Model: Control Problems with Changing the Quota

From now on, we define the quota of a WVG depending on the players’ total weight.
With this assumption, we modify the model of Rey and Rothe [25] in a natural way:
While they assume that the quota remains the same after players have been added or
deleted, we now assume that the quota will change accordingly in the modified game.

4.1 Change of Power by Adding or Deleting Players with Changing the Quota

As we have already mentioned in the introduction, Zuckerman et al. [31] studied manip-
ulation of the quota in WVGs without any structural changes in the set of players. They
presented upper and lower bounds for how much the power index of a single player can
change when the quota is manipulated.

Our next two theorems present the bounds in situations when quotas are changed
not directly but they change as a consequence of adding or deleting players: Recall that
from now on, in a WVG G = (w1, . . . ,wn;q), the quota will depend on the players’ total
weight as q = r ∑n

i=1 wi for a parameter r ∈ (0,1], thus changing the quota by adding or
deleting players. In these cases, the power of a player can change much more extremely
than in games where the quota remains the same after our manipulation – for example,
a player with no power can become the most powerful one and the other way around.

We start with the case when we add some new players to a WVG. Theorem 7 shows
how the power indices can change depending on the number of added players.

Theorem 7. Let G = (w1, . . . ,wn;q1) be a WVG with set N of players and quota q1 =
r ∑n

j=1 w j for some r ∈ (0,1]. Let M, m = |M|, be a set of players that are to be added to
the game G . Let G∪M be the new game with players N ∪M and quota q2 = r ∑ j∈N∪M w j.
Then, for i ∈ N:

1. −1+2−m ≤ β(G , i)−β(G∪M, i) ≤ 1,

2. −1+ (n+1)!
2(n+m)! ≤ ϕ(G , i)−ϕ(G∪M, i) ≤ 1.

Interestingly, it is possible for the strongest player to become a dummy by adding
even one new player but it is impossible to turn a dummy into a dictator. The following
example shows an extreme change of a player’s power in a game.

Example 3. Let G = (5,1,1;4) be a WVG with r = 4
7 . It is easy to see that player 1

is a dictator, i.e., β(G ,1) = ϕ(G ,1) = 1. Let us add to the game a new player with
weight 10. In this way, we get a new game: G∪{4} = (5,1,1,10; 68

7 ) and the new quota
is equivalent to 10. Therefore, the new player becomes the new dictator in the game
G∪{4} and player 1’s power indices decrease to 0.
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The changes of the power indices by deletion of players were presented by Rey
and Rothe [25]. Those changes were derived for the case of the structural manipula-
tion without changing the quota of a game. As we can see in Theorem 8, the Penrose-
Banzhaf index and the Shapley-Shubik index can decrease by at most the same value
with and without the change of quotas while the indices can increase more when the
quota changes.

Theorem 8. Let G = (w1, . . . ,wn;q1) be a WVG with set N of players and quota q1 =
r ∑n

j=1 w j for some r ∈ (0,1]. Let M ⊆ N \ {i}, m = |M|, be a set of players that are
to be deleted from G . Let G\M be the new game with players N \ M and quota q2 =
r ∑ j∈N\M w j. Then, for i ∈ N:

1. −1 ≤ β(G , i)−β(G\M, i) ≤ 1−2−m,

2. −1 ≤ ϕ(G , i)−ϕ(G\M, i) ≤ 1− (n−m+1)!
2n! .

Analogously to control by adding new players to a WVG, it is possible for a dummy
player to become a dictator when we delete some other players from a game. We now
give an example that illustrates how the power indices can change when we delete some
players from a game and the new game has an accordingly changed quota.

Example 4. Let G = (5,5,3,3,1,1;10) be a WVG with r = 5
9 . Let us start with the

Penrose-Banzhaf indices of the players: β(G ,1) = β(G ,2) = 1
2 , β(G ,3) = β(G ,4) = 1

4 ,
and β(G ,5) = β(G ,6) = 1

8 . Now, we are going to create a new game by deleting one
player with weight 5 and one player with weight 3, so G\{1,3} = (5,3,1,1; 50

9 ) with the
new quota equivalent to 6. The Penrose-Banzhaf indices in the new game are as follows:
β(G\{1,3},1) = 7

8 , β(G\{1,3},2) = 1
8 , and β(G\{1,3},3) = β(G\{1,3},4) = 1

8 . The index of
the player with weight 5 has increased by 3

8 and at the same time the index of the player
with weight 3 has decreased by 1

8 < 1 − 2−2 = 3
4 . Finally, although the new quota is

smaller than the old one, the Penrose-Banzhaf index of the players with weight 1 is
unchanged.

Let us now analyze the Shapley-Shubik indices in these two games. The indices in
G are: ϕ(G ,1) = ϕ(G ,2) = 3

10 , ϕ(G ,3) = ϕ(G ,4) = 2
15 , and ϕ(G ,5) = ϕ(G ,6) = 1

15 ;
and in G\{1,3}: ϕ(G\{1,3},1) = 3

4 and ϕ(G\{1,3},2) = ϕ(G\{1,3},3) = ϕ(G\{1,3},4) = 1
12 .

The Shapley-Shubik indices of the player with weight 5 and of the players with weight 1
have increased, whereas the index of the player with weight 3 has decreased.

4.2 Control by Adding or Deleting Players with Changing the Quota

First, we define problems of control by adding and by deleting players with changing
the quota in WVGs, where the goals are to increase, to decrease, or to maintain a dis-
tinguished player’s power. Specifically, for a power index PI, we consider the following
decision problems that slightly modify the problems introduced and studied by Rey and
Rothe [25]:
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CONTROL BY ADDING PLAYERS WITH CHANGING QUOTA TO INCREASE PI

Given: A WVG G with players N = {1, . . . ,n}, a quota r ∑n
i=1 wi (r ∈ (0,1]), a set M

of unregistered players with weights wn+1, . . . ,wn+m, a distinguished player
p ∈ N, and a positive integer k.

Question: Can at least one and at most k players M′ ⊆ M be added to G such that for the
new game G∪M with the new quota r ∑i∈N∪M′ wi, it holds that PI(G∪M , p) >
PI(G , p)?

CONTROL BY DELETING PLAYERS WITH CHANGING QUOTA TO INCREASE PI

Given: A WVG G with players N = {1, . . . ,n}, a quota r ∑n
i=1 wi (r ∈ (0,1]), a distin-

guished player p ∈ N, and a positive integer k < |N|.
Question: Can at least one and at most k players M ⊆ N \ {p} be deleted from G such

that for the new game G\M with the new quota r ∑i∈N\M′ wi, it holds that
PI(G\M , p) > PI(G , p)?

Analogously, we consider decreasing and maintaining a distinguished player’s
power, in relation to the original game.

As one can assume, an additionally varying parameter will not make the deci-
sion problems easier: The problems with changing quotas caused by structural control
remain hard when the original problems were hard. Table 1 presents a summary of our
complexity results. We now state and prove one of our results from Table 1.

Table 1. Overview of complexity results of control problems in WVGs with quota change with
respect to the Shapley-Shubik (SSI) and the probabilistic Penrose-Banzhaf (PBI) index.

Goal Control by adding a player Control by deleting a player

Decrease PI PP-hard (PBI & SSI) DP-hard (PBI)

NP-hard (SSI)

Increase PI PP-hard (PBI & SSI) DP-hard (PBI)

NP-hard (SSI)

Maintain PI coNP-hard (PBI & SSI) coNP-hard (PBI & SSI)

Theorem 9. For both the Penrose-Banzhaf and the Shapley-Shubik index, control by
adding players to decrease and to increase a distinguished player’s power index in a
WVG with changing the quota is PP-hard.

Proof. We show PP-hardness of control to decrease the two indices by means of a
reduction from the COMPARE-#SUBSETSUM-RR (PP-hardness of control to increase
these indices can be proven analogously with exactly the same reduction but starting
from COMPARE-#SUBSETSUM- RR instead).

Let (a1, . . . ,an) be a COMPARE-#SUBSETSUM-RR instance with α = ∑n
i=1 ai. Let

ξ1 and ξ2, respectively, be the number of SUBSETSUM solutions for ((a1, . . . ,an), α
2 −1)



366 J. Kaczmarek and J. Rothe

and ((a1, . . . ,an), α
2 − 2), respectively. Now, construct the control problem instance

consisting of a game G = (1,a1, . . . ,an; α
2 − 1) with n + 1 players, r =

α
2 −1
α+1 , and

distinguished player p = 1. Its power indices are β(G ,1) = ξ2
2n = 2ξ2

2n+1 and, using
Lemma 1, we can assume that each coalition for which 1 is pivotal has the same size,
so ϕ(G ,1) = ξ2

t!(n−t)!
(n+1)! . Let the addition limit be k = 1, and let n+2 be the new player

with weight wn+2 = 1. So, the quota in the new game after adding the player n+ 2 is
equivalent to α

2 , since all players’ weights are integers.
We will show that PI(G∪{n+2},1)− PI(G ,1) < 0 ⇐⇒ ξ1 < ξ2.
Assume that ξ1 < ξ2. Then, after adding the new player, the indices will change

to β(G∪{n+2},1) = ξ1+ξ2
2n+1 < 2ξ2

2n+1 = β(G ,1) and ϕ(G∪{n+2},1) = ξ1
(t+1)!(n−t)!

(n+2)! +

ξ2
t!(n−t+1!)
(n+2)! < ξ2

t!(n−t)!
(n+2)! (t +1+n− t +1) = ϕ(G ,1), so they both decrease.

Conversely, assume now that ξ1 ≥ ξ2. Then we have β(G∪{n+2},1) ≥ β(G ,1) and
ϕ(G∪{n+2},1) ≥ ϕ(G ,1). So both power indices do not decrease. ❑

Rey and Rothe [25] presented also the upper bound for the problems which they
were studying. Exactly the same argumentation2 is valid also for weighted voting games
with changing the quota. Therefore, we get the following upper bound.

Remark 1. Control by adding and deleting players to decrease, to increase, and to main-
tain both Penrose-Banzhaf power index and Shapley-Shubik power index in a weighted
voting game with changing quota is in NPPP.

5 Conclusions and Future Research

We have continued the work on structural control by adding or deleting players in
WVGs initiated by Rey and Rothe [25]. In particular, we have solved two of their open
problems and have fixed a minor flaw for a lower bound of how much the Shapley-
Shubik index can change by deleting players. We have also modified their model in
a natural way by making the quota of a new WVG resulting from adding or deleting
players dependent on the total weight of the players and have initiated the complexity
analysis in this model. Still, many problems remain open for future work. For example,
it would be interesting to study the goals of nonincreasing or nondecreasing a distin-
guished player’s power in our new model. Also, many of the existing complexity results
provide only lower bounds – can we find matching upper bounds or can we raise these
lower bounds, for example to PP-hardness as it was done by Rey and Rothe [25] for
some of their problems and as we succeeded to do for some of our problems in the
proof of Theorem 9?

Acknowledgments. We thank the reviewers for helpful comments. This work was supported in
part by Deutsche Forschungsgemeinschaft under grant RO 1202/21-1.

2 The result comes from the fact that computing the numerator of the Penrose-Banzhaf index
is #P-parsimonious-complete and computing the numerator of the Shapley-Shubik index is
#P-many-one-complete.
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Abstract. In structural pattern matching, two n-length strings X and
Y over Σ are said to match, if there exists a one-to-one function f :
Σ → Σ such that (i) for 0 ≤ i < n, f(X[i]) = Y [i] and (ii) for any
x, y ∈ Σ whose complements are x′ and y′, respectively, if f(x) = y then
f(x′) = y′. In this paper, we present a 2n lg σ + 2n + o(n)-bit index for
this problem. Although it does not theoretically achieve the succinctness
for a general alphabet, the proposed method is more practical and the
space requirement can be smaller than the previous succinct solution
especially when σ is small. A source code is available at: https://github.
com/sunghwank/spmindex.

Keywords: Compact data structure · String matching · Suffix array ·
FM-index · LF-mapping

1 Motivation

Structural pattern matching was introduced by Shibuya [14,15] to address a
string matching problem on RNA sequences regarding their secondary structure.
In this problem, matching of two strings is defined differently from the standard
string matching problem (see Sect. 2.1). An encoding method was used to trans-
form the suffixes into a certain form so that indexing the encoded suffixes with
a suffix tree can resolve the problem. In order to reduce the space requirement,
which is excessively large for the suffix tree-based indexing methods, Beal and
Adjeroh [1] proposed the use of a suffix array as well as its construction method.
However, indexing an n-length string still requires Θ(n lg n) space in bits, which
is quite far from n lg σ bits, the space required to represent the string, where σ
is the alphabet size.

Recently, Ganguly et al. [5] presented the first succinct data structure for
this problem, which requires n lg σ + O(n) bits of space. Although this method
dramatically reduces the space requirement, it relies on several data structures
that are theoretically optimal but hard to implement in practice, such as a
multiary wavelet tree [3,7,8], and a fully-functional succinct tree supporting
constant-time queries [12,13].

This paper is devoted to present a data structure, which is practically imple-
mentable as well as efficient in time and space. Comparison with the existing
works is shown in Table 1. The proposed index uses 2n lg σ+2n+o(n) bits where
c© Springer Nature Switzerland AG 2022
C. Bazgan and H. Fernau (Eds.): IWOCA 2022, LNCS 13270, pp. 369–382, 2022.
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Table 1. Comparison with other works.

Method Space (in bits) Query time (counting)

Suffix tree [14,15] Θ(n lg n) O(m)

Suffix array [1] Θ(n lg n) O(m + lg n)

sBWT [5] n lg σ + O(n) O(m lg σ)

Proposed 2n lg σ + 2n + o(n) O(m lg σ)

n is the text length and σ is the alphabet size, and it can count the number of
occurrences of an m-length pattern in O(m lg σ) time. It is also practical in the
sense that it uses bitvector dictionaries [2,9], wavelet trees [8] and range maxi-
mum query index [4], which have practical implementations available in public
software libraries such as sdsl-lite [6].

As mentioned in [5], the main challenge in using the suffix-encoding method
described in [14] for space-efficient indexing is that prepending a single character
can affect more than one positions in its encoded string. In this paper, we address
this issue by transforming a structural string (s-string) into a pointer sequence
of double length so that a single prepending operation can affect at most one
position, which is a different approach from that of [5]. We develop an index on
this transformed pointer sequence using its space-efficient representation. As an
overview, the proposed method can be described the following:

1. We represent an n-length s-string as a (2n)-length pointer sequence such that
pointers at even (odd, resp.) positions refer to the next occurrence of the
character (equal-group character, resp.).

2. We construct two suffix arrays by sorting the suffixes starting at even and
odd positions separately.

3. The searching procedure is performed by navigating these two suffix arrays
alternatingly; the so-called LF-mapping of a suffix at one suffix array is
defined to be a suffix at the other suffix array.

4. The LF-mappings can be represented using four arrays Leven, Fodd, Lodd, and
Feven, which can be stored in 2n lg σ + 2n + o(n) bits in total; using these
arrays, the LF-mappings can be simply computed in O(lg σ) time.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
review some backgrounds needed to develop our proposed method. In Sect. 3,
we present a pointer sequence representation for the structural pattern matching
problem. Section 4 describes how to organize the proposed index structure, and
the searching algorithm is presented in Sect. 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Structural Pattern Matching

We describe the structure pattern matching introduced in [14]. In the origi-
nal paper, a string consists of two types of characters: (i) static characters for
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the exact matching, and (ii) parameterized characters for a more sophisticated
matching. In this paper, we consider only parameterized characters for brevity.
Nevertheless, we emphasize that our proposed method can easily be applied to
the original problem.

Let T [0..n − 1] be an n-length structural string (s-string) over alphabet Σ =
{0, · · · , σ −1}. We use the 0-based index. We have a one-to-one function compl :
Σ → Σ that represent the association among characters in Σ. For each x ∈ Σ,
x is associated with its complement compl(x) ∈ Σ. And for any x, y ∈ Σ, if
compl(x) = y then compl(y) = x. For simplicity, we assume that the alphabet
size σ = |Σ| is a multiple of 2, and x �= compl(x). To represent the relationship
defined via compl(·), we can also use a function g : Σ → {0, · · · , σ/2 − 1} such
that for x, y ∈ Σ g(x) = g(y) iff x = y or x = compl(y). We say x and y
such that g(x) = g(y) are equal-group characters. Two s-strings X and Y are
said to match if there exists a one-to-one function f : Σ → Σ such that (i)
for 0 ≤ i < n, f(X[i]) = Y [i] and (ii) for any x, y ∈ Σ, if f(x) = y then
f(compl(x)) = compl(y). For example, let Σ = {w, x, y, z} and g(w) = g(x)
and g(y) = g(z). Then wyxxwyzw matches zwyyzwxz, while it does not match
yxwwyxzy.

2.2 Pointer Sequence Matching

In this subsection, we briefly review the pointer sequence matching described in
[10]. Although the description below may be slightly different from that in the
original paper in detail, the basic idea is essentially the same.

In the pointer sequence matching problem, a string is a sequence of pointers.
Each pointer is either a null pointer or one refers to another element among those
in its right-hand side. We represent a null pointer by a symbol ∞. We represent a
pointer referring to another element by its length so that the element at position
i refers to the element at position i + X[i] if X[i] �= ∞.

Definition 1 (Pointer sequence). A sequence X[0..n − 1] of length n is a
pointer sequence if, for 0 ≤ i < n, X[i] ∈ {1, · · · , n − i − 1} ∪ {∞}.

With this representation, we say two equal-length pointer sequences match
if they are exactly the same. To define a pattern matching problem on pointer
sequences, we define a substring of a pointer sequence. Taking a substring from a
pointer sequence not only copies the target part but also converts pointers going
to the outside of the taken part into null pointers.

Definition 2 (Substring of a pointer sequence). A substring Y = X[i..j]
of X from position i to position j is defined as follows: for 0 ≤ k ≤ j − i.

Y [k] =

{
X[i + k] if X[i + k] ≤ j − i − k,

∞ otherwise.
(1)
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For indexing a pointer sequence, we transform it into an encoded form, which
is a sequence of sets. The encoded sequence E(X) of an n-length pointer sequence
X is defined as follows:

E(X)[i] = {1 ≤ j ≤ i | X[i − j] = j} (2)

An element of an encoded sequence represents the set of elements pointing
to it. To define the lexicographical order among encoded sequences, we define
the ordering on their elements, which are sets. As we will see, an element of an
encoded sequence handled in this paper is either the empty set ∅ or a singleton
{x} for some integer x. We define the ordering of sets (which are elements of
encoded sequences) as follows: A < B iff (i) A �= ∅ and B = ∅ or (ii) A = {a}
and B = {b} are singletons such that a < b.

We can index the set of encoded suffixes in 2n lg n + 2n + o(n) bits although
we do not use it directly in this paper. Rather, we develop a more space-efficient
representation for the structural pattern matching problem.

Proposition 1 ([10]). For an n-length pointer sequence, there exists a data
structure that uses 2n lg n + 2n + o(n) bits, and can count the number of occur-
rences of an m-length pattern in O(m lg n) time.

2.3 Building Blocks

The proposed index uses several well-known data structures as its building
blocks.

Bitvector. For an n-length bitvector A[0..n−1], a data structure that supports
the following operations in O(1) time can be represented in n + o(n) bits [2,9].

1. A.rankx(i): the number of occurrences of x in A[0..i].
2. A.selectx(j): the position of the j-th occurrence of x on A.

We also define A.rankx(i, j) = A.rankx(j) − A.rankx(i − 1).

Wavelet Tree. A wavelet tree of an n-length string A[0..n−1] over an alphabet
of size σ is a data structure that supports the following operations in O(lg σ)
time using n lg σ + o(n) bits [3,7,11].

1. A(i): accessing A[i].
2. A.rankx(i, j): the number of occurrences of x in A[i..j].
3. A.rank gex(i, j): the number of occurrences of characters that are greater than

or equal to x in A[i..j].
4. A.selectx(j): the position of the j-th occurrence of x on A.

Range Maximum Query. A range maximum query (i, j) on array A[0..n−1] is
to ask the index of the maximum element among A[i..j], which can be performed
in O(1) time with a 2n + o(n)-bit data structure [4]:

1. A.rMq(i, j) = arg maxi≤k≤j A[k].
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z y zx x z y w x x y z

7 1 11 3 5 3 3 5 1 7 1 1 ∞∞∞∞391395

T =

PS(T ) = ∞1∞

Fig. 1. Pointer sequence representation PS(T ) of T = zyxzxzywxxyz where Σ =
{w, x, y, z}, g(w) = g(x) and g(y) = g(z). Each square represents an element of the
pointer sequence. The integers inside the squares indicate the pointer lengths and ∞s
indicate null pointers. White ones are pointers to its next occurrence, and shaded ones
are pointers to the next occurrence of its equal-group character.

3 Pointer Sequence Representation

The basic idea of this paper is to resolve the structural pattern matching problem
by solving the matching problem on pointer sequences. In this section, we present
a pointer sequence representation for structural pattern matching, which will
be used for developing an index structure. More specifically, we represent an n-
length s-string as a (2n)-length pointer sequence. Each character of an s-string is
corresponding to two pointers. One pointer points to the position of the nearest
occurrence of the character at the current position, and the following pointer
points to the position of the nearest occurrence of its equal-group character. Let
ν(i) and μ(i) be the distance to the next occurrence of T [i] and T [i]’s equal-group
character, respectively. More formally, for 0 ≤ i < n,

ν(i) = min
j>i

{j − i : T [j] = T [i]} ∪ {∞} (3)

μ(i) = min
j>i

{j − i : g(T [j]) = g(T [i])} ∪ {∞} (4)

For an n-length s-string T , we define its pointer sequence representation
PS(T ) as follows: for 0 ≤ i < 2n,

PS(T )[i] =

{
2ν( i

2 ) + 1 if i = 0 mod 2
2μ( i−1

2 ) − 1 if i = 1 mod 2
(5)

As an example, the pointer sequence representation of an s-string T =
zyxzxzywxxyz with the complement relationship g(w) = g(x) and g(y) = g(z) is
given in Fig. 1. It is easy to see that this pointer sequence representation can be
used for solving the structural pattern matching problem.

Observation 1. For s-strings T, P ∈ Σ∗, let PS(T ) and PS(P ) be their pointer
sequence representations. For 0 ≤ i ≤ |T | − |P |, P matches T at position i if
and only if PS(P ) matches PS(T ) at position 2i.

One can directly apply the indexing method in [10] to this representation
to obtain a 4n lg n + O(n)-bit data structure that can compute the number of
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occurrences in O(m lg n) time. One of the goal of this paper is to reduce the
space requirement into O(n lg σ) bits. The lg n factor in the space requirement
comes from the representation of the pointer length. In [10], the pointers are
represented by their lengths, which is O(n). This is the alphabet size of the
underlying sequence on which the wavelet trees are built, which results in the
lg n factor. To reduce this into lg σ, we need to represent these sequences in more
compact values within a range of O(σ).

One may also notice that we do not consider occurrences of PS(P ) at odd
positions 2i + 1 on PS(T ), despite the fact that there may be (false positive)
occurrences of PS(P ) at odd positions even if P does not match T there. When we
apply the method in [10], it is inevitable to involve an additional filtering method
to remove these false positives, which produces a non-negligible overhead. We
will address this problem in the next section by constructing suffix arrays for
suffixes at even and odd positions separately.

4 Data Structure

In this section, we present a data structure for structural pattern matching.
We build two suffix arrays using the corresponding pointer sequence, one for the
suffixes starting at even positions (even suffixes), the other one for those starting
at odd positions (odd suffixes). Then we define integer arrays that will be used
for the searching algorithm we will describe in the next section.

4.1 Suffix Arrays

For the pointer sequence PS(T ) of an n-length s-string T , let Seven =
{PS(T )[2i..] : 0 ≤ i ≤ n} be the set of the suffixes of PS(T ) that start at
even positions; note that Seven includes the empty string ε = PS(T )[2n..], which
acts as the termination symbol as usually assumed in many other string index-
ing methods. We define the suffix array SAeven for the suffixes Seven using
their encoded form; i.e. SAeven(i) = j iff there are i encoded suffixes in Seven

that are smaller than E(PS(T )[2j..]). Similarly, we define SAodd from the set
Sodd = {PS(T )[2i + 1..] : 0 ≤ i ≤ n} of suffixes of PS(T ) that start at odd posi-
tions; note that Sodd also contains the empty string as Seven does. We also define
the inverse function of the two suffix arrays such that SA−1

even(SAeven(i)) = i and
SA−1

odd(SAodd(i)) = i for 0 ≤ i ≤ n.
Recall that the LF-mapping is the one-to-one function that maps a suffix

starting at position j into its previous suffix starting at position j −1 in terms of
their lexicographical ranks. Recall also that we defined suffix arrays separately
for even and odd suffixes. The previous suffix of an even suffix is an odd suffix,
and vice versa. Hence we have to define the LF-mappings to be functions from
even suffixes to odd suffixes, and the other way around.

LFeo(i) = SA−1
odd(SAeven(i) + n mod (n + 1)) (6)

LFoe(i) = SA−1
even(SAodd(i)) (7)
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4.2 F and L Arrays

In this subsection, we define four integer arrays Feven, Fodd, Leven, and Lodd,
which compactly store the information used to compute the LF-mappings and
to update suffix ranges in the searching algorithm.

For 0 ≤ i < n, let us define ν(i) and μ(i) as Eqs. 3 and 4. We define two n-
length arrays Deven and Dodd as follows. Deven(i) indicates whether ν(i) = μ(i)
or not. Dodd indicates the number of distinct groups appearing between position
i and min{i + μ(i), n} (both exclusive). More formally, these two sequences are
defined as follows.

Deven(i) =

{
0 if ν(i) = μ(i)
1 otherwise.

(8)

Dodd(i) = |{g(T [j]) : i < j < min{i + μ(i), n}}| (9)

Now we define Feven and Fodd. Note that Feven represents the pointers at
even positions of the pointer sequence representation and each element Feven(i)
corresponds to each entry SAeven(i) of the suffix array for even positions; sim-
ilarly, Fodd represents the pointers at odd positions and corresponds to entries
of SAodd. Feven and Fodd are (n + 1)-length arrays, which are defined as follows:
Feven(0) = Fodd(0) = −1, and for 0 < i ≤ n,

Feven(i) = Deven(SAeven(i)) (10)
Fodd(i) = Dodd(SAodd(i)) (11)

We also define Leven and Lodd as permuted arrays of Fodd and Feven, respec-
tively, as follows: for 0 ≤ i ≤ n,

Leven(i) = Fodd(LFeo(i)) (12)
Lodd(i) = Feven(LFoe(i)) (13)

4.3 Computing LFeo(i) and LFoe(i)

In this subsection, we present how LFeo(i) and LFoe(i) can be computed using
the four arrays Leven, Fodd, Lodd, and Feven. The following lemma shows the key
property we can use for computing the LF-mappings using the correspondence
between the arrays (Fig. 2).

Lemma 1. For 0 ≤ i < j ≤ n,

1. Leven(i) = Leven(j) then LFeo(i) < LFeo(j).
2. Lodd(i) = Lodd(j) then LFoe(i) < LFoe(j).
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(b) Sorted odd suffixes with SAodd, LFoe, Fodd, and Lodd

Fig. 2. Sorted (encoded) suffixes for T = zyxzxzywxxyz and the related information
used in the proposed data structure (white: even positions, gray: odd positions). The
searching algorithm navigates two suffix arrays alternatingly by updating suffix ranges
iteratively.
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Proof. Observe that prepending a pointer at the beginning of a pointer sequence
affects at most one position in terms of its encoded form. More specifically,
consider pointer sequences X and Y such that Y can be obtained by prepending
a pointer of length l at the beginning of X. Then, for 0 ≤ i < |Y |,

E(Y )[i] =

⎧⎪⎨
⎪⎩

∅ if i = 0,

E(X)[i − 1] ∪ {l} if i = l,

E(X)[i − 1] otherwise.
(14)

We call the position on X to which a new pointer to refer a changing position:
i.e. it refers to position l − 1 of X in the above equation. Consider two pointer
sequences, and a pointer for each sequence is to be prepended. Their relative
order changes by these new pointers only if the changing position of the lexico-
graphically greater sequence is earlier and the changing position is within their
common prefix. We claim that it is impossible for two suffixes having the same
L-value. Based on this observation, we prove each proposition as follows.
1. Let k = lcp(E(PS(T )[2 · SAeven(i)..]), E(PS(T )[2 · SAeven(j)..]) be the length

of the longest common prefix of the (encoded) suffixes on SAeven whose ranks
are i and j. Let d = |{g(T [SAeven(i) + p]) : 0 ≤ p < 	k

2 
} be the number of
distinct groups in this longest common prefix. If Leven(i) < d the length of
the newly prepended pointers are the same, which implies the relative order
does not change because the changing positions of the encoded sequences are
the same. If Leven(i) > d, the changing position is out of the longest common
prefix, and the relative order is determined by E(PS(T )[2 · SAeven(i)..])[k] <
E(PS(T )[2 ·SAeven(j)..])[k], which do not change. Before considering the case
of Leven(i) = d, note that E(PS(T )[2 · SAeven(i)..])[k] ≤ {k} �= ∅ because
E(PS(T )[2 · SAeven(i)..])[k] < E(PS(T )[2 · SAeven(j)..])[k] and ∅ is considered
to be the greatest. Therefore the changing position of suffix i is not k. Even if
the changing position of suffix j is k, ∅ is substituted by {k + 1}, which does
not change the relative order.

2. Let k = lcp(E(PS(T )[2 · SAodd(i) + 1..]), E(PS(T )[2 · SAodd(j) + 1..]) be the
length of the longest common prefix of suffixes whose ranks are i and j,
respectively. Note that, at this moment the group of the character is already
determined (by the pointer at the odd position on the text pointer sequence),
the pointer to be newly prepended here indicates which of the two characters
in the group is actually prepended; therefore we have two candidates for the
change position for each suffix. Let c

(1)
i and c

(2)
i be two candidate positions for

suffix whose rank is i such that c
(1)
i < c

(2)
i . Similarly, we define c

(1)
j and c

(2)
j

for suffix whose rank is j. Note that if c
(1)
i < k or c

(1)
j < k, then c

(1)
i = c

(1)
j .

Similarly, if c
(2)
i < k or c

(2)
j < k, then c

(2)
i = c

(2)
j . Let li and lj be the

changing position of suffixes whose ranks are i and j, respectively. If Lodd(i) =
Lodd(j) = 0, then li = c

(1)
i and lj = c

(1)
j . Similarly, if Lodd(i) = Lodd(j) = 1,

li = c
(2)
i and lj = c

(2)
j . Therefore, if li < k or lj < k then we have li = lj .

Let us assume that the relative order changes after prepending corresponding
pointers to these suffixes. Then it must be both lj < k and lj < li. However,
if lj < k, we have li = lj . Contradiction. ��
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From the order-preserving property described in Lemma 1, we can simply
compute LFeo(i) and LFeo(i) using the rank and select operations as follows.

Corollary 1. For 0 ≤ i ≤ n,

1. LFeo(i) = Fodd.selectx(Leven.rankx(i)) where x = Leven(i).
2. LFoe(i) = Feven.selectx(Lodd.rankx(i)) where x = Lodd(i).

4.4 Implementation

In this subsection, we describe how the proposed data structure is organized.
More specifically, we show the following lemma.

Lemma 2. There exists a data structure that uses 2n lg σ + 2n + o(n) bits and
supports the following operations in O(lg σ) time for any 0 ≤ i, j ≤ n, a ∈
{0, · · · , σ − 1}, and b ∈ {0, 1}:
1. Leven(i): access to the value Leven(i).
2. Lodd(i): access to the value Lodd(i).
3. Leven.ranka(i, j): the number of occurrences of a in Leven[i..j].
4. Leven.rank gea(i, j): the number of elements greater than or equal to a in

Leven[i..j].
5. Lodd.rankb(i, j): the number of occurrences of b in Lodd[i..j].
6. Feven.selectb(i): the position of the i-th occurrence of b in Feven.
7. Fodd.selecta(i): the position of the i-th occurrence of a in Fodd.
8. LFeo.rMq(i, j): the index of the maximum element among LFeo(i), · · · ,

LFeo(j).

Proof. In short, we build wavelet trees on Leven and Fodd, and rank/select dic-
tionaries for bitvectors on Lodd and Feven, and a range maximum query index
on LFeo. More specifically,

– We build wavelet trees on Leven and Fodd, which can support the operations
related on these arrays in O(lg σ) time. Note that the alphabet size of these
arrays is σ/2, thereby each wavelet tree uses n lg(σ/2)+o(n) = n lg σ−n lg 2+
o(n) = n lg σ − n + o(n) bits.

– For Lodd and Feven, we can observe that these arrays consist of 0 and 1 except
the unique −1. Thus storing the index at which −1 appears using O(lg σ) bits,
we can consider them as bitvectors, which can support rank and select queries
in O(1) time using n + o(n) bits each.

– Range maximum query on LFeo requires 2n + o(n) bits, and can answer to a
range maximum query in O(1) time.

As a result, the total space requirement is 2n lg σ + 2n + o(n) bits. ��
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5 Searching Algorithm

In this section, we present the searching algorithm on the proposed data struc-
ture. As other methods based on suffix arrays do, we represent the occurrences
of a pattern as a contiguous interval on the suffix array, which is called a suffix
range. Recall that we have two suffix arrays SAeven and SAodd, and only suffix
ranges on SAeven should be the final answer. To distinguish a suffix range on
SAeven from one on SAodd, we call a suffix range on SAeven a real suffix range
and one on SAodd an imaginary suffix range.

For a pattern P , its suffix range on SAeven is a pair of indices (ps, pe) such
that for any ps ≤ i ≤ pe E(PS(T )[2 · SAeven(i)..]) has a prefix E(PS(P )). Note
that a character of an s-string is represented as two pointers. Let x ∈ Σ be a
character, suppose we are to prepend x to the beginning of P . Let l1 and l2 be
the lengths of the first two pointers PS(xP ). These are what we are about to
prepend to PS(P ) to compute the updated suffix range for xP . By prepending
the latter pointer at the beginning of PS(P ), we obtain an imaginary suffix range
on SAodd. Then, prepending the other pointer completes PS(xP ), and we obtain
a real suffix range on SAeven via a proper update procedure, which is the desired
(real) suffix range for the updated pattern xP .

Our searching algorithm iteratively updates the suffix array starting from the
suffix range (ps, pe) = (0, n) on SAeven of the empty string, which represents all
the suffixes starting at even positions. Each iteration we prepend each character
of the pattern in the backward searching fashion. It is equivalent to prepend
the corresponding two pointers in the pointer sequence representation. Thus the
update procedure consists of two phases, in which we update the current (real)
suffix range into an imaginary suffix range on SAodd, followed by updating it into
a real suffix range on SAeven. The algorithm for updating a suffix range is given
in Algorithm 1.

For a suffix range (ps, pe) for a pointer sequence X, let l be the length of the
pointer to be prepended to the beginning of X. Let (p′

s, p
′
e) be the suffix range

the pointer sequence after prepending the pointer. For an index ps ≤ i ≤ pe,
we say i is a target suffix if p′

s ≤ LF∗(i) ≤ p′
e where LF∗(i) = LFeo(i) if |X|

is a multiple of 2, LF∗(i) = LFoe(i) otherwise. Now we can describe a suffix
update procedure as (i) identifying the target suffixes within the current suffix
range, followed by (ii) applying the LF-mapping to the identified suffixes. The
remainder of the section is devoted to show the following theorem about the
correctness of the algorithm.

Theorem 1. Given a suffix range (ps, pe) for a pattern P ∈ Σ∗ and x ∈ Σ,
Algorithm 1 correctly computes the updated suffix range (p′

s, p
′
e) for pattern xP

in O(lg σ) time, provided ig, ic, and a can be computed in O(lg σ) time.

By Lemma 2, all the operations in Algorithm 1 related to the arrays take
O(lg σ) time. Considering a character x ∈ Σ to be prepended to the beginning
of the currently searched pattern P during the update procedure, we divide it
into two cases: (i) P has x or compl(x), and (ii) P does not have any of them.
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Algorithm 1. Update a suffix range.
1: procedure Update(P : current pattern s-string, (ps, pe): suffix range, x: character)
2: if either x or compl(x) appeared in P then
3: ic ← min{0 ≤ j < |P | : P [i] = x} ∪ {|P |}.
4: ig ← min{0 ≤ j < |P | : g(P [i]) = g(x)}.
5: a ← |{g(P [j]) : 0 ≤ j < ig}|.
6: c ← Leven.ranka(ps, pe).
7: pe ← Fodd.selecta(Leven.ranka(0, pe)).
8: ps ← pe − c + 1.
9: b ← 0 if ic = ig, 1 otherwise.

10: c ← Lodd.rankb(ps, pe).
11: pe ← Feven.selectb(Lodd.rankb(0, pe)).
12: ps ← pe − c + 1.
13: else
14: i∗ ← LFeo.rMq(ps, pe).
15: l ← Leven(i∗).
16: a ← |{g(P [j]) : 0 ≤ j < |P |}|.
17: c ← Leven.rank gea(ps, pe).
18: pe ← Fodd.selectl(Leven.rankl(i

∗)).
19: ps ← pe − c + 1.
20: end if
21: return (ps, pe).
22: end procedure

Case 1: At least one of x and compl(x) appear in P. Lines 3–12 handle
this case. Let ic be the position of the first occurrence of x on P ; if x does
not appear on P , then ic = |P |. Let ig be the position of first occurrence of
x’s equal-group character (either x or compl(x)), which must exist. Let a be
the number of distinct groups in P [0..ig − 1]. This value can be computed in
O(lg σ) time, if we keep a balanced binary tree keyed by positions of the first
occurrences of each group, and the leftmost position of each character as similar
to that described in [5]. Then the indices of the target suffixes on SAeven must
be the suffixes having a as their Leven-values. The number of these suffixes can
be counted by c = Leven.ranka(ps, pe). And the last index of the suffix is located
by ie = Leven.ranka(0, pe). We can find the corresponding index LFeo(ie) on
selecta(ie), update pe to it. Using the number c of target suffixes, we can update
ps to be pe − c + 1.

Now (ps, pe) is an imaginary suffix range on SAodd. Let b be a binary number
such that b = 0 if P [ig] = x (i.e. ic = ig), b = 1 otherwise. Similarly, the target
suffixes are those having b as their Lodd-values. We can update the suffix range
correspondingly in a similar way.

Case 2: Neither x nor compl(x) appears in P. Lines 14–19 handle this
case, which is a little more difficult. Let a be the number of distinct groups
in P . The target suffixes are those within the current suffix range that have
a Leven value of at least a. We can count the number c of these suffixes via
Leven.rank gea(ps, pe). It is easy to see, for ps ≤ i, j ≤ pe such that Leven(i) <
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a ≤ Leven(j), LFeo(i) < LFeo(j). This is because, for such suffix i, the changing
position is one of the first |P | positions, which is definitely within the common
prefix of the encoded sequences. Since such suffix j has a changing position
beyond that of the suffix i, the suffix i becomes smaller after prepending the
corresponding pointer. Therefore LFeo(i) < LFeo(j). As a result, we can find i∗

such that LFeo(i∗) is the updated pe by performing the range maximum query on
LFeo with the current suffix range. After updating pe = LFeo(i∗) by Leven.rank(·)
followed by Fodd.select(·), ps can also be updated using the updated pe and the
number c of the target suffixes.

To update this imaginary suffix range into a real suffix range for the update
pattern xP , we observe that target suffixes are all the suffixes within the current
imaginary suffix range. This is because the group corresponding to the newly
prepended character x is a new group that has not been appeared in P , every
suffix within the current imaginary suffix range should be considered regardless
of their Lodd-values. And surprisingly, for 0 ≤ i, j, k ≤ n such that i < ps ≤
k ≤ pe < j, LFoe(i) < LFoe(k) < LFoe(j). The lengths of the pointers to be
prepended is longer than the length of the longest common prefix of (encoded)
suffixes i (or j) and k, which does not change the relative order. Therefore, we
do not have to update ps and pe anymore, and (ps, pe) itself is also the desired
real suffix range.

6 Conclusions

In this paper, we present a space-efficient index for the structural pattern match-
ing problem. The data structure requires 2n lg σ+2n+o(n) bits and it can count
the number of occurrences of an m-length pattern in O(m lg σ) time. Due to the
hidden constant factor in O term in the previous succinct index [5], our struc-
ture can become much smaller if σ is small enough. Further, our data structure
consists of building blocks that are widely used and practically implementable
in many other succinct and compact data structures. Adding the sampled suffix
array, we can also report each occurrence by repeatedly calling the LF-functions
until reaching the sampled entry.

In the future work, the construction algorithm should be addressed. Once the
suffix array of the pointer sequence for a given text s-string is given, our data
structure can efficiently constructed; however, the construction of such suffix
array is an open problem; besides pointer sequences, suffix sorting algorithms
for a s-string have not been well-studied as well. Separating suffixes is not only
for the compact representation, but it also gives many ways to generalize this
problem further. For example, we may think of a problem in which a multiple
number of characters are grouped together, instead of complement pairs.

Acknowledgement. The authors would like to thank anonymous reviewers for their
valuable comments and suggestions.
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Abstract. A �Lukasiewicz path of length n is a lattice path from (0, 0)
to (n, 0) that never goes below the x-axis, and which uses steps of the
form (1, i) for integers i ≥ −1. These paths include both Dyck paths
(i ∈ {−1, 1}) and Motzkin paths (i ∈ {−1, 0, 1}). A set of fixed-content
�Lukasiewicz paths contains all such paths in which the frequency of each
step is fixed. For example, is the only path with one (1, 3) step
and three (1,−1) steps; equivalently, the only �Lukasiewicz word with
content {−1,−1,−1, 3} is 3 −1 −1 −1 (or 4000 using 0-based values).
We contribute a shift Gray code for these fixed-content sets, meaning
that consecutive paths differ by moving a single line, and consecutive
words differ by moving a single symbol. We also provide a successor rule
for generating the next word directly from the current word, as well as
loopless array-based algorithms for generating generalized fixed-content
Motzkin and Schröder words. Our Gray code generalizes the cool-lex
order Gray code for Dyck words.

Keywords: �Lukasiewicz path · �Lukasiewicz word · Dyck word ·
Motzkin word · Fixed-content · Gray code · Cool-lex order

1 Introduction

When the nodes of an ordered tree are labeled by their number of children,
then a preorder traversal gives a �Lukasiewicz word. In this paper, we efficiently
order and generate �Lukasiewicz words. More specifically, we consider sets of
fixed-content �Lukasiewicz words, which contain strings with the same multiset
of symbols (see Fig. 1). These sets of strings correspond to ordered trees with
the same branching sequence (see Fig. 2).

Our first result is a left-shift Gray code for fixed-content �Lukasiewicz words,
meaning that each string is obtained from the previous by moving one symbol to
the left (see Fig. 4). There is also a relatively simple successor rule that provides
the shift (see (4)) and the resulting order is a cool-lex variant of lexicographic
order. Our second result is loopless (i.e., worst-case O(1)-time per string) array-
based implementation for generating the special case of fixed-content Motzkin
words. Both the shift Gray code and loopless algorithm generalize previous
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results for Dyck words [14]; alternate generalizations to k-ary Dyck words [4,5]
and binary bubble languages [12,22] have also been considered.

To our knowledge, this paper represents the first shift Gray code for
fixed-content �Lukasiewicz words. Many previous investigations have focused
on different orders for related sequences and special cases of these words
[2,3,8,10,19,20,23]. For additional background we refer the reader to Knuth’s
coverage of generating combinatorial objects in Volume 4A of The Art of Com-
puter Programming [7], and Mütze’s recent update [9] of Savage’s classic sur-
vey [16].

Section 2 introduces the relevant combinatorial objects, Sect. 3 provides the
successor rule for generating our shift Gray codes, and Sect. 4 proves that the rule
is correct. Section 5 provides our loopless algorithm for fixed-content Motzkin
words, with Python code in the Appendix.

2 Background

In this background section, we discuss the combinatorial objects that will be
generated in this paper, as well as their history and encodings.

2.1 Lattice Paths: Dyck, Motzin, Schröder, and �Lukasiewicz

Lattice paths are well-studied in combinatorics, with books on the subject dating
back to the 1970s (see Narayana [11]). In particular, most readers will be familiar
with Dyck paths, which are paths from (0, 0) to (2n, 0) using 2n steps of the
form (1, 1) (north-east) and (1,−1) (south-east), and having the property that
the path never goes below the x-axis. These paths can be encoded as balanced
parentheses, or as integer strings according to several possible encoding schemes.

• North-east steps are 1 and south-east steps are 0. With this encoding, every
prefix must have as many 1s as 0s.

• North-east steps are 1 and south-east steps are −1. With this encoding, every
prefix must have a non-negative sum.

• North-east steps are 2 and south-east steps are 0. With this encoding, every
prefix’s sum must be at least as large as its length.

All of these encodings have been referred to as Dyck words of ordern. We refer to
the latter two as the −1-based encoding and the 0-based encoding, respectively.
For example, the five Dyck words of order n = 3 are

{[ ] [ ] [ ], [ ] [ [ ] ], [ [ ] ] [ ], [ [ ] [ ] ], [ [ [ ] ] ]} = {202020, 202200, 220020, 220200, 222000}
when using balanced parentheses and the 0-based encoding, respectively.

Many generalizations of Dyck paths and Dyck words have been studied under
the name generalized Dyck words. For example, one can consider multiple types
of parentheses simultaneously (e.g., ‘(’ with ‘)’ and ‘[’ and ‘]’), or have longer
inequality chains (e.g., every prefix has as many 2s as 1s as 0s).
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Another approach is to vary the steps. For example, a k-ary Dyck path of
order n is a path from (0, 0) to (kn, 0) using kn steps of the form (1, k − 1) and
(1,−1) while never going below the x-axis. The corresponding k-ary Dyck words
can again be encoded in several ways, and Dyck words are obtained when k = 2.

A broader step-based generalization is a �Lukasiewicz path, which is a path
from (0, 0) to (n, 0) that does not go below the x-axis, and which uses steps (1, i)
for any integer i ≥ −1. These paths can be encoded as strings by generalizing
either of the last two encodings for Dyck words discussed above.

• −1-based encoding : Each (1, i) step is encoded as i, and every prefix must
have a non-negative sum.

• 0-based encoding : Each (1, i) step is encoded as i + 1, and the sum of every
prefix must be at least as large as its length.

We prefer the 0-based encoding, and refer to these strings as �Lukasiewicz words of
order n. Figure 1 illustrates all �Lukasiewicz paths and words for n = 4. Although
�Lukasiewicz paths include Dyck paths, they differ in their use of n and the term
order. In particular, the middle row of Fig. 1 includes all Dyck words of order
4
2 = 2, since the order of a Dyck word is its number of pairs.

�Lukasiewicz paths include Dyck paths when the steps are (1, i) for
i ∈ {−1, 1}. They also include Motzkin paths, where i ∈ {−1, 0, 1}. A 0-
based encoding is typically used for the corresponding Motzkin words, with
{111, 120, 201, 210} containing the four options when n = 3. The closely
related Schröder paths differ from Motzkin paths in using an east step of (2, 0)
rather than (1, 0). For example, the six Schröder words of order n = 2 are
{11, 120, 201, 210, 2200, 2020}.

The Dyck, Motzkin, and Schröder paths of order n are enumerated by the nth
Catalan number, Motzkin number, and big Schröder number, respectively. These
sequences are illustrated below for n ≥ 0 along with their respective entries in
the Online Encyclopedia of Integer Sequences (OEIS) [17]:

Cn = 1, 1, 2, 5, 14, 42, 132, . . . OEISA000108 (1)
Mn = 1, 1, 2, 4, 9, 21, 51, . . . OEISA001006 (2)
Sn = 1, 2, 6, 22, 90, 394, 1806, . . . OEISA006318 (3)

The �Lukasiewicz paths of order n are enumerated by Cn+2. Due to their con-
nections with Cn, Mn, and Sn, these paths are in bijective correspondence with
many interesting combinatorial objects, with Stanley’s book, Catalan Numbers,
outlining hundreds of examples [18]. In particular, �Lukasiewicz paths have a
particularly nice mapping to rooted ordered trees with n + 1 internal nodes (see
Fig. 2), and for convenience, each node is labeled by its number of children. These
0-based words have also been referred to as preorder codewords [1].

�Lukasiewicz paths are named after Jan �Lukasiewicz for whom reverse Polish
notation is also named. For historical notes on �Lukasiewicz’s life and mathemat-
ics see [6]. When considering �Lukasiewicz paths for the first time, it is helpful
to note that paths of order n can use steps of maximum slope (1, n − 1), since
otherwise there won’t be enough (1,−1) steps to return to the x-axis at posi-
tion (n, 0). This restriction also ensures that there are a finite number of such
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4 0 0 0

tnetnochtiwshtapzciweisakuL�ehT {0, 0, 0, 4} using 0-based strings.
Note: The content is {−1, −1, −1, 3} when using (�1)-based meander strings,

or {0, 0, 1} for 3-ary Dyck words.

3 1 0 0 3 0 1 0 3 0 0 1 1 3 0 0

tnetnochtiwshtapzciweisakuL�ehT {0, 0, 1, 3}.

2 2 0 0 2 0 2 0

tnetnochtiwshtapkcyD/nikztoM/redörhcS/zciweisakuL�ehT {0, 0, 2, 2}.
Note: The content is {[, [, ], ]} for Dyck words or {0, 0, 1, 1} for 2-ary Dyck words.

2 1 1 0 2 1 0 1 2 0 1 1 1 2 1 0 1 2 0 1 1 1 2 0

The tnetnochtiwshtapnikztoM/zciweisakuL� {0, 1, 1, 2}.
Note: The content is {d, h, h, u} when referring to up, down, and horizontal moves.

1 1 1 1

The tnetnochtiwshtapnikztoM/zciweisakuL� {1, 1, 1, 1}.

Fig. 1. All C4 = 14 �Lukasiewicz paths of order 4 are partitioned into rows by their
content (i.e., their multiset of slopes). The bottom three rows have all M4 = 9 Motzkin
paths of order 4. The middle row has all C2 = 2 Dyck paths of order 2. The top row
has the C3

1 = 1 3-ary Dyck path of order 1. Each row is ordered lexicographically by
the path’s 0-based string. Other encodings are noted. For example, the second path in
the middle row is encoded as 2020 (0-based), 1 −1 1 −1 ((−1)-based), udud (moves),
[] [] (Dyck word), or 1010 (2-ary Dyck word). Our main results involve ordering and
generating �Lukasiewicz words (i.e., the 0-based strings) for a given content (i.e., multiset
of symbols). In other words, we focus on the strings listed in the types of rows shown
above.
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Fig. 2. The C4 = 14 �Lukasiewicz word of order n = 4 are in one-to-one correspon-
dence with the rooted ordered trees with n + 1 = 5 internal nodes. Given a tree, the
corresponding word is obtained by recording the number of children of each node in
a preorder traversal; the last 0 (from the rightmost leaf) is omitted. For example, the
two trees in the middle section correspond to 2200 (top) and 2020 (bottom). The trees
are partitioned based on their branching sequence, which corresponds to the content
of the associated �Lukasiewicz words (see Fig. 1).

paths for all n. See [2] for a discussion of more general lattice paths using the
Banderier-Flajolet model, including excursions, which are paths from (0, 0) to
(n, 0) that do not go below the x-axis, and which use steps (1, i) for any integer i.

2.2 Restriction to Fixed-Content

Lattice paths are often restricted in various ways when they are studied. We
focus on content, which refers to the multiset of symbols used in a word,
or equivalently, the multiset of steps used in a path. We use the term fixed-
content to refer to all �Lukasiewicz words, or paths, with the same content.
We use L(S) to denote the set of (0-based) �Lukasiewicz words with content
S, where S is a multiset of non-negative integers whose sum is equal to its
cardinality. For example, the �Lukasiewicz paths in Fig. 1 are partitioned into
fixed-content parts—L({0, 0, 0, 4}); L({0, 0, 1, 3}); L({0, 0, 2, 2}) ; L({0, 1, 1, 2});
L({1, 1, 1, 1})—where {} or [] denotes multiset content.

The restriction to fixed-content is useful for several reasons. For example,
�Lukasiewicz paths generalize Dyck paths in the sense that the set of allowed steps
is broadened. But it is not true that the set of �Lukasiewicz paths of order n gen-
eralize the set of Dyck paths of order n; more precisely, they form a superset. On
the other hand, fixed-content �Lukasiewicz words do generalize Dyck words in this
sense. For example, {202020, 202200, 220020, 220200, 222000} is both the set of
Dyck words of order n = 3 (using 0-based encoding), and the �Lukasiewicz words
with fixed-content [0, 0, 0, 2, 2, 2]. Similarly, fixed-content �Lukasiewicz words gen-
eralize both fixed-content Motzkin words and fixed-content Schröder words. For
example, {120, 201, 210} is the set of Motzkin, Schröder, and �Lukasiewicz words
with content [0, 1, 2]. Note that in this example, the Motzkin and �Lukasiewicz
words have order n = 3, while the Schröder words have order n = 4.

The Motzkin and Schröder numbers are partitioned by their content in OEIS
A055151 and A088617, respectively. For example, the row 1, 6, 2 in the left
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triangle corresponds to the number of Motzkin objects in the bottom three rows
of Fig. 1 and the right three columns of Fig. 2 (although the order is reversed).
The same values appear diagonally in the right triangle due to the differing
order of the corresponding Schröder object. (Due to the greater variety, it is less
obvious how to order the analogous quantities for �Lukasiewicz words, and the
authors did not find a corresponding OEIS sequence.)

A055151
1
1
1 1
1 3
1 6 2
1 10 10
1 15 30 5

A088617
1
1 1
1 3 2
1 6 10 5
1 10 30 35 14
1 15 70 140 126 42
1 21 140 420 630 462 132

Placing a fixed-content restriction on a set of strings can also coincide with
a meaningful restriction in corresponding combinatorial objects. For example,
restricting �Lukasiewicz words to fixed-content corresponds to restricting rooted
ordered trees to a specific branching sequence. The branching sequence of a
rooted tree is the sorted list of the number of children of each node in the tree.
For example, the fourth section of Fig. 2 shows the ordered trees with branching
sequence 0, 0, 1, 1, 2, which correspond to the �Lukasiewicz words with content
{0, 1, 1, 2} (as one copy of 0 is omitted).

2.3 Gray Codes for Lattice Paths and Strings

In this paper, we are not concerned with counting lattice paths, but in efficiently
ordering them. More specifically, we want to create a minimal-change order, or
Gray code, which means sequencing the objects so that each differs from the
previous in a specific small way. Our orders are also cyclic, in the sense that the
last object can be transformed into the first via the same type of small change.

When constructing Gray codes, it is helpful to think about the underlying
graph of objects and allowable changes. For example, Fig. 3a illustrates the six
�Lukasiewicz words with content {0, 1, 1, 2} as vertices, with edges connecting
those that differ by a swap. A swap, or adjacent-transposition, interchanges two
symbols that are immediately next to each other in the string. For example,
swapping 20 with 02 changes a peak to a valley in the corresponding lattice
path, and it is only valid if the path was above the x-axis at that location prior
to the swap. Observe Fig. 3a does not have a Hamilton path, so L({0, 0, 1, 2})
does not have a swap Gray code. Thus, we need to broaden our notion of a
minimal change in order to create a Gray code for these objects.

One generalization1 of an adjacent-transposition is a shift, in which a single
symbol is moved to another position. Figure 3b illustrates the associated graph,
and in this case, there is a Hamilton cycle. Thus, there is a cyclic shift Gray code
1 Another generalization is a transposition, in which two values are interchanged, with-

out the restriction that they must be next to each other in the string.
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Fig. 3. Graphs associated with Gray codes of L(S) for S = {0, 1, 1, 2}.

for this set of strings, and one could hope to prove that such a Gray code always
exists for fixed-content �Lukasiewicz words. We aim slightly higher by considering
a more restrictive notion of a minimal-change. A left-shift moves a single symbol
somewhere to the left within a string. More specifically, if α = a1 · a2 · · · an is a
string and i < j, then we let

leftα(j, i) = a1 · a2 · · · ai−1 · aj · ai · ai+1 · · · aj−1 · aj+1 · aj+2 · · · an.

In other words, leftα(j, i) shifts aj to the left into position i. Observe that leftα(i+
1, i) is an adjacent-transposition or swap. We also omit α from this notation when
the context is clear. The directed graph for L({0, 0, 1, 2}) with left-shifts appears
in Fig. 3c. This graph has a directed Hamilton cycle, and hence, L({0, 0, 1, 2})
has a cyclic left-shift Gray code. We will establish this result for all sets of
fixed-content �Lukasiewicz words.

3 Successor Rule

In this section, we provide a successor rule that applies a left-shift to a
�Lukasiewicz word. The rule is given below in (4). In the statement of the rule, we
assume that α = a1 · a2 · · · an ∈ L(S), where S is a multiset whose sum is equal
to its cardinality. We also assume that ρ = a1 · a2 · · · am is α’s non-increasing
prefix. In other words, a1 ≥ a2 ≥ · · · ≥ am, and either m = n (i.e., the entire
string is non-increasing) or am < am+1 (i.e., there is an increase immediately
following the prefix). The sum of the symbols in ρ is

∑
ρ = a1 + a2 + · · · + am.

next(α) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

left(n, 2) if m = n (4a)
left(m + 1, 1) if m = n − 1 or am < am+2 or (4b)

(am+2 = 0 and
∑

ρ = m)
left(m + 2, 1) if am+2 �= 0 (4c)
left(m + 2, 2) otherwise (4d)

Figure 4 illustrates the successor rule on every string in L(S) for S =
{0, 0, 0, 1, 2, 3}. For example, consider the top row with α = a1 ·a2 ·a3 ·a4 ·a5 ·a6 =
302100. Here the non-increasing prefix is a1 · a2 = 30, so m = 2, and the length
of the string is n = 6. Thus, m �= n, so (4a) is not applied. Now consider the
conditions in (4b). The second condition is am < am+2, which is a2 = 0 < 1 = a4
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drowzciweisakuL�htapzciweisakuL� m (4) shift scut

302100 2 (4b) left(3, 1) 100

230100 1 (4d) left(3, 2) 100

203100 2 (4b) left(3, 1) 100

320100 3 (4d) left(5, 2) 100

302010 2 (4d) left(4, 2) 10

300210 3 (4b) left(4, 1) 10

230010 1 (4d) left(3, 2) 10

203010 2 (4b) left(3, 1) 10

320010 4 (4d) left(6, 2) 10

302001 2 (4d) left(4, 2) 1

300201 3 (4b) left(4, 1) 1

230001 1 (4d) left(3, 2) 1

203001 2 (4b) left(3, 1) 1

320001 5 (4b) left(6, 1) 1

132000 1 (4b) left(2, 1) 2000

312000 2 (4d) left(4, 2) 2000

301200 2 (4b) left(3, 1) 200

130200 1 (4b) left(2, 1) 200

310200 3 (4d) left(5, 2) 200

301020 2 (4d) left(4, 2) 20

300120 3 (4b) left(4, 1) 20

130020 1 (4b) left(2, 1) 20

310020 4 (4b) left(5, 1) 20

231000 1 (4c) left(3, 1) 31000

123000 1 (4b) left(2, 1) 3000

213000 2 (4d) left(4, 2) 3000

201300 2 (4b) left(3, 1) 300

120300 1 (4b) left(2, 1) 300

210300 3 (4b) left(4, 1) 300

321000 6 (4a) left(6, 2) ε

Fig. 4. The left-shift Gray code cool(S) for �Lukasiewicz words with content S =
{0, 0, 0, 1, 2, 3}. Each row gives the non-increasing prefix length m, the rule (4), and
the shift that creates the next word. The right column gives the scut of each string,
which illustrates the suffix-based recursive definition of cool-lex order.
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for α. Since this is true, next(α) = left(m + 1, 1) by (4b), which is left(3, 1) for
α. In other words, the rule left-shifts a3 into position 1. Thus, the next string in
the list is a3 · a1 · a2 · a4 · a5 · a6 = 230100, as seen in the second row of Fig. 4.

3.1 Observations

Note that (4) left-shifts a symbol that is at most two symbols past the non-
increasing prefix. Thus, the shifts given by (4) are usually short, and the symbols
at the right side of the string are rarely changed. This implies that the order will
have some similarity to co-lexicographic order, which orders strings right-to-left
by increasing symbols. In fact, the order turns out to be a cool-lex order, as
discussed in Sect. 4.

4 Proof of Correctness

Now we prove that the successor rule is correct. Our strategy is to define a
recursive order of L(S), and show that (4) creates the next string in this order.

4.1 Cool-lex Order

Cool-lex order is a variation of co-lexicographic order. The order was first given
for (s, t)-combinations, which are binary strings with s copies of 0 and t copies of
1, by Ruskey and Williams [13,15]. In this context, the order gives a prefix-shift
Gray code, meaning that a single symbol is left-shifted into the first position.
The prefix-shift Gray code was then generalized to Dyck words [14] and multiset
permutations [21]. The latter result provides the recursive structure of our left-
shift Gray code of fixed-content �Lukasiewicz words.

Tails and Scuts. Given a multiset S of cardinality n, we define the tail of
length � to be smallest � symbols arranged in a string in non-increasing order.
Formally,

tail(�) = t� · t�−1 · · · t2 · t1, (5)

where tail(n) = tn ·tn−1 · · · t1 is the unique non-increasing string with content S.
In English, a scut is a short tail. We use the term for a tail that is truncated

by the addition of a large first symbol. More specifically, a scut of length � and
a tail of length � are identical, except for their first symbol, and the first symbol
is larger in the scut. Formally, the scut of length � + 1, with respect to S is

scut(s, �) = s · tail(�), (6)

where s ∈ S is greater than the first symbol tail(� + 1). We refer to a scut of the
form scut(s, �) as an s-scut.

Recursive Order. Now we define cool(S) to be an order of L(S). More broadly,
we define cool(S) on any multiset S with non-negative symbols whose sum is at
least as large as its cardinality, and we henceforth refer to these S as valid. We
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define cool(S) recursively by grouping the strings with the same scut together.
Specifically, the scuts are ordered as follows:

– The scuts are first ordered by their first symbol in increasing order. In other
words, s-scuts are before (s + 1)-scuts.

– For a given first symbol, the scuts are ordered by decreasing length. In other
words, longer s-scuts come before shorter s-scuts.

– The string tail(n) is the only string without a scut, and it is ordered last.

For example, the rightmost column of Fig. 4 illustrates this order. More specifi-
cally, the scuts appear in the following order:

100, 10, 1, 2000, 200, 20, 31000, 3000, 300, (7)

with the single string tail(n) = 321000 appearing last. Note that 2, 30 and 3 are
absent from (7) because there are no �Lukasiewicz words with these suffixes.

In each scut group the strings are ordered recursively. In other words, the
common scut is removed from the strings in a particular group, and then they
are ordered according to cool(S′), where S′ is the valid multiset obtained by
removing the symbols of the common scut from S. For example, in Fig. 4, the
strings with scut 1 are ordered according to cool(S′) where S′ = {3, 2, 1, 0, 0, 0}−
{1} = {3, 2, 0, 0, 0}. The base case of the recursion is when S = ∅.

In the following subsection it will be helpful to know the first string that has
an s-scut. By our recursive order, we know that it will have a longest s-scut.
Moreover, the exact string can be obtained from the tail by a single shift. To
illustrate this, consider the list in Fig. 4, and let α = tail(n) = 321000.

– The first string with a 1-scut is leftα(4, 2) = 302100.
– The first string with a 2-scut is leftα(3, 1) = 132000.
– The first string with a 3-scut is leftα(2, 1) = 231000.

In other words, the first string with a 1-scut is obtained by shifting a 0 into the
second position, with the first strings with 2-scuts and 3-scuts are obtained by
shifting 1 and 2 into the first position, respectively. This point is stated more
generally in the following remark.

Remark 1. Let S be a valid multiset, and tail(n) = tn · tn−1 · · · t1 with ti > ti−1.
The first string in cool(S) with a ti-scut is lefttail(n)(n − i + 2, 1) if ti−1 = 0 or
lefttail(n)(n − i + 2, 2) if ti−1 > 0.

4.2 Equivalence

Now we prove that the successor rule (4) correctly provides the next string in
cool(S). This simultaneously proves that (4) is a successor rule for a left-shift
Gray code of L(S), and that cool(S) is a recursive description of the same.

Theorem 1. Let S be a multiset of non-negative values with cardinality n and
sum ΣS = n. Also, let α ∈ L(S) be a �Lukasiewicz word with content S, and
β ∈ L(S) be the next string in cool(S) taken circularly (i.e., if α is the last
string in cool(S), then β is the first string in cool(S)). Then β = leftα(j, i). In
other words, the successor rule in (4) transforms α into β with a left-shift.
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Proof. Let α = a1 · a2 · · · an and ρ = a1 · a2 · · · am be α’s non-increasing prefix.
– If m = n, then α = tail(n) and it is the last string in cool(S). We also know

that next(α) = left(n, 2) by (4a). This gives the first string in cool(S) with a
1-scut by Remark 1, which is the first string in cool(S) as expected. This is
the only case where (4a) is used.

– If m = n − 1, then α’s non-increasing prefix extends until its second-last
symbol. Furthermore, we know that an = 1, since this is the only non-zero
value that can appear in the rightmost position. We also know that next(α) =
left(m + 1, 1) = left(n, 1) by (4b). Thus, Remark 1 implies that β is the first
string with an x-scut, where x is the smallest symbol larger than 1 in S. This
is expected since α is the last string in the order with a 1-scut.

The remaining cases are handled cumulatively (i.e., each assumes that the pre-
vious do not hold). Note that α = ρ · am+1 · am+2 · · · an is the last string with
scut(am+1, �) = am+1·am+2 · · · aw in a sublist cool(S−{aw+1, aw+2, . . . , an}). We
also view leftα(j, i) in two steps: aj is left-shifted until it joins the non-increasing
prefix, then further to index i. This allows us to use Remark 1.
– If am < am+2, then the scut at this level of recursion, namely scut(am+1, �),

cannot be shortened since � = 0. So the next scut will be the longest scut
with the next largest symbol, which is true by Remark 1 and next(α) =
left(m + 1, 1) by (4b).

– If am+2 = 0 and Σρ = m, then the scut cannot be shortened since the sum of
the symbols before the shorter scut will be less than their cardinality. Thus,
the next scut will be the longest scut with the next largest symbol, which is
true by Remark 1 and next(α) = left(m + 1, 1) from (4b).

– If am+2 �= 0, then the scut at this level of recursion can be shortened to
scut(am+1, � − 1). Given this shorter scut, the order recursively adds new
scuts beginning with the first x-scut, where x is the second-smallest remaining
symbol. This is true by Remark 1 and next(α) = left(m + 2, 1) by (4c).

– Otherwise, am+2 = 0. This is identical to the previous case, except that
am+2 = 0. Thus, Remark 1 gives next(α) = left(m + 2, 2) by (4d).

Therefore, (4) gives the next string in the order, which completes the proof.

5 Loopless Algorithm for Fixed-Content Motzkin Words

We now use our Gray code for fixed-content �Lukasiewicz words to looplessly
generate fixed-content Motzkin words2. More specifically, coolMotzkin is an
array-based algorithm, and each shift is implemented with a constant number of
assignments. Pseudocode is in Fig. 5, and Python code is in the Appendix.

The algorithm follows in a similar style to previous array-based algorithms for
generating (s, t)-combinations [13,15], Dyck words [14], and 1/k-ary Dyck words
in cool-lex order [4,5]. The former two are provided for the sake of comparison
in Fig. 5 under the names coolCombo and coolDyck, respectively.

A loopless cool-lex algorithm for �Lukasiewicz words would require a linked list
(as in [21]) since a shift can relocate an arbitrarily number of distinct symbols.

2 As noted in Sect. 2.1, these strings are also fixed-content Schröder words.
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(a) Combinations
coolCombo(s, t)
n ← s + t
b ← 1t0s

x ← t
y ← t
visit(b)
while x < n do

bx = 0
by = 1
x ← x + 1
y ← y + 1
if bx = 0 then

bx ← 1
b1 ← 0
if y > 2 then

x ← 2
y ← 1

visit(b)

(b) Dyck Words
coolDyck(t)
n ← 2 · t
b ← 1t0t

x ← t
y ← t
visit(b)
while x < n do

bx = 0
by = 1
x ← x + 1
y ← y + 1
if bx = 0 then

if x ≥ 2·y−2 then
x ← x + 1

else
bx ← 1
b2 ← 0
x ← 3
y ← 2

visit(b)

(c) Motzkin Words
coolMotzkin(s, t)
n ← 2 · s + t
b ← 2s1t0s

x ← n − 1
y ← t + s + 1
z ← s + 1
visit(b)
while x < n or bx < 2 do

q ← bx−1

r ← bx
if x + 1 ≤ n then

p ← bx+1

bx ← bx−1

by ← by−1

bz ← bz−1

b1 ← r
x ← x + 1
y ← y + 1
z ← y + 1
if p = 0 then

if z − 2 > x − y then
b1 ← 2
b2 ← 0
bx ← r
x ← 3
y ← 2
z ← 2

else
x ← x + 1

else if x ≤ n and q ≥ bx then
bx ← 2
bx−1 ← 1
b1 ← 1
z ← 1

if b2 > b1 then
z ← 1
y ← 2
x ← 2

visit(b)

Fig. 5. Algorithms for generating (a) (s, t)-combinations, (b) Dyck words, and (c)
fixed-content Motzkin words in cool-lex order. The algorithms are loopless and store
the current string in array b = b1b2 · · · bn (i.e., 1-based indexing). The parameters s ≥ 2
and t ≥ 2 give the number of 0s (and 2s) and 1s, respectively. Variables z, y, and x
given the index after the 2s, 1s, and 0s in the non-increasing prefix, respectively. (Their
initial values are exceptions to this pattern, and are set to make the first iteration work
correctly.) The start of the while loop shifts the first increasing symbol to the left (i.e.,
(4b) in coolMotzkin) and the if statements identify when this is not the correct shift,
and adjust b accordingly. Also, coolMotzkin uses q, r, p to save the symbols around
the first increase.
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Appendix: Python Code

Python3 functions for generating the cool-lex order of (s, t)-combinations, Dyck
words of order t, and fixed-content Motzkin words with s copies of 0 and 2
and t copies of 1, are found in Fig. 63. The first two are found in [13,15] and
[14], respectively, and the latter is new to this article. To simulate the 1-based
indexing used in Fig. 5, we store array b in a list and ignore its first entry b[0].
Lists are implemented as arrays in CPython, so each read and write is a worst-
case O(1)-time operation. Hence, the implementations are loopless.

def coolCombo(t,s):
..n = s+t
..b = [-1]+[1]*t+[0]*s
..x = t
..y = t
..print(*b[1:],sep="")
..while x < n:
....b[x] = 0
....b[y] = 1
....x += 1
....y += 1
....if b[x] == 0:
......b[x] = 1
......b[1] = 0
......if y > 2:
........x = 2
......y = 1
....print(*b[1:],sep="")

def coolDyck(t):
..n = 2*t
..b = [-1]+[1]*t+[0]*t
..x = t
..y = t
..print(*b[1:],sep="")
..while x < n-1:
....b[x] = 0
....b[y] = 1
....x += 1
....y += 1
....if b[x] == 0:
......if x >= 2*y - 2:
........x += 1
......else:
........b[x] = 1
........b[2] = 0
........x = 3
........y = 2
....print(*b[1:],sep="")

def coolMotzkin(t,s):
..n = 2*s + t
..b = [-1]+[2]*s+[1]*t+[0]*s
..x = n-1
..y = t+s+1
..z = s+1
..print(*b[1:],sep="")
..while x < n-1 or b[x] < 2:
....q = b[x-1]
....r = b[x]
....if x + 1 <= n:
......p = b[x+1]
....b[x] = b[x-1]
....b[y] = b[y-1]
....b[z] = b[z-1]
....b[1] = r
....y += 1
....z += 1
....x += 1
....if p == 0:
......if z-2 > (x-y):
........b[1] = 2
........b[2] = 0
........b[x] = r
........z=2
........y=2
........x=3
......else:
........x+=1
....elif x <= n and q >= b[x]:
......b[x] = 2
......b[x-1] = 1
......b[1] = 1
......z = 1
....if b[2] > b[1]:
......z = 1
......y = 2
......x = 2
....print(*b[1:],sep="")

Fig. 6. Loopless generation of the cool-lex shift Gray codes of (s, t)-combinations, Dyck
words, and fixed-content Motzkin words in Python 3. Each shift is achieved using a
constant number of assignments to the list b.

3 The leading spaces have been replaced with periods to ensure that the code can be
reliably copy-and-pasted from digital versions of this document.
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Abstract. We take a closer look on the complexity landscape of one of
the most fundamental and well-studied problems in computational learn-
ing theory: the problem of learning a finite automaton A consistent with
a set P of positive examples and with a set N of negative examples. By
consistency, we mean that A accepts all strings in P and rejects all strings
in N . It is well known that this problem is NP-hard when parameterized
only by the number of states of the automaton. Therefore, our analysis
takes a more refined parameterization: we consider the number k of states
in A, the size |Σ| of the alphabet, the maximum size l of a string in P ∪N ,
and the number c = |P ∪ N | of strings in both sets. First, we prove
several Pvs. NP-hard dichotomy results for these parameters when the
learned automaton is drawn from different classes of finite automata. One
of our dichotomy results closes a gap for the general DFA consistency prob-
lem, as here, for fixed alphabet size, the NP-hardness proofs in the litera-
ture have some issues. Interestingly, our NP-hardness results hold even for
severely restricted classes of automata, such as partially-ordered automata
and permutation automata. On the other hand, we provide parameterized
algorithms for several combinations of parameters and show that most of
them are optimal under the exponential time hypothesis.

1 Introduction

In the DFA-consistency problem (DFA-Con) we are given a pair of disjoint sets of
strings P,N ⊆ Σ∗ and a positive integer k. The goal is to determine whether there
is a deterministic finite automaton A, DFA for short, with at most k states that
accepts all strings in P and rejects all strings in N . Despite the problem cannot
be approximated [37], it has become one of the most central problems in compu-
tational learning theory [2,14,15,34,36], with applications that span several sub-
fields of artificial intelligence and related areas, such as automated synthesis of
controllers [38], model checking [16,26] optimization [4,7,31,45] neural networks
[18,19,28,29], multi-agent systems [33], and others [20,32,39].
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Despite having been studied for at least five decades, certain questions con-
cerning the computational complexity of DFA-Con have remained open. In this
work, we analyze some of these questions using the framework of parameterized
complexity theory [8,9]. Our main parameters, are the most intuitive ones asso-
ciated with DFA-Con: the number of states k of the target DFA, the size |Σ| of
the alphabet, the maximum length l of a string in P ∪N , the number c = |P ∪N |
of strings, and the size T of the prefix-tree of words in P ∪ N .

In our first result, we show that DFA-Con is NP-complete for binary alpha-
bets (Theorem 1). It is worth noting that this problem has been claimed to
be NP-hard in [20], and in [12]. Nevertheless, a careful inspection of both proofs
reveals that these hardness results do not hold in the context of DFAs, but rather
in the context of Mealy machines, a more concise model of computation. Indeed,
both proofs are based on adaptations of a classical NP-hardness result obtained
in [15] in the context of Mealy machines. Unfortunately, in the presented way,
this technique does not carry over to usual DFAs, and the problem of determin-
ing if DFA-CON over binary alphabets is NP-hard has remained open [10]. In
this work, we settle this problem using techniques that are completely distinct
from the ones proposed in [12,20], and which do not rely on results from [15].

The parameterized complexity of DFA-Con has been studied in details in
[12]. In this work, we revisit some results from [12] and analyze hardness of DFA-
Con for two important restricted sub-classes of DFAs: partially ordered automata
(poDFA-Con) and permutation automata (PA-Con). In particular, we establish
several new dichotomy results for both problems. A summary of our results can
be found in Table 1. It is worth noting that hardness for these restricted classes
of automata is not implied by hardness of DFA-Con . Indeed for some of the
parameters, the threshold value to ensure NP-hardness is increased by one. We
further get faster FPT-algorithms for these types of automata.

2 Preliminaries

For a finite alphabet Σ, we call Σ∗ the set of all words over Σ. For a regular
expression r and a fixed number k, we denote k concatenations of r with rk. A
deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, s0, F ) where Q is
a finite set of states, Σ a finite alphabet, δ : Q × Σ → Q a total transition
function, s0 the initial state and F ⊆ Q the set of final states. We call A a
complete DFA if we want to highlight that δ is a total function. If δ is partial,
we call A a partial DFA. We generalize δ to words by δ(q, aw) = δ(δ(q, a), w)
for q ∈ Q, a ∈ Σ,w ∈ Σ∗. We further generalize δ to sets of input letters Γ ⊆ Σ
by δ(q, Γ ) =

⋃
γ∈Γ {δ(q, γ)}. A DFA A accepts a word w ∈ Σ∗ if and only if

δ(s0, w) ∈ F . We let L(A) denote the language of A, i.e., the set of all words
accepted by A. The length of a word w is denoted by |w| and the number of
occurrences of a letter σ ∈ Σ in a word w by |w|σ. We denote the empty word
with ε, |ε| = 0. The DFA-Con problem is formally defined as follows.
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Definition 1 (DFA-Con)
Input: Finite set of words P,N ⊆ Σ∗ with P ∩ N = ∅, and integer k.
Output: Is there a DFA A = (Q,Σ, δ, s0, F ) with |Q| ≤ k, P ⊆ L(A), and
L(A) ∩ N = ∅?

Table 1. New results are depicted in red. In the left half, we list values of parameters
with NP-hard consistency problems. In the right half, we list algorithms for combina-
tions of parameters. The entries in black concerning DFA-Con were listed in [12]. The
parameters are: k is the number of states, |Σ| the size of the alphabet, l the maximum
length of a word in P ∪ N , T the size of the prefix tree of P ∪ N , and c = |P ∪ N |.
We also obtain a complete proof for the claim that DFA-Con is NP-hard for |Σ| = 2.
Although some previous works had claimed this particular result, the proofs turned
out to be flawed. The notation O∗ hides factors polynomial in the input.

Param. DFA-Con poDFA-Con PA-Con Param. DFA-Con poDFA-Con PA-Con

k k = 2 k = 3 k = 3 k, |Σ| O∗(kk|Σ|) O∗(k!|Σ|) O∗(k!|Σ|)
|Σ| |Σ| = 2 |Σ| = 2 |Σ| = 2 k, T – O∗(kT ) O∗(kT )

l l = 2 l = 2 l = 2 k, l, c O∗(kcl) O∗(kcl) O∗(kcl)

k, l k · l = 6 k · l = 8 k · l = 6 l, c O∗((cl)cl) O∗((cl)cl) O∗((cl)cl)

3 Dichotomies for PO Automata

A DFA is called a partially ordered deterministic automaton (poDFA) if there
exists an order ≤ on Q that fulfills the constraint: ∀σ ∈ Σ,∀p, q ∈ Q : (δ(p, σ) =
q) → p ≤ q. In other words, the underlying graphs of poDFAs are directed
acyclic graphs, possibly augmented by self-loops on each state. For this reason
these automata are also called acyclic automata in the literature, i.e., in [23].

Partially ordered DFAs form a sub-class of aperiodic automata, and therefore
they only recognize star-free languages [40,42]. From an algebraic perspective,
the class of languages associated with poDFAs has been characterized in terms
of Green’s relation (see [6]) in [5]. The sub-class of confluent poDFAs charac-
terizes the 1

2 level of the Straubing-Thérien hierarchy (also known as piecewise-
testable languages) [24,43] which consists of unions of languages of the form
Σ∗a1Σ

∗a2Σ
∗....anΣ∗ where ai are single letters in Σ. If we build the Kleene

closure on this class (i.e., allow a ∗ on the whole language without introducing
new concatenations), we get a permutation language accepted by a deterministic
permutation automaton (Sect. 4).

From a computational perspective, deterministic poDFAs are relevant
because they can be converted into regular expressions without an exponen-
tial blow-up (since they accept star-free languages) [17]. They are also relevant
in the context of learning theory. It was shown in [11] that with the technique
of alignment-based learning, an important sub-class of poDFAs called simple-
looping automata can be learned in the limit from positive examples. Addition-
ally, partially ordered automata have strong connections with an important class
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of regular expressions called (extended) chain regular expressions (eCHAREs)
introduced in [27]. This fragment is a super-class of the regular expressions most
frequently used in schema languages for XML and a superset of the sequence
motifs used in bioinformatics [30]. Further, eCHAREs are used in verification of
lossy channel systems [1].

For DFA-Con restricted to binary alphabets (|Σ| = 2), two proposed proofs
of NP-hardness have appeared in the literature: [20] and [12]. Nevertheless, both
of them follow the same approach, and both contain inaccuracies that invalidate
the proofs. They have in common that they are adaptations of the construction
by Gold for the consistency problem of Mealy automata [15]1 but as the Mealy
automata considered in [15] (mapping Σ∗ → Γ , |Γ | = 2) can be more com-
pact (when interpreted as language acceptors) than DFAs recognizing the same
language, the difference in number of states causes the adaptations to fail. For
instance, we can give a counterexample to this claim. Consider the satisfiable
formula ϕ1 = ¬x1 ∧ x2 ∧ x3 with n = 3 and implicit variable order x1 < x2 < x3

as well as clause order {¬x1} < {x2} < {x3}. Following the construction in
Theorem 2 in [15], one can verify that there is a three state Mealy automaton
recognizing the words in the state characterization matrix correctly, but there is
no three state DFA consistent with the data.

In the next theorem, we solve this issue by presenting a reduction that is
essentially different from Gold’s reduction. Since the presented construction
allows only DFAs as separators which are already poDFAs, we also observe
that for fixed alphabet size, the line between tractability and intractability of
poDFA-Con lies between |Σ| = 1 and |Σ| = 2.

Theorem 1. poDFA-Con admits a linear-time algorithm for |Σ| = 1. On the
other hand, both poDFA-Con and DFA-Con are NP-complete for |Σ| ≥ 2.

Proof. Linear-time algorithm for |Σ| = 1. We are given P , N with P ∩ N = ∅
and k ∈ N. As each unary poDFA consists of a path with a self-loop on the last
state, there exists a poDFA with at most k states that is consistent with P and
N if and only if at least one of the longest words in P and N is shorter than k.

NP-hardness for |Σ| ≥ 2. We show that there is a reduction from Pos-One-
in-Three 3SAT2 to DFA-Con [and poDFA-Con] mapping each instance of
Pos-One-in-Three 3SAT with n variables and m clauses to an instance of
DFA-Con [poDFA-Con] with k = 4(n+1)+2, |Σ| = 2, |P |, |N | = O(n2+nm),
l = O(n), T = O(n3 + n2m) in time O(n3 + n2m).

Let φ be a Boolean formula in 3CNF with n variables V = {x0, x1, . . . ,
xn−1} and m clauses C = {c0, c1, . . . , cm−1}, where each clause contains only
positive literals. W.l.o.g., we assume that each variable in V appears in at least
one clause. We construct from φ two sets P,N ⊆ {a, t}∗ and k = 4(n + 1) + 2

1 Also in [2] Mealy automata instead of DFAs are considered.
2 Given a Boolean formula in conjunctive normal form where all clauses have exactly

three literals (this form is called 3CNF) and all literals are positive. Is there a variable
assignment such that exactly one literal per clause evaluates to true?.
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such that there exists a variable assignment β : V → {false, true} such that
under β exactly one literal is true in each clause c ∈ C if and only if there
exists a DFA with at most k states that is consistent with P and N . We first
present the automaton structure determined by P and N in Fig. 1, where some
transitions are still missing. The precise definitions of the sets P and N is given
in Table 2 via regular expressions. We note that since n is fixed, all expressions
describe finite sets. All variables are assumed to be picked from N0, i.e., their
range starts with 0. First, we discuss why P and N determine the automaton
structure in Fig. 1. Then, we argue that the realization of the missing transitions
will correspond to the sought variable assignment β. We show in Lemma 1 that
the only three possibilities to realize the missing t-transitions for even-numbered
states are the ones depicted in Fig. 2.

0-1
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1 2
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a
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a a a a

a a a a
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Fig. 1. Structure of a DFA enforced by P and N . The number-labels of states are only
depicted for the first 3 states of both chains. We have ω = 2n.
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Fig. 2. Only three possibilities to realize the transition t for even states s = 2i and
ŝ = ̂2i in the lower and upper chain. The left (middle and right) scheme corresponds to
setting the variable xi to true (false). The right scheme can only appear for variables
which are set to false and do not appear after a variable set to true in any clause.

The words in (1) demand a chain of 2n + 1 non-accepting states followed by
an accepting state. By (2), the transition t brings the first state of the lower
chain to a second chain of equal length, where accepting and rejecting states
alternate. Both chains end with an a in a common rejecting trap state. While
the lower chain also ends with a t in the rejecting trap state, the upper chain
ends with a final t in an accepting trap state. We now reached the maximal
number of states k. The words in (3) state that from every even-numbered state
s in the lower chain the letter t maps exactly to s or ŝ since otherwise too many
or too few alternations of accepting and rejecting states would lie to the right of
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Table 2. Definition of the sets P and N in the proof of Theorem 1.

Words in P Words in N
(1) Words determining the states of the lower chain.

a2n+1
ai i ≤ 2n
a2n+1(a|t)(ε|a|t)2
a2n+2+i, a2n+1tai i ≤ 2n + 1

(2) Structure of the upper chain.
ta(aa)i i ≤ n
ta(aa)nt(ε|a|t)2

t(aa)i i ≤ n + 1
t(aa)n+1(ε|a|t)2ai i ≤ 2n + 1

(3) Relation between the two chains.
a(aa)it(aa)n−i i ≤ n − 1

ta(aa)it(aa)n−i−1atat(ε|a) i ≤ n

a(aa)ita(aa)j i ≤ n − 1, j ≤ n − i
a(aa)ita(aa)n−i(ε|a|t)2 i ≤ n − 1
ta(aa)it(aa)n−iaaj i ≤ n, j ≤ 2n
aitt i ≤ 2n + 2

(4) Loops in odd states in lower chain.

aa(aa)it(aa)n−i−1a i ≤ n − 1
aa(aa)itaj i ≤ n − 1, j ≤ 2(n − i − 1)
aa(aa)it(aa)n−i−1at(ε|a|t)2 i ≤ n

(5) Loops in odd states in upper chain.
t(aa)ita(aa)j i ≤ n, j ≤ n − i
t(aa)it(aa)n−iat(ε|a|t)2 i ≤ n

t(aa)it(aa)j i ≤ n, j ≤ n − i + 1
t(aa)it(aa)n−i+1(ε|a|t)2 i ≤ n

(6) Clause words. For each clause c = {xi, xj , xk} with i < j < k < n.
l ≤ n − k

a(aa)it(aa)j−it(aa)k−jt(aa)l
l ≤ n − k

a(aa)it(aa)j−it(aa)k−jt(aa)la
a(aa)it(aa)j−it(aa)k−jt(aa)n−k+1

δ(s, t). Further, if δ(s, t) is an accepting state, this state must be left to its right
neighbor with another t, i.e., δ(δ(s, t), t) = ŝ + 1. If this transition would lead
anywhere else, then the second half of (3) (i.e., ta(aa)it(aa)n−i−1atat(ε|a) ∈ P ,
i ≤ n, and aitt ∈ N , i ≤ 2n + 2) would be violated. The words in (4) and (5)
demand that the letter t acts as the identity on all states s, ŝ with an odd number
> 0 and on −̂1 (note that for the initial state −1, t maps to the upper chain).
The words in (6) demand that for every clause c = {xi, xj , xk} with i < j < k,
we are in the accepting state k̂ after reading the prefix a(aa)it(aa)j−it(aa)k−jt.
We will observe later that this is only possible if exactly one variable appearing
in c has been set to true. Therefore, we observe in Lemma 1 that the only three
possibilities to realize the missing transitions t for the even-numbered states, are
the three depicted in Fig. 2. Due to the enforced structure, every DFA consistent
with P and N has at least 4(n + 1) + 2 states.

For the correctness of the construction, first assume there exists a DFA A
with k states which is consistent with P and N . Due to Lemma 1 for each state
s with even number, δ(s, t) is either s or ŝ. We extract from those transitions a
variable assignment β. For each xi ∈ V , we set β(xi) = true if for the state s



404 J. Lingg et al.

with number 2i δ(s, t) = ŝ, and β(xi) = false if δ(s, t) = s. For every clause
word, it is only possible to switch from the lower chain to the upper chain with a
letter t. Hence, from the acceptance of each clause word a(aa)it(aa)j−it(aa)k−jt
for a clause c = {xi, xj , xk}, we know that at least one literal in c is true. Now,
assume more than one literal in c is true. Then, A switches from the lower chain
to the upper chain with the first true literal. The letter t corresponding to a
second true literal will then be read from a state in the upper chain with even
number. But according to Lemma 1 this state is mapped to the next odd state
with t. From now on A is in an odd state when reading a t and stays with t
in that state according to (5). But as the odd states are rejecting, the word
a(aa)it(aa)j−it(aa)k−jt is no longer accepted. If in contrast only one literal per
clause is true, then A stays in the even states after all letters t in the clause
words and accepts the clause words. Hence, exactly one literal per clause is true
under β.

For the other direction, assume there exists a satisfying variable assignment
β such that exactly one literal per clause is true under β. Realizing the missing
transitions in Fig. 1, according to the left and middle scheme in Fig. 2 which
corresponds to the assignment under β, gives a DFA A, which is consistent with
P and N by the discussion above.

We can impose an order on the states in Fig. 1 from left to right and bottom
to top such that no transition is leading backwards in the order. Further, for
all completions of the automaton structure in Fig. 1 according to Lemma 1 and
Fig. 2, the obtained automaton is a poDFA. Hence, the construction also works
for poDFA-Con as all consistent DFAs are already poDFAs. �
Lemma 1. For each even states s, ŝ in the lower and upper chain with s, ŝ < 2n,
the only possible realizations of the transition t such that the resulting automaton
A is consistent with P and N are the three schemes in Fig. 2.

While DFA-Con is NP-complete for k = 2, we show in the following theorem
that poDFA-Con is still in P for k = 2 and becomes NP-complete for k ≥ 3.

Theorem 2. poDFA-Con can be solved in linear time for k ≤ 2, and is NP-
complete for k ≥ 3.

Proof. Linear time algorithm for k ≤ 2. For k = 1, the case is clear as every
automaton with only one state can accept only the empty or universal language.
For k = 2, every word accepted by a poDFA A = ({q0, q1}, Σ, δ, q0, F ) with two
states can only cause a state switch once, as non-trivial loops are forbidden. As
we are only considering complete poDFAs, we can partition Σ into Σ0 and Σ1,
where δ(q0, Σ0) = {q0} and δ(q0, Σ1) = {q1}. For A, in order to distinguish two
non-empty sets P and N , one of the states q0 and q1 must be accepting and
one must be non-accepting. If q0 (resp., q1) is the accepting state, then every
word w ∈ N (resp., P ) must cause a transition to q1 in contrast to the words in
P (resp., N). Based on this consideration, we give in Algorithm 1 a linear time
algorithm that determines the sets F , Σ0, and Σ1 (and hence specifies A) for a
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Algorithm 1. Solving poDFA-Con for k ≤ 2
Input: N , P
Output: F , partition Σ = Σ0 ∪̇ Σ1 with δ(q0, Σ0) = {q0} and δ(q0, Σ1) = {q1}.

1: for w ∈ N ∪ P do
2: set Σw := {σ | |w|σ > 0}
3: end for
4: set Σ+ :=

⋃

w∈P Σw

5: set Σ− :=
⋃

w∈N Σw

6: if ∀w ∈ N : Σw\Σ+ �= ∅ then
7: return F = {q0}, Σ0 = Σ+, Σ1 = Σ\Σ+

8: else if ∀w ∈ P : Σw\Σ− �= ∅ then
9: return F = {q0}, Σ0 = Σ−, Σ1 = Σ\Σ−

10: else
11: return ‘no automaton possible’
12: end if

given instance of P,N ⊆ Σ∗ if and only if there exists a poDFA with two states
that is consistent with P and N .

NP-hardness for k ≥ 3. For the NP-hardness proof, we will show that there is a
reduction from One-in-Three 3SAT to poDFA-Con s.t. each One-in-Three
3SAT instance with n variables and m clauses is mapped to a poDFA-Con
instance with k = 3, |Σ| = 2n, |P | = 2n+m, |N | = 4n+1, l = 4, T = O(n+m)
in time O(n + m).

Given a One-in-Three 3SAT Boolean Formula φ with set of variables V =
{x1, . . . , xn} and clauses C = {c1, . . . , cm}. We construct from φ a poDFA-
Con instance with k = 3 and alphabet Σ = {xi, xi | xi ∈ V } where xi, x̄i are
symbols representing the positive and negative literals of the variable xi. Each
clause cj = {lj1 , lj2 , lj3} is represented by a word σcj = lj1 lj2 lj3 . We complete
the definition of the poDFA-Con instance by defining the sets

P = {xixi, xixi | xi ∈ V } ∪ {σcj | cj ∈ C},

N = {xixixixi, xixixixi, xixi, xixi | xi ∈ V } ∪ {ε}.

First, assume A is a poDFA with states {q0, q1, q2} and alphabet Σ that
accepts all words of P and rejects all of N . Observe that the initial state of A
(further called q0) cannot be an accepting state due to ε ∈ N . From the remain-
ing states q1 and q2 exactly one must be accepting and one must be rejecting
since for every xi ∈ V , δ(q0, xixi) ∈ F and δ(δ(q0, xixi), xixi) /∈ F while the par-
tially ordered property of A enforces q0 �= δ(δ(q0, xixi), xixi). W.l.o.g., assume
δ(q0, xixi) = q1 and δ(q1, xixi) = q2. We can further observe that δ(q0, xixi) = q1
and δ(q1, xixi) = q2. Under these observations, the only possible realizations of
the single transitions xi and xi for each xi ∈ V are the two depicted in Fig. 3.
We show that for a consistent poDFA A, the chosen realization of the transi-
tions for each variable xi corresponds to a satisfying variable assignment for the
corresponding formula φ such that exactly one literal per clause is true. We set
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q0start q1 q2

xi

xi

xi

xi

xi, xi

q0start q1 q2

xi

xi

xi

xi

xi, xi

Fig. 3. Only possible realizations of the combined transitions xixi and xixi. The top
scheme corresponds to a variable assignment xi �→ 1; the bottom scheme to xi �→ 0.

each variable xi to 1 if δ(q0, xi) = q1 and to 0 if δ(q0, xi) = q0. As A accepts all
words σcj for cj ∈ C in each clause at least one literal is true since q0 has been
left into q1 with each σcj . Further, since q1 is also left with every true literal it
follows from δ(q0, σcj ) = q1 that in each clause exactly one literal is true.

For the other direction, we start with a satisfying variable assignment where
for each clause exactly one literal is true. For each variable xi, we pick the left
(respectively right) scheme to realize the transitions xi and xi if xi is set to
true (respectively false). As exactly one literal is true per clause each word
σcj causes exactly one state switch and hence δ(q0, σcj ) = q1 ∈ F . Clearly, the
so obtained poDFA is also consistent with the remaining words in P and N . �

Finally, we establish next a dichotomy theorem for poDFA-Con parame-
terized by the maximum size l of a string in the set P ∪ N .

Theorem 3. poDFA-Con can be solved in polynomial time for l = 1 and is
NP-complete for l ≥ 2.

Proof. If |w| ≤ 1 for every word w ∈ P ∪ N , then poDFA-Con is trivially
solvable in polynomial time, since in this case P and N are just subsets of letters
from Σ. On the other hand, next we show that allowing arbitrary words of length
2 renders poDFA-Con NP-complete. The proof will follow by showing that there
is a reduction from 3-Coloring to poDFA-Con mapping each instance of 3-
Coloring with |V | = n and |E| = m to a poDFA-Con instance with k = 4,
|Σ| = n + 2m, |P | = |N | = 2m, l = 2, and T = n + 2m in time O(n + m).

Let G = (V,E) be a graph with vertex set V and edge set E. W.l.o.g.,
we assume (i) that G does not contain isolated vertices. We construct from G
an instance of poDFA-Con with k = 4 as: Σ = V ∪ {eij | {vi, vj} ∈ E},
P = {vieij , vjeji | {vi, vj} ∈ E}, and N = {vieji, vjeij | {vi, vj} ∈ E}.

Let A = ({s0, s1, s2, s3}, Σ, δ, s0, F ) be a poDFA that is consistent with P
and N . W.l.o.g. we assume that s0 ≤ s1 ≤ s2 ≤ s3 and that all states are
pairwise distinct. We prove that the existence of A implies that G is 3-colorable.
For 0 ≤ q ≤ 3, let Vq = {vi ∈ V | δ(s0, vi) = sq}. We show that each Vq

is an independent set in G and that V = V0 ∪ V1 ∪ V2. Assume for an edge
{va, vb} ∈ E, that va and vb are in the same set Vq: by construction, P contains
vaeab and N contains vbeab where the former is accepted and the latter is rejected
by A. This observation implies that δ(s0, va) �= δ(s0, vb) which contradicts the
assumption that va, vb are in the same Vq. Further, we show by contradiction
that V3 = ∅, meaning that no vi ∈ V maps s0 to s3. Therefore, assume there
is vi ∈ V with δ(s0, vi) = s3. Then, by the state order of A we have that
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δ(s0, vieij) = s3 and δ(s0, vieji) = s3 while the former word is in P and the
latter in N . Hence, the states s0, s1, s2 split V into three pairwise disjunctive
independent sets V0, V1, V2

3.
For the other direction, assume that V0, V1, V2 are independent sets in G. We

construct a poDFA A = ({s0, s1, s2, s3}, Σ, δ, s0, {s2}) that is consistent with P
and N . We define δ as follows. All other transitions act as the identity.
δ(s0, v) = sq for 0 ≤ q ≤ 2, v ∈ Vq, δ(sq, eij) = s2 for 0 ≤ q ≤ 2, vi ∈ Vq,
δ(sq, eji) = s1 for 0 ≤ q ≤ 1, vi ∈ Vq, δ(s2, eji) = s3 for vi ∈ V2.
It can easily be verified that A is consistent with P and N . �

4 Dichotomies for Permutation Automata

In this section, we focus on permutation automata (PA for short), introduced in
[44]. A permutation automaton is a DFA where the transition monoid forms a
group, or in other words, each letter of the alphabet induces a bijective map-
ping from the state stet into itself. This allows the reversal of every edge of
the automaton graph while preserving the property of being deterministic, see
[35]. This powerful property allows to deterministically navigate back and forth
between the steps of a computation. Note that this property forbids trap states
which we cannot left, hence, intuitively, PAs can never “get stuck”, or in other
words, the underlying graph of the automaton consists of strongly connected
components (scc for short) with no arcs in between. These properties make
permutation DFAs interesting for learning black-boxed systems with those nice
properties. The latter property of being backward deterministic characterizes
the class of zero-reversible languages considered in [3] where the accepting DFA
needs to be backward-deterministic and only allows one final state. For this sub-
class of DFA (which is incomparable to permutation DFAs as in general the first
property of consisting only of one strongly connected component is missing), a
polynomial time algorithm for both learning from positive and negative finite
sets of samples as well as for learning in the limit from positive samples were
obtained. Here, one wanted to learn the smallest zero-reversible language con-
sistent with the samples. Note that this smallest language might not have the
smallest representation in terms of a zero-reversible DFA (i.e., a permutation
DFA with only one final state) consistent with the samples.

We now focus on permutation automata and begin by showing that for k = 2
PA-Con is solvable in P while it becomes NP-complete for k ≥ 3. This stands in
contrast with the results for general DFA in [12], as here the problem is already
NP-complete for k = 2.

In the proof of the next theorem we will deal with commutative languages.
A language L ⊆ Σ∗ is commutative if for each w ∈ L and each permutation τ of
the letters in w also τ(w) ∈ L holds. Hence, for a commutative language L the
membership w ∈ L is fully determined by |w|σ for all σ ∈ Σ.

Theorem 4. PA-Con is decidable in polynomial time for k ≤ 2 and is NP-
complete for any combination of k and l such that k ≥ 3 and l ≥ 2.
3 In general V0, V1, V2 is not a partition of V since some of the sets might be empty if

G is 1- or 2-colorable.
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Proof. Polynomial time algorithm for k ≤ 2. For one-state PAs, the claim follows
trivially as those automata can only accept the empty or the universal language.
Hence, for a two-state PA we may assume that one state is final and one is
not. Let P and N be an instance of poDFA-Con with k = 2. We may assume
|P | > 0 and |N | > 0. Let A = ({q0, q1}, Σ, δ, q0, F ) be a two-state PA. Then:

(1) Each letter σ ∈ Σ can only implement one of two mappings: Either δ(q0, σ) =
q0 and δ(q1, σ) = q1 or δ(q0, σ) = q1 and δ(q1, σ) = q0. Note that in both
cases δ(q0, σσ) = q0 and δ(q1, σσ) = q1 (*).

(2) The language accepted by A is commutative as each letter behaves the same
on all states, i.e., it either maps to the other state or it is the identity.

(3) Let Σ = {σ1, σ2, . . . , σn}. It follows from (*) and (2) that we can reduce an
instance P,N ⊆ Σ∗ to an instance P ′, N ′ ⊆ Σ∗ where each word w ∈ P (and
N , respectively) with |w|σ1 = m1, |w|σ2 = m2, . . . , |w|σn

= mn is replaced by
the word σ

(m1 mod 2)
1 σ

(m2 mod 2)
2 . . . σ

(mn mod 2)
n where P,N is a yes-instance

for k = 2 if and only if P ′, N ′ is a yes-instance for k = 2. Note that this
reduction can be performed in poly-time.

We now present a polynomial time algorithm for solving the instance P ′, N ′.
First, check whether P ′ ∩ N ′ �= ∅, if so, return false. If ε ∈ P ′, we set F = {q0},
if ε ∈ N ′, we set F = {q1}. If both is not the case, we need to try both variants
and start with assuming F = {q0}. We construct a system of linear equations
over Z2 which can be solved using Gaussian elimination in polynomial time as
stated in [41]. We introduce a variable over Z2 for each letter in Σ. For each word
w ∈ P ′ with |w| = k, we introduce the equation w[1] ⊕ w[2] ⊕ . . . ⊕ w[k] = 0.
Note that each letter appears at most once in w. For a word w ∈ N ′ with
|w| = k, we introduce the equation w[1] ⊕ w[2] ⊕ . . . ⊕ w[k] = 1. For F = {q1},
exchange 0 and 1 on the right side of the above equations. For a variable σi ∈ Σ,
assigning σi with 1 corresponds to defining the letter σi to cause a state change,
whereas setting the variable σi to 0 corresponds to defining the letter σi as the
identity. Clearly, the PA constructed from a solution of the system of equations
is consistent with the input sets, and a variable assignment that solve the system
of equations can be read off the transition function.
NP-Hardness for k ≥ 3, l ≥ 2 (Sketch). The proof follows by showing that
there is a reduction from 3-Coloring to PA-Con mapping each 3-Coloring
instance with |V | = n, |E| = m to a PA-Con instance with k = 3, |Σ| = n+2m,
|P | = |N | = 2m, l = 2, and T = n + 2m in time O(n + m). �
As for DFAs and poDFAs, we can observe NP-hardness of PA-Con for a fixed
alphabet size of |Σ| = 2. The details of the construction differ, as for instance we
need three chains of states, through which we switch with the letter t. Whereas,
the construction for DFAs and poDFAs did not rely on every clause consisting of
exactly 3 variables (here, the reduction would also work for a One-In-n variant),
the construction for PAs relies on this upper bound since we cannot use trap
states to catch superfluous satisfied literals.

Theorem 5. PA-Con is NP-complete for |Σ| = 2.
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5 Algorithmic Results

In this section, we summarize several rather simple parameterized algorithms,
relying on iterating through all possible paths in the automaton induced by
the input word, and contrast them with the conditional lower bounds obtained
by the above discussed reductions. We recall that the notation O∗ suppresses
factors polynomial in the size of the instance. In other words, we write O∗(f(k))
to denote a running time of the form f(k) ·nO(1) where n is the size of the input.

Theorem 6. poDFA-Con and PA-Con can be solved in time O∗(kk|Σ|).

Theorem 7. poDFA-Con and PA-Con can be solved in time O∗(kc·l).

Theorem 8. DFA-Con, poDFA-Con, and PA-Con can be solved in O∗(kT ).

In the case that k ≥ T the problems can even be solved in linear time by
computing the prefix-tree and completing it. Hence, w.l.o.g., k < T . Further,
with the poDFA and PA restrictions we lose, while guessing the transitions,
for every letter in each step one state as a potential image, leaving us with k!
possible mappings for each letter σ, which leads to the following improvement.

Theorem 9. poDFA-Con and PA-Con are FPT in time O∗((k!)|Σ|) in the
combined parameter k and |Σ|.

The exponential time hypothesis (ETH) is a standard conjecture in compu-
tational complexity theory which essentially states that 3SAT cannot be solved
in time 2o(n) on instances with n variables [21,22]. Using appropriate notions of
fine grained reductions, ETH can be used to provide conditional lower bounds for
many problems [13,25]. In our context, using the reductions from Theorems 1,
2, 3, 4 and 5, ETH can be used to establish the following lower bounds.

Corollary 1. Under ETH, poDFA-Con and PA-Con cannot be solved: for
constant parameters k and l, in time O∗(2o(|Σ|)), nor O∗(2o(c)), nor O∗(2o(T ));
and for constant parameter |Σ|, not in time O∗(2o(k)), nor O∗(2o(l)).
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Abstract. We consider the following problem: for a given graph G and
two integers k and d, can we apply a fixed graph operation at most k
times in order to reduce a given graph parameter π by at least d? We show
that this problem is NP-hard when the parameter is the independence
number and the graph operation is vertex deletion or edge contraction,
even for fixed d = 1 and when restricted to chordal graphs. We also give
a polynomial time algorithm for bipartite graphs when the operation is
edge contraction, the parameter is the independence number and d is
fixed. Further, we complete the complexity dichotomy on H-free graphs
when the parameter is the clique number and the operation is edge con-
traction by showing that this problem is NP-hard in (C3+P1)-free graphs
even for fixed d = 1. Our results answer several open questions stated in
[Diner et al., Theoretical Computer Science, 746, p. 49–72 (2012)].

Keywords: Blocker problems · Edge contraction · Vertex deletion ·
Independence number · Clique number

1 Introduction

Blocker problems are a type of graph modification problems which are charac-
terised by a set O of graph modification operations (for example vertex deletion
or edge contraction), a graph parameter π and an integer threshold d ≥ 1.
The aim of the problem is to determine, for a given graph G, the smallest
sequence of operations from O which transforms G into a graph G′ such that
π(G′) ≤ π(G) − d.

As in the case of regular graph modification problems, we often consider a
set of operations consisting of a single graph operation, typically vertex deletion,
edge contraction, edge addition or edge deletion. Amongst the parameters which
have been studied are the chromatic number χ (see [12]), the matching number
μ (see [14]), the length of a longest path (see [3,10]), the (total or semitotal)
domination number γ (γt and γt2, respectively) (see [6–8]), the clique number ω
(see [11]) and the independence number α (see [2]).

In this paper, the set of allowed graph operations will always consist of only
one operation, either vertex deletion or edge contraction. Given a graph G, we
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denote by G − U the graph from which a subset of vertices U ⊆ V (G) has been
deleted. Given an edge uv ∈ E(G), contracting the edge uv means deleting the
vertices u and v and replacing them with a single new vertex which is adjacent
to every neighbour of u or v. We denote by G/S the graph in which every edge
from an edge set S ⊆ E(G) has been contracted. We consider the following two
problems, where d ≥ 1 is a fixed integer.

d-Deletion Blocker (π)

Instance: A graph G and an integer k.
Question: Is there a set U ⊆ V (G), |U | ≤ k, such that

π(G − U) ≤ π(G) − d?

d-Contraction Blocker (π)

Instance: A graph G and an integer k.
Question: Is there a set S ⊆ E(G), |S| ≤ k, such that π(G/S) ≤ π(G)−d?

When d is not fixed but part of the input, the problems are called Deletion
Blocker(π) and Contraction Blocker(π), respectively.

When π = α or π = ω, both problems above are NP-hard on general graphs
[5], so it is natural to ask if these problems remain NP-hard when the input is
restricted to a special graph class.

Table 1. The table of complexities for some graph classes. Here, P means solvable
in polynomial time, whereas NP-h and NP-c mean NP-hard and NP-complete, respec-
tively. A question mark means that the case is open. Everything in bold are new results
from this paper, all other cases are referenced in [5], where an older version of this table
is given.

Class Contraction Blocker(π) Deletion Blocker(π)
π = α π = ω π = α π = ω

Tree P P P P

Bipartite NP-h; P P P

d fixed: P

Cobipartite d = 1: NP-c NP-c; P P

d fixed: P
Cograph P P P P

Split NP-c; NP-c; NP-c; NP-c;
d fixed: P d fixed: P d fixed: P d fixed: P

Interval ? P ? P

Chordal d=1: NP-c d = 1: NP-c d=1: NP-c d = 1: NP-c
Perfect d = 1: NP-h d = 1: NP-h d=1: NP-c d = 1: NP-c
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The authors of [5] show that Contraction Blocker(α) in bipartite and
chordal graphs as well as Deletion Blocker(α) in chordal graphs are NP-hard
when the threshold d is part of the input. However, as an open question, they ask
for the complexity of the problem when d is fixed. We show that Contraction
Blocker(α) in bipartite graphs is solvable in polynomial time if d is fixed
and that the other problems are NP-hard even if d = 1. An overview of the
complexities in some graph classes is given in Table 1.

A monogenic graph class is characterised by a single forbidden induced
subgraph H. For a given graph parameter π, it is interesting to establish a
complexity dichotomy for monogenic graphs, that is, to determine the com-
plexity of (d-)Deletion Blocker(π) or (d-)Contraction Blocker(π) in
H-free graphs, for every graph H. For example, such a dichotomy has been
established for Deletion Blocker(π) for all π ∈ {α, ω, χ} and Contrac-
tion Blocker(π) for π ∈ {α, χ} (all [5]), Contraction Blocker(γt2) (for
d = k = 1, [8]), Contraction Blocker(γt) (for d = k = 1, [6]) and Contrac-
tion Blocker(γ) (for d = k = 1, [7]). In [5], the computational complexity of
Contraction Blocker(ω) in H-free graphs has been determined for every H
except H = C3 + P1. We show that this case is NP-hard even when d = 1 and
complete hence the dichotomy.

The paper is organised as follows: In Sect. 2 we explain notation and termi-
nology. In Sect. 3 we give the proofs of NP-hardness or NP-completeness of the
aforementioned problems. Finally, in Sect. 4 we give a polynomial-time algorithm
for d-Contraction Blocker(α) in bipartite graphs.

2 Preliminaries

Throughout this paper, we assume that all graphs are connected unless stated
differently.

We refer the reader to [4] for any terminology not defined here.
For a graph G we denote by V (G) the vertex set of the graph and by E(G) its

edge set. For two graphs G and H we denote by G+H the disjoint union of G and
H. For two vertices u, v ∈ V (G) we denote by distG(u, v) the distance between
u and v, which is the number of edges in a shortest path between u and v. For
two sets of vertices U,W ⊆ V (G), the distance between U and W , denoted by
distG(U,W ), is given by minu∈U,w∈W distG(u,w). For a set of edges S ⊆ E(G)
we denote by V (S) the set of vertices in V (G) which are endpoints of at least one
edge of S. Let v ∈ V (G), then the closed neighbourhood of v, denoted by NG[v],
is the set {u ∈ V (G) : distG(u, v) ≤ 1}. Similarly, we define for a set U ⊆ V (G)
the closed neighbourhood of U as NG[U ] = {u ∈ V (G) : ∃v ∈ U,distG(v, u) ≤ 1}.
For a vertex v ∈ V (G) and a set of vertices U ⊆ V (G), we say that v is complete
to U if v is adjacent to every vertex of U . Let G be a graph and S ⊆ E(G).
We denote by G

∣
∣
S

the graph whose vertex set is V (G) and whose edge set is S.
For any U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U . For
any U ⊆ V (G), we denote by G − U the graph G[V (G) \ U ]. For any vertex
v ∈ V (G), we denote by G − v the graph G − {v}.
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Let S ⊆ E(G). We denote by G/S the graph whose vertices are in one-to-
one correspondence to the connected components of G

∣
∣
S

and two vertices u, v ∈
V (G/S) are adjacent if and only if their corresponding connected components
A,B of G

∣
∣
S

satisfy distG(V (A), V (B)) = 1. This is equivalent to the regular
notion of contracting the edges in S. However, this definition allows us to make
the notation in the proofs simpler and less confusing.

We say that a set I ⊆ V (G) is independent if the vertices contained in it are
pairwise non-adjacent. We denote by α(G) the size of a maximum independent
set in G. The decision problem Independent Set takes as input a graph G
and an integer k and outputs Yes if and only if there is an independent set of
size at least k in G. We say that a set U ⊆ V (G) is a clique if every two vertices
in U are adjacent. We denote by ω(G) the size of a maximum clique in G. We
call a set U ⊆ V (G) a vertex cover, if for every edge uv ∈ E(G) we have that
u ∈ U or v ∈ U . The decision problem Vertex Cover takes as input a graph
G and an integer k and outputs Yes if and only if there is a vertex cover of
size at most k in G. We denote by τ(G) the size of a minimum vertex cover in
G. Furthermore, we call a graph M a matching of a graph G, if V (M) ⊆ V (G),
E(M) ⊆ E(G) and each vertex in M has exactly one neighbour in M . We say
that a matching is a maximum matching if it contains the maximum possible
number of edges and denote this number by μ(G). Observe that we did not use
the standard definition of a matching as a set of non-adjacent edges. This was
done in order to simplify the notation in the proofs. However, the edge set of a
matching in our definition follows the conventional definition.

A graph without cycles is called a forest and a connected forest is a tree. It
is well-known that a tree has one more vertex than it has edges. A graph is said
to be chordal if it has no induced cycle of length at least four. A graph G is
bipartite if we can find a partition of the vertices into two sets V (G) = U ∪ W
such that U and W are both independent sets. For a given graph H, we say that
the graph G is H-free if it does not contain H as an induced subgraph.

For a positive integer i we denote by Pi and Ci the path and the cycle on i
vertices, respectively. We call the graph which is given in Fig. 1 a paw.

Fig. 1. The paw

For a given graph parameter π we say that a set S ⊆ E(G) is π-contraction-
critical if π(G/S) < π(G). We say that a set U ⊆ V (G) is π-deletion-critical if
π(G − U) < π(G).

We will use the following two results. The first one is due to Kőnig, the second
one is well-known and easy to see.

Lemma 1 (see [4]). Let G be a bipartite graph. Then μ(G) = τ(G).
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Lemma 2. Let G be a graph and let I ⊆ V (G) be a maximum independent set.
Then V (G) \ I is a minimum vertex cover and hence τ(G) + α(G) = |V (G)|.
In [13] it was shown that Independent Set is NP-complete in C3-free graphs.
This and Lemma 2 imply the following corollary.

Corollary 1. Vertex Cover is NP-complete in C3-free graphs.

3 Hardness Proofs

We begin by restating Vertex Cover as a satisfiability problem in order to
simplify the notation in the proofs.

Weighted Positive 2-SAT

Instance: A variable set X, a clause set C in which all clauses contain
exactly two literals and every literal is positive, as well as an integer k.

Question: Is there a truth assignment of the variables (that is, a mapping
f : X → {true, false}) such that at least one literal in each clause is true
and there are at most k variables which are true.

If Φ = (G, k) is an instance of Vertex Cover then taking X = V (G) as
the variable set and C = {(u ∨ w) : uw ∈ E(G)} as the set of clauses yields an
instance (X,C, k) of Weighted Positive 2-SAT which is clearly equivalent
to Φ. Since Vertex Cover is known to be NP-hard (see Corollary 1), it follows
that Weighted Positive 2-SAT is NP-hard, too.

Let G be a graph and S, S′ ⊆ E(G) such that for every connected component
A of G

∣
∣
S

there is a connected component A′ of G
∣
∣
S′ with V (A) = V (A′). Then,

G/S = G/S′ and thus we get the following corollary.

Corollary 2. Let G be a graph and S ⊆ E(G) a minimal α-contraction-critical
set of edges. Then, G

∣
∣
S
is a forest.

Theorem 1. 1-Contraction Blocker(α) is NP-complete in chordal graphs.

Proof. It was shown in [9] that Independent Set can be solved in polynomial
time for chordal graphs. Since the family of chordal graphs is closed under edge
contractions, for a given chordal graph G and a set S ⊆ E(G), it is possible
to check in polynomial time whether S is α-contraction-critical. It follows that
1-Contraction Blocker(α) is in NP for chordal graphs. In order to show
NP-hardness, we reduce from Weighted Positive 2-SAT, which was shown
to be NP-hard above. Let Φ = (X,C, k) be an instance of Weighted Positive
2-SAT. We construct a chordal graph G such that (G, k) is a Yes-instance for
1-Contraction Blocker(α) if and only if Φ is a Yes-instance for Weighted
Positive 2-SAT, as follows:

For every variable x ∈ X, we introduce a set of vertices Gx with Gx =
{vx} ∪ Kx, where Kx is a set of 2k + 1 vertices which induce a clique. We make
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vx complete to Kx. For every clause c ∈ C, we introduce a vertex vc. We define
KC =

⋃

c∈C {vc}. We add edges so that G[KC ] is a clique. For every clause c ∈ C,
c = (x ∨ y), we make vc complete to Kx and Ky (see Fig. 1 for an example).

Observe first that the graph G is indeed chordal: if a cycle of length at least
four contains at least three vertices of KC , it follows immediately that the cycle
cannot be induced, since KC induces a clique. Otherwise, such a cycle contains
at most two vertices of KC . If there are two vertices w and w′ of the cycle which
are contained in Gx and Gy, respectively, with x, y ∈ X,x 
= y, then the cycle
has to contain a chord in G[KC ] and is thus not induced. If all vertices of the
cycle are in KC ∪ Gx for some fixed x ∈ X, then there are at least two vertices
w and w′ contained in Kx. Hence, the cycle cannot be induced since w and w′

are adjacent and have the same neighbourhood. It follows that G cannot have
any induced cycle of length at least 4 and is thus chordal (Fig. 2)

Kw

vw

Kx

vx

Ky

vy

Kz

vz

vc1 vc2 vc3

KC

Fig. 2. This is the graph corresponding to the instance of Weighted Positive 2-SAT
given by the variables w, x, y, z and the clauses c1 = w ∨ x, c2 = x ∨ y and c3 = x ∨ z.
The rectangular box corresponds to G[KC ], the vertices contained in it induce a clique.
Every set Ki induces a clique and the lines between a vertex and a set Ki mean that
this vertex is complete to Ki.

Since Gx induces a clique for every x ∈ X, it can contain at most one vertex
in any independent set; the same applies to KC . Thus, α(G) ≤ |X| + 1. Let
c ∈ C. Since the set {vx : x ∈ X} ∪ {vc} is an independent set of size |X| + 1, it
follows that α(G) = |X| + 1.

Let us assume that Φ is a Yes-instance of Weighted Positive 2-SAT.
Let Xp be the set of positive variables of a satisfying assignment of Φ. For
each x ∈ Xp, let ex be an edge incident to vx and let S = {ex|x ∈ Xp}. Let
G′ = G/S. We claim that α(G′) < α(G). To see this, observe first that for any
x ∈ Xp, contracting ex is equivalent to deleting the vertex vx, since NG(vx) = Kx

induces a clique. Therefore, we have that G′ � G − {vx : x ∈ Xp}. Suppose for
a contradiction that there is an independent set I of G′ of size |X| + 1. Since
|I ∩ Kx| ≤ 1 (for x ∈ Xp) and |I ∩ Gx| ≤ 1 (for all x ∈ X \ Xp), it follows that
there exists c ∈ C such that vc ∈ KC ∩ I. Furthermore, the inequalities above all



418 F. Lucke and F. Mann

have to be equalities. By the choice of Xp, it follows that there is x ∈ Xp such
that x is a literal in c. Since |I ∩ Kx| = 1, there is a vertex w ∈ I ∩ Kx which is
adjacent to vc, contradicting the fact that I is independent. It follows that S is
α-contraction-critical.

For the other direction, assume that Φ′ = (G, k) is a Yes-instance of 1-Con-
traction Blocker(α). Let S be a minimum α-contraction-critical set of edges
such that |S| ≤ k. By Corollary 2, the graph G

∣
∣
S

is a forest.
For any x ∈ X, there is a vertex ux ∈ Kx \ V (S). This follows from the

fact that k edges can be incident to at most 2k vertices and
|Kx| = 2k + 1. Let H be the graph with vertex set V (H) = KC and edge
set E(H) = {uv ∈ S : u, v ∈ KC}.

Suppose for a contradiction that there is a connected component T of H
such that for every x ∈ X with distG(Gx, V (T )) = 1 we have Gx ∩ V (S) = ∅.
In other words, for every c = (x ∨ y) ∈ C with vc ∈ V (T ) we have Gx ∩ V (S) =
Gy ∩ V (S) = ∅. So we have that NG[V (T )] ∩ V (S) ⊆ V (T ), and thus T is also
a connected component in G

∣
∣
S
. For every x ∈ X the set {ux} is a connected

component in G
∣
∣
S
, that is, ux is not incident to any edge in S. Further, for every

x ∈ X where distG(Gx, V (T )) = 1, we have that Gx ∩ V (S) = ∅ and thus {vx}
is a connected component in G

∣
∣
S
. Let X1 = {x ∈ X : distG(ux, V (T )) = 1} and

X2 = X\X1. Observe that the set I = T∪{{vx} : x ∈ X1}∪{{ux} : x ∈ X2} is a
set of connected components of G

∣
∣
S

which correspond to vertices in G/S who are
pairwise at distance at least two. In other words, I corresponds to an independent
set in G/S of cardinality |X| + 1, a contradiction to the assumption that S is
α-contraction-critical. It follows that there is no connected component T of H
such that for every x ∈ X with distG(Gx, V (T )) = 1 we have Gx ∩ V (S) = ∅.

We can obtain a truth assignment of the variables satisfying Φ as follows: Set
every x to true for which Gx∩V (S) is non-empty. For every clause c = (x∨y) ∈ C
for which both Gx ∩ V (S) and Gy ∩ V (S) are empty, set one of its variables to
true. This assignment is clearly satisfying, it remains to show that we set at
most |S| ≤ k variables to true. Consider a connected component T of H. Recall
that T is a tree, and so its number of vertices is one more than its number of
edges. We have shown that there is a vertex vc ∈ V (T ), c = (x ∨ y), for which
Gx ∩ V (S) 
= ∅. Thus, there are at most |E(T )| vertices vc ∈ T , c = (x ∨ y),
for which both Gx ∩ V (S) and Gy ∩ V (S) are empty. This implies that for every
connected component T of H we set at most |E(T )| variables to true. Further,
the number of variables x ∈ X which we set to true because Gx ∩ V (S) 
= ∅ is
at most the number of edges of S which are not contained in G[KC ]. This shows
that, in total, we set at most |S| variables to true, which concludes the proof.

Interestingly, 1-Deletion Blocker(α) and 1-Contraction Blocker(α)
are equivalent on the instance Φ′ constructed in the proof of Theorem 1 and
thus the same construction can be used to show NP-hardness of 1-Deletion
Blocker(α) in chordal graphs.

Theorem 2. 1-Deletion Blocker(α) is NP-complete in chordal graphs.
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Proof. It has been shown in [9] that it is possible to determine the independence
number of chordal graphs in polynomial time. Since chordal graphs are closed
under vertex deletion, it is possible to check in polynomial time whether the
deletion of a given set of vertices reduces the independence number. Hence 1-
Deletion Blocker(α) is in NP for chordal graphs.

In order to show NP-hardness, we reduce from Weighted Positive 2-SAT.
Let Φ be an instance of Weighted Positive 2-SAT, Φ = (X,C, k). Let
Φ′ = (G, k) be the instance of 1-Contraction Blocker(α) which is described
in Theorem 1 and which has been shown to be equivalent to Φ. Further, let
Kx, Gx and vx for each x ∈ X, KC , and vc for each c ∈ C be as in the proof
of Theorem 1. Recall that we have shown that α(G) = |X| + 1 and that G is
chordal.

We show that Φ′ is a Yes-instance of 1-Deletion Blocker(α) if and only
if Φ is a Yes-instance of Weighted Positive 2-SAT.

Assume first that Φ is a Yes-instance of Weighted Positive 2-SAT and
that Xp is the set of positive variables in a satisfying assignment of Φ. We have
shown in the proof of Theorem 1 that α(G−{vx : x ∈ Xp}) < α(G), hence (G, k)
is a Yes-instance of 1-Deletion Blocker(α).

Conversely, assume that Φ′ is a Yes-instance of 1-Deletion Blocker(α)
and let W be an α-deletion-critical set of vertices of cardinality at most k.
For every x ∈ X there is ux ∈ Kx \ W , since |W | < |Kx|. Define a set
Z = {x ∈ X : vx ∈ W} and initialize a set Z ′ = ∅. For every clause c ∈ C with
vc ∈ W we choose one of the variables contained in c and add it to Z ′. We claim
that setting the variables of Z ∪ Z ′ to true yields a satisfying assignment of Φ.
Observe first that |Z∪Z ′| ≤ |W | ≤ k by construction. Suppose for a contradiction
that there is a clause c ∈ C, c = (x∨y), such that neither x nor y is contained in
Z∪Z ′. It follows that vx, vy, vc /∈ W . But then {vc, vx, vy}∪{uz : z ∈ X \ {x, y}}
is an independent set of size |X|+1 in G−W , a contradiction to the α-deletion-
criticalness of W . Hence the assignment is satisfying and the theorem follows.

Since perfect graphs are a superclass of chordal graphs, we obtain the follow-
ing corollary.

Corollary 3. 1-Deletion Blocker(α) is NP-complete in perfect graphs.

Observe that Corollary 3 could also be shown as follows. Complements of
perfect graphs are again perfect graphs. Further, 1-Deletion Blocker(α) is
a Yes-instance for a graph G if and only if 1-Deletion Blocker(ω) is a
Yes-instance for G. Since it was shown in [5] that 1-Deletion Blocker(ω) is
NP-hard in perfect graphs the corollary follows.

The last theorem in this section answers a question asked in [5]. Indeed,
Theorem 4 settles the missing case of [5, Theorem 24] and completes the com-
plexity dichotomy for H-free graphs, which is as follows.

Theorem 3. Let H be a graph. If H is an induced subgraph of P4 or of the
paw, then Contraction Blocker(ω) is polynomial-time solvable for H-free
graphs, otherwise it is NP-hard or co-NP-hard for H-free graphs.



420 F. Lucke and F. Mann

Theorem 4. The decision problem 1-Contraction Blocker(ω) is NP-hard
in (C3 + P1)-free graphs.

Proof. We use a reduction from Vertex Cover in C3-free graphs which is NP-
complete due to Corollary 1. Let (G, k) be an instance of Vertex Cover where
G is a C3-free graph. Since Vertex Cover is trivial to solve on a graph without
edges, we can assume that E(G) is non-empty. We construct an instance (G′, k)
of 1-Contraction Blocker(ω) such that (G, k) is a Yes-instance of Vertex
Cover if and only if (G′, k) is a Yes-instance of 1-Contraction Blocker(ω)
and G′ is (C3+P1)-free. Let G′ be a graph with V (G′) = V (G)∪{w}, w /∈ V (G),
and E(G′) = E(G) ∪ {wv, v ∈ V (G)}. In other words, we add a universal vertex
w to G in order to obtain G′.

Since G is C3-free, every copy of C3 in G′ has to contain w. Furthermore,
since w is adjacent to every other vertex in V (G′), it follows that every vertex
of G′ has distance at most one to every copy of C3. Thus, G′ is (C3 + P1)-free.
Also, note that ω(G′) = 3 and that every maximum clique in G′ is a copy of C3

which contains w and exactly two vertices of V (G).
Let us assume that (G, k) is a Yes-instance of Vertex Cover. Let

{v1, . . . , vk} ⊆ V (G) be a vertex cover of G. Set S = {viw : i ∈ {1, . . . , k}}
and let G∗ = G′/S. We claim that S is ω-contraction-critical. Notice that the
contraction of an edge vw ∈ S is equivalent to deleting the vertex v, since the
new vertex remains adjacent to all other vertices. Thus, G∗ is isomorphic to
G − (V (S) \ {w}). Since {v1, . . . , vk} is a minimum vertex cover of G, there are
no edges in G∗ − w, meaning that G∗ is C3-free and thus ω(G∗) ≤ 2. Hence
(G′, k) is a Yes-instance of 1-Contraction Blocker(ω).

For the other direction, assume that (G′, k) is a Yes-instance of 1-Con-
traction Blocker(ω). Let S ⊆ E(G′) be a minimum ω-contraction-critical
set of edges with |S| ≤ k and let G∗ = G′/S.

We construct a set U of vertices of G as follows: For the connected component
T of G′∣∣

S
that contains w, add every vertex of V (T ) except w to U . For every

other connected component T of G′∣∣
S

we add to U all vertices of V (T ) except
one, which can be chosen arbitrarily. We claim that U is a vertex cover of G of
size at most k.

To see that |U | ≤ k, observe that for every connected component T of G′∣∣
S

we have added |V (T )| − 1 vertices to U . Since T is a tree (see Corollary 2), we
have that |V (T )| − 1 = |E(T )|. Thus, we have added as many vertices to U as
there are edges in S and hence |U | = |S| ≤ k.

In order to show that U is a vertex cover, suppose for a contradiction that
there is an edge uv ∈ E(G) for which neither u nor v is contained in U . Consider
the connected components Au, Av and Aw of G′∣∣

S
which contain u, v and w,

respectively. It follows from the construction of U that in every connected com-
ponent T of G′∣∣

S
there is at most one vertex of T which is not contained in U .

Hence, Au 
= Av. We have that w 
∈ U by construction, so the same argument
can be used to show that Au 
= Aw and Av 
= Aw. Thus, Au, Av, Aw corre-
spond to three different vertices in G∗ and since the components are pairwise
at distance one, their corresponding vertices induce a C3 in G∗, a contradiction
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to S being ω-contraction-critical. Thus, U is a vertex cover in G and (G, k) a
Yes-instance of Vertex Cover.

4 Algorithms

In this section we give a polynomial-time algorithm for d-Contraction
Blocker(α) in bipartite graphs.

Theorem 5. Let G be a connected, bipartite graph with |V (G)| ≥ 2d + 2 and
α(G) ≥ d + 1, where d ≥ 1 is an integer. Then (G, 2d + 1) is a Yes-instance of
d-Contraction Blocker(α).

Proof. Let G be a bipartite graph with |V (G)| ≥ 2d+2 and α(G) ≥ d+1. Let M
be a maximum matching of G. Since G is connected, M is non-empty. Consider
the following algorithm which constructs a tree T , which is a subgraph of G.

Algorithm 1

Input: A bipartite graph G, a maximum matching M in G, an integer d ≥ 1
Output: A tree T

Choose an arbitrary edge uu′ ∈ E(M).
2: Set V (T ) = {u, u′}, E(T ) = {uu′}.

while |E(T )| ≤ 2d − 1 do
4: Choose two vertices w ∈ NG(T ) \ V (T ), and w′ ∈ NG(w) ∩ V (T ).

if w ∈ V (M) then
6: Let v ∈ V (M) s.t. vw ∈ E(M).

V (T ) = V (T ) ∪ {v, w}, E(T ) = E(T ) ∪ {w′w, vw}
8: else V (T ) = V (T ) ∪ {w}, E(T ) = E(T ) ∪ {w′w}

end if
10: end while

return T

We claim that the resulting graph T is a tree. Indeed, the initial graph is a
single edge and thus a tree. Further, observe that every time there are vertices
and edges added to T in lines 7 or 8, the resulting graph remains connected and
the number of added vertices and added edges is the same. It follows that T is
connected and has exactly one more vertex than it has edges and is thus a tree.
It is easy to see that T has 2d or 2d + 1 edges.

We consider the graph G′ = G−V (T ). For every v ∈ V (M)∩V (T ) the unique
vertex u ∈ V (M) with uv ∈ E(M) is also contained in V (T ) and uv ∈ E(T ).
Thus, there are at most

⌊
|V (T )|

2

⌋

edges in E(M) which have an endvertex in T .

Since M − V (T ) is a matching in G′ we have that μ(G′) ≥ μ(G) −
⌊

|V (T )|
2

⌋

.
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Applying Lemma 1 and Lemma 2, we get for the independence number of G′:

α(G′) = |V (G′)| − μ(G′) ≤ |V (G)| − |V (T )| − μ(G) +
⌊ |V (T )|

2

⌋

= α(G) −
⌈ |V (T )|

2

⌉

= α(G) − d − 1.

Let G∗ = G/E(T ). Observe that G
∣
∣
E(T )

contains exactly one connected compo-
nent, say A, which has more than one vertex, namely the connected component
corresponding to T . Let v∗ ∈ V (G∗) be the vertex which corresponds to A. Since
G∗ − v∗ is isomorphic to G′, we obtain that α(G∗) ≤ α(G′) + 1 ≤ α(G) − d.

Algorithm 2

Input: A bipartite graph G, an integer k, a fixed integer d
Output: Yes if (G, k) is a Yes-instance of d-Contraction Blocker(α), No

if not
for every S ⊆ E(G) of size at most k do

2: Let β = 0.
Let G′ = G/S.

4: Let U =
{

v ∈ V (G′) : v corresponds to a connected component of G
∣
∣
S

which contains at least 2 vertices} .
for every subset U ′ ⊆ U do

6: if U ′ is independent then
β = max(β, α(G′ − (U ∪ NG′(U ′))) + |U ′|)

8: end if
end for

10: if β ≤ α(G) − d then
return Yes

12: end if
end for

14: return No

Theorem 6. d-Contraction Blocker(α) is solvable in polynomial time in
bipartite graphs.

Proof. Let G be a bipartite graph and k a positive integer. If |V (G)| ≤ 2d + 1
there are at most 2d(d+1) subsets of E(G) and at most 22d+1 subsets of V (G).
We can check for every subset S ⊆ E(G) if α(G/S) ≤ α(G) − d in constant
time by computing the graph G/S and checking for each subset of V (G/S) if it
is independent. Thus, we can check in constant time if G is a Yes-instance for
d-Contraction Blocker(α).

Since contracting edges in a non-empty graph cannot reduce the number of
vertices to zero, it follows that if α(G) ≤ d it is not possible to reduce α(G)
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by d via edge-contractions. Hence, we can assume that |V (G)| ≥ 2d + 2 and
α(G) ≥ d + 1. By Theorem 5, we know that for k ≥ 2d + 1, it is always possible
to contract at most k edges to reduce the independence number of G by at least
d, so we can further assume that k ≤ 2d.

Consider now Algorithm 2 which takes as input G, k and d and outputs Yes
or No. Algorithm 2 considers every subset S ⊆ E(G) of edges of cardinality at
most k and computes α(G/S). If there is some S such that α(G/S) ≤ α(G) − d
then we return Yes, and No otherwise. In order to compute α(G/S) for such
a subset S of edges, we first set G′ = G/S and consider the set of vertices
U ⊆ V (G′) which have been formed by contracting some edges in S (see line
4 of the algorithm). Observe that G[V (G′) \ U ] is isomorphic to G − V (S) and
induces thus a bipartite graph. Every independent set of G′ can be partitioned
into a set U ′ ⊆ U and a set W ⊆ V (G′) \ (U ∪ NG′(U ′)). Thus, we can find the
independence number of G′ by considering every independent subset U ′ of U
and computing α(G′ − (U ∪ NG′(U ′))) + |U ′|. The largest of these values is then
α(G′). The independence number of the bipartite graph G′ − (U ∪NG′(U ′)) can
be computed in polynomial time, see Lemma 2 and [1].

The number of subsets of E(G) of cardinality at most k is in O(|E(G)|k) =
O(|V (G)|4d). For any such subset S, the number of subsets U ′ ⊆ U is at most
2k ≤ 22d. Thus, the running time of Algorithm 2 is polynomial.
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Abstract. A palindromic substring T [i..j] of a string T is said to be
a shortest unique palindromic substring (SUPS) in T for an interval
[p, q] if T [i..j] is a shortest one such that T [i..j] occurs only once in
T , and [i, j] contains [p, q]. The SUPS problem is, given a string T of
length n, to construct a data structure that can compute all the SUPSs
for any given query interval. It is known that any SUPS query can be
answered in O(α) time after O(n)-time preprocessing, where α is the
number of SUPSs to output [Inoue et al., 2018]. In this paper, we first
show that α is at most 4, and the upper bound is tight. Also, we present
an algorithm to solve the SUPS problem for a sliding window that can
answer any query in O(log log W ) time and update data structures in
amortized O(log σ) time, where W is the size of the window, and σ is
the alphabet size. Furthermore, we consider the SUPS problem in the
after-edit model and present an efficient algorithm. Namely, we present
an algorithm that uses O(n) time for preprocessing and answers any k
SUPS queries in O(log n log log n+k log log n) time after single character
substitution. As a by-product, we propose a fully-dynamic data structure
for range minimum queries (RmQs) with a constraint where the width
of each query range is limited to polylogarithmic. The constrained RmQ
data structure can answer such a query in constant time and support a
single-element edit operation in amortized constant time.

1 Introduction

A substring T [i..j] of a string T is said to be a shortest unique palindromic
substring (in short, SUPS ) for an interval [p, q] if T [i..j] is the shortest sub-
string such that T [i..j] is a palindrome, T [i..j] occurs only once in T , and the
occurrence contains [p, q], i.e., [p, q] ⊆ [i, j]. The notion of SUPS was intro-
duced by Inoue et al. [19] in 20181, motivated by bioinformatics: for example, in
DNA/RNA sequences, the presence of unique palindromic sequences can affect
the immunostimulatory activities of oligonucleotides [21,31]. Given a string T of

1 A preliminary version of [19] appeared in IWOCA 2017 [26].

c© Springer Nature Switzerland AG 2022
C. Bazgan and H. Fernau (Eds.): IWOCA 2022, LNCS 13270, pp. 425–438, 2022.
https://doi.org/10.1007/978-3-031-06678-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06678-8_31&domain=pdf
http://orcid.org/0000-0003-2922-9434
http://orcid.org/0000-0002-2547-1509
https://doi.org/10.1007/978-3-031-06678-8_31


426 T. Mieno and M. Funakoshi

length n, the SUPS problem is to construct a data structure that can compute
all SUPSs for any given query interval. The SUPS problem was formalized by
Inoue et al. [19], and they showed that all SUPSs for a query interval can be
enumerated in O(α) time after O(n)-time preprocessing, where α is the num-
ber of SUPSs to output. Watanabe et al. [30] considered the SUPS problem on
run-length encoded strings and showed that all SUPSs for a query can be enu-
merated in O(

√
log r/ log log r + α) time after O(r log σR + r

√
log r/ log log r)

time preprocessing, where r is the size of the run-length encoded string and σR

is the number of distinct runs in the input.
Both of the above results are for a static string. It is a natural question

whether we can compute SUPSs efficiently in a dynamic string. In fact, since
DNA sequences contain errors and change dynamically, it is worthwhile to con-
sider them in a dynamic string setting. However, there is no research for solving
the SUPS problem on a dynamic string to the best of our knowledge. Thus,
in this paper, as a first step to designing dynamic algorithms, we consider the
problem on two semi-dynamic models: the sliding-window model and the after-
edit model. The sliding-window model aims to compute some objects (e.g., data
structure, compressed string, statistics, and so on) w.r.t. the window sliding over
the input string left to right. The after-edit model aims to compute some objects
w.r.t. the string after applying an edit operation to the input string. Edit oper-
ations are given as queries, and they are discarded after finishing to process for
the query. As related work, the set of minimal unique palindromic substrings
(MUPSs) can be maintained efficiently in the sliding-window model [25]. Also,
the set of MUPSs can be updated efficiently in the after-edit model [14]. Since
MUPSs are strongly related to SUPSs, we utilize the above known results for
MUPSs as black boxes.

In this paper, we propose an algorithm to solve the SUPS problem for a slid-
ing window and an algorithm to solve the SUPS problem after single-character
substitution. Also, we show that the number α of SUPSs for any single interval
is at most 4, and the upper bound is tight. Furthermore, as a by-product, we
propose a fully-dynamic data structure for the range minimum query (RmQ) in
which the width of each query range is in O(polylog(n)). The data structure can
answer such a query in constant time and update in (amortized) constant time
for any single-element edit operation. Note that, for the original RmQ without
any additional constraint, it is known that we need Ω(log n/ log log n) time for
answering a query when O(polylog(n)) updating time is allowed [2].

Related Work. A typical application to the sliding-window model is string
compression such as LZ77 [32] and PPM [9]. The sliding-window LZ77 compres-
sion is based on the sliding-window suffix tree [12,22,27,28]. Also, the sliding-
window suffix tree can be applied to compute minimal absent words [10] and
minimal unique substrings [24], which are significant concepts for bioinformat-
ics, in the sliding-window model. Recently, the sliding-window palindromic tree
was proposed, and it can be applied to compute MUPSs in the sliding-window
model [25].
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The after-edit model was formalized by Amir et al. [5] in 2017. They tackled
the problem of computing the longest common substring (LCS) for two strings
in the after-edit model, and proposed an algorithm running in polylogarithmic
time. Afterward, Abedin et al. [1] improved the complexities. Also, the problems
of computing the longest Lyndon substring [29], the longest palindrome [15], and
the set of MUPSs [14] were considered in the after-edit model.

As for more general settings, Amir et al. [6] proposed a fully-dynamic algo-
rithm for computing LCS for two dynamic strings. They also developed a gen-
eral (probabilistic) scheme for dynamic problems on strings and applied it to the
computation of the longest Lyndon substring and the longest palindrome in a
dynamic string. Besides that, there are several studies for dynamic settings (e.g.,
[4,8,16]). In particular, a fully-dynamic and deterministic algorithm for comput-
ing the longest palindrome was shown in [3]. Very recently, a suffix array data
structure for a dynamic string, where we can update and access any element in
polylogarithmic time, was proposed in [20].

Paper Organization. The rest of this paper is organized as follows: In Sect. 2,
we give basic notation and algorithmic tools. In Sect. 3, we show the tight bounds
on the maximum number of SUPSs for any interval. In Sect. 4, we consider how to
update SUPS data structures in semi-dynamic settings and propose efficient algo-
rithms. Finally, in Sect. 5, we propose a fully-dynamic data structure for answer-
ing RmQs, in which the width of each query range is limited to O(polylog(n)).

2 Preliminaries

2.1 Strings

Let Σ be an alphabet. An element of Σ is called a character. An element of Σ∗

is called a string. The length of a string T is denoted by |T |. The empty string
ε is the string of length 0. For each i with 1 ≤ i ≤ |T |, we denote by T [i] the
i-th character of T . If T = xyz, then x, y, and z are called a prefix, substring,
and suffix of T , respectively. For each i, j with 1 ≤ i ≤ j ≤ |T |, we denote by
T [i..j] the substring of T starting at position i and ending at position j. For
convenience, let T [i′..j′] = ε for any i′, j′ with i′ > j′. We say that string w
is unique in T if w occurs only once in T . For convenience, we define that the
empty string ε is not unique in any string. For a string T and a positive integer
p with p ≤ |T |, the integer p is a period of T if T [i] = T [i + p] holds for every i
with 1 ≤ i ≤ |T | − p. We also say that T has a period p if p is a period of T .

Let TR denote the reversal of a string T , i.e., T [i] = TR[n − i + 1] for every i
with 1 ≤ i ≤ n. A string P is called a palindrome if P = PR holds. A palindrome
P is called an even-palindrome (resp., odd-palindrome) if |P | is even (resp., odd).
The length-�|P |/2� prefix (resp., suffix) of a palindrome P is called the left arm
(resp., right arm) of P . Let w = T [i..j] be a palindromic substring of T . The
center of w is (i + j)/2 and is denoted by center(w). For a non-negative integer
�, x = T [i− �..j + �] is said to be an expansion of w if 1 ≤ i− � ≤ j + � ≤ n and x
is a palindrome. Also, T [i + �..j − �] is said to be a contraction of w. Further, if
i = 1, j = n, or T [i − 1] �= T [j + 1], then w is said to be a maximal palindrome.
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1 2 3 4 5 6 7 8 9 10 11 12 13

b a b b b a b b a b a b bT =

MUPSs of T

T([5,6])

Fig. 1. MUPSs in string T = babbbabbababb are bbb, bbabb, abba, and aba. SUPSs
for interval [5, 6] in T are T [2..6] = abbba and T [4..8] = bbabb. The first SUPS T [2..6]
is an expansion of MUPS T [3..5] = bbb, and the second SUPS T [4..8] itself is a MUPS.

A palindromic substring u = T [i..j] of a string T is said to be a minimal
unique palindromic substring (MUPS) in T if u is unique in T and T [i+1..j −1]
is not unique in T . A palindromic substring v = T [i..j] of a string T is said to be
a shortest unique palindromic substring (SUPS) for an interval [p, q] in T if v is
unique in T , the occurrence contains interval [p, q], and any shorter palindromic
substring of T that contains [p, q] is not unique in T . We denote by SUPST ([p, q])
the set of SUPSs for [p, q]. Note that all palindromes in SUPST ([p, q]) have equal
lengths. See also Fig. 1 for examples.

In what follows, we fix a string T of arbitrary length n > 0 over an integer
alphabet of size σ = O(poly(n)). Also, our computational model is a standard
word RAM model of word size Ω(log n).

2.2 Tools

Longest Common Extension. A longest common extension (in short, LCE)
query on string T is, given two integers i, j with 1 ≤ i ≤ j ≤ n, to compute the
length of the longest common prefix (LCP) of two suffixes T [i..n] and T [j..n]. It
is known (e.g., [18]) that any LCE query can be answered in constant time using
the suffix tree of T$ enhanced with a lowest common ancestor data structure,
where $ is a special character that is not in Σ. Once we build an LCE data
structure on string T#TR$, we can answer any LCE query in any direction on
T in constant time, where # �∈ Σ is another special character. Namely, we can
compute in constant time the length of (1) the LCP length of any two suffixes
of T , (2) the LCP length of the reverses of any two prefixes of T , and (3) the
LCP length of any suffix of T and the reverse of any prefix of T . We call such a
data structure a bidirectional LCE data structure.

RmQ, Predecessor and Successor. A range minimum query (RmQ) on inte-
ger array A is, given two indices i, j on A with i ≤ j, to compute the index of a
minimum value within A[i..j].
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A predecessor (resp., successor) query on non-decreasing integer array B is,
given an integer x, to compute the maximum (resp., minimum) value that is
smaller (resp., greater) than x. We use the famous van Emde Boas tree data
structure [11] to answer predecessor/successor queries. Namely, we can answer
a query and update the data structure in O(log log U) time on a dynamic array,
where U is the universe size. Also, the space complexity is O(U). Throughout
this paper, we will apply this result to only the case of U = n.

2.3 Our Problems

This paper handles SUPS problems under two variants of semi-dynamic models:
the sliding-window model and the after-edit model. The sliding-window SUPS
problem is to support any sequence of queries that consists of the following:

– pushback(c): append a character c to the right end of the string.
– pop(): remove the first character from the string.
– sups([p, q]): output all SUPSs of the string for an interval [p, q].

The after-edit SUPS problem on a string T is, given a substitution operation
and a sequence of intervals, to compute SUPSs of T ′ for each interval where T ′ is
the string after applying the substitution to the original string T . Note that each
substitution is discarded after the corresponding SUPS queries are answered.

From the point of view of how the string changes, there are differences
between the above two problems. On the one hand, in the sliding-window prob-
lem, the string can be changed dynamically under the constraints of positions
to be edited. On the other hand, in the after-edit problem, any position of the
string can be changed, however, the string returns to the original one after the
SUPS queries are answered.

3 Tight Bounds on Maximum Number of SUPSs for
Single Query

In this section, we prove the following theorem:

Theorem 1. For any interval [p, q] over T , the inequality |SUPST ([p, q])| ≤ 4
holds. Also, this upper bound is tight.

First, we prove Lemma 1. Roughly speaking, Lemma 1 states that there must
be periodicity when two palindromes overlap enough.

Lemma 1. Let x = T [i..i+�−1] and y = T [j..j+�−1] be palindromic substrings
of length � of string T with i < j. If x and y overlap, then z = T [i..j + � − 1]
has period 2d where d is the distance between their center positions.

Proof. Firstly, d = (2j +�−1)/2− (2i+�−1)/2 = j − i holds. Let z = rst where
r = T [i..j−1], s = T [j..i+�−1], and t = T [i+�..j]. Since x and y are palindromes,
sR is a prefix of x and a suffix of y. Namely, sR is both a prefix and a suffix of
z, and thus, z has period |z| − |sR| = (j − i + �) − (i − j + �) = 2(j − i) = 2d. �	
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d1

d2

cx cy
x

y

cz

z

U

V

W

Fig. 2. Illustration for three overlapped palindromes x, y, and z.

Now we are ready to prove Theorem 1.

Proof (of Theorem 1). Let us focus on the SUPSs, each of whose center is at
most p. For the sake of contradiction, we assume that there are three such
SUPSs of length � for a single query interval [p, q]. Let x, y, and z be the SUPSs
from left to right, and let cx, cy, and cz be their center positions (see also
Fig. 2). Further let d1 = cy − cx and d2 = cz − cy. Since the center positions
of the three SUPSs are at most p, and they cover the position p, they overlap
at least �/2 each other. Namely, d1 ≤ �/2, d2 ≤ �/2, and d1 + d2 ≤ �/2 hold.
Next, let U = T [�cx − �/2�..
cy + �/2�], V = T [�cy − �/2�..
cz + �/2�], and
W = T [�cx − �/2�..
cz + �/2�]. By Lemma 1, U has period 2d1 and V has period
2d2. Thus, y has periods both 2d1 and 2d2. Also, since 2d1 + 2d2 ≤ � holds, y
has a period g = gcd(2d1, 2d2) by the periodicity lemma [13] where gcd(a, b)
denotes the greatest common divisor of a and b. Then W also has period g
since g < |y| = � and g divides both period 2d1 of U and period 2d2 of V .
Furthermore, since g ≤ min(2d1, 2d2) ≤ d1 + d2 and d1 + d2 + � = |W |, the
inequality g + � ≤ |W | holds, and thus, x = W [1..�] = W [g + 1..g + �] holds by
the periodicity. This contradicts the uniqueness of x.

We have shown that the maximum number of SUPSs, each of whose center
is at most p, is two. Symmetrically, the maximum number of SUPSs, each of
whose center is at least p is also two. Thus, the maximum number of SUPSs for
a single query interval is four.

Finally, we show that the upper bound is tight. Let us consider the following
string S ∈ {a, b, c, A}∗:

S =cababacababacababacabacabacabacabaca \\ length 36
+ Aababacababacababa \\ length 18
+ Abacababacababacab \\ length 18
+ Abacabacabacabacab \\ length 18.
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The operator + denotes the concatenation of strings. For this string and
query interval [18, 18] (highlighted in blue in the figure), SUPSS([18, 18]) =
{[1, 19], [4, 22], [16, 34], [18, 36]} holds. Note that palindromes S[2..18], S[5..21],
and S[17..33], which are shorter than 19 and cover the interval [18, 18], are not
unique since each of them has another occurrence in the artificial gadgets con-
catenated by + operators. Also, it can be easily checked that all palindromes of
length at most 18 that cover the interval [18, 18] are not unique. �	

The above example having four SUPSs is of length 90, and the length of each
SUPS is 19. The smallest period of the former two SUPSs is 6, and that of the
latter two SUPSs is 4. We do not know if the example is the shortest one. As
a side node, it is open whether the upper bound is tight for binary strings. We
could find binary strings that have three SUPSs, e.g., the string baaababab has
three SUPSs baaab, ababa, and babab for position 5.

4 SUPS Data Structures

In this section, we introduce SUPS data structures under two semi-dynamic
models: the sliding-window model and the after-edit model. Our results are based
on the static method proposed by Inoue et al. [19]. We first review their data
structure for a static string.

4.1 Static Data Structure

The SUPS data structure proposed in [19] consists of the following:

– the set of MUPSs of T ,
– the set of maximal palindromes of T

(or a bidirectional LCE data structure on T , instead),
– a successor data structure on the starting positions of MUPSs,
– a predecessor data structure on the ending positions of MUPSs, and
– an RmQ data structure on the lengths of MUPSs.

Given a query interval [p, q], we can compute all SUPSs for [p, q] as follows:
First, we determine whether the interval [p, q] covers some MUPS or not by
querying the predecessor of q on the ending positions of MUPSs and the successor
of p on the starting positions of MUPSs. If [p, q] covers only one MUPS, the
shortest expansion of the MUPS that covers [p, q] is the only SUPS for [p, q] if
such a palindrome exists, and there are no SUPSs for [p, q] otherwise. If [p, q]
covers more than one MUPS, then there are no SUPSs for [p, q] since any SUPS
covers exactly one MUPS [19]. Otherwise, i.e., if [p, q] covers no MUPS, all SUPSs
are categorized into following three types (see also Fig. 3):

(1) an expansion of the rightmost MUPS Ml which ends before q,
(2) a MUPS covers [p, q], or
(3) an expansion of the leftmost MUPS Mr which begins after p.
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p q

Ml

Mr

(1)

(3)

(2)

Fig. 3. Illustration for candidates for SUPSs for interval [p, q]. Solid arrows represent
MUPSs, and dashed arrows represent expansions of MUPSs. Note that dashed arrows
may not be palindromes in general.

We call Ml and Mr the left-neighbor MUPS and the right-neighbor MUPS of
the interval [p, q], respectively. We can find Ml by querying the predecessor of q.
Also, we can determine whether there is an expansion of Ml, which covers [p, q]
by looking at the maximal palindrome centered at cl = center(Ml). Precisely,
if the maximal palindrome centered at cl covers [p, q], its shortest contraction
covering [p, q] is the only candidate of type (1). Otherwise, there is no SUPS
of type (1). We emphasize that we can also compute the maximal palindrome
centered at cl by querying bidirectional LCE once, without the precomputed
maximal palindromes. The candidate of type (3) can be treated similarly. Finally,
all SUPSs of type (2) can be computed by querying RmQ recursively on the
array MUPSlen of lengths of MUPSs sorted by their starting positions2. Let
[bi, ei], . . . , [bj , ej ] ∈ MUPS(T ) be all MUPSs covering [p, q]. Recall that such
range [i, j] of MUPSs can be detected by querying predecessor and successor
(see above). We query the RmQ on MUPSlen for the range [i, j], and obtain the
index k that is the answer of the RmQ. Namely, [bk, ek] is a shortest one within
[bi, ei], . . . , [bj , ej ]. Then, we further query the RmQ on MUPSlen for the ranges
[i, k−1] and [k+1, j], and repeat it recursively while obtained MUPS is a SUPS
for [p, q]. The above operations can be done in time linear in the number of
SUPSs to output by using linear size data structures of predecessor, successor,
and RmQ.

4.2 Sliding-Window Data Structures

We adapt some modifications to the above static data structures to answer any
SUPS queries for a sliding window.

It is shown in [25] that the number of changes of MUPSs is constant when we
append a character or delete the first character, and we can detect the changes
in amortized O(log σ) time. Further, predecessor and successor data structures
on the MUPSs can be updated dynamically in O(log log n) time using van Emde
Boas trees [11].

2 Since MUPSs cannot be nested [19], they are also sorted by their ending positions.
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For a dynamic RmQ data structure, we can use the one proposed by Brodal
et al. [7]. However, if we directly apply their data structure to our problem, the
updating time is in Ω(log n/ log log n), and it becomes a bottleneck. In order
to avoid such a situation, we use another dynamic data structure with some
constraints which suffice for our problem.

As in the algorithm described in the previous subsection, we will use RmQ
on the sequence of the lengths of MUPSs. The width of a query range of RmQ is
bounded by the number of MUPSs covering query interval [p, q] (see also Fig. 3).
It is known that the number of MUPSs covering any interval is O(log n) [14],
hence the width of a query range of RmQ is also O(log n). We call the range
minimum query such that the width of any query is constrained in O(polylog(n))
LogRmQ. Later, in Sect. 5, we show the following lemma:

Lemma 2. There exists a linear size data structure for a dynamic array A that
supports any LogRmQ on A in constant time. We can maintain the data structure
in constant time when an element of A is substituted by another value. Also, we
can maintain the data structure in amortized constant time when some element
is inserted to (or deleted from) A.

Finally, we show that the set of maximal palindromes for a sliding window
can be maintained efficiently. We generalize Manacher’s algorithm [23] to the
sliding-window model.

Manacher’s Algorithm for Sliding Window. Manacher’s algorithm is an
online algorithm that computes the set of maximal palindromes in a string. In
this subsection, we apply Manacher’s algorithm to the sliding-window model.
The problem had been solved in [17], however, we will describe a sliding-window
algorithm for completeness.

Important invariants of Manacher’s algorithm before reading the i-th char-
acter are (1) we know the center position c of the longest palindromic suffix of
T [1..i − 1], and (2) we know all the maximal palindromes, each of whose center
is at most c. Note that for the SUPS query, we are interested in maximal palin-
dromes, which are unique in the string. Since any palindrome whose center is
greater than c is not unique, the second invariant is sufficient for our purpose.

When a character is appended to the current window, we update the set of
maximal palindromes in the online manner of the original Manacher algorithm.
When the first character of the window is deleted, we do not need to do anything
if the window T [b..e] itself is not a palindrome. Instead, when we refer to the
arm-length of the maximal palindrome centered at a specified position, we need
to consider that the left-end of the palindrome may exceed the left-end of the
window. Namely, if the stored arm-length for center m is �m, the actual arm-
length is min{�m, �m − b�}.

If the window T [b..e] itself is a palindrome, we need to update the longest
palindromic suffix to keep the first invariant. This can be done in amortized
O(1) time as in Manacher’s algorithm. More precisely, for every (half) integers
j = 0.5, 1, 1.5 . . ., the arm-length of the maximal palindrome of center b+e

2 + j
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is equal to that of center b+e
2 − j. Thus, we copy them for incremental j’s until

we find a palindromic suffix of T [b + 1..e]. Then, we set c to the center position
of the suffix palindrome we found. Since the sequence of center positions of the
longest palindromic suffixes of the windows is non-decreasing while running the
algorithm, the total processing time is O(n).

Therefore, we obtain the following:

Theorem 2. There exists a data structure of size O(W ) for the sliding-window
SUPS problem that supports sups([p, q]) in O(log log W ) time and pushback(c)
and pop() in amortized O(log σ + log log W ) time, where W is the size of the
window.

4.3 After-Edit Data Structure

In this subsection, we design a SUPS data structure for the after-edit model.
Basically, the idea is the same as the previous one. The only difference is that we
do not maintain maximal palindromes in the after-edit SUPS problem. Instead,
we use a bidirectional LCE on the original string T .

Theorem 3. There exists a data structure of size O(n) for the after-edit SUPS
problem that can be updated in amortized O(log σ + (log log n)2 + d log log n)
time for a single substitution and can answer any subsequent SUPS queries in
O(k log log n) time, where d is the number of changes of MUPSs when the sub-
stitution is applied to T , and k is the number of the SUPS queries after the
substitution. Also, given a string T , the data structure can be constructed in
O(n) time.

Proof. Given a substitution operation, we can detect all the changes of MUPSs
in O(log σ + (log log n)2 + d) time [14]. Then, the set of MUPSs can be updated
in O(d) time, the predecessor/successor data structures can be updated in
O(d log log n) time, and the LogRmQ data structure can be updated in amor-
tized O(d) time by Lemma 2. Finally, we can compute the maximal palindromes
in T ′ that are expansions of the left-neighbor and the right-neighbor MUPSs by
answering a constant number of bidirectional LCE queries on T while skipping
the edited position (so-called kangaroo jumps). Also, it is known that the set
of MUPSs of T , the predecessor/successor data structures, and the LCE data
structure can be computed in O(n) time. Further, the LogRmQ data structure
can be computed in O(n) time by Lemma 2. �	

Note that the total query time can be written as Õ(1) time if k is in polylog(n)
since d ∈ O(log n) always holds [14].

5 Dynamic LogRmQ

In this section, we give a proof of Lemma 2. We assume that the width of the
query range is constrained in O(logc n) for a fixed constant c. We first consider
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B1

list the minima

B
L L

s t

small 
blocks

L

Fig. 4. Illustration for dividing a large block B into small blocks. Query [s, t] on B can
be reduced to queries inside the fourth and the seventh small blocks, and query [5, 6]
on B1.

dividing the input array A into blocks of size logc n. We call each of the blocks
large block. Then, we build a linear size dynamic RmQ data structure on each
large block. Given a query range of width O(logc n), we get range minima from
a constant number of large blocks and then naively compare them.

We update the RmQ data structure on the large block containing the edited
position when the input array A is edited. If the size of a large block becomes
far from logc n by insertions or deletions, then we split a block or merge contin-
uous blocks to keep the size in Θ(logc n). For example, we split a block into two
blocks when the block size exceeds 2 logc n and merge two adjacent blocks when
the block size falls below 1

2 logc n. If each large block can be updated in amor-
tized constant time, the whole data structure can also be updated in amortized
constant time. In the next subsection, we consider how to treat a large block.

5.1 Recursive Structure of Large Block

In order to update large blocks efficiently, we apply the path minima data struc-
ture proposed by Brodal et al. [7]. They treated the problem of path minima
queries on a tree, a generalization of range minimum queries on an array.

First, we divide a large block B of length Θ(logc n) into small blocks each of
length L = Θ(logε n) where ε < 1 is an arbitrary small constant.

Let B1 be the array of length Θ(logc−ε n) that stores the minima of small
blocks on B. A query on large block B can be reduced to at most two queries on
small blocks and at most one query on B1 (see Fig. 4). Similarly, for every i ≥ 2,
we divide Bi−1 into small blocks of the fixed-length L and let Bi be the array of
size Θ(logc−iε n) that stores the minima of small blocks on Bi−1. A query on Bi

can be reduced to at most two queries on small blocks and at most one query
on Bi+1 at the next level. We recursively apply such division until the size of Bi

becomes a constant. The recursion depth is O(c/ε), i.e., a constant. Notice that
recursion occurs at most once at each level. Thus, if we answer RmQ inside a
small block in constant time, then the total query time is also a constant.

We answer a query on each small block by using a lookup-table, where the
index is a pair of a small block and a query range, and the value is the answer
(the position of a minimum). Since RmQ returns the position corresponding
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to a range minimum, we can convert each small block as a sequence of their
local ranks. Then, the number of possible variants of such small blocks is at
most O((logε n)log

ε n) ⊂ o(n). Also, the total variations with all possible query
intervals are still O((logε n)2) ⊂ o(n), i.e., the number of elements in the lookup-
table is O((logε n)log

ε n+2) ⊂ o(n). Furthermore, a small block (i.e., an element
in the lookup-table) can be represented in o(log n) bits: the length, the pointers
to each element, and the local ranks. Thus, table lookup can be done in constant
time. Namely, the time complexity of an RmQ on a small block is constant.
For substitutions (resp., insertions and deletions), updating small blocks can
be done in worst-case (resp., amortized) constant time by combining another
lookup-table and Q-heap (cf. [7]). Therefore, we have proven Lemma 2.
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Abstract. An (n, m)-graph is a graph with n types of arcs and m types
of edges. A homomorphism of an (n, m)-graph G to another (n, m)-graph
H is a vertex mapping that preserves the adjacencies along with their
type and direction. An (n, m)-relative clique R of an (n, m)-graph G is a
vertex subset of G for which no two distinct vertices of R get identified
under any homomorphism of G to H. The (n, m)-relative clique number
of G, denoted by ωr(n,m)(G), is the maximum |R| such that R is a relative
clique of G. In this article, we prove that ωr(n,m)(G) ≤ 2(2n + m)2 + 2,
for any triangle-free planar colored mixed graph G for all (2n+m) ≥ 10.
Moreover, we show that this bound is tight. This partially settles a recent
conjecture due to Chakroborty, Das, Nandi, Roy and Sen (accepted in
Discrete Applied Mathematics).

Keywords: Colored mixed graphs · Homomorphism · Relative clique
number · Planar graphs

1 Introduction

In 2000, Nešetril and Raspaud [15] introduced the concept of colored homomor-
phisms of colored mixed graphs as a generalization of notion of graph homomor-
phisms.

An (n,m)-colored mixed graph, or simply, an (n,m)-graph G is a graph with
n different types of arcs and m different types of edges. We denote the set of
vertices, arcs, and edges of G by V (G), A(G), and E(G) respectively. Also we
denote the underlying graph of G by und(G).

In this article, we restrict ourselves to studying only those (n,m)-graphs
whose underlying graphs are simple graphs. Therefore, for specific values of
(n,m), we can capture the notions of simple graphs when (n,m) = (0, 1) [20],
oriented graphs when (n,m) = (1, 0) [9,17–19], 2-edge-colored graphs or signed
graphs when (n,m) = (0, 2) [11,13,14,16,21], general m-edge colored graphs
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when (n,m) = (0,m) [1], etc. well-studied families of graphs in a generalized
set up.

In this work though, whenever we use the term (n,m)-graphs, we mean it
for all values of (n,m) �= (0, 1) unless otherwise stated. Moreover, the upcoming
definitions of graph homomorphisms, chromatic numbers, clique numbers for
(n,m)-graphs truly capture the existing concepts of the same for all values of
(n,m), including (0, 1).

A homomorphism of an (n,m)-graph G to another (n,m)-graph H is a vertex
mapping f : V (G) → V (H) such that for any arc (resp., edge) xy in G, their
images induces an arc (resp., edge) f(x)f(y) of the same type in H. If there
exists a homomorphism of G to H, then we denote it by G → H.

Using the concept of homomorphisms of such graphs, Nešetril and Raspaud
[15] further presented a generalization of the notion of chromatic number by
introducing the (n,m)-chromatic number of an (n,m)-graph as

χn,m(G) := min{|V (H)| : G → H}.

For a family F of simple graphs, the (n,m)-chromatic number can be defined as

χn,m(F) := max{χn,m(G) : und(G) ∈ F}.
This parameter is studied for the family of graphs having bounded acyclic
chromatic number, bounded arboricity and acyclic chromatic number, bounded
maximum degree, sparse graphs, planar graphs and planar graphs with girth
restrictions, partial k-trees and partial k-trees with girth restrictions, outerpla-
nar graphs and outerplanar graphs with girth restrictions, etc. across several
papers [7,10,12,15].

Bensmail, Duffy, and Sen [2] contributed to this line of work by introducing
and studying generalizations of the concept of clique number. The generalization
ramifies into two parameters in the context of (n,m)-graphs. An (n,m)-relative
clique R ⊆ V (G) is a vertex subset satisfying |f(R)| = |R| for all homomorphisms
f of G to any H. The (n,m)-relative clique number of a graph G denoted by
ωr(n,m)(G), is,

ωr(n,m)(G) = max{|R| : R is an (n,m)-relative clique of G}.

An (n,m)-absolute clique A ⊆ G is a subgraph of G satisfying χn,m(A) = |V (A)|.
The (n,m)-absolute clique number of G denoted by ωa(n,m)(G), is,

ωa(n,m)(G) = max{|V (A)| : A is an (n,m)-absolute clique of G}.

For family F of simple graphs, both the parameters are defined similarly like
(n,m)-chromatic number. That is,

p(F) := max{p(G) : und(G) ∈ F}
where p ∈ {ωr(n,m), ωa(n,m)}. The two parameters are primarily being studied
for graphs with bounded degrees, planar, partial 2-trees and outerplanar graphs,
and their subfamilies due to girth restrictions [2,3].
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Observe that the above defined three parameters trivially satisfies the fol-
lowing relation

ωa(n,m)(G) ≤ ωr(n,m)(G) ≤ χn,m(G).

Therefore, the study of one impacts the other. We are now going to cherry pick
some results to motivate our work. First of all, the best known lower and upper
bounds for the (n,m)-chromatic number of planar graphs is given below. For
convenience, we denote the family of planar graphs with girth at least g by the
notation Pg.

Theorem 1 ([7,15]). For the family of planar graphs P3, we have:

(2n + m)3 + 2(2n + m)2 + (2n + m) + 1 ≤ χn,m(P3) ≤ 5(2n + m)4, m > 0 even

(2n + m)3 + (2n + m)2 + (2n + m) + 1 ≤ χn,m(P3) ≤ 5(2n + m)4, otherwise.

The theorem above can be treated as an approximate analogue of the Four-
Color Theorem in the context of (n,m)-graphs. For triangle-free planar graphs,
no such dedicated studies have been made, that is, an approximate analogue
of the Grötzsch’s Theorem is open till date. On the other hand, it turns out,
even though finding clique numbers for these two families, that is, the families
of planar and triangle-free planar graphs, is trivial for (n,m) = (0, 1), and it
is quite a challenging problem for the other values of (n,m). There has been
dedicated studies to explore these parameters even for (n,m) = (1, 0) [4–6], and
later for general values [2,3].

Let us recall the existing bounds for the two clique numbers for the families of
planar and triangle-free graphs to place our work into context. For convenience,
and due to space constraints, we present all these results under one theorem.

Theorem 2. For the families P3 of planar and P4 triangle-free planar graphs,
we have:

(i) 3(2n + m)2 + (2n + m) + 1 ≤ ωr(n,m)(P3) ≤ 42(2n + m)2 − 11 [3],
(ii) 3(2n+m)2 +(2n+m)+1 ≤ ωa(n,m)(P3) ≤ 9(2n+m)2 +2(2n+m)+2 [2],
(iii) (2n + m)2 + 2 ≤ ωr(n,m)(P4) ≤ 14(2n + m)2 + 1 [3],
(iv) ωa(n,m)(P4) = (2n + m)2 + 2 [3].

If one notices, except the last parameter, exact general values are not known for
the other parameters. In fact, there are conjectures that claim the lower bound
to be tight in the cases of Theorem 2(i) and (ii) [2,3]. For Theorem 2(iii), the
conjecture is the following.

Conjecture 1 ([3]). For the family P4 of triangle-free planar graphs we have

ωr(n,m)(P4) = 2(2n + m)2 + 2.

The above conjecture has been solved for (n,m) = (1, 0) [6] but, to the best
of our knowledge, is open for other values of it. Our main contribution of this
paper is to positively settle this conjecture for all (2n + m) ≥ 10 by proving the
following theorem.
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Theorem 3. For the family P4 of triangle-free planar graphs we have

ωr(n,m)(P4) = 2(2n + m)2 + 2

for all (2n + m) ≥ 10.

2 Preliminaries

In this section, we introduce some notations to help us write the proofs. Also,
we follow West [20] for standard definitions, notation and terminology.

Given an (n,m)-graph G the different types of arcs in G are distinguished
by n different labels 2, 4, · · · , 2n. To be precise, an arc xy with label 2i is an arc
of type i from x to y. In fact, in such a situation, y is called a 2i-neighbor of x,
or equivalently, x is called a (2i − 1)-neighbor of y. The different types of edges
in G are distinguished by m different types of labels 2n + 1, 2n + 2, · · · , 2n + m.
Here also, an edge xy with label 2n + j is an edge of type 2n + j between x and
y. In this case, x and y are called (2n + j)-neighbors of each other.

Usually, throughout the article, we will use the Greek alphabets such as
α, β, γ and their variants (like α′, β′, γ′, etc.) to denote these labels. Therefore,
whenever we use such a symbol, say α, one may assume it to be an integer
between 1 and (2n+m). Immediately applying this nomenclature, let us present
the notation of the set of all α-neighbors of x as Nα(x). Two vertices x, y agree
on a third vertex z if z ∈ Nα(x) ∩ Nα(y) for some α, and disagree on z otherwise.

3 Proof of the Theorem3

This section will be dedicated to the proof of Theorem 3. We will prove the
lower bound to begin with after introducing an important characterization of
(n,m)-relative cliques.

A special 2-path is a 2-path uwv such that u, v disagrees with each other on
w. In an (n,m)-graph G, a vertex u sees a vertex v if they are either adjacent, or
are connected by a special 2-path. If u and v are connected by a special 2-path
with w as the internal vertex, then it is said that u sees v via w or equivalently,
v sees u via w. We recall a useful characterization of an (n,m)-relative clique
due to Bensmail, Duffy and Sen [2].

Lemma 1 ([2]). Two distinct vertices of an (n,m)-graph G are part of a relative
clique if and only if they are either adjacent or connected by a special 2-path in
G, that is, they see each other.

With this, we are ready to prove the lower bound.

Lemma 2. There exists a triangle-free planar (n,m)-graph G such that

ωr(n,m)(G) = 2(2n + m)2 + 2.
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Proof. We are going to construct an example to prove this. We start with a
K2,2(2n+m)2 . Let the vertices in the partite set consisting of only two vertices of
it be x and y. The vertices from the other partite set be

{gαβ , g′
αβ : for all α, β ∈ {1, 2, · · · , 2n, 2n + 1, 2n + 2, · · · , 2n + m}}.

Next, assign colors and directions to the edges in such a way that gαβ and g′
αβ

become α-neighbors of x and β-neighbors of y. Finally, add special 2-paths of
the form gαβhαβg′

αβ connecting gαβ and g′
αβ .

Notice that, gαβ (or g′
αβ) sees gα′β′ (or g′

α′β′) via x if α �= α′ or via y if β �= β′.
If α = α′ and β = β′, then they the two vertices are gαβ and g′

αβ and they see
each other via hαβ . On the other hand, x and y are adjacent to each gαβ , while
they see each other via gα′β′ for some α′ �= β′. Thus, the gαβ 's together with x
and y, form an (n,m)-relative clique of cardinality 2(2n + m)2 + 2. 	


Next we concentrate on the upper bound. We prove the upper bound by the
method of contradiction. Therefore, let us assume that ωr(n,m)(P4) > 2(2n +
m)2 + 2.

Also we need some basic groundwork for the proof. A critical (n,m)-relative
clique H for the family P4 of triangle-free planar graphs is an (n,m)-graph H
satisfying the following properties:

(i) und(H) ∈ P4,
(ii) ωr(n,m)(H) = ωr(n,m)(P4),
(iii) ωr(n,m)(H∗) < ωr(n,m)(P4) if, in the dictionary ordering, we find that

(|V (H∗)|, |E(und(H∗))|) < (|V (H)|, |E(und(H))|), where H∗ ∈ P4.

Let us fix a particular critical (n,m)-relative clique H for the rest of this
proof. As H is a triangle-free planar graph, we fix a particular planar embedding
of it. Whenever we deal with something dependent on embedding of H or a
portion of it, we are actually referring to this particular fixed embedding. We also
fix a particular (n,m)-relative clique R of cardinality ωr(n,m)(H). Furthermore,
the vertices of R are called good vertices and those of S = V (H) \ R are called
the helper vertices. Notice that,

ωr(n,m)(H) = |R| = ωr(n,m)(P4) > 2(2n + m)2 + 2

due to our basic assumption. Thus, proving that there are at most 2(2n + m)2

good vertices in H, leads to a contradiction. We recall some useful results due
to Chakraborty, Das, Nandi, Roy and Sen [3].

Lemma 3. ([3]). The (n,m)-graph H is connected and the set S of helper
vertices in H is an independent set.

We recall a modified version of another lemma due to Chakraborty, Das,
Nandi, Roy and Sen [3] which we will use for our proofs.

Lemma 4. ([3]). A vertex x ∈ V (H) can have at most 2(2n + m) good α-
neighbors in H for any α.
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α α α

β β

x

g1 g3g2

y

Fig. 1. The exceptional configuration of Lemma 5. The symbols α and β are arc/edge
labels with respect to x, y, respectively. The thick edges g1g2 and g2g3 denote a special
2-path.

We prove a similar result for common good neighbors of two distinct vertices
as well, but for an exception. Notice that, it is possible for two vertices x, y of
H to agree on three good vertices as depicted in Fig. 1 where the good vertices
are also able to see each other via distinct helpers. Turns out this is the only
exception, otherwise, two distinct vertices of H can agree on at most 2 good
vertices.

Lemma 5. Two distinct vertices x, y of H can agree on at most 2 good vertices,
except when x, y are as in Fig. 1.

Proof. Suppose x and y have three good neighbors g1, g2, g3 from Nα(x)∩Nβ(y),
and at least another common good neighbor g4. Also assume that g1, g2, g3, g4
are arranged in an anti-clockwise order around x in the fixed planar embed-
ding of H. Notice that, as H is triangle-free, g1 must reach g3 via some
h �∈ {x, y, g1, g2, g3, g4}. This is not possible to achieve keeping the graph planar.
Hence, if x and y have four common good neighbors, then it is not possible for
three of the neighbors to agree on x and y.

If x and y have exactly three common neighbors g1, g2, g3, and all three agree
on x and y, then as H is triangle-free, gi must see gj via some hij for all i < j.
These hij 's must be distinct, otherwise a K3,3 will be created. Hence Fig. 1 is
forced whenever there is an exception. 	


In general, two vertices in H can have at most 2(2n + m)2 many common
good neighbors.

Lemma 6. Two distinct vertices x, y of H can have at most 2(2n + m)2 good
vertices in their common neighborhood.

Proof. As (2n+m) ≥ 2, and thus, 2(2n+m)2 ≥ 8, the exceptional case mentioned
in Lemma 5 satisfies the condition of the statement of this lemma.

In other case, Lemma 5 implies that

|Nα(x) ∩ Nβ(y) ∩ R| ≤ 2.



On Relative Clique Number of Triangle-Free Planar Colored Mixed Graphs 445

x

y

g1 g2 gk

R0

R1

Fig. 2. The configuration Fk.

As α, β can be chosen from a set of (2n + m) integers, we can have a total of
(2n+m)2 combinations of (α, β) pairs. Therefore, there can be at most 2(2n+m)2

good vertices in N(x) ∩ N(y). 	

The configuration Fk consists of two vertices x, y of H which may not

necessarily be good vertices and k common good neighbors of x, y, namely,
g1, g2, · · · , gk. Also, we assume a default embedding of Fk by assuming that
g1, g2, · · · , gk are arranged in an anti-clockwise order around x. Also, without
loss of generality, we may assume the embedding of Fk, as part of the fixed
embedding of H, to be such that the boundary of the unbounded region is the
4-cycle xg1ygkx. Thus the 4-cycle xg1ygkx divides the plane into two regions: a
bounded region containing other gi's called R, and an unbounded region called
R0. Moreover, the 2-paths of the type xgiy further subdivides the region R into
(k − 1) regions. These regions are called R1, R2, · · · , Rk−1, where Ri is bounded
by xgiygi+1x, for i ∈ {1, 2, · · · , k − 1}. See Fig. 2 for a pictorial representation
of this planar embedding.

If it is not possible for H to contain a Fk for some k, then we say that
Fk is forbidden in H. Therefore, Lemma 6 essentially says that Fk, for all k ≥
2(2n + m)2 + 1 is forbidden. We are going to show that Fk, for all k ≥ 3 is
forbidden as a key step of our proof.

Lemma 7. The configuration Fk, for all k ≥ 3 is forbidden in H.

Proof. We will prove this by induction. We suppose that the statement is true
for all k ≥ t + 1 and will prove that it is true for k = t, where t ≥ 3. The base
case is taken care by Lemma 6, where it is proved that Fk is forbidden for all
k ≥ 2(2n + m)2 + 1 in H.

Now we come to the induction step. Notice that, if a good vertex g which is
not part of Fk, belongs to region R0 (resp., R1, R2), then it must see g2 (resp.,
g3, g1) via x or y. Observe that, it is not possible for g to be adjacent to both x
and y, as otherwise, it will create a Ft+1, which is forbidden due to the induction
hypothesis.

Therefore, every good vertex of H, other than x, y, are either adjacent to both
x and y or exactly one of them. If in case, all of them are adjacent to x, then we
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x1 x2 xp

y1 y2 yq

x

y

g1 g2 gk

Fig. 3. Private good neighbors of x and y.

can say that there are maximum 2(2n + m)2 good vertices in the neighborhood
of x due to Lemma 4. This implies that H has at most 2(2n + m)2 + 2 good
vertices, the additional two vertices coming from counting x and y. Thus it is
not possible for all good neighbors other than x, y to be adjacent to x. Similarly,
it is not possible for all good neighbors other than x, y to be adjacent to y.

Therefore, there must be at least one good vertex which is adjacent to x
but not to y and at least one good vertex that is adjacent to y but not to x.
Notice that, these vertices must belong to the same region Ri for some i ∈
{0, 1, · · · , Rk−1}, as otherwise they will not be able to see each other. Hence,
without loss of generality, we may assume that all good vertices other than the
ones contained in Fk belong to R1. These good vertices are adjacent to exactly
one of x and y. Let us assume that x1, x2, · · · , xp are the good vertices adjacent
to x and not to y while y1, y2, · · · , yq are the good vertices adjacent to y and not
to x. Also suppose that x1, x2, · · · , xp are arranged in an anti-clockwise order
around x and y1, y2, · · · , yq are arranged in a clockwise order around y. Also
for convenience, xi's are called private good neighbors of x and yj 's are called
private good neighbors of y. Similarly, gi's are called common good neighbors of
x and y. See Fig. 3 for a pictorial reference. Furthermore, due to the symmetry,
we may assume that p ≥ q ≥ 1.

Observe that, if x has a private good α-neighbor, then it cannot have a
common good α-neighbor other than, possibly, g1, g2. Similar statement holds
for y and its private neighbors as well. Thus, if x (resp., y) has a (resp., b)
different types of adjacencies with its private neighbors, then x, y can have at
most (2n + m − a)(2n + m − b) types (with respect to adjacencies with x and
y) of common neighbors (other than, possibly, g1, g2). Thus, due to Lemma 5,
assuming Fk is not the exceptional case, there are at most 2(2n+m−a)(2n+m−b)
common good neighbors of x, y (other than, possibly, g1, g2). On the other hand,
due to Lemma 4, there are at most 2(2n + m)a private good neighbors of x and
2(2n + m)b private good neighbors of y. Notice that, it is possible to count g1
(resp., g2) among the number of common good neighbors of x, y if it is neither
adjacent to x with any of the a types of adjacencies, nor to y with any of the
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b types of adjacencies. Otherwise, it is possible to count them along with the
private neighbors. Thus the total number of good neighbors in H is at most

2(2n+m−a)(2n+m− b)+2(2n+m)a+2(2n+m)b+2 = 2(2n+m)2 +2ab+2

However, the above equation gets modified when p ≥ q ≥ 2. In that case note
that if x1 is adjacent to yq, then it is not possible for xp to see y1. Hence, x1 must
see yq via some h. This will force every xi to see yj via h, except for, maybe when
i = j = 1 or when i = p, j = q. If x1 agrees with y1 on h, then it is not possible
for any other xi (resp., y1), for i, j �= 1, to agree with x1 on h, as otherwise,
they cannot see y1 (resp., x1). Similar statement holds if xp agrees with yq on
h. Suppose if there are c types of adjacencies of h among private neighbors of x
and d types of adjacencies among private neighbors of y, the value of p + q can
be at most 2ac + 2bd. Therefore, without loss of generality assuming a ≥ b, the
revised upper bound of p + q is

p + q ≤ 2ac + 2bd ≤ 2(2n + m)a.

Hence, the revised upper bound for the total number of good neighbors in H is

2(2n + m − a)(2n + m − b) + 2(2n + m)a + 2 ≤ 2(2n + m)2 + 2.

Thus, we have a contradiction in the case when p ≥ q ≥ 2.
Next let us concentrate on the case when q = 1. In this case, each xi must see

y via y1 or via some hi. However, if xi sees y via some hi and is non-adjacent to
y1, then it must see y1 via some h′

i. Hence, in the worst case scenario, x1 and xp

will see y and y1 via h1, hp and h′
1, h

′
p, respectively while the other xi’s will see y

via y1. In this case, unless p ≤ 2, it is not possible for x1 to agree with xp on x.
Also, xi’s (for i �= 1, p) disagree with y on y1. Therefore, p + q ≤ 2(2n + m)a + 1
in this scenario. Hence, when q = 1 and p ≥ 3, the total number of good vertices
in H is at most

2(2n + m − a)(2n + m − 1) + 2(2n + m)a + 1 + 2 ≤ 2(2n + m)2 + 2.

On the other hand, if p ≤ 2, then the total number of private neighbors are
at most 3. In this scenario, the total number of good vertices in H is at most

2(2n + m − a)(2n + m − 1) + 3 + 2 ≤ 2(2n + m)2 − 2(2n + m)(a + 1) + a + 3 + 2.

Notice that the above bound is at most 2(2n+m)2 +2 as 2n+m ≥ 2 and a = 1
or 2. This completes the proof, except when Fk is the exceptional case.

If Fk is the exceptional case, then also it is possible to prove that the total
number of good vertices in H is at most 2(2n + m)2 + 2. Here, the counting
becomes simpler as the total number of common good neighbors of x, y is 3,
that is, the minimum possible value. Hence, all the above equations for the upper
bound of the total number of good vertices in H will give us 2(2n+m)2 +2 even
when Fk is the exceptional case. Hence, we are done. 	
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We now restrict the number of good neighbors for any vertex of H. To do
so, we need some supporting results.

Lemma 8. It is not possible for a vertex x ∈ V (H) to have four or more good
neighbors, with at least three of them being α-neighbors.

Proof. Suppose x has at least four good neighbors g1, g2, g3, g4 arranged in an
anti-clockwise order around x in the fixed embedding of H, where g1, g2, g3 are
α-neighbors.

Observe that, as H is a triangle-free graph, the only way for g1 to see g3 is
via some vertex h �∈ {x, g1, g2, g3, g4}. Similarly, g2 must see gi via some hi, for
all i ∈ {1, 3}. Notice that, h, h1, h3 are all distinct vertices, as otherwise, a F3

will be created which is forbidden due to Lemma7. Also as there is no way for
h1 and h3 to see g3 and g1 respectively, h1, h3 cannot be good vertices.

On the other hand, the 4-cycle xg1hg3x divides the plane into two connected
regions: the bounded region containing g2 and the unbounded region containing
g4. Let us call the unbounded region as R. Notice that, the bounded region is
further subdivided into three regions , say R1, R2, and R3 bounded by the cycles
xg1h1g2x, xg2h3g3x, and g1h1g2h3g3hg1, respectively.

Notice that, any good vertex g belonging to R3 must reach g4 via h. However,
then x and h will have three common good neighbors g1, g3, g4, creating a F3.
Therefore, R3 cannot contain any good vertices.

Furthermore, any good vertex belonging to R1 or R2 must see g4 via x, and
any vertex belonging to R must see g2 via x. Thus, every good vertex, maybe
except h and x itself, is adjacent to x. As x can have at most 2(2n + m)2 good
neighbors due to Lemma4, there can be at most 2(2n + m)2 + 2 good vertices
in H, counting x and h as well. 	


With the above lemma, we can further restrict the number of good neighbors
of any vertex in H.

Lemma 9. A vertex x ∈ V (H) can have at most 2(2n+m) good neighbors in H.

Proof. If x has at least 2(2n + m) + 1 good neighbors, then it will have at least
four neighbors with at least three of them being α-neighbors by the Pigeonhole
principle. According to Lemma 8, this is not possible. Hence x can have at most
2(2n + m) good neighbors. 	

Finally, we are ready to prove Theorem3.

Proof of Theorem 3. We know that there exists no helper vertex of degree one
in H. Also, two distinct helper vertex of degree two cannot have the exact same
neighborhood as H is critical. Let us delete all the helper vertices from und(H)
having degree two and put an edge between their neighbors. This so-obtained
graph H∗ will be a simple planar graph with helpers having degree at least three.
Also, the set of helper vertices still remain an independent set here.

We know that in every planar graph with minimum degree three, there exists
an edge xy such that the sum of the degrees of x and y is at most 13 due to
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Kotzig [8]. As helper vertices are independent by Lemma 3 and have at least
degree three, one of the end points of such an edge must be a good vertex of
degree at most 10. Let x be such a good vertex.

Notice that, all good neighbors of x must be contained in its neighborhood
or its second neighborhood. As any vertex can have at most 2(2n + m) good
neighbors, each of the neighbors of x can have at most 2(2n + m) − 1 many
good neighbors, other than x, in their neighborhood. Thus, x will have at most
2(2n+m)−10 good second neighbors, as it has at most 10 neighbors. Therefore,
the total number of good neighbors in H is at most 2(2n+m)10+1. Therefore, it
is a contradiction to the assumed number of good vertices in H for all (2n+m) ≥
10. This concludes the proof. 	


4 Conclusions

In this paper, we partially prove a conjecture that claims ωr(n,m)(P4) = 2(2n +
m)2 + 2 by showing its true for all values of (2n + m) ≥ 10. During the proof,
we have only used this relation (2n + m) ≥ 10 in the last part. We propose to
settle the conjecture for all values of 2n + m as a future work.
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Nešetřil, J., Perarnau, G., Rué, J., Serra, O. (eds.) Extended Abstracts EuroComb
2021. TM, vol. 14, pp. 745–751. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-83823-2 119

https://doi.org/10.1023/A:1008647514949
https://doi.org/10.1023/A:1008647514949
https://doi.org/10.1007/978-3-030-39219-2_22
https://doi.org/10.1007/978-3-030-39219-2_22
https://doi.org/10.1007/978-3-030-83823-2_119
https://doi.org/10.1007/978-3-030-83823-2_119


450 S. Nandi et al.

11. Montejano, A., Ochem, P., Pinlou, A., Raspaud, A., Sopena, É.: Homomorphisms
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Abstract. In some important application areas of hard real-time sys-
tems, e.g., avionics, automotive, industrial controls, and robotics, pre-
emptive sporadic tasks with harmonic periods and constrained deadlines
running on a uni-processor platform play an important role. For such
applications we have to check the system task set for guaranteed compli-
ance with deadlines. For this purpose, we present a new algorithm that
has a lower computational complexity than known algorithms for the
same system class. For this we determine the worst-case response time
for each task with a linear computational complexity in the number of
tasks, if the task priorities are defined according to their periodic request
rates. Otherwise we have to add the time for task ordering.

Keywords: Real-time systems · Response-time analysis · Polynomial
time algorithm · Workload function · Fixed point iteration · Harmonic
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1 Introduction

Hard real-time embedded systems must deliver functional correct results related
to their initiating events within specified time limits. Such systems are typically
modeled as a composition of a finite number of recurring tasks, each of which
releases a potentially infinite sequence of jobs. In the sporadic task model, the
jobs arrive at a time distance that is greater than or equal to the inter-arrival
time (called period), which thus represents an important task parameter. The
processing of a job must be completed at the latest with the relative deadline of
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the associated task. An important step in the design of such a system is therefore
the schedulability analysis, with which compliance with the time conditions is
checked.

In this paper we consider task executions by a single processor, tasks hav-
ing fixed priorities and we allow a task being preempted in order to perform
a higher priority task. A common method of schedulability analysis for these
characteristics is response time analysis (RTA) [1,8,16].

Real-time systems with harmonic tasks (the periods are integer multiples
of each other) have several advantages over systems with arbitrary periods, for
example, the processor utilization can be larger than in the general case and the
worst-case response times for the different tasks can be determined in polynomial
time [3], while in the general case RTA is NP-hard [6].

In the following we introduce an iterative method to determine the exact
worst-case response times of tasks in a harmonic task system.

1.1 Related Work

In 1973, Liu and Layland [12] had generalized the priority assignment result of
[7] to the optimality of Rate Monotonic (rm) Scheduling, where the smaller the
assigned periods, the larger the priorities of the tasks to be scheduled. They
also presented a simple sufficient schedulability test for periodic tasks with fixed
priorities under rm and the assumption that the deadline of a task is equal
to its period. Kuo and Mok [9] have shown that for harmonic periods keeping
the total processor utilization ≤1 is sufficient to schedule the task system with
the scheduling policy considered in [12]. After the pioneering paper by Liu and
Layland, much work has been done in the area of analysis for fixed-priority
preemptive scheduling fpps, e.g. for any static prioritisations and deadlines lower
than or equal to the task periods.

The exact Response Time Analysis (rta) for the fpps-model was first intro-
duced in 1986 by Joseph and Pandya [8], then in 1993 Audsley et al. [1] showed
how the response time could be calculated by solving a non-linear equation (sum
of ceiling terms) by fixed point iteration starting from a suitable initial time, thus
providing an exact schedulability test. Some work has been done [4,15] increas-
ing the initial value, some [13,14] have increased the step size of the iterations.
The goal of this work is to keep the number of iterations as small as possible,
while keeping it unknown in advance.

A different exact schedulability test has been proposed by Lehoczky et al.
[11] and is based on the time demand function and called time demand analysis
(TDA). It must be tested if the time demand function meets the timeline for
all multiples of the periods of the tasks with higher priority, which in the case
of harmonic tasks means that all multiples of the smallest period up to the
maximum period have to be examined.

Bonifaci et al. [3] allow any fixed priorities that are not dependent on any
other task parameters. The basic task and scheduling model is the same as in
our approach but the schedulability test is tda based. Their algorithm computes
the response time Rn of task τn in time O(n · log n+n · log Tmax), where Tmax =
max1≤i≤n(Ti). In [17] Xu et al. have adapted the tda method to harmonic task
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systems and rm schedules. Caused by the stronger assumptions their algorithm
uses a slightly smaller number of iterations than [3] which results in a total
running time O(n · log Tmax/Tmin), where Tmin = min1≤i≤n(Ti).

1.2 This Research

We present an algorithm that determines the exact worst-case response time
for fixed priority preemptive sporadic harmonic tasks with constrained deadlines
running on an uni-processor platform. Our method is based on the standard RTA
approach which performs a fixed point iteration on the basis of the processor
demand function which takes into account the worst-case execution time of the
examined task as well as the time duration in which it is preempted by higher-
priority tasks (total worst-case interference).

In contrast to the standard approach we present a parametric approximation
of this total worst-case interference that contributes to the response time of the
task considered. This approximation proceeds in n phases of fine-tuning to get
the exact total worst-case interference hence arriving to the exact response time.
Our main result improving the previous results in [3,17] is:

Theorem 1. There is an algorithm A which, given a list of n tasks τ1, . . . , τn

with harmonic periods computes the response time Rn of task τn in time O(n ·
log n). If the priorities are rate monotonic, the running time is O(n).

1.3 Organization

We formally define the terminology, notation and task model in Sect. 2. In Sect. 3,
we present our new algorithm for getting the worst-case response time for a task
in a time that is linear in n assuming that the higher priority tasks are ordered
by non-increasing periods. The correctness of the algorithm is proved in Sect. 4.
Since this algorithm operates with floating point numbers, errors can accumulate.
Therefore, in Sect. 5 we modify our algorithm so that only integer arithmetic is
needed.

2 System Model and Background

In this work, we analyze a list Γn = τ1, τ2, . . . , τn of n hard real-time sporadic
tasks, each one releasing a sequence of jobs at time 0. The tasks are scheduled over
a single processor by Preemptive Fixed Priorities (FPP). Task τi is characterized
by:

– a minimum time Ti (that we call period) between the arrival of two consecutive
jobs,

– a worst-case execution time Ci, and
– a relative deadline Di which is the time interval between the arrival time of

a job and the time at which the job should be completed
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– a fixed priority which is implicitly given by the order in the task list: τi has
a higher priority than τj if and only if i < j. At a given time, the processor
executes the task with the highest priority of all tasks currently ready for
execution. A running task at this time with a lower priority is preempted.

The task periods are assumed to be harmonic that is Ti divides Tj or vice
versa (Ti|Tj) or (Tj |Ti). All task parameters are positive integer numbers.

We assume constrained deadlines i.e., Ci ≤ Di ≤ Ti. The ratio Ui = Ci/Ti

denotes the utilization of task τi, that is, the fraction of time required by τi to
execute.

At the time instants denoted by ai,j (arrival time), the i-th task demands
the processor for executing its j-th job [2]. Two consecutive requests of the same
task cannot be separated by less than Ti, that is,

∀ij, ai,j+1 ≥ ai,j + Ti.

We denote the finishing time of the j-th job of the i-th task by fi,j .
We use abbreviated notations for the cumulative utilization of tasks with

successive indexes Uι...κ =
∑

i=ι...κ Ui. Notice that the utilization U1..n of entire
task set is equal to

∑n
j=1 Ci/Ti ≤ 1.

Also, we recall some basic notions related to fixed-priority preemptive
scheduling. In 1990, Lehoczky [10] introduced the notion of level-i busy period.

Definition 1. An interval [f(i, j) − a(i, j)) is called level-i busy period [10] if
(a) no task of priority i or higher becomes ready strictly before a(i, j). (b) task τi

becomes ready at time a(i, j) and its executions ends strictly before time f(i, j)
possibly suffering preemption by higher priority tasks within the interval.

Different level-i busy periods correspond to response times of different jobs of
a task and can have different lengths, which is why the notion of critical instants
is important.

Definition 2. A critical instant a(i, k) [12] of a task τi leads to the worst-case
response time for any job of that task (where k needs not to be unique):

f(i, k) − a(i, k) = maxj=1,2,... {f(i, j) − a(i, j)}
Under FPPS this is a time instant task τi is released simultaneously with

all higher priority tasks. Furthermore it is assumed that the subsequent jobs
arrive as soon as possible. Without loss of generality such an instant is set
equal to zero since the first jobs of all tasks arrive at this time instant (for all
1 ≤ i ≤ n, a(i, 1) = 0).

The worst-case response time Ri of a task τi is therefore

Ri = fi,1 − ai,1 (1)

In order to check the schedulability of a task system, it is sufficient to test
the response times for the first jobs on compliance with the condition Ri ≤ Di

[10].
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A task set is said to be schedulable when for all tasks τi the worst-case
response time Ri is lower than the relative deadline [5]:

∀i, Ri ≤ Di.

For simplification in the notation, from now on we consider the worst-case
response time of task τn but our results could easily be applicable for any i < n.

The total worst-case interference In−1 (t) describes the amount of time that
is taken for executing the tasks with a higher priority than τn during the time
interval [0, t).

In−1 (t) =
n−1∑

i=1

Ci ·
⌈

t

Ti

⌉

(2)

The total time demand for a complete execution of the n-th task is given by the
processor demand function:

Wn(t) = Cn + In−1(t) = Cn +
n−1∑

i=1

Ci ·
⌈

t

Ti

⌉

(3)

The worst-case response time is the first point in time (t > 0) at which t −
In−1 (t) = Cn. We therefore determine the worst-case response time Rn as the
least fixed point [1]:

Rn
def= min {t|Wn(t) = t > 0}

At time t = Rn we have therefore for the first time the equality:

Rn = Cn +
n−1∑

i=1

Ci ·
⌈

Rn

Ti

⌉

(4)

3 Main Results

According to (4) and as proven in [15] Rn may be determined by an iterative
technique starting with R

(0)
n and producing the values R

(1)
n , R

(2)
n , R

(3)
n , . . . by

applying the recurrence:

R(0)
n =

Cn

1 − U1...n−1
R(k)

n = Cn +
n−1∑

i=1

Ci ·
⌈

R
(k−1)
n

Ti

⌉

(5)

The iteration stops when R
(k)
n = R

(k−1)
n . Then we get Rn = R

(k)
n . Although the

iteration converges for U1...n ≤ 1 the number of iteration steps can be high.
One of the main results of our paper is the introduction of a completely

different sequence of exactly n approximations to the true value of Rn. It is
presented in Theorem 2.

In preparation of the theorem, we introduce a lemma that justifies the admis-
sibility of reordering tasks τ1, . . . , τn−1 when calculating the response time Rn

of task τn. Such rearrangements were also made in [3] and [2].
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Lemma 1. The task order τ1, . . . , τn−1 is immaterial for the cumulative worst-
case response time of task τn.

Proof. By (4) the worst-case response time of task τn is computed by summing
up the terms Ci�Rn/Ti�. The result is independent of the task order. ��

Now in order to keep the calculation of the indices simple in the various
processing steps described below, we choose an inverse rate-monotonic order. To
formally describe this reordering we introduce a bijective mapping

π : 1 . . . n − 1 → 1 . . . n − 1, (6)

in which π(i) = k signifies that task τk with priority k is at position i in the
new order. The reverse rate monotonic order satisfies the condition that for all
i < j period Tπ(j) divides the period Tπ(i) having the priorities π(i) and π(j),
respectively.

Theorem 2. Let a set of n tasks be given, where the first n−1 tasks are ordered
such that Tπ(n−1)|Tπ(n−2)| . . . |Tπ(2)|Tπ(1) and Uπ(1)...π(n−1) < 1 applies. Then the
least fixed point

Rn = Cn +
n−1∑

i=1

Cπ(i)

⌈
Rn/Tπ(i)

⌉
(7)

can be obtained in O(n) time by applying the iterative formula:

R̃(0)
n =

Cn

1 − Uπ(1)...π(n−1)
(8)

1 ≤ i ≤ n − 1, R̃(i)
n = R̃(i−1)

n +
Cπ(i)

(⌈
˜R(i−1)

n

Tπ(i)

⌉
− ˜R(i−1)

n

Tπ(i)

)

1 − Uπ(i+1)...π(n−1)
(9)

we finally get Rn = R̃
(n−1)
n .

The algorithm of Theorem 2 uses floating point operations. In Corollary 1,
we will modify the algorithm so that only integer operations are required.

4 Proof of Theorem 2

To obtain the result of Theorem 2, in this section we introduce a set of functions
Cn + Ĩ

(i)
n−1 (t) with growing i that represent closer approximations of the function

Cn + In−1 (t). We start with the approximation where all ceiling terms
⌈
t/Tπ(i)

⌉

in Eq. (2) are replaced with their respective lower bounds t/Tπ(i) and Cπ(i)/Tπ(i)

with Uπ(i). In each subsequent step, we replace one lower bound again with a
corresponding ceiling term, starting with the largest and ending with the smallest
period.
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0 ≤ i ≤ n − 1, Ĩ
(i)
n−1 (t) def=

∑

i+1≤j≤n−1

Uπ(j) · t +
∑

1≤j≤i

Cπ(j)

⌈
t

Tπ(j)

⌉

(10)

Notice that by this construction, In−1 (t) = Ĩ
(n−1)
n−1 (t) i.e. at the end there is no

subexpression that is linear in t.
In the following we prove that the values R̃

(i)
n calculated with Theorem 2

define the lowest points of intersections (R̃(i)
n , R̃

(i)
n ) between the identity function

Id(t) and the functions Cn + Ĩ
(i)
n−1 (t). With the equality Rn = R̃

(n−1)
n we then

get the fixed point for the actual problem.
We start with finding the sequence t0, . . . tn−1 of least fixed points of the

equations
t = Cn + Ĩ

(i)
n−1 (t) (11)

for all i. Since for all t and i < j : Ĩ
(i)
n−1 (t) ≤ Ĩ

(j)
n−1 (t) it is ti ≤ tj . It follows that

one can determine the fixed points in the order t0, t1, ..., tn−1 and thereby start
the iteration for ti with the initial value ti−1.

First, we reshape the Eqs. (10) for i < n − 1 by summing up the terms that
are linear in t. For i = 0 we get the fixed point equation:

t = Cn + Ĩ
(0)
n−1 = Cn +

∑

1≤j≤n−1

Uπ(j) · t (12)

We set Uπ(1)...π(n−1) for
∑

1≤j≤n−1 Uπ(j) and get the fixed point t0:

t0 =
Cn

1 − Uπ(1)...π(n−1)
(13)

We now consider some i and Eq. (10) and transform this equation into a
fixed point equation that is better suited for fixed point iteration since the RHS
does not contain terms linear in t.

t = Cn +
∑

i+1≤j≤n−1

Uπ(j) · t +
∑

1≤j≤i

Cπ(j)

⌈
t

Tπ(j)

⌉

(14)

We replace
∑

i+1≤j≤n−1 Uπ(j) by Uπ(i+1)···π(n−1) and summarize the linear
subexpressions on the left side of the following equation.

t · (1 − Uπ(i+1)···π(n−1)) = Cn +
∑

1≤j≤i

Cπ(j)

⌈
t

Tπ(j)

⌉

We divide the equation by (1−Uπ(i+1)···π(n−1)) and get the fixed point equations:

0 ≤ i ≤ n − 1, t =
Cn +

∑
1≤j≤i Cπ(j)

⌈
t

Tπ(j)

⌉

1 − Uπ(i+1)...π(n−1)
(15)
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The solutions of these equations can be interpreted as intersections of the identity
function Id(t) = t and a function we denote by Ki(t).

0 ≤ i ≤ n − 1, Ki (t) def=
Cn +

∑
1≤j≤i Cπ(j)

⌈
t

Tπ(j)

⌉

1 − Uπ(i+1)...π(n−1)
(16)

so that for the fixed points ti the equations ti = Ki (ti) apply.
Notice, that we get for i = n − 1 Kn−1(t) = Cn +

∑
1≤j≤n−1 Cπ(j)

⌈
t

Tπ(j)

⌉

such that the fixed point tn−1 = Kn−1(tn−1) is the response time Rn.
In the following we propose not to use the usual iteration to solve the fixed

point Eq. (5), but to determine the sequence t0, t1, t2, ..., tn−1 and we will show
that ti can be determined from ti−1 by applying exactly one iteration step, so
that a total of n steps are required.

First of all we have to show that we can solve the fixed point equations
t = Ki(t) by iteration.

Lemma 1. For any i with 0 ≤ i ≤ n − 1, the fixed point equation t = Ki(t) can
be solved by iteration starting with a value t ≤ ti.

Proof. We define a different task system with i+1 tasks τ ′
1, τ

′
2, . . . , τ

′
i , τ

′
n having

the periods Tπ(1), Tπ(2), . . . Tπ(i), Tn and the execution times

Cπ(1)/(1−Uπ(i+1)...π(n−1)). . .Cπ(i)/(1−Uπ(i+1)...π(n−1)), Cn/(1−Uπ(i+1)...π(n−1))

To determine the response time for this task system, we need to find the fixed
point ti = Ki(ti). This can be done by iteration if the total utilization for this
new task system is ≤1 [15]. Notice that in [15] the convergence of the fixed point
iteration is shown also for positive rational values of the execution times. The
total utilization is:

∑

1≤j≤i

Cπ(j)

Tπ(j) · (1 − Uπ(i+1)...π(n−1))
+

Cn

Tn · (1 − Uπ(i+1)...π(n−1))

By introducing Uπ(j) = Cπ(j)/Tπ(j) and using the abbreviation Uπ(1)...π(i) =∑
1≤j≤i Cπ(j)/Tπ(j) this can also be written as

Uπ(1)...π(i) + Un

1 − Uπ(i+1)...π(n−1)

The value of this fraction must be lower than or equal to 1. Since according to
our basic assumption Uπ(1)...π(i)+Un +Uπ(i+1)...π(n−1) = Uπ(1)...π(n−1)+Un ≤ 1,
the proof is given. ��
The functions (16) are also used in [14] to reduce the number of iterations apply-
ing the RTA method.

The solution defined by any of the equations t = Ki (t) is equal to that of
the corresponding equation t = Cn + Ĩi (t) as shown in the following lemma.
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Lemma 2. ti = Cn + Ĩi (ti) ⇔ ti = Ki(ti)

Proof. We start with the definition of ti:

ti = Cn + Ĩi (ti) = Cn + Uπ(i+1)...π(n−1) · ti +
∑

1≤j≤i

Cπ(j)

⌈
ti

Tπ(j)

⌉

(∗)

Using the transformation steps from (14) to (15) and the definition of Ki(t) in
(16) we get

ti =
Cn +

∑
1≤j≤i Cπ(j)

⌈
ti

Tπ(j)

⌉

1 − Uπ(i+1)...π(n−1)
= Ki(ti) (∗∗)

which proves the ⇒ direction. We can also start with Eq. (**) and make the
reverse conversion to Eq. (*). This proves the ⇐ direction. ��

In Eq. (16) we have introduced the functions Ki(t) which we also can repre-
sent in terms of Ki−1(t). This is advantageous because we plan an iterative deter-
mination of the fixed point ti = Ki(ti) with known fixed point ti−1 = Ki−1(ti−1).
We start with Eq. (16):

Ki−1(t) =
Cn +

∑
1≤j≤i−1 Cπ(j)

⌈
t/Tπ(j)

⌉

1 − Uπ(i)...π(n−1)

Multiplying this equation by 1 − Uπ(i)...π(n−1) results in the equality

Ki−1(t) · (1 − Uπ(i)...π(n−1)) = Cn +
∑

1≤j≤i−1

Cπ(j)

⌈
t/Tπ(j)

⌉

We add Cπ(i)

⌈
t

Tπ(i)

⌉
and get

Ki−1(t) · (1 − Uπ(i)...π(n−1)) + Cπ(i)

⌈
t/Tπ(i)

⌉
= Cn +

∑

1≤j≤i

Cπ(j)

⌈
t/Tπ(j)

⌉

The RHS of this equality is the numerator of Ki(t) as defined in (16) and we
replace the RHS by the LHS in terms of Ki−1(t)

Ki(t)=
Cn+

∑
1≤j≤i Cπ(j)

⌈
t/Tπ(j)

⌉

1 − Uπ(i+1)...π(n−1)
=

Ki−1(t)(1−Uπ(i)...π(n−1))+Cπ(i)

⌈
t/Tπ(i)

⌉

1 − Uπ(i+1)...π(n−1)

(17)
Using the equality Uπ(i)...π(n−1) = Uπ(i) + Uπ(i+1)...π(n−1) we get

Ki(t) = Ki−1(t) +
−Ki−1(t) · Uπ(i) + Cπ(i)

⌈
t/Tπ(i)

⌉

1 − Uπ(i+1)...π(n−1)
(18)

We now use this result to determine the smallest fixed point ti = Ki(ti) given
a known fixed point ti−1 = Ki−1(ti−1).
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Figure 1 illustrates the situation formally dealt with in the following lemma
with an example. It shows two functions Cn + Ĩi (t) and Cn + Ĩi−1 (t). We are
interested in the points of intersection with the identify function Id(t) = t and
want to construct the solution of ti = Cn + Ĩi (ti) = Ki(ti) knowing the solution
of ti−1 = Cn + Ĩi−1 (ti−1) = Ki−1(ti−1). So if we start at point (ti−1, ti−1) and
go upward to curve Ki(t), then Ki(ti−1) = ti, if we now go to the right we reach
the point (ti, ti).

t

νTπ(i) (ν+1)Tπ(i)

Id(t)

ti−1 ti

Cn + Ĩi (t)

Ki (t)

Cn+Ĩi−1 (t)

ti−1

ti

Fig. 1. The figure shows an example of functions Cn + ˜Ii (t), Cn + ˜Ii−1 (t), Ki (t), and

Id (t) as well as the solutions of ti−1 = Cn + ˜Ii−1 (t) and ti = Ki(ti)

Lemma 3. For a harmonic task system with n tasks where the first n − 1 tasks
are ordered such that Tπ(n−1)|Tπ(n−2)| . . . |Tπ(2)|Tπ(1) and Uπ(1)...π(n−1) < 1,
given a known fixed point ti−1 = Ki−1(ti−1) we obtain the fixed point ti = Ki(ti)
where

ti =
ti−1 · (

1 − Uπ(i)...π(n−1)

)
+ Cπ(i) ·

⌈
ti−1
Tπ(i)

⌉

1 − Uπ(i+1)...π(n−1)
(19)

Proof. By (18) we get for t = ti−1 and Ki−1(ti−1) = ti−1:

Ki(ti−1) = ti−1 +
−ti−1Uπ(i) + Cπ(i)

⌈
ti−1/Tπ(i)

⌉

1 − Uπ(i+1)...π(n−1)
≥ ti−1.
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In the case that ti−1 is a multiple of Tπ(i), the equality holds, i.e. Ki(ti−1) = ti−1,
so that ti−1 is already the fixed point ti we are looking for.

Otherwise ti−1 lies in an open interval (vTπ(i), (v+1)Tπ(i)) with some integer
v in which Ki(t) is constant, since the values of the ceiling terms in Ki(t) can
change only for integer multiples of Tπ(i). Due to the assumption that Tπ(i) does
not divide ti−1 we can write

t ∈ (vTπ(i), (v + 1)Tπ(i)) : Ki(t) = Ki(ti−1) =

ti−1 +
−ti−1Uπ(i) + Cπ(i)�ti−1/Tπ(i)�

1 − Uπ(i+1)...π(n−1)
> ti−1

This property is obtained formally because of the divisibility Tπ(i)|Tπ(j) for j < i
or Tπ(j) = aTπ(i) with a integer. With t being in (vTπ(i), (v+1)Tπ(i)) and Tπ(j) =
aTπ(i) we get t ∈ ((v/a)Tπ(j), ((v + 1)/a)Tπ(j)). The ceiling terms in Ki(t) only
assume new values at times that are multiples of the respective periods. We
therefore use �v/a� ≤ v/a and since v + 1 and a are positive integers we can
use the equality �((v + 1)/a)� = �((v + 1 − 1)/a)� + 1 = �((v)/a)� + 1 and
make the factors of Tπ(j) integer: t ∈ (�v/a�Tπ(j), (�v/a� + 1)Tπ(j)). This also
means that (vTπ(i), (v + 1)Tπ(i)) ⊆ (�v/a�Tπ(j), (�v/a� + 1)Tπ(j)) and ti−1 ∈
(�v/a�Tπ(j), (�v/a�+1)Tπ(j)).The values of the ceil-terms �t/Tπ(j)� are therefore
constant for all t in the interval. Since ti−1 lies in the interval (vTπ(i), (v+1)Tπ(i)),
we can state as an interim result:

j ≤ i, t ∈ (vTπ(i), (v + 1)Tπ(i)) : �t/Tπ(j)� = �ti−1/Tπ(j)�
i.e. the value of the ceiling terms does not change in these intervals and by (16)

t ∈ (vTπ(i), (v + 1)Tπ(i)) : Ki(t) = Ki(ti−1).

We now consider the point in time

yi = ti−1 +
−ti−1Uπ(i) + Cπ(i)�ti−1/Tπ(i)�

1 − Uπ(i+1)...π(n−1)
(20)

and show that yi is a fixed point, i.e. Ki(yi) = yi. We use the equality Uπ(i) =
Cπ(i)/Tπ(i) and factor out Cπ(i)/Tπ(i).

yi = ti−1 +
(�ti−1/Tπ(i)�Tπ(i) − ti−1)Cπ(i)/Tπ(i)

1 − Uπ(i+1)...π(n−1)

To show that this point also lies within the interval (vTπ(i), (v+1)Tπ(i)), we first
show that it lies below the upper interval boundary.

yi < ti−1 + �ti−1/Tπ(i)�Tπ(i) − ti−1 = �ti−1/Tπ(i)�Tπ(i) = (v + 1)Tπ(i)

Here we use the inequality 1 − Uπ(i+1)...π(n−1) > Uπ(i) = Cπ(i)/Tπ(i), which is
derived from the total utilization bound 1.
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Furthermore with Eq. (20) we get yi > ti−1 > vTπ(i). Since Ki(t) is constant
in this interval, it follows that

Ki(yi) = Ki(ti−1) = ti−1 +
(�ti−1/Tπ(i)�Tπ(i) − ti−1)Cπ(i)/Tπ(i)

1 − Uπ(i+1)...π(n−1)
= yi.

Thus yi is a point where the functions Ki(t) and Id(t) intersect.
Because of the case distinction here ti−1 is not a multiple of Tπ(i) and we

therefore have yi = Ki(ti−1) > ti−1, so the iteration to determine the least
fixed point can start with ti−1. After this time Ki(t) remains constant until time
(v + 1)Tπ(i), so that yi is the least fixed point. ��

We now summarize the proven statements in a proof of Theorem 2:

Proof. of Theorem 2 We carry out an induction proof.

Base case: In (13) we have defined the time t0 with t0 = K0(t0). This value is
equal with R

(0)
n

Induction step: Assume we have found the time ti−1 = Ki−1(ti−1) equal to
R̃

(i−1)
n in (9), then by Lemma 3 we have shown that the fixed point ti = Ki(ti)

can be determined (19) as

ti = ti−1 +
−ti−1 · Uπ(i) + Cπ(i) ·

⌈
ti−1
Tπ(i)

⌉

1 − Uπ(i+1)...π(n−1)
(21)

The Eq. (9) is equivalent to (21) if we substitute ti by R̃
(i)
n and ti−1 by R̃

(i−1)
n .

��

5 Improving the Algorithm

The algorithm in Theorem 2 uses floating-point arithmetic to determine the
response time, which means that rounding errors may accumulate and lead to
a wrong value. We therefore perform simple transformations to calculate Rn

with integer operations. We start the transformation of the algorithm with a
definition.

Definition 3. The worst-case i-idle time Hπ(i)...π(n−1) is the time within a
period

(
vTπ(i), (v + 1)Tπ(i)

]
the processor is not busy with any of the tasks

τπ(i), . . . , τπ(n−1).

One could determine this amount of time by applying

Hπ(i)...π(n−1)
def= Tπ(i) · (1 − Uπ(i)...π(n−1)) (22)

Notice that
Hπ(n−1) = Tπ(n−1) − Cπ(n−1)
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In order to determine the other values of the H-functions we consider (22)
for i and i + 1: We divide the equations by the respective period:

Hπ(i)...π(n−1)/Tπ(i) = (1 − Uπ(i)...π(n−1)) (23)

and
Hπ(i+1)...π(n−1)/Tπ(i+1) = (1 − Uπ(i+1)...π(n−1)) (24)

From these equalities follows with Uπ(i)...π(n−1) − Uπ(i) = Uπ(i+1)...π(n−1):

Hπ(i)...π(n−1)/Tπ(i) + Uπ(i) = Hπ(i+1)...π(n−1)/Tπ(i+1) (25)

We solve this equation by Hπ(i) using Uπ(i) = Cπ(i)/Tπ(i) and get:

Hπ(i)...π(n−1) = Hπ(i+1)...π(n−1) · Tπ(i)/Tπ(i+1) − Cπ(i) (26)

Notice that Tπ(i+1)|Tπ(i) such that Hπ(i)...π(n−1) is an integer.
We now can introduce the algorithm that uses only integer arithmetic:

Corollary 1. We define for 0 ≤ i ≤ n − 1, Q̃
(i)
n

def= R̃
(i)
n · (1 − Uπ(i+1)...π(n−1))

and get
Q̃(0)

n = Cn (27)

and for 1 ≤ i ≤ n − 1

Q̃(i)
n = Q̃(i−1)

n + Cπ(i)

⌈
R̃

(i−1)
n

Hπ(i)...π(n−1)

⌉

(28)

Finally, we get the response time Rn = Q̃
(n−1)
n

Proof. By Theorem 2 we have:

R̃(0)
n =

Cn

1 − Uπ(1)...π(n−1)

By definition of Q̃
(0)
n it follows Q̃

(0)
n = Cn

For the general case Theorem 2 Eq. (9) gives the solution

1 ≤ i ≤ n − 1, R̃(i)
n = R̃(i−1)

n +
Cπ(i) ·

(⌈
˜R(i−1)

n

Tπ(i)

⌉
− ˜R(i−1)

n

Tπ(i)

)

1 − Uπ(i+1)...π(n−1)

After multiplying the equation by 1 − Uπ(i+1)...π(n−1), combining the terms
linear in R̃

(i−1)
n , and observing the equality 1 − Uπ(i+1)...π(n−1) − Cπ(i)/Tπ(i) =

1 − Uπ(i+1)...π(n−1) − Uπ(i) = 1 − Uπ(i)...π(n−1) we get:

R̃(i)
n (1 − Uπ(i+1)...π(n−1)) = R̃(i−1)

n · (1 − Uπ(i)...π(n−1)) + Cπ(i) ·
⌈

R̃
(i−1)
n

Tπ(i)

⌉



464 T. H. C. Nguyen et al.

By definition of Q̃
(i)
n = R̃

(i)
n · (1 − Uπ(i+1)...π(n−1)) and Q̃

(i−1)
n = R̃

(i−1)
n · (1 −

Uπ(i)...π(n−1)) it follows

Q̃(i)
n = Q̃(i−1)

n + Cπ(i) ·
⌈

R̃
(i−1)
n

Tπ(i)

⌉

In Eq. (22) we have defined Hπ(i)...π(n−1) = Tπ(i) ·(1−Uπ(i)...π(n−1)) such that we
can expand the fraction that is argument of the ceiling operation by 1−Ui...n−1:

Q̃(i)
n = Q̃(i−1)

n + Cπ(i) ·
⌈

Q̃
(i−1)
n

Hπ(i)...π(n−1)

⌉

Finally, for i = n− 1 we have Q̃
(n−1)
n = R̃

(n−1)
n · (1−Un...π(n−1)) = R̃

(n−1)
n = Rn

(by Theorem 2).

We can take advantage of the fact that Q̃
(i−1)
n and Hπ(i)...π(n−1) are positive

integers. Therefore, we can use the equivalence
⌈

˜Q(i−1)
n

Hπ(i)...π(n−1)

⌉
=

⌊
˜Q(i−1)

n −1
Hπ(i)...π(n−1)

⌋
+1

and perform an integer division instead of applying the floor function.

6 Conclusions

Because of the manifold practical applications of task systems with harmonic
tasks it is important to take advantage of the special features resulting from the
divisibility of periods by all smaller periods. For example, response time analysis
is possible in strongly polynomial time with harmonic tasks, while in the general
case it has pseudo-polynomial complexity and is known to be NP-hard [6]. We
have introduced a new algorithm that calculates the exact worst-case response
time of a task in linear time O(n) when the higher-priority tasks are ordered by
non-increasing periods and in O(n · log n) in general.
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Abstract. Given a vertex-weighted graph G = (V, E) and a set S ⊆ V ,
the Subset Feedback Vertex Set (SFVS) problem asks for a ver-
tex set of minimum weight that intersects all cycles containing a vertex
of S. SFVS is known to be polynomial-time solvable on interval graphs,
whereas SFVS remains NP-complete on split graphs and, consequently,
on chordal graphs. Towards a better understanding of the complexity of
SFVS on subclasses of chordal graphs, we exploit structural properties
of a tree model in order to cope with the hardness of SFVS. Here we
consider variants of the leafage that measures the minimum number of
leaves in a tree model. We show that SFVS can be solved in polynomial
time for every chordal graph with bounded leafage. In particular, given
a chordal graph on n vertices with leafage �, we provide an algorithm

for SFVS with running time nO(�), thus improving upon nO(�2), the run-
ning time of the previously known algorithm obtained for graphs with
bounded mim-width. We complement our result by showing that SFVS
is W[1]-hard parameterized by �. Pushing further our positive result, it is
natural to consider a slight generalization of leafage, the vertex leafage,
which measures the minimum upper bound on the number of leaves of
every subtree in a tree model. However, we show that it is unlikely to
obtain a similar result, as we prove that SFVS remains NP-complete on
undirected path graphs, i.e., chordal graphs having vertex leafage at most
two. Lastly, we provide a polynomial-time algorithm for SFVS on rooted
path graphs, a proper subclass of undirected path graphs and graphs
of mim-width one, which is faster than the previously known algorithm
obtained for graphs with bounded mim-width.

Keywords: Subset feedback vertex set · Leafage · W-hardness

1 Introduction

Several fundamental optimization problems are known to be intractable on
chordal graphs, however they admit polynomial time algorithms when restricted
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to a proper subclass of chordal graphs such as interval graphs. Typical exam-
ples of this type of problems are domination or induced path problems
[2,5,12,23,25,32]. Towards a better understanding of why many intractable
problems on chordal graphs admit polynomial time algorithms on interval
graphs, we consider the algorithmic usage of the structural parameter named
leafage. Leafage, introduced by Lin et al. [30], is a graph parameter that cap-
tures how close is a chordal graph of being an interval graph. As it concerns
chordal graphs, leafage essentially measures the smallest number of leaves in a
clique tree, an intersection representation of the given graph [19]. Here we are
concerned with the Subset Feedback Vertex Set problem, SFVS for short:
given a vertex-weighted graph and a set S of its vertices, compute a vertex set
of minimum weight that intersects all cycles containing a vertex of S. Although
Subset Feedback Vertex Set does not fall to the themes of domination
or induced path problems, it is known to be NP-complete on chordal graphs
[16], whereas it becomes polynomial-time solvable on interval graphs [34]. Thus
our research study concerns to what extent the structure of the underlying tree
representation influences the computational complexity of Subset Feedback
Vertex Set.

An interesting remark concerning Subset Feedback Vertex Set, is the
fact that its unweighted and weighted variants behave computationally different
on hereditary graph classes. For example, Subset Feedback Vertex Set is
NP-complete on H-free graphs for some fixed graphs H, while its unweighted
variant admits a polynomial time algorithm on the same class of graphs [7,35].
Thus the unweighted and weighted variants of Subset Feedback Vertex
Set do not align. Subset Feedback Vertex Set remains NP-complete on
bipartite graphs [39] and planar graphs [18], as a generalization of Feedback
Vertex Set. Notable differences between the two latter problems regarding
their complexity status is the class of split graphs and 4P1-free graphs for which
Subset Feedback Vertex Set is NP-complete [16,35], as opposed to the
Feedback Vertex Set problem [7,11,38]. Inspired by the NP-completeness on
chordal graphs, Subset Feedback Vertex Set restricted on (subclasses of)
chordal graphs has attracted several researchers to obtain fast, still exponential-
time, algorithms [21,37].

On the positive side, Subset Feedback Vertex Set can be solved in
polynomial time on restricted graph classes [6,7,34,35]. Cygan et al. [14] and
Kawarabayashi and Kobayashi [29] independently showed that Subset Feed-
back Vertex Set is fixed-parameter tractable (FPT) parameterized by the
solution size, while Hols and Kratsch provided a randomized polynomial kernel
for the problem [24]. Related to the structural parameter mim-width, Bergoug-
noux et al. [1] recently proposed an nO(w2)-time algorithm that solves Subset
Feedback Vertex Set given a decomposition of the input graph of mim-
width w. As leaf power graphs admit a decomposition of mim-width one [26],
from the later algorithm Subset Feedback Vertex Set can be solved in
polynomial time on leaf power graphs if an intersection model is given as input.
However, to the best of our knowledge, it is not known whether the intersection
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model of a leaf power graph can be constructed in polynomial time. Moreover,
even for graphs of mim-width one that do admit an efficient construction of the
corresponding decomposition, the exponent of the running time given in [1] is
relatively high.

Habib and Stacho [22] showed that the leafage of a connected chordal graph
can be computed in polynomial time. Their described algorithm also constructs
a corresponding clique tree with the minimum number of leaves. Here we show
that Subset Feedback Vertex Set is polynomial-time solvable for every
chordal graph with bounded leafage. In particular, given a chordal graph with
a tree model having � leaves, our algorithm runs in O(�n2�+1) time. Thus, by
combining the algorithm of Habib and Stacho [22], we deduce that Subset
Feedback Vertex Set is in XP, parameterized by the leafage.

One advantage of leafage over mim-width is that we can compute the leafage
of a chordal graph in polynomial time, whereas we do not know how to compute
in polynomial time the mim-width of a chordal graph. However we note that a
graph of bounded leafage implies a graph of bounded mim-width and, further,
a decomposition of bounded mim-width can be computed in polynomial time
[17]. This can be seen through the notion of H-graphs which are exactly the
intersection graphs of connected subgraphs of some subdivision of a fixed graph
H. The intersection model of subtrees of a tree T having � leaves is a T ′-graph
where T ′ is obtained from T by contracting nodes of degree two. Thus the size
of T ′ is at most 2�, since T has � leaves. Moreover, given an H-graph and its
intersection model, a (linear) decomposition of mim-width at most 2|E(H)| can
be computed in polynomial time [17]. Therefore, given a graph of leafage �, there
is a polynomial-time algorithm that computes a decomposition of mim-width
O(�). Combined with the algorithm via mim-width [1], one can solve Subset

Feedback Vertex Set in time nO(�2) on graphs having leafage �. Notably, our
nO(�)-time algorithm is a non-trivial improvement on the running time obtained
from the mim-width approach.

We complement our algorithmic result by showing that Subset Feedback
Vertex Set is W[1]-hard parameterized by the leafage of a chordal graph.
Thus we can hardly avoid the dependence of the exponent in the stated running
time. Our reduction is inspired by the W[1]-hardness of Feedback Vertex
Set parameterized by the mim-width given in [27]. However we note that our
result holds on graphs with arbitrary vertex weights and we are not aware if
the unweighted variant of Subset Feedback Vertex Set admits the same
complexity behavior.

Our algorithm works on an expanded tree model that is obtained from the
given tree model and maintains all intersecting information without increasing
the number of leaves. Then in a bottom-up dynamic programming fashion, we
visit every node of the expanded tree model in order to compute partial solutions.
At each intermediate step, we store all necessary information of subsets of ver-
tices that are of size O(�). As a byproduct of our dynamic programming scheme
and the expanded tree model, we show how our approach can be extended in
order to handle rooted path graphs. Rooted path graphs are the intersection
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graphs of rooted paths in a rooted tree. They form a subclass of leaf powers
and have unbounded leafage (through their underlying tree model). Although
rooted path graphs admit a decomposition of mim-width one [26] and such a
decomposition can be constructed in polynomial time [15,20], the running time
obtained through the bounded mim-width approach is rather unpractical, as it
requires to store a table of size O(n13) even in this particular case [1]. By ana-
lyzing further subsets of vertices at each intermediate step, we manage to derive
an algorithm for Subset Feedback Vertex Set on rooted path graphs that
runs in O(n2m) time. Observe that the stated running time is comparable to the
O(nm)-time algorithm on interval graphs [34] and interval graphs form a proper
subclass of rooted path graphs.

Moreover, inspired by the algorithm on bounded leafage graphs we consider
its natural generalization concerning the vertex leafage of a graph. Chaplick and
Stacho [10] introduced the vertex leafage of a graph G as the smallest number k
such that there exists a tree model for G in which every subtree corresponding
to a vertex of G has at most k leaves. As leafage measures the closeness to
interval graphs (graphs with leafage at most two), vertex leafage measures the
closeness to undirected path graphs which are the intersection graphs of paths in
a tree (graphs with vertex leafage at most two). We prove that the unweighted
variant of Subset Feedback Vertex Set is NP-complete on undirected path
graphs and, thus, the problem is para-NP-complete parameterized by the vertex
leafage. An interesting remark of our NP-completeness proof is that our reduction
comes from the Max Cut problem as opposed to known reductions for Subset
Feedback Vertex Set which are usually based on, more natural, covering
problems [16,35].

2 Preliminaries

All graphs considered here are finite undirected graphs without loops and mul-
tiple edges. We refer to the textbook by Bondy and Murty [4] for any undefined
graph terminology and to the recent book of [13] for the introduction to Parame-
terized Complexity. For a positive integer p, we use [p] and −[p] to denote the sets
of integers {1, . . . , p} and {−1, . . . ,−p}, respectively. For a graph G = (VG, EG),
we use VG and EG to denote the set of vertices and edges, respectively. We use n
to denote the number of vertices of a graph and use m for the number of edges.
Given x ∈ VG, we denote by NG(x) the neighborhood of x. The degree of x is
the number of edges incident to x. Given X ⊆ VG, we define the neighborhood
NG(X) of X to be (∪{NG(x) : x ∈ X}) \ X. We denote by G − X the graph
obtained from G by the removal of the vertices of X. If X = {u}, we also write
G − u. The subgraph induced by X is denoted by G[X], and has X as its vertex
set and {uv | u, v ∈ X and uv ∈ EG} as its edge set. A clique is a set K ⊆ VG

such that G[K] is a complete graph.
Given a collection C of sets, the graph G = (C, {{X,Y } : X,Y ∈ C and X ∩

Y �= ∅}) is called the intersection graph of C. Structural properties and recogni-
tion algorithms are known for intersection graphs of (directed) paths in (rooted)
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trees [9,31,33]. Depending on the collection C, we say that a graph is chordal
if C is a collection of subtrees of a tree, undirected path if C is a collection of
paths of a tree, rooted path if C is a collection of directed paths of a rooted tree,
and interval if C is a collection of subpaths of a path. For any undirected tree
T , we use L(T ) to denote the set of its leaves, i.e., the set of nodes of T having
degree at most one. If T contains only one node then we let L(T ) = ∅. Let T be
a rooted tree. We assume that the edges of T are directed away from the root.
We denote the unique directed path from a node w to a node v by w → v. If
w → v exists in T , we say that v is a descendant of w and that w is an ancestor
of v. The leaves of a rooted tree T are exactly the nodes of T having in-degree
one and out-degree zero. Observe that for an undirected tree T with at least
one edge we have |L(T )| ≥ 2, whereas in a rooted tree T with at least one edge
|L(T )| ≥ 1 holds.

A binary relation, denoted by ≤, on a set V is called partial order if it is
transitive and anti-symmetric. For a partial order ≤ on a set V , we say that two
elements x and y of V are comparable if x ≤ y or y ≤ x; otherwise, x and y
are called incomparable. If x ≤ y and x �= y then we simply write x < y. Given
X,Y ⊆ V , we write X ≤ Y if for any x ∈ X and y ∈ Y , we have x ≤ y; if
X and Y are disjoint then X ≤ Y is denoted by X < Y . Given a rooted tree
T , we define a partial order on the nodes of T as follows: x ≤T y ⇔ x is a
descendant of y. It is not difficult to see that if x ≤T y and x ≤T z then y and
z are comparable, as T is a rooted tree.

A tree model of a graph G = (VG, EG) is a pair (T, {Tv}v∈VG
) where T is

a tree, called a host tree1, each Tv is a subtree of T , and uv ∈ EG if and only
if V (Tu) ∩ V (Tv) �= ∅. We say that a tree model (T, {Tv}v∈VG

) realizes a graph
H if its corresponding graph G is isomorphic to H. It is known that a graph is
chordal if and only if it admits a tree model [8,19]. The tree model of a chordal
graph is not necessarily unique. The leafage of a chordal graph G, denoted by
�(G), is the minimum number of leaves of the host tree among all tree models
that realize G, that is, �(G) is the smallest integer � such that there exists a tree
model (T, {Tv}v∈VG

) of G with � = |L(T )| [30]. Moreover, every chordal graph
G admits a tree model for which its host tree T has the minimum |L(T )| and
|V (T )| ≤ n [10,22]; such a tree model can be constructed in O(n3) time [22].
Thus the leafage �(G) of a chordal graph G is computable in polynomial time.

A generalization of leafage is the vertex leafage introduced by Chaplick and
Stacho [10]. The vertex leafage of a chordal graph G, denoted by v�(G), is the
smallest integer k such that there exists a tree model (T, {Tv}v∈VG

) of G where
|L(Tv)| ≤ k for all v ∈ VG. Clearly, we have v�(G) ≤ �(G).

We will only consider tree models of chordal graphs where the host tree is a
rooted tree. Under these terms, observe that �(G) = 0 iff G is a clique, �(G) ≤ 1
iff G is an interval graph, v�(G) ≤ 1 iff G is a rooted path graph, and v�(G) ≤ 2
if G is an undirected path graph.

1 The host tree is also known as a clique tree, usually when we are concerned with the
maximal cliques of a chordal graph [19].
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By an induced cycle of G we mean a chordless cycle. A triangle is a cycle
on 3 vertices. Hereafter, we consider subclasses of chordal graphs, that is graphs
that do not contain induced cycles on more than 3 vertices.

Given a graph G and S ⊆ V (G), we say that a cycle of G is an S-cycle if
it contains a vertex in S. Moreover, we say that an induced subgraph F of G is
an S-forest if F does not contain an S-cycle. Thus an induced subgraph F of
a chordal graph is an S-forest if and only if F does not contain any S-triangle.
In these terms, the Subset Feedback Vertex Set problem asks for a vertex
set of minimum (weight) size such that its removal results in an S-forest. The
set of vertices that do not belong to an S-forest is referred to as subset feedback
vertex set. In our dynamic programming algorithms, we focus on the equivalent
formulation of computing a maximum weighted S-forest.

For a collection C of sets of vertices, we write max
weight

{C ∈ C} to denote

arg max
C∈C

{weight(C)}, where weight(C) is the sum of weights of the vertices in C.

The collection of S-forests of a graph G, is denoted by FS . For any X,Y ⊆ VG

such that X ∩ Y = ∅ and G[Y ] ∈ FS , we write AY
X to denote an arbitrary

element of the collection max
weight

{U ⊆ X : G[U ∪ Y ] ∈ FS}. We use the opera-

tor ↔ between any two expressions involving such sets to denote that for any
particular evaluation of one there exists an evaluation of the other such that
both yield the same result. Our desired optimal solution is any element A∅

VG

of max
weight

{U ⊆ VG : G[U ] ∈ FS}. We will subsequently show that in order to

compute A∅
VG

it is sufficient to compute AY
X for a polynomial number of sets X

and Y .
Let G = (VG, EG) be a chordal graph and let X,Y ⊆ VG such that X ∩Y = ∅

and G[Y ] ∈ FS . A partition P of X is called nice if for any S-triangle St of
G[X ∪ Y ], there is a partition class Pi ∈ P such that V (St) ∩ X ⊆ Pi. In other
words, any S-triangle of G[X ∪ Y ] is involved with at most one partition class
of a nice partition P of X. With respect to the optimal defined solutions AY

X ,
we observe the following2:

Observation 2.1. Let G = (VG, EG) be a chordal graph and let X,Y ⊆ VG

such that X ∩ Y = ∅ and G[Y ] ∈ FS . Then, the following hold:

(1) AY
X ↔ AY ′

X for any Y ⊇ Y ′ ⊇ Y ∩ N(X ′) where X ′ = X \ {u ∈ X \ S :
Y ∩ N(u) ⊆ Y \ S}.

(2) AY
X ↔ ⋃

X′∈P AY
X′ for any nice partition P of X.

By Observation 2.1, we search for nice partitions of the vertex set X in
order to consider smaller instances of AY

X . More precisely, Observation 2.1 (2)
suggests how to consider the sets X ′ that form a nice partition of X, whereas
Observation 2.1 (1) indicates which vertices of Y are relative to each set X ′.

2 In this extended abstract all proofs are omitted due to space constraints. See a
preliminary full version [36] for all the details.
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3 Expanded Tree Model and Related Vertex Subsets

Given a tree model of a chordal graph, we are interested in defining a partial
order on the vertices of the graph that takes advantage of the underlying tree
structure. For this reason, it is more convenient to consider the tree model as
a natural rooted tree and each of its subtrees to correspond to at most one
vertex of the graph. Here we show how a tree model can be altered in order
to capture the appropriate properties in a formal way. We assume that G is a
chordal graph that admits a tree model (T, {Tv}v∈VG

) such that |L(T )| = �(G).
We will concentrate on the case in which |L(T )| ≥ 2 and T contains a non-leaf
node. The rest of the cases (i.e., |V (T )| ≤ 2) are handled by the algorithm on
interval graphs [34] in a separate way. For this purpose we say that a chordal
graph G is non-trivial if |V (T )| > 2.

A tree model (T, {Tv}v∈VG
) of G is called expanded tree model if

– the host tree T is rooted (and, consequently, all of its subtrees are rooted),
– for every v ∈ VG, L(Tv) �= ∅ holds, and
– every node of T is either the root or a leaf of at most one subtree Tv that

corresponds to a vertex v of G.

We show that any non-trivial chordal graph admits an expanded tree model
that is close to its tree model. In fact, we provide an algorithm that, given a
tree model of a non-trivial chordal graph G, constructs an expanded tree model
that realizes G.

Lemma 3.1. For any tree model (T, {Tv}v∈VG
) of G with |L(T )| = � ≥ 2 and

|L(Tv)| ≤ v� ≤ � for all v ∈ VG, there is an expanded tree model (T ′, {T ′
v}v∈VG

)
of G such that:

– |L(T ′)| = �,
– |L(Tv)| − 1 ≤ |L(T ′

v)| ≤ |L(Tv)| for every v ∈ VG, and
– |V (T ′)| ≤ |V (T )| + (1 + v�)(n − 1).

Moreover, given (T, {Tv}v∈VG
), the expanded tree model can be constructed in

time O(n2).

Hereafter we assume that (T, {Tv}v∈VG
) is an expanded tree model of a non-

trivial chordal graph G. For any vertex u of G, we denote the root of its cor-
responding rooted tree Tu in T by r(u). We define the following partial order
on the vertices of G: for all u, v ∈ VG, u ≤ v ⇔ r(u) ≤T r(v). In other words,
two vertices of G are comparable (with respect to ≤) if and only if there is a
directed path between their corresponding roots in T . For all u ∈ VG, we define
Vu = {u′ ∈ VG : u′ ≤ u}.

Observation 3.1. Let u, v, w, z ∈ VG. Then, the following hold:

(1) If uv ∈ EG, then u and v are comparable.
(2) If u ≤ v, z ≤ w, and u and z are comparable, then v and w are comparable.
(3) If u < v < w and uw ∈ EG, then vw ∈ EG.
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Lemma 3.2. For every u ∈ VG, we have N(Vu) ⊆ N(u).

For all u ∈ VG, we denote the set of all maximal proper predecessors of u by
� u. Notice that such vertices correspond to the children of r(u). We extend the
previous case of a single vertex, on subsets of vertices with respect to an edge.
For all u, v ∈ VG such that uv ∈ EG, we denote by � uv the set of all maximal
vertices of VG that are proper predecessors of both u and v but are not adjacent
to both, so � uv = maxG((Vu ∩ Vv) \ (N [u] ∩ N [v])). Recall that for any edge
uv ∈ EG, either u < v or v < u by Observation 3.1 (1). If u < v holds, then
� uv = maxG(Vu \(N [u]∩N(v))). For all U ⊆ VG, we define VU = {Vu : u ∈ U}.
The following two lemmas are crucial for our algorithms, as they provide natural
partitions into smaller instances.

Lemma 3.3. For every u ∈ VG, the collection V�u is a partition of Vu\{u} into
pairwise disconnected sets. For every u, v ∈ VG such that u < v and uv ∈ EG,
V�uv is a partition of Vu \ (N [u] ∩ N(v)) into pairwise disconnected sets.

Lemma 3.4. For every u ∈ VG, the collection V�u is a nice partition of Vu\{u}.
For every u, v ∈ VG such that u < v and uv ∈ EG, the collection V�uv is a nice
partition of Vu \ (N [u] ∩ N(v)).

Having defined the necessary predecessors of u, we next analyze specific solu-
tions described in AY

Vu
with respect to the vertices of � u. Both statements follow

by carefully applying Lemma 3.2 and Lemma 3.4.

Lemma 3.5. Let Y ⊆ VG \ Vu. (i) If u /∈ AY
Vu

then AY
Vu

↔
⋃

u′∈�u

A
Y ∩N(u′)
Vu′ .

(ii) Moreover, A∅
Vu

↔ max
weight

{
⋃

u′∈�u

A∅
Vu′ , {u} ∪

⋃

u′∈�u

A
{u}∩N(u′)
Vu′

}

.

4 SFVS on Graphs with Bounded Leafage

In this section our goal is to show that SFVS can be solved in polynomial time
on chordal graphs with bounded leafage. In particular, we concern ourselves with
chordal graphs that have an intersection model tree with at most � leaves and we
show that SFVS can be solved in nO(�) time on such graphs. In the case of � ≤ 2,
the input graph is an interval graph, so SFVS can be solved in O(nm) time [34].
We subsequently assume that we are given a chordal graph G that admits an
expanded tree model (T, {Tv}v∈VG

) with � = L(T ) ≥ 2, due to Lemma 3.1.
Given a subset of vertices of G, we collect the leaves of their corresponding

subtrees: for every U ⊆ VG, we define L(U) = ∪u∈UL(Tu). Notice that for any
non-empty U ⊆ VG, we have L(U) �= ∅, since (T, {Tv}v∈VG

) is an expanded tree
model. Moreover, we associate the nodes of T with the vertices of G for which
the nodes appear as leaves in their corresponding subtrees: for every V ⊆ VT , we
define L−1(V ) to be the set {u ∈ VG : L(Tu) ∩ V �= ∅}. For V ⊆ VT , we denote
by minT V the subset of minimal nodes of V with respect to ≤T . Observe that
minT V is a set of pairwise incomparable nodes, so |minT V | ≤ |minT VT | ≤ �.
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Lemma 4.1. Let U ⊆ VG and V ⊆ L(U). Then L−1(V ) ⊆ U .

Instead of manipulating with the actual vertices of U , our algorithm deals
with the representatives of U which contain the vertices of L−1(minT L(U)). In
particular, we are interested in the set of vertices F≤2(U) = F1(U) ∪ F2(U),
where F1(U) = L−1(minT {L(U)}) and F2(U) = L−1(minT {L(U \ F1(U))}). We
show that the representatives hold all the necessary information needed from
their actual vertices.

Lemma 4.2. Let u ∈ VG and W ⊆ VG \ Vu such that W �= ∅, G[{u} ∪ W ] is a
clique, and G[W ] ∈ FS, and let u ∈ AW

Vu
.

– If ({u} ∪ W ) ∩ S �= ∅ then W = {w} and no vertex of Vu ∩ N(u) ∩ N(w)
belongs to A

{w}
Vu

.

– If ({u} ∪ W ) ∩ S = ∅ then A
W∩N(u′)
Vu′ ↔ A

F≤2(({u}∪W )∩N(u′))
Vu′ , for any vertex

u′ ∈� u.

We next show that Lemma 3.5 (ii) and Lemma 4.2 are enough to develop
a dynamic programming scheme. As the size of the representatives is bounded
with respect to � by Lemma 4.1, we are able to store a bounded number of partial
subsolutions. In particular we show that we only need to compute AY

X such that
|X| = O(n) and |Y | ≤ 2� + 1.

Theorem 4.1. There is an algorithm that, given a connected chordal graph G
with leafage � ≥ 2 and an expanded tree model of G, solves the weighted Subset
Feedback Vertex Set problem in O(n2�+1) time.

If we let the leafage of a chordal graph to be the maximum over all of its
connected components then we reach to the following result.

Corollary 4.1. The weighted Subset Feedback Vertex Set problem can be
solved in time nO(�) for chordal graphs with leafage at most �.

We next prove that we can hardly avoid the dependence of the exponent in
the stated running time, since we show that Subset Feedback Vertex Set
is W[1]-hard parameterized by the leafage of a chordal graph. Our reduction is
inspired by the W[1]-hardness of Feedback Vertex Set parameterized by the
mim-width given by Jaffke et al. in [27].

Theorem 4.2. The weighted Subset Feedback Vertex Set decision prob-
lem on chordal graphs is W[1]-hard when parameterized by its leafage.

5 SFVS on Rooted Path Graphs

Here we show how to extend our previous approach for SFVS on rooted path
graphs. Rooted path graphs are exactly the intersection graphs of rooted paths
on a rooted tree. Notice that rooted path graphs have unbounded leafage. Our
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main goal is to derive a recursive formulation for AY
X , similar to Lemma 4.2. In

particular, we show that it is sufficient to consider sets Y containing at most one
vertex.

For any vertex u of G, we denote the leaf of its corresponding rooted path in
T by l(u). We need to define further special vertices and subsets. Let u, v ∈ VG

such that u < v. The (unique) maximal predecessor u′ of v such that l(u′) <
r(u) ≤ r(u′) is denoted by u � v. Moreover, for every V1, V2, V3 ⊆ VG, we define
the following sets:

– V〈V1|V2|V3〉 = {u ∈ VG : r(v1) < l(u) < r(v2) < r(u) ≤ r(v3) for some vi ∈
Vi, i ∈ {1, 2, 3}}

– V〈|V2|V3〉 = {u ∈ VG : l(u) < r(v2) < r(u) ≤ r(v3) for some vi ∈ Vi, i ∈ {2, 3}}
– V〈V1||V3〉 = {u ∈ VG : r(v1) < l(u) < r(u) ≤ r(v3) for some vi ∈ Vi, i ∈ {1, 3}}
Vertical bars indicate the placements of l(u), r(u) with respect to V1, V2, V3.

Lemma 5.1. Let u,w ∈ VG \ S such that u < w and uw ∈ EG. Then the
collection {V〈�uw||�u〉 \S}∪{Vu′ ∪ (V〈|{u′}|{u′�u}〉 \S)}u′∈�uw is a nice partition
of X = Vu \ ({u} ∪ (N(u) ∩ N(w) ∩ S)) with respect to any Y ⊆ VG \ X such
that Y ∩ S = ∅.

For every appropriate u, v, we denote the set Vu ∪ (V〈|{u}|{v}〉 \ S) by Vu,v.
Observe that Vu,u is simply Vu. First we consider the set A

{w}
Vu

for which u < w

and uw ∈ EG. If u /∈ A
{w}
Vu

then A
{w}
Vu

=
⋃

u′∈�u A
{w}∩N(u′)
Vu′ by Lemma 3.5 (i).

Also, recall that A∅
Vu

is described by the formula given in Lemma 3.5 (ii).

Lemma 5.2. Let u,w ∈ VG such that u < w and uw ∈ EG, and let u ∈ A
{w}
Vu

.

– If u ∈ S or w ∈ S then A
{w}
Vu

↔ {u} ∪
⋃

u′∈�uw

A
{u,w}∩N(u′)
Vu′ .

– If u,w /∈ S then A
{w}
Vu

↔ {u} ∪ (V〈�uw||�u〉 \ S) ∪
⋃

u′∈�uw

A
{u,w}∩N(u′)
Vu′,u′�u

.

We next deal with the sets AY
Vu,v

for which u < v, |Y | ≤ 1 and no vertex of
{v} ∪ Y belongs to S. Observe that Vu,v is not necessarily described by a set Vw

for some w ∈ VG. Thus we need appropriate formulas that handle such sets. For
doing so, notice that Vu,v \ {v} = Vu,u�v, since Vu,v = Vu ∪ (V〈|{u}|{v}〉 \ S) and
u ≤ u�v < v. This means that if v /∈ AY

Vu,v
, we have AY

Vu
= AY

Vu\{v} = AY
Vu,u�v

.

We subsequently assume that v ∈ A
{w}
Vu,v

.
Notice that given a partition P of a set X and a set X ′ ⊆ X, the collection

P ′ = {P ∩ X ′}P∈P is a partition of X ′. Furthermore, observe that if P is a nice
partition of X with respect to a set Y ⊆ VG \ X such that Y ∩ S = ∅, then P ′

is a nice partition of X ′ with respect to Y .

Lemma 5.3. Let u ∈ VG and v, w ∈ VG \ S such that u < v < w and {u, v, w}
induce a clique and let v ∈ A

{w}
Vu,v

. Then, A
{w}
Vu,v

↔ {v} ∪ (V〈�vw|{u}|{u�v}〉 \ S) ∪
⋃

u′∈Vu∩�vw

A
{v,w}∩N(u′)
Vu′,u′�v

.
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Now we are in position to state our claimed result, which is obtained in a
similar fashion with the algorithm given in Theorem 4.1.

Theorem 5.1. The weighted Subset Feedback Vertex Set problem can be
solved on rooted path graphs in O(n2m) time.

6 Vertex Leafage to Cope with SFVS

Due to Theorem 4.1 and Corollary 4.1, it is interesting to ask whether our
results can be further extended on larger classes of chordal graphs. Here we
consider graphs of bounded vertex leafage as a natural candidate towards such
an approach. However we show that Subset Feedback Vertex Set is NP-
complete on undirected path graphs which are exactly the graphs of vertex
leafage at most two. In particular, we provide a polynomial reduction from the
NP-complete Max Cut problem. Given a graph G, the Max Cut problem is
concerned with finding a partition of V (G) into two sets A and A such that the
number of edges with one endpoint in A and the other one in A is maximum
among all partitions. For two disjoint sets of vertices X and Y , we denote by
E(X,Y ) the set {{x, y} | x ∈ X, y ∈ Y }. In such terminology, Max Cut aims
at finding a set A ⊆ V (G) such that |E(A, V (G) \ A) ∩ E(G)| is maximum. The
cut-set of a set of vertices A is the set of edges of G with exactly one endpoint
in A, which is E(A, V (G) \ A) ∩ E(G). The Max Cut problem is known to
be NP-hard for general graphs [28] and remains NP-hard even when the input
graph is restricted to be a split or 3-colorable or undirected path graph [3]. We
mention that our reduction is based on Max Cut on general graphs.

Towards the claimed reduction, for any graph G on n vertices and m edges,
we will associate a graph HG on 12n2 + 4n + 2m vertices. First we describe
the vertex set of HG. For every vertex v ∈ V (G) we have the following sets of
vertices:

– X(v) = {x1
v, . . . , x2n

v } and X(v) = {x1
v, . . . , x2n

v },
– Y (v) = {y1

v , . . . , y2n+1
v } and Y (v) = {y1

v, . . . , y2n+1
v },

– Z(v) = {z1v , z1v, . . . , z2n+1
v , z2n+1

v }, and
– E(v) = {(v, x) | {v, x} ∈ E(G)}.

Observe that for every edge {u, v} ∈ E(G) there are two vertices in HG that
correspond to the ordered pairs (u, v) and (v, u). We denote by E(v) the set
{(x, v) | {x, v} ∈ E(G)}. The edge set of HG contains precisely the following:

– all edges required for the set
⋃

v∈V (G)(Y (v) ∪ Y (v) ∪ E(v)) to form a clique
– for every vertex v ∈ V (G),

• all elements of the sets E(X(v), Y (v)), E(X(v), Y (v)), E(X(v), E(v)),
and E(X(v), E(v));

• {xi
v, xn+i

v }, {xi
v, xn+i

v } for each i ∈ [n];
• {yj

v, zj
v}, {yj

v, zj
v}, {yj

v, zj
v}, {yj

v, zj
v} for each j ∈ [2n + 1].

This completes the construction of HG. An example of HG is given in Fig. 1.
In the following two lemmas, we show our main result of this section.
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T (HG)

X(a) X(b) X(c) X(a) X(b) X(c)

Y (a) Y (b) Y (c) Y (a) Y (b) Y (c)

ab ac ba bc ca cb

Z(a)

Z(b)

Z(c)HG

2n

2n+ 1

4n+ 2

Fig. 1. Illustrating the undirected path graph HG. On top left we show a graph G on
three vertices and on the bottom part we illustrate the corresponding graph HG. A
tree model T (HG) for HG, is given on the top right part. The vertices of HG that lie
on the grey area form a clique.

Lemma 6.1. For any graph G, HG is an undirected path graph.

Lemma 6.2. Let G be a graph with A ⊆ V (G), HG be the undirected path graph
of G, and let X =

⋃
X(v), X =

⋃
X(v), and Z =

⋃
Z(v). For the set of vertices

S = X ∪ X ∪ Z of HG, there is a subset feedback vertex set U of (HG, S) such
that |U | = 4n2 + n + 2m − k, where k is the size of the cut-set of A in G.

Theorem 6.1. The unweighted Subset Feedback Vertex Set decision
problem is NP-complete on undirected path graphs.
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Abstract. The pattern matching of strings in labeled graphs has
been widely studied lately due to its importance in genomics applica-
tions. Unfortunately, even the simplest problem of deciding if a string
appears as a subpath of a graph admits a quadratic lower bound under
the Orthogonal Vectors Hypothesis (Equi et al. ICALP 2019, SOF-
SEM 2021). To avoid this bottleneck, the research has shifted towards
more specific graph classes, e.g. those induced from multiple sequence
alignments (MSAs). Consider segmenting MSA[1..m, 1..n] into b blocks
MSA[1..m, 1..j1], MSA[1..m, j1 + 1..j2], . . ., MSA[1..m, jb−1 + 1..n]. The
distinct strings in the rows of the blocks, after the removal of gap sym-
bols, form the nodes of an elastic founder graph (EFG) where the edges
represent the original connections observed in the MSA. An EFG is called
indexable if a node label occurs as a prefix of only those paths that start
from a node of the same block. Equi et al. (ISAAC 2021) showed that such
EFGs support fast pattern matching and gave an O(mn logm)-time algo-
rithm for preprocessing the MSA in a way that allows the construction
of indexable EFGs maximizing the number of blocks and, alternatively,
minimizing the maximum length of a block, in O(n) and O(n log log n)
time respectively. Using the suffix tree and solving a novel ancestor prob-
lem on trees, we improve the preprocessing to O(mn) time and the
O(n log log n)-time EFG construction to O(n) time, thus showing that
both types of indexable EFGs can be constructed in time linear in the
input size.

Keywords: Multiple sequence alignment · Pattern matching · Data
structures · Segmentation algorithms · Dynamic programming · Suffix
tree

1 Introduction

Searching strings in a graph has become a central problem along with the devel-
opment of high-throughput sequencing techniques. Namely, thousands of human
genomes are now available, forming a so-called pangenome of a species [20]. Such
pangenome can be used to enhance various analysis tasks that have previously
been conducted with a single reference genome [3,8,11,13,14,18,19]. The most
popular representation for a pangenome is a graph, whose paths spell the input
genomes. The basic primitive required on such pangenome graphs is to be able
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to search occurrences of query strings (short reads) as subpaths of the graph.
Unfortunately, even finding exact matches of a query string of length q in a graph
with e edges cannot be done significantly faster than O(qe) time, and no index
built in polynomial time allows for subquadratic-time string matching, unless the
Orthogonal Vectors Hypothesis (OVH) is false [4,5]. Therefore, practical tools
deploy various heuristics or use other pangenome representations as a basis.

Fig. 1. An indexable elastic founder graph induced from a segmentation of an MSA.
The example is adapted from Equi et al. [6].

Due to the difficulty of string search in general graphs, Mäkinen et al. [12]
and Equi et al. [6] studied graphs induced from multiple sequence alignments
(MSAs), as we describe in Sect. 2. Any segmentation of an MSA naturally induces
a graph consisting of nodes partitioned into blocks with edges connecting con-
secutive blocks. Such elastic founder graph (EFG) is illustrated in Fig. 1. The
key observation is that if the resulting node labels do not appear as a prefix
of any other path than those starting at the same block, then there is an index
structure for the graph that supports fast pattern matching [6,12]. Equi et al. [6]
also showed that such indexability property is required, as the OVH-based lower
bound holds for EFGs derived from MSAs. Mäkinen et al. [12] gave an O(mn)
time algorithm to construct an indexable EFG with minimum maximum block
length, given a gapless MSA[1..m, 1..n]. Equi et al. [6] extended the result to gen-
eral MSAs. They obtained an O(mn log m)-time preprocessing algorithm which
allows the construction of indexable EFGs maximizing the number of blocks
and, alternatively, minimizing the maximum length of a block, in O(n) and in
O(n log log n) time, respectively. We recall these results in Sect. 3.

In this paper, we improve the preprocessing algorithm of Equi et al. to O(mn)
by performing an in-depth analysis of their solution based on the generalized suf-
fix tree GSTMSA built from the gaps-removed rows of the MSA (Sect. 4). Although
removing gaps constitutes a loss of essential information, this information can
be fed back into the structure by considering the right subsets of its nodes or
leaves. Then, the main step in preprocessing the MSA is solving a novel ancestor
problem on the tree structure of GSTMSA that we call the exclusive ancestor set
problem, and as our main contribution, we identify such problem and provide a
linear-time solution. This directly improves the solution by Equi et al. for con-
structing indexable EFGs maximizing the number of blocks from O(mn log m)
to O(mn) time. Moreover, in Sect. 5 we give a new algorithm that after the
O(mn)-time preprocessing can construct indexable EFGs minimizing the maxi-
mum block length in O(n) time. In our subsequent work [16], we extend these
techniques to minimize the maximum block height.
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2 Definitions

We follow the notation of Equi et al. [6].

Strings. We denote integer intervals by [x..y]. Let Σ = [1..σ] be an alphabet of
size |Σ| = σ. A string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn,
where Σn denotes the set of strings of length n over Σ. In this paper, we assume
that σ is always smaller or equal to the length of the strings we are working
with. A suffix (prefix ) of string T [1..n] is T [i..n] (T [1..i]) for 1 ≤ i ≤ n and
we say it is proper if i > 1 (i < n). The length of a string T is denoted |T |
and the empty string ε is the string of length 0. In particular, substring T [i..j]
where j < i is the empty string. For convenience, we denote with Σ∗ and Σ+

the set of finite strings and finite non-empty strings over Σ, respectively. The
lexicographic order of two strings A and B is naturally defined by the order of
the alphabet: A < B iff A[1..i] = B[1..i] and A[i + 1] < B[i + 1] for some i ≥ 0.
If i + 1 > min(|A|, |B|), then the shorter one is regarded as smaller. However,
we usually avoid this implicit comparison by adding an end marker $ to the
strings and we consider $ to be the smallest character lexicographically. The
concatenation of strings A and B is denoted as A · B, or just AB.

Elastic Founder Graphs. MSAs can be compactly represented by elastic founder
graphs, the vertex-labeled graphs that we formalize in this section.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings
drawn from Σ ∪ {−}, each of length n, as its rows. Here, − /∈ Σ is the gap
symbol. For a string X ∈ (Σ ∪ {−})∗, we denote spell(X) the string resulting
from removing the gap symbols from X. If an MSA does not contain gaps then we
say it is gapless, otherwise we say that it is a general MSA. Let P be a partitioning
of [1..n], that is, a sequence of subintervals P = [x1..y1], [x2..y2], . . . , [xb..yb]
where x1 = 1, yb = n, and for all j > 2, xj = yj−1 + 1. A segmentation
S of MSA[1..m, 1..n] based on partitioning P is the sequence of b sets Sk =
{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require for
a (proper) segmentation that spell(MSA[i, xk..yk]) �= ε for any i and k. We call
set Sk a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The
length of block Sk or its segment [xk..yk] is L(Sk) = L([xk..yk]) = yk − xk + 1.

Definition 1 (Block graph). A block graph is a graph G = (V,E, �) where
� : V → Σ+ is a function that assigns a string label to every node and for which
the following properties hold:

1. set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is,
V = V 1 ∪ V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i �= j;

2. if (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b − 1; and
3. if v, w ∈ V i then |�(v)| = |�(w)| for each 1 ≤ i ≤ b and if v �= w, �(v) �= �(w).

Definition 2 (Elastic block and founder graphs). We call a block graph
elastic if its third condition is relaxed in the sense that each V i can contain
non-empty variable-length strings. An elastic founder graph (EFG) is an elastic
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block graph G(S) = (V,E, �) induced by a segmentation S as follows: for each
1 ≤ k ≤ b we have Sk = {spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} = {�(v) : v ∈ V k}.
It holds that (v, w) ∈ E if and only if there exist k ∈ [1..b − 1], i ∈ [1..m] such
that v ∈ V k, w ∈ V k+1, and spell(MSA[i, xk..yk+1]) = �(v)�(w).

For example, in the general MSA[1..4, 1..13] of Fig. 1, the segmentation based
on partitioning [1..4], [5..8], [9..13] induces an EFG G(S) = (V 1 ∪ V 2 ∪ V 3, E, �)
where the nodes in V 1 and V 3 have labels of variable length.

By definition, (elastic) founder and block graphs are acyclic. For convention,
we interpret the direction of the edges as going from left to right. Consider a
path P in G(S) between any two nodes. The label �(P ) of P is the concatenation
of the labels of the nodes in the path. Let Q be a query string. We say that Q
occurs in G(S) if Q is a substring of �(P ) for any path P of G(S).

Definition 3 ([12]). EFG G(S) is repeat-free if each �(v) for v ∈ V occurs in
G(S) only as a prefix of paths starting with v.

Definition 4 ([12]). EFG G(S) is semi-repeat-free if each �(v) for v ∈ V occurs
in G(S) only as a prefix of paths starting with w ∈ V , where w is from the same
block as v.

For example, the EFG of Figure 1 is not repeat-free, since AGC occurs as a prefix of
two distinct labels of nodes in the same block, but it is semi-repeat-free since all
node labels �(v) with v ∈ V k occur in G(S) only starting from block V k, or they
do not occur at all elsewhere in the graph. We will discuss these two indexability
properties together as the (semi-)repeat-free property, when applicable.

Basic Tools. A trie [2] of a set of strings is a rooted directed tree with outgoing
edges of each node labeled by distinct symbols such that there is a root-to-leaf
path spelling each string in the set; the shared part of the root-to-leaf paths of
two different leaves spell the common prefix of the corresponding strings. In a
compact trie, the maximal non-branching paths of a trie become edges labeled
with the concatenation of labels on the path. The suffix tree of T ∈ Σ∗ is the
compact trie of all suffixes of string T$. In this case, the edge labels are substrings
of T and can be represented in constant space as an interval. Such tree takes
linear space and can be constructed in linear time, assuming that σ ≤ |T |, so
that when reading the leaves from left to right the suffixes are listed in their
lexicographic order. [7,21] We say that two or more leaves of the suffix tree
are adjacent if they succeed one another when reading them left to right. A
generalized suffix tree is one built on a set of strings. In this case, string T above
is the concatenation of the strings with symbol $ between each.

Let Q[1..m] be a query string. If Q occurs in T , then the locus or implicit
node of Q in the suffix tree of T is (v, k) such that Q = XY , where X is the
path spelled from the root to the parent of v and Y is the prefix of length k of
the edge from the parent of v to v. The leaves in the subtree rooted at v, or the
leaves covered by v, are then all the suffixes sharing the common prefix Q. Let
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aX and X be the paths spelled from the root of a suffix tree to nodes v and w,
respectively. Then one can store a suffix link from v to w.

String B[1..n] from a binary alphabet is called a bitvector. The operation
rank(B, i) returns the number of 1s in B[1..i], whereas the operation select(B, j)
returns the index i containing the j-th 1 in B. Both queries can be answered
in constant time using an index requiring o(n) bits in addition to the bitvector
itself and computable in linear time [9,10].

3 Overview of EFG Construction Algorithms

Equi et al. have shown that (semi-)repeat-free EFGs are easy to index for fast
pattern matching [6], and as we describe in Sect. 3.1 they extended the previous
research for the gapless and repeat-free setting showing that finding (semi-)
repeat-free elastic founder graphs is equivalent to finding (semi-)repeat-free MSA
segmentations. Moreover, to show that the (semi-)repeat-free property does not
hinder the flexibility in choosing the resulting EFGs, they considered the following
score functions for MSA segmentations: i. maximizing the number of blocks, and
ii. minimizing the maximum length of a block.

In the gapless and repeat-free setting, scores i. and ii. admit the con-
struction of indexable founder graphs in O(mn) time, thanks to previous
research on founder graphs and MSA segmentations [1,12,15]. In the gen-
eral and semi-repeat-free setting, Equi et al. have given O(mn log m) and
O(mn log m+n log log n)-time algorithms for scores i. and ii., respectively, based
on a common preprocessing of the MSA that we review in Sect. 3.2.

3.1 Segmentation Characterization for Indexable EFGs

Consider a segmentation S = S1, S2, . . . , Sb that induces a (semi-)repeat-free
EFG G(S) = (V,E, �), as per Definition 2. The strings occurring in graph G(S)
are a superset of the strings occurring in the original MSA rows because each node
label can represent multiple rows and each edge (v, w) ∈ E means the existence
of some row spelling �(v)�(w) in the corresponding consecutive segments. For
example, string GACTAGT occurs in the EFG of Fig. 1 but it does not occur in any
row of the original MSA.

The (semi-)repeat-free property involves graph G(S), but luckily it does not
depend on the new strings added in the founder graph and can be checked only
against the MSA and segmentation S. This simplifies choosing a segmentation
resulting in an indexable founder graph and it was initially proven by Mäkinen
et al. in the gapless and repeat-free setting.

Lemma 1 (Characterization, gapless setting [12]). We say that a segment
[x..y] of a gapless MSA[1..m, 1..n] is repeat-free if string MSA[i, x..y] occurs in
the MSA only at position x of some row, for all 1 ≤ i ≤ m. Then G(S) is
repeat-free if and only if all segments defining S are repeat-free.
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Equi et al. in [6] refined this property for MSAs with gaps, but did not provide
an explicit proof. Since it is essential for the correctness of the construction
algorithms, we provide such a proof in the full version of this paper [17].

Lemma 2 (Characterization [6]). We say that segment [x..y] of a general
MSA[1..m, 1..n] is semi-repeat-free if for any i, i′ ∈ [1..m] string spell(MSA[i, x..y])
occurs in gaps-removed row spell(MSA[i′, 1..n]) only at position g(i′, x), where
g(i′, x) is equal to x minus the number of gaps in MSA[i′, 1..x]. Similarly, [x..y]
is repeat-free if the eventual occurrence of spell(MSA[i, x..y]) at position g(i′, x)
in row i′ also ends at position g(i′, y). Then G(S) is (semi-)repeat-free if and
only if all segments of S are (semi-)repeat-free.

3.2 EFG Construction Algorithms

Just as in the gapless and repeat-free setting, Lemma 2 implies that the opti-
mal score s(j) of a (semi-)repeat-free segmentation of the general MSA prefix
MSA[1..m, 1..j] can be computed recursively for a variety of scoring schemes:

s(j) =
⊕

j′ : 0≤j′<j s.t.
MSA[1..m,j′+1..j] is
(semi-)repeat-free

E
(
s(j′), j′, j

)
(1)

where operator
⊕

and function E depend on the desired scoring scheme. Indeed:
i. for s(j) to be equal to the optimal score of a segmentation maximizing the
number of blocks, set

⊕
= max and E(s(j′), j′, j) = s(j′) + 1; for a correct

initialization set s(0) = 0 and if there is no (semi-)repeat-free segmentation set
s(j) = −∞; ii. for minimizing the maximum block length, set

⊕
= min and

E(s(j′), j′, j) = max(s(j′), L([j′ + 1, j])) = max(s(j′), j − j′); set s(0) = 0 and if
there is no (semi-)repeat-free segmentation set s(j) = +∞.

Equi et al. studied the computation of semi-repeat-free segmentations opti-
mizing for these two scores [6]. The algorithms they developed—and that we will
improve in Sects. 4 and 5—are based on a common preprocessing of the valid
semi-repeat-free segmentation ranges, based on the following observation.

Observation 1 (Semi-repeat-free right extensions [6]). Given a general
MSA[1..m, 1..n], for any x < y we say that segment [x + 1..y] is an extension of
prefix MSA[1..m, 1..x]. If extension [x + 1..y] is semi-repeat-free, then extension
[x + 1..y′] is semi-repeat-free for all y < y′ ≤ n.

Note that in the presence of gaps Observation 1 does not hold if we swap the semi-
repeat-free notion with the repeat-free one, or if we swap the right extensions
with the symmetrically defined left extensions.

To compute s(j), Eq. (1) considers all semi-repeat-free right extensions
[j′ + 1..j] ending at column j. Equi et al. discovered that the computation of
values s(j) can be done efficiently by considering that each semi-repeat-free right
extension [j′ + 1..j] has as prefix a minimal (semi-repeat-free) right extension
[j′ + 1..f(j′)], with function f defined as follows.
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Definition 5 (Minimal right extensions [6]). Given MSA[1..m, 1..n], for
each 0 ≤ x ≤ n − 1 we define value f(x) as the smallest integer greater than x
such that segment [x+1..f(x)] is semi-repeat-free, or, in other words, [x+1..f(x)]
is the minimal (semi-repeat-free) right extension of prefix MSA[1..m, 1..x]. If
there is no semi-repeat-free extension, we define f(x) = ∞.

Indeed, Equi et al. in [6] developed an algorithm computing values f(x) in time
O(mn log m). Using only these values, described by a list of pairs (x, f(x)) sorted
in increasing order by the second component, they developed two algorithms
computing the score of an optimal semi-repeat-free segmentation: in time O(n)
for the maximum number of blocks score and in time O(n log log n) for the
maximum block length score. We will explain in detail how the latter works in
Sect. 5, as we will improve its run time to O(n).

4 Preprocessing the MSA in Linear Time

In this section, we study the computation of the minimal right extensions f(x),
for 0 ≤ x ≤ n−1 (Definition 5). Equi et al. in [6] proposed an O(nm log m)-time
solution using the following structure, built from the gaps-removed MSA rows.

Definition 6. Given MSA[1..m, 1..n] from alphabet Σ ∪{−}, we define GSTMSA

as the generalized suffix tree of the set of strings {spell(MSA[i, 1..n]) ·$i : 1 ≤ i ≤
m}, with $1, . . . , $m m new distinct terminator symbols not in Σ.1

An example of GSTMSA is given in Fig. 2. From the suffix tree properties, it follows
that for any gaps-removed row αi := spell(MSA[i, 1..n])$i, with 1 ≤ i ≤ m: each
suffix αi[x..|αi|] corresponds to a unique leaf �i,x of GSTMSA and vice versa, with
1 ≤ x ≤ |αi|; each substring αi[x..y] corresponds to an explicit or implicit node
of GSTMSA in the root-to-�i,x path; and each explicit or implicit node corresponds
to one or more such substrings, uniquely identifiable thanks to the leaves covered
by the node. Also, note that GSTMSA does not contain any information about
the gap symbols of the MSA, as this information will be added back into the
structure thanks to the set of leaves and nodes considered.

In Sect. 4.1 we perform an analysis of GSTMSA similar to that of Equi et al.,
showing that semi-repeat-free segments of the MSA correspond to a specific set
of nodes of GSTMSA covering exactly m leaves. Then, in Sect. 4.2, we show that
the novel resulting problem on the tree structure of GSTMSA, that we call the
exclusive ancestor set problem, can be solved efficiently, resulting in an algorithm
computing the minimal right extensions in linear time, described in Sect. 4.3.

1 We added the m new distinct terminators for simplicity, whereas Equi et al. used the
suffix tree of the concatenation of all gaps-removed rows with a single new symbol
$ between each. The suffix tree of this string, if a second unique terminator # is
concatenated to this string, is equivalent to GSTMSA for our purposes.
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Fig. 2. Example of an MSA[1..4, 1..10] and its GSTMSA, where the label to each leaf has
been moved inside the leaf itself. We have also highlighted the leaves corresponding to
suffixes spell(MSA[i, 1..n]) (black outline) and its exclusive ancestors (arrows).

4.1 Semi-repeat-Free Segments in the Generalized Suffix Tree

The following has been implicitly stated and exploited in [6].

Definition 7 (Semi-repeat-free substrings). Recall the definition of semi-
repeat-free segment (Lemma 2). Given substring MSA[i, x..y] of MSA[1..m, 1..n]
such that spell(MSA[i, x..y]) ∈ Σ+, we say that MSA[i, x..y] is semi-repeat-free
if, for all 1 ≤ i′ ≤ m, string spell(MSA[i, x..y]) occurs in gaps-removed row i′

only at position g(i′, x) (or it does not occur at all).

Observation 2. Segment [x..y] is semi-repeat-free if and only if all substrings
MSA[i, x..y] are semi-repeat-free, for 1 ≤ i ≤ m. If MSA[i, x..y] is semi-repeat-
free, then MSA[i, x..y′] is semi-repeat-free for all y < y′ ≤ n. Let f i(x) be the
smallest integer greater than x such that substring MSA[i, x + 1..f i(x)] is semi-
repeat-free: it is easy to see that f(x) = maxm

i=1 f i(x).

This translates into a specific set of implicit or explicit nodes of GSTMSA.
The fact that we added a unique terminator symbol to each row is equivalent to
the addition of an MSA column spelling $1 · · · $m at position n+1, which means
that [x + 1..n + 1] is always semi-repeat-free and the minimal right extensions
such that f(x) = ∞ become f(x) = n + 1.

Lemma 3. Given m row substrings MSA[i, x..yi] of MSA[1..m, 1..n] such that
spell(MSA[i, x..yi]) ∈ Σ+ for 1 ≤ i ≤ m, let W = {w1, . . . , wk} be
the set of implicit or explicit nodes of GSTMSA corresponding to strings
{spell(MSA[i, x..yi]) : 1 ≤ i ≤ m}. Then MSA[i, x..yi] is semi-repeat-free for
all 1 ≤ i ≤ m if and only if W covers exactly m leaves in GSTMSA.

Proof. By construction of GSTMSA, W covers the m leaves �1,z1 , . . . , �m,zm , with
zi = g(i, x), so we only need to prove that if some MSA[i, x..yi] is not semi-
repeat-free, or invalid, then W covers more than m leaves, and vice versa.
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(⇐) Let MSA[i, x..yi] be invalid, i.e. spell(MSA[i, x..yi]) occurs in αi′ at some
position ẑ other than zi′ , for some row 1 ≤ i′ ≤ m. Then the node of GSTMSA

corresponding to string spell(MSA[i, x..yi]) covers leaf �i′,ẑ �= �i′,zi′ , thus W covers
more than m leaves.

(⇒) Let �i′,ẑ be a leaf of GSTMSA other than leaves �1,z1 , . . . , �m,zm covered
by some node w ∈ W . By construction, w corresponds to spell(MSA[i, x..yi])
for some 1 ≤ i ≤ m, so we have that spell(MSA[i, x..yi]) occurs in αi′ at some
position other than g(i′, x), since �i′,ẑ �= �i′,zi′ . Thus, MSA[i′, x..yi] is invalid.

Note that the correctness of Lemma 3 does not hold if we swap the semi-repeat-
free notion with the repeat-free one.

Lemma 3, combined with Observation 2, implies that the problem of com-
puting values f i(x) for all i ∈ [1..m] can be solved by analyzing the tree struc-
ture of GSTMSA against the MSA suffixes. Indeed, let Lx := {�i,zi : 1 ≤ i ≤
m, zi = g(i, x + 1)} be the leaves of GSTMSA corresponding to the suffixes
spell(MSA[i, x + 1..n]). For each row 1 ≤ i ≤ m, the first semi-repeat-free prefix
of spell(MSA[i, x + 1..n]) corresponds to the first implicit or explicit node v of
GSTMSA in the root-to-�i,zi path such that v covers only leaves in Lx. The fact
that GSTMSA is a compacted trie is not an issue: the parent of v in the suffix trie is
branching, since it covers more leaves than v, so the first explicit node of GSTMSA

in the root-to-�i,zi path covering only leaves in Lx is the first explicit descen-
dant w of v, thus we can identify v by finding w. Finally, f i(x) is computed
by retrieving the smallest column index y such that spell(MSA[i, x + 1..y]) =
sstring(parent(w)) ·char(w), where sstring(u) is the concatenation of edge labels
of the root-to-u path, and char(u) is the first symbol of the edge label from
parent(u) to u. In other words, y corresponds to the k-th non-gap symbol
of MSA row i, with k = rank(MSA[i, 1..n], x) + stringdepth(parent(w)) + 1,
where rank(MSA[i, 1..n], x) is the number of non-gap symbols in MSA[i, 1..x]
and stringdepth(u) = |sstring(u)|. For example, in Fig. 2 the leaves of L0 have
been marked and so have the shallowest ancestors covering only leaves in L0.

4.2 Exclusive Ancestor Set

The results of the previous section show that we can compute the minimal right
extensions by solving multiple instances of the following problem on the tree
structure of GSTMSA.

Problem 1 (Exclusive ancestor set). Let T = (V,E, root) be a rooted ordered
tree, with LT ⊆ V the set of its leaves. Given T and a subset of leaves L ⊆ LT ,
find the minimal set W of exclusive ancestors of L in T , i.e. the minimal set
W ⊆ V such that W covers all leaves in L and only leaves in L. Can T be
preprocessed to support the efficient solving of multiple instances of the problem?

As is the case for GSTMSA, we can assume that each internal node of T has
at least two children, otherwise, a linear-time processing of T can be employed
to compact its unary paths. Indeed, after a linear-time preprocessing of T , any
instance of exclusive ancestor set can be solved in time O(|L|) by a careful
traversal of the tree with the following procedure, that we describe informally:
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1. partition L in k maximal sets L1, . . . , Lk of leaves contiguous in the ordered
traversal of T , to be processed independently (if two leaves belong to different
contiguous sets, any common ancestor cannot be part of the solution);

2. for each Li, with 1 ≤ i ≤ k, start from the leftmost leaf �i and ascend in the
tree until the closest ancestor of �i that covers some leaf not in Li;

3. upon failure in step 2., add the last safe ancestor to the solution W and if
there are still uncovered leaves in Li repeat steps 2. and 3. starting from the
leftmost uncovered leaf.

An example of the procedure is shown in Fig. 3. The failure condition of step 2.
can be evaluated by checking if both the leftmost leaf and the rightmost leaf in
the subtree of the candidate replacement are still in set Li, and step 2. always
terminates if we assume that L is a nontrivial instance: if L ⊂ LT , then the root
of T is not the solution to the problem.

Fig. 3. Example of an instance of exclusive ancestor set, where the set of leaves L
corresponds to the black leaves: the algorithm partitions L into sets of contiguous
leaves (shown as brown, blue, and purple leaves), and for each set it finds the exclusive
ancestors (marked with rectangles). Each arrow shows the ascent of step 2. up the
tree until the node corresponding to the failure condition, marked with a cross. (Color
figure online)

Assuming the leaves of T are sorted, step 1. can be implemented efficiently: we
can partition L into sets of contiguous leaves by coloring leaves in L and finding
all the leaves with the preceding leaf not in L. We can easily preprocess T to
support the required operations in constant time, leading to a time complexity
of O(|L|), since any forest built on top of leaves L has O(|L|) nodes.

Lemma 4. The exclusive ancestor set problem on a rooted ordered tree T =
(V,E, root) and a subset L of its leaves can be solved in time O(|L|), after a
O(|V |)-time preprocessing to support operations v.leftmostleaf, v.rightmostleaf
on any node v ∈ V and operations �.prevleaf, �.nextleaf, and the binary coloring
of any leaf � ∈ LT in constant time.

4.3 Computing the Minimal Right Extensions

Returning to the problem of computing values f(x), the representation of
GSTMSA needs to support the operations on its tree structure described by
Lemma 4 plus operations v.stringdepth, returning the length of the string corre-
sponding to the root-to-v path in GSTMSA of an explicit node v, and �.suffixlink,
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implementing the suffix links of the leaves. The final algorithm, described in the
full version of this paper [17], computes leaf sets L0, L1, . . . , Ln−1 corresponding
to the MSA suffixes starting at column 1, 2, . . . , n, respectively, and for each Lx

with 0 ≤ x < n:

1. it marks the leaves in Lx and partitions them in sets of contiguous leaves, by
finding all their left boundaries � such that �.prevleaf is not marked;

2. it solves the exclusive ancestor set problem on each set of contiguous leaves
and whenever it finds an exclusive ancestor, covering leaves �i1 , . . . , �ik , it
computes values f i(x) for i ∈ {i1, . . . , ik} (see the conclusion of Sect. 4.1);

3. after processing all leaves, it finally computes f(x) = maxm
i=1 f i(x) and trans-

forms Lx into Lx+1 by taking the suffix links2 of only leaves �i such that
MSA[i, x + 1] �= −.

Theorem 1. Given MSA[1..m, 1..n], we can compute the minimal right exten-
sions f(x) for 0 ≤ x ≤ n − 1 in time O(mn).

Proof. The correctness is given by Observation 2 and Lemmas 3 and 4. The
construction of GSTMSA is equivalent to building the suffix tree of a string of
length smaller than or equal to (m + 1)n: a suffix tree supporting the required
operations in constant time can be constructed in O(mn) time, since we assume
|Σ| ≤ mn. Also, we can preprocess the MSA rows to answer in constant time
rank and select queries on the position of gap and non-gap symbols. Thus, the
computation of each f(x) takes time O(|Lx| + m) = O(m), so O(mn) time in
total.

Corollary 1. Given MSA[1..m, 1..n] from Σ ∪ {−}, with Σ = [1..σ] and σ ≤
mn, the construction of an optimal semi-repeat-free segmentation minimizing
the maximum number of blocks can be done in time O(mn).

Proof. Algorithm [6, Algorithm 1] by Equi et al. solves the problem in O(n) time,
assuming it is given the minimal right extensions (x, f(x)) sorted in increasing
order by the second component, which we can now compute and sort in time
O(mn) thanks to Theorem 1.

5 Minimizing the Maximum Block Length

The improvement on the computation of the minimal right extensions in the case
of general MSAs from O(nm log m) to O(nm) gives us the motivation to improve
the O(n log log n)-time algorithm of Equi et al. [6, Algorithm 2] for an optimal
semi-repeat-free segmentation minimizing the maximum block length. As men-
tioned in Sect. 3.2, we can compute s(j) by processing the recursive solutions
corresponding to all right extensions (x, f(x)) with f(x) ≤ j. For the maxi-
mum block length there are two types of recursion for an optimal solution of
MSA[1..m, 1..j′] using semi-repeat-free [x + 1..j′] as its last segment (Fig. 4):
2 As noted by an anonymous reviewer, the support for suffix links is not strictly

necessary, since we are exploring leaves only. Indeed, a traversal of the tree can
easily fill an m× n table containing L0, . . . , Ln−1, that we then have to store.
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non-leader recursion: if j′ ≤ x + s(x) then the score of s(j′) is equal to s(x),
because the length of segment [x + 1..j′] is less than or equal to s(x); in this
case, we say that [x + 1..j′] is a non-leader segment ;

leader recursion: otherwise, if j′ > x + s(x), we say that [x + 1..j′] is a leader
segment, since it gives score j′ − x to an optimal solution constrained to use
it as its last segment.

Fig. 4. Scheme for the score of an optimal semi-repeat-free segmentation of
MSA[1..m, 1..j′] constrained to use [x + 1..j′] as its last segment.

Note that if x+s(x) < f(x) then the non-leader recursion does not occur for
(x, f(x)). Then, it is easy to see that

s(j) = min

(
min

(x,f(x)):
f(x)≤j≤x+s(x)

s(x), min
(x,f(x)):

j>f(x) ∧ j>x+s(x)

j − x

)
(2)

so Equi et al. correctly solve the problem by keeping track of the two types of
recursions with two one-dimensional search trees: the first keeps track of ranges
[f(x)..x + s(x)] with score s(x), the second tracks ranges [x + s(x) + 1..n] where
the leader recursion must be used, saving only the −x part of score j′ −x. With
two semi-infinite range minimum queries, for ranges [j + 1.. + ∞] and [−∞..j]
respectively, we can compute s(j) and solve the problem in time O(n log log n).

Instead, we can reach a linear time complexity using simpler data structures,
thanks to the following observations: the data structure for the leader recursion
can be replaced by a single variable S holding value min{j − x : j > f(x) ∧ j >
x + s(x)}, so that S is the best score of a segmentation ending with a leader
segment [x + 1..j]; for the non-leader recursion, we can swap the structure of
Equi et al. with an equivalent array C[1..n] such that C[k] counts the number of
available solutions with score k using the non-leader recursion so that a variable
K = min{k : C[k] > 0} is equal to the best score of a segmentation ending
with a non-leader segment [x + 1..j]. The final and crucial observation is that
the two types of recursion are closely related: when [x + 1..j] goes from being a
non-leader segment to a leader segment, that is, j = x + s(x) + 1, we decrease
C[s(x)] by one and update S with value s(x) + 1 = j − x if needed. Therefore,
when the best score of C[1..n] is removed in this way, we do not need to update
K to min{k : C[i] > 0}, but it is sufficient to increment K by 1 to ensure that
s(j) = min(K,S), unless other updates of C and S result in a better score.

Theorem 2. Given the minimal right extensions (x, f(x)) of MSA[1..m, 1..n],
we can compute in time O(n) the score of an optimal semi-repeat-free segmen-
tation minimizing the maximum block length.
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Proof. The correctness of the algorithm, described in the full version of this
paper [17], follows from that of [6, Algorithm 2] and from the fact that when
C[K] = 0 we have that C[j′] = 0 for 1 ≤ j′ ≤ K and S ≤ K + 1. Similarly, the
processing of minimal right extensions (x, f(x)) and the dynamic management
of intervals [f(x)..s(x) + j′] takes time O(n) in total, thus the algorithm takes
linear time.

Combined with Theorem 1, we get our second main result.

Corollary 2. Given MSA[1..m, 1..n] from Σ ∪ {−}, with Σ = [1..σ] and σ ≤
mn, the construction of an optimal semi-repeat-free segmentation minimizing
the maximum block length can be done in time O(mn).
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Abstract. A vertex pair in an undirected graph is called connected if
the two vertices are in the same connected component. In the NP-hard
Critical Node Problem (CNP), the input is an undirected graph G
with integers k and x, and the question is whether we can transform G
via at most k vertex deletions into a graph whose total number of con-
nected vertex pairs is at most x. In this work, we introduce and study
two NP-hard variants of CNP where a subset of the vertices is marked as
vulnerable and we aim to obtain a graph with at most x connected vertex
pairs where at least one vertex is vulnerable. In the first variant, which
generalizes CNP, we may delete vulnerable and non-vulnerable vertices.
In the second variant, we may only delete non-vulnerable vertices.

We perform a parameterized complexity study of both problems. For
example, we show that both problems are FPT with respect to k + x.
Furthermore, in case of deletable vulnerable vertices we provide a polyno-
mial kernel for the parameter vc+k, where vc is the vertex cover number.
In case of non-deletable vulnerable vertices, we prove NP-hardness even
when there is only one vulnerable vertex.

1 Introduction

Detecting important vertices in graphs is a central task in network analysis.
There is an abundance of different formalizations of this natural task, many
of which adopt the view that a vertex set is important if its removal severely
affects the connectivity of the remaining graph [10]. One concrete formulation,
known as the Critical Node Problem, measures connectivity by the number
of connected pairs of vertices, that is, the number of pairs of vertices that are in
the same connected component. The aim is to look for a set of vertices whose
deletion decreases this number as much as possible.

Critical Node Problem (CNP)
Input: A graph G = (V,E), and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such that G − C
has at most x connected pairs of vertices?

Most of the results of this work are also contained in the first author’s Master’s
thesis [12].
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One application of this formulation is to model the influence of vertices in
the spreading of viruses in computer networks or social networks [10]. Taking
the latter view, the entities represented by a set C that minimizes the number
of connected pairs in G − C would be good candidates for being vaccinated or
removed from the network via other interventions. The number x of connected
pairs would be a rough measure for the amount of virus spreading in the remain-
ing network, as vertices that are connected to many other vertices are more likely
to contract the virus. For some vertices in the network, however, it may be irrel-
evant whether they contract the virus, for example because they are not prone
to develop a severe disease in case of infection. Conversely, it may be critical
that some vertices in the network are protected from the virus, because they
belong to a high risk group. This aspect is missing from the CNP problem. One
way to model this aspect is to label some vertices as vulnerable and to consider
only the number of connected pairs for the vulnerable vertices. In other words,
we only count those vertex pairs that contain at least one vulnerable vertex.

Definition 1. Let G = (V,E) be a graph and let A be a set of vulnerable
vertices. A vertex pair {u, v} is a vulnerable connection (with respect to A)
in G if {u, v} ∩ A �= ∅ and u and v are in the same connected component of G.
The A-vulnerability of G is the number of vulnerable connections of G.

Note that it is not required that the set A of vulnerable vertices is a sub-
set of the vertex set V . Thus, given a graph G = (V,E) with A ⊆ V and a
subgraph G′ = (V ′, E′) of G, we may refer to the A-vulnerability of G′ even
if A �⊆ V ′. Replacing the number of connected pairs by A-vulnerability leads to
the following problem definition.

Critical Node Problem with Vulnerable Nodes (CNP-V)
Input: A graph G = (V,E), A ⊆ V , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such that the
A-vulnerability of G − C is at most x?

A further complication may be that, for several reasons, vulnerable vertices
may not be removed. This is modelled by the following problem.

Critical Node Problem with Non-Deletable Vulnerable
Nodes (CNP-NDV)
Input:A graph G = (V,E), A ⊆ V , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \ A of size at most k such that the
A-vulnerability of G − C is at most x?

The set C is called a critical node cut. We study the parameterized complexity
of these two problems.

Related Work. Arulselvan et al. [3] showed that CNP is NP-complete; the NP-
hardness follows also directly from the fact that CNP is a generalization of
Vertex Cover (x = 0). As a consequence, CNP is NP-hard even on subcubic
graphs. CNP is also NP-hard on split and bipartite graphs [1] and on power
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Table 1. Overview of our results.

Parameter CNP-V CNP-NDV

x NP-hard for x = 0 [9] W[1]-hard (Theorem 2)

XP (Proposition 2)

y FPT (Theorem 6) W[1]-hard (Theorem 7)

No poly kernel [9] XP (Proposition 3)

k W[1]-hard [9] W[1]-hard (Theorem 7)

XP (Proposition 1) XP (Proposition 1)

k + x FPT (Corollary 2, Theorem 5) FPT (Corollary 1)

k + y FPT (Theorem 6) W[1]-hard (Theorem 7)

|A| XP (Proposition 3) NP-hard for |A| = 1 (Theorem 2)

|A|+ x FPT (Corollary 3)

vc FPT (Theorem 8) FPT (Theorem 8)

vc+x poly kernel (Corollary 5) FPT (Theorem 8)

vc + k + x poly kernel (Corollary 6)

law graphs [13]. In contrast, CNP can be solved in polynomial time on trees [5]
and, more generally, on graphs with constant treewidth [1]. The parameterized
complexity of CNP has been studied with respect to the parameters k, x, and
the treewidth tw of G [9]: On the negative side, CNP is W[1]-hard with respect
to k [9] or tw [9], and even with respect to k + tw [2]. On the positive side,
the problem is FPT with respect to k + x and with respect to the parameter y
which is defined as �−x, where � is the number of connected pairs in G. In other
words, y is the number of connected pairs that we want to remove at least by
deleting the k vertices.

Other formulations of graph modifications for limiting disease spreading con-
sider for example edge deletions and limiting the size of the largest remaining
connected component [7]. For an overview of different formulations of critical
vertex detection, refer to the survey of Lalou et al. [10].

Our Results. We study the parameterized complexity of the problems CNP-
V and CNP-NDV with respect to a number of natural parameters. Our main
findings are as follows (an overview is given in Table 1). We transfer the FPT
algorithm for k + x from CNP to the two new problems. We then show that,
while being solvable in polynomial time for constant values of x, CNP-NDV is
W[1]-hard with respect to x even when |A| = 1. In contrast, CNP-V is solvable
in polynomial time for constant |A| and NP-hard already for x = 0. Thus, the
complexity of the two problems differs quite drastically with respect to very
natural parameters. This can be also observed for the parameter y for which
CNP-V has a subexponential FPT algorithm while CNP-NDV is W[1]-hard
even with respect to k + y. We remark that the algorithm for CNP-V with
subexponential running time for parameter y improves on a previous algorithm
for CNP with exponential running time in y [9].
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Finally, we consider parameterizations using the vertex cover number vc
of G. This is motivated by the fact that CNP is W[1]-hard with respect to the
treewidth tw [2,9] and thus larger structural parameters need to be considered.
We show that both problems are FPT with respect to vc, and provide polynomial
kernels for both problems parameterized by vc +x and vc +k + x, respectively.

Further FPT results for parameters such as the neighborhood diversity of G
or |V \ A| have been obtained in the first author’s Master thesis [12]. Due to
lack of space, the proofs of several results (marked with (�)) are deferred to a
full version.

Preliminaries. For two integers p and q, p ≤ q, we denote [p, q] := {p, . . . , q}.
We consider undirected simple graphs G and let V (G) denote the vertex set
and E(G) the edge set of a graph G. We use n to denote the number of vertices
of G and m to denote the number of edges. For a vertex set S, we let N(S) =
{u | {u, v} ∈ E(G), v ∈ S}\S and N [S] := S ∪N(S) denote the open and closed
neighborhood of S, respectively. For a vertex v, we denote N(v) := N({v})
and N [v] := N [{v}]. For a vertex set S, we let G[S] := (S, {{u, v} ∈ E(G) |
u, v ∈ S}) denote the subgraph induced by S, and G − S := G[V (G) \ S] denote
the subgraph of G obtained by deleting S and its incident edges. For the relevant
definitions of parameterized complexity refer to the standard monographs [4,6].

2 Basic Observations

Vulnerability. First, observe that the A-vulnerability of a graph can be computed
in linear time via depth-first search.

Lemma 1 (�). Let G = (V,E) and let A ⊆ V . The A-vulnerability of G can
be computed in O(n + m) time.

For constant k, CNP-V and CNP-NDV can thus be solved in polynomial time
by trying all O(nk) possibilities of deleting k vertices (in the case of CNP-NDV
only deletions in V \ A are considered).

Proposition 1. CNP-V and CNP-NDV can be solved in O(nk ·(n+m)) time.

Moreover, for CNP-NDV at most x non-vulnerable vertices can be connected to
vulnerable vertices in G−C. Thus, one may find a critical node cut by considering
all O(nx) possible sets B for these vertices, deleting all neighbors of A ∪ B, and
checking whether the number of deletions is at most k and the A-vulnerability
of the resulting graph is at most x.

Proposition 2. CNP-NDV can be solved in O(nx · (n + m)) time.

Reduction Rules. We provide a collection of simple reduction rules for CNP-V
and CNP-NDV. The first rule removes trivial components from the input.
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Rule 1. Let I := (G,A, k, x) be an instance of CNP-V or CNP-NDV and
let C be a connected component of G. If C contains no vulnerable vertex or C is
an isolated vulnerable vertex, then delete C from G.

Rule 1 is correct since no vertex of C is part of a vulnerable connection. For
the rest of this work, we assume that all instances of CNP-V and CNP-NDV
are reduced with respect to Rule 1. The next rule identifies instances of CNP-V
and CNP-NDV that are trivial because k is sufficiently large.

Rule 2. a) Let (G,A, k, x) be an instance of CNP-V. If y ≤ k, then return
yes.

b) Let (G,A, k, x) be an instance of CNP-NDV such that y ≤ k. If |V \A| ≥ y,
then return yes. If |V \ A| < y, check if the number of vulnerable connections
in G−(V \A) is at most x. If this is the case, return yes. Otherwise, return no.

The correctness of Rule 2 can be seen as follows: Since the instance is reduced
with respect to Rule 1, every vertex of the graph is in at least one vulnerable
connection. If we remove y vertices, we remove at least y vulnerable connections
and therefore, the instance is a yes-instance. In case of CNP-NDV, we might not
be able to remove y vertices if |V \ A| is too small. In this case we can trivially
solve the instance by checking if G − (V \ A) contains at most x vulnerable
connections. Hence, we may assume y > k throughout the rest of this work.

In case of CNP-V, we can identify a further class of yes-instances. An
instance of CNP-V with |A| ≤ k is a trivial yes-instance, since adding all
vulnerable vertices to a critical node cut destroys all vulnerable connections.

Rule 3. Let (G,A, k, x) be an instance of CNP-V. If |A| ≤ k, then return yes.

The final rule deals with the case where one vertex has too many vulnera-
ble neighbors. The idea behind the rule is that a vertex that causes too many
vulnerable connections in his neighborhood belongs to every possible solution.

Rule 4. a) If in an instance (G,A, k, x) of CNP-V a vertex v ∈ V exists
with |N(v) ∩ A| > k +

√
2x, then remove v from G and decrease k by 1.

b) If in an instance (G,A, k, x) of CNP-NDV a vertex v ∈ V \ A exists with
|N(v) ∩ A| >

√
2x, then remove v from G and decrease k by one.

Recall that CNP-V and CNP-NDV can be solved in O(nk · (n + m)) time
due to Proposition 1. Since we can assume y > k due to Rule 2 and, for CNP-
V, |A| > k due to Rule 3, we obtain the following.

Proposition 3. CNP-V and CNP-NDV can be solved in O(ny ·(n+m)) time;
CNP-V can be solved in O(n|A| · (n + m)) time.

Component Information. We next show that CNP-V is solvable in polyno-
mial time if we have additional information about the connected components of
the input graph. We apply this fact to obtain efficient algorithms for CNP-
V when the connected components are small. Let I := (G,A, k, x) be an
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instance of CNP-V, and let C1, . . . , Ct ⊆ V be the connected components of
the input graph G. The component information T [i, k′] of some integers i ∈ [1, t]
and k′ ∈ [0,min(k, |Ci|)] is defined as the minimal number of vulnerable con-
nections in G[Ci] − S among all subsets S ⊆ Ci of size exactly k′. A table T
containing all component information T [i, k′] is called a component table of the
instance I. We now show that CNP-V can be solved in polynomial time if we
have a component table of the input instance, the algorithm was also described
by Hermelin et al. [9] for CNP.

Lemma 2 (�). Given an instance I := (G,A, k, x) of CNP-V and a compo-
nent table T of I, we can compute in O(n · k2) time, whether I is a yes-instance
of CNP-V.

Observe that, for an instance where the input graph has maximum com-
ponent size c for some constant c, a component table can be computed
in O(2c · (n + m)) = O(n) time by iterating over every subset of each connected
component.

Proposition 4. CNP-V can be solved in O(n · k2) time if the input graph has
maximum component size c for some constant c.

NP-Hardness of CNP-NDV. In contrast to CNP-V, the problem CNP-NDV is
not an obvious generalization of Vertex Cover. We show the following by a
simple reduction.

Theorem 1 (�). CNP-NDV is NP-hard on planar graphs, even if the input
graph has maximum degree 4.

3 Parameterization by the Targeted Vulnerability

First, we consider parameterization by x alone. CNP-V is NP-hard for x = 0
since it is a generalization of CNP. We now show that, in contrast, CNP-NDV
is W[1]-hard with respect to x, even if G contains only one vulnerable vertex.

Theorem 2 (�). CNP-NDV is W[1]-hard with respect to the parameter x, even
if |A| = 1 and diam = 2.

We now show an FPT algorithm for CNP-V and CNP-NDV parameterized
by k + x. To this end, we consider the following more general problem.

CNP-VNDV
Input: A graph G = (V,E), two sets A,N , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \N of size at most k such that the
A-vulnerability of G − C is at most x?

Hermelin et al. [9] showed that CNP can be solved in O(3k+x · (xk+2 +n)) time.
The idea of this algorithm is to branch for each edge {u, v} whether one of u
and v is deleted or whether this is one of the x remaining connections. In the
following, we use similar ideas to provide two search tree algorithms for the
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more general CNP-VNDV. The first algorithm solves instances of CNP-VNDV
with A ⊆ N in O(2k+x · (n + m)) time. This implies that CNP-NDV can be
solved within the same running time. The second algorithm solves arbitrary
instances of CNP-VNDV in O(3k+x · (n + m)) time, which implies that CNP-
V can be solved in O(3k+x · (n + m)) time. Moreover, since CNP is a special
case of CNP-V this improves over the algorithm for CNP by Hermelin et al. [9].
The next lemma describes the mechanism of the branching rule.

Lemma 3 (�). Let I = (G = (V,E), A,N, k, x) be an instance of CNP-VNDV
and let v ∈ V \ N . I is a yes-instance of CNP-VNDV if and only if I1 =
(G − {v}, A,N, k − 1, x) or I2 = (G,A,N ∪ {v}, k, x) is a yes-instance of CNP-
VNDV.

Theorem 3. An instance I := (G,A,N, k, x) of CNP-VNDV with A ⊆ N can
be solved in O(2k+x · (n + m)) time.

Proof. Intuition: In the algorithm we pick a neighbor v of N and branch into
removing v from the graph or making v non-deletable.

Algorithm: Step 0. If k < 0 or the A-vulnerability of G[N ] is greater than x,
return no. If the A-vulnerability of G is at most x, return yes.

Step 1. Compute the set N ′ ⊆ N such that N ′ contains all vulnerable
vertices A and also all vertices that are connected to a vulnerable vertex in G[N ].

Step 2. If the neighborhood of N ′ is empty, return yes. Otherwise, pick a
neighbor v of N ′ and branch into the following instances: I1 := (G−{v}, A,N, k−
1, x) and I2 := (G,A,N ∪ {v}, k, x) of CNP-VNDV.

The correctness of the algorithm follows rather directly from Lemma 3. The
running time can be seen as follows: The depth of the search tree is bounded
by k + x since in each branch, we either add a vertex to N (which increases the
A-vulnerability of G[N ] by at least one) or delete a vertex (which decreases k).
Thus, the search tree has size O(2k+x); the steps at each search tree node can
be clearly performed in linear time. ��
Corollary 1. CNP-NDV can be solved in O(2k+x · (n + m)) time.

Theorem 4 (�). CNP-VNDV can be solved in O(3k+x · (n + m)) time.

Corollary 2. CNP-V can be solved in O (
3k+x · (n + m)

)
time.

In the following, we provide an algorithm that solves CNP-V in O((43x +
2)k · m · x) time. This running time is preferable, when x is much larger than k.
The idea of the algorithm is that we search a set B of at most 4

3x + 2 vertices
of G such that the A-vulnerability of G[B] is larger than x. Then, if there exists
a critical node cut C, at least one vertex of B is in C.

Theorem 5 (�). An instance I := (G,A, k, x) of CNP-V can be solved in
O(( 43x + 2)k · m · x) time.

After Rule 3 is applied, we can assume |A| > k for instances of CNP-V.
Hence, we also obtain the following.

Corollary 3. CNP-V has an FPT-algorithm for the parameter |A| + x.
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4 Parameterization by the Decrease in Vulnerability

In this section, we consider the parametrization by y := � − x, where � is the A-
vulnerability of the input graph. In other words, y counts how many vulnerable
connections shall be removed.

An FPT Algorithm for Deletable Vulnerable Vertices. CNP is fixed-parameter
tractable with respect to y [9], based on the following observations: If some
connected component has at least y vertices, then we have a yes-instance. After-
wards, we may compute the component information in O(2y · y2 · (n + m)) time
and combine it using the dynamic programming algorithm presented also in
Sect. 2. We now extend the FPT result to the more general CNP-V problem.
Moreover, we improve the running time to a subexponential running time in y.

Theorem 6. CNP-V can be solved in 2O(
√
y log y) · nO(1) time.

Proof. Let I := (G,A, k, x) be an instance of CNP-V and let C1, . . . , Ct be the
connected components of G. Recall that we assume that I is reduced regarding
Rule 1 and therefore each connected component has a non-empty intersection
with A. Moreover, we assume that k ≥ 1 since otherwise we can solve I in
polynomial time by computing the number of vulnerable connections of G.

We first assume that there exists a connected component Ci of size at least y.
Since we assume that every connected component of G contains some vertices
from A, let v ∈ Ci ∩ A. Since |Ci| ≥ y, we can remove at least y vulnerable
connections by deleting v. Together with the fact that k ≥ 1 we conclude that
the instance I is a yes-instance. Throughout the rest of the proof, we assume
that |Ci| < y for every connected component of G.

In the remainder of the proof, we show that a component table T of I can be
computed in 2O(

√
y log y) · nO(1) time. With a component table at hand, we can

then solve CNP-V in polynomial time due to Lemma 2. Recall that a component
table T of I has entries of type T [i, k′] with i ∈ [1, t] and k′ ∈ [0, k] such
that T [i, k′] is the minimum number of vulnerable connections in G[Ci] that
remain after deleting exactly k′ vertices in Ci.

Let Ci be a connected component. We now describe how to compute all
component information T [i, k′] with k′ ∈ [0, k] in 2O(

√
y log y) · nO(1) time. Then,

since there are at most n connected components, the statement follows. We first
consider the case where k <

√
y. Note that for each k′ ∈ [0, k], there are at

most
(|Ci|

k′
) ≤ |Ci|k′

subsets S ⊆ Ci of size k′. Since |Ci| ≤ y and k′ ≤ k <
√

y,
we can compute all component information T [i, k′] in y

√
y · nO(1) = 2O(

√
y log y) ·

nO(1) time. Next, let k ≥ √
y. For this, we first identify a further case, where I

is a yes-instance.

Claim. If k ≥ √
y and there exists a connected component Ci such that |Ci| ≥

3
√
y+1

2 and |Ci ∩ A| ≥ √
y, then I is a yes-instance.
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Proof. Since |Ci ∩ A| ≥ √
y and k ≥ √

y, we may delete
√

y vulnerable vertices
from Ci. This decreases the number of vulnerable connections by at least

(√
y

2

)

︸ ︷︷ ︸
=:c1

+
√

y · (|Ci| − √
y)

︸ ︷︷ ︸
=:c2

,

where c1 corresponds to the vulnerable connections between the deleted vertices
and c2 corresponds to vulnerable connections between the deleted vertices and
the remaining vertices in Ci. Then, since |Ci| ≥ 3

√
y+1

2 , the number of vulnerable

connections is decreased by at least
(√

y
2

)
+

√
y ·

(
3
√
y+1

2 − √
y
)

= y. Therefore, I

is a yes-instance. 
Due to the previous case distinction, we may immediately return yes if Ci

satisfies the two constraints stated in the claim. For the rest of the proof we
may assume that this is not the case. Consequently, we have |Ci| <

3
√
y+1

2
or |Ci ∩ A| <

√
y. Consider the following cases.

Case 1: |Ci| <
3
√
y+1

2 . We can then compute the component information
of the connected component Ci by iterating over all subsets S ⊆ Ci and com-
puting the number of vulnerable connections in G[Ci] − S. Since |Ci| <

3
√
y+1

2 ,
there are at most 2

1
2 ·(3√

y+1) ∈ 2O(
√
y) subsets. Therefore, all component infor-

mation T [i, k′] can be computed in 2O(
√
y log y) · nO(1) time.

Case 2: |Ci ∩ A| <
√

y. Then, since k ≥ √
y, we have T [i, k′] = 0 for

all k′ ≥ |Ci∩A| since one may remove all vulnerable vertices in Ci and afterwards,
no vertex of Ci is part of a vulnerable connection anymore. It remains to compute
component information T [i, k′] with k′ <

√
y by iterating over every S ⊆ Ci of

size k′. Since there are at most |Ci|k′
such subsets, this can be done in y

√
y ·

nO(1) = 2
√
y log y · nO(1) time.

By the above argumentation, we can compute the component table T of I
in 2

√
y log y · nO(1). Together with Lemma 2, we conclude that CNP-V can be

solved within the claimed running time. ��

Hardness for Non-Deletable Vulnerable Vertices. Now, we show that, in contrast
to CNP-V, the CNP-NDV problem is W[1]-hard with respect to the parame-
ter k+y, even if the input graph only contains one vulnerable vertex. We reduce
from Clique which has as input graph G and an integer �, and asks whether G
contains a set of � vertices that are pairwise adjacent. It is well-known that
Clique is W[1]-hard with respect to � [4,6].

The reduction follows the spirit of a reduction of Fomin et al. [8] that shows
W[1]-hardness of the Cutting at most k Vertices with Terminal problem.
The reduction of Fomin et al. [8] already shows W[1]-hardness of CNP-NDV
with respect to the parameter k, even if |A| = 1. We adapt the reduction to
show hardness with respect to the larger parameter k + y.

Theorem 7 (�). CNP-NDV is W[1]-hard with respect to the parameter k +y,
even if |A| = 1 and the input graph has diameter 2.
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5 Parameters Related to the Vertex Cover Number

First, we obtain an FPT algorithm for the vertex cover number vc for the gen-
eralization CNP-VNDV of both problems via a combination of branching and
dynamic programming.

Theorem 8. CNP-VNDV can be solved in 4vc · nO(1) time.

Proof. Let (G,A,N, k, x) be an instance of CNP-VNDV. The first step of the
algorithm is to compute a minimum vertex cover S of G. Then, we branch into
all possible cases for D := C ∩ (S \ N). In other words, we consider all possible
cases for vertex deletions in the vertex cover S. Consider one such possibility.
Let G′ := G − D and let k′ := k − |D|. Observe that S′ := S \ D is a vertex
cover of G′. The question is now whether there is a set C ′ of at most k′ vertices
such that G′ − C ′ has A-vulnerability at most x and such that C ′ contains
no vertices of N . To answer this question, we use dynamic programming over
subsets of S′. More precisely, we fill a dynamic programming table T with entries
of the type T [S∗, k∗] where S∗ is a subset of S′ and k∗ ∈ {1, . . . , k′}. To define
the meaning of a table entry, let Np(S∗), for S∗ ⊆ S′ denote the neighbors of S∗

that are not neighbors of S′ \ S∗. That is, Np(S∗) := N(S∗) \ N(S′ \ S∗).
A table entry T [S∗, k∗] contains the minimum A-vulnerability of any graph

that is obtained from G′[S∗ ∪Np(S∗)] by deleting at most k∗ vertices of Np(S∗)\
N . The value of T [S′, k′] then is the minimum A-vulnerability of any graph that
can be obtained from G′ by deleting at most k′ vertices from N(S′) \ N . If this
number is smaller than x, then we have a yes-instance; otherwise, the CNP-
VNDV instance has no critical node cut that contains D.

Informally, the recurrence to compute the value of T [S∗, k∗] is to con-
sider the possibilities of how one connected component created by the critical
node cut may intersect with S∗. To simplify the description somewhat, we will
define T [S∗, k∗] = +∞ for all k∗ < 0. The base cases of the recurrence are the
A-vulnerability values that we get when S∗ ∪ Np(S∗) remains connected after
the deletion of k∗ vertices. More precisely, let Q[S∗, k∗] contain the minimum
A-vulnerability of any connected graph that is obtained from G′[S∗ ∪Np(S∗)] by
deleting at most k∗ vertices of Np(S∗)\N . This value can be computed greedily
by first deleting as many vertices of (Np(S∗)\N)∩A as possible and then delet-
ing up to k∗ − |(Np(S∗) \ N) ∩ A| vertices of (Np(S∗) \ N) \ A. Assuming that
the values of Q[S∗, k∗] have been precomputed, we may now compute T [S∗, k∗]
by the recurrence

T [S∗, k∗] = min
S̃⊆S∗

min
k̃≤k∗

Q[S̃, k̃] + T [S∗ \ S̃, k∗ − k̃ − δ(S̃, S∗ \ S̃)]

where δ(S̃, S∗ \ S̃) = |N(S̃) ∩ N(S∗ \ S̃) ∩ Np(S∗)| if

– |N(S̃) ∩ N(S∗ \ S̃) ∩ Np(S∗)| contains no vertices of N , and
– there are no edges with one endpoint in S̃ and one endpoint in S∗ \ S̃,
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and δ(S̃, S∗ \ S̃) = k + 1, otherwise. That is, δ counts the number of vertex
deletions that are necessary to disconnect S̃∗ and S∗ \ S̃ in G[S∗ ∪ Np(S∗)]
if it is possible to disconnect the two sets without deleting vertices in N ∪
S∗. Otherwise, the value of δ is sufficiently large to ensure that the equation
evaluates to ∞. . We omit a formal proof of the correctness and now bound
the running time of the algorithm. A minimum vertex cover S can be computed
in O(2vc(n+m)) time using the standard search tree algorithm. Afterwards, we
consider every subset D of S and fill the table T for the possibility where we
delete exactly the vertex set D from S. Filling the table needs 3vc−|D| ·nO(1) time
since each evaluated term corresponds to a 3-partition of S \D. Thus, the overall
running time is

∑vc
i=0

(
vc
i

) ·3vc−i ·nO(1). Using the binomial theorem, the overall
running time for all possibilites of D is thus 4vc · nO(1) time. ��

Next, we show that CNP-V has a polynomial-size kernel for the parame-
ter vc + x and that CNP-NDV has a polynomial-size kernel for the parame-
ter vc + k + x. To this end, we first make a simple observation on k and the
vertex cover number of the input graph. Let (G,A, k, x) be an instance of CNP-
V or CNP-NDV. For the rest of the section, we fix a vertex set Z which is a
2-approximation of the minimum vertex cover of G, that is, |Z| ≤ 2 · vc. Note
that Z can be computed in linear time.

Consider CNP-V. Removing S from G results in an edgeless graph and there-
fore, there are no vulnerable connections in G − S. Thus, we may immediately
return yes if k is at least as big as the size of Z.

Rule 5. Let (G,A, k, x) be an instance of CNP-V. Return yes, if k ≥ 2 · vc.

Recall that we assume that the input instance of CNP-V is reduced with
respect to Rules 1 and 4 and therefore we might assume that there are no isolated
vertices and that |N(v) ∩ A| ≤ k +

√
2x for every vertex v. In the following, we

show that we can use these assumptions to bound the size of A in vc +x.

Lemma 4 (�). After Rules 1, 4, and 5 have been applied exhaustively, in an
instance (G,A, k, x) of CNP-V, the set A contains less than (2 vc) · ((2 vc) +√

2x + 1) vertices.

Next, we define a subset B of the vertices. We provide two different definitions
for CNP-V or CNP-NDV: For CNP-V, we define B := A∪Z. For CNP-NDV,
we define B := Z. We call B the base. We then have |B| ≤ 2 · vc when we deal
with an instance of CNP-NDV and by Lemma 4 we have |B| ≤ (2 vc) · ((2 vc)+√

2x + 2) when we deal with an instance of CNP-V. It remains to bound the
size of the set Y := V \B. Note that Y is an independent set because B contains
a vertex cover. Moreover, Y does not contain isolated vertices since the instance
is reduced with respect to Rule 1. In the following, we provide a reduction rule
that in instances of CNP-NDV helps us to handle vulnerable vertices in the
set Y . After the reduction rule has been applied exhaustively, if a vertex v has
a neighborhood of size at least k + x + 1, all neighbors of v are non-vulnerable.
This rule should only be applied on instances of CNP-NDV.
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Rule 6. Let (G,A, k, x) be an instance of CNP-NDV with base B. If a ver-
tex v ∈ B has more than k + x neighbors of which one is vulnerable, then do the
following

1. If v �∈ A, then remove v from the graph and decrease k by one.
2. If v ∈ A, then return no.

Lemma 5 (�). For an instance of CNP-NDV, Rule 6 is safe and can be
applied exhaustively in O(n2) time.

This reduction rule can only be applied on instances of CNP-NDV, because,
if v �∈ A, we know that we have to add v to a critical node cut. However, in CNP-
V there remain three options: we can add the vulnerable vertex d, or the vertex v,
or both to a critical node cut. Thus, in order to avoid such a decision for instances
of CNP-V, we added all vulnerable vertices to the base B.

In the last reduction rule, we use the Expansion Lemma. The Expansion
Lemma was introduced by Prieto-Rodŕıguez [11]. We use the formulation by
Cygan et al. [4].

Lemma 6 (Expansion Lemma [4]). Let H be a bipartite graph with vertex
bipartition (R, T ). For a positive integer q, a set of edges M ⊆ E(H) is called
a q-expansion of C into T , if every vertex of R is incident with exactly q edges
of M and the edges in M are incident with exactly q · |R| vertices in T .

Let q ≥ 1 be a positive integer and H be a bipartite graph with vertex bipar-
tition (R, T ) such that |T | ≥ q · |R| and there are no isolated vertices in T .
Then, there exist nonempty vertex sets P ⊆ R and Q ⊆ T such that there is
a q-expansion of P into Q and NH(Q) ⊆ P . Furthermore, the sets P and Q can
be found in time polynomial in the size of H.

Since the Expansion Lemma can only be applied to bipartite graphs, in the
next reduction rule we define a bipartite graph that is an induced subgraph
of G. We apply the Expansion Lemma on the graph G′ which contains the
vertices V ′ := V (G) and the set of edges E′ := E(G)\E(G[B]). This is a bipartite
graph, because we do not consider the edges within B and, by definition, Y is
an independent set. Thus, G′ is a bipartite graph with vertex bipartition (B, Y ).

Now, we assume that Rules 1 and 6 are exhaustively applied.

Rule 7. If the set Y contains at least (k + x + 2) · |B| vertices, then, in the
graph G′ that we defined before this reduction rule, compute non-empty vertex
sets P ⊆ B and Q ⊆ Y such that there is a k + x + 2-expansion of P into Q.
Remove an arbitrary vertex v ∈ Q from G.

Lemma 7. For an instance of CNP-V or CNP-NDV, Rule 7 is safe and can
be applied exhaustively in polynomial time.

Proof. Safeness: Let (G,A, k, x) be an instance of CNP-V or CNP-NDV with
base B for which the inequality |Y | ≥ (k + x + 2) · |B| is correct. Let G′ be the
graph defined before this reduction rule.



506 J. Schestag et al.

We start by showing that we can apply the Expansion Lemma. After Rule 1
has been applied exhaustively, all vertices in Y are adjacent to at least one
vertex in B. Thus, all conditions for the Expansion Lemma are fulfilled. From the
Expansion Lemma, we know that we can then find non-empty vertex sets P ⊆ B
and Q ⊆ Y such that there is a k + x + 2-expansion of P into Q in polynomial
time. Also, the sets fulfill NG(Q) ⊆ P .

For the rest of the proof, let v be an arbitrary but fixed vertex of Q. We
show that (G,A, k, x) is a yes-instance of CNP-V or CNP-NDV, if and only
if (G − {v}, A, k, x) is a yes-instance of the same problem. Observe that v is
non-vulnerable: In an instance of CNP-V we defined A ⊆ B and thus A∩Y = ∅
and in particular A∩Q = ∅. In an instance of CNP-NDV, after Rule 6 has been
applied exhaustively, a vertex of B with a neighbor in A ∩ Y has at most k + x
neighbors. Thus, a described k + x + 2-expansion of P into Q cannot exist
if A ∩ Q �= ∅.

Because G − {v} is an induced subgraph of G, C \ {v} is a critical node cut
for (G − {v}, A, k, x) if C is a critical node cut for (G,A, k, x).

Conversely, let (G−{v}, A, k, x) be a yes-instance of CNP-V or CNP-NDV
and let C be a corresponding critical node cut. From the Expansion Lemma we
know N(Q) ⊆ P . In (G − {v}) − C there is no vulnerable connection {d, u}
with d ∈ A and u ∈ P : Otherwise, for all w ∈ (NG(u)∩Q)\({v}∪C) also {d,w}
is a vulnerable connection in (G−{v})−C. By the definition of P and Q, the size
of (NG(u)∩Q) is at least k+x+1 and thus {u}∪((NG(u)∩Q)\({v}∪C)) contains
more than x vertices. This is a contradiction to C being a critical node cut. By
the same argument, the sets A and P \ C are not connected in (G − {v}) − C.
It follows that in (G − {v}) − C the sets P \ C and Q \ C are in connected
components that do not contain a vulnerable vertex. Since NG(v) ⊆ P , the A-
vulnerability of (G − {v}) − C is the A-vulnerability of G − C and C is also a
critical node cut for (G,A, k, x).

Clearly, the rule can be performed in polynomial time. ��
It remains to give a bound on the size of the computed kernel.

Theorem 9 (�). An instance (G,A, k, x) of CNP-V or CNP-NDV contains
less than |B| · (k + x + 3) vertices after Rules 1, 6, and 7 have been applied
exhaustively.

Since |B| ≤ |A| + 2 · vc for CNP-V and due to Lemma 4, we obtain the
following.

Corollary 4. For an instance (G,A, k, x) of CNP-V, we can compute a ker-
nelization with less than ((2 vc)((2 vc) +

√
2x + 1) · (k + x + 3) vertices in poly-

nomial time.

Since the instance is reduced regarding Rule 5, we obtain the following.

Corollary 5. For an instance (G,A, k, x) of CNP-V, we can compute a ker-
nelization with less than ((2 vc)((2 vc) +

√
2x + 1) · (2 vc +x + 3) vertices in poly-

nomial time.
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Since |B| ≤ 2 · vc for CNP-NDV, we obtain the following.

Corollary 6. For an instance (G,A, k, x) of CNP-NDV, we can compute a
kernelization with less than 2 · vc · (k + x + 3) vertices in polynomial time.

6 Conclusion

We introduced two new critical node detection problems problems Critical
Node Problem with Vulnerable Nodes (CNP-V) and Critical Node
Problem with Non-Deletable Vulnerable Nodes (CNP-NDV), that
take into account that we are only interested in the number of connected pairs for
a specified set of vulnerable vertices. We performed a parameterized complexity
analysis for some of the most natural parameters and their combinations. We
left open, however, the complexity of a number of natural parameterizations.
For example, is CNP-V FPT with respect to |A|? At the moment we only have
an XP-algorithm for A and an FPT algorithm for |A|+x. Moreover, does either
problem admit a polynomial kernel for the vertex cover number vc?
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Abstract. Cram, Domineering, and Arc Kayles are well-studied com-
binatorial games. They are interpreted as edge-selecting-type games on
graphs, and the selected edges during a game form a matching. In this
paper, we define a generalized game called Colored Arc Kayles, which
includes these games. Colored Arc Kayles is played on a graph whose
edges are colored in black, white, or gray, and black (resp., white) edges
can be selected only by the black (resp., white) player, although gray
edges can be selected by both black and white players. We first observe
that the winner determination for Colored Arc Kayles can be done in
O∗(2n) time by a simple algorithm, where n is the order of a graph. We
then focus on the vertex cover number, which is linearly related to the
number of turns, and show that Colored Arc Kayles, BW-Arc Kayles,

and Arc Kayles are solved in time O∗(1.4143τ2+3.17τ ), O∗(1.3161τ2+4τ ),

and O∗(1.1893τ2+6.34τ ), respectively, where τ is the vertex cover num-
ber. Furthermore, we present an O∗((n/ν + 1)ν)-time algorithm for Arc
Kayles, where ν is neighborhood diversity. We finally show that Arc
Kayles on trees can be solved in O∗(2n/2)(= O(1.4143n)) time, which
improves O∗(3n/3)(= O(1.4423n)) by a direct adjustment of the analysis
of Bodlaender et al.’s O∗(3n/3)-time algorithm for Node Kayles.

Keywords: Arc Kayles · Combinatorial game theory · Exact
exponential-time algorithm · Vertex cover · Neighborhood diversity

1 Introduction

1.1 Background and Motivation
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Fig. 1. A play example of Arc Kayles

called Stop-Gate) was introduced by Göran Andersson around 1973 under the
name of Crosscram [6,8]. Domineering is usually played on a checkerboard. The
two players are denoted by Vertical and Horizontal. Vertical (resp., Horizontal)
player is only allowed to place its dominoes vertically (resp., horizontally) on
the board. Note that placed dominoes are not allowed to overlap. If no place
is left to place a domino, the player in the turn loses the game. Domineering
is a partisan game, where players use different pieces. The impartial version of
the game is Cram, where two players can place dominoes both vertically and
horizontally.

An analogous game played on an undirected graph G is Arc Kayles. In Arc
Kayles, the action of a player in a turn is to select an edge of G, and then the
selected edge and its neighboring edges are removed from G. If no edge remains
in the resulting graph, the player in the turn loses the game. Figure 1 is a play
example of Arc Kayles. In this example, the first player selects edge e1, and then
the second player selects edge e2. By the first player selecting edge e3, no edge
is left; the second player loses. Note that the edges selected throughout a play
form a maximal matching on the graph.

Similarly, we can define BW-Arc Kayles, which is played on an undirected
graph with black and white edges. The rule is the same as the ordinary Arc
Kayles except that the black (resp., white) player can select only black (resp.,
white) edges. Note that Cram and Domineering are respectively interpreted as
Arc Kayles and BW-Arc Kayles on a two-dimensional grid graph, which is the
graph Cartesian product of two path graphs.

To focus on the common nature of such games with matching structures,
we newly define Colored Arc Kayles. Colored Arc Kayles is played on a graph
whose edges are colored in black, white, or gray, and black (resp., white) edges
can be selected only by the black (resp., white) player, though grey edges can
be selected by both black and white players. BW-Arc Kayles and ordinary Arc
Kayles are special cases of Colored Arc Kayles. In this paper, we investigate
Colored Arc Kayles from the algorithmic point of view.

1.2 Related Work

Cram and Domineering. Cram and Domineering are well studied in the field
of combinatorial game theory. In [8], Gardner gives winning strategies for some
simple cases. For Cram on a× b board, the second player can always win if both
a and b are even, and the first player can always win if one of a and b is even
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and the other is odd. This can be easily shown by the so-called Tweedledum and
Tweedledee strategy. For specific sizes of boards, computational studies have
been conducted [17]. In [16], Cram’s endgame databases for all board sizes with
at most 30 squares are constructed. As far as the authors know, the complexity
to determine the winner for Cram on general boards still remains open.

Finding the winning strategies of Domineering for specific sizes of boards by
using computer programs is well studied. For example, the cases of 8 × 8 and
10 × 10 are solved in 2000 [3] and 2002 [4], respectively. The first player wins
in both cases. Currently, the status of boards up to 11 × 11 is known [15]. In
[18], endgame databases for all single-component positions up to 15 squares for
Domineering are constructed. The complexity of Domineering on general boards
also remains open. Lachmann, Moore, and Rapaport show that the winner and
a winning strategy Domineering on m×n board can be computed in polynomial
time for m ∈ {1, 2, 3, 4, 5, 7, 9, 11} and all n [11].

Kayles, Node Kayles, and Arc Kayles. Kayles is a simple impartial game,
introduced by Henry Dudeney in 1908 [7]. The name “Kayles” derives from
French word “quilles”, meaning “bowling”. The rule of Kayles is as follows. Given
bowling pins equally spaced in a line, players take turns to knock out either one
pin or two adjacent pins, until all the pins are gone. As graph generalizations,
Node Kayles and Arc Kayles are introduced by Schaefer [14]. Node Kayles is the
vertex version of Arc Kayles. Namely, the action of a player is to select a vertex
instead of an edge, and then the selected vertex and its neighboring vertices are
removed. Note that both generalizations can describe the original Kayles; Kayles
is represented as Node Kayles on sequentially linked triangles or as Arc Kayles
on a caterpillar graph.

Node Kayles is known to be PSPACE-complete [14], whereas the winner
determination is solvable in polynomial time on graphs of bounded asteroidal
numbers such as cocomparability graphs and cographs by using Sprague-Grundy
theory [1]. For general graphs, Bodlaender et al. propose an O(1.6031n)-time
algorithm [2]. Furthermore, they show that the winner of Node Kayles can be
determined in time O(1.4423n) on trees. In [10], Kobayashi sophisticates the
analysis of the algorithm in [2] from the perspective of the parameterized com-
plexity and shows that it can be solved in time O∗(1.6031μ), where μ is the
modular width of an input graph1. He also gives an O∗(3τ )-time algorithm,
where τ is the vertex cover number, and a linear kernel when parameterized by
neighborhood diversity.

Different from Node Kayles, the complexity of Arc Kayles has remained open
for more than 30 years. Even for subclasses of trees, not much is known. For
example, Huggans and Stevens study Arc-Kayles on subdivided stars with three
paths [9]. To our best knowledge, no exponential-time algorithm for Arc Kayles
is presented except for an O∗(4τ2

)-time algorithm proposed in [13].

1 The O∗(·) notation suppresses polynomial factors in the input size.
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1.3 Our Contribution

In this paper, we address winner determination algorithms for Colored Arc
Kayles. We first propose an O∗(2n)-time algorithm for Colored Arc Kayles. Note
that this is generally faster than applying the Node Kayles algorithm to the line
graph of an instance of Arc Kayles; it takes time O(1.6031m), where m is the
number of the original edges. We then focus on algorithms based on graph param-
eters. We present an O∗(1.4143τ2+3.17τ )-time algorithm for Colored Arc Kayles,
where τ is the vertex cover number. The algorithm runs in time O∗(1.3161τ2+4τ )
and O∗(1.1893τ2+6.34τ ) for BW-Arc Kayles, and Arc Kayles, respectively. This
is faster than the previously known time complexity O∗(4τ2

) in [13].
On the other hand, we give a bad instance for the proposed algorithm, which

implies the running time analysis is asymptotically tight. Furthermore, we show
that the winner of Arc Kayles can be determined in time O∗((n/ν +1)ν), where
ν is the neighborhood diversity of an input graph. This analysis is also asymp-
totically tight, because there is an instance having (n/ν + 1 − o(1))ν(1−o(1)). We
finally show that the winner determination of Arc Kayles on trees can be solved
in O∗(2n/2) = O(1.4143n) time, which improves O∗(3n/3)(= O(1.4423n)) by a
direct adjustment of the analysis of Bodlaender et al.’s O∗(3n/3)-time algorithm
for Node Kayles.

2 Preliminaries

2.1 Notations and Terminology

Let G = (V,E) be an undirected graph. We denote n = |V | and m = |E|,
respectively. For an edge e = {u, v} ∈ E, we define Γ(e) = {e′ | e ∩ e′ �= ∅}.
For a graph G = (V,E) and a vertex subset V ′ ⊆ V , we denote by G[V ′] the
subgraph induced by V ′. For simplicity, we denote G − v instead of G[V \ {v}].
For an edge subset E′, we also denote by G − E′ the subgraph obtained from
G by removing all edges in E′ from G. A vertex set S is called a vertex cover if
e ∩ S �= ∅ for every edge e ∈ E. We denote by τ the size of a minimum vertex
cover of G. Two vertices u, v ∈ V are called twins if N(u) \ {v} = N(v) \ {u}.

Definition 1. The neighborhood diversity ν(G) of G = (V,E) is defined as the
minimum number w such that V can be partitioned into w vertex sets of twins.

In the following, we simply write ν instead of ν(G) if no confusion arises. We
can compute the neighborhood diversity of G and the corresponding partition
in polynomial time [12]. For any graph G, ν ≤ 2τ + τ holds.

2.2 Colored Arc Kayles

Colored Arc Kayles is played on a graph G = (V,EG ∪ EB ∪ EW), where
EG, EB, EW are mutually disjoint. The subscripts G, B, and W of EG, EB, EW

respectively, stand for gray, black, and white. For every edge e ∈ EG ∪EB ∪EW,
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let c(e) be the color of e, that is, c(e) = G if e ∈ EG, B if e ∈ EB, and W
if e ∈ EW. If {u, v} �∈ EG ∪ EB ∪ EW, we set c({u, v}) = ∅ for convenience.
As explained below, the first (black or B) player can choose only gray or black
edges, and the second (white or W) player can choose only gray or white edges.

Two players alternatively choose an edge of G. Player B can choose an edge
in EG ∪ EB and player W can choose an edge in EG ∪ EW. That is, there are
three types of edges; EB is the set of edges that only the first player can choose,
EW is the set of edges that only the second player can choose, and EG is the
set of edges that both the first and second players can choose. Once an edge e
is selected, the edge and its neighboring edges (i.e., Γ (e)) are removed from the
graph, and the next player chooses an edge of G−Γ (e). The player that can take
no edge loses the game. Since (Colored) Arc Kayles is a two-person zero-sum
perfect information game and ties are impossible, one of the players always has
a winning strategy. We call the player having a winning strategy the definite
winner, or simply winner.

The problem that we consider in this paper is defined as follows:

Input: G = (V,EG ∪ EB ∪ EW), active player in {B,W}.
Question: Suppose that players B and W play Colored Arc Kayles on G from

the active player’s turn. Which player is the winner?

Remark that if EB = EW = ∅, Colored Arc Kayles is equivalent to Arc Kayles
and if EG = ∅, it is equivalent to BW-Arc Kayles.

To simply represent the definite winner of Colored Arc Kayles, we introduce
two Boolean functions fB and fW. The fB(G) is defined such that fB(G) = 1
if and only if the winner of Colored Arc Kayles on G from player B’s turn is
player B. Similarly, fW(G) is the function such that fW(G) = 1 if and only if
the winner of Colored Arc Kayles on G from player W’s turn is the player W.
If two graphs G and G′ satisfy that fB(G) = fB(G′) and fW(G) = fW(G′), we
say that G and G′ have the same game value on Colored Arc Kayles.

3 Basic Algorithm

In this section, we show that the winner of Colored Arc Kayles on G can be
determined in time O∗(2n). We first observe that the following lemma holds by
the definition of the game.

Lemma 1. Suppose that Colored Arc Kayles is played on G = (V,EG ∪ EW ∪
EB). Then, player B (resp., W) wins on G with player B’s (resp., W’s) turn if
and only if there is an edge {u, v} ∈ EG ∪ EB (resp., {u, v} ∈ EG ∪ EW) such
that player W (resp., B) loses on G − u − v with player B’s (resp., W’s) turn.

This lemma is interpreted by the following two recursive formulas:

fB(G) =
∨

{u,v}∈EG∪EB

¬ (fW(G − u − v)) , (1)

fW(G) =
∨

{u,v}∈EG∪EW

¬ (fB(G − u − v)) . (2)
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By these formulas, we can determine the winner of G with either first or second
player’s turn by computing fB(G) and fW(G) for all induced subgraphs of G.
Since the number of all induced subgraphs of G is 2n, it can be done in time
O∗(2n) by a standard dynamic programming algorithm.

Theorem 1. The winner of Colored Arc Kayles can be determined in time
O∗(2n).

4 FPT Algorithm Parameterized by Vertex Cover

In this section, we propose winner determination algorithms for Colored Arc
Kayles parameterized by the vertex cover number. As mentioned in Introduction,
the selected edges in a play of Colored Arc Kayles form a matching. This implies
that the number of turns is bounded above by the maximum matching size of
G and thus by the vertex cover number. Furthermore, the vertex cover number
of the input graph is bounded by twice of the number r of turns of Arc Kayles.
Intuitively, we may consider that a game taking longer turns is harder to analyze
than games taking shorter turns. In that sense, the parameterization by the
vertex cover number is quite natural.

In this section, we propose an O∗(1.4143τ2+3.17τ )-time algorithm for Colored
Arc Kayles, where τ is the vertex cover number of the input graph. It utilizes
similar recursive relations shown in the previous section, but we avoid to enu-
merate all possible positions by utilizing equivalence classification.

Before explaining the equivalence classification, we give a simple observation
based on isomorphism. The isomorphism on edge-colored graphs is defined as
follows.

Definition 2. Let G = (V,E) and G′ = (V ′, E′) be edge-colored graphs where
E =

⋃r
i=1 Ei and E′ =

⋃r
i=1 E′

i. Then G and G′ are called isomorphic if for any
pair of u, v ∈ V there is a bijection f : V → V ′ such that {u, v} ∈ Ei if and only
if {f(u), f(v)} ∈ E′

i.

The following proposition is obvious.

Proposition 1. If edge-colored graphs G and G′ are isomorphic, G and G′ have
the same game value for Colored Arc Kayles.

Let S be a vertex cover of G = (V,EG ∪ EW ∪ EB), that is, any e = {u, v} ∈
EG ∪ EW ∪ EB satisfies that {u, v} ∩ S �= ∅. Note that for v ∈ V \ S, N(v) ⊆ S
holds. We say that two vertices v, v′ ∈ V \ S are equivalent with respect to S in
G if N(v) = N(v′) and c({u, v}) = c({u, v′}) holds for ∀u ∈ N(v). If two vertices
v, v′ ∈ V \ S are equivalent with respect to S in G, G − u − v and G − u − v′ are
isomorphic because the bijective function swapping only v and v′ satisfies the
isomorphic condition. Thus, we have the following lemma.

Lemma 2. Suppose that two vertices v, v′ ∈ V \S are equivalent with respect to
S in G. Then, for any u ∈ N(v), G − u − v and G − u − v′ have the same game
value.
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By the equivalence with respect to S, we can split V \ S into equivalence
classes. Note here that the number of equivalence classes is at most 4|S|, because
for each u ∈ S and v ∈ V \ S, edge {u, v} does not exist, or it can be colored
with one of three colors if exists; we can identify an equivalent class with x ∈
{∅,G,B,W}S , a 4-ary vector with length |S|. For S′ ⊆ S, let x[S′] denotes the
vector by dropping the components of x except the ones corresponding to S′.
Also for u ∈ S, x[u] denotes the component corresponding to u in x. Then, V

is partitioned into V
(x)
S ’s, where V

(x)
S = {v ∈ V \ S | ∀u ∈ S : c({v, u}) = x[u]}.

We arbitrarily define the representative of non-empty V
(x)
S (e.g., the vertex with

the smallest ID), which is denoted by ρ(V (x)
S ). By using ρ, we also define the

representative edge set by

ER(S) =
⋃

x∈{∅,G,B,W}S

{{u, ρ(V (x)
S )} ∈ EG ∪ EB ∪ EW | u ∈ S}.

By Lemma 2, we can assume that both players choose an edge only in ER(S),
which enables to modify the recursive equations (1) and (2) as follows: For a
vertex cover S of G, we have

fB(G) =
∨

{u,v}∈(EG∪EB)∩(ER(S)∪S×S)

¬ (fW (G − u − v))) , (3)

fW (G) =
∨

{u,v}∈(EG∪EW)∩(ER(S)∪S×S)

¬ (fB(G − u − v))) . (4)

Note that this recursive formulas imply that the winner of Colored Arc Kayles
can be determined in time O∗((τ2+τ ·4τ )τ ) = O∗((4τ+log4 τ )τ ) = O∗(4τ2+τ log4 τ )
= O∗(5.6569τ2

), because the recursions are called at most |S| times and τ +
log4 τ ≤ 1.25τ for τ ≥ 1.

In the following, we give a better estimation of the number of induced sub-
graphs appearing in the recursion. Once such subgraphs are listed up, we can
apply a standard dynamic programming to decide the necessary function values,
or we can compute fB and fW according to the recursive formulas with mem-
orization, by which we can skip redundant recursive calls. In order to estimate
the number of induced subgraphs appearing in the recursion, we focus on the
fact that the position of a play in progress corresponds to the subgraph induced
by a matching.

Lemma 3. The number of nodes in recursion trees of equations (3) and (4) for
Colored Arc Kayles is O((r + 1)|S|2/43|S||S|2), where r is the used colors.

Proof. Suppose that S is a vertex cover of G and players play Colored Arc
Kayles on G. At some point, some edges selected by players together with their
neighboring edges are removed, and the left subgraph represents a game position.
Note that at least one endpoint of such a selected edge is in S, and selected edges
form a matching. To define such a subgraph, let us imagine that some M is the
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set of edges that have been selected until the point. Although we do not specify
M , the M defines a partition (X,Y,Z) of S; X = {{u, v} ∈ M | |{u, v} ∩ S| = 2},
Y = {{u, v} ∈ M | |{u, v} ∩ S| = 1}, and Z = {{u, v} ∈ M | |{u, v} ∩ S| = 0}.
We now count the number of positions having a common (X,Y,Z). Since X

and Y are removed, the remaining vertices in V \ S are classified into V
(x)
Z ’s

x ∈ {∅,G,B,W}|Z|. This is the common structure defined by (X,Y,Z), and
the positions vary as |Y | vertices in

⋃
x∈{∅,G,B,W}|Z| V

(x)
Z are matched with Y .

Thus, we estimate the number of positions by counting the number of choices
of |Y | vertices in

⋃
x∈{∅,G,B,W}|Z| V

(x)
Z . Here, let r be the number of used colors

of edges. For example, BW-Arc Kayles and ordinary Arc Kayles use r = 2 and
r = 1 colors, respectively, and which may reduce the numbers of x’s for smaller
r. Then, it is above bounded by the multiset coefficient of (r +1)|Z| multichoose
|Y |, ((

(r + 1)|Z|

|Y |
))

=
(

(r + 1)|Z| + |Y | − 1
|Y |

)
≤ (r + 1)|Z||Y |.

This is an upper bound of the number of subgraphs to consider with respect to
(X,Y,Z). By considering all possible (X,Y,Z), the total number of subgraphs
is bounded by

∑

X,Y,Z⊆S

(r + 1)|Z||Y | ≤ 3|S| · |S|
|S|∑

y=0

(r + 1)y(|S|−y) ≤ 3|S| · |S|2 · (r + 1)
|S|2
4 ,

where the first inequality comes from the choices of X, Y , and Z from S. �
The following theorem immediately holds by Lemma 3 and the fact that a

minimum vertex cover of G can be found in time O∗(1.2738τ ), where τ is the
vertex cover number of G [5].

Theorem 2. The winners of Colored Arc Kayles, BW-Arc Kayles, and Arc
Kayles can be determined in time O∗(1.4143τ2+3.17τ ), O∗(1.3161τ2+4τ ), and
O∗(1.1893τ2+6.34τ ), respectively, where τ is the vertex cover number of a graph.

We have shown that the winner of Arc Kayles can be determined in time
O∗(1.1893τ2+6.34τ ). The following theorem shows that the analysis is asymp-
totically tight, which implies that for further improvement, we need additional
techniques apart from ignoring vertex-cover-based isomorphic positions. We here
give such an example in Fig. 2.

Theorem 3. There is a graph for which the algorithm requires 2τ2/2 recursive
calls for Colored Arc Kayles.

Proof. We explain how we systematically construct such a graph G (see Fig. 2).
Let k be an even number. We first define U = {u1, . . . , uk/2} and V =
{v1, . . . , vk/2} as vertex sets. The union U ∪ V will form a vertex cover after the
graph G are constructed. For every 4-ary vector x ∈ {∅,G,B,W}U and every i ∈
{1, . . . , k/2}, we define xi,x as a vertex, and let X be the collections of xi,x ’s, i.e.,
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X = {xi,x | x ∈ {∅,G,B,W}U , i ∈ {1, . . . , k/2}}. These are the vertices of G. We
next define the set of edges of G. We connect vi and xi,x ’s for each i by edges
with no-color, i.e., EG = {{vi, xi,S(x )} | x ∈ {∅,G,B,W}U , i ∈ {1, . . . , k/2}}.
Furthermore, we connect xi,x and u ∈ U for each x so that {u, xi,x} has color
x[u]; if x[u] = ∅, no edge exists between xi,x and u ∈ U . Figure 2 shows an
example how we connect x1,x and ui’s, where x[u1] = ∅, x[u2] = G, x[ui] = W,
and x[uk/2] = B. Notice that in Fig. 2, {x1,x , u1} is connected with edge ∅ for
explanation, which means that there is no edge between x1,x and u1. Note that
the number of vertices in G is |U | + |V | + |X| = k + 4k/2k/2. Moreover, U , V ,
and X form independent sets and X separates U and V . Thus, U ∪ V forms a
vertex cover of size k in G.

We are ready to explain that G has different 2τ2/2 subgraphs called by the
algorithm. Starting from G, we call the recursive formulas (3) and (4) k/2 times
by selecting edges incident to only vi’s. Then, all the vertices in V are removed
from G, and the neighbors of remaining xi,x ’s are in U . That is, each xi,x has
its inherent set of neighbors, and thus xi,x ’s are not equivalent each other for
vertex cover U ∪ V . This implies that if the set of removed edges are different,
the resulting subgraphs are also different.

In a step before k/2 + 1, an edge connecting some vi is removed, and such
an edge is chosen from {{vi, xi,x} | x ∈ {∅,G,B,W}U}, that is, the number of
candidates is 4k/2 for each i. Thus, the total way to choose edges is (4k/2)k/2 =
4k2/4 = 2k2/2; at least 2k2/2 recursion calls occur. �

Fig. 2. The constructed graph G = (U ∪ V ∪ X, E).

By the similar construction, we can show the following theorem.

Theorem 4. There is a graph for which the algorithm requires 1.3161τ2
and

1.1893τ2
recursive calls for BW-Arc Kayles and Arc Kayles, respectively.

Remark 1. Although Theorems 3 and 4 give lower bounds on the running time
of the vertex cover-based algorithms, the proof implies a stronger result. In the
proof of Theorem 3, we use ID’s of the vertices in U . By connecting 2i pendant
vertices to ui, we can regard them as ID of ui. Furthermore, we make U a clique
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by adding edges. These make the graphs not automorphic, which implies that
the time complexity of an algorithm utilizing only isomorphism is at least the
value shown in Theorems 3 or 4.

5 XP Algorithm Parameterized by Neighborhood
Diversity

In this section, we deal with neighborhood diversity ν, which is a more general
parameter than vertex cover number. We first give an O∗((n/ν +1)ν)-time algo-
rithm for Arc Kayles. This is an XP algorithm parameterized by neighborhood
diversity. On the other hand, we show that there is a graph having at least
(n/ν + 1 − o(1))ν(1−o(1)) non-isomorphic induced subgraphs, which implies the
analysis of the proposed algorithm is asymptotically tight.

By Proposition 1, if we list up all non-isomorphic induced subgraphs, the
winner of Arc Kayles can be determined by using recursive formulas (1) and (1).
Let M = {M1,M2, . . . ,Mν} be a partition such that

⋃
i Mi = V and vertices

of Mi are twins each other. We call each Mi a module. We can see that non-
isomorphic induced subgraphs of G are identified by how many vertices are
selected from which module.

Lemma 4. The number of non-isomorphic induced subgraphs of a graph of
neighborhood diversity ν is at most (n/ν + 1)ν .

Proof. By the definition of neighborhood diversity, vertices in a module are twins
each other. Therefore, the number of non-isomorphic induced subgraphs of G is
at most

∏ν
i=1(|Mi| + 1) ≤ (

∑ν
i=1(|Mi| + 1)/ν)ν ≤ (n/ν + 1)ν . �

Without loss of generality, we select an edge whose endpoints are the min-
imum indices of vertices in the corresponding module. By Proposition 1, the
algorithm in Sect. 3 can be modified to run in time O∗((n/ν + 1)ν).

Theorem 5. There is an O∗((n/ν + 1)ν)-time algorithm for Arc Kayles.

The idea can be extended to Colored Arc Kayles and BW-Arc Kayles. In
G = (V,EG ∪ EB ∪ EW), two vertices u, v ∈ V are called colored twins if
c({u,w}) = c({v, w}) holds ∀w ∈ V \ {u, v}. We then define the notion of
colored neighborhood diversity.

Definition 3. The colored neighborhood diversity of G = (V,E) is defined as
minimum ν′ such that V can be partitioned into ν′ vertex sets of colored twins.

In Colored Arc Kayles or BW-Arc Kayles, we can utilize a partition of V into
modules each of which consists of colored twins. If we are given a partition of the
vertices into colored modules, we can decide the winner of Colored Arc Kayles or
BW-Arc Kayles like Theorem 5. Different from ordinary neighborhood diversity,
it might be hard to compute colored neighborhood diversity in polynomial time.
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Fig. 3. The constructed graph G with neighborhood diversity ν = k + 2 log2(k + 1).

Theorem 6. Given a graph G = (V,EG ∪ EB ∪ EW) with a partition of V into
ν′ modules of colored twins, we can compute the winner of Colored Arc Kayles
on G in time O∗((n/ν′ + 1)ν′

).

In the rest of this section, we give a bad instance for the proposed algorithm
as shown in Fig. 3, although the detailed proof is omitted. The result implies
that the analysis of Theorem 5 is asymptotically tight.

Theorem 7. There is a graph having at least (n/ν + 1 − o(1))ν(1−o(1)) non-
isomorphic positions of Arc Kayles.

6 Arc Kayles for Trees

In [2], Bodlaender et al. show that the winner of Node Kayles on trees can be
determined in time O∗(3n/3) = O(1.4423n). It is easy to show by a similar argu-
ment that the winner of Arc Kayles can also be determined in time O(1.4423n).
It is also mentioned that the analysis is sharp apart from a polynomial factor
because there is a tree for which the algorithm takes Ω(3n/3) time. The example
is also available for Arc Kayles; namely, as long as we use the same algorithm,
the running time cannot be improved.

In this section, we present that the winners of Arc Kayles on trees can be
determined in time O∗(2n/2) = O(1.4143n), which is attained by considering
a tree (so-called) unordered. Since a similar analysis can be applied to Node
Kayles on trees, the winner of Node Kayles on trees can be determined in time
O∗(2n/2). We omit the proof for Node Kayles to avoid repetition.

Let us consider a tree T = (V,E). By Sprague-Grundy theory, if all connected
subtrees of T are enumerated, one can determine the winner of Arc Kayles.
Furthermore, by Proposition 1, once a connected subtree T ′ is listed, we can
ignore subtrees isomorphic to T ′. Here we adopt isomorphism of rooted trees.

Definition 4. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be trees rooted at r and
r′, respectively. Then, T and T ′ are called isomorphic if for any pair of u, v ∈ V
there is a bijection f : V → V ′ such that {u, v} ∈ Ei if and only if {f(u), f(v)} ∈
E′

i and f(r) = f(r′).
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In the following, we estimate the number of non-isomorphic connected sub-
graphs of T based on isomorphism of rooted trees. For T = (V,E) rooted at r,
a connected subtree T ′ rooted at r is called an AK-rooted subtree of T , if there
exists a matching M ⊆ E such that T [V \M ] consists of T ′ and isolated vertices.
Note that M can be empty, AK-rooted subtree T ′ must contain root r of T , and
the graph consisting of only vertex r can be an AK-rooted subtree.

Lemma 5. Any tree rooted at r has O∗(2n/2)(= O(1.4143n)) non-isomorphic
AK-rooted subtrees rooted at r.

Proof. Let R(n) be the maximum number of non-isomorphic AK-rooted subtrees
of any tree rooted at some r with n vertices. We claim that R(n) ≤ 2n/2 − 1 for
all n ≥ 4, which proves the lemma.

We will prove the claim by induction. For n ≤ 4, the values of R(n)’s are as
follows: R(1) = 1, R(2) = 1, R(3) = 2, and R(4) = 3. These can be shown by
concretely enumerating trees. For example, for n = 2, a tree T with 2 vertices
is unique, and an AK-rooted subtree of T containing r is also unique, which
is T itself. For n = 3, the candidates of T are shown in Fig. 4. For Type A in
Fig. 4, AK-rooted subtrees are the tree itself and isolated r, and for Type B, an
AK-rooted subtree is only the tree itself; thus we have R(3) = 2. Similarly, we
can show R(4) = 3 as seen in Fig. 5. Note that R(1) > 21/2 − 1, R(2) = 1 ≤
22/2 − 1 = 1, R(3) = 2 > 23/2 − 1, and R(4) = 3 ≤ 24/2 − 1 = 3. This R(4) is
used as the base case of induction.

Fig. 4. Trees with 3 vertices rooted at r Fig. 5. Trees with 4 vertices rooted at r

As the induction hypothesis, let us assume that the claim is true for all n′ < n
except 1 and 3, and consider a tree T rooted at r on n vertices. Let u1, u2, . . . , up

be the children of root r, and Ti be the subtree of T rooted at ui with ni vertices
for i = 1, 2, . . . , p. Note that for an AK-rooted subtree T ′ of T , the intersection
of T ′ and Ti for each i is either empty or an AK-rooted subtree of Ti rooted
at ui. Based on this observation, we take a combination of the number of AK-
rooted subtrees of Ti’s, which gives an upper bound on the number of AK-rooted
subtrees of T . We consider two cases: (1) for any i, ni �= 3, (2) otherwise. For
case (1), the number of AK-rooted subtrees of T is at most

∏

i:ni>1

(R(ni) + 1) ·
∏

i:ni=1

1 ≤
∏

i:ni>1

2ni/2 = 2
∑

i:ni>1 ni/2 ≤ 2(n−1)/2 ≤ 2n/2 − 1.
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That is, the claim holds in this case. Here, in the left hand of the first inequality,
R(ni)+1 represents the choice of AK-rooted subtree of Ti rooted at ui or empty,
and “1” for i with ni = 1 represents that ui needs to be left as is, because
otherwise edge {r, ui} must be removed, which violates the condition “rooted
at r”. The first inequality holds since any ni is not 3 and thus the induction
hypothesis can be applied. The last inequality holds by n ≥ 5.

For case (2), we further divide into two cases: (2.i), for every i such that
ni = 3, Ti is Type B, and (2.ii) otherwise. For case (2.i), since a AK-rooted
subgraph of Ti of Type B in Fig. 4 is only Ti itself, the number is 1 ≤ 23/2 − 1.
Thus, the similar analysis of Case (1) can be applied as follows:

∏

i:ni 
=1,3

(R(ni) + 1) ·
∏

i:TypeBTi

(23/2 − 1 + 1) ≤
∏

i:ni>1

2ni/2 ≤ 2n/2 − 1,

that is, the claim holds also in case (2.i).
Finally, we consider case (2.ii). By the assumption, at least one Ti is Type A

in Fig. 4. Suppose that T has q children of r forming Type A, which are renamed
T1, . . . , Tq as canonicalization. Such renaming is allowed because we count non-
isomorphic subtrees. Furthermore, we can sort AK-rooted subtrees of T1, . . . , Tq

as canonicalization. Since each Type A tree can form in T ′ empty, a single vertex,
or Type A tree itself, T1, . . . , Tq of T , the number of possible forms of subforests
of T1, . . . , Tq of T is

((q

3

))
=

(
q + 2

2

)
.

Since the number of subforests of Ti’s other than T1, . . . , Tq are similar evaluated
as above, we can bound the number of AK-rooted subtrees by

(
q + 2

2

) ∏

i:i>q

2ni/2 ≤ (q + 2)(q + 1)
2

2
∑

i:i>q ni/2 ≤ (q + 2)(q + 1)
2

2(n−3q−1)/2.

Thus, to prove the claim, it is sufficient to show that (q +2)(q +1)2(n−3q−3)/2 ≤
2n/2 − 1 for any pair of integers n and q satisfying n ≥ 5 and 1 ≤ q ≤ (n − 1)/3.
This inequality is transformed to the following

(q + 1)(q + 2)

2
3(q+1)

2

≤ 1 − 1
2

n
2

.

Since the left hand and right hand of the inequality are monotonically decreasing
with respect to q and monotonically increasing with respect to n, respectively,
the inequality always holds if it is true for n = 5 and q = 1. In fact, we have

(1 + 1)(1 + 2)

2
3(1+1)

2

=
3
4

= 1 − 1
22

≤ 1 − 1
2

5
2
,

which completes the proof. �
Theorem 8. The winner of Arc Kayles on a tree with n vertices can be deter-
mined in time O∗(2n/2) = O(1.4143n).
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