
LN
CS

 1
42

92
AR

Co
SS

Lecture Notes in Computer Science 14292

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Henning Fernau • Klaus Jansen
Editors

Fundamentals
of Computation Theory
24th International Symposium, FCT 2023
Trier, Germany, September 18–21, 2023
Proceedings

123

Editors
Henning Fernau
University of Trier
Trier, Germany

Klaus Jansen
University of Kiel
Kiel, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-43586-7 ISBN 978-3-031-43587-4 (eBook)
https://doi.org/10.1007/978-3-031-43587-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-4444-3220
https://orcid.org/0000-0001-8358-6796
https://doi.org/10.1007/978-3-031-43587-4

Preface

A Good Tradition

The 24th International Symposium on Fundamentals of Computation Theory (FCT
2023) was hosted by the University of Trier, Germany, during September 18th – 21st,
2023. The conference series “Fundamentals of Computation Theory” (FCT) was
established in 1977 for researchers who are interested in all aspects of theoretical
computer science and in particular algorithms, complexity, and formal and logical
methods. FCT is a biennial conference. Previous symposia have been held in Poznań
(Poland, 1977), Wendisch-Rietz (Germany, 1979), Szeged (Hungary, 1981), Borgholm
(Sweden, 1983), Cottbus (Germany, 1985), Kazan (Russia, 1987), Szeged (Hungary,
1989), Gosen-Berlin (Germany, 1991), again Szeged (Hungary, 1993), Dresden
(Germany, 1995), Kraków (Poland, 1997), Iaşi (Romania, 1999), Riga (Latvia, 2001),
Malmö (Sweden, 2003), Lübeck (Germany, 2005), Budapest (Hungary, 2007),
Wrocław (Poland, 2009), Oslo (Norway, 2011), Liverpool (UK, 2013), Gdańsk
(Poland, 2015), Bordeaux (France, 2017), Copenhagen (Denmark, 2019), and Athens
(Greece, 2021).

The Newest Edition: Trier 2023

The Program Committee of FCT 2023 (with two PC Chairs) included 33 scientists
from 18 countries and was chaired by Henning Fernau (University of Trier, Germany)
and by Klaus Jansen (University of Kiel, Germany).

This volume contains the accepted papers of FCT 2023. We received 79 abstract
submissions in total. Each paper was reviewed by at least three PC members. As a
result, the PC selected 30 papers for presentation to the conference and publication in
these proceedings, evaluated based on quality, originality, and relevance to the sym-
posium. The reviewing process was run using the EquinOCS conference system offered
by Springer.

Highlights of the Conference

As the PC Chairs decided not to break ties of the voting, the Program Committee
selected two papers to receive the Best Paper Award and one for the Best Student Paper
Award, respectively. These awards were sponsored by Springer. The awardees are:

– Best Paper Award: Johanna Björklund. The Impact of State Merging on Predictive
Accuracy in Probabilistic Tree Automata: Dietze’s Conjecture Revisited.

– Best Paper Award: Michael Levet, Joshua A. Grochow. On the Parallel Complexity
of Group Isomorphism via Weisfeiler–Leman.

– Best Student Paper Award: Zohair Raza Hassan, Edith Hemaspaandra, Stanisław
Radziszowski. The Complexity of (ðPk;P‘Þ-Arrowing.

The conference audience enjoyed four invited talks, given below in alphabetical
order of the speakers:

– Karl Bringmann, MPI Saarbrücken, Germany:
Fine-Grained Complexity of Knapsack Problems

– Stefan Glock, Universität Passau, Germany:
Hamilton Cycles in Pseudorandom Graphs

– Lila Kari, University of Waterloo, Canada:
Word Frequency and Machine Learning for Biodiversity Informatics

– Claire Mathieu, Univ. Sorbonne Paris, CNRS, France:
Approximation Algorithms for Vehicle Routing

Finally, Big Thanks …

We would like to thank all invited speakers for accepting to give a talk at the con-
ference, all Program Committee members who graciously gave their time and energy,
and more than 100 external reviewers for their expertise, as well as the publishers
Springer and MDPI to offer financial support for organizing this event. Also, we are
grateful to Springer for publishing the proceedings of FCT 2023 in their ARCoSS
subline of the LNCS series.

July 2023 Henning Fernau
Klaus Jansen

vi Preface

Organization

Program Committee Chairs

Henning Fernau University of Trier, Germany
Klaus Jansen University of Kiel, Germany

Steering Committee

Bogdan Chlebus University of Colorado, USA
Marek Karpinski (Chair) University of Bonn, Germany
Andrzej Lingas Lund University, Sweden
Miklos Santha CNRS and Paris Diderot University, France
Eli Upfal Brown University, USA

Program Committee

Akanksha Agrawal IITM Chennai, India
Evripidis Bampis Sorbonne University, France
Hans Bodlaender University of Utrecht, The Netherlands
Ahmed Bouajjani Paris Diderot University, France
Bogdan Chlebus Augusta University, USA
Ugo Dal Lago University of Bologna, Italy
Vida Dujmovic University of Ottawa, Canada
Leah Epstein University of Haifa, Israel
Piotr Faliszewski AGH University of Science and Technology, Krakow,

Poland
Henning Fernau (Co-chair) University of Trier, Germany
Robert Ganian TU Vienna, Austria
Klaus Jansen (Co-chair) University of Kiel, Germany
Artur Jeż University of Wrocław, Poland
Mamadou Kanté Clermont Auvergne University, France
Arindam Khan IIS Bangalore, India
Ralf Klasing CNRS, University of Bordeaux, France
Jan Kratochvíl Charles University of Prague, Czech Republic
Sławomir Lasota University of Warsaw, Poland
Florin Manea University of Göttingen, Germany
Tomáš Masopust Palacky University Olomouc, Czech Republic
Matthias Mnich TU Hamburg, Germany
Nelma Moreira University of Porto, Portugal
Norbert Müller University of Trier, Germany
Yoshio Okamoto University of Electro-Communication, Japan
Sang-il Oum IBS/KAIST, South Korea

Kenta Ozeki Yokohama National University, Japan
Markus L. Schmid HU Berlin, Germany
Uéverton Souza Fluminense Federal University, Brazil
Frank Stephan NUS, Singapore
José Verschae Pontifical Catholic University of Chile, Chile
Boting Yang University of Regina, Canada
Guochuan Zhang University of Zhejiang, China
Binhai Zhu Montana State University, USA

Organizing Committee

Henning Fernau University of Trier, Germany
Philipp Kindermann University of Trier, Germany
Zhidan Feng University of Trier, Germany
Kevin Mann University of Trier, Germany

Additional Reviewers

Andreas Bärtschi
Laurent Beaudou
Thomas Bellitto
Ioana O. Bercea
Sebastian Berndt
Sebastian Bielfeldt
Davide Bilò
Niclas Boehmer
Nicolas Bousquet
Hauke Brinkop
Sabine Broda
Yixin Cao
Javier Cembrano
Dibyayan Chakraborty
Laura Codazzi
Simone Costa
Luis Felipe Cunha
Joel Day
Alexis de Colnet
Sanjana Dey
Konstantinos Dogeas
Gérard Duchamp
Guillaume Ducoffe
Foivos Fioravantes
David Fischer
Guilherme Fonseca
Mathew C. Francis
Eric Fusy

Esther Galby
Paweł Gawrychowski
Petr Golovach
Bruno Guillon
Michel Habib
Niklas Hahn
Yassine Hamoudi
Yo-Sub Han
John Haslegrave
Winfried Hochstättler
Piotr Hofman
Matheiu Hoyrup
Dmitry Itsykson
Sanjay Jain
Bart Jansen
Vincent Juge
Andrzej Kaczmarczyk
Kai Kahler
Naoyuki Kamiyama
Christos Kapoutsis
Debajyoti Kar
Jarkko Kari
Peter Kling
Florent Koechlin
Petr Kolman
Tore Koß
Pascal Kunz
Van Bang Le

viii Organization

Duksang Lee
Paloma Lima
Guohui Lin
Grzegorz Lisowski
António Machiavelo
Diptapriyo Majumdar
Andreas Maletti
Sebastian Maneth
Kevin Mann
Yaping Mao
Barnaby Martin
Simon Mauras
Damiano Mazza
Alexsander Melo
Lydia Mirabel Mendoza-Cadena
Martin Milanič
Neeldhara Mishra
Josefa Mula
Daniel Neuen
Panagiotis Patsilinakos
Daniel Paulusma
João Pedro Pedroso
Christophe Reutenauer

Cristobal Rojas
Suthee Ruangwises
Pavel Ruzicka
Philippe Schnoebelen
Jason Schoeters
Rafael Schouery
Pascal Schweitzer
Etsuo Segawa
Eklavya Sharma
Yongtang Shi
Dmitry Sokolov
Krzysztof Sornat
Alex Sprintson
Tobias Stamm
Aditya Subramanian
Prafullkumar Tale
Malte Tutas
Gabriele Vanoni
Ilya Vorobyev
Sebastian Wiederrecht
Michalis Xefteris
Lia Yeh
Thomas Zeume

Organization ix

Contents

Convergence of Distributions on Paths. 1
Samy Abbes

Subhedge Projection for Stepwise Hedge Automata . 16
Antonio Al Serhali and Joachim Niehren

The Rectilinear Convex Hull of Line Segments. 32
Carlos Alegría, Justin Dallant, Pablo Pérez-Lantero, and Carlos Seara

Domino Snake Problems on Groups . 46
Nathalie Aubrun and Nicolas Bitar

Parsing Unranked Tree Languages, Folded Once. 60
Martin Berglund, Henrik Björklund, and Johanna Björklund

The Impact of State Merging on Predictive Accuracy in Probabilistic
Tree Automata: Dietze’s Conjecture Revisited . 74

Johanna Björklund

Computing Subset Vertex Covers in H-Free Graphs 88
Nick Brettell, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma,
and Erik Jan van Leeuwen

On Computing Optimal Temporal Branchings. 103
Daniela Bubboloni, Costanza Catalano, Andrea Marino, and Ana Silva

Contracting Edges to Destroy a Pattern: A Complexity Study 118
Dipayan Chakraborty and R. B. Sandeep

Distance-Based Covering Problems for Graphs of Given
Cyclomatic Number. 132

Dibyayan Chakraborty, Florent Foucaud, and Anni Hakanen

An Efficient Computation of the Rank Function of a Positroid 147
Lamar Chidiac, Santiago Guzmán-Pro, Winfried Hochstättler,
and Anthony Youssef

Minimizing Query Frequency to Bound Congestion Potential for Moving
Entities at a Fixed Target Time. 162

William Evans and David Kirkpatrick

Complexity of Conformant Election Manipulation . 176
Zack Fitzsimmons and Edith Hemaspaandra

a-b-Factorization and the Binary Case of Simon’s Congruence 190
Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka

Bounds for c-Ideal Hashing . 205
Fabian Frei and David Wehner

Parameterized Complexity of the T hþ1-Free Edge Deletion Problem 221
Ajinkya Gaikwad and Soumen Maity

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 234
Joshua A. Grochow and Michael Levet

The Complexity of ðPk;P‘Þ-Arrowing . 248
Zohair Raza Hassan, Edith Hemaspaandra, and Stanisław Radziszowski

On Computing a Center Persistence Diagram . 262
Yuya Higashikawa, Naoki Katoh, Guohui Lin, Eiji Miyano,
Suguru Tamaki, Junichi Teruyama, and Binhai Zhu

Robust Identification in the Limit from Incomplete Positive Data 276
Philip Kaelbling, Dakotah Lambert, and Jeffrey Heinz

Cordial Forests . 291
Feston Kastrati, Wendy Myrvold, Lucas D. Panjer, and Aaron Williams

Vertex Ordering with Precedence Constraints . 304
Jeff Kinne, Akbar Rafiey, Arash Rafiey, and Mohammad Sorkhpar

Forwards- and Backwards-Reachability for Cooperating
Multi-pushdown Systems . 318

Chris Köcher and Dietrich Kuske

Shortest Dominating Set Reconfiguration Under Token Sliding. 333
Jan Matyáš Křišťan and Jakub Svoboda

Computing Optimal Leaf Roots of Chordal Cographs in Linear Time 348
Van Bang Le and Christian Rosenke

Verified Exact Real Computation with Nondeterministic Functions
and Limits . 363

Sewon Park

xii Contents

Exact and Parameterized Algorithms for the Independent Cutset Problem. 378
Johannes Rauch, Dieter Rautenbach, and Uéverton S. Souza

Kernelization for Finding Lineal Topologies (Depth-First Spanning Trees)
with Many or Few Leaves . 392

Emmanuel Sam, Benjamin Bergougnoux, Petr A. Golovach,
and Nello Blaser

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 406
Kodai Tanaka and Takaaki Mizuki

Power of Counting by Nonuniform Families of Polynomial-Size Finite
Automata . 421

Tomoyuki Yamakami

Author Index . 437

Contents xiii

Convergence of Distributions on Paths

Samy Abbes(B)

Université Paris Cité, CNRS, IRIF, 75013 Paris, France
abbes@irif.fr

Abstract. We study the convergence of distributions on finite paths of
weighted digraphs, namely the family of Boltzmann distributions and
the sequence of uniform distributions. Targeting applications to the con-
vergence of distributions on paths, we revisit some known results from
reducible nonnegative matrix theory and obtain new ones, with a sys-
tematic use of tools from analytic combinatorics. In several fields of
mathematics, computer science and system theory, including concurreny
theory, one frequently faces non strongly connected weighted digraphs
encoding the elements of combinatorial structures of interest; this moti-
vates our study.

Keywords: Weighted digraph · Reducible nonnegative matrix ·
Uniform measure · Boltzmann measure

1 Introduction

Motivations. Given a weighted digraph, it is standard to consider for each
vertex x and for each integer k ≥ 0 the finite probability distribution μk which
gives to each path of length k and starting from x the probability proportional
to its multiplicative weight. If the underlying digraph is strongly connected and
aperiodic, the classical results of Perron-Frobenius theory for primitive matrices
show that the sequence (μk)k≥0 converges weakly toward a probability measure
on the space of infinite paths starting from x. The sequence of random vertices
visited by such a uniform infinite path is a Markov chain, which transition kernel
is derived from the weights on the edges and from the Perron eigenvector of the
adjacency matrix of the weighted digraph [10].

The same question of convergence is less standard in the case of a general,
non strongly connected weighted digraph. It is however the actual framework
for a variety of situations in mathematics, in computer science and in system
theory. Indeed, the elements of many combinatorial or algebraic structures of
interest can be represented by the paths of some finite digraph encoding the
constraints of the “normal form” of elements, in a broad sense. Even when the
initial structure is irreducible in some sense, it might very well be the case that
the digraph itself being not strongly connected. A first example is the digraph
of simple elements of a braid group or of a braid monoid, or more generally of a
Garside group or monoid [2,7,8]; this digraph is never strongly connected. But
also in automatic group theory: quoting [6], “a graph parameterizing a combing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-43587-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_1&domain=pdf
http://orcid.org/0000-0003-3382-3647
https://doi.org/10.1007/978-3-031-43587-4_1

2 S. Abbes

of a hyperbolic group may typically fail to be recurrent”. In system theory, the
digraph of states-and-cliques introduced by the author to encode the trajectories
of a concurrent system [1] is also not strongly connected in general, even for an
irreducible concurrent system.

Understanding the asymptotic behavior of “typical elements of large length”
is of great interest at some point, either for random generation purposes, or
aiming for the probabilistic verification or the performance evaluation of systems,
to name a few applications. This motivates the study of the weak limit of the
uniform distributions on paths for a general weighted digraph, which is the main
topic of this paper.

Framework and Contributions. Let W = (V,w) be a weighted digraph,
where w : V × V → R≥0 is a non negative weight function, positive on edges.
Let F be the adjacency matrix of W , that we assume to be of positive spectral
radius ρ.

Let H(z) be the generating function with matrix coefficients defined by
H(z) =

∑
k≥0 F

kzk. The power series H(z), that we call the growth matrix of W ,
can also be seen as a matrix of generating functions with a well known combina-
torial interpretation, which is recalled later in the paper. It is standard knowledge
that all the generating functions [H(z)]x,y are rational series. From this we can
deduce the existence and uniqueness of a triple (λ, h,Θ) where λ is a positive
real, h is a positive integer and Θ is a nonnegative and non zero square matrix
indexed by V ×V , that we call the residual matrix of W—it can indeed be inter-
preted as the residue at its positive smallest singularity of the function H(z)—,
and such that:

lim
s→λ

(1 − λ−1s)h H(s) = Θ s ∈ (0, λ) (1)

For instance if W is strongly connected and aperiodic, and so F is primitive,
then it is well known that there is projector matrix Π of rank 1 and a square
matrix R of spectral radius lower than 1 such that:

F = ρ(Π +R) Π ·R = 0 R ·Π = 0 (2)

In this case: λ = ρ−1, Θ = Π, h = 1, and the elements [Θ]x,y are all positive.
For the less standard situation where W is not strongly connected, a con-

tribution of this paper is to provide a recursive way of computing the residual
matrix Θ and to characterize the pairs (x, y) such that [Θ]x,y > 0 (Theorem 4
and Sect. 4). For this we use a simple formula (Lemma 2) to compute the rect-
angular blocks of H(z) outside its diagonal blocks—the latter are occupied by
the corresponding growth matrices of the access classes, or strongly connected
components, of the digraph; despite its simplicity, this formula does not seem to
have explicitly appeared in the literature.

We also show that the integer h occurring in (1) is the height of W , that
is to say, the maximal length of chains of access equivalence classes of maximal
spectral radius; in nonnegative matrix theory, access classes of maximal spectral

Convergence of Distributions on Paths 3

radius are called basic. This is consistent with the known result saying that
the dimension of the generalized eigenspace associated to ρ is the height of the
digraph [11], a result that we also recover. This yields precise information on the
growth of coefficients of the generating functions [H(z)]x,y.

We use these results to study in Sect. 5 the weak convergence of certain
probability distributions on paths, in particular the sequence of uniform distri-
butions and the family of Boltzmann distributions (see Definition 3). In the case
of a general weighted digraph, we prove the convergence of the Boltzmann dis-
tributions toward a complete cocycle measure on a sub-digraph (see Definition 4
and Theorem 5). Under an aperiodicity assumption, the convergence also holds
for the uniform distributions (Theorem 6).

The sub-digraph, support of the limit measure, has the property that its
basic access classes coincide with its final access classes. We call such digraphs
umbrella digraphs, and we devote Sect. 3 to their particular study. We give a
decomposition of their adjacency matrix which generalizes the decomposition (2)
for primitive matrices (Theorem 1 and 2), and reobtain in this way some results
from nonnegative matrix theory, for instance that umbrella digraphs are exactly
those for which there exists a positive Perron eigenvector (Corollary 2). Our
point of view is influenced by our motivation toward probability measures on the
space of infinite paths, and we characterize umbrella digraphs by the existence
of a complete cocycle measure (see Definition 4 and Theorem 3).

2 Preliminaries

•Weighted Digraphs, Adjacency Matrix, Paths. A weighted digraph, or
digraph for short, is a pair W = (V,w) where V is a finite set of vertices and
w : V × V → R≥0 is a nonnegative real valued function. The set of pairs E =
{(x, y) ∈ V × V : w(x, y) > 0} is the set of edges of W . Given a bijection
σ : V → 〈ν〉, where 〈ν〉 = {1, . . . , ν}, the function w identifies with the ν × ν
nonnegative matrix F defined by [F]σ(x),σ(y) = w(x, y). Changing the bijection
σ results in a simultaneous permutation of the lines and of the columns of F .

A finite path of W is a sequence u = (xi)0≤i≤k of vertices such that
(xi, xi+1) ∈ E for all i < k. The initial and final vertices of u are denoted
ι(u) = x0 and κ(u) = xk, and its length is
(u) = k. Denoting by O the set of
finite paths, we introduce the following notations, for x, y ∈ V and for k any
nonnegative integer:

Ox = {u ∈ O : ι(u) = x} Ox,y = {u ∈ O : ι(u) = x ∧ κ(u) = y}
Ox(k) = {u ∈ Ox :
(u) = k} Ox,y(k) = {u ∈ Ox,y :
(u) = k}
The infinite paths are the sequences ω = (xi)i≥0 such that (xi, xi+1) ∈ E for

all i ≥ 0. The set O of paths, either finite or infinite, is equipped with the prefix
ordering which we denote by ≤. For every u ∈ O, x ∈ V and k ≥ 0, we put:

Ωx = {ξ ∈ O : ι(ξ) = x ∧
(ξ) = ∞} ⇑ u = {ξ ∈ O : u ≤ ξ}
↑ u = {ω ∈ O \O : u ≤ ω} ↑k u = {v ∈ O(k) : u ≤ v}

4 S. Abbes

•Access Relation, Access Equivalence Classes. We write x⇒ y to denote
that the vertex x has access to the vertex y, meaning that Ox,y
= ∅. The rela-
tion ⇒ is then the transitive and reflexive closure of E, seen as a binary relation
on V ; it is thus a preordering relation on V . We write x ∼ y to denote that x and
y communicate, meaning that x ⇒ y and y ⇒ x, collapse equivalence relation
of ⇒. The equivalence classes of ∼ are the access classes of W . In enumerative
combinatorics context, access classes are also called strongly connected compo-
nents. The set D of access classes is equipped with the partial ordering relation,
still denoted ⇒, induced by the preordering on vertices.

For each vertex x, we define a sub-digraph V (x), identified with its set of
vertices V (x) = {y ∈ V : x⇒ y}.

By convention, the bijection σ : V → 〈ν〉 will always be chosen in such
a way that the adjacency matrix F has the following block-triangular shape,
corresponding to the so-called Frobenius normal form [12]:

F =

⎛

⎜
⎝

F1 X . . . X
...

. . . X
0 . . . 0 Fp

⎞

⎟
⎠ (3)

where the diagonal blocks F1, . . . , Fp are the adjacency matrices of the access
classes, and the Xs represent rectangular nonnegative matrices.

•Spectral Radius, Basic and Final Classes. By definition, the spectral
radius ρ(W) of W is the spectral radius ρ(F) of its adjacency matrix F ,
i.e., the largest modulus of its complex eigenvalues. It is apparent on (3) that
ρ(W) = maxD∈D ρ(D). In (3), each matrix Fi is either the 1 × 1 block [0] or an
irreducible matrix. Hence it follows from Perron-Frobenius theory that ρ(W) is
itself an eigenvalue of F .

By definition, an access class D is basic if ρ(D) = ρ(W); and final if D is
maximal in (D,⇒).

For each vertex x, we set: γ(x) = ρ
(
V (x)

)
.

•Analytic Combinatorics, Growth Matrix, Residual Matrix. We extend
the function w : V × V → R≥0 to finite paths by setting w(u) = w(x0, x1) ×
· · · × w(xk−1, xk) if u = (x0, . . . , xk), with w(u) = 1 if
(u) = 0, and we define
for every integer k ≥ 0 and for every pair (x, y) ∈ V × V :

Zx,y(k) =
∑

u∈Ox,y(k)

w(u), Zx(k) =
∑

u∈Ox(k)

w(u) =
∑

y∈V

Zx,y(k)

The quantities Zx,y(k) are related to the powers of the adjacency matrix F
through the well known formulas: Zx,y(k) = [F k]x,y.

Definition 1. The growth matrix H(z) of a weighted digraph with adjacency
matrix F is the power series with matrix coefficients defined by:

H(z) =
∑

k≥0

F kzk (4)

Convergence of Distributions on Paths 5

Just as the adjacency matrix F , the growth matrix H(z) is defined up to
a simultaneous permutation of its lines and columns. The element [H(z)]x,y is
itself a generating function:

[H(z)]x,y =
∑

k≥0

[F k]x,y z
k =

∑

k≥0

Zx,y(k)zk

Let (x, y) ∈ V × V and let f(z) = [H(z)]x,y =
∑

k akz
k, say of radius of

convergence γ−1. It is well known [9, Ch.V], [5] that f(z) is a rational series;
hence there exists polynomials A and A1, . . . , Ap and complex numbers γ1, . . . , γp

distinct from γ and with |γj | ≤ |γ|, such that ak = γkA(k) +
∑

j γ
k
j Aj(k) for k

large enough. The degree of A, say d, is called the subexponential degree of f(z),
and is characterized by the property:

lim
s→γ−1

(1 − γs)d+1f(s) = t ∈ (0,+∞) (5)

where the limit is taken for s ∈ (0, γ−1); and then the leading coefficient of A
is 1

d! t. When considering the whole matrix H(z), we obtain the following result.

Proposition 1. Given a nonnegative matrix F of spectral radius ρ > 0 and the
matrix power series H(z) defined as in (4), there exists a unique triple (λ, h,Θ)
where λ is a positive real, h is a positive integer and Θ is a square nonnegative
matrix, non zero and of the same size as F , such that:

lim
s→λ

(1 − λ−1s)h H(s) = Θ, s ∈ (0, λ) (6)

Furthermore, λ = ρ−1, and ρ−1 is the minimal radius of convergence of all
the generating functions [H(z)]x,y. For each pair (x, y) such that [H(z)]x,y has
ρ−1 as radius of convergence, then the subexponential degree of [H(z)]x,y is at
most h− 1, and is equal to h− 1 if and only if [Θ]x,y > 0.

Definition 2. Given a weighted digraph W of positive spectral radius and of
growth matrix H(z), the square nonnegative and non zero matrix Θ as in (6)
is the residual matrix of W . The nonnegative integer h − 1, where h > 0 is as
in (6), is the subexponential degree of W .

•Boltzmann and Uniform Distributions, Weak Convergence. This para-
graph is needed for the reading of Sect. 5.

Definition 3. Let W = (V,w) be a weighted digraph. For each vertex x such
that γ(x) > 0, we define the family of Boltzmann distributions (θx,s)0<s<γ(x)−1

and the sequence of uniform distributions (μx,k)k≥0 as follows:

θx,s =
1

Gx(s)

∑

u∈Ox

w(u)s�(u)δ{u} with Gx(s) =
∑

u∈Ox

w(u)s�(u)

μx,k =
1

Zx(k)

∑

u∈Ox(k)

w(u)δ{u} with Zx(k) =
∑

u∈Ox(k)

w(u)

where δ{u} is the Dirac distribution concentrated on u.

6 S. Abbes

The radius of convergence of
∑

u∈Ox
w(u)z�(u) is γ(x)−1, hence both Gx(s)

and θx,s are well defined for s < γ(x)−1. The assumption γ(x) > 0 is equivalent
to the existence of paths in Ox of arbitrary length, hence Zx(k) > 0 and μx,k is
well defined for all k ≥ 0.

All of these are discrete probability distributions on the set Ox of finite paths
starting from x. We can also see them as probability distributions on the set Ox,
including infinite paths starting from x. The latter being compact in the product
topology, it becomes relevant to look for their weak limits, either for s→ γ(x)−1

for the Boltzmann distributions, or for k → ∞ for the uniform distributions.
Our basic analytical result in this regard will be the following elementary result
(for the background on weak convergence, see for instance [4]).

Lemma 1. Let W be a weighted digraph and let x be a vertex.
1. Assume that, for each integer k ≥ 0, μk is a probability distribution on Ox(k)

and that, for every u ∈ Ox, the following limit exists: tu = limk→∞ μk(↑k u).
Then the sequence (μk)k≥0 converges weakly toward a probability measure μ on
the space Ωx of infinite paths starting from x, and μ is entirely characterized
by: ∀u ∈ Ox μ(↑ u) = tu.

2. Assume that (μs)0<s<r is a family of probability distributions on Ox such
that, for each u ∈ Ox: 1: the following limit exists: tu = lims→r μs(⇑ u);
and 2: μs({u}) s→r−−−→ 0. Then the family (μs)0<s<r converges weakly toward
a probability measure μ on Ωx as s −→ r, and μ is entirely characterized by:
∀u ∈ Ox μ(↑ u) = tu.

•Cocycles and Cocycle Measures. This paragraph is needed for reading
Sect. 5 and the end of Sect. 3.

Let W = (V,w) be a weighted digraph and let [[⇒]] = {(x, y) ∈ V × V :
x⇒ y}, a subset of V × V which is of course distinct of E in general. A cocycle
is a real valued and nonnegative function Γ : [[⇒]] → R≥0 satisfying:

∀(x, y, z) ∈ V × V × V (x⇒ y ⇒ z) =⇒ Γ (x, z) = Γ (x, y)Γ (y, z) (7)

Motivated by the form of the limit of the uniform distributions found in [10]
for primitive matrices, we introduce below the notion of cocycle measure.

Definition 4. A cocycle measure on a weighted digraph W = (V,w) is a family
μ = (μx)x∈V such that each μx is a probability measure on the space Ωx, and
such that for some real ρ > 0 and some cocycle Γ , one has:

∀x ∈ V ∀u ∈ Ox μx(↑ u) = ρ−�(u)w(u)Γ (x, κ(u)) (8)

If Γ is positive on [[⇒]], we say that μ is a complete cocycle measure.

Let (Xi)i≥0 denote the sequence of canonical projections Xi : Ωx → V .
Assume that μ = (μx)x∈V is a cocycle measure as in (8), and let x ∈ V . Then,
under μx, (Xi)i≥0 is a Markov chain with initial distribution δ{x} and with a
transition kernel of the following special form, that we call a cocycle kernel :

q(x, y) = ρ−1w(x, y)Γ (x, y) (9)

This correspondence between cocycle measures and cocycle kernels is one-to-one.

Convergence of Distributions on Paths 7

3 Umbrella Digraphs

This section is devoted to the study of umbrella digraphs, for which several
results from Perron-Frobenius theory for irreducible matrices can be transposed.

Definition 5. A weighted digraph W of positive spectral radius is: 1: an
umbrella (weighted) digraph if the basic access classes of W coincide with its
final access classes; 2: an augmented umbrella (weighted) digraph if no two
distinct basic classes of W have access to each other.

Example 1. The digraph of simple elements, but the unit element, of a braid
monoid on n ≥ 3 strands is a digraph with two access classes [2,7]. The first
class, say C1, contains only the Δ element and has access to the second class,
say C2, which contains all the other simple elements. The spectral radii are
ρ(C1) = 1 and ρ(C2) > 1, hence C2 is the unique final and basic class: the
digraph is an umbrella digraph.

Example 2. Let W = (V,w) be a strongly connected digraph with adjacency
matrix F
= [0]. Then W is an umbrella digraph with a unique access class. For
p ≥ 1, let W (p) = (V,w(p)) be the digraph with same vertices as W and with
the weight function corresponding the pth power F p. Then W (p) is irreducible
for all p ≥ 1 if and only if F is primitive, i.e., if W is aperiodic. If W is periodic
of period d, then W (d) is an umbrella digraph of spectral radius ρ(W)d. The
digraph W (d) has d basic classes which correspond to the periodic classes of the
vertices (see [12]). All the d access classes of W (d) are both final and basic.

Under an aperiodicity assumption, the adjacency matrix of an augmented
umbrella digraph has a decomposition that extends the well known decomposi-
tion of primitive matrices recalled in (2).

Theorem 1 (umbrella and augmented umbrella digraphs with aperi-
odicity). Let F be the adjacency matrix of an augmented umbrella digraph
of spectral radius ρ > 0 and with p basic classes. We assume that all the basic
classes of W are aperiodic. Then:

1. There is a computable projector matrix of rank p and a matrix R satisfying:

F = ρ(Π +R) Π ·R = R ·Π = 0 ρ(R) < 1 (10)

and the following convergence holds: limn→∞(ρ−1F)n = Π.
2. There are two computable families of nonnegative line and column vectors

(
i)1≤i≤p and (ri)1≤i≤p such that:

Π =
p∑

i=1

ri ·
i ∀i, j
i · rj = δj
i (11)

The family (ri)1≤i≤p is a basis of the space of right ρ-eigenvectors of F , and
(
i)1≤i≤p is a basis of the space of left ρ-eigenvectors of F .

8 S. Abbes

3. Only for umbrella digraphs: for every family (αi)1≤i≤p of reals, the right ρ-
eigenvector r =

∑
i αiri is positive if and only if αi > 0 for all i.

4. The subexponential degree of W is 0. The residual matrix of W coincides
with Π, i.e.: lims→ρ−1(1 − ρs)H(s) = Π, where H(z) is the growth matrix
of W . Furthermore, [Π]x,y > 0 if and only if there is a basic class B such
that x⇒ B ⇒ y.

Remark 1. If W is an umbrella digraph, then the condition for [Π]x,y > 0 in
point 4 above is equivalent to: x ⇒ y and y belongs to some basic class—the
same remark applies to next theorem.

In the following result, the aperiodicity assumption is dropped. We use the
notation W (d) introduced in Example 2 above.

Theorem 2 (umbrella and augmented umbrella digraph). Let F be the
adjacency matrix of an umbrella (resp., augmented umbrella) digraph W of spec-
tral radius ρ > 0. Let C1, . . . , Cp be the basic access classes of W , say of periods
d1, . . . , dp. Let Cν,0, . . . , Cν,dν−1 be the periodic classes of Cν , and let q =

∑
ν dν .

Let also d be a common multiple of d1, . . . , dp.

1. W (d) is an umbrella (resp., augmented umbrella) weighted digraph of spectral
radius ρd and with {Cν,j : 1 ≤ ν ≤ p, 0 ≤ j < dν} as basic classes, which
are all aperiodic. There is a computable projector Πd of rank q and a matrix
Rd such that:

F d = ρd(Πd +Rd) Πd ·Rd = Rd ·Πd = 0 ρ(Rd) < 1 (12)

2. There is a basis (
i)1≤i≤p of nonnegative left ρ-eigenvectors of F , and a basis
(rj)1≤j≤p of nonnegative right ρ-eigenvectors of F satisfying
i · rj = δj

i for
all i, j.

3. Only for umbrella digraphs: for every family (αi)1≤i≤p of reals, the ρ-
eigenvector r =

∑
i αiri is positive if and only if αi > 0 for all i.

4. The subexponential degree of W is 0. The residual matrix of W is given by

Θ =
1
d

(d−1∑

i=0

ρ−iF i
)
·Πd (13)

and satisfies: [Θ]x,y > 0 if and only if there is a basic class B such that
x⇒ B ⇒ y.

In the particular case of a periodic and strongly connected digraph, the fol-
lowing result shows that some simplifications occur in (13); it is the basis of the
convergence result for strongly connected digraphs, Theorem 7 in Sect. 5.

Corollary 1 (residual matrix of a strongly connected digraph). Let
F be the adjacency matrix of a strongly connected digraph of positive spectral
radius. Then the subexponential degree of W is 0. Let (
, r) be a pair of left and
right Perron eigenvectors of F such that
 · r = 1. Then the residual matrix of
W is Θ = Π, the positive rank 1 projector given by Π = r ·
.

Convergence of Distributions on Paths 9

Finally, umbrella weighted digraphs can be characterized by the existence of
complete cocycle measures.

Theorem 3 (existence of a complete cocycle measure). A digraph W is
an umbrella digraph if and only if there exists a complete cocycle measure on W .

If W is an umbrella digraph and is accessible from a vertex x, then the com-
plete cocycle measures on W are parameterized by an open simplex of dimen-
sion p− 1, where p is the number of basic classes of W .

In particular there exists a unique complete cocycle measure if W is strongly
connected. For F the adjacency matrix with ρ = ρ(F), and for r a Perron right
eigenvector of F , the cocycle kernel associated to this unique complete cocycle
measure is given by:

q(x, y) = ρ−1w(x, y)Γ (x, y) Γ (x, y) =
[r]y
[r]x

The following well known result [3,11] can be seen as a consequence of The-
orem 3.

Corollary 2 (existence of a positive Perron eigenvector). A weighted
digraph W of spectral radius ρ > 0 is an umbrella weighted digraph if and only
if its adjacency matrix has a positive ρ-eigenvector.

4 Computing the Residual Matrix

This section is devoted to the recursive computation of the residual matrix of a
general weighted digraph.

Recall that a subset A of a poset (B,≤) is: 1:] final if: ∀(a, b) ∈ A×B a ≤
b =⇒ b ∈ A; and 2: initial if: ∀(a, b) ∈ A×B b ≤ a =⇒ b ∈ A.

•Theoretical Results. The following elementary result will be instrumental.

Lemma 2 (recursive form of the growth matrix). Let W = (V,w) be a
weighted digraph with adjacency matrix F . Assume that (S, T) is a partition of
V and that T is final in V . Let HS(z) and HT (z) be the growth matrices of S
and T , sub-weighted digraphs of W . Then:

H(z) =
(

HS(z) Y(z)
0 HT (z)

)

Y(z) = zHS(z) ·X · HT (z) (14)

where X is the rectangular block submatrix of F corresponding to S × T .

To determine the subexponentiel degree of a general weighted digraph, the
notion of height that we introduce below and which is well known in nonnegative
matrix theory [3,11], plays a key role.

10 S. Abbes

Definition 6. Let W be a weighted digraph, and let (D,⇒) be the poset of its
access classes. A dominant chain is a chain of basic classes in (D,⇒) and of
maximal lengTheorem The height of W is the length of the dominant chains.

Remark 2. The augmented umbrella digraphs from Definition 5 are the weighted
digraphs of positive spectral radius and of height 1.

Theorem 4 (subexponential degree of a digraph). Let W = (V,w) be a
weighted digraph of positive spectral radius and of height h.

1. The subexponential degree of W is h− 1.
2. Let Θ be the residual matrix of W . Then [Θ]x,y > 0 if and only if there exists

a dominant chain (L1, . . . , Lp) such that x⇒ L1 and Lp ⇒ y.

From the above result derives the following well knwown result originally
proved by Rothblum [11].

Corollary 3. Let F be the adjacency matrix of a weighted digraph of spectral
radius ρ and of height h. Then the dimension of the generalized eigenspace of F
associated to ρ is h.

•Recursive Computing. We aim at recursively computing the residual matrix
of a weighted digraph W of spectral radius ρ > 0. We first observe two facts.

Fact 1. The growth matrix H(z) can be recursively computed by starting
from its lower-right corner and extending the blocks already computed. In details,
let (D1, . . . , Dp) be an enumeration of the access classes of W . Put Vi = D1 ∪
. . . ∪ Di for i = 0, . . . , p, and assume that the enumeration has been chosen
such that Vi is final in V for each i. Then, with the obvious notations HDi

(z)
and HVi

(z), one has for each i > 0:

HVi
(z) =

(
HDi

(z) Yi(z)
0 HVi−1(z)

)

Yi(z) = zHDi
(z) ·Xi · HVi−1(z) (15)

where Xi is the rectangular block submatrix of F corresponding to Di × Vi−1.
This results from Lemma 2 applied with the partition (Di, Vi−1) of Vi.

Fact 2. If the height of W is 1, then the residual matrix of W is directly
computable. This results from Theorem 2, via Remark 2 above.

Let ri = ρ(Di) for 0 < i ≤ p. To simplify the exposition, we assume that ri >
0 for all i, and we consider Πi the residual matrix of Di, which is a computable
rank 1 projector (see Corollary 1).

Initialization. Denoting ρi = ρ(Vi), we start the induction with the first
i0 such that hi0 ≥ 2 and ρi0 = ρ; in particular, ρ(Vi0−1) = ρ. Indeed, as long as
the height of Vi is 1, its residual matrix can be directly computed, as we observed
in Fact 2 above.

Let Θi be the residual matrix of Vi, and let hi denote the height of Vi. Since
ρ(Vi) = ρ for all i ≥ i0, we have:

∀i ≥ i0 Θi = lim
s→ρ−1

(1 − ρs)hi HVi
(s) (16)

Convergence of Distributions on Paths 11

Induction step. We assume that the residual matrix Θi−1 of Vi−1 has been
computed, and in certain cases, we also need to call for the computation of the
residual matrix of some sub-digraph of Vi−1. We show how to compute Θi.

1. Case where hi = hi−1.
(a) If ρ(Di) < ρ. Referring to (15) and (16), and since hi ≥ 2, we have:

(1 − ρs)hi Yi(s) = sHDi
(s) ·Xi ·

(
(1 − ρs)hi−1 HVi−1(s)

)

and thus Θi =
(

0 A
0 Θi−1

)

with A = ρ−1 HDi
(ρ−1) ·Xi ·Θi−1

We have HDi
(ρ−1) = (Id− ρ−1Fi)−1, where Fi is the block sub-matrix of

F corresponding to Di ×Di; so Θi can be computed.
(b) If ρ(Di) = ρ. Consider the partition (T̃ , T) of Vi−1 with

T̃ = {y ∈ Vi−1 : ∃x ∈ Vi−1 (y ⇒ x) ∧ (Di ⇒ x)} (17)

which is initial in Vi−1. Enumerating the vertices of Vi as those of Di,
then those of T̃ and then those of T in this order, we have:

HVi
(z) =

⎛

⎝
HDi

(z) A(z) 0
0 H

˜T (z) B(z)
0 0 HT (z)

⎞

⎠ A(z) = zHDi
(z) ·A · H

˜T (z) (18)

where A and B are the block submatrices of F corresponding to Di × T̃
and to T̃ × T . Indeed, vertices of T are not accessible from Di, whence
the zero block in the upper right corner of HVi

(z).
On the one hand, the down right corner of HVi

(z) formed by the four
blocks in (18) is nothing but HVi−1(z). On the other hand, we have:

(1 − ρs)hi A(s) = s
(
(1 − ρs)HDi(s)

) · A · (
(1 − ρs)hi−1 H

˜T (s)
)

s→ρ−1

−−−−−→ Y =

{
0, if the height of T̃ is < hi − 1

ρ−1 Πi · A · Ỹ if the height of T̃ is hi − 1

where Ỹ is the residual matrix of T̃ . Hence Θi =
(

0 Y 0
0 Θi−1

)
is computable.

2. Case where hi = hi−1 + 1. According to (15), we compute as follows:

(1 − ρs)hi Y(s) = s
(
(1 − ρs)HDi

(s)
) ·Xi ·

(
(1 − ρs)hi−1 HVi−1(s)

)

s→ρ−1

−−−−→ Y = ρ−1Πi ·Xi ·Θi−1

Hence Θi = (0 Y
0 0) is computable.

12 S. Abbes

5 Convergence of Distributions

This section is devoted to the convergence of distributions on paths of a weighted
digraph, which was our main goal from the beginning. We focus on the family
(θx,s)0<s<ρ−1 of Boltzmann distributions on the one hand, and on the sequence
(μk)k≥0 of uniform distributions on the other hand (see Definition 3).

•Boltzmann Distributions. Let W = (V,w) be a weighted digraph of spectral
radius ρ > 0. In view of Lemma 1, point 2, we fix a pair (x, u) where x ∈ V
and u ∈ Ox, and we study the quantity θx,s(⇑ u), aiming at its convergence for
s→ ρ−1. For s < ρ−1, we have:

θx,s(⇑ x) =
1

Gx(s)

∑

v∈Ox : u≤v

w(v)s�(v) (19)

Every v ∈ Ox with u ≤ v writes in a unique way as the concatenation v = u · v′

for some v′ ∈ Oκ(u), and then w(v) = w(u)w(v′). Hence (19) writes as:

θx,s(⇑ x) =
w(u)s�(u)

Gx(s)

∑

v∈Oκ(u)

w(v)s�(v) = w(u)s�(u)Gκ(u)(s)
Gx(s)

(20)

Now for every vertex y and for every real s ∈ (0, ρ−1), Gy(s) is related to the
growth matrix of W via:

Gy(s) =
∑

t∈V

[H(s)]y,t = [H(s) · 1]y (21)

where 1 denotes the column vector filled with 1s.
Let h(x) be the height of V (x) = {y ∈ V : x⇒ y}, and let Θ be the residual

matrix of V (x). It follows from Theorem 4 that an equivalent of [H(s) · 1]x when
s→ ρ−1 is:

[H(s) · 1]x ∼s→ρ−1

(
h(x)

)
! (1 − ρs)−h(x) [Θ · 1]x (22)

since [Θ · 1]x > 0, as a sum of terms of which at least one is positive according
to Theorem 4. Putting y = κ(u), we note that y ∈ V (x) and that two cases
may occur. 1: If there exists a dominant chain (L1, . . . , Lh(x)) of V (x) such that
y ⇒ L1, then an equivalent for [H(s) · 1]y analogous to (22) and with the same
exponent h(x) holds. From (20), (21) and (22) we derive thus:

lim
s→ρ−1

θx,s(⇑ u) = ρ−�(u)w(u)
[Θ · 1]κ(u)

[Θ · 1]x
(23)

which is a positive number.
But, 2: If not, it means that [H(s) · 1]y has either an exponential growth rate

less that ρ, or an exponential growth rate equal to ρ but a subexponential degree
less than h. In both situations, the ratio in (20) goes to zero as s→ ρ−1.

The above discussion motivates the following definition, where we recall that
γ(x) = ρ

(
V (x)

)
.

Convergence of Distributions on Paths 13

Definition 7. Let W = (V,w) be a weighted digraph and let x be a vertex such
that γ(x) > 0. The umbrella digraph spanned by x is the sub-digraph of V (x),
the vertices of which are the vertices y ∈ V (x) such that y ⇒ L1 for some
dominant chain (L1, . . . , Lh(x)) of V (x). We denote it by U(x).

The digraph U(x) thus defined is indeed an umbrella digraph, of spectral
radius γ(x). Putting together the result of the above discussion and Lemma 1,
we obtain the following convergence result.

Theorem 5 (convergence of Boltzmann distributions). Let W be a
weighted digraph of positive spectral radius ρ, with residual matrix Θ, and let
x0 be a vertex such that all vertices of W are accessible from x0. Then the
Boltzmann distributions θx0,s converge weakly when s → ρ−1 toward the com-
plete cocycle measure θ on U(x0) which cocycle transition kernel is given on
U(x0) by:

q(x, y) = ρ−1w(x, y)Γ (x, y) Γ (x, y) =
[Θ · 1]y
[Θ · 1]x

(24)

Remark 3. In the above result, the condition that V should be accessible from
x0 is not a severe restriction. In general, the theorem applies to the sub-
digraph V (x0), which vertices are those accessible from x0 and of spectral
radius γ(x0). If γ(x0) = 0, the theorem does not apply; and indeed, Ωx0 = ∅ in
this case.

Remark 4. The limit distributions (θx)x∈V are also obtained as the limits of
the Boltzmann distributions relative to the sub-digraph U(x0) itself. Hence if
Θ̃ is the residual matrix of U(x0), the cocycle kernel q(x, y) in (24) can also be
obtained as q(x, y) = ρ−1w(x, y)Γ̃ (x, y) with Γ̃ (x, y) = [Θ̃ ·1]y/[Θ̃ ·1]y. And Θ̃ is
directly computed according to Theorem 2 since U(x0) is an umbrella digraph.

•Uniform Distributions. We now aim at using point 1 of Lemma 1 in order to
derive the weak convergence of the sequence (μx,k)k≥0 of uniform distributions
on paths. We fix a vertex x and a path u ∈ Ox, and we consider the quantity
μx,k(↑k u) for k ≥
(u). The same change of variable that we used above yields
the following expression:

μx(↑k u) =
1

Zx(k)

(∑

v∈Ox(k) : u≤v

w(v)
)

= w(u)
Zκ(u)

(
k −
(u)

)

Zx(k)
(25)

We are thus brought to discuss the asymptotics of the kth coefficients of the
generating functions [H(z) · 1]x and [H(z) · 1]κ(u), as k → ∞. These are closely
related to the values of these generating functions near their singularity ρ−1,
which connects to our previous discussion for the Boltzmann distributions. We
have thus the following result, which is a sort of Tauberian theorem relatively
to Theorem 5. Remarks 3 and 4 above apply to Theorem 6 as they did for
Theorem 5.

14 S. Abbes

Theorem 6 (convergence of uniform distributions with aperiodicity).
Let W be a weighted digraph of positive spectral radius ρ, and let x0 be a

vertex such that all vertices of W are accessible from x0. We assume that all
the basic classes of W are aperiodic. Then the sequence (μx0,k)k≥0 of uniform
distributions converges weakly toward the complete cocycle measure on U(x0)
with the cocycle transition kernel q described in (24).

The aperiodicity condition in the above theorem is sufficient but not neces-
sary, as shown by the following result, consequence of Corollary 1.

Theorem 7 (convergence of uniform distributions for a strongly con-
nected digraph). For every vertex x of a strongly connected digraph W =
(V,w) with positive spectral radius ρ, the sequence of uniform distributions con-
verges weakly toward the unique complete cocycle measure on W , with transition
kernel given by q(x, y) = ρ−1w(x, y)[r]y/[r]x for any Perron eigenvector r.

In general, without aperiodicity, the convergence of uniform distributions
does not hold. This is for instance the case for the following umbrella digraph:

•
3

�� •
1

 •
1

��
1

��x •
3

�� •
1

For each integer n ≥ 1, there are exactly two paths of length n and starting
from the initial vertex x, say cn which goes to the left access class and dn which
goes to the right access class. For each k ≥ 1, we have w(c2k) = 3k−1, w(d2k) =
3k and w(c2k+1) = w(d2k+1) = 3k. Henceforth μx,2k = [1

4
3
4] and μx,2k+1 =

[1
2

1
2]. The two subsequences (μx,2k)k and (μx,2k+1)k do not converge toward

the same limit, preventig (μx,k)k to be a convergent sequence of distributions.
This example was communicated to the author by S. Gouëzel, I am happy to
thank him here for it.

References

1. Abbes, S.: Introduction to probabilistic concurrent systems. Fundam. Inf. 187(2–
4), 71–102 (2022)

2. Abbes, S., Gouëzel, S., Jugé, V., Mairesse, J.: Asymptotic combinatorics of Artin-
Tits monoids and of some other monoids. J. Algebra 525, 497–561 (2019)

3. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences.
SIAM (1994)

4. Billingsley, P.: Convergence of Probability Measures, 2nd edn. John Wiley, Hobo-
ken (1999)

5. Bousquet-Mélou, M.: Rational and algebraic series in combinatorial enumeration.
In: Proceedings of the ICM, pp. 789–826 (2006)

6. Calegari, D., Fujiwara, K.: Combable functions, quasimorphisms, and the central
limit theorem. Ergodic Theory Dyn. Syst. 30(5), 1343–1369 (2010)

7. Charney, R.: Geodesic automation and growth functions for Artin groups of finite
type. Math. Ann. 301, 307–324 (1995)

Convergence of Distributions on Paths 15

8. Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of
Garside Theory. EMS Press (2014)

9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

10. Parry, W.: Intrinsic Markov chains. Trans. Am. Math. Soc. 112(1), 55–66 (1964)
11. Rothblum, U.: Nonnegative and stochastic matrices. In: Hogben, L. (ed.) Handbook

of Linear Algebra, 2nd edn. Chapman & Hall (2014)
12. Seneta, E.: Non-Negative Matrices and Markov Chains, 2nd edn. Springer, Cham

(1981). https://doi.org/10.1007/0-387-32792-4

https://doi.org/10.1007/0-387-32792-4

Subhedge Projection for Stepwise Hedge
Automata

Antonio Al Serhali(B) and Joachim Niehren

Inria and University of Lille, Lille, France

antonio.al-serhali@inria.fr

Abstract. We show how to evaluate stepwise hedge automata (Shas)
with subhedge projection. Since this requires passing finite state infor-
mation top-down, we introduce the notion of downward stepwise hedge
automata. We use them to define an in-memory and a streaming eval-
uator with subhedge projection for Shas. We then tune the streaming
evaluator so that it can decide membership at the earliest time point. We
apply our algorithms to the problem of answering regular XPath queries
on Xml streams. Our experiments show that subhedge projection of
Shas can indeed speed up earliest query answering on Xml streams.

1 Introduction

Projection is necessary for running automata on words, trees, hedges or nested
words efficiently without having to evaluate irrelevant parts of the input struc-
ture. Projection is most relevant for Xml processing as already noticed by
[7,13,14]. Saxon’s in-memory evaluator, for instance, projects input Xml docu-
ment relative to an Xslt program, which contains a collection of XPath queries
to be answered simultaneously [10]. When it comes to processing Xml streams,
quite some algorithms [5,9,12,15] are based on nested word automata (Nwas),
for which an efficient projection algorithm exists [19].

More recently, it was noticed that stepwise hedge automata (Sha) [18] have
important advantages over Nwas when it comes to determinization and earliest
query answering [9]. Shas are a recent variant of standard hedge automata that
go back to the sixties [4,20]. They mix up bottom-up processing of standard tree
automata with the left-to-right processing of finite word automata (Nfas), but
do neither support top-down processing nor have an explicit stack in contrast to
Nwas. In particular, it could be shown that earliest query answering for regular
queries defined by deterministic Shas [3] has a lower worst case complexity than
for deterministic Nwas [9]. Shas have the advantage that the set of states that
are accessible over some hedge from a given set of start states can be computed
in linear time, while for Nwas this requires cubic time.

Based on deterministic Shas, earliest query answering for regular queries
became feasible in practice [3], as shown for a collection of deterministic Shas
for real word regular XPath queries on Xml documents [2]. On the other hand
side, it is still experimentally slower than the best non-earliest approaches [5]. We
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 16–31, 2023.
https://doi.org/10.1007/978-3-031-43587-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_2

Subhedge Projection for SHAs 17

believe that this is due to the fact that projection algorithms for Sha evaluation
are missing. Projecting in-memory evaluation assumes that the full graph of the
input hedge is constructed at beforehand. Nevertheless, projection may still save
time, if one has to run several queries on the same input hedge, or, if the graph
got constructed for different reasons anyway. In the streaming case with subhedge
projection, the situation is similar: the whole input hedge on the stream needs
to be parsed. But only for the nodes that are not projected away, the automaton
transitions need to be computed. Given that pure parsing is by two or three
orders of magnitude faster, one can save considerable time as noticed in [19].

Consider the example of the XPath filter [self::list][child::item] that
is satisfied by an Xml document if its root is an list element that has some
item child. When evaluating this filter on an Xml document, it is sufficient to
inspect its roots for having label list and then all its children until some item
is found. The subhedges of these children can be projected away. However, one
must memoize whether the level of the current node is 0, 1, or greater. This level
information can be naturally updated in a top-down manner. The evaluators
of Shas, however, operate bottom-up and left-to-right exclusively. Therefore,
projecting evaluators for Shas need to be based on more general machines. It
would not be sufficient to map Shas to Nwas and use their projecting evaluators
[19]. The Nwas obtained by compilation from Shas do not push any information
top-down, so no projection is enabled. Thus, the objective of the present paper
is to develop evaluators with subhedge projection for Shas.

As more general machines we propose downward stepwise hedge automata
(Sha↓s), a variant of Shas that support top-down processing in addition. They
are basically Neumann and Seidl’s pushdown forest automata [16], except that
they apply to unlabeled hedges instead of labeled forests. Nwas are known to
operate similarly on nested words [8], while allowing for more general visible
pushdowns. We then distinguish subhedge projection states for Sha↓s, and show
how to use them to evaluate Shas with subhedge projection both in-memory and
in streaming mode. Alternatively, subtree projecting evaluators for Sha↓s could
be obtained by compiling them to Nwas, distinguishing irrelevant subtrees there
[19], and using them for subtree projecting evaluation via projecting Nwas.

As a first and main contribution, we show how to compile Shas to Sha↓s so
that one can distinguish appropriate subhedge projection states. For instance,
reconsider the XPath filter [self::list][child::item]. It can be defined by
the deterministic Sha in Fig. 1, which our compiler maps to the Sha↓ in Fig. 2
(up to renaming of states). This compiler permits us to distinguish a projection
state Π in which subhedges can be ignored. We note however that our compiler
may in the worst case increase the size of the automata exponentially. Therefore,
we avoid constructing the Sha↓s statically but rather construct only the needed
part of the Sha↓s dynamically on the fly when using it to evaluate some hedge
with subhedge projection. A sketch of the soundness proof of our compiler is
provided.

Our second contribution is a refinement of the compiler from Shas to Sha↓s
for distinguishing safe states for rejection and selection. In this way, we obtain

18 A. A. Serhali and J. Niehren

Fig. 1. A unique minimal deterministic Sha (with initial state equal tree initial state)
for the XPath filter [self::list][child::item].

Fig. 2. The deterministic Sha↓ with subhedge projection state Π obtained by our
compiler.

an earliest membership tester for deterministic Shas in streaming mode which
improves the recent earliest membership tester of [3] with subhedge projection.
The property of being earliest carries over from there. We lifted this earliest
membership tester to an earliest query answering algorithm with subhedge pro-
jection for monadic queries defined by deterministic Shas but omit the details.

Our third contribution is an implementation and experimental evaluation
of an earliest query answering algorithm for dShas with subhedge projection
(not only of earliest membership testing), by introducing subhedge projection
into the AStream tool [3]. For the evaluation, we consider the deterministic
Shas constructed with the compiler from [18] for the forward regular XPath
queries of the XPathMark benchmark [6] and real-world XPath queries [2]. It
turns out that we can reduce the running time for all regular XPath queries
that contain only child axes considerably since large parts of the input hedges
can be projected away. For such XPath queries, the earliest query answering
algorithm of AStream with projection becomes competitive in efficiency with
the best existing streaming algorithm from QuiXPath [5] (which is non-earliest
on some queries though). The win is smaller for XPath queries with descendant
axis, where only few subhedge projection is possible.

Outline. After some preliminaries in Sects. 2 and 3. In Sect. 4 we introduce
Sha↓s and show that they enable in-memory evaluation with subhedge projec-
tion. In Sect. 5 we show how to compile Shas to Sha↓s with subhedge projection
states. Streaming evaluators for Sha↓s with subhedge projection follow in Sect. 6.

Subhedge Projection for SHAs 19

Section 7 improves the compiler from Shas to Sha↓s for obtaining an earliest
membership tester. Section 8 discusses our practical experiments. Supplementary
material including the soundness proof of our compiler and further discussion
on related work can be found in [1].

2 Preliminaries

Let A and B be sets and r ⊆ A × B a binary relation. The domain of r is
dom(r) = {a ∈ A | ∃b ∈ B. (a, b) ∈ r}. We call r total if dom(r) = A. A partial
function f : A ↪→ B is a relation f ⊆ A×B that is functional. A total function
f : A→ B is a partial function f : A ↪→ B that is total.

Words. Let N be the set of natural numbers including 0. Let the alphabet Σ
be a set. The set of words over Σ is Σ∗ = ∪n∈NΣ

n. A word (a1, . . . , an) ∈ Σn

where n ∈ N is written as a1 . . . an. We denote the empty word of length 0 by
ε ∈ Σ0 and by v1 · v2 ∈ Σ∗ the concatenation of two words v1, v2 ∈ Σ∗.

Hedges. Hedges are sequences of letters and trees 〈h〉 with some hedge h. More
formally, a hedge h ∈ HΣ has the following abstract syntax:

h, h ′ ∈ HΣ ::= ε | a | 〈h〉 | h · h ′ where a ∈ Σ

We assume ε ·h = h · ε = h and (h ·h1) ·h2 = h · (h1 ·h2). Therefore, we consider
any word in Σ∗ as a hedge in HΣ , i.e., Σ∗ � aab = a · a · b ∈ HΣ .

Nested Words. Hedges can be identified with nested words, i.e., words over
the alphabet Σ̂ = Σ ∪ {〈, 〉} in which all parentheses are well-nested. This
is done by the function nw(h) : HΣ → (Σ ∪ {〈, 〉})∗ such that: nw(ε) = ε,
nw(〈h〉) = 〈 · nw(h) · 〉, nw(a) = a, and nw(h · h ′) = nw(h) · nw(h ′).

3 Stepwise Hedge Automata (SHAs)

Stepwise hedge automata (Shas) are automata for hedges mixing up bottom-up
tree automata and left-to-right word automata.

Definition 1. A stepwise hedge automaton (Sha) is a tuple A = (Σ,Q,Δ, I, F)
where Σ and Q are finite sets, I, F ⊆ Q, and Δ = ((aΔ)a∈Σ , 〈〉Δ, @Δ) where:
aΔ ⊆ Q × Q, 〈〉Δ ⊆ Q, and @Δ : (Q × Q) × Q. A Sha is deterministic or
equivalently a dSha if I and 〈〉Δ contain at most one element, and all relations
(aΔ)a∈Σ and @Δ are partial functions.

The set of state q ∈ Q, subsumes a subset I of initial state, a subset F of final
states, and a subset 〈〉Δ of tree initial states. The transition rules in Δ have three
forms: If (q, q′) ∈ aΔ then we have a letter rule that we write as q a−→ q′ in Δ.
If (q, p, q′) ∈ @Δ then we have an apply rule that we write as: q@p → q′ in Δ.

And if q ∈ 〈〉Δ ∈ Q then we have a tree initial rule that we denote as
〈〉−→ q in Δ.

20 A. A. Serhali and J. Niehren

0 4

0 1

0 2

3
〈〉 list

item〈〉

Fig. 3. A successful run of the Sha in Fig. 1 on 〈list · 〈item〉〉.

For any hedge h ∈ HΣ we define the transition relation h−→ wrt Δ such that for
all q, q′ ∈ Q, a ∈ Σ, and h, h ′ ∈ HΣ :

true

q
ε−→ q wrt Δ

q
a−→ q′ in Δ

q
a−→ q′ wrt Δ

q
h−→ q′ wrt Δ q′ h′

−→ q′′ wrt Δ

q
h·h′
−−→ q′′ wrt Δ

〈〉−→ q′ in Δ q′ h−→ p q@p→ q′′ in Δ

q
〈h〉−−→ q′′ wrt Δ

A run of the dSha in Fig. 1 on the tree 〈h〉 with subhedge h = list · 〈item〉
is illustrated graphically in Fig. 2. It justifies the transition 0

〈h〉−−→ 4 wrt Δ. The
run starts on the top-most level of 〈h〉 in the initial state 0 of the automaton.
The run on the topmost level is suspended immediately. Instead, a run on the
tree’s subhedge h on the level below is started in the tree initial state, which is 0

since
〈〉−→ 0 in Δ. This run eventually ends up in state 3 justifying the transition

0 h−→ 3 wrt Δ. The run of the upper level is then resumed from state 0. Given
that 0@3 → 4 in Δ it continues in state 4. In the graph, this instance of the
suspension/resumption mechanism is illustrated by the box in the edge 0
4. The box stands for a future value. Eventually, the box is filled by state 3, as
illustrated by 3 so that the computation can continue. But in state 4, the
upper hedge ends. Since state 4 is final the run ends successfully. The run on the
subhedge justifying 0 h−→ 3 wrt Δ works in analogy (Fig. 3).

A hedge is accepted if its transition started in some initial states reaches
some final state. The language L(A) is the set of all accepted hedges:

L(A) = {h ∈ HΣ | q h−→ q′ wrt Δ, q ∈ I, q′ ∈ F}
For any subset Q ⊆ Q and hedge h ∈ HΣ we define the in-memory evaluation:
�h�(Q) = {q′ | q h−→ q′ wrt Δ, q ∈ Q}. An in-memory membership tester for h ∈
L(A) can be obtained by computing �h�(I) by applying the transition relation
to all elements recursively and testing whether it contains some final state in F .

Subhedge Projection for SHAs 21

0

0’ 1’

0” Π

h2h1

Π Π

1’

0” 2” Π 2”

3’

4

list

〈〉

〈〉
list

〈〉
item

Fig. 4. A run of the Sha↓ in Fig. 2 on 〈list · 〈list · h1〉 · 〈item · h2〉〉.

4 Downward Stepwise Hedge Automata (SHA↓s)

Shas process information bottom-up and left-to-right exclusively. We next pro-
pose an extension to downward stepwise hedge automata with the ability to
pass finite state information top-down. These can also be seen as an extension
of Neumann and Seidl’s pushdown forest automata [17] from (labeled) forests to
(unlabeled) hedges.

Definition 2. A downward stepwise hedge automaton (Sha↓) is a tuple A =
(Σ,Q,Δ, I, F) where Σ and Q are finite sets, I, F ⊆ Q, and Δ = ((aΔ)a∈Σ , 〈〉Δ,
@Δ). Furthermore, aΔ ⊆ Q×Q, 〈〉Δ ⊆ Q×Q, and @Δ : (Q×Q)×Q. A Sha↓

is deterministic or equivalently a dSha↓ if I contains at most one element, and
all relations 〈〉Δ, aΔ, and @Δ are partial functions.

The only difference to Shas is the form of the tree opening rules. If (q, q′) ∈
〈〉Δ ∈ Q then we have a tree initial rule that we denote as: q

〈〉−→ q′ in Δ. So here
the state q′ where the evaluation of a subhedge starts depends on the state q of
the parent. The definition of the transition relation and thus the evaluator of a
Sha↓ differs from that of a Sha by the following equation:

q
〈〉−→ q′ in Δ q′ h−→ p wrt Δ q@p→ q′′ in Δ

q
〈h〉−−→ q′′ wrt Δ

This means that the evaluation of the subhedge h starts in some state of q′ such

that q
〈〉−→ q′ in Δ. So the restart state q′ now depends on the state q above. This

is how finite state information is passed top-down by Sha↓s. Shas in contrast
operate purely bottom-up and left-to-right.

An example of an in-memory evaluation on the dSha↓ in Fig. 2 for the filter
[self::list][child::item] is shown in Fig. 4. The run of Sha↓s works quite
similarly to the runs of Shas, just that when restarting a computation in the
subhedge of some tree in state q, then it will start in some state q′ such that

q
〈〉−→ q′ (rather than in some tree initial state that is independent of q). This

can be noticed for example when opening the first subtree labeled with item

22 A. A. Serhali and J. Niehren

where a transition rule 1′ 〈〉−→ 0′′ is applied. One can see that all nodes of the
subtrees h1 and h2 are evaluated to the projection state Π, which holds finite-
state information on the current level that was passed top-down.

Any Sha can be identified with a Sha↓: we fix for this some state q0 ∈
Q arbitrarily and replace 〈〉Δ by {q0} × 〈〉Δ. As for other kinds of automata,
making them multi-way does not add expressiveness. So we can convert any
dSha↓ A into an equivalent Sha by introducing nondeterminism. Since Shas
can be determinized in at most exponential time, the same holds for Sha↓s. It is
sufficient to convert it to a Sha, determinize it, and identify the resulting dSha
with a dSha↓.

We next show how to get subhedge projection for Sha↓s. Two notions will
be relevant here, automata completeness and subhedge projection states.

So let A = (Σ,Q,Δ, I, F) be a Sha↓. We call Δ complete if all its relations
(aΔ)a∈Σ , 〈〉Δ and @Δ are total. We call A complete if Δ is complete and I
= ∅.

Definition 3. We call a state q ∈ Q a subhedge pro-
jection state of Δ if there exists q′ ∈ Q called the witness
of q such that the set of transition rules of Δ containing
q′ or with q on the leftmost position is included in:

{q 〈〉−→ q′, q@q′ → q, q′ 〈〉−→ q′, q′@q′ → q′}
∪{q′ a−→ q′, q a−→ q | a ∈ Σ}

q q′
〈〉

〈〉

a ∈ Σ

q′

q′

a ∈ Σ

In the example Sha↓ in Fig. 2 Π is a subhedge projection state with witness
Π, but also the states 3′, 4, and 2′′ are subhedge projection states with witness
Π. Note that only inclusion holds for the latter but not equality since this
automaton is not complete.

For complete Sha↓s A, the above set must be equal to the set of transition
rules of Δ with q or q′ on the leftmost position. In the soundness expressed in
Proposition 4, completeness will be assumed and the proof relies on it. In the
examples, however, we will consider automata that are not complete. Still they
are “sufficiently complete” to illustrate the constructions.

Note that a subhedge projection state q may be equal to its witness q′.
Therefore the witness q′ of any subhedge projection state is itself a subhedge
projection state with witness q′.

Let P ⊆ Q be a subset of subhedge projection states of Δ. We define the
transition relation with projection h−→P⊆ Q×Q with respect to Δ such that for
all hedges h, h′ ∈ HΣ and letters a ∈ Σ:

q ∈ P
q

h−→P q wrt Δ

q
∈ P q
a−→ q′ in Δ

q
a−→P q′ wrt Δ

q
∈ P
q

ε−→P q wrt Δ

q
∈ P q
h−→P q′ wrt Δ q′ h′

−→P q′′ wrt Δ

q
h·h′
−−→P q′′ wrt Δ

Subhedge Projection for SHAs 23

q
∈ P q
〈〉−→ q′ in Δ q′ h−→P p q@p→ q′′ in Δ

q
〈h〉−−→P q′′ wrt Δ

Transitions with respect to P stay in states q ∈ P until the end of the current
subhedge is reached. This is correct if p is a subhedge projection state since
transitions without subhedge projection don’t change state p nor if the run is
not blocking.

Proposition 4. Let A = (Σ,Q,Δ, I, F) be a complete Sha↓ and P a subset
of subhedge projection states for Δ. Then for all hedges h ∈ HΣ and states
q, q′ ∈ Q: q h−→ q′ wrt Δ iff q

h−→P q′ wrt Δ.

For any subsetQ ⊆ Q and hedge h ∈ HΣ , we define the in-memory evaluation
with subhedge projection: �h�P(Q) = {q′ ∈ Q | q h−→P q′ wrt Δ, q ∈ Q}. An in-
memory membership tester for h ∈ L(A) with subtree projection can be obtained
by computing �h�P(I) and testing whether it contains some state in F .

5 Compiling SHAs to SHA↓s with Projection States

We show how to compile any Sha to some Sha↓ with subhedge projection states,
yielding an evaluator with appropriate subhedge projection for the Sha via the
Sha↓. This compiler is the most original contribution of the paper.

Let A = (Σ,Q,Δ, I, F) be a Sha. For any set Q ⊆ Q we define the set
accΔ(Q) = {q′ ∈ Q | ∃ q ∈ Q, h ∈ HΣ . q

h−→ q′ wrt Δ}. We note that accΔ(Q)
can be computed in linear time in the size of Δ. We define:

safeΔ(Q) = {q ∈ Q | accΔ({q}) ⊆ Q}
If A is complete and deterministic then safety can be used to characterize uni-
versal states, since for all q ∈ Q: L(A[I/{q}]) = HΣ if and only if q ∈ safeΔ(F).
See Lemma 5 of [3]. Note that safeΔ(Q) can be computed in linear time in the
size of Δ. We consider pairs (q,Q) consisting of a current state q and a set of
forbidden states Q that must not be reached at the end of the hedge. We define:

sdownΔ(q,Q) = safeΔ({p ∈ Q | q@Δp ⊆ Q})
no-changeΔ(q,Q) = sdownΔ(q,Q ∪ {q})

The states in sdownΔ(q,Q) can only access states p ∈ Q such that q@Δp
is included in Q. They are safe for {p ∈ Q | q@Δp ⊆ Q}. The states
in no-changeΔ(q,Q) safely either go to states p whose application doesn’t
change q or lead to Q. For instance in Fig. 1, no-changeΔ(1, {2, 4}) =
sdownΔ(1, {1, 2, 4}) = {1, 3, 4}. Note that, not only 1@Δ1 = 1 ⊆ {1, 2, 4},
but also 1@Δ0 = 1@Δ4 = ∅ ⊆ {1, 2, 4}. Therefore, sdownΔ(1, {1, 2, 4}) =
safeΔ({0, 1, 3, 4}) = {1, 3, 4}.

We next compile the Sha A to a Sha↓ Aπ = (Σ,Qπ, Δπ, Iπ, Fπ). For this
let Π be a fresh symbol and consider the state set: Qπ = {Π} � (Q × 2Q). A

24 A. A. Serhali and J. Niehren

Fig. 5. The dSha↓ Aπ constructed from the dSha A in Fig. 1 except for useless state
transitions leading out of the schema of our application.

pair (q,Q) means that the evaluator is in state q but must not reach any state
in Q. We next define projection of such pairs with respect to Δ:

π(q,Q) = if q ∈ Q then Πelse (q,Q)

The sets of initial and final states are defined as follows:

Iπ = {π(q, safeΔ(Q \ F)) | q ∈ I} Fπ = {(q, safeΔ(Q \ F)) | q ∈ F}

So at the beginning, the set of forbidden states are those in safeΔ(Q \ F). The
transition rules in Δπ are given by the following inference rules where p, q ∈ Q,
P,Q ⊆ Q and a ∈ Σ.

q
a−→ q′ in Δ

π(q,Q) a−→ π(q′, Q) in Δπ

〈〉−→ q′ in Δ P = no-changeΔ(q,Q)

π(q,Q)
〈〉−→ π(q′, P) in Δπ

q@p→ q′ in Δ P = no-changeΔ(q,Q)

π(q,Q)@π(p, P) → π(q′, Q) in Δπ

When going down to a subhedge from state q with forbidden states Q, the next
set of forbidden states is no-changeΔ(q,Q). This is where finite state information
is passed down. States in no-changeΔ(q,Q) cannot lead to any change of state
q, so that subhedge projection can be applied.

When applied to the Sha in Fig. 1 for [self::list][child::item], the
construction yields the Sha↓ in Fig. 5 which is indeed equal to the Sha↓ from
Fig. 2 up to state renaming. When run on the hedge 〈list ·〈list ·h1〉 ·〈item ·h2〉〉
as shown in Fig. 4, it does not have to visit the subhedges h1 nor h2, since all of
them will be reached starting from the projection state Π.

Subhedge Projection for SHAs 25

Proposition 5 (Soundness). L(Aπ) = L(A) for any complete Sha A.

Proof. For the inclusion L(A) ⊆ L(Aπ) we can show for all hedge h ∈ HΣ and
states q, q′ ∈ Q that q h−→ q′ wrt Δ implies q h−→ q′ wrt Δπ. This is straightfor-
ward by induction on the structure of h.

The inverse inclusion L(Aπ) ⊆ L(A) is less obvious. We have to show that not
inspecting projected subhedges does not change the language. Intuitively, this
is since the projected subhedges are irrelevant for detecting acceptance. They
either don’t change the state or lead to rejection.

Claim. For all h ∈ HΣ , q ∈ Q, Q′ ⊆ Q, Q = safeΔ(Q′), and μ ∈ Qπ the
hypothesis (q,Q) h−→ μ wrt Δπ implies:

1. if exists q′ ∈ Q such that μ = (q′, Q) then q
h−→ q′ wrt Δ.

2. if μ = Π then there exists q′ ∈ Q such that q h−→ q′ wrt Δ.

The lengthy proof is by induction on the structure of h. It remains to show that
the Claim implies L(Aπ) ⊆ L(A). So let h ∈ L(Aπ). Then there exist q ∈ I and
q′ ∈ F such that for Q = safeΔ(Q \ F): (q,Q) h−→ (q′, Q) wrt Δπ Part 1. of the
Claim implies that q h−→ q′ wrt Δ, so that h ∈ L(A). (Part 2 intervenes only for
proving Part 1 by induction.) ��

The projecting in-memory evaluator of Aπ will be more efficient than that
the nonprojecting evaluator of A. Note, however, that the size of Aπ may be
exponentially bigger than that of A. Therefore, for evaluating a dSha A with
subhedge projection on a given hedge h, we create only the needed part of Aπ

on the fly. This part has size O(|h|) and can be computed in time O(|A| |h|), so
the exponential preprocessing time is avoid.

Example 6. In order to see how the exponential worst case may happen, we
consider a family of regular languages, for which the minimal left-to-right Dfa
is exponentially bigger than the minimal right-to-left Dfa. The classical example
languages with this property are Ln = Σ∗.a.Σn where n ∈ N and Σ = {a, b}.
Intuitively, a word in Σ∗ belongs to Ln if and only its n + 1-th letter from the
end is equal to ”a”. The minimal left-to-right Dfa for Ln has 2n+1 many states,
since needs to memoize a window of n+1-letters. In contrast, its minimal right-
to-left Dfa has only n + 1 states; in this direction, it is sufficient to memoize
the distance from the end modulo n+ 1.

We next consider the family of hedge languages Hn ∈ HΣ such that each
node of h ∈ Hn is labeled by one symbol in Σ and so that the sequence of labels
of some root-to-leave path of hn belongs to Ln. Note that Hn can be recognized
in a bottom-up manner by the dSha An with O(n + 1) states, which simulates
the minimal deterministic Dfa of Ln on all paths of the input hedge. For an
evaluator with subhedge projection the situation is different. When moving top-
down, it needs to memoize the sequence of labels of the n + 1-last ancestors,
possibly filled with b′s, and there a 2n+1 such sequences. If for some leaf, its

26 A. A. Serhali and J. Niehren

sequence starts with an “a” then the following subhedges with the following leaves
can be projected away. As a consequence, there cannot be any Sha↓ recognizing
Hn that projects away all irrelevant subhedges with less than 2n+1 states. In
particular, the size of Aπ

n must be exponential in the size of An.

6 Streaming Evaluators for SHA↓s

Any Sha↓ yields a visibly pushdown machine [11] that evaluates nested words
in a streaming manner. The same property was already noticed for Neumann
and Seidl’s pushdown forest automata [8].

Let A = (Σ,Q,Δ, I, F) be a Sha↓. A configuration of the corresponding
visibly pushdown machine is a pair in K = Q × Q∗ containing a state and a
stack of states. For any word v ∈ Σ̂∗ we define the transition relation of the
visibly pushdown machine v−→str⊆ K ×K such that for all q, q′ ∈ Q and σ ∈ Q∗:

true

(q, σ)
ε−→str

(q, σ) wrt Δ

(q, σ)
v−→str

(q′, σ) (q′, σ)
v′−→

str

(q′′, σ) wrt Δ

(q, σ)
v·v′−−→

str

(q′′, σ) wrt Δ

q
a−→ q′ in Δ

q
a−→str

q′ wrt Δ

q
〈〉−→ q′ in Δ

(q, σ)
〈−→

str

(q′, σ · q) wrt Δ

q@p → q′ in Δ

(p, σ · q)
〉−→

str

(q′, σ) wrt Δ

The same visibly pushdown machine can be obtained by compiling the Sha to
an Nwa. In analogy to Theorem 4 of [8], we can show for any hedge h that

the streaming transition relation
nw(h)−−−−→

str

wrt Δ is correct for its in-memory
transition relation h−→ wrt Δ:

Proposition 7. L(A) = {h ∈ HΣ | (q, ε)
nw(h)−−−−→

str

(q′, ε) wrt Δ, q ∈ I, q′ ∈ F}.
Any nested word v ∈ Σ̂∗ can be evaluated in streaming mode on

any subset of configurations K ⊆ K: �v�str(K) = {(q′, σ′) | (q, σ) v−→str

(q′, σ′) wrt Δ, (q, σ) ∈ K}. So any hedge can be evaluated in streaming mode
by computing �nw(h)�str(I × {ε}). The hedge is accepted if it can reach some
final configuration in F × {ε}.

Going one step further, we show how to enhance the streaming evaluator of
an Sha↓ with subhedge projection, in analogy to the in-memory evaluator. This
approach yields a similar result in a more direct manner, as obtained by mapping
Sha↓s to Nwas, identifying subtree projection states there, and mapping Nwas
with subtree projection states to projecting Nwas [19].

Let P ⊆ Q be the subset of subhedge projection states of Δ. We define a

transition relation with subhedge projection h−→
str

P ⊆ K × K with respect to Δ
such that for all nested words v, v′ ∈ NΣ , letters a ∈ Σ, states p, q, q′, q′′ ∈ Q
and stacks σ, σ′, σ′′ ∈ Q∗:

q ∈ P
(q, σ) v−→str

P (q, σ) wrt Δ

q
∈ P q
a−→ q′ in Δ

(q, σ) a−→str

P (q′, σ) wrt Δ

q
∈ P
q

ε−→str

P q wrt Δ

Subhedge Projection for SHAs 27

q
∈ P (q, σ) v−→str

P (q′, σ′) wrt Δ (q′, σ′) v′
−→

str

P (q′′, σ′′) wrt Δ

(q, σ) v·v′
−−→

str

P (q′′, σ′′) wrt Δ

q
∈ P q
〈〉−→ q′ in Δ

(q, σ)
〈−→

str

P (q′, σ · q) wrt Δ

p
∈ P q@p→ q′ in Δ

(p, σ · q) 〉−→
str

P (q′, σ) wrt Δ

The projecting transition relation stays in a configuration with a projection state
until the end of the current subhedge is reached. This is correct since the state
of the non-projecting transition relation would not change the state either, while
the visible stack comes back to its original value after the evaluation of a nested
word (that by definition is well-nested).

Proposition 8. Let v be a word in Σ̂∗, Δ a set of transition rules of a complete
Sha↓ with state set Q, q ∈ Q a state and σ ∈ Q∗ a stack. For any subset P ⊆
Q of subhedge projection states of Δ: (q, σ) v−→str

(q′, σ′) wrt Δ iff (q, σ) v−→str

P
(q′, σ′) wrt Δ.

For any subset K ⊆ K and nested word v ∈ NΣ we define the streaming
evaluation with subhedge projection:

�v�str
P (K) = {(q′, σ′) | (q, σ) v−→str

P (q′, σ′) wrt Δ, (q, σ) ∈ K}
A streaming membership tester for h ∈ L(A) with subtree projection can be
obtained by computing �nw(h)�str

P (I×{ε}) and testing whether it contains some
state in F × {ε}.

7 Earliest Membership with Subhedge Projection

We next enhance our compiler from Shas to Sha↓s for introducing subtree pro-
jection such that it can take safe rejection and safe selection into account. The
streaming version for deterministic Shas leads us to an earliest membership
tester, which enhances the previous earliest membership tester for dShas from
[3] with subtree projection.

The idea is as follows: A state is called safe for rejection if whenever the
evaluator reaches this state on some subhedge then it can safely reject the hedge
independently of the parts that were not yet evaluated. In analogy, a state is
safe for selection if whenever the evaluator reaches this state for some subhedge,
the full hedge will be accepted.

Given an A = (Σ,Q,Δ, I, F), at the beginning all states in S0 = safeΔ(F)
are safe for selection and all states in R0 = safeΔ(Q \ F) are safe for rejection.
We will have to update these sets when moving down a tree. The states of our
Sha↓ will contain tuples (q,Q,R, S) stating that the evaluator is in state q, that
the states in Q are safe no-changes, the states in R are safe for rejection, and
the states in S safe for selection. We define:

no-changeΔ
e

(q,Q,R, S) = no-changeΔ(q,Q) \ sdownΔ(q,R) \ sdownΔ(q, S)

28 A. A. Serhali and J. Niehren

That is, state changes are now relevant only if they don’t move to states that
are safe for rejection or selection. Let sel and rej be two fresh symbols beside of
Π. We adapt tuple projection as follows:

πe(q,Q,R, S) =
{

if q ∈ S then sel else if q ∈ R then rej
else if q ∈ S then Πelse (p,Q,R, S)

We next compile the given Sha A to a Sha↓ Aπ
e = (Σ,Qπ

e , Δ
π
e , I

π
e , F

π
e). The

state sets of Aπ
e are:

Qπ
e = πe(Q× 2Q × 2Q × 2Q) Iπ

e = {πe(q,R0, R0, S0) | q ∈ I}
Fπ

e = {π
e
(q,R0, R0, S0) | q ∈ F}

The transition rules in Δπ
e are given by the following inference rules where p, q ∈

Q, P,Q,R, S ⊆ Q and a ∈ Σ.

q
a−→ q′ in Δ

π
e
(q,Q,R, S) a−→ π

e
(q′, Q,R, S) in Δπ

e

〈〉−→ q′ P = no-changeΔ
e

(q,Q,R, S)

πe(q,Q,R, S)
〈〉−→ πe(q

′, P, sdownΔ(q,R), sdownΔ(q, S)) in Δπ
e

q@p→ q′ in Δ P = no-changeΔ
e

(q,Q,R, S)

π
e
(q,Q,R, S)@π

e
(p, P, sdownΔ(q,R), sdownΔ(q, S)) → π

e
(q′, Q,R, S) in Δπ

e

The dSha from Fig. 1 is not sufficiently complete to obtain the expected
results. The problem is that sdownΔ(0, {4}) = Q there, but only state 3 is really
safe for selection. We therefore add a sink state to it.

Running the Sha↓s Aπ
e in streaming mode with subtree projection yields an

earliest membership tester for dShas with subtree projection. Two adaptations
are in order. Whenever the safe rejection state rej is reached, the computation
can stop and the hedge on the input stream is rejected. And whenever the safe
selection state sel is reached, the evaluation can be stopped and the input hedge
on the stream is accepted.

Theorem 1. For any dSha A = (Σ,Q,Δ, I, F) and hedge h ∈ HΣ with
�h�(I)
= ∅ wrt Δ the streaming evaluator �h�str{Π,sel,rej}(I

π
e) with respect to Δπ

e

can check membership h ∈ L(A) at the earliest event when streaming nw(h).

The hedge h is accepted once the evaluator reaches state sel and rejected
once the evaluator reaches state rej . If neither happens the truth value of q ∈ F
is returned where q is the state in the final tuple.

Proof (sketch). The streaming membership tester with safe selection and rejec-
tion by computing �h�str{sel,rej}(I

π
e) wrt. Δπ

e can be shown to be similar to the
earliest membership tester from Proposition 6 of [3] enhanced with safe rejection.

Subhedge Projection for SHAs 29

So we can rely on the definitions of earliest membership testing and the result
given there. When adding subtree projection by computing �h�str{Π,sel,rej}(I

π
e)

wrt. Δπ
e , the only difference is that the evaluator ignores some subtrees in which

the state does not change. Clearly, this does not affect earliest selection and
rejection, so we still have an earliest membership tester, but now with subtree
projection.

8 Experimental Evaluation

We integrated subhedge projection into the earliest query answering tool
AStream [3]. It is implemented in Scala while computing safety with ABC
Datalog.

In order to benchmark AStream 2.01 with subhedge projection for efficiency,
and to compare it to AStream 1.01 without projection, we considered the regular
XPath queries from the XPathMark [6] A1−A8. We used the deterministic Shas
for all these XPath queries constructed by the compiler from [18]. These were
evaluated on Xml documents of variable size created by the XPathMark gener-
ator. We did further experiments on a sub-corpus of 79 regular XPath queries
extracted by Lick and Schmitz from real-world Xslt and XQuery programs, for
which dShas are available [2]. These experiments confirm the results presented
here, so we don’t describe them in detail.

The XPath queries of the XPathMark without descendant axis are A1,A4 and
A6-A8. The evaluation time on these queries a 1.2 GB document are reduced
between 88 − 97%. In average, it is 92.5%, so the overall time is divided by 12.
While the parsing time remains unchanged the gain on the automaton evaluation
time is proportional to the percentage of subhedge projection for the respective
query. This remains true for the other queries with the descendant axis, just that
the projection percentage is much lower.

Finally, we compared AStream with for QuiXPath [5], the best previous
streaming tool that can answer A1-A8 in an earliest manner. QuiXPath compiles
regular XPath queries to possibly nondeterministic early Nwas, and evaluates
them with subtree and descendant projection [19]. QuiXPath is not generally
earliest though. On the queries without descendant axis, AStream 1.01 without
projection is by a factor of 60 slower than QuiXPath [3]. With subhedge projec-
tion in version 2.01, the overhead goes down to a factor of 5 = 60/12. So our
current implementation is close to becoming competitive with the best existing
streaming tool while guaranteeing earliest query answering in addition.

30 A. A. Serhali and J. Niehren

9 Conclusion and Future Work

We developed evaluators with subhedge projection for Shas in in-memory mode
and in streaming mode. One difficulty was how to push the needed finite state
information for subtree projection top-down given that Shas operate bottom-up.
We solved it based on a compiler from Shas to downward Shas. This compiler
propagates safety information about non-changing states, similar to the propaga-
tion of safety information proposed for earliest query answering for dSha queries
on nested word streams. We confirmed the usefulness of our novel subhedge pro-
jection algorithm for Shas experimentally. We showed that it can indeed speed
up the best previously existing earliest query answering algorithm for dSha
queries on nested word streams, as needed for answering regular XPath queries
on Xml streams. In future work, we plan to improve on subhedge projection
for Shas with descendant projection for Shas and to use it for efficient stream
processing. Another question is whether and how to obtain completeness results
for subhedge projection.

References

1. Al Serhali, A., Niehren, J.: Subhedge projection for stepwise hedge automata
2. Al Serhali, A., Niehren, J.: A benchmark collection of deterministic automata for

XPath queries. In: XML Prague 2022, Prague, Czech Republic (2022)
3. Al Serhali, A., Niehren, J.: Earliest query answering for deterministic stepwise

hedge automata (2023)
4. Comon, H., et al.: Tree automata techniques and applications (1997). http://tata.

gforge.inria.fr (2007)
5. Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M.: Early nested

word automata for XPath query answering on XML streams. Theor. Comput. Sci.
578, 100–125 (2015)

6. Franceschet, M.: XPathmark performance test. https://users.dimi.uniud.it/
∼massimo.franceschet/xpathmark/PTbench.html. Accessed 25 Oct 2020

7. Frisch, A.: Regular tree language recognition with static information. In: Exploring
New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress,
TCS 3rd International Conference on Theoretical Computer Science, pp. 661–674
(2004)

8. Gauwin, O., Niehren, J., Roos, Y.: Streaming tree automata. Inf. Process. Lett.
109(1), 13–17 (2008)

9. Gauwin, O., Niehren, J., Tison, S.: Earliest query answering for deterministic
nested word automata. In: Kuty�lowski, M., Charatonik, W., Gȩbala, M. (eds.)
FCT 2009. LNCS, vol. 5699, pp. 121–132. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03409-1 12

10. Kay, M.: The Saxon XSLT and XQuery processor (2004). https://www.saxonica.
com

11. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: 16th International Conference on World Wide Web, pp. 1053–
1062. ACM-Press (2007)

12. Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Královič,
R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 561–573. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03816-7 48

http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://doi.org/10.1007/978-3-642-03409-1_12
https://doi.org/10.1007/978-3-642-03409-1_12
https://www.saxonica.com
https://www.saxonica.com
https://doi.org/10.1007/978-3-642-03816-7_48

Subhedge Projection for SHAs 31

13. Maneth, S., Nguyen, K.: XPath whole query optimization. VLPB J. 3(1), 882–893
(2010)

14. Marian, A., Siméon, J.: Projecting XML documents. In: VLDB, pp. 213–224 (2003)
15. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing

over XML streams. In: Candan, K.S., et al. (eds.) SIGMOD Conference, pp. 253–
264. ACM (2012)

16. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,
V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 134–145. Springer,
Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2 12

17. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,
V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 134–145. Springer,
Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2 12

18. Niehren, J., Sakho, M.: Determinization and minimization of automata for nested
words revisited. Algorithms 14(3), 68 (2021)

19. Sebastian, T., Niehren, J.: Projection for nested word automata speeds up XPath
evaluation on XML streams. In: Freivalds, R.M., Engels, G., Catania, B. (eds.)
SOFSEM 2016. LNCS, vol. 9587, pp. 602–614. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49192-8 49

20. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of automata theory. J. Comput. Syst. Sci. 1, 317–322 (1967)

https://doi.org/10.1007/978-3-540-49382-2_12
https://doi.org/10.1007/978-3-540-49382-2_12
https://doi.org/10.1007/978-3-662-49192-8_49

The Rectilinear Convex Hull of Line
Segments

Carlos Alegría1, Justin Dallant2, Pablo Pérez-Lantero3, and Carlos Seara4(B)

1 Dipartimento di Ingegneria, Università Roma Tre, Rome, Italy
carlos.alegria@uniroma3.it

2 Computer Science Department, Faculté des Sciences, Université libre de Bruxelles,
Bruxelles, Belgium

justin.dallant@ulb.be
3 Departamento de Matemática y Computación, Universidad de Santiago de Chile,

Santiago, Chile
pablo.perez.l@usach.cl

4 Departament de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona,
Spain

carlos.seara@upc.edu

Abstract. We explore an extension to rectilinear convexity of the clas-
sic problem of computing the convex hull of a collection of line segments.
Namely, we solve the problem of computing and maintaining the recti-
linear convex hull of a set of n line segments, while we simultaneously
rotate the coordinate axes by an angle that goes from 0 to 2π.

We describe an algorithm that runs in optimal Θ(n log n) time and
Θ(nα(n)) space for segments that are non-necessarily disjoint, where
α(n) is the inverse of the Ackermann’s function. If instead the line seg-
ments form a simple polygonal chain, the algorithm can be adapted so
as to improve the time and space complexities to Θ(n).

Keywords: rectilinear convex hull · line segments · polygonal lines

1 Introduction

The problem of computing the convex hull of a finite set of points is one of the
foundational problems of Computational Geometry. Since it was first proposed
in the late seventies, this problem has been extensively studied and remains a
central topic in the field, as demonstrated by the rich body of variations that span
across different types of point sets, algorithmic approaches, and high dimensional
spaces; see for example [3,4,22]. In this paper we extend the previous work on
the convex hull problem, by introducing a variation that combines two classic
research directions: the problem of computing the convex hull, but of a collection
of line segments instead of a finite set of points; and the problem of computing
the convex hull, but using a non-traditional notion of convexity called Orthogonal
Convexity1 instead of the standard notion of convexity.
1 In the literature, orthogonal convexity is also known as ortho-convexity [19] or x-y

convexity [14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 32–45, 2023.
https://doi.org/10.1007/978-3-031-43587-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_3

The Rectilinear Convex Hull of Line Segments 33

Throughout this paper, let P be a set of n line segments in the plane. The
convex hull of P , CH(P), is the closed region obtained by removing from the
plane all the open half planes whose intersection with P is empty. The ortho-
convex analog of the (standard) convex hull is called the Rectilinear Convex
Hull [15]. The rectilinear convex hull of P , RCH(P), is the closed region obtained
by removing from the plane all the open and axis-aligned wedges of aperture
angle π

2 , whose intersection with P is empty (a formal definition is given in
Sect. 2). See Fig. 1.

Fig. 1. A collection P of segments, and the rectilinear convex hull of P for two different
orientations of the coordinate axes, which are shown in the top-left of each figure. The
interior and the boundary of RCH(P) are shown respectively, in light and dark brown.
The dotted line is the boundary of the standard convex hull of P . On the left, RCH(P)
has two connected components, one of which is a single line segment. On the right,
RCH(P) is formed by a single connected component.

The rectilinear convex hull introduces two important differences with respect
to the standard convex hull. On one hand, observe that RCH(P) might be a
simply connected set, yielding an intuitive and appealing structure. However, if
the union of the segments in P is disconnected, then RCH(P) can have several
simply connected components, some of which may be single line segments of P .
On the other hand, note that RCH(P) is orientation-dependent, meaning that
the orientation of the empty wedges changes along with the orientation of the
coordinate axes, hence the shape of RCH(P) changes as well.

The problem we study in this paper consists in computing and maintaining
the rectilinear convex hull of a collection of line segments, while we simultane-
ously rotate the coordinate axes by an angle that goes from 0 to 2π. We describe
algorithms to solve this problem for the cases in which the segments in P are
not necessarily disjoint, or form a simple polygonal chain. The algorithm for
the first case takes optimal Θ(n log n) time and Θ(nα(n)) space, where α(n) is
the extremely slowly-growing inverse of Ackermann’s function. We adapt this
algorithm to solve the second case in optimal Θ(n) time and space.

Background and Related Work. The problem of computing the rectilinear convex
hull has been predominantly explored on scenarios where the input is a finite set
of points. Several results can be found for both the cases in which the coordinate

34 C. Alegría et al.

axes are kept fixed or simultaneously rotating; see for example [1,2,6,16]. As far
as we are aware, there are no previous results related to the computation of
the rectilinear convex hull of a collection of line segments while the coordinate
axes are rotating. Nonetheless, there are related results for the case where the
coordinate axes are kept fixed. The problem of computing the rectilinear convex
hull of a polygon was first studied by Nicholl et al. [14]. The authors consid-
ered a collection of orthogonal polygons, and presented an algorithm that runs
in O(n log n) time and O(n) space, where n is the number of edges of all the
polygons in the collection. An algorithm for polygons that are non-necessarily
orthogonal was first presented by Rawlins [18, Theorem 7.4.1]. For a polygon
with n vertices, their algorithm runs in optimal Θ(n) time and space.

We remark that, despite we introduce rotations to the coordinate axes, our
algorithms achieve the time complexities mentioned above. Notably, they also
match the time complexities of the algorithms to compute the standard convex
hull of a collection of line segments: Θ(n log n) time if the segments are not
necessarily disjoint [17], and Θ(n) time if they form a simple polygonal chain [12].

2 The Rectilinear Convex Hull

We start with a formal definition of the rectilinear convex hull2. For the sake
of completeness, we also briefly describe the properties of the rectilinear convex
hull that are relevant to our work. More details on these and other properties
can be found in [7,15].

The orientation of a line is the smallest of the two possible angles it makes
with the X+ positive semiaxis. A set of orientations is a set of lines with differ-
ent orientations passing through some fixed point. Throughout this paper, we
consider a set of orientations that is formed by two orthogonal lines. For the
sake of simplicity, we assume that both lines are passing through the origin and
are parallel to the coordinate axes. We denote such an orientation set with O.
We say that a region is O-convex, if its intersection with a line parallel to a line
of O is either empty, a point, or a line segment3,4.

Let ρ1 and ρ2 be two rays leaving a point x ∈ R2 such that, after rotating
ρ1 around x by an angle of θ ∈ [0, 2π), we obtain ρ2. We refer to the two open
regions in the set R2 \ (ρ1 ∪ ρ2) as wedges. We say that both wedges have vertex
x and sizes θ and 2π− θ, respectively. For an angle ω, we say that an ω-wedge is
a wedge of size ω. A quadrant is a π

2 -wedge whose rays are parallel to the lines of
O. We say a region is free of points of P , or P -free for short, if its intersection
with P is empty. The rectilinear convex hull of P is the closed and O-convex set

RCH(P) = R2 \
⋃

q∈Q
q,

2 See the definition of the maximal r-convex hull in [15].
3 In the literature, O-convexity is also known as D-convexity [20], Directional convex-

ity [8], Set-theoretical D-convexity [9], or Partial convexity [13].
4 We remark that, since the set O is formed by two orthogonal lines parallel to the

coordinate axis, in this paper O-convexity is equivalent to Orthogonal Convexity.

The Rectilinear Convex Hull of Line Segments 35

where Q denotes the set of all (open) P -free quadrants of the plane.
We now describe three important properties of the rectilinear convex hull.

Please refer again to Fig. 1 for an illustration. First, it is known that RCH(P) ⊆
CH(P) [17, Theorem 4.7]. In particular, if CH(P) is a rectangle whose sides
are parallel to the lines of O, then RCH(P) = CH(P). If this is not the case
then RCH(P) is not convex. Second, observe that, if the segments in P form
a polygonal chain, then RCH(P) is connected. If instead RCH(P) is discon-
nected, then a connected component is either a line segment of P or a closed
polygon that is O-convex. Note the polygon is not necessarily orthogonal and
may even not be simple, since some edges may not be incident to the interior
of the polygon. Finally, we have the property we call orientation dependency :
except for some particular cases, like simultaneously rotating the lines of O by
π
2 in the counter-clockwise direction, two rectilinear convex hulls of the same set
at different orientations of the lines of O are non-congruent to each other.

Hereafter, we denote with Oθ the set resulting after simultaneously rotating
the lines of O in the counterclockwise direction by an angle of θ. We denote with
RCHθ(P) the rectilinear convex hull of P computed with respect of Oθ.

3 Rectilinear Convex Hull of Line Segments

Let P = {s1, s2, . . . , sn} be a set of n line segments (or segments for short)
in the plane, that are not necessarily disjoint. In this section we describe an
optimal Θ(n log n) time and Θ(nα(n)) space algorithm to compute and maintain
RCHθ(P) while θ is increased from 0 to 2π.

We denote the four orientations: North, South, East, and West, by N-
orientation, S-orientation, E-orientation, and W-orientation, respectively.

Definition 1. A point x ∈ R2 is ω-wedge P -free with respect to N-orientation, if
there exists an ω-wedge with apex at x such that (i) it contains the N-orientation
through x, and (ii) it contains no point of a segment of P in its interior.

The same definition can be given analogously for each of the other orienta-
tions: S-orientation, E-orientation, and W-orientation, respectively. To compute
RCHθ(P) we are interested in P -free π

2 -wedges with apex at points x ∈ R2 or
at points x of the segments of P which contain at least one of the orientations:
N-orientation, S-orientation, E-orientation, or W-orientation in the π

2 -wedge.
In Fig. 2 we consider an example for the N-orientation, where we can see

some points in the segment s which are apices of P -free π
2 -wedges. From Fig. 2 it

is easy to see that a necessary condition for a point x in a segment s to be P -free
ω-wedge with respect to the N-orientation, ω > 0, is that x is visible from the
infinity north, i.e., there is a P -free ω-wedge, ω > 0, with apex at x containing
the N-orientation. In other words, the point x ∈ s has to belong to the upper
envelope of P , which is equivalent to the fact that ω > 0, and thus, if x belongs
to the upper envelope of P , we only have to check that ω ≥ π

2 .
Clearly, for the other three orientations: S-orientation, E-orientation, and

W-orientation, we can do a similar analysis, i.e., for the S-orientation we can

36 C. Alegría et al.

Fig. 2. Points in the segment s ∈ P which are apices of P -free π
2
-wedges for the N-

orientation. In blue the upper envelope of P . Notice that only the part of a segment s
that belongs to the upper envelope of P can see the N -orientation.

consider the lower envelope or equivalent seeing the segments of P from the
infinity south. And analogously, for the E-orientation, and W-orientation by
either rotating the coordinate system by π

2 and computing the new upper and
lower envelopes, or defining the east envelope and the west envelope as seeing
the set of segments of P from the infinity east and the infinity west, respectively.

The four envelopes: north envelope, south envelope, east envelope, and west
envelope of the set of segments P can be computed in O(n log n) time and
O(nα(n)) space. These envelopes are formed of segments of P or parts of them,
with total complexity O(nα(n)), see Hersberger [10].

First, we need to determine when a given segment of P (or part of it) can
belong to the boundary of RCHθ(P). To do this, we select one of the four
orientations N, S, E, or W for the corresponding π

2 -wedges of the points of the
boundary of RCHθ(P) such that those π

2 -wedges will contain at least one of
these orientations N, S, E, or W.

Assume that we are computing which segments of P (or parts of them) belong
to the boundary of RCHθ(P); concretely, to the N-orientation.

Lemma 1. Let s be a segment in P . If a non-empty subset of s belongs to the
boundary of RCHθ(P) for some angle θ ∈ [0, 2π), then a non-empty subset of s
belongs to at least one of the four envelopes of P described above.

Proof. If a point x in the segment s belongs to the boundary of RCHθ(P), then
x is the apex of a P -free π

2 -wedge containing at least one of the N-orientation,
S-orientation, E-orientation, or W-orientation. See Fig. 3.

In order to know the segments of P (or the parts of them) that are π
2 -wedge

P -free, as a first step we have to compute the upper envelope of P , which we will
denote by N (P). It is known that the complexity of N (P) is O(nα(n)), where
α(n) is the inverse of Ackermann’s function, and that N (P) can be computed
in optimal O(n log n) time and O(nα(n)) space [10].

Analogously, the lower envelope of P corresponding to the S-orientation,
denoted by S(P), has O(nα(n)) complexity and can be computed in optimal
O(n log n) time and O(nα(n)) space. In a similar way, we define and compute

The Rectilinear Convex Hull of Line Segments 37

the righter and lefter envelopes, denoted by E(P) and W(P), respectively, corre-
sponding to the East and West envelopes of P , respectively; and defined by the
E-orientation and W-orientation, respectively, again with the same complexities.
These four envelopes are composed of segments or parts of segments of P with
total complexity O(nα(n)). See Fig. 3.

Fig. 3. The envelopes of P for the N-orientation, the S-orientation, the E-orientation,
and the W-orientation. The horizontal and vertical segments are not part of the
envelopes, and are added for the sake of clarity.

Proposition 1. N (P), S(P), E(P), and W(P) can be computed in optimal
O(n log n) time and O(nα(n)) space, and have O(nα(n)) total complexity.

Now, we compute the ω-wedge of all the points of the four envelopes, i.e.,
compute which of these points have ω ≥ π

2 . We proceed as follows: first, in Sub-
sect. 3.1, we compute the ω-wedges of the endpoints in the four envelopes; and
then, in Subsect. 3.2, we compute the ω-wedges of the (non-vertical) segments
in the four envelopes.

3.1 Computing the ω-Wedges of Endpoints of Segments

We consider first the north envelope formed by the polygonal chain N (P). We
do computations for the non-vertical segments of N (P). Clearly, the number
of endpoints of segments in N (P) is O(nα(n)). For each of these endpoints,
say pi, we will compute the ωi-wedge with apex at pi. The containing of the
N-orientation is guaranteed because the point p belongs to N (P). See Fig. 4.

The ωi-wedge with apex at an endpoint pi can be computed as follows. Sort
the endpoints in N (P) according to their x-coordinates, both from left to right
and from right to left, in O(nα(n) log n) time. Well, in fact, the computation
of the upper envelope outputs the endpoints and the segments in a sorted way
(from left to right). Then, we do the following.

38 C. Alegría et al.

1. For each endpoint pi maintain (update) in O(log(nα(n))) = O(log n) time
the convex hull of the point set Pi−1, CH(Pi−1), where Pi−1 is the set of the
endpoints pj < pi in the sorting above.

2. Compute the supporting line li from pi to CH(Pi−1): instead of using a
O(log n) time binary search, we traverse the boundary of CH(Pi−1) until
we find the tangent vertex of CH(Pi−1). Since every endpoint pj in N (P)
can become (stop being) a vertex a convex hull just a single time, then the
different supporting lines with this point in the convex hull are charged to
different points in the polygonal chain N (P) defining supporting lines.
At the end of the sweep, this process amortizes to O(nα(n)) in time and
space, computing the angles βi formed by li and the line with N-orientation
passing through pi. See Fig. 4.

3. Analogously, we can proceed doing the same computation but considering
the right to left sorting, and maintaining P ′

i−1 which is the set of the extreme
points pj > pi in the right to left sorting. Also, computing the supporting
line ri from pi to CH(P ′

i−1). At the end of the sweep this process amortizes
to O(nα(n)) in time and space, computing the angle γi formed by ri and the
line with N-orientation passing through pi. See Fig. 4.

4. Compute ωi = βi + γi, and check whether ωi ≥ π
2 , and in the affirmative let

ωi be the angular interval for pi.

Fig. 4. The angles βi and γi for an extreme point pi in N (P), and ωi = βi + γi.

Since there areO(nα(n)) endpoints, the complexity of these steps is O(nα(n))
time and space. Clearly, we proceed analogously with the other envelopes S(P),
E(P), and W(P). Therefore, the total complexity of this process for all the four
envelopes is O(nα(n)) time and space. Notice that we are considering the at
most O(nα(n)) endpoints pi of the four envelopes and computing which of these
pi have ωi ≥ π

2 for some of the four orientations. A point pi can not have the
four corresponding ωi ≥ π

2 for the four orientations, since otherwise P is formed
by a unique point. We translate the angles ωi into angular intervals in [0, 2π] or
into angular intervals in the unit circle also in [0, 2π].

The Rectilinear Convex Hull of Line Segments 39

A question that arises from the process above is whether the number of
endpoints in the envelope N (P) (resp. S(P), E(P), and W(P)) having an angle
ωi ≥ π

2 can be at most O(n). We solve this question with the following result.

Proposition 2. The number of endpoints of the upper envelope of N (P) having
an angle ωi ≥ π

2 is Ω(nα(n)).

Proof. Take a set of n segments which upper envelope has Ω(nα(n)) complex-
ity. To do that follow the construction of the collection of segments with this
Ω(nα(n)) complexity that appears in [23] (see also Theorem 4.11 in [21]).

Every endpoint of the envelope is either: (i) the endpoint of a segment, (ii)
right below the endpoint of a segment, or (iii) the intersection of two segments.
The number of endpoints of type (i) and (ii) is easily seen to be O(n). This
means there are Ω(nα(n)) endpoints of type (iii). Each endpoint of type (iii)
has angles β > 0 and γ > 0 (as defined above). Call ε the minimum over all β
and γ. Now stretch the whole set horizontally by a factor of 1

sin ε . This results
in a set where every endpoint of type (iii) has β ≥ π

4 and γ ≥ π
4 , thus is a

π
2 -wedge. Therefore, we get Ω(nα(n)) endpoints which are π

2 -wedge. In fact, one
can stretch even further to get larger angles up to π.

Observation 1. Notice that if the segments of P are non-intersecting, then the
complexity of their upper envelope is O(n), and the envelope can be constructed
in optimal O(n log n) time [10]

Clearly, the same Ω(nα(n)) lower bound applies for the number of endpoints
of the envelopes S(P), E(P) and W(P), having an angle ωi ≥ π

2 . From the
discussion above we have the following result.

Theorem 1. The number of endpoints pi of the envelopes N (P), S(P), E(P),
and W(P) having an angle ωi ≥ π

2 is Θ(nα(n)). These angles and their angular
intervals can be computed in O(n log n) time and O(nα(n)) space.

3.2 Computing the ω-Wedges of the Points Inside the Segments

Now we show how to compute which segments of P or part of them belong to
RCHθ(P). First, we illustrate this for the segments in N (P). Given a non-vertical
segment si of N (P) with endpoints pi−1 and pi, we show how to compute the
angles β and γ for the interior points of si, see Fig. 5(a). And then we compute
the parts of si (if any) such that β + γ = ω ≥ π

2 .
Let si = pi−1pi be a segment in N (P), and consider the sequence of the end-

points in N (P) from left to right < . . . , pi−2, pi−1, pi, pi+1, · · · >. Let Pi−1 be the
set of those endpoints in N (P) till pi−1, i.e., Pi−1 = {. . . , pi−4, pi−3, pi−2, pi−1},
and let CH(Pi−1) be the convex hull of these points. Without loss of generality,
assume that < . . . , pi−4, pi−3, pi−2, pi−1 > is exactly the sequence of the points
of CH(Pi−1). See Fig. 5(a) and (b).

Assume that the lines containing the segments pi−3pi−2, pi−4pi−3, . . . inter-
sect the segment si, splitting the segment si into parts such that to each of

40 C. Alegría et al.

Fig. 5. (a) Computing the angles β and γ of the (non-vertical) segments si of N (P).
(b) Computing the different angles β and γ in si of N (P) from the previous angles
using the angles between consecutive edges of CH(N (P)), i.e., using that δ1 + δ2 = δ.

these parts correspond β angular intervals. By the convexity of the CH(Pi−1)
the endpoints of these β angular intervals can be computed in constant time (see
Fig. 5(b)), since we only have to add the value of the before angular interval. Of
course, each of these operations can be assigned to the new supporting point in
the convex hull CH(Pi−1).

Clearly, just doing the reverse process, i.e., from right to left, we can com-
pute the γ angular intervals, and merge the two sets of intervals into one set of
intervals. For each one of these new intervals we can compute whether the sum
β + γ ≥ π

2 at points inside the interval in constant time as follows.
For simplicity, assume that the segment si is horizontal, moreover, the seg-

ment si is on the X-axis, as in Fig. 6. Consider an interval inside si in the same
figure. In order to know whether a point (t, 0) ∈ si is the apex of P -free π

2 wedge
we have to check when its corresponding angle w ≥ π

2 .

u = (x1 − t, y1 − 0), v = (x2 − t, y2 − 0),

cosw =
|u · v|
|u||v| =

|(x1 − t)(x2 − t) + y1y2|√
(x1 − t)2 + y2

1

√
(x2 − t)2 + y2

2

,

cos2 w =
(t2 − (x1 + x2)t+ x1x2 + y1y2)2

[(x1 − t)2 + y2
1][(x2 − t)2 + y2

2]

cosw = 0 ⇐⇒ cos2 w = 0 ⇐⇒ t2 − (x1 + x2)t+ x1x2 + y1y2 = 0

Since the function is a quadratic function, either there is no solution, or one
solution, or two solutions, and in any case, any solution t has to verify that
t1 ≤ t ≤ t2. Then, in constant time we can check whether the values of w inside
the computed intervals verify that w ≥ π

2 , and determine the constant number
of intervals where w ≥ π

2 . See Fig. 6.

The Rectilinear Convex Hull of Line Segments 41

Fig. 6. The function to compute if and where the angle w ≥ π
2
.

Theorem 2. The total number of intervals inside the segments of the envelope
N (P) is Ω(nα(n)). These intervals and the ones corresponding to values of
w ≥ π

2 can be computed in O(n log n) time and O(nα(n)) space.

Proof. By the construction illustrated in Fig. 5 we see that the points of N (P)
causing a split in a segment (the points pi−1, pi−2, pi−3, pi−4) are captured by
the next left convex hull CH(Pi); and similarly for the points to the right by the
next right convex hull. Only the last point pi−5 which belongs to the boundary
of CH(Pi−1) will be considered in the next step for the next segment to the right,
and so the point pi−5 can be used at most two times.

Because the equation above has degree two, an interval defined by supporting
lines can be split into at most 3 sub-intervals thus, the total number of sub-
intervals is Ω(nα(n)), and in each sub-interval we have spent constant time. The
total number of steps of the process above is upper bounded by Ω(nα(n)) in time
and space since we follow the order of the elements of N (P), we don’t need to
do binary search, and the computations in each of the steps takes constant time.

Theorem 3. The same statement of Theorem 2 above is also true for the
envelopes S(P), E(P), and W(P).

3.3 Computing RCHθ(P)

Now we show how to compute and maintain RCHθ(P) as θ ∈ [0, 2π] from the
information computed in the Subsects. 3.1 and 3.2. From Theorems 2 and 3, once
we have computed the angular intervals of angles w ≥ π

2 , then we can translate
all these intervals for all the segments si (or part of it) in N (P), S(P), E(P),
and W(P), to angular intervals inside [0, 2π] in the real line, see Fig. 7.

Thus, doing a line sweep with vertical lines corresponding to angles θ, θ+ π
2 ,

θ + π, and θ + 3π
2 (in a circular way, i.e., completing a [0, 2π] round with each

line), and then inserting and deleting the changes of segments that belong to
each of the four staircases of RCHθ(P) as θ changes in [0, 2π).

42 C. Alegría et al.

Fig. 7. Angular intervals inside [0, 2π) of the angles ω of the points of the segments si

(or part of it) in N (P), S(P), E(P), and W(P), such that have w ≥ π
2
.

Now, considering that an endpoint or an interior point of a segment of P (or
part of it) in any of the envelopes N (P), S(P), E(P), and W(P) can be apex of a
P -free π

2 -wedge, and because Theorems 2 and 3, we can compute the endpoints,
segments, or part of segments of P that belong to RCHθ(P) as θ ∈ [0, 2π] in
O(n log n) time and O(nα(n)) space. Therefore, we obtain the following result.

Theorem 4. Computing and maintaining RCHθ(P) as θ ∈ [0, 2π] can be done
in O(n log n) time and O(nα(n)) space.

3.4 Rectilinear Convex Hull of a Set of Simple Polygons

Let P be a collection of simple polygons with n total complexity, i.e., the number
of edges of all the polygons is n. Again, the problem is to compute and maintain
RCHθ(P) as θ ∈ [0, 2π]. In fact, it is exactly the same problem as a collection
of segments because we take the set, say S, of segments corresponding to all the
sides of the simple polygons and apply the Theorem 4 to the set S. Thus, by the
discussion above, we have the same result but for a set of simple polygons.

Theorem 5. Computing and maintaining RCHθ(P) as θ ∈ [0, 2π] can be done
in O(n log n) time and O(nα(n)) space.

4 Rectilinear Convex Hull of a Simple Polygonal Chain

Let P be a simple polygonal chain formed by a sequence of n (non-intersecting)
line segments. The goal in this subsection is to compute the RCHθ(P) using the
techniques applied in the section above. A first question to determine is how to
compute the upper envelope (resp. lower envelope) of P . Obviously, it can be

The Rectilinear Convex Hull of Line Segments 43

computed as the upper envelope (resp. lower envelope) of a set of line segments
in O(n log n) time and O(nα(n)) space, but the question is to determine whether
these envelopes have O(n) complexity or O(nα(n)) complexity. This fact will fix
the time and space complexity of our algorithms. Notice that now the segments
are not intersecting and that we have the order of the segments forming the
polygonal chain. See Fig. 8.

Proposition 3. The complexity of the upper envelope of P is O(n).

Proof. Assume that we follow the simple polygonal chain P from its origin on the
left to its end on the right. Assume that we are computing the upper envelope of
P , U(P). If a segment si or part of it appears in U(P) for first time, then either
it belongs to U(P) till the endpoint of si or another segment of U(P) appears
before the endpoint of si. In the second case the segment si does not appear in
U(P) to the right in U(P) by the continuity of P , i.e., the right part of P after
si is like a ray with origin at the right endpoint of si. See Fig. 8.

Fig. 8. Illustration of the proof of Proposition 3.

Observation 2. Notice that by Observation 1 the complexity of the upper enve-
lope of n non-intersecting segments is O(n) and can be computed in O(n log n)
time and O(n) space. But now, for the simple polygonal chain P of n segments
the complexity of the upper envelope is O(n) and can be computed in O(n) time
and space because the set of segments are sorted in the polygonal chain P .

Theorem 6. Computing and maintaining RCHθ(P) as θ ∈ [0, 2π] can be done
in O(n) time and space.

Proof. By Proposition 3 the complexity of each envelope N (P), S(P), E(P),
and W(P) is O(n). Thus, we apply the same techniques as in Subsect. 3.3 with
the difference of the complexities of the envelopes and get the result.

5 Concluding Remarks

We showed how to compute and maintain RCHθ(P) as θ changes from 0 to 2π,
for the cases where P is a collection of line segments, polygons, or polygonal
lines in the plane. In all cases, our algorithms are worst-case optimal in both
time and space.

44 C. Alegría et al.

From our algorithms we actually obtain a general approach to compute the
rectilinear convex hull with arbitrary orientation of a collection of geometric
objects. The efficiency bottleneck is the complexity of the lower envelope of the
collection. We are currently working on a couple of cases in which we are about
to successfully adapt our approach, to obtain algorithms that are worst-case
optimal as well. The first case is a collection of circles. The lower envelope of such
a collection has O(n) complexity [11], and can be computed in O(n log n) time
and O(n) space [5]. The second case is a collection of (non-necessarily equally
oriented) ellipses. From the results of [21], we know that the lower envelope of a
collection of n ellipses has O(nα(n)) complexity. On the other hand, since a line
segment can be thought of as an almost-flat ellipse, the lower bound construction
from [23] for line segments seems to imply that the complexity bound is tight.

Acknowledgements. Justin Dallant is supported by the French Community of
Belgium via the funding of a FRIA grant. Pablo Pérez-Lantero was partially sup-
ported by project DICYT 042332PL Vicerrectoría de Investigación, Desarrollo e Inno-
vación USACH (Chile). Carlos Seara is supported by Project PID2019-104129GB-
I00/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation.

References

1. Alegría, C., Orden, D., Seara, C., Urrutia, J.: Separating bichromatic point sets
in the plane by restricted orientation convex hulls maintenance of maxima of 2D
point sets. J. Global Optim. 85, 1–34 (2022). https://doi.org/10.1007/s10898-022-
01238-9

2. Biedl, T., Genç, B.: Reconstructing orthogonal Polyhedra from putative vertex
sets. Comput. Geomet. Theor. Appl. 44(8), 409–417 (2011). https://doi.org/10.
1016/j.comgeo.2011.04.002

3. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discr.
Comput. Geom. 10(4), 377–409 (1993). https://doi.org/10.1007/bf02573985

4. Davari, M.J., Edalat, A., Lieutier, A.: The convex hull of finitely generable sub-
sets and its predicate transformer. In: 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE (2019). https://doi.org/10.1109/lics.
2019.8785680

5. Devillers, O., Golin, M.J.: Incremental algorithms for finding the convex hulls of
circles and the lower envelopes of parabolas. Inf. Process. Lett. 56(3), 157–164
(1995). https://doi.org/10.1016/0020-0190(95)00132-V

6. Díaz-Bañez, J.M., López, M.A., Mora, M., Seara, C., Ventura, I.: Fitting a two-joint
orthogonal chain to a point set. Comput. Geom. 44(3), 135–147 (2011). https://
doi.org/10.1016/j.comgeo.2010.07.005

7. Fink, E., Wood, D.: Restricted-orientation Convexity. Monographs in Theoreti-
cal Computer Science (An EATCS Series). 1st Edn. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-642-18849-7

8. Franěk, V.: On algorithmic characterization of functional D-convex hulls, Ph. D.
thesis, Faculty of Mathematics and Physics, Charles University in Prague (2008)

9. Franěk, V., Matoušek, J.: Computing D-convex hulls in the plane. Comput.
Geomet. Theor. Appl. 42(1), 81–89 (2009). https://doi.org/10.1016/j.comgeo.
2008.03.003

https://doi.org/10.1007/s10898-022-01238-9
https://doi.org/10.1007/s10898-022-01238-9
https://doi.org/10.1016/j.comgeo.2011.04.002
https://doi.org/10.1016/j.comgeo.2011.04.002
https://doi.org/10.1007/bf02573985
https://doi.org/10.1109/lics.2019.8785680
https://doi.org/10.1109/lics.2019.8785680
https://doi.org/10.1016/0020-0190(95)00132-V
https://doi.org/10.1016/j.comgeo.2010.07.005
https://doi.org/10.1016/j.comgeo.2010.07.005
https://doi.org/10.1007/978-3-642-18849-7
https://doi.org/10.1016/j.comgeo.2008.03.003
https://doi.org/10.1016/j.comgeo.2008.03.003

The Rectilinear Convex Hull of Line Segments 45

10. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n)
time. Inf. Process. Lett. 33, 169–174 (1989). https://doi.org/10.1016/0020-
0190(89)90136-1

11. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discr. Comput.
Geomet. 1(1), 59–71 (1986). https://doi.org/10.1007/BF02187683

12. Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf.
Process. Lett. 25(1), 11–12 (1987). https://doi.org/10.1016/0020-0190(87)90086-
X

13. Metelskii, N.N., Martynchik, V.N.: Partial convexity. Math. Notes 60(3), 300–305
(1996). https://doi.org/10.1007/BF02320367

14. Nicholl, T.M., Lee, D.T., Liao, Y.Z., Wong, C.K.: On the X-Y convex hull of a set
of X-Y polygons. BIT Numer. Math. 23(4), 456–471 (1983). https://doi.org/10.
1007/BF01933620

15. Ottmann, T., Soisalon-Soininen, E., Wood, D.: On the definition and computation
of rectilinear convex hulls. Inf. Sci. 33(3), 157–171 (1984). https://doi.org/10.1016/
0020-0255(84)90025-2

16. Pérez-Lantero, P., Seara, C., Urrutia, J.: A fitting problem in three dimension. In:
Book of Abstracts of the XX Spanish Meeting on Computational Geometry, pp.
21–24. EGC 2023 (2023)

17. Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Text
and Monographs in Computer Science. 1st Edn. Springer, NY (1985). https://doi.
org/10.1007/978-1-4612-1098-6

18. Rawlins, G.J.E.: Explorations in restricted-orientation geometry, Ph. D. thesis,
School of Computer Science, University of Waterloo (1987)

19. Rawlins, G.J., Wood, D.: Ortho-convexity and its generalizations. In: Toussaint,
G.T. (ed.) Computational Morphology, Machine Intelligence and Pattern Recog-
nition, vol. 6, pp. 137–152. North-Holland (1988). https://doi.org/10.1016/B978-
0-444-70467-2.50015-1

20. Schuierer, S., Wood, D.: Restricted-orientation visibility. Tech. Rep. 40, Institut
für Informatik, Universität Freiburg (1991)

21. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press (1995)

22. Wang, C., Zhou, R.G.: A quantum search algorithm of two-dimensional convex
hull. Commun. Theoret. Phys. 73(11), 115102 (2021). https://doi.org/10.1088/
1572-9494/ac1da0

23. Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport-Schinzel
sequences by segments. Discr. Comput. Geomet. 3(1), 15–47 (1988). https://doi.
org/10.1007/BF02187894

https://doi.org/10.1016/0020-0190(89)90136-1
https://doi.org/10.1016/0020-0190(89)90136-1
https://doi.org/10.1007/BF02187683
https://doi.org/10.1016/0020-0190(87)90086-X
https://doi.org/10.1016/0020-0190(87)90086-X
https://doi.org/10.1007/BF02320367
https://doi.org/10.1007/BF01933620
https://doi.org/10.1007/BF01933620
https://doi.org/10.1016/0020-0255(84)90025-2
https://doi.org/10.1016/0020-0255(84)90025-2
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1016/B978-0-444-70467-2.50015-1
https://doi.org/10.1016/B978-0-444-70467-2.50015-1
https://doi.org/10.1088/1572-9494/ac1da0
https://doi.org/10.1088/1572-9494/ac1da0
https://doi.org/10.1007/BF02187894
https://doi.org/10.1007/BF02187894

Domino Snake Problems on Groups

Nathalie Aubrun and Nicolas Bitar(B)

Université Paris-Saclay, CNRS, LISN, 91190 Gif-sur-Yvette, France
{nathalie.aubrun,nicolas.bitar}@lisn.fr

Abstract. In this article we study domino snake problems on finitely
generated groups. We provide general properties of these problems and
introduce new tools for their study. The first is the use of symbolic
dynamics to understand the set of all possible snakes. Using this app-
roach we solve many variations of the infinite snake problem including
the geodesic snake problem for certain classes of groups. Next, we intro-
duce a notion of embedding that allows us to reduce the decidability
of snake problems from one group to another. This notion enable us to
establish the undecidability of the infinite snake and ouroboros problems
on nilpotent groups for any generating set, given that we add a well-
chosen element. Finally, we make use of monadic second order logic to
prove that domino snake problems are decidable on virtually free groups
for all generating sets.

Keywords: Domino Snake Problems · Computability Theory ·
Symbolic Dynamics · Combinatorial Group Theory · MSO logic

1 Introduction

Since their introduction more than 60 years ago [27], domino problems have
had a long history of providing complexity lower bounds and undecidability
of numerous decision problems [6,11,15,16]. The input to these problems is a
set of Wang tiles: unit square tiles with colored edges and fixed orientation.
The decision problems follow the same global structure; given a finite set of
Wang tiles, is there an algorithm to determine if they tile a particular shape or
subset of the infinite grid such that adjacent tiles share the same color along
their common border? An interesting variant of this general formula are domino
snake problems. First introduced by Myers in 1979 [24], snake problems ask for
threads –or snakes– of tiles that satisfy certain constraints. In particular, three of
them stand-out. The infinite snake problem asks is there exists a tiling of a self-
avoiding bi-infinite path on the grid, the ouroboros problem asks if there exists
a non-trivial cycle on the grid, and the snake reachability problem asks if there
exists a tiling of a self-avoiding path between two prescribed points. Adjacency
rules are only required to be respected along the path. These problems have had
their computability completely classified [1,9,10,13,14,19] (see Theorem 1). In
this article, we expand the scope of domino snake problems to finitely generated

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 46–59, 2023.
https://doi.org/10.1007/978-3-031-43587-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_4&domain=pdf
http://orcid.org/0000-0002-2701-570X
http://orcid.org/0000-0002-3460-9442
https://doi.org/10.1007/978-3-031-43587-4_4

Domino Snake Problems on Groups 47

groups, as has been done for other domino problems [3], to understand how the
underlying structure affects computability.

We present three novel ways in which to approach these problems. The first
is the use of symbolic dynamics to understand the set of all possible snakes.
Theorem 3 states that when this set is defined through a regular language of
forbidden patterns, the infinite snake problem becomes decidable. Using this
approach we solve many variations of the infinite snake problem including the
geodesic snake problem for some classes of groups. Next, we introduce a notion
of embedding that allows us to reduce the decidability of snake problems from
one group to another. This notion enable us to establish the undecidability of
the infinite snake and ouroboros problems on a large class of groups –that most
notably include nilpotent groups– for any generating set, provided that we add
a central torsion-free element. Finally, to tackle virtually free groups, we express
the three snake problems in the language of Monadic Second Order logic. Because
for this class of groups this fraction of logic is decidable, we show that our three
decision problems are decidable independently of the generating set.

2 Preliminaries

Given a finite alphabet A, we denote by An the set of words on A of length n, and
A∗ the set of all finite length words including the empty word ε. Furthermore,
we denote by A+ = A∗ \ {ε} the set of non-empty finite words over A. A factor
v of a word w is a contiguous subword; we denote this by v � w. We denote
discrete intervals by �n,m� = {n, n + 1, ...,m − 1,m}. We also denote the free
group defined from the free generating set S by FS . The proofs missing in the
text are present in [4].

2.1 Symbolic Dynamics

Given a finite alphabet A, we define the full-shift over A as the set of configura-
tions AZ = {x : Z → A}. There is a natural Z-action on the full-shift called the
shift, σ : AZ → AZ, given by σ(x)i = xi+1. The full-shift is also endowed with
the prodiscrete topology, making it a compact space.

Let F ⊆ Z be a finite subset. A pattern of support F is an element p ∈ AF .
We say a pattern p ∈ AF appears in a configuration x ∈ AZ, denoted p � x, if
there exists k ∈ Z such that xk+i = pi for all i ∈ F . Given a set of patterns F ,
we can define the set of configurations where no pattern from F appears,

XF := {x ∈ AZ | ∀p ∈ F , p does not appear in x}.
A subshift is a subset of the full-shift X ⊆ AZ such that there exists a

set of patterns F that verifies X = XF . A classic result shows subshifts can
be equivalently defined as closed σ-invariant subsets of the full-shift. We say a
subshift XF is

– a subshift of finite type (SFT) if F is finite,

48 N. Aubrun and N. Bitar

– sofic if F is a regular language,
– effective if F is a decidable language.

Each class is strictly contained within the next. Sofic subshifts can be equiv-
alently defined as the set of bi-infinite walks on a labeled finite graph. It is
therefore decidable, given the automaton or graph that defines the subshift, to
determine if the subshift is empty. Similarly, given a Turing machine for the for-
bidden language of an effective subshift, we have a semi-algorithm to determine
if the subshift is empty.

Lastly, we say a configuration x ∈ X is periodic if there exists k ∈ Z∗ such
that σk(x) = x. We say the subshift X is aperiodic if it contains no periodic
configurations. For a comprehensive introduction to one-dimensional symbolic
dynamics we refer the reader to [21].

2.2 Combinatorial Group Theory

Let G be a finitely generated (f.g.) group and S a finite generating set. Elements
in the group are represented as words on the alphabet S ∪ S−1 through the
evaluation function w �→ w. Two words w and v represent the same element in
G when w = v, and we denote it by w =G v. We say a word is reduced if it
contains no factor of the form ss−1 or s−1s with s ∈ S.

Definition 1. Let G be a group, S a subset of G and R a language on S ∪S−1.
We say (S,R) is a presentation of G, denoted G = 〈S | R〉, if the group is
isomorphic to 〈S | R〉 = FS/〈〈R〉〉, where 〈〈R〉〉 is the normal closure of R, i.e.
the smallest normal subgroup containing R. We say G is recursively presented
if there exists a presentation (S,R) such that S is finite and R is recursively
enumerable.

For a group G and a generating set S, we define:

WP(G,S) := {w ∈ (S ∪ S−1)∗ | w = 1G}.

Definition 2. The word problem (WP) of a group G with respect to a set of
generators S asks to determine, given a word w ∈ (S ∪S−1)∗, if w ∈ WP(G,S).

We say a word w ∈ (S∪S−1)+ is G-reduced if w contains no factor in WP(G,S).
We say a word w ∈ (S ∪ S−1)∗ is a geodesic if for all words v ∈ (S ∪ S−1)∗ such
that w = v we have |w| ≤ |v|. For a given group G and generating set S, we
denote its language of geodesics by Geo(G,S).

We say an element g ∈ G has torsion if there exists n ≥ 1 such that gn = 1G.
If there is no such n, we say g is torsion-free. Analogously, we say G is a torsion
group if all of its elements have torsion. Otherwise if the only element of finite
order is 1G we say the group is torsion-free.

Finally, let P be a class of groups (for example abelian groups, free groups,
etc.). We say a group G is virtually P, if there exists a finite index subgroup
H ≤ G that is in P.

Domino Snake Problems on Groups 49

3 Snake Behaviour

Although the original snake problems were posed for the Wang tile model, we
make use of a different, yet equivalent, formalism (see [4] for a proof of the
equivalence of the two models).

Definition 3. A tileset graph (or tileset) for a f.g. group (G,S) is a finite multi-
graph Γ = (A,B) such that each edge is uniquely determined by (a, a′, s) where
s ∈ S ∪ S−1 and a, a′ ∈ A are its initial and final vertices respectively, and if
(a, a′, s) ∈ B then (a′, a, s−1) ∈ B.

In what follows, I denotes Z, N, or a discrete interval �n,m�, depending on the
context.

Definition 4. Let (G,S) be a f.g. group, and Γ = (A,B) a tileset for the pair.
A snake or Γ -snake is a pair of functions (ω, ζ), where ω : I → G is an injective
function, referred to as the snake’s skeleton and ζ : I → A the snake’s scales.
These pairs must satisfy that dωi := ω(i)−1ω(i+1) ∈ S∪S−1 and (ζ(i), ζ(i+1))
must be an edge in Γ labeled by dωi (Fig. 1).

t1 =

t2 =

t1 t2

(1, 0)

(0, 1)

. . .

Fig. 1. Two Wang tiles that do not tile Z2, the corresponding graph Γ for the gen-
erating set {(1, 0), (0, 1)} (edges labeled with generator inverses are omitted for more
readability) and a Γ -snake with I = N. In the Wang tile model, two tiles can be placed
next to each other if they have the same color on the shared side.

We say a snake (ω, ζ) connects the points p, q ∈ G if there exists a n ∈ N
such that (ω, ζ) is defined over �0, n�, ω(0) = p and ω(n) = q. We say a snake is
bi-infinite if its domain is Z. A Γ -ouroboros is a Γ -snake defined over �0, n�, with
n ≥ 2, that is injective except for ω(0) = ω(n). In other words, a Γ -ouroboros
is a well-tiled simple non-trivial cycle. We study the following three decision
problems:

Definition 5. Let (G,S) be a f.g. group. Given a tileset Γ for (G,S) and two
points p, q ∈ G,

– the infinite snake problem asks if there exists a bi-infinite Γ -snake,
– the ouroboros problem asks if there exists a Γ -ouroboros,

50 N. Aubrun and N. Bitar

– the snake reachability problem asks if there exists a Γ -snake connecting p
and q.

We can also talk about the seeded variants of these three problems. In these
versions, we add a selected tile a0 ∈ A to our input and ask for the corresponding
snake/ouroboros to satisfy ζ(0) = a0.

All of these problems have been studied and classified for Z2 with its standard
generating set {(1, 0), (0, 1)}.
Theorem 1. Let S be the standard generating set for Z2. Then,

1. The snake reachability problem for (Z2, S) is PSPACE-complete [14],
2. The infinite snake problem for (Z2, S) is Π0

1 -complete [1],
3. The ouroboros problem for (Z2, S) is Σ0

1 -complete [9,19].

In addition, the seeded variants of these problems are undecidable [9].

Our aim is to extend these results to larger classes of groups and different
generating sets.

3.1 General Properties

Let (G,S) be a f.g. group and Γ a tileset. If there exists a snake (ω, ζ), then for
every g ∈ G, (gω, ζ) is a snake. If we define ω̃(i) = gω(i), then dω̃ = dω, as the
adjacency of ζ in Γ remains unchanged. In particular, there exists a snake (ω′, ζ)
such that ω′(0) = 1G, i.e. we may assume that a snake starts at the identity 1G.

The next result is a straightforward generalization of a result due to Kari
[19] for Z2.

Proposition 1. Let Γ be a tileset for a f.g. group (G,S). Then, the following
are equivalent:

1. Γ admits a bi-infinite snake,
2. Γ admits a one-way infinite snake,
3. Γ admits a snake of every length.

This result implies that a tileset that admits no snakes will fail to tile any
snake bigger than a certain length. Therefore, if we have a procedure to test
snakes of increasing length, we have a semi-algorithm to test if a tileset does not
admit an infinite snake.

Corollary 1. If G has decidable WP, the infinite snake problem is in Π0
1 .

A similar process can be done for the ouroboros problem.

Proposition 2. If G has decidable WP, the ouroboros problem is in Σ0
1 .

Domino Snake Problems on Groups 51

Proof. Let Γ be a tileset graph for (G,S). For each n ≥ 1, we test each word of
length n to see if it defines a simple loop and if it admits a valid tiling. More
precisely, for w ∈ (S ∪ S−1)n, we use the word problem algorithm to check if w
is G-reduced and evaluates to 1G. If it is reduced, we test all possible tilings by
Γ of the path defined by following the generators in w. If we find a valid tiling,
we accept. If not, we keep iterating with the next word length n and eventually
with words of length n+ 1.

If there is a Γ -ouroboros, this process with halt and accept. Similarly, if the
process halts we have found a Γ -ouroboros. Finally, if there is no Γ -ouroboros
the process continues indefinitely.

We also state reductions when working with subgroups or adding generators.

Lemma 1. Let (G,S) be a f.g. group, (H,T) a f.g. subgroup of G and w ∈
(S ∪ S−1)+. Then,

– The infinite snake, ouroboros and reachability problems in (H,T) many one-
reduce to their respective analogues in (G,S ∪ T).

– The infinite snake, ouroboros and reachability problems in (G,S) many one-
reduce to their respective analogues in (G,S ∪ {w}).

Proof. Any tileset graph for (H,T) is a tileset graph for (G,S ∪ T), and any
tileset graph for (G,S) is a tileset graph for (G,S ∪ {w}).

4 Ossuary

Much of the complexity of snakes comes from the paths they define on the under-
lying group. It stands to reason that understanding the structure of all possible
injective bi-infinite paths on the group can shed light on the computability of
the infinite snake problem. Let G be a f.g. group with S a set of generators. The
skeleton subshift of the pair (G,S) is defined as

XG,S := {x ∈ (S ∪ S−1)Z | ∀w � x, w
∈ WP(G,S)}.

This subshift is the set of all possible skeletons: recall from Definition 4 that
for any skeleton ω, we can define dω : Z → S ∪ S−1 as dωi = ω(i)−1ω(i + 1).
Thus, for any infinite snake (ω, ζ): dω ∈ XG,S .

This formalism allows us to introduce variations of the infinite snake problem
where we ask for additional properties on the skeleton. We say a subset Y ⊆ XG,S

is skeletal if it is shift-invariant. In particular, all subshifts of XG,S are skeletal.

Definition 6. Let Y be a skeletal subset. The Y -snake problem asks, given a
tileset Γ , does there exist a bi-infinite Γ -snake (ω, ζ) such that dω ∈ Y ?

52 N. Aubrun and N. Bitar

4.1 Skeletons and Decidability

A snake (ω, ζ) can be seen as two walks that follow the same labels: ω is a
self-avoiding walk on the Cayley graph of the group, and ζ a walk on the tileset
graph. The next result, which is a direct consequence of the definitions, uses this
fact to construct a single object that captures both walks.

For (G,S) a f.g. group, Γ a tileset graph, denote XΓ ⊆ (
S ∪ S−1

)Z the
subshift whose configurations are the labels of bi-infinite paths over Γ . This
implies XΓ is a sofic subshift.

Proposition 3. Let (G,S) be a f.g. group, Γ a tileset graph and Y a non-empty
skeletal subset. Then X = Y ∩XΓ is non-empty if and only if there is a bi-infinite
Γ -snake (ω, ζ) with dω ∈ Y . In addition, if Y is an effective/sofic subshift, then
X is an effective/sofic subshift.

The previous result reduces the problem of finding an infinite Y -snake, to
the problem of emptiness of the intersection of two one-dimensional subshifts.
As previously stated determining if a subshift is empty is co-recursively enumer-
able for effective subshifts, and decidable for sofics. Therefore, we can provide a
semi-algorithm when the skeleton is effective. This is true for the class of recur-
sively presented groups. Because these groups have recursively enumerable word
problem, WP(G,S) is recursively enumerable for all finite generating sets. This
enumeration gives us an enumeration of the forbidden patterns of our subshift.

Proposition 4. Let G be a recursively presented group. Then XG,S is effective
for every finite generating set S.

This allows us to state the following proposition.

Proposition 5. Let Y be a skeletal subshift. Then, if Y is sofic (resp. effective)
the Y -snake problem is decidable (resp. in Π0

1). In particular, if G is recursively
presented, the infinite snake problem for any generating set is in Π0

1 .

We now identify where the undecidability of the infinite snake problem comes
from. If we restrict the directions in which the snake moves to 2 or 3, the prob-
lem becomes decidable. This means that the ability to make “space-filling”-like
curves in Z2 is, heuristically speaking, required for the proof of the undecidability
of the infinite snake problem.

Theorem 2. The infinite snake problem in Z2 restricted to 2 or 3 directions
among (1, 0), (0, 1), (−1, 0), (0,−1) is decidable.

Proof. The set of skeletons of snakes restricted to 3 directions, for instance
left, right and up (denoted by a−1, a and b respectively), is the subshift
Y3 ⊆ {a, a−1, b}Z where the only forbidden words are aa−1 and a−1a. As Y3

is a skeletal SFT of XZ2,{a,b}, by Proposition 5, the Y3-snake problem is decid-
able. The case of two directions is analogous as Y2 is the full shift on the two
generators a and b.

Domino Snake Problems on Groups 53

A natural variation of the infinite snake problem, from the point of view
of group theory, is asking if there is an infinite snake whose skeleton defines
a geodesic. These skeletons are captured by the geodesic skeleton subshift; a
subshift of XG,S comprised exclusively of bi-infinite geodesic rays. Formally,

Xg
G,S = {x ∈ XG,S | ∀w � x,w′ =G w : |w| ≤ |w′|}.

This subshift can be equivalently defined through the set of forbidden pat-
terns given by Geo(G,S). Then, by the definition of a sofic shift, we can state
the following proposition.

Proposition 6. Let (G,S) be a f.g. group. If Geo(G,S) is regular, then Xg
G,S

is sofic.

Geo(G,S) is known to be regular for all generating sets in abelian groups
[25] and hyperbolic groups [12], and for some generating sets in many other
classes of groups [2,7,17,18,25]. Theorem 3 implies that the geodesic infinite
snake problem is decidable for all such (G,S); most notably for Z2 with its
standard generating set.

Theorem 3. The geodesic infinite snake problem is decidable for any f.g. group
(G,S) such that Geo(G,S) is regular. In particular, it is decidable for abelian
and hyperbolic groups for all generating sets.

What happens with skeletal subsets that are not closed and/or not effective?
In these cases, Ebbinghaus showed that the problem can be undecidable outside
of the arithmetical hierarchy [10]. If we define Y to be the skeletal subset of
(Z2, {a, b}) of skeletons that are not eventually a straight line, then, Y is not
closed and deciding if there exists a Y -skeleton snake is Σ1

1 -complete. Similarly,
if we take the Y to be the set of non-computable skeletons of Z2, the Y -skeleton
problem is also Σ1

1 -complete.

5 Snake Embeddings

Let us introduce a suitable notion of embedding, that guarantees a reduction of
snake problems. To do this, we will make use of a specific class of finite-state
transducer called invertible-reversible transducer, that will translate generators
of one group to another in an automatic manner.

Definition 7. An invertible-reversible transducer M is a tuple (Q,S, T, q0, δ, η)
where,

– Q is a finite set of states,
– S, T are finite alphabets,
– q0 ∈ Q is an initial state,
– δ : Q× S → Q is a transition function,
– η : Q× S → T is such that η(q, ·) is an injective function for all q ∈ Q,

54 N. Aubrun and N. Bitar

such that for all q ∈ Q and s ∈ S there exists a unique q′ such that δ(q′, s) = q.

We extend both η and δ to manage inverses of S by setting η(q, s−1) =
η(q′, s)−1 and δ(q, s−1) = q′, where q′ is the unique state satisfying δ(q′, s) = q.
Furthermore, we denote by qw the state of M reached after reading the word
w ∈ (S ∪ S−1)∗ starting from q0. We introduce the function fM : (S ∪ S−1)∗ →
(T ∪T−1)∗ recursively defined as fM(ε) = ε and fM(ws±1) = fM(w)η(qw, s±1).

Definition 8. Let (G,S) and (H,T) be two f.g. groups. A map φ : G → H is
called a snake embedding if there exists a transducer M such that φ(g) = fM(w)
for all w ∈ (S ∪ S−1)∗ such that w̄ = g, and fM(w) =H fM(w′) if and only if
w =G w′.

Remark 1. Snake-embeddings are a strictly stronger form of a translation-like
action. Such an action is a right group action ∗ : G → H that is free, i.e.
h ∗ g = h implies g = 1G, and {d(h, h ∗ g) | h ∈ H} is bounded for all g ∈
G. A straightforward argument shows that if φ : (G,S) → (H,T) is a snake-
embedding, then h ∗ g = hφ(g) is a translation-like action. The converse is not
true: there are translation-like actions that are not defined by snake-embeddings.
For instance, from Definition 8 we see that there is a snake embedding from Z
to a group G if and only if Z is a subgroup of G. Nevertheless, infinite torsion
groups admit translation-like actions from Z, as shown by Seward in [26], but
do not contain Z as a subgroup.

Proposition 7. Let (G,S) and (H,T) be two f.g. groups such that there exists a
snake-embedding φ : G→ H. Then, the infinite snake (resp. ouroboros) problem
on (G,S) many-one reduces to the infinite snake (resp. ouroboros) problem on
(H,T).

The reduction consists in taking a tileset for (G,S) and using the transducer
to create a tileset for (H,T) that is consistent with the structure of G. Because
the transducer is invertible-reversible, we have a computable way to transform
a bi-infinite snake from one group to the other.

Using snake-embeddings we can prove that non-Z f.g. free abelian groups
have undecidable snake problems.

Proposition 8. The infinite snake and ouroboros problems on Zd with d ≥ 2
are undecidable for all generating sets.

Proof. Let S = {v1, ..., vn} be a generating set for Zd. As S generates the group,
there are two generators vi1 and vi2 , such that vi1Z ∩ vi2Z = {1Zd}. Then,
H = 〈vi1 , vi2〉 � Z2 and there is clearly a snake-embedding from Z2 to H.
Finally, by Lemma 1, the infinite snake and ouroboros problems are undecidable
for (Zd, S).

Domino Snake Problems on Groups 55

6 Virtually Nilpotent Groups

Through the use of snake-embeddings and skeleton subshifts, we extend unde-
cidability results from abelian groups to the strictly larger class of virtually
nilpotent groups. For any group G we define Z0(G) = {1G} and

Zi+1(G) = {g ∈ G | ghg−1h−1 ∈ Zi(G),∀h ∈ G}.
The set Z1(G) is called the center of G, and by definition is the set of elements
that commute with every element in G. We say a group is nilpotent if there
exists i ≥ 0 such that Zi(G) = G.

The next Lemma is stated for a larger class of groups that contain nilpotent
groups, that will allow us to prove the undecidability results on the latter class.

Lemma 2. Let (G,S) be a f.g. group that contains an infinite order element g in
its center, such that G/〈g〉 is not a torsion group. Then, there is a snake embed-
ding from (Z2, {a, b}) into (G,S ∪ {g}), where {a, b} is the standard generating
set for Z2.

The proof consists in finding a distorted copy of Z2 within (G,S ∪{g}). One
of the copies of Z is given by 〈g〉 � Z. The other is obtained through the following
result.

Proposition 9. Let (G,S) be a f.g. group. Then, G is a torsion group if and
only if XG,S is aperiodic.

Using g and a periodic point from this proposition we construct the snake-
embedding.

Proposition 10. Let (G,S) be a f.g. group that contains a infinite order ele-
ment g in its center and G/〈g〉 is not a torsion group. Then, (G,S ∪ {g}) has
undecidable infinite snake and ouroboros problems.

Proof. By Lemma 2, there is a snake-embedding from Z2 to (G,S ∪ {g}). Com-
bining Proposition 7 and Theorem 1, we conclude that both problems are unde-
cidable on (G,S ∪ {g}).
Theorem 4. Let (G,S) be a f.g. infinite, non-virtually Z, nilpotent group. Then
there exists g such that (G,S∪{g}) has undecidable infinite snake and ouroboros
problems.

Proof. Let G be a f.g. infinite nilpotent group that is not virtually cyclic. Because
G is nilpotent, there exists a torsion-free element g ∈ Z1(G). Furthermore no
quotient of G is an infinite torsion group [8]. In addition, as G is not virtu-
ally cyclic G/〈g〉 is not finite. Therefore, by Proposition 10, both problems are
undecidable on (G,S ∪ {g}).

Through Lemma 1 we obtain undecidability for virtually nilpotent groups.

Corollary 2. Let G be a f.g. infinite, non virtually Z, virtually nilpotent group.
Then there exists a finite generating set S such that (G,S) has undecidable infi-
nite snake and ouroboros problems.

56 N. Aubrun and N. Bitar

7 Snakes and Logic

We want to express snake problems as a formula that can be shown to be satisfied
for a large class of Cayley graphs. To do this we use Monadic Second-Order
(MSO) logic, as has been previously been done for the domino problem. Our
formalism is inspired by [5]. Let Λ = (V,E) be an S-labeled graph with root v0.
This fraction of logic consists of variables P,Q,R, ... that represent subsets of
vertices of Λ, along with the constant set {v0}; as well as an operation for each
s ∈ S, P · s, representing all vertices reached when traversing an edge labeled by
s from a vertex in P . In addition, we can use the relation ⊆, Boolean operators
∧,∨,¬ and quantifiers ∀,∃. For instance, we can express set equality by the
formula (P = Q) ≡ (P ⊆ Q∧Q ⊆ P) and emptiness by (P = ∅) ≡ ∀Q(P ⊆ Q).
We can also manipulate individual vertices, as being a singleton is expressed
by (|P | = 1) ≡ P
= ∅ ∧ ∀Q ⊆ P (Q = ∅ ∨ P = Q). For example, ∀v ∈ P is
shorthand notation for the expression ∀Q(Q ⊆ P ∧ |Q| = 1). Notably, we can
express non-connectivity of a subset P ⊆ V by the formula nc(P) defined as

∃Q ⊆ P,∃v, v′ ∈ P (v ∈ Q ∧ v′
∈ Q ∧ ∀u,w ∈ P (u ∈ Q ∧ edge(u,w) ⇒ w ∈ Q)),

where edge(u,w) ≡ ∨
s∈S u · s = w. The set of formulas without free variables

obtained with these operations is denoted by MSO(Λ). We say Λ has decidable
MSO logic, if the problem of determining if given a formula in MSO(Λ) is satisfied
is decidable.

The particular instance we are interested in is when Λ is the Cayley graph of
a f.g. group G labeled by S a symmetric finite set of generators, that is, S = S−1

(we take such a set to avoid cumbersome notation in this section). In this case,
the root of our graph is the identity v0 = 1G. A landmark result in the connection
between MSO logic and tiling problems comes from Muller and Schupp [22,23],
as well as Kuskey and Lohrey [20], who showed that virtually free groups have
decidable MSO logic. Because the Domino Problem can be expressed in MSO, it
is decidable on virtually free groups. Our goal is to obtain an analogous result for
domino snake problems. To express infinite paths and loops, given a tileset graph
Γ = (A,B), we will partition a subset P ⊆ V into subsets indexed by S and A,
such that Ps,a will contain all vertices with the tile a that point through s to the
continuation of the snake. We denote the disjoint union as P =

∐
s∈S,a∈A Ps,a.

First, we express the property of always having a successor within P as

N(P, {Ps,a}) ≡
∧

s∈S,a∈A

(Ps,a · s ⊆ P) .

We also want for this path to not contain any loops, by asking for a unique
predecessor for each vertex:

up(v) ≡ ∃!s ∈ S, a ∈ A : v ∈ Ps,a · s,

≡

⎛

⎜
⎝

∨

s∈S
a∈A

v ∈ Ps,a · s

⎞

⎟
⎠ ∧

⎛

⎜
⎜
⎝

∧

a,a′∈A
a
=a′

∧

s,t∈S
s
=t

¬((v ∈ Ps,a · s) ∧ (v ∈ Pt,a′ · t))

⎞

⎟
⎟
⎠ .

Domino Snake Problems on Groups 57

Then, for a one-way infinite path

UP(P, {Ps,a}) ≡ ∀v ∈ P

⎛

⎝(v = v0 ∧
∧

s∈S,a∈A

v
∈ Ps,a · s) ∨ (v
= v0 ∧ up(v))

⎞

⎠ ,

Thus, we state the property of having an infinite path as follows:

∞ray(P, {Ps,a}) ≡

⎛

⎜
⎝v0 ∈ P ∧ P =

∐

s∈S
a∈A

Ps,a ∧N(P, {Ps,a}) ∧ UP (P, {Ps,a})

⎞

⎟
⎠ .

In fact, we can do a similar procedure to express the property of having a simple
loop within P by slightly changing the previous expressions. The only caveat
comes when working with S a symmetric finite generating set of some group, as
we must avoid trivial loops such as ss−1.

(P, {Ps,a}) ≡ ∀v ∈ P,up(v) ∧
∧

s∈S,a,a′∈A

(
Ps,a · s ∩ Ps−1,a′ = ∅

)
.

This way, admitting a simple loop is expressed as

loop(P, {Ps,a}) ≡
⎛

⎝v0 ∈ P ∧ P =
∐

s∈S,a∈A

Ps,a ∧N(P, {Ps,a}) ∧
(P, {Ps,a})
⎞

⎠

∧ ∀Q ⊆ P,∀{Qs,a} (¬∞ray(Q, {Qs,a})) .
Lemma 3. Let P ⊆ V . Then,

1. If there exists a partition {Ps,a}s∈S,a∈A such that ∞ray(P, {Ps,a}) is satis-
fied, P contains an infinite injective path. Conversely, if P is the support of
an injective infinite path rooted at v0, there exists a partition {Ps,a}s∈S,a∈A

such that ∞ray(P, {Ps,a}) is satisfied.
2. If there exists a partition {Ps,a}s∈S,a∈A such that loop(P, {Ps,a}) is satisfied,

P contains a simple loop. Conversely, if P is the support of a simple loop
based at v0, there exists a partition {Ps,a}s∈S,a∈A such that loop(P, {Ps,a})
is satisfied.

With these two structure-detecting formulas, we can simply add the addi-
tional constraint that P partitions in a way compatible with the input tileset
graph of the problem, in the direction of the snake. This is captured by the
formula

DΓ ({Ps,a}) ≡
∧

(a,a′,s)
∈B

∧

s′∈S

Pa,s · s ∩ Pa′,s′ = ∅.

Theorem 5. Let Λ be a Cayley graph of generating set S. The infinite snake
problem, the reachability problem and the ouroboros problem can be expressed in
MSO(Λ).

58 N. Aubrun and N. Bitar

Proof. Let Γ = (A,B) be a tileset graph for Λ. By Lemma 3, it is clear that

∞-snake(Γ) ≡ ∃P∃{Ps,a} (∞ray(P, {Ps,a}) ∧DΓ ({Ps,a})) ,

ouroboros(Γ) ≡ ∃P∃{Ps,a} (loop(P, {Ps,a}) ∧DΓ ({Ps,a})) ,
exactly capture the properties of admitting a one-way infinite Γ -snake and Γ -
ouroboros respectively. Remember that Proposition 1 tells us that admitting a
one-way infinite snake is equivalent to admitting a bi-infinite snake. We finish
by noting that for reachability in a Cayley graph, we can take p = v0. Then,
verifying the formula Reach(Γ, q) defined as

∃P∃{Ps,a}

⎛

⎜
⎝q ∈ P ∧ ¬nc(P) ∧ P =

∐

s∈S
a∈A

Ps,a ∧ UP (P, {Ps,a}) ∧DΓ ({Ps,a})

⎞

⎟
⎠ ,

is equivalent to P containing the support of a Γ -snake that connects p to q.

As previously mentioned, virtually free groups have decidable MSO logic for
all generating sets. Thus, we can state the following corollary.

Corollary 3. Both the normal and seeded versions of the infinite snake, reach-
ability and ouroboros problems are decidable on virtually free groups, indepen-
dently of the generating set.

Proof. Let Γ = (A,B) be a tileset graph with a0 ∈ A the targeted tile. Then
adding the clause

∨
s∈S v0 ∈ Ps,a0 to the formulas of any of the problems in

question, we obtain a formula that expresses its corresponding seeded version.

Acknowledgments. We would like to thank Pierre Guillon and Guillaume Theyssier
for helping with Lemma 3. We would also like to thank David Harel and Yael Etzion
for providing a copy of [13]. We are grateful to the anonymous referees for their useful
remarks.

References

1. Adleman, L., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly
of infinite ribbons. In: Proceedings of the 43rd Annual IEEE Symposium on Foun-
dations of Computer Science 2002, pp. 530–537. IEEE (2002)

2. Antolin, Y., Ciobanu, L.: Finite generating sets of relatively hyperbolic groups and
applications to geodesic languages. Trans. Am. Math. Soc. 368(11), 7965–8010
(2016)

3. Aubrun, N., Barbieri, S., Jeandel, E.: About the domino problem for subshifts
on groups. In: Berthé, V., Rigo, M. (eds.) Sequences, Groups, and Number The-
ory. TM, pp. 331–389. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
69152-7 9

4. Aubrun, N., Bitar, N.: Domino snake problems on groups. arXiv preprint
arXiv:2307.12655 (2023)

https://doi.org/10.1007/978-3-319-69152-7_9
https://doi.org/10.1007/978-3-319-69152-7_9
http://arxiv.org/abs/2307.12655

Domino Snake Problems on Groups 59

5. Bartholdi, L.: Monadic second-order logic and the domino problem on self-similar
graphs. Groups Geom. Dyn. 16, 1423–1459 (2022)

6. Berger, R.: The Undecidability of the Domino Problem. No. 66. American Math-
ematical Soc. (1966)

7. Charney, R., Meier, J.: The language of geodesics for Garside groups. Math.
Zeitschrift 248(3), 495–509 (2004)

8. Clement, A.E., Majewicz, S., Zyman, M.: Introduction to nilpotent groups. In: The
Theory of Nilpotent Groups, pp. 23–73. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66213-8 2

9. Ebbinghaus, H.D.: Undecidability of some domino connectability problems. Math.
Logic Q. 28(22–24), 331–336 (1982)

10. Ebbinghaus, H.-D.: Domino threads and complexity. In: Börger, E. (ed.) Computa-
tion Theory and Logic. LNCS, vol. 270, pp. 131–142. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-18170-9 161

11. van Emde Boas, P.: The convenience of tilings. In: Complexity, Logic, and Recur-
sion Theory, pp. 331–363. CRC Press (2019)

12. Epstein, D.B.: Word Processing in Groups. A K Peters/CRC Press, Massachusetts
(1992). https://doi.org/10.1201/9781439865699

13. Etzion, Y.: On the Solvability of Domino Snake Problems. Master’s thesis, Dept.
of Applied Math. and Computer Science, Wiezmann Institute of Science, Rehovot,
Israel (1991)

14. Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake
problems. Theor. Comput. Sci. 131(2), 243–269 (1994)

15. Grädel, E.: Domino games and complexity. SIAM J. Comput. 19(5), 787–804
(1990)

16. Harel, D.: Recurring dominoes: making the highly undecidable highly understand-
able. In: North-Holland Mathematics Studies, vol. 102, pp. 51–71. Elsevier (1985)

17. Holt, D.F., Rees, S.: Artin groups of large type are shortlex automatic with regular
geodesics. Proc. London Math. Soc. 104(3), 486–512 (2012)

18. Howlett, R.B.: Miscellaneous facts about Coxeter groups. University of Sydney,
School of Mathematics and Statistics (1993)

19. Kari, J.: Infinite snake tiling problems. In: Ito, M., Toyama, M. (eds.) DLT 2002.
LNCS, vol. 2450, pp. 67–77. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-45005-X 6

20. Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the group case. Ann. Pure
Appl. Logic 131(1–3), 263–286 (2005)

21. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (2021)

22. Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages.
J. Comput. Syst. Sci. 26(3), 295–310 (1983)

23. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-
order logic. Theor. Comput. Sci. 37, 51–75 (1985)

24. Myers, D.: Decidability of the tiling connectivity problem. Abstract 79T–E42.
Notices Am. Math. Soc. 195(26), 177–209 (1979)

25. Neumann, W.D., Shapiro, M.: Automatic structures, rational growth, and geomet-
rically finite hyperbolic groups. Inventiones Math. 120(1), 259–287 (1995)

26. Seward, B.: Burnside’s problem, spanning trees and tilings. Geom. Topology 18(1),
179–210 (2014). https://doi.org/10.2140/gt.2014.18.179

27. Wang, H.: Proving theorems by pattern recognition-II. Bell Syst. Tech. J. 40(1),
1–41 (1961)

https://doi.org/10.1007/978-3-319-66213-8_2
https://doi.org/10.1007/978-3-319-66213-8_2
https://doi.org/10.1007/3-540-18170-9_161
https://doi.org/10.1201/9781439865699
https://doi.org/10.1007/3-540-45005-X_6
https://doi.org/10.1007/3-540-45005-X_6
https://doi.org/10.2140/gt.2014.18.179

Parsing Unranked Tree Languages, Folded
Once

Martin Berglund(B) , Henrik Björklund , and Johanna Björklund

Umeå University, Umeå 90836, Sweden
{mbe,henrikb,johanna}@cs.umu.se

Abstract. A regular unranked tree folding consists of a regular
unranked tree language and a folding operation that merges, i.e., folds,
selected nodes of a tree to form a graph; the combination is a formal
device for representing graph languages. If, in the process of folding, the
order among edges is discarded so that the result is an unordered graph,
then two applications of a fold operation is enough to make the associ-
ated parsing problem NP-complete. However, if the order is kept, then
the problem is solvable in non-uniform polynomial time. In this paper we
address the remaining case where only one fold operation is applied, but
the order among edges is discarded. We show that under these conditions,
the problem is solvable in non-uniform polynomial time.

1 Introduction

Graphs are one of the most commonly used data structures in computer science.
Whether we are conducting social network analysis [12], defining the semantics
of programming languages [10], or devising a better method for training deep
neural networks [13], we are likely to operate on some form of graph representa-
tion. Practical applications of formal graph languages typically require that the
parsing problem is efficiently solvable. This means that given a graph g, we can
decide whether the graph adheres to the formalism in polynomial time, and also
produce a certificate attesting the veracity of our decision. In the case of so-called
order-preserving graph grammars (ODPGs) for example, we can decide in linear
time if a given graph g is well-formed with respect to a particular grammar G,
and provide a unique derivation tree for g in G as proof [3,4].

Significant effort has been devoted to finding graph formalisms that combine
expressiveness with parsing efficiency, see e.g. [9,11]. Most of these are restric-
tions of hyperedge replacement grammars (HRGs) [8], a natural generalisation
of context-free grammars, in which nonterminals are replaced by labelled hyper-
edges that provide restricted access to the intermediate graphs. The previously
mentioned ODPGs is one of the most easily parsed restrictions of HRGs. They
are designed to be just strong enough to represent so-called abstract meaning

J. Björklund—Supported by the Swedish Research Council under Grant Number 2020-
03852, and by the Wallenberg AI, Autonomous Systems and Software Program through
the NEST project STING.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 60–73, 2023.
https://doi.org/10.1007/978-3-031-43587-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_5&domain=pdf
http://orcid.org/0000-0002-3692-6994
http://orcid.org/0000-0002-4696-9787
http://orcid.org/0000-0003-0596-627X
https://doi.org/10.1007/978-3-031-43587-4_5

Parsing Unranked Tree Languages, Folded Once 61

representations (AMRs), i.e., a semantic representation based on a limited type
of directed acyclic graphs. At the more powerful end of the spectrum we have
s-grammars [9]. In this formalism, terms over a small set of operators and a finite
set of elementary graphs are evaluated in the domain of node-labelled graphs.
The membership problem for HRGs and s-grammars require exponential time
in general, and HRGs can generate languages for which the associated parsing
problem is NP-complete [1].

In [5], the authors introduced regular tree foldings, a generative device con-
sisting of a (finite representation of a) regular tree language and a new type of
folding operation. The tree language is non-standard in that there is an auxiliary
set of symbols Δ, which can be used to mark already labelled nodes, or to label
nodes under which sits a single subtree. The folding operation then translates
each tree t in the language into a graph by processing t bottom up: every time
evaluation reaches a node labelled α ∈ Δ, it merges all nodes in the subtree
sitting below v that carries the mark α into a single node, and clears it from
the mark α (see Fig. 1). Similar to ODPGs, regular tree-foldings are suitable to
model AMRs, but can also accommodate cyclic graphs and more varied types
of node-sharing. On the down-side, the parsing problem is more difficult: If the
relative order among the edges attaching to a node is preserved by the folding,
then parsing can be done in polynomial time in the size of the input graph [2].
If however this order is relaxed, so that the output graph is considered to be
unordered, then the parsing problem is NP-complete [2]. An analysis of the proof
in [2] yields that the problem is NP-hard already when only two applications of
the folding operation are allowed. The case when there is a single application of
a folding operation is not addressable by either of the proof techniques in [2],
and was therefore not solved.

In this paper, we show that the parsing problem for unranked regular tree
languages folded once under an order-cancelling fold semantics (see [2] for the
contrasting order-preserving case) is solvable in non-uniform polynomial time,
i.e. in polynomial time when considering the automaton constant.

2 Preliminaries

This section recalls relevant formal language theory and fixes notation [2,5].
The set of non-negative integers is denoted by N. For i ∈ N, [i] = {1, . . . , i}

and [0] = ∅. A multiset S′ is a set in which elements can have multiple instances.

Graphs. An alphabet is a finite nonempty set of symbols. Let Σ be an alpha-
bet. A (directed and rooted) graph over Σ is a tuple g = (V,E, src, tar , lab, r)
consisting of: Finite sets V and E of nodes and edges, respectively; source and
target mappings src : E → V and tar : E → V assigning to each edge e its source
src(e) and target tar(e); a labelling lab : V → Σ; and a root node r ∈ V . The set
of incoming edges of u ∈ V is in(u), and the set of outgoing edges is out(u). A
node with out-degree 0 is a leaf. The size of the graph g is |g| = |V | + |E|. The
set of all graphs with node labels in Σ is denoted by GΣ . We write root(g) for
the root node r, and nodes(g)σ for the set of nodes in g that are labelled σ ∈ Σ.

62 M. Berglund et al.

An edge-ordered graph over Σ is a pair (g,<) where g = (V,E, src, tar , lab, r)
in GΣ and < is a binary relation on E that becomes a total order when restricted
to any set in(v) or out(v), for v ∈ V . From here on, we leave the second com-
ponent implicit and refer to it as <g when needed. The set of all edge-ordered
graphs over Σ is denoted by G<

Σ .
A path in the graph g = (V,E, src, tar , lab, r) is a finite and possibly empty

sequence p = e0e1 · · · ek of edges such that for each i ∈ [k], the target of ei−1 is
the source of ei. Here, we say that p is a path from src(e0) to tar(ek). The path
p is a cycle if src(e0) = tar(ek).

Trees. Let Σ be an alphabet. An ordered unranked tree over Σ is a tuple
t = ((V,E, src, tar , lab, r), <) ∈ G<

Σ such that (i) t is connected, (ii) r has no
incoming edges, and (iii) every node except for r has exactly one incoming edge.
We denote the set of all ordered unranked trees over Σ by TΣ .

Let σ ∈ Σ, k ∈ N, and t1, . . . , tk be trees over Σ with ti = (gi, <i) and
gi = (Vi, Ei, srci, tar i, labi, vi), such that the node sets Vi, i ∈ [k], are mutually
disjoint, and similarly for the edge sets Ei, i ∈ [k]. The top-concatenation of
t1, . . . , tk with σ, denoted by σ[t1, . . . , tk] is the tree obtained by attaching the
trees t1, . . . , tk as children underneath a new root node with label σ.

Top-concatenation is analogously defined for single-rooted graphs, so we may
write σ[g1, . . . , gk] without risk of confusion. In the case that the graphs are
ordered, so are the edges e1, . . . , ek that attach the subgraphs g1, . . . , gk; other-
wise they are unordered.

Let X be a set of variables such that X ∩ Σ = ∅. A context is a tree c ∈
T{x}∪Σ , for x ∈ X, such that c contains exactly one occurrence of x, and this
occurrence is a leaf. Given such a context and a tree t, we let c[[t]] denote the tree
obtained from c by replacing the node labelled x with t. Formally, c[[t]] = t if c =
x, and otherwise c[[t]] = σ[s1, . . . , si−1, si[[t]], si+1, . . . , sn], where c = σ[s1, . . . , sn]
and si ∈ T{x}∪S is the unique context among s1, . . . , sn.

Automata for Unranked Trees. A Z-automaton [6] is a tuple A =
(Σ,Q,R, F) consisting of a finite input alphabet Σ; a finite set Q of states which
is disjoint from Σ; a finite set R of transition rules, each of the form s → q
consisting of a left-hand side s ∈ TΣ∪Q and a right-hand side q ∈ Q; and a finite
set F ⊆ Q of accepting states. Henceforth, we write m for |Q|.

Let t ∈ TΣ∪Q. A transition rule r of the form s → q is applicable to t, if t
can be written as t = c[[σ[t1, . . . , tn]]], such that s = σ[t1, . . . , tk] for some k ≤ n.
If so, then there is a computation step t→A c[[q[tk+1, . . . , tn]]]. A computation of
A on a tree t ∈ Σ is a sequence of computation steps t →∗

A q, for some q ∈ Q.
The computation is accepting if q ∈ F . A tree t ∈ TΣ is accepted, or recognised,
by A if there is an accepting computation of A on t. The language accepted by
A, denoted by L(A), is the set of all trees in TΣ that A accepts.

As shown in [6], Z-automata recognise the same class of languages as
unranked tree automata [7]. We use a normal form, in which all transition rules
are of the form σ → r, σ[q] → r, or p[q] → r, for σ ∈ Σ and p, q, r ∈ Q.

Parsing Unranked Tree Languages, Folded Once 63

Fig. 1. In the tree in Subfigure (a), round nodes with and without annotation denote
a label in Σ × Δ and Σ, respectively, and square nodes denote a label in Δ. Arrows
indicate edges, pointing from the source node of each edge to its target. When the tree
is evaluated bottom-up, nodes with labels in Σ ∪ (Σ × Δ) are copied to the output
graph until the transformation reaches a node with a label α ∈ Δ. Here, all nodes below
with a label in Σ × {α} are merged into a single node, and the square node labelled
α is removed. The result is the graph in Subfigure (b). The process continues upwards
until all Δ-labelled nodes have been cleared, yielding the graph in Subfigure (d).

A run of a Z-automaton A = (Σ,Q,R, F) in normal form on a tree t can be
seen as assigning states to nodes(t). For each state (q, σ) in Q × Σ, there is a
regular language rq,σ such that in a run, the sequence w of states assigned to the
children of a node that has label σ and is assigned q must be a string in rq,σ [6].
We denote by parikh(q, σ) the Parikh image of rq,σ.

3 Regular Tree Foldings

The purpose of the folding operation is to turn an unranked tree t over an
alphabet Σ into a graph g by merging nodes. The folding is done by marking
nodes with symbols from an auxiliary alphabet Δ, meaning that some nodes will
have labels in Σ ×Δ, and then, for each α ∈ Δ merging all nodes marked with
symbols in Σ×{α} into a single node. By itself, this formalism can only produce
output graphs where at most |Δ| nodes have more than one incoming edge. For
this reason, the merging is divided into scopes by allowing nodes in t that have
labels from Δ: A node u in t labelled α ∈ Δ is an instruction that all nodes with
labels in Σ × {α} below it are to be merged, whereupon the node u itself is to
be deleted. The tree is then evaluated bottom-up, so that Δ-labeled nodes lower
in the tree have their corresponding operations performed earlier. To keep the
result well-defined, the tree language must force nodes with labels in Δ to have

64 M. Berglund et al.

exactly one direct subtree. The combination of a regular unranked tree language
over Σ ∪ (Σ×Δ)∪Δ and a fold operation over Δ is called a regular tree folding.

The folding operation is illustrated in Fig. 1. In the original definition [5], the
label of the merged node v is chosen non-deterministically based on the labels of
the nodes that went into the merger. However, there is a (less compact) normal
form of regular tree foldings, that only merges nodes if they share the same label
(σ, α) ∈ Σ×Δ, and the resulting node in the output graph is then labelled σ [2].
This paper is only concerned with the case where there is a single folding symbol,
and the normal form allows us to assume that there is a unique 〈σ, α〉 ∈ Σ ∪Δ
that is allowed by the regular tree language.

Thus, throughout this paper, let Σ be an alphabet, let σ ∈ Σ, and let α be
a special symbol not in Σ. We write Γ for the alphabet Σ ∪ {〈σ, α〉, α}.
Definition 1 (The fold operation F). The function [[α]] : GΓ → GΓ takes a
single-rooted input graph g = (V,E, src, tar , lab, r) ∈ GΓ and computes an output
graph h = [[α]](g) by merging the set of nodes nodes(g)〈σ,α〉 into a single node
u, and assigning u the label σ. If root(g) ∈ nodes(g)〈σ,α〉, then root(h) = u;
otherwise root(h) = root(g). The fold operation F : TΓ → GΓ is defined for
every tree t = γ[t1, . . . , tk] ∈ TΓ by F (t) = [[γ]](F (t1)) if γ = α (when k is
always 1), and γ[F (t1), . . . , F (tk)] otherwise. It is extended to sets of trees in the
expected way: For L ⊆ TΓ , F (L) =

⋃
t∈L{F (t)}.

Definition 2 (Regular Tree Folding (with one folding symbol)). A reg-
ular tree folding (RTF) over Γ is defined through a Z-automaton A over the
same alphabet, such that for every t ∈ L(A) and every node v in t, it holds that
if the label of v is α, then v has exactly one direct subtree. The folded graph
language with respect to A is LF (A) = F (L(A)).

Example 1. Figure 2 shows two trees annotated with folding symbols, along with
the corresponding graphs they fold into. In the first tree (located on the left in the
illustration), the two nodes labeled α ∈ Δ (represented as blue squares) appear

Fig. 2. In the above figure, we see two examples of trees decorated with folding symbols
and the graphs they fold into. As in Fig. 1, round nodes with and without annotation
denote a label in Σ × Δ and Σ, respectively, and square nodes denote a label in Δ.

Parsing Unranked Tree Languages, Folded Once 65

side by side. There is no interaction between their scopes: Removing either of
these nodes would not affect the outcome of the application of the other. Moving
to the second tree (two steps to the right in the same illustration), the lower
square node labelled α shadows the scope of the upper one. Had it not been
present, then all blue round nodes would have been merged into a single node.

The remainder of this paper is devoted to the membership problem for a
fixed RTF represented by a Z-automaton A over Γ . It asks: Given a graph g, is
g in LF (A)? In the special case where folding is only applied once, the problem
can be restated as one of combining tree fragments into a single tree in a target
language. From here on, x
∈ Γ is a fixed but arbitrary variable symbol.

A tree fragment is an unordered, unranked tree t with the following proper-
ties: (i) The root has exactly one child. (ii) Some leafs may have label x, while
all other nodes have labels from Γ . We call the unique child of the root the prior
of t, denoted by prior(t). A tree fragment is an unordered, unranked tree t with
the following properties: (i) The root has exactly one child. (ii) Some leaves may
have label x, while all other nodes have labels from Γ . If t has more than one
node, we call the unique child of the root the prior of t, denoted by prior(t).

A substitution is an operation that takes a tree or a tree fragment t and
k = |nodes(t)x| sets T1, . . . , Tk of tree fragments. It assigns to each node vi ∈
nodes(t)x a unique set Ti. For each i, the roots of the fragments in Ti are then
identified with vi. Finally, vi is labelled 〈σ, α〉.

We can thus view any tree as composed from a tree and a number of tree
fragments through substitution. Taking this idea further, we note that a single
application of a tree folding has the effect of turning the input tree into a set of
tree fragments, all but at most one rooted at the merged node, and some of which
have leaves attaching to the merged node (see Fig. 3). The merged nodes hide how
these tree fragments originally fit together, and solving the membership problem
is tantamount to recapturing this information. In the following, we denote by
order(t) the set of ordered trees that can be obtained from an unordered tree t
by attaching an order to its edges.

Remark 1. Constructing the tree fragments is trivial in the interesting cases,
i.e., the graph will have a single node which is obviously the merged node as
it has more than one incoming edge. The tree fragments are then obtained by
giving each edge incident with the merged node its own copy of that node, as is
shown in Fig. 3. The other cases, where zero or one node is “merged” can easily
be avoided by rewriting the automaton. That is: use the states to track and
verify a nondeterministic guess whether zero, one, or more than one, nodes will
get merged by a folding operator. For zero, skip generating the folding operator
node (that would do nothing), for one node instead generate it with its resulting
label and inhibit generating the folding operator node. For two or more, simply
operate the same as the original automaton (but check the guess). Refer to
Lemma 4.1 in [2] for a detailed construction easily modified for this case. We
begin by dealing with the case of only a single fold, but in Corollary 1 we sketch
the straightforward steps needed to reintroduce multiple folds.

66 M. Berglund et al.

Fig. 3. To parse a folded graph (top right), we first decompose it into a number of tree
fragments attaching to the merged node (bottom row), and then search for a way of
reassembling the fragments into a tree in the folded tree language (top left).

Definition 3 (Membership problem for one folding). Let A be a fixed
but arbitrary Z-automaton over Γ . Given a multiset of unordered tree fragments
{T1, . . . , Tn} is there a sequence of substitutions that uses each tree exactly once,
and produces a tree t such that α[t′] ∈ L(A) for some t′ ∈ order(t)?

4 Unfolding Folded Trees

Since the input trees we are working with are unordered (see Definition 3), we
extend A’s behaviour to the unordered case.

Definition 4 (Unordered runs). A run of a Z-automaton A = (Σ,Q,R, F)
on an unranked, unordered tree t = (V,E, src, tar , lab, r) is a mapping ρ :
nodes(t) → Q such that for each node v, the states assigned to the children
of the node v, when viewed as a multiset, belongs to parikh(ρ(v), lab(v)). For a
tree fragment s, a partial run is a run, except that the condition on the children
does not apply to the nodes in nodes(s)x.

We can now define the signature of a tree fragment in terms of which partial
runs it can realize. The intuition is that for each x-labeled node and possible
assignment of a state to it, we have to find a set of trees to attach that can
evaluate to states in the appropriate Parikh image.

Definition 5 (Signature). Let A = (Σ,Q,R, F) be a Z-automaton with m =
|Q|, and let t be a tree fragment with k = |nodes(t)x|. The signature of t with

Parsing Unranked Tree Languages, Folded Once 67

respect to A, denoted by sig(t), is a set of tuples of the form (q, S), where q ∈ Q
and S is a multiset of elements from Q, defined as follows. Let v1, . . . , vk be the
nodes in nodes(t)x. Then (q, S) belongs to the signature iff there is a partial run
ρ on t and a partitioning of S into S1, . . . , Sk such that ρ(prior(t)) = q and, for
each i, Si ∈ parikh(ρ(vi), 〈σ, α〉).
The intuition of the above definition is that if (q, S) is in the signature of t if t
can “accept” |S| tree fragments whose priors have been assigned the states in S
and then “deliver” a state q at its prior.

Given the input set {T1, . . . , Tn}, we only need to consider a polynomial
number of signatures. Since there are n input trees, we only consider signatures
where |S| ≤ n. The number of such signatures is bounded from above by mnm. In
other words, the number of possible signatures for all input trees is polynomial.
The signature for each input fragment can be computed in polynomial time using
a CYK-like dynamic programming algorithm.

Given a set of tree fragments we compute their signatures, and then reassem-
ble them as in Fig. 3, leading to the final theorem.

Theorem 1. The non-uniform membership problem for tree languages folded
once under an order-cancelling semantics is decidable in polynomial time.

To prove Theorem 1, we rely on the signatures to tell us what multisets
of states each tree fragment can “consume”, and what state it then “produces”.
Finding a way of puzzling the fragments together consistently is a combinatorial
problem which we will solve by reducing it to reachability in a restricted form
of vector addition system. We next present these systems and prove the relevant
complexity bound. We then explain the reduction in the proof of Theorem 1.

For vectors u and v let (u; v) denote their concatenation. Let 0 denote the set
of all vectors of zeros, and for all k ≥ 1 let 1[k] = {(z1; 1; z2) | z1, z2 ∈ 0, |z1| =
k−1}, i.e., the unit vectors with a 1 in position k. Let 1 = ∪k≥11[k], i.e., all unit
vectors. We may treat 0 and 1 as vectors when the length is implied by context.

Definition 6. A Vector Addition System of dimension k ∈ N (a k-VAS) is a
finite set V = {(p, p′) | p ∈ {−v | v ∈ Nk}, p′ ∈ Nk}. We call these the operations.
An operation sequence in V is denoted s0 →(p1,p′

1)
s1 →(p2,p′

2)
· · · →(pn,p′

n) sn

for s0, . . . , sn ∈ Nk, and for each 1 ≤ i ≤ n

1. (pi, p
′
i) ∈ V, 2. si−1 + pi ≥ 0, and, 3. si = si−1 + pi + p′

i .

A vector sn is reachable from s0 if and only if such an operation sequence exists.
For any k, l ∈ N we call a (k+ l)-VAS V a (k, l)-VAS to differentiate the first

k elements of the vectors from the rest, writing ((u; v), (u′; v′)) ∈ V to signify
that |u| = |u′| = k and |v| = |v′| = l.

While we define reachability in terms of going from a vector s to a vector t,
we are primarily interested in the special case of 0 being reachable, since the
numbers will represent tree fragments, all of which must be used.

68 M. Berglund et al.

Definition 7. A (k, l)-VAS V is metered if all ((s; b), (s′; b′)) ∈ V have s, b ∈
−1 and b′ ∈ 0.
That is, in a metered (k, l)-VAS every operation takes precisely one unit from
each of the two parts of the vector, and never adds anything to the second part.
We will use the first part, the s vector, to represent a multiset of states, while
the second, the b vector, represents a budget.

Definition 8. For a (k, l)-VAS V an operation sequence (s0; b0) →p1 · · · →pn

(sn; bn) visits a position i ∈ [k] if at least one vector s ∈ {s0, . . . , sn} is nonzero
in position i. The set I ⊆ [k] is visited if all elements are visited.

Visits only concern the first (state) part of the vector, which makes sense for a
metered VAS, as a position in the second part is visited iff it is visited in b0. We
will use visits to correspond to uses of states in a run of an automaton.

We next show that if there exists an operation sequence which visits a set I
starting from a vector v0 then there is a short subsequence that does the same.

Lemma 1. For any metered (k, l)-VAS V and operation sequence v0 →p1

· · · →pn
vn which visits I there exists an operation sequence v′

0 →p′
1
· · · →p′

m
v′

m

such that: (i) this sequence also visits I; (ii) v′
0 = v0; (iii) the sequence p′

1 · · · p′
m

forms a subsequence of p1 · · · pn; (iv) and m ≤ k|I|.
Proof. Let (s0; b0) →p1 · · · →pn

(sn; bn) be an operation sequence visiting I, for
an arbitrary n ∈ N. Let us abbreviate it as p1 · · · pn, leaving the vectors implicit.
First consider the singleton case where I = {i}, when the following procedure
constructs the indicated subsequence. Define P (p1 · · · pn, i) recursively as:

1. Let j be the smallest index such that with (s0; b0) →p1 · · · →pj
(sj ; bj) the

vector sj is nonzero at position i.
2. If j = 0 return the empty sequence.
3. Letting pj = ((v1; v2), (v′

1; v
′
2)), take i′ to be the unique (as V is metered)

position in v1 which equals −1.
4. Return P (p1 · · · pj−1, i

′) · pj . That is, the sequence constructed by finding a
short visit of i′ in steps 1 through j− 1 (one must exist as step pj subtracted
1 from that position) followed by the operation pj (which visits i).

Now P (p1 · · · pn, i), starting from (s0; b0), forms an operation sequence of length
at most k which visits i. The visit to i is straight-forward (the final “pj”), it is
of length at most k as each level of the recursion has a distinct i (as the current
one is eliminated from the sequence used in the recursive call) and adds one
operation. Finally, it is an operation sequence as each pj appended in step 4 has
its required visit provided by the step immediately prior. The budget part of the
vector is unproblematic, as it can only be increased by shortening the sequence.

Generalizing this to an arbitrary set I ⊆ [k] amounts to an iteration of the
above argument. Here, elements of I may compete for the same operations, but
this can be handled by having Step 1 in the above procedure pick nondetermin-
istically among the k first such indices j, and then letting the computation fail
if two elements of i reuse an operation. In the worst case, each i ∈ I introduces
k new operations to the subsequence, for a total of k|I| operations. ��

Parsing Unranked Tree Languages, Folded Once 69

Next we define a relaxed operation sequence, which contains less information,
but the existence of which implies the existence of an operation sequence.

Definition 9. For a metered (k, l)-VAS V , a vector v ∈ Nk+l, and any I ⊆ [k],
a destructured sequence is a tuple (v, I, P, S) where P = p1 · · · pk|I| ∈ V ∗, where

1. v →p1 · · · →pk|I| v
′ is an operation sequence visiting I,

2. S is a multiset over V such that for all ((s; b), (s′; b′)) ∈ S the vectors s and
s′ are zero in all positions z /∈ I, and,

3. v +
(∑

(s,s′)∈S s+ s′) +
(∑

(p,p′)∈P p+ p′) = 0.

The key then becomes that we only need to consider destructured sequences
to demonstrate reachability, as they turn out equivalent to full operation
sequences in this setting. That is, past a certain length and ensuring a certain
subsequence exists, we can disregard the order of operations.

Lemma 2. For a metered (k, l)-VAS V and vector v ∈ Nk+l, there exists
an operation sequence v → · · · → 0 iff there exists a destructured sequence
(v, I, P, S).

Proof. The “only-if” direction: Let v →p1 · · · →pn
0 be an operation sequence,

and take I ⊆ [k] be the largest set visited by this sequence. Then apply Lemma 1
to construct P , and let S = {p1, . . . , pn} \ P . Then (v, I, P, S) is a destruc-
tured sequence, fulfilling the requirements of Definition 9: Cond. 1 by Lemma 1,
Cond. 2 by construction, and, Cond. 3 as the original sequence reaches 0, so the
sum across all its operators, plus the initial vector v, has to be zero.

The “if” direction: given a destructured sequence (v, I, P, S) we can construct
an operation sequence which reaches 0 from v. The only thing keeping any par-
ticular sequencing of the operations P and S from being an operation sequence
from v to 0 is Condition 2 in Definition 6. That is, some position in the first
(state) part of the vector may turn negative during the application of an opera-
tion. Only the first (state) part going negative can cause problems, as the second
(budget) part is used up correctly by all orders, and all orders do reach 0 by the
definition of a destructured sequence. We now demonstrate how to intersperse
the operations in S in P to create a valid operation sequence reaching 0 from v.

Phase 1: Place Cycles at First Visit. An ordered submultiset {p1, . . . , pn} ⊆ S is
a cycle on i if there are vectors s, t ∈ Nk, s′, t′ ∈ Nl such that (s; s′) →p1 · · · →pn

(t; t′) with s ∈ 1[i], t ≥ s. If such a cycle exists, split P = P1P2 such that
P1 ends with the first visit to i (must exist by the definition of a destructured
sequence), and construct a new operation sequence P1 · p1 · · · pn · P2, and a new
set of operations S \ {p1, . . . , pn}. Take these to be P and S and iterate this
procedure until no cycles remain in S. This retains all the properties of the
destructured sequence (v, I, P, S), fulfilling all the conditions except the length
of P . Specifically, the spliced sequence is an operation sequence because the visit
to i allows it to be applied (the budget as usual irrelevant to the reordering),
and as t ≥ s it cannot cause any later operation to fail.

70 M. Berglund et al.

Phase 2: Order Remainder Topologically. If S is cycle-free then there is some i
such that every ((s; b), (s′; b′)) ∈ S has s′ zero in position i. Otherwise, a visit
to i can be made by some operation that requires a visit to i′, but i′ can be
visited by some operation that requires a visit to i′′, etc. But no position may
repeat in this chain, as that would be a cycle, and there are only finitely many
positions, which causes a contradiction. Pick such an i, let {p1, . . . , pn} ⊆ S be
all such operations p which have p = ((−1[i]; b), (s′; b′)) (for any b, s′ and b′) and
construct a new sequence P · p1 · · · pn and a new multiset S \ {p1, . . . , pn}. Take
these to be P and S and iterate this procedure until S is empty. This produces
an operation sequence, since we maintain the destructured sequence invariant
that summing P , S and v produces 0, and as the i picked in each step is not
generated by any operation in S, all needed visits must already be in P . After
these steps, S is empty and P is an operation sequence reaching 0 from v. ��
Theorem 2. For a metered (k, l)-VAS V and vectors s0 ∈ Nk and b0 ∈ Nl it is
decidable in time O(|V |k2+1(

∑
b0)) whether 0 is reachable from (s0; b0).

Proof. All relevant tuples (v, I, P, S) can be evaluated to see if they are a destruc-
tured sequence as in Definition 9, if there is one, then by Lemma 2 there exists
an operation sequence reaching 0 from v, which is the definition of reachability.

First, for a vector v define the next smaller vector v′ as the one formed by
decrementing the first nonzero element of v (for example, for (0, 1, 2) the next
vector is (0, 0, 2), and the next smaller of that is (0, 0, 1)).

To see that the bound holds, regard what tuples we need to test. There are
|V |k2

ways of picking P by the bound on its length, and I is entirely determined
by P . Try the following for all such P .

Given v, I and P compute the v′ reached from v using the operations in P .
Then construct S by searching for a path from v′ to 0 in the following graph.

1. The vector v′ is a node in the graph.
2. If the vector (s; b) is a node in the graph and there exists an operation p =

((u; v), (u′; v′)) ∈ V such that
– s′ = s+ u+ u′, b′ = b+ v + v′ (vector elements can be negative),
– the next smaller vector than b is b′, and,
– u and v are zero in all positions not in I,

then there is a node (s′; b′) and an edge from (s; b) to (s′; b′) labeled p.

Then let S be a multiset of operations used (i.e. edges traversed) finding a path
from v′ to 0 in this graph. This procedure is sound and complete.

– An S found this way does make (v, I, P, S) a valid destructured sequence,
as by construction v +

∑
(s,s′)∈S s + s′ +

∑
(p,p′)∈P p + p′ = 0 and S only

visits I. All other needed properties derive from an exhaustive enumeration
of possible operation sequences P .

– If a destructured sequence does exist this procedure will find it. Note that the
only real pruning happening is requiring the budget to decrease according to
the next smaller order. This is necessary to limit the effect l has on the size
of the graph, but as S is itself unordered requiring the budget to be used in
a certain order is not a real restriction.

Parsing Unranked Tree Languages, Folded Once 71

Finally, all paths in this graph is of length at most
∑
b0 and each node has

at most |V | outgoing edges. Combining trying all P with exhaustive search on
the graph gives a bound of O(|V |k2

)O(|V |(∑ b0)) = O(|V |k2+1(
∑
b0)). ��

Proof (of Theorem 1). By Definition 3, we have a fixed Z-automaton A and are
given as input a graph, which we can decompose into a set of tree fragments
T1, . . . , Tn. Assume that the root node was folded, i.e. the graph has no node
with zero incoming edges. This causes no loss of generality: if the graph has a
distinguished root node r, give it a parent marked by a new symbol “dummy”,
and give that node an incoming edge from the folded node. Then modify A with
the necessary additional transitions (such that where it would have previously
accepted α[t] it now accepts α[〈σ, α〉[dummy[t]]].) Let Q = {q1, . . . , qm} be the
states of A, and assume, without loss of generality, that qm is the only accepting
state, and that it occurs on no left-hand-side of a rule in A.

Construct the signatures sig(T1), . . . , sig(Tn) and from these construct a
metered (m,n + 1)-VAS V by giving it precisely the following operations: (i)
for each i ∈ [n] and (qj , S) ∈ sig(Ti), V has the operation ((−1[j];−1[i]), (S̄;0)),
where S̄ is S turned into a vector of length m, letting position k be the number
of occurrences of qk in S; and; (ii) for each S such that S ∈ parikh(qm, 〈σ, α〉)
and |S| ≤ n, V has the operation ((−1[m];−1[n+1]), (S̄;0)). Finally, the initial
vector is v = (s; b), where s ∈ 1[m] (with |s| = m) and b = 1 · · · 1. Intuitively,
V simulates reassembling the tree from the fragments. In each step there is a
current vector (s′; b′), where s′ describes the multiset of states which still need
to be replaced by a tree fragment, and b describes which tree fragments have
already been used. Operations of type (i) attach a tree fragment using one of
the present states, where type (ii) initializes the multiset of states to one from
which A can accept by going to qm.

Then 0 is reachable from (s; b) if and only if the tree fragments can be
reassembled into a tree accepted by A. By induction on the length of a VAS
operation sequence (s; b) → · · · → 0, relating each step to a part of some final tree
t such that α[t′] ∈ L(A) for some t′ ∈ order(t). That is, the first step (the only
operation of type (ii) by construction) establishes the root and a multiset of states
the children must produce. The second operation attaches some tree fragment
Ti as one of those children by: picking some (q, S) ∈ sig(Ti), removing one q
from the state multiset represented, removing the tree fragment itself from the
budget, and providing a new set of unaccounted-for children with state multiset
S. This maintains the invariant that the part of the tree already constructed
can be accepted by A given that the multiset of states currently tracked are
provided by the remainder of the procedure. Since 0 is reached no further states
are needed, and all tree fragments have been placed.

Finally, we can check whether 0 is reachable from (s; b) by applying The-
orem 2, observing that this (m,n + 1)-VAS has m constant (as A is assumed
fixed) and both n and |V | polynomial. Substituting these into the bound of The-
orem 2 yields a polynomial bound. Observe the role Lemma 2 and Theorem 2
play here; in effect the destructured sequence corresponds to constructing a small
tree t which visits all necessary states without exhibiting any loop. Once this is

72 M. Berglund et al.

in place, the remaining tree fragments can be added without keeping record of
precisely where they are placed, producing a proper tree. ��

We have thus shown that for a fixed regular tree language L, the question
of whether a graph g could have been produced by a single application of the
order-cancelling fold operation on a tree in L is solvable in polynomial time. As
it turns out, we can extend this to any number of folding operation applications.

Corollary 1. The non-uniform membership problem for tree languages folded
using only a single folding symbol under an order-cancelling semantics is decid-
able in polynomial time.

Proof. This follows from a helpful separability of graphs using a single folding
symbol: If the graph contains no edge which would bisect the graph if removed,
then the graph contains at most one folded node. This must be the case as
the two groups of nodes merged must have been in scope of different instances
of the folding operator (or they would have all been merged). If the folding
operators were on the same path, removing the edge placed where the lower
folding operator once was would then bisect the graph. If instead they were on
different paths, removing either again bisects the graph.

For this reason, the general case can be checked through the following steps.

1. If the graph contains a single merged node (by Remark 1 we can assume this
without loss of generality), apply Theorem 1 and halt with that result.

2. If there is no edge e which can bisect the graph in a way that separates two
merged nodes, reject it. As argued above it cannot be in the language.

3. Pick an edge e which bisects the graph into subgraphs g1 and g2 which both
contain merged nodes, with g1 having e outgoing and g2 having e incoming.
Additionally, pick e such that the node e is outgoing from has no incoming
edge which would bisect the graph in this way. Observe that such a choice
always exists if any bisecting edge does, as we can otherwise pick that incom-
ing edge, and doing so cannot lead us into a cycle (as removing an edge from
a cycle would not bisect the graph). This condition ensures that the folding
operator creating the merged node in g2 is also in g2.

4. Try each rule in the tree automaton to find one generating e:
(a) Recursively apply this procedure to check if g1 is a member of the language

when e points to the state generated by the rule.
(b) Recursively apply this procedure to check if g2 is a member of the language

which results from making the state, consumed by the rule, the only
accepting state.

(c) If 4a and 4b accept g1 and g2, respectively, accept the graph g.
5. If all rule options have been tried without accepting, reject.

This procedure is correct, as every graph in the language has to either contain
only a single application of the folding operator (checked in Step 1) or it can be
bisected guessing the rule applied (all enumerated by Step 4).

Parsing Unranked Tree Languages, Folded Once 73

Moreover, the procedure runs in polynomial time, since it applies the polyno-
mial time algorithm of Theorem 1 a polynomial number of times, as the recursion
eliminates one edge each step. ��

Acknowledgements. We would like to express our sincere gratitude to the anony-
mous reviewers for their constructive feedback, which greatly improved the quality of
this manuscript.

References

1. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in
a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Berglund, M., Björklund, H., Björklund, J., Boiret, A.: Transduction from trees to
graphs through folding. Available at SSRN 4291269 (2022)

3. Björklund, H., Björklund, J., Ericson, P.: On the regularity and learnability of
ordered DAG languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS,
vol. 10329, pp. 27–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60134-2_3

4. Björklund, H., Drewes, F., Ericson, P.: Parsing weighted order-preserving hyper-
edge replacement grammars. In: 16th Meeting on the Mathematics of Language,
MOL 2019, Toronto, Canada, pp. 1–11. ACL (2019)

5. Björklund, J.: Tree-to-graph transductions with scope. In: Hoshi, M., Seki, S. (eds.)
DLT 2018. LNCS, vol. 11088, pp. 133–144. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98654-8_11

6. Björklund, J., Drewes, F., Satta, G.: Z-Automata for compact and direct represen-
tation of unranked tree languages. In: Hospodár, M., Jirásková, G. (eds.) CIAA
2019. LNCS, vol. 11601, pp. 83–94. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-23679-3_7

7. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets: Version 1. Technical report HKUST-TCSC-
2001-0, The Hongkong University of Science and Technology (2001)

8. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation, pp. 95–162. World Scientific, River Edge, NJ, USA (1997)

9. Koller, A.: Semantic construction with graph grammars. In: Proceedings of the 14th
International Conference on Computational Semantics, IWCS. London (2015)

10. Plump, D.: The graph programming language GP. In: Bozapalidis, S., Rahonis,
G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 99–122. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03564-7_6

11. Quernheim, D., Knight, K.: DAGGER: a toolkit for automata on directed acyclic
graphs. In: Proceedings of the 10th International Workshop Finite-State Methods
and Natural Language Processing, FSMNLP 2012, pp. 40–44. ACL (2012)

12. Tang, L., Liu, H.: Graph mining applications to social network analysis. In: Aggar-
wal, C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database
Systems, vol. 40, pp. 487–513. Springer, Boston (2010). https://doi.org/10.1007/
978-1-4419-6045-0_16

13. You, J., Leskovec, J., He, K., Xie, S.: Graph structure of neural networks. In:
International Conference on Machine Learning, pp. 10881–10891. PMLR (2020)

https://doi.org/10.1007/978-3-319-60134-2_3
https://doi.org/10.1007/978-3-319-60134-2_3
https://doi.org/10.1007/978-3-319-98654-8_11
https://doi.org/10.1007/978-3-319-98654-8_11
https://doi.org/10.1007/978-3-030-23679-3_7
https://doi.org/10.1007/978-3-030-23679-3_7
https://doi.org/10.1007/978-3-642-03564-7_6
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16

The Impact of State Merging
on Predictive Accuracy in Probabilistic

Tree Automata: Dietze’s Conjecture
Revisited

Johanna Björklund(B)

Ume̊a University, Ume̊a, Sweden

johanna@cs.umu.se

Abstract. Dietze’s conjecture concerns the problem of equipping a tree
automaton M with weights to make it probabilistic, in such a way that
the resulting automaton N predicts a given corpus C as accurately as
possible. The conjecture states that the accuracy cannot increase if the
states in M are merged with respect to an equivalence relation ∼ so that
the result is a smaller automaton M∼. Put differently, merging states
can never improve predictions. This is under the assumption that both
M and M∼ are bottom-up deterministic and accept every tree in C. We
prove that the conjecture holds, using a construction that turns any
probabilistic version N∼ of M∼ into a probabilistic version N of M, such
that N assigns at least as great a weight to each tree in C as N∼ does.

Keywords: Tree automata · Statistical ML · Probability distributions

1 Introduction

Supervised learning is concerned with recovering or approximating a target func-
tion, based on a limited sample of input-output pairs called a corpus. The diffi-
culty of the problem depends on the class of functions admitted and on various
characteristics of the corpus. In this work, we focus on the supervised learn-
ing of probabilistic tree languages [4], in particular, on probability distributions
computable by weighted tree automata (wta) over the probability semiring [7].
Some of the earliest results are due to Klein and Manning, who extracted a
simple grammar from a corpus and then manually refined it based on linguistic
patterns in the data [9]. Petrov et al. later translated their approach into an
automated method that alternately splits and merges nonterminals to maximize
the likelihood of the target corpus [10].

Björklund, J—Supported by the Swedish Research Council under Grant Number 2020-
03852, and by the Wallenberg AI, Autonomous Systems and Software Program through
the NEST project STING — Synthesis and analysis with Transducers and Invertible
Neural Generators.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 74–87, 2023.
https://doi.org/10.1007/978-3-031-43587-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_6&domain=pdf
http://orcid.org/0000-0003-0596-627X
https://doi.org/10.1007/978-3-031-43587-4_6

The Impact of State Merging on Predictive Accuracy 75

Fig. 1. By merging the states of the unweighted tree automaton M with respect to
the equivalence relation ∼ on the states of M, we obtain the smaller automaton M∼.
The probabilistic automata N and N∼ are derived from M and M∼, respectively, by
computing the maximum likelihood estimation with respect to the corpus C. The con-
jecture states that if all automata are deterministic and contain C in their support,
then L(C | [[N∼

]]) cannot exceed L(C | [[N]]).

Dietze [5] formalised the ideas of Petrov et al. [10] into an algorithmic
framework for supervised learning of weighted tree automata: First, the read-off
automaton is extracted from a given corpus C. This is a wta over the Boolean
semiring whose states and transitions are in one-to-one correspondence with the
subtrees of C. The states of this automaton are then iteratively merged or split,
and after each pass, the resulting wta M is equipped with weights to optimise
prediction accuracy with respect to the weight of the trees in C. The resulting
probabilistic automaton N is a maximum-likelihood estimation (mle) of M with
respect to C. Intuitively, this means that among all probabilistic automata that
can be derived from M, the automaton N is that which makes the weights of the
trees in C as likely as possible. The learning process terminates when the pre-
dictions produced by N are sufficiently well-aligned with C, or when the number
of merge-split cycles has reached some maximal limit.

A question that arises from this approach is how the split and merge oper-
ations affect the automaton’s ability to predict the corpus. Merging states has
the advantage that it allows the automaton to accept more trees, thereby gener-
alising what has been learnt from data. However, Dietze conjectures that if we
have a determinsitic wta (dta) M that already accepts every tree in the corpus
and merge the states of M with respect to some equivalence relation ∼ to form
a dta M∼, then the mle N∼ of M∼ cannot yield a better prediction of C than the
mle N of M [5, Conjecture 6.2.2]. This means that further progress cannot be

76 J. Björklund

made by merging states alone (but possibly through a succession of splits and
merges). Figure 1 illustrates the relationship between the various weighted and
unweighted automata involved in the conjecture.

We are now able to give a constructive proof of the veracity of Dietze’s
conjecture. It is based on the observation that the support of M∼, that is, the set
of trees mapped to a nonzero value by M∼, is a superset of the support of M [5].
As a consequence, the probability mass assigned by the mle of M∼ is diluted over
a greater number of trees. We find that it is possible to reshape this distribution
into a distribution over the smaller support of the mle of M, in such a way that
the weight of every tree in the support either increases or remains unchanged,
but never decreases. Since C is contained in the support of the mle of M, the
likelihood of C also increases.

In these times of deep learning, statistical approaches such as that outlined
above remain relevant for a number of reasons. First, their training process is
transparent, enabling a straightforward analysis of the impact of training data
on the resultant model. Second, they are data efficient, rendering them suitable
for deployment in low-data regimes. Finally, with an energy footprint that is gen-
erally smaller than corresponding neural approaches, they are a feasible choice
for embedded systems and internet-of-things applications.

Finally, suppose that we are interested in supervised learning of structures
that can be uniquely represented as terms in some algebra. We can then parse
each element in the corpus into a term, i.e., a tree, and then apply the above
learning framework. Examples of such structures are, e.g., strings, hedges [3], and
certain types of directed acyclic graphs [1,2]. This means that learning results
for tree languages have immediate consequences for countless other domains. For
further reading on tree-based generation and processing, see e.g. [6,8].

Outline. This paper is organized as follows. Section 2 provides automata-
theoretic definitions and fixes notation. Section 3 recalls Dietze’s conjecture and
proves its correctness. Section 4 gives pointers for future work.

2 Preliminaries

Sets, Numbers and Strings. The set of natural numbers (excluding zero) is
denoted by N, and the set of non-negative reals is denoted by R≥0.

The power set of a set S is written 2S , the size of S is denoted by |S |, and
the empty set is written ∅. A partition of a set S is a set of pairwise disjoint, sets
{S1, . . . , Sk} ⊆ 2S whose union is S. A probability distribution over S is a function
p : S → R≥0 such that

∑
s∈S p(s) = 1.

A binary relation on S is an equivalence relation if it is reflexive, symmetric
and transitive. Let ∼ be such a relation. The equivalence class of an element s
in S with respect to s is the set [s]∼ = {s′ ∈ S | s ∼ s′}. Since [s]∼ and [s′]∼
are equal if s ∼ s′ and disjoint otherwise, the relation ∼ induces a partition
(S/∼) = {[s]∼ | s ∈ S} of S.

The Impact of State Merging on Predictive Accuracy 77

An alphabet Σ is a finite nonempty set. A string is an ordered sequence of
zero or more symbols from Σ. The set of all strings over Σ is denoted by Σ∗ and
the empty string is denoted by ε .

Semirings. A monoid is a structure (A, ⊕, 0) where A is a set, ⊕ a binary
operation on A, and 0 is an identity element with respect to ⊕ (so a⊕0 = 0⊕a = a
for every a ∈ A). If, for every a, b ∈ A, we have that a⊕ b = b⊕ a then the monoid
is commutative.

A (commutative) semiring is a structure A = (A, ⊕, �, 0, 1) such that (A, ⊕, 0)
and (A, �, 1) are commutative monoids, � distributes over ⊕, and 0 is an
absorbing element with respect to � (that is, a � 0 = 0 � a = 0 for every
a ∈ A). The Boolean semiring is the semiring B = ({0, 1},∨,∧, 0, 1) and the
probability semiring is the semiring P = (R≥0 ∪ {∞},+, ·, 0, 1). Let S be a set,
A = (A, ⊕, �, 0, 1) a semiring, and f : S → A a function. The support of f is the
set sup(f) = {a ∈ A | f (a) � 0}.

Trees. An unranked tree over the alphabet Σ is a function t : D → Σ where
D ⊆ N

∗ is such that ε ∈ D and, for every v ∈ D, there exists a k ∈ N with
{i ∈ N | vi ∈ D} = [k]. We call D the domain of t and denote it by dom(t). An
element v of dom(t) is called a node of t, and k is the rank of v. The subtree of
t ∈ TΣ rooted at v is the tree t/v defined by dom(t/v) = {u ∈ N

∗
| vu ∈ dom(t)}

and t/v(u) = t(vu) for every u ∈ D. If t(ε) = f and t/i = ti for all i ∈ [k], where k
is the rank of ε in t, then we denote t by f [t1, . . . , tk]. If k = 0, then f [] is usually
abbreviated as f . The height of t is height(t) = max{|v | | v ∈ dom(t)}.

A ranked alphabet is an alphabet Σ =
⋃

k∈N Σk which is partitioned into
subsets Σk . For every k ∈ N and f ∈ Σk , the rank of f is rank (f) = k. A tree
over Σ is an unranked tree t over Σ such that the rank of every node v ∈ dom(t)
coincides with the rank of t(v). The set of all (ranked) trees over Σ is denoted
by TΣ. A tree language over Σ is a subset of TΣ. A weighted tree language over Σ
and a semiring A is a mapping TΣ → A.

Weighted Automata. A weighted tree automaton (wta) over the semiring A

is a tuple M = (Q, Σ,A, F, δ) where

– Q is an alphabet of states,
– Σ is a ranked alphabet of input symbols,
– A is a communtative semiring,
– F : Q → A is a final weight mapping,
– δ = (δk)k∈N is a family of functions such that δk : Qk

× Σk ×Q → A, for every
k ∈ N.

The wta is (bottom-up) deterministic if for every choice of q1 · · · qk ∈ Qk and
σ ∈ Σ, there is at most one q ∈ Q such that δk(q1 · · · qk, σ, q) � 0.

A run of M on t ∈ TΣ is a function dom(t) → Q. The set of all runs of M on t
is denoted by runsM (t). The weight function wM : runsM (t) → A is defined for

78 J. Björklund

every r ∈ runsM (t) by

wM (r) =
⊙

v∈dom(t)

δk(r(v1) · · · r(vk), t(v), r(v)) ,

where k = rank (v). If M is deterministic, then there is at most one run r ∈

runsM (t) such that wM (t) � 0. If it exists, we denote by qt the state r(ε).
The A-weighted tree language computed by M is the function [[M]] : TΣ → A

that is defined, for every t ∈ TΣ, by

[[M]](t) =
⊕

r ∈runsM (t)

wM (r) � F(r(ε)) .

For every q ∈ Q, we denote by Mq the wta (Q, Σ,A, F ′, δ), where F ′
(q) = 1

and F ′
(p) = 0 for every p ∈ Q \ {q}.

Definition 1 (Probabilistic automata, cf. Sect. 4.3 of [5]). Let M =

(Q, Σ, P, F, δ) be a weighted tree automaton over the probability semiring. The
automaton M is:

– out-probabilistic if for every q ∈ Q,
∑

k∈N,σ∈Σk,q1 · · ·qk ∈Qk

δk(q1 · · · qk, σ, q) = 1 ,

– end-probabilistic if ∑
q∈Q

F(q) = 1 , and

– consistent if ∑
t∈TΣ

[[M]](t) = 1 .

The wta M is probabilistic if it is out- and end-probabilistic, and consistent.

Corpora. In [5], a corpus is a mapping C : TΣ → R≥0 such that sup(C) is
finite and nonempty. The size of C is |C| =

∑
t∈TΣ C(t). Let p be a probability

distribution over TΣ. The likelihood of C under p is:

L(C | p) =
∏
t∈TΣ

p(t)C(t) .

Let M = (Q, Σ,B, F, δ) be a wta and let C be a corpus. We denote by
prob(M) the set of probabilistic wta (Q, Σ, P, F ′, δ′) such that sup(F ′

) ⊆ sup(F)
and sup(δ′) ⊆ sup(δ). Finally,

mleC(M) = argmax
N ∈prob(M)

L(C | [[N]]) .

The Impact of State Merging on Predictive Accuracy 79

3 Dietze’s Conjecture

Dietze’s conjecture concerns the impact of state merging on the inference of
probabilistic tree languages from corpora. In essence, the conjecture says that
when attempting to transform a dta M into a probabilistic wta N to maximise
predictive accuracy with respect to a given corpus C, where M already accepts
every tree in C, no predictive power can be gained by merging states of M
to obtain a smaller dta M∼ and subsequently endowing M∼ with weights. To
formalise this assertion, we recall the concept of merging states in a weighted
tree automaton based on an equivalence relation.

Definition 2. Let M = (Q, Σ,A, F, δ) be a wta and let ∼ be an equivalence rela-
tion on Q. We denote by M∼ the wta (Q∼, Σ,A, F∼, δ∼) with the components

– Q∼ = (Q/∼),
– F∼ : Q∼

→ A, where for every p = [q]∼ ∈ Q∼,

F∼
(p) =

⊕
q′ ∈[q]∼

F(q′
) , and

– δ∼ = (δ∼
k
)k∈N where δ∼

k
: (Q/∼)

k
× Σ × (Q/∼) → A and for every p = [q]∼, p1 =

[q1]∼, . . . , pk = [qk]∼ ∈ Q∼ and σ ∈ Σ, we have

δ∼k (p1 · · · pk, σ, p) =
⊕

q′
∈ [q]∼,

q′

i ∈ [qi]∼, i ∈ [k]

δk(q
′

1 · · · q′

k, σ, q
′
) .

Recall from [5, Thm 5.1.1.] that if M is a wta over the Boolean semiring,
then sup([[M]]) ⊆ sup([[M∼

]]). Dietze’s conjecture can now be stated as follows.

Theorem 1 (cf. Conjecture 6.2.2 of [5]). Let M = (Q, Σ,B, F, δ) be a wta
over the Boolean semiring, ∼ an equivalence relation on Q, and C a corpus such
that sup(C) ⊆ sup([[M]]). If M and M∼ are bottom-up deterministic, then

L(C | [[mleC(M)]]) ≥ L(C | [[mleC(M
∼
)]]) .

We note that the condition that M accepts every tree in C is necessary for the
statement to hold true. If it was not, state-merging could be used to expand the
support of M so that it encompasses a larger part of the corpus C. Consequently,
the likelihood of C with respect to probabilistic wta derived from the smaller
automaton may increase [5].

To prove Theorem 1, we show that for every N∼ = ((Q/∼), Σ, P, F∼
, δ

∼
) in

prob(M∼
), we can construct a wta N = (Q, Σ, P, F ′, δ′) in prob(M) that has the

following property:

For every t ∈ sup([[M]]) ∩ sup([[N∼
]]), it holds that [[N]](t) ≥ [[N∼

]](t). (P1)

Since C ⊆ sup([[M]]), this is enough to validate the conjecture.

80 J. Björklund

The construction of N is based on the following observation. Recall that every
state p in N∼ is a set of states {q1, . . . , qk} in M, and let Tp be the set of trees
that are mapped by N∼ to p with nonzero weight. Since N∼ is probabilistic, by a
straightforward induction the weights assigned to the trees in Tp by N∼ sum to 1.
When p is split into its constituent states q1, . . . , qk , the set Tp is partitioned over
the states q1, . . . , qk into sets Tq1, . . . ,Tqk , such that the state qi is reached by M
by precisely the trees in Tqi . When we add weights to M to form N, the weights
assigned by N to the trees in Tqi must also sum to 1 for every i ∈ [k]. We can
therefore compute a value θ(qi) for each qi that corresponds to the probability
mass given by N∼ to the trees in Tqi , relative to the probability mass given by
N∼ to all of Tp. Note that in Definition 3 below, we do not explicitly divide by
the sum of the latter because it is always 1. We define a mapping θ on Q such
that θ(qi) allows us to compute the weights of the transitions entering qi, by
scaling the weights of the transitions entering p in N∼ by a factor of θ(qi)−1.
If we also scale the accepting weights of N∼, then we obtain a wta N with the
property (P1).

Definition 3 (The mapping θ). Let θ : Q → [0, 1] be a mapping, defined for
every q ∈ Q by

θ(q) =
∑

t∈sup([[Mq]])

[[N∼

[q]∼
]](t) .

In the upcoming proofs we need an expanded form of θ. To this end, we intro-
duce a sequence of functions θ0, θ1, θ2, . . . which converge to θ. In the following
recursive definition, the value of θ0 is zero for all states, while the value of θ1 is
nonzero only for states that can be reached on symbols of rank 0.

Definition 4. For every q ∈ Q, θ0(q) = 0 and for every i ≥ 1,

θi(q) =
∑

(q1 · · ·qk,σ,q)∈sup(δ)

δ∼([q1]∼ · · · [qk]∼, σ, [q]∼) ·
∏
j∈[k]

θi−1(qj) . (1)

Lemma 1. For every q ∈ Q and i = 0, 1, 2, . . .

θi(q) =
∑

t ∈ sup([[Mq]])

and height(t) < i

[[N∼

[q]∼
]](t) .

Proof. The proof is by induction on i. The base case, where i = 0, is trivially
true. Assume that i ≥ 1 and that Lemma 1 holds for i−1. We compute as follows:

The Impact of State Merging on Predictive Accuracy 81

θi(q)

= by Definition 4 of θi∑
(q1 · · ·qk,σ,q)∈sup(δ)

δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) ·

∏
j∈[k]
θi−1(qj)

= by the induction hypothesis∑
(q1 · · ·qk,σ,q)∈sup(δ)

δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) ·

∏
j∈[k]

∑
tj ∈ sup(Mqj

),

height(tj) < i − 1

[[N∼

[qj]∼
]](tj)

= because multiplication distributes over addition∑
(q1 · · ·qk,σ,q)∈sup(δ)

δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) ·

∑
t1 · · · tk ∈ sup(Mq1) × · · · × sup([[Mqk

]])

and height(tj) < i − 1, for j ∈ [k]

[[N∼

[q1]∼
]](t1) · · · · · [[N∼

[qk]∼
]](tk)

= because multiplication distributes over addition

∑
(q1 · · · qk, σ, q) ∈ sup(δ),

t1 · · · tk ∈ sup(Mq1) × · · · × sup([[Mqk
]])

and height(tj) < i − 1, for j ∈ [k]

δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) ·

[[N∼

[q1]∼
]](t1) · · · · · [[N∼

[qk]∼
]](tk)

= by the definition of wta semantics in Sect. 2∑
t ∈ sup(Mq)

and height(t) < i

[[N∼

[q]∼
]](t)

��

Lemma 2. For every q ∈ Q, θ(q) = limi→∞θi(q).

Proof. To show that the value of θi(q) converges, we argue that there is a con-
stant c such that for all i > c, there is a j < i such that

max{[[N∼
]](t) | height(t) = i} < max{[[N∼

]](t) | height(t) = j} .

The claim holds because the products of the weight used in each loop in N∼

must be strictly less than 1. If this was not the case, then N∼ would not be
probabilistic, because at the state marking the beginning and end of the loop,
there must be one transition leading into the loop and one transition exiting the
loop, both of which must have non-zero weight. Once a tree has been constructed
by pumping the loop several times, there is a smaller tree with strictly greater
weight that was built by pumping the loop fewer times. In combination with
Lemma 1, this means that the sequence θi(q) converges to θ(q) for all q ∈ Q. ��

82 J. Björklund

We can now use the function θ to rescale the weight mappings used in N∼

to compute suitable weights for M, such that the resulting probabilistic tree
automaton N assigns at least as great a weight to every tree in C as N∼ does.

Definition 5 (The automaton N). Let M = (Q, Σ,B, F, δ) be a wta over the
Boolean semiring, ∼ an equivalence relation on Q, and N∼ = ((Q/∼), Σ, P, F∼

, δ
∼
) ∈

prob(M∼
). We define N as the wta (Q, Σ, P, F ′, δ′), where for every q ∈ Q

F ′
(q) = F∼

([q]∼) ·
θ(q)∑

p∈[q]∼ θ(p)
, (2)

and for every (q1 · · · qk, σ, q) ∈ sup(δ),

δ′k(q1 · · · qk, σ, q) =
δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) ·

∏
i∈[k] θ(qi)

θ(q)
, (3)

and 0 otherwise.

Example 1. Consider the automata in Fig. 2. If we momentarily ignore the
weights, we can take these to be the wta M and M∼ over the Boolean semiring.
We see that M∼ can be obtained from M by merging the states with respect to
the equivalence relation ∼, which is such that (Q/∼) = {p1, p2}, p1 = {q1, q2}, and
p2 = {q3, q4, q5, q6}. Assume then that N∼ is the wta in prob(M∼

) that results
from equipping M∼ with weights as shown on the right in the figure. The table
in the lower right of the figure lists the values of θ for the states in M, and
from these the weights that turn M into the wta N are computed according to
Definition 5. As we can see,

sup([[M]]) = { f [h[a], h[b]], f [h[b], h[a]], g[h[a], h[b]], g[h[b], h[a]]} .

It is easy to verify that for every tree t in this set N(t) ≥ N∼
(t). For example,

N(f [h[a], h[b]]) = 1
2·3 and N∼

(f [h[a], h[b]]) = 1
35 . �

The Impact of State Merging on Predictive Accuracy 83

Fig. 2. The automata discussed in Example 1. The circles and boxes denote states and
transitions, respectively. In a transition of the form (q3q4, f , q1), the first and second
argument (q3 and q4) are indicated with a solid and dashed line, respectively, while
the target state q1 is indicated with an arrow. Accepting states are drawn with double
strokes, and final weights are written above them.

We note that if a tree in sup([[M]]) is assigned a nonzero weight by N∼, then
it is also assigned a nonzero weight by N.

Lemma 3. If t ∈ sup([[M]]) ∩ sup([[N∼
]]), then t ∈ sup([[N]]).

Proof. Let t ∈ sup([[M]]) ∩ sup([[N∼
]]). There is then a unique run r ∈ runsM (t).

Intuitively, θ(q) records the quotient of the weight assigned by N∼ to the trees
that reach q in M, divided by the weight assigned by N∼ to the trees that
reach [q]. It follows that all nominators and denominators in the Eqs. 2 and 3
of Definition 5 are nonzero when the weights are computed for every transition
r(v), v ∈ dom(t), and the final weight F ′

(r(ε)). Hence, t ∈ sup([[N]]). ��

For N be useful in the main proof, we need to verify that it is a probabilistic
wta as per Defintion 1.

Lemma 4. The automaton N is an end- and out-probabilistic wta.

Proof. The definition of the final weight function F ′ contains a normalisation
factor in the denominator which ensures that the weights F ′

(q), q ∈ Q, sum up
to 1. This means that N is end-probabilistic.

84 J. Björklund

Let us now verify that N is out-probabilistic. For every q ∈ Q,∑
k∈N,σ∈Σk,q1 · · ·qk ∈Qk

δ′k(q1 · · · qk, σ, q)

= by Definition 5 of the automaton N∑
(q1 · · ·qk,σ,q)∈sup(δ)

δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) · θ(q)−1

·
∏
i∈[k]
θ(qi)

= because multiplication distributes over addition∑
(q1 · · ·qk,σ,q)∈sup(δ)

δ∼
k
([q1]∼ · · · [qk]∼, σ, [q]∼) ·

∏
i∈[k]
θ(qi)

θ(q)

= by Definition 3 of θ (which occurs in the denominator), Definition 4 of θi
(which corresponds to the nominator), and Lemma 2 which states that
for every q ∈ Q, θ(q) = limi→∞θi(q)

1 .

��

The following Lemma 5 relates the weights assigned by the automata N and
N∼ to the trees in sup([[M]]).

Lemma 5. For every t ∈ sup([[M]]) ∩ sup([[N∼
]]),

[[N]](t) =
1∑

p∈[q]∼ θ(p)
· [[N∼

]](t) .

Proof. Let t ∈ sup([[M]]) ∩ sup([[N∼
]]). By Lemma 3, there is exactly one run

r ∈ runsN (t) and one run r ′ ∈ runsN∼(t) with non-zero weights. Let q = r(ε).
We compute the weight of r through the following equations (We refer to this
computation as the series of equations *):

wN (r)

= by the definition of wN in Sect. 2

∏
v∈dom(t)

δ′
k
(r(v1) · · · r(vk), t(v), r(v))

= by Definition 5 of δ′

∏
v∈dom(t)

δ∼
k
([r(v1)]∼ · · · [r(vk)]∼, t(v), [r(v)]∼) ·

∏
i∈[k] θ(r(vi))

θ(r(v))

= by simplification through cancellation at each v, where the weights divided away

at the nodes vi, i ∈ [k], are multiplied back in at the node v

∏
v∈dom(t)

δ∼
k
([r(v1)]∼ · · · [r(vk)]∼, t(v), [r(v)]∼)

θ(q)

The Impact of State Merging on Predictive Accuracy 85

= by Definition 2 of merged wta, and because N∼ is deterministic

wN∼ (r′)

θ(q)

Using this relation between the weight functions, we find that:

[[N]](t)

= by the definition of wta semantics in Sect. 2

F′
(q) · wN (r)

= by Definition 5 of F′

F∼
([q]∼) ·

θ(q)∑
p∈[q]∼ θ(p)

· wN (r)

= by the sequence of equations (*) above

F∼
([q]∼) ·

θ(q)∑
p∈[q]∼ θ(p)

·
wN∼ (r′)

θ(q)

= by cancelling and reordering terms

1∑
p∈[q]∼ θ(p)

· F∼
([q]∼) · wN∼ (r′)

= by the definition of wta semantics in Sect. 2

1∑
p∈[q]∼ θ(p)

· [[N∼
]](t) .

��

To ensure that N is a probablistic wta, it remains to verify consistency.

Lemma 6. The automaton N is consistent.

Proof. ∑
t∈TΣ

[[N]](t)

= by associativity and commutativity∑
P∈Q∼

∑
p∈P

∑
t∈sup([[Np]])

[[N]](t)

= by Lemma 5 which relates [[N]](t) to [[N∼
]](t)

∑
P∈Q∼

∑
p∈P

∑
t∈sup([[Np]])

1∑
p∈P θ(p)

· [[N∼
]](t)

= by distributivity
∑

P∈Q∼

1∑
p∈P θ(p)

∑
p∈P

∑
t∈sup([[Np]])

[[N∼
]](t)

86 J. Björklund

= by construction of θ and by changing the range of the final sum
∑

P∈Q∼

1∑
p∈P θ(p)

∑
p∈P
θ(p)

∑
t∈sup([[N∼

P]])

[[N∼
]](t)

= by distributivity

∑
P∈Q∼

1∑
p∈P θ(p)

(∑
p∈P
θ(p)

) ∑
t∈sup([[N∼

P]])

[[N∼
]](t)

= by cancellation∑
P∈Q∼

∑
t∈sup([[N∼

P]])

[[N∼
]](t)

= since N∼ is consistent

1 . ��

��

We now connect the intermediate results into a proof of Dietze’s conjecture.

Proof (of Theorem 1). By Lemma 4 and Lemma 6, the wta N is a probabilistic
wta and by construction, it is in prob(M). For every t ∈ sup([[M]]) ∩ sup([[N∼

]]),

[[N]](t) =
1∑

p∈[qt]∼ θ(qt)
· [[N∼

]](t) .

By Def. 3 of θ, the sum
∑

p∈[qt]∼ θ(p) cannot exceed 1, and it is assumed that
C ⊆ sup([[M]]), so for every t ∈ C,

[[N]](t) ≥ [[N∼
]](t) .

By definition of the maximum likelihood estimation,

L(C | [[mleC(M)]]) ≥ L(C | [[N]])

from which it follows that

L(C | [[mleC(M)]]) ≥ L(C | [[N∼
]]) ,

including when [[N∼
]] = mleC(M∼

). ��

4 Conclusion

We have seen that given an automaton M and an equivalence relation ∼ on the
states of M, we can derive from every wta N∼

∈ prob(M∼
) a wta N ∈ prob(M)

such that N assigns a weight to every tree in sup([[M]])∩sup([[N∼
]]) that is greater

or equal to that assigned by N∼. From this it follows that if C ⊆ sup([[M]]), then

L(C | [[mleC(M)]]) ≥ L(C | [[mleC(M
∼
)]]) .

The Impact of State Merging on Predictive Accuracy 87

Now that we know that Dietze’s conjecture holds, we can try to relax the
assumptions made in the statement. As mentioned earlier, the conjecture cannot
be true if C � sup([[M]]). However, it remains uncertain whether the restric-
tion to deterministic automata is essential. The proof presented in this paper
incorporates the determinism of the automata while defining the mapping θ.
Nonetheless, a similar argument could potentially be applicable if we shift our
focus to the weight of runs rather than the weight of trees. This is due to the
monotonic nature of addition, implying that increasing the likelihood of every
run of a tree would result in an increased likelihood of the tree itself.

Acknowledgements. I would like to thank the reviewers for their constructive crit-
icism that helped improved this article. I am also grateful to Frank Drewes for his
willingness to act as a sounding board throughout the work.

References

1. Björklund, H., Björklund, J., Ericson, P.: On the regularity and learnability of
ordered DAG languages. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS,
vol. 10329, pp. 27–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60134-2 3

2. Björklund, H., Drewes, F., Ericson, P.: Between a rock and a hard place - uniform
parsing for hyperedge replacement DAG grammars. In: 10th International Confer-
ence on Language and Automata Theory and Applications (LATA 2016), Prague,
Czech Republic, 2016, pp. 521–532 (2016)

3. Bruggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets. Technical report (2001)

4. Collins, M.: Head-driven statistical models for natural language parsing. Comput.
Linguist. 29(4), 589–637 (2003)

5. Dietze, T.: A Formal View on Training of Weighted Tree Automata by Likelihood-
driven State Splitting and Merging. Technische Universität Dresden (2004)

6. Drewes, F.: Grammatical Picture Generation. TTCSAES, Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-32507-7

7. Fülöp, Z., Vogler, H.: Weighted Tree Automata and Tree Transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01492-5 9

8. Fülöp, Z., Vogler, H.: Syntax-directed semantics: Formal models based on tree
transducers. Springer Science & Business Media (2012). https://doi.org/10.1007/
978-3-642-72248-6

9. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics, pp. 423–
430, Sapporo, Japan (2003). Association for Computational Linguistics

10. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and
interpretable tree annotation. In: Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, pp. 433–440 (2006)

https://doi.org/10.1007/978-3-319-60134-2_3
https://doi.org/10.1007/978-3-319-60134-2_3
https://doi.org/10.1007/3-540-32507-7
https://doi.org/10.1007/978-3-642-01492-5_9
https://doi.org/10.1007/978-3-642-72248-6
https://doi.org/10.1007/978-3-642-72248-6

Computing Subset Vertex Covers
in H -Free Graphs

Nick Brettell1 , Jelle J. Oostveen2(B) , Sukanya Pandey2,
Daniël Paulusma3 , and Erik Jan van Leeuwen2

1 Victoria University of Wellington, Wellington, New Zealand
nick.brettell@vuw.ac.nz

2 Utrecht University, Utrecht, The Netherlands
{j.j.oostveen,s.pandey1,e.j.vanleeuwen}@uu.nl

3 Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

Abstract. We consider a natural generalization of Vertex Cover:
the Subset Vertex Cover problem, which is to decide for a graph
G = (V, E), a subset T ⊆ V and integer k, if V has a subset S of size
at most k, such that S contains at least one end-vertex of every edge
incident to a vertex of T . A graph is H-free if it does not contain H as
an induced subgraph. We solve two open problems from the literature
by proving that Subset Vertex Cover is NP-complete on subcubic
(claw,diamond)-free planar graphs and on 2-unipolar graphs, a subclass
of 2P3-free weakly chordal graphs. Our results show for the first time
that Subset Vertex Cover is computationally harder than Vertex
Cover (under P �= NP). We also prove new polynomial time results. We
first give a dichotomy on graphs where G[T] is H-free. Namely, we show
that Subset Vertex Cover is polynomial-time solvable on graphs G,
for which G[T] is H-free, if H = sP1 + tP2 and NP-complete otherwise.
Moreover, we prove that Subset Vertex Cover is polynomial-time
solvable for (sP1 +P2 +P3)-free graphs and bounded mim-width graphs.
By combining our new results with known results we obtain a partial
complexity classification for Subset Vertex Cover on H-free graphs.

1 Introduction

We consider a natural generalization of the classical Vertex Cover problem:
the Subset Vertex Cover problem, introduced in [5]. Let G = (V,E) be a
graph and T be a subset of V . A set S ⊆ V is a T -vertex cover of G if S contains
at least one end-vertex of every edge incident to a vertex of T . We note that T
itself is a T -vertex cover. However, a graph may have much smaller T -vertex
covers. For example, if G is a star whose leaves form T , then the center of G
forms a T -vertex cover. We can now define the problem; see also Fig. 1.

Oostveen, J—was supported by the NWO grant OCENW.KLEIN.114 (PACAN).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 88–102, 2023.
https://doi.org/10.1007/978-3-031-43587-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_7&domain=pdf
http://orcid.org/0000-0002-1136-418X
http://orcid.org/0000-0001-5728-1120
http://orcid.org/0000-0001-5945-9287
http://orcid.org/0000-0001-5240-7257
https://doi.org/10.1007/978-3-031-43587-4_7

Computing Subset Vertex Covers 89

Subset Vertex Cover
Instance: A graph G = (V,E), a subset T ⊆ V , and a positive integer k.
Question: Does G have a T -vertex cover ST with |ST | ≤ k?

If we set T = V , then we obtain the Vertex Cover problem. Hence, as Vertex
Cover is NP-complete, so is Subset Vertex Cover.

To obtain a better understanding of the complexity of an NP-complete graph
problem, we may restrict the input to some special graph class. In particular,
hereditary graph classes, which are the classes closed under vertex deletion, have
been studied intensively for this purpose. It is readily seen that a graph class G is
hereditary if and only if G is characterized by a unique minimal set of forbidden
induced subgraphs FG. Hence, for a systematic study, it is common to first
consider the case where FG has size 1. This is also the approach we follow in this
paper. So, for a graph H, we set FG = {H} for some graph H and consider the
class of H-free graphs (graphs that do not contain H as an induced subgraph).
We now consider the following research question:

For which graphs H is Subset Vertex Cover, restricted to H-free graphs, still
NP-complete and for which graphs H does it become polynomial-time solvable?

We will also address two open problems posed in [5] (see Sect. 2 for any undefined
terminology):

Q1. What is the complexity of Subset Vertex Cover for claw-free graphs?
Q2. Is Subset Vertex Cover is NP-complete for Pt-free graphs for some t?

The first question is of interest, as Vertex Cover is polynomial-time solv-
able even on rK1,3-free graphs for every r ≥ 1 [4], where rK1,3 is the dis-
joint union of r claws (previously this was known for rP3-free graphs [13] and
2P3-free graphs [14]). The second question is of interest due to some recent
quasi-polynomial-time results. Namely, Gartland and Lokshtanov [9] proved that
for every integer t, Vertex Cover can be solved in nO(log3 n)-time for Pt-free
graphs. Afterwards, Pilipczuk, Pilipczuk and Rzążewski [18] improved the run-
ning time to nO(log2 n) time. Even more recently, Gartland et al. [10] extended
the results of [9,18] from Pt-free graphs to H-free graphs where every connected
component of H is a path or a subdivided claw.

Fig. 1. An instance (G, T, k) of Subset Vertex Cover, where T consists of the
orange vertices, together with a solution S (a T -vertex cover of size 5). Note that S
consists of four vertices of T and one vertex of T = V \ T .

90 N. Brettell et al.

Grötschel, Lovász, and Schrijver [11] proved that Vertex Cover can be
solved in polynomial time for the class of perfect graphs, which includes well-
known graph classes, such as bipartite graphs and (weakly) chordal graphs.
Before we present our results, we first briefly discuss the relevant literature.

Existing Results and Related Work

Whenever Vertex Cover is NP-complete for some graph class G, then so is
the more general problem Subset Vertex Cover. Moreover, Subset Ver-
tex Cover can be polynomially reduced to Vertex Cover: given an instance
(G,T, k) of the former problem, remove all edges not incident to a vertex of T
to obtain an instance (G′, k) of the latter problem. Hence, we obtain:

Proposition 1. The problems Vertex Cover and Subset Vertex Cover
are polynomially equivalent for every graph class closed under edge deletion.

For example, the class of bipartite graphs is closed under edge deletion and Ver-
tex Cover is polynomial-time solvable on bipartite graphs. Hence, by Proposi-
tion 1, Subset Vertex Cover is polynomial-time solvable on bipartite graphs.
However, a class of H-free graphs is only closed under edge deletion if H is
a complete graph, and Vertex Cover is NP-complete even for triangle-free
graphs [19]. This means that there could still exist graphs H such that Vertex
Cover and Subset Vertex Cover behave differently if the former problem
is (quasi)polynomial-time solvable on H-free graphs. The following well-known
result of Alekseev [1] restricts the structure of such graphs H.

Theorem 1 ([1]). For every graph H that contains a cycle or a connected com-
ponent with two vertices of degree at least 3, Vertex Cover, and thus Subset
Vertex Cover, is NP-complete for H-free graphs.

Due to Theorem 1 and the aforementioned result of Gartland et al. [10], every
graph H is now either classified as a quasi-polynomial case or NP-hard case for
Vertex Cover. For Subset Vertex Cover the situation is much less clear.
So far, only one positive result is known, which is due to Brettell et al. [5].

Theorem 2 ([5]). For every s ≥ 0, Subset Vertex Cover is polynomial-time
solvable on (sP1 + P4)-free graphs.

Subset variants of classic graph problems are widely studied, also in the context
of H-free graphs. Indeed, Brettell et al. [5] needed Theorem 2 as an auxiliary
result in complexity studies for Subset Feedback Vertex Set and Subset
Odd Cycle Transversal restricted to H-free graphs. The first problem is to
decide for a graph G = (V,E), subset T ⊆ V and integer k, if G has a set S of
size at most k such that S contains a vertex of every cycle that intersects T . The
second problem is similar but replaces “cycle” by “cycle of odd length”. Brettell

Computing Subset Vertex Covers 91

et al. [5] proved that both these subset transversal problems are polynomial-time
solvable on (sP1 + P3)-free graphs for every s ≥ 0. They also showed that Odd
Cycle Transversal is polynomial-time solvable for P4-free graphs and NP-
complete for split graphs, which form a subclass of 2P2-free graphs, whereas NP-
completeness for Subset Feedback Vertex Set on split graphs was shown by
Fomin et al. [8]. Recently, Paesani et al. [17] extended the result of [5] for Subset
Feedback Vertex Set from (sP1 + P3)-free graphs to (sP1 + P4)-free graphs
for every integer s ≥ 0. If H contains a cycle or claw, NP-completeness for both
subset transversal problems follows from corresponding results for Feedback
Vertex Set [16,19] and Odd Cycle Transversal [6].

Combining all the above results leads to the following theorems (see also [5,
17]). Here, we write F ⊆i G if F is an induced subgraph of G.

Theorem 3. For a graph H, Subset Feedback Vertex Set on H-free
graphs is polynomial-time solvable if H ⊆i sP1 + P4 for some s ≥ 0, and NP-
complete otherwise.

Theorem 4. For a graph H
= sP1 + P4 for some s ≥ 1, Subset Odd Cycle
Transversal on H-free graphs is polynomial-time solvable if H = P4 or H ⊆i

sP1 + P3 for some s ≥ 0, and NP-complete otherwise.

Our Results

In Sect. 3 we prove two new hardness results, using the same basis reduction,
which may have a wider applicability. We first answer Q1 by proving that Subset
Vertex Cover is NP-complete even for subcubic planar line graphs of triangle-
free graphs, or equivalently, subcubic planar (claw, diamond)-free graphs.

We then answer Q2 by proving that Subset Vertex Cover is NP-complete
even for a 2-unipolar graphs, which are 2P3-free (and thus P7-free).

Our hardness results show a sharp contrast with Vertex Cover, which can
be solved in polynomial time for both weakly chordal graphs [11] and rK1,3-free
graphs for every r ≥ 1 [4]. Hence, Subset Vertex Cover may be harder than
Vertex Cover for a graph class closed under vertex deletion (if P
= NP). This
is in contrast to graph classes closed under edge deletion (see Proposition 1).

In Sect. 3 we also prove that Subset Vertex Cover is NP-complete for
inputs (G,T, k) if the subgraph G[T] of G induced by T is P3-free. On the
other hand, our first positive result, shown in Sect. 4, shows that the problem
is polynomial-time solvable if G[T] is sP2-free for any s ≥ 2. In Sect. 4 we
also prove that Subset Vertex Cover can be solved in polynomial time for
(sP1 + P2 + P3)-free graphs for every s ≥ 1. Our positive results generalize
known results for Vertex Cover. The first result also implies that Subset
Vertex Cover is polynomial-time solvable for split graphs, contrasting our
NP-completeness result for 2-unipolar graphs, which are generalized split, 2P3-
free, and weakly chordal. Combining our new results with Theorem 2 gives us a
partial classification and a dichotomy, both of which are proven in Sect. 5.

92 N. Brettell et al.

Theorem 5. For a graph H
= rP1+sP2+P3 for any r ≥ 0, s ≥ 2; rP1+sP2+P4

for any r ≥ 0, s ≥ 1; or rP1 + sP2 + Pt for any r ≥ 0, s ≥ 0, t ∈ {5, 6},
Subset Vertex Cover on H-free graphs is polynomial-time solvable if H ⊆i

sP1 + P2 + P3, sP2, or sP1 + P4 for some s ≥ 1, and NP-complete otherwise.

Theorem 6. For a graph H, Subset Vertex Cover on instances (G,T, k),
where G[T] is H-free, is polynomial-time solvable if H ⊆i sP2 for some s ≥ 1,
and NP-complete otherwise.

Theorems 3–6 show that Subset Vertex Cover on H-free graphs can be
solved in polynomial time for infinitely more graphs H than Subset Feedback
Vertex Set and Subset Odd Cycle Transversal. This is in line with the
behaviour of the corresponding original (non-subset) problems.

In Sect. 6 we discuss some directions for future work, which naturally orig-
inate from the above results and our final new result, which is proven in the
full version of our paper1, and which states that Subset Vertex Cover is
polynomial-time solvable on every graph class of bounded mim-width, such as
the class of circular-arc graphs.

2 Preliminaries

Let G = (V,E) be a graph. The degree of a vertex u ∈ V is the size of its
neighbourhood N(u) = {v | uv ∈ E}. We say that G is subcubic if every vertex
of G has degree at most 3. An independent set I in G is maximal if there exists
no independent set I ′ in G with I � I ′. Similarly, a vertex cover S of G is
minimal if there no vertex cover S′ in G with S′ � S. For a graph H we write
H ⊆i G if H is an induced subgraph of G, that is, G can be modified into H by
a sequence of vertex deletions. If G does not contain H as an induced subgraph,
G is H-free. For a set of graphs H, G is H-free if G is H-free for every H ∈ H.
If H = {H1, . . . , Hp} for some p ≥ 1, we also write that G is (H1, . . . , Hp)-free.

The line graph of a graph G = (V,E) is the graph L(G) that has vertex set E
and an edge between two vertices e and f if and only if e and f share a common
end-vertex in G. The complement G of a graph G = (V,E) has vertex set V and
an edge between two vertices u and v if and only if uv /∈ E.

For two vertex-disjoint graphs F and G, the disjoint union F+G is the graph
(V (F) ∪ V (G), E(F) ∪ E(G)). We denote the disjoint union of s copies of the
same graph G by sG. A linear forest is a disjoint union of one or more paths.

Let Cs be the cycle on s vertices; Pt the path on t vertices; Kr the complete
graph on r vertices; and K1,r the star on (r+ 1) vertices. The graph C3 = K3 is
the triangle; the graph K1,3 the claw, and the graph 2P1 + P2 is the diamond (so
the diamond is obtained from the K4 after deleting one edge). The subdivision
of an edge uv replaces uv with a new vertex w and edges uw, wv. A subdivided
claw is obtained from the claw by subdividing each of its edges zero or more
times.

1 The full version is available on arXiv, see https://arxiv.org/abs/2307.05701.

https://arxiv.org/abs/2307.05701

Computing Subset Vertex Covers 93

A graph is chordal if it has no induced Cs for any s ≥ 4. A graph is weakly
chordal if it has no induced Cs and no induced Cs for any s ≥ 5. A cycle Cs

or an anti-cycle Cs is odd if it has an odd number of vertices. By the Strong
Perfect Graph Theorem [7], a graph is perfect if it has no odd induced Cs and
no odd induced Cs for any s ≥ 5. Every chordal graph is weakly chordal, and
every weakly chordal graph is perfect. A graph G = (V,E) is unipolar if V can
be partitioned into two sets V1 and V2, where G[V1] is a complete graph and
G[V2] is a disjoint union of complete graphs. If every connected component of
G[V2] has size at most 2, then G is 2-unipolar. Unipolar graphs form a subclass
of generalized split graphs, which are the graphs that are unipolar or their com-
plement is unipolar. It can also be readily checked that every 2-unipolar graph
is weakly chordal (but not necessarily chordal, as evidenced by G = C4).

For an integer r, a graph G′ is an r-subdivision of a graph G if G′ can be
obtained from G by subdividing every edge of G r times, that is, by replacing
each edge uv ∈ E(G) with a path from u to v of length r + 1.

3 NP-Hardness Results

In this section we prove our hardness results for Subset Vertex Cover, using
the following notation. Let G be a graph with an independent set I. We say that
we augment G by adding a (possibly empty) set F of edges between some pairs
of vertices of I. We call the resulting graph an I-augmentation of G.

The following lemma forms the basis for our hardness gadgets.

Lemma 1. Every vertex cover of a graph G = (V,E) with an independent set I
is a (V \ I)-vertex cover of every I-augmentation of G, and vice versa.

Proof. Let G′ be an I-augmentation of G. Consider a vertex cover S of G. For
a contradiction, assume that S is not a (V \ I)-vertex cover of G′. Then G′ − S
must contain an edge uv with at least one of u, v belonging to V \ I. As G− S
is an independent set, uv belongs to E(G′) \ E(G) implying that both u and v
belong to I, a contradiction.

Now consider a (V \ I)-vertex cover S′ of G′. For a contradiction, assume
that S′ is not a vertex cover of G. Then G − S′ must contain an edge uv (so
uv ∈ E). As G′ is a supergraph of G, we find that G′ −S′ also contains the edge
uv. As S′ is a (V \ I)-vertex cover of G′, both u and v must belong to I. As
uv ∈ E, this contradicts the fact that I is an independent set. ��
To use Lemma 1 we need one other lemma, which follows directly from an
observation due to Poljak [19].

Lemma 2 ([19]). For an integer r, a graph G with m edges has an independent
set of size k if and only if the 2r-subdivision of G has an independent set of size
k + rm.

94 N. Brettell et al.

We are now ready to prove our first two hardness results. Recall that a graph
is (claw, diamond)-free if and only if it is a line graph of a triangle-free graph.
Hence, the result in particular implies NP-hardness of Subset Vertex Cover
for line graphs. Recall also that we denote the claw and diamond by K1,3 and
2P1 + P2, respectively.

Theorem 7. Subset Vertex Cover is NP-complete for (K1,3, 2P1 + P2)-free
subcubic planar graphs.

Proof. We reduce from Vertex Cover, which is NP-complete even for cubic
planar graphs [15]. As an n-vertex graph has a vertex cover of size at most k if
and only if it has an independent set of size at least n− k, we find that Vertex
Cover is NP-complete even for subcubic planar graphs that are 4-subdivisions
due to an application of Lemma 2 with r = 2 (note that subdividing an edge
preserves both maximum degree and planarity). So, let (G, k) be an instance
of Vertex Cover, where G = (V,E) is a subcubic planar graph that is a
4-subdivision of some cubic planar graph G∗, and k is an integer.

In G, we let U = V (G∗) and W be the subset of V (G) \ U that consists of
all neighbours of vertices of U . Note that W is an independent set in G. We
construct a W -augmentation G′ as follows.

For every vertex u ∈ U of degree 3 in G, we pick two arbitrary neighbours of
u (which both belong to W) and add an edge between them. It is readily seen
that G′ is (K1,3, 2P1 + P2)-free, planar and subcubic. By Lemma 1, it holds that
G has a vertex cover of size at most k if and only if G′ has a (V \W)-vertex
cover of size at most k. ��
See the full version of our paper for the proof of our second hardness result. It can
be readily checked that 2-unipolar graphs are (2C3, C5, C6, C3 +P3, 2P3, P6, C6)-
free graphs, and thus are 2P3-free weakly chordal.

Theorem 8. Subset Vertex Cover is NP-complete for instances (G,T, k),
for which G is 2-unipolar and G[T] is a disjoint union of edges.

4 Polynomial-Time Results

In this section, we prove our polynomial-time results. We start with the case
where H = sP2 for some s ≥ 1. For this case we need the following two well-
known results. The delay of an enumeration algorithm is the maximum of the
time taken before the first output and that between any pair of consecutive
outputs.

Theorem 9 ([2]). For every constant s ≥ 1, the number of maximal indepen-
dent sets of an sP2-free graph on n vertices is at most n2s + 1.

Theorem 10 ([20]). For every constant s ≥ 1, it is possible to enumerate all
maximal independent sets of an sP2-free graph G on n vertices and m edges with
a delay of O(nm).

Computing Subset Vertex Covers 95

We show a slightly stronger result than proving that Subset Vertex Cover
is polynomial-time solvable for sP2-free graphs. The idea behind the algorithm
is to remove any edges between vertices in V \ T , as these edges are irrelevant.
As a consequence, we may leave the graph class, but this is not necessarily an
obstacle. For example, if G[T] is a complete graph, or T is an independent set,
we can easily solve the problem. Both cases are generalized by the result below.

Theorem 11. For every s ≥ 1, Subset Vertex Cover can be solved in poly-
nomial time for instances (G,T, k) for which G[T] is sP2-free.

Proof. Let s ≥ 1, and let (G,T, k) be an instance of Subset Vertex Cover
where G = (V,E) is a graph such that G[T] is sP2-free. Let G′ = (V,E′) be
the graph obtained from G after removing every edge between two vertices of
V \T , so G′[V \T] is edgeless. We observe that G has a T -vertex cover of size at
most k if and only if G′ has a T -vertex cover of size at most k. Moreover, G′[T]
is sP2-free, and we can obtain G′ in O(|E(G)|) time. Hence, from now on, we
consider the instance (G′, T, k).

We first prove the following two claims, see Fig. 2 for an illustration.

Fig. 2. An example of the 2P2-free graph G′ of the proof of Theorem 11. Here, T
consists of the orange vertices. A solution S can be split up into a minimal vertex
cover R of G′[T] and a vertex cover W of G[V \ R].

Claim 1. A subset S ⊆ V (G′) is a T -vertex cover of G′ if and only if S = R∪W
for a minimal vertex cover R of G′[T] and a vertex cover W of G′[V \R].

We prove Claim 1 as follows. Let S ⊆ V (G′). First assume that S is a T -vertex
cover of G′. Let I = V \S. As S is a T -vertex cover, T ∩ I is an independent set.
Hence, S contains a minimal vertex cover R of G′[T]. As G′[V \T] is edgeless, S
is a vertex cover of G, or in other words, I is an independent set. In particular,
this means that W \R is a vertex cover of G′[V \R].

Now assume that S = R ∪W for a minimal vertex cover R of G′[T] and a
vertex cover W of G′[V \ R]. For a contradiction, suppose that S is not a T -
vertex cover of G′. Then G′ − S contains an edge uv ∈ E′, where at least one of
u, v belongs to T . First suppose that both u and v belong to T . As R is a vertex

96 N. Brettell et al.

cover of G′[T], at least one of u, v belongs to R ⊆ S, a contradiction. Hence,
exactly one of u, v belongs to T , say u ∈ T and v ∈ V \T , so in particular, v /∈ R.
As R ⊆ S, we find that u /∈ R. Hence, both u and v belong to V \R. As W is a
vertex cover of V \ R, this means that at least one of u, v belongs to W ⊆ S, a
contradiction. This proves the claim.
Claim 2. For every minimal vertex cover R of G′[T], the graph G′[V \ R] is
bipartite.

We prove Claim 2 as follows. As R is a vertex cover of G′[T], we find that T \R
is an independent set. As G′[V \T] is edgeless by construction of G′, this means
that G′[V \R] is bipartite with partition classes T \R and V \ T .
We are now ready to give our algorithm. We enumerate the minimal vertex covers
of G′[T]. For every minimal vertex cover R, we compute a minimum vertex cover
W of G′[V \R]. In the end, we return the smallest S = R ∪W that we found.

The correctness of our algorithm follows from Claim 1. It remains to analyse
the running time. As G′[T] is sP2-free, we can enumerate all maximal indepen-
dent sets I of G′[T] and thus all minimal vertex covers R = T \ I of G′[T] in
(n2s +1) ·O(nm) time due to Theorems 9 and 10. For a minimal vertex cover R,
the graph G′[V \R] is bipartite by Claim 2. Hence, we can compute a minimum
vertex cover W of G′[V \ R] in polynomial time by applying König’s Theorem.
We conclude that the total running time is polynomial. ��
For our next result (Theorem 12) we need two known results as lemmas.

Lemma 3 ([5]). If Subset Vertex Cover is polynomial-time solvable on H-
free graphs for some H, then it is so on (H + P1)-free graphs.

Lemma 4 ([4]). For every r ≥ 1, Vertex Cover is polynomial-time solvable
on rK1,3-free graphs.

We are now ready to prove our second polynomial-time result.

Theorem 12. For every integer s, Subset Vertex Cover is polynomial-time
solvable on (sP1 + P2 + P3)-free graphs.

Proof. Due to Lemma 3, we can take s = 0, so we only need to give a polynomial-
time algorithm for (P2 + P3)-free graphs. Hence, let (G,T, k) be an instance of
Subset Vertex Cover, where G = (V,E) is a (P2 + P3)-free graph.

First compute a minimum vertex cover of G. As G is (P2 +P3)-free, and thus
2K1,3-free, this takes polynomial time by Lemma 4. Remember the solution Svc.

We now compute a minimum T -vertex cover S of G that is not a vertex
cover of G. Then G−S must contain an edge between two vertices in G−T . We
branch by considering all O(n2) options of choosing this edge. For each chosen
edge uv we do as follows. As both u and v will belong to G−S for the T -vertex
cover S of G that we are trying to construct, we first add every neighbour of u
or v that belongs to T to S.

Computing Subset Vertex Covers 97

Let T ′ consist of all vertices of T that are neither adjacent to u nor to v. As
G is (P2 +P3)-free and uv ∈ E, we find that G[T ′] is P3-free and thus a disjoint
union of complete graphs. We call a connected component of G[T ′] large if it has
at least two vertices; else we call it small (so every small component of G[T ′] is
an isolated vertex). See also Fig. 3 for an illustration.

Case 1. The graph G[T ′] has at most two large connected components.
Let D1 and D2 be the large connected components of G[T ′] (if they exist). As
V (D1) and V (D2) are cliques in G[T], at most one vertex of D1 and at most one
vertex of D2 can belong to G − S. We branch by considering all O(n2) options
of choosing at most one vertex of D1 and at most one vertex of D2 to be these
vertices. For each choice of vertices we do as follows. We add all other vertices
of D1 and D2 to S. Let T ∗ be the set of vertices of T that we have not added to
S. Then T ∗ is an independent set.

We delete every edge between any two vertices in G− T . Now the graph G∗

induced by the vertices of T ∗ ∪ (V \ T) is bipartite (with partition classes T ∗

and V \ T). It remains to compute a minimum vertex cover S∗ of G∗. This can
be done in polynomial time by applying König’s Theorem. We let S consist of
S∗ together with all vertices of T that we had added in S already.

For each branch, we remember the output, and in the end we take a smallest
set S found and compare its size with the size of Svc, again taking a smallest set
as the final solution.

Case 2. The graph G[T ′] has at least three large connected components.
Let D1, . . . , Dp, for some p ≥ 3, be the large connected components of G[T ′].
Let A consists of all the vertices of the small connected components of G[T ′].

We first consider the case where G− S will contain a vertex w ∈ V \ T with
one of the following properties:

1. for some i, w has a neighbour and a non-neighbour in Di; or
2. for some i, j with i
= j, w has a neighbour in Di and a neighbour in Dj ; or
3. for some i, w has a neighbour in Di and a neighbour in A.

We say that a vertex w in G−S is semi-complete to some Di if w is adjacent to
all vertices of Di except at most one. We show the following claim that holds if
the solution S that we are trying to construct contains a vertex w ∈ V \ (S ∪T)
that satisfies one of the three properties above. See Fig. 3 for an illustration.

Claim. Every vertex w ∈ V \ (S ∪ T) that satisfies one of the properties 1–3 is
semi-complete to every V (Dj).

We prove the Claim as follows. Let w ∈ V \ (S ∪ T). First assume w satisfies
Property 1. Let x and y be vertices of some Di, say D1, such that wx ∈ E and
wy /∈ E. For a contradiction, assume w is not semi-complete to some Dj . Hence,
Dj contains vertices y′ and y′′, such that wy′ /∈ E and wy′′ /∈ E. If j ≥ 2, then
{y′, y′′, w, x, y} induces a P2 + P3 (as D1 and Dj are complete graphs). This
contradicts that G is (P2 + P3)-free. Hence, w is semi-complete to every V (Dj)
with j ≥ 2. Now suppose j = 1. As p ≥ 3, the graphs D2 and D3 exist. As w

98 N. Brettell et al.

Fig. 3. An illustration of the graph G in the proof of Theorem 12, where T consists
of the orange vertices, and p = 3. Edges in G[V \ T] are not drawn, and for x2 and
x3 some edges are partially drawn. None of x1, x4, x5 satisfy a property; x2 satisfies
Property 1 for D2 and Property 2 for D2 and D3; and x3 satisfies Property 3 for D3.

is semi-complete to every V (Dj) for j ≥ 2 and every Dj is large, there exist
vertices x′ ∈ V (D2) and x′′ ∈ V (D3) such that wx′ ∈ E and wx′′ ∈ E. However,
now {y′, y′′, x′, w, x′′} induces a P2 + P3, a contradiction.

Now assume w satisfies Property 2, say w is adjacent to x1 ∈ V (D1) and
to x2 ∈ V (D2). Suppose w is not semi-complete to some V (Dj). If j ≥ 3, then
the two non-neighbours of w in Dj , together with x1, w, x2, form an induced
P2 + P3, a contradiction. Hence, w is semi-complete to every V (Dj) for j ≥ 3.
If j ∈ {1, 2}, say j = 1, then let y, y′ be two non-neighbours of w in D1 and
let x3 be a neighbour of w in D3. Now, {y, y′, x2, w, x3} induces a P2 + P3, a
contradiction. Hence, w is semi-complete to V (D1) and V (D2) as well.

Finally, assume w satisfies Property 3, say w is adjacent to z ∈ A and x1 ∈
V (D1). If w not semi-complete to V (Dj) for some j ≥ 2, then two non-neighbours
of w in Dj , with z, w, x1, form an induced P2 + P3, a contradiction. Hence, w is
semi-complete to every V (Dj) with j ≥ 2. As before, by using a neighbour of w
in D2 and one in D3, we find that w is also semi-complete to V (D1).
We now branch by considering all O(n) options for choosing a vertex w ∈ V \
(S ∪ T) that satisfies one of the properties 1–3. For each chosen vertex w, we
do as follows. We remove all its neighbours in T , and add them to S. By the
above Claim, the remaining vertices in T form an independent set. We delete
any edge between two vertices from V \ T , so V \ T becomes an independent
set as well. It remains to compute, in polynomial time by König’s Theorem, a
minimum vertex cover in the resulting bipartite graph and add this vertex cover
to S. For each branch, we store S. After processing all of the O(n) branches, we
keep a smallest S, which we denote by S∗.

We are left to compute a smallest T -vertex cover S of G over all T -vertex
covers that contain every vertex from V \T that satisfy one of the properties 1–3.
We do this as follows. First, we put all vertices from V \T that satisfy one of the
three properties 1–3 to the solution S that we are trying to construct. Let G∗

be the remaining graph. We do not need to put any vertex from any connected
component of G∗ that contains no vertex from T in S.

Computing Subset Vertex Covers 99

Now consider the connected component D′
1 of G∗ that contains the vertices

from D1. As D′
1 contains no vertices from V \ T satisfying properties 2 or 3,

we find that D′
1 contains no vertices from A or from any Dj with j ≥ 2, so

V (D′
1) ∩ T = V (D1). Suppose there exists a vertex v in V (D′

1) \ V (D1), which
we may assume has a neighbour in D1 (as D′

1 is connected). Then, v is complete
to D1 as it does not satisfy Property 1. Then, we must put at least |V (D1)|
vertices from D′

1 in S, so we might just as well put every vertex of D1 in S. As
V (D′

1) ∩ T = V (D1), this suffices. If D′
1 = D1, then we put all vertices of D1

except for one arbitrary vertex of D1 in S.
We do the same as we did for D1 for the connected components D′

2, . . . , D
′
p

of G∗ that contain V (D2), . . . V (Dp), respectively.
Now, it remains to consider the induced subgraph F of G∗ that consists of

connected components containing the vertices of A. Recall that A is an indepen-
dent set. We delete every edge between two vertices in V \T , resulting in another
independent set. This changes F into a bipartite graph and we can compute a
minimum vertex cover SF of F in polynomial time due to König’s Theorem. We
put SF to S and compare the size of S with the size of S∗ and Svc, and pick the
one with smallest size as our solution.

The correctness of our algorithm follows from the above description. The
number of branches is O(n4) in Case 1 and O(n3) in Case 2. As each branch
takes polynomial time to process, this means that the total running time of our
algorithm is polynomial. This completes our proof. ��

5 The Proof of Theorems 5 and 6

We first prove Theorem 5, which we restate below.

Theorem 5 (restated). For a graph H
= rP1 + sP2 + P3 for any r ≥ 0,
s ≥ 2; rP1 + sP2 + P4 for any r ≥ 0, s ≥ 1; or rP1 + sP2 + Pt for any r ≥ 0,
s ≥ 0, t ∈ {5, 6}, Subset Vertex Cover on H-free graphs is polynomial-time
solvable if H ⊆i sP1+P2+P3, sP2, or sP1+P4 for some s ≥ 1, and NP-complete
otherwise.

Proof. Let H be a graph not equal to rP1 + sP2 + P3 for any r ≥ 0, s ≥ 2;
rP1 + sP2 + P4 for any r ≥ 0, s ≥ 1; or rP1 + sP2 + Pt for any r ≥ 0, s ≥ 0,
t ∈ {5, 6}. If H has a cycle, then we apply Theorem 1. Else, H is a forest. If H
has a vertex of degree at least 3, then the class of H-free graphs contains all K1,3-
free graphs, and we apply Theorem 7. Else, H is a linear forest. If H contains an
induced 2P3, then we apply Theorem 8. If not, then H ⊆i sP1 + P2 + P3, sP2,
or sP1 + P4 for some s ≥ 1. In the first case, apply Theorem 12; in the second
case Theorem 11; and in the third case Theorem 2. ��
We now prove Theorem 6, which we restate below.

Theorem 6 (restated). For a graph H, Subset Vertex Cover on instances
(G,T, k), where G[T] is H-free, is polynomial-time solvable if H ⊆i sP2 for some
s ≥ 1, and NP-complete otherwise.

100 N. Brettell et al.

Proof. First suppose P3 ⊆i H. As a graph that is a disjoint union of edges is
P3-free, we can apply Theorem 8. Now suppose H is P3-free. Then H ⊆i sP2 for
some s ≥ 1, and we apply Theorem 11. ��

6 Conclusions

Apart from giving a dichotomy for Subset Vertex Cover restricted to
instances (G,T, k) where G[T] is H-free (Theorem 6), we gave a partial classifi-
cation of Subset Vertex Cover for H-free graphs (Theorem 5). Our partial
classification resolved two open problems from the literature and showed that
for some hereditary graph classes, Subset Vertex Cover is computationally
harder than Vertex Cover (if P
= NP). This is in contrast to the situation
for graph classes closed under edge deletion. Hence, Subset Vertex Cover is
worth studying on its own, instead of only as an auxiliary problem (as in [5]).

Our results raise the question whether there exist other hereditary graph
classes on which Subset Vertex Cover is computationally harder than Ver-
tex Cover. Recall that Vertex Cover is polynomial-time solvable for perfect
graphs [11], and thus for weakly chordal graphs and chordal graphs. On the other
hand, we showed that Subset Vertex Cover is NP-complete for 2-unipolar
graphs, a subclass of 2P3-free weakly chordal graphs. Hence, as the first candi-
date graph class to answer this question, we propose the class of chordal graphs.
A standard approach for Vertex Cover on chordal graphs is dynamic pro-
gramming over the clique tree of a chordal graph. However, a naive dynamic
programming algorithm over the clique tree does not work for Subset Vertex
Cover, as we may need to remember an exponential number of subsets of a
bag (clique) and the bags can have arbitrarily large size. In the full version of
our paper, we show that Subset Vertex Cover can be solved in polynomial
time on graphs of bounded mim-width. Using known results, this immediately
implies the following:

Corollary 1. Subset Vertex Cover can be solved in polynomial time on
interval and circular-arc graphs.

Corollary 1 makes the open question of the complexity of Subset Vertex
Cover on chordal graphs, a superclass of the class of interval graphs, even more
pressing. Recall that Subset Feedback Vertex Set, which is also solvable in
polynomial time for graphs of bounded mim-width [3], is NP-complete for split
graphs and thus for chordal graphs [8].

We note that our polynomial algorithms for Subset Vertex Cover for
sP2-free graphs and (P2 +P3)-free graphs can easily be adapted for Weighted
Subset Vertex Cover for sP2-free graphs and (P2 + P3)-free graphs. every
s ≥ 1 [5] (see also Theorem 4).

Finally, to complete the classification of Subset Vertex Cover for H-free
graphs we need to solve the open cases where H = sP2 + P3 for s ≥ 2; or
H = sP2 + P4 for s ≥ 1; or H = sP2 + Pt for s ≥ 0 and t ∈ {5, 6}. Brettell
et al. [5] asked what the complexity of Subset Vertex Cover is for P5-free

Computing Subset Vertex Covers 101

graphs. In contrast, Vertex Cover is polynomial-time solvable even for P6-free
graphs [12]. However, the open cases where H = sP2+Pt (s ≥ 1 and t ∈ {4, 5, 6})
are even open for Vertex Cover on H-free graphs (though a quasi-polynomial
time algorithm is known [9,18]). So for those cases we may want to first restrict
ourselves to Vertex Cover instead of Subset Vertex Cover.

References

1. Alekseev, V.E.: The effect of local constraints on the complexity of determination of
the graph independence number. In: Combinatorial-Algebraic Methods in Applied
Mathematics, pp. 3–13 (1982). (in Russian)

2. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique
problem. Networks 19(2), 247–253 (1989)

3. Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node Multiway Cut and Subset
Feedback Vertex Set on graphs of bounded mim-width. Algorithmica 84(5), 1385–
1417 (2022)

4. Brandstädt, A., Mosca, R.: Maximum Weight Independent Set for �claw-free
graphs in polynomial time. Discrete Appl. Math. 237, 57–64 (2018)

5. Brettell, N., Johnson, M., Paesani, G., Paulusma, D.: Computing subset transver-
sals in H-free graphs. Theor. Comput. Sci. 902, 76–92 (2022)

6. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanič, M., Paulusma, D.: Minimum
connected transversals in graphs: new hardness results and tractable cases using
the price of connectivity. Theor. Comput. Sci. 705, 75–83 (2018)

7. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. Math. 164, 51–229 (2006)

8. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enu-
merating minimal subset feedback vertex sets. Algorithmica 69, 216–231 (2014)

9. Gartland, P., Lokshtanov, D.: Independent Set on Pk-free graphs in quasi-
polynomial time. Proc. FOCS 2020, 613–624 (2020)

10. Gartland, P., Lokshtanov, D., Masařík, T., Pilipczuk, M., Pilipczuk, M., Rzążewski,
P.: Maximum Weight Independent set in graphs with no long claws in quasi-
polynomial time. CoRR arXiv:2305.15738 (2023)

11. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
Ann. Discrete Math. 21, 325–356 (1984)

12. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-
rithm for Maximum Weight Independent Set on P6-free graphs. ACM Trans. Algo-
rithms 18, 4:1–4:57 (2022)

13. Lozin, V.V.: From matchings to independent sets. Discrete Appl. Math. 231, 4–14
(2017)

14. Lozin, V.V., Mosca, R.: Maximum regular induced subgraphs in 2P3-free graphs.
Theor. Comput. Sci. 460, 26–33 (2012)

15. Mohar, B.: Face covers and the genus problem for apex graphs. J. Comb. Theor.
Ser. B 82(1), 102–117 (2001)

16. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discrete Math. 340,
1210–1226 (2017)

17. Paesani, G., Paulusma, D., Rzażewski, P.: Classifying Subset Feedback Vertex
Set for H-Free Graphs. In: Bekos, M.A., Kaufmann, M. (eds.) Graph-Theoretic
Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science. vol.
13453. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15914-5_30

http://arxiv.org/abs/2305.15738
https://doi.org/10.1007/978-3-031-15914-5_30

102 N. Brettell et al.

18. Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Quasi-polynomial-time algorithm for
Independent Set in Pt-free graphs via shrinking the space of induced paths. Proc.
SOSA 2021, 204–209 (2021)

19. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathe-
maticae Universitatis Carolinae 15, 307–309 (1974)

20. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

On Computing Optimal Temporal
Branchings

Daniela Bubboloni1, Costanza Catalano1(B), Andrea Marino2, and Ana Silva3

1 Dipartimento di Matematica e Informatica, Università degli Studi di Firenze,
Firenze, Italy

{daniela.bubboloni,costanza.catalano}@unifi.it
2 Dipartimento di Statistica, Informatica, Applicazioni, Università degli Studi di

Firenze, Firenze, Italy
andrea.marino@unifi.it

3 Departamento de Matematica, Universidade Federal do Ceará, Fortaleza, Brazil
anasilva@mat.ufc.br

Abstract. The computation of out/in-branchings spanning the vertices
of a digraph (also called directed spanning trees) is a central problem
in theoretical computer science due to its application in reliable network
design. This concept can be extended to temporal graphs, which are
graphs where arcs are available only at prescribed times and paths make
sense only if the availability of the arcs they traverse is non-decreasing.
In this context, the paths of the out-branching from the root to the
spanned vertices must be valid temporal paths. While the literature has
focused only on minimum weight temporal out-branchings or the ones
realizing the earliest arrival times to the vertices, the problem is still
open for other optimization criteria. In this work we define four different
types of optimal temporal out-branchings (tob) based on the optimiza-
tion of the travelling time (st-tob), of the travel duration (ft-tob), of
the number of transfers (mt-tob) or of the departure time (ld-tob). For
d ∈ {st,mt, ld}, we provide necessary and sufficient conditions for the
existence of spanning d-tobs; when those do not exist, we characterize
the maximum vertex set that a d-tob can span. Moreover, we provide
a log linear algorithm for computing such d-tobs. Oppositely, we show
that deciding the existence of an ft-tob spanning all the vertices is NP-
complete. This is quite surprising, as all the above distances, including
ft, can be computed in polynomial time, meaning that computing tem-
poral distances is inherently different from computing d-tobs. Finally,
we show that the same results hold for optimal temporal in-branchings.

Keywords: Temporal graph · temporal network · link stream ·
optimal branching · optimal temporal walk

Daniela Bubboloni is partially supported by GNSAGA of INdAM (Italy). Daniela
Bubboloni, Costanza Catalano and Andrea Marino are partially supported by Ital-
ian PNRR CN4 Centro Nazionale per la Mobilità Sostenibile, NextGeneration EU -
CUP, B13C22001000001. Ana Silva is partially supported by: FUNCAP MLC-0191-
00056.01.00/22 and PNE-0112-00061.01.00/16, CNPq 303803/2020-7 (Brazil).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 103–117, 2023.
https://doi.org/10.1007/978-3-031-43587-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_8

104 D. Bubboloni et al.

1 Introduction

A temporal graph is a graph where arcs are active only at certain time instants,
with a possible delay or travelling time indicating the time it takes to tra-
verse an arc. There is not a unified terminology in the literature to call these
objects, as they are also known as stream graphs [14], dynamic networks [18],
and time-varying graphs [13] to name a few. Important categories of temporal
graphs are those of transport networks, where arcs are labeled by the times
of bus/train/flight departures and arrivals [9], and communication networks
as phone calls and emails networks, where each arc represents the interaction
between two parties [19]. Temporal graphs find application in a vast number
of fields such as neural, ecological and social networks, distributed computing,
epidemiology etc.; we refer the reader to [10] for a survey on temporal graphs.
Fundamental properties of static graphs, such as the fact that concatenation of
walks is a walk, do not necessarily hold in temporal graphs. For instance, a pub-
lic transports route can happen only at increasing time instants, since a person
cannot catch a bus that already left. This often makes temporal graphs much
harder to handle: e.g. computing strongly connected components takes linear
time in a static graph, but is an NP-complete problem in a temporal graph [17],
and the same happens to Eulerian walks [16], and many other problems. We will
see in the next section that this is also the case for temporal branchings.

Fig. 1. (a) Temporal graph with different walks from vertex 1 to 3, each one represented
by a style (two-style arcs belong to two walks). Bold: walk realizing ea(1, 3). Dotted:
walk realizing mt(1, 3). Dashed: walk realizing both st(1, 3) and ld(1, 3). Grey: walk
realizing ft(1, 3). (b) An ea-tob of G with root 1.

Background on Temporal Graphs. We denote by N the set of positive inte-
gers. Given n ∈ N, we set [n] := {x ∈ N : x ≤ n}. A temporal graph G is
a triple (V,A, τ), where V is the set of vertices, τ ∈ N is the lifetime, and
A ⊆ {(u, v, s, t) : u, v∈V, u
= v and s, t ∈ [τ], s ≤ t} is the set of temporal arcs.
We set |A| := m and |V | := n. Given a ∈ A, we write a = (t(a),h(a), ts(a), ta(a)),

On Computing Optimal Temporal Branchings 105

Table 1. Computational time of single source shortest paths in a temporal graph.

ea mt st ld ft

O(m) [11,20] O(m log n) [2] O(m log m) [1,20,21] O(m log m) [1] O(m log n) [2]

where t(a) and h(a) are, respectively, the tail and head vertices of the temporal
arc a, and ts(a) and ta(a) are, respectively, the starting time and the arrival time
of a. These functions are easily interpreted: ts(a) is the time at which it is possi-
ble to begin a trip along a from vertex t(a) to vertex h(a), and ta(a) is the arrival
time of that trip. The temporal graph G has the multidigraph DG = (V,A, t,h) as
underlying structure. Figure (1a) presents an example of temporal graph, where
every arc a is labeled by the ordered pair (ts(a), ta(a)). Each arc has an elapsed
time el(a) := ta(a) − ts(a). In temporal graphs, walks make sense only if they
are time-consistent. More precisely, a temporal (u, v)-walk of length k ∈ N in G
is a (u, v)-walk W = (u, a1, v1, . . . , vk−1, ak, v) in the underlying multidigraph
such that ta(ai) ≤ ts(ai+1) for all i ∈ [k − 1]; in this case we also say that v
is temporally reachable from u. For the walk W , we consider the starting time
ts(W) := ts(a1) and the arrival time ta(W) := ta(ak). The travelling time of W
is tt(W) :=

∑k
i=1 el(ai) and the duration of W is dur(W) := ta(W)−ts(W). The

length of W is denoted by
(W). Given u, v ∈ V , WG (u, v) is the set of temporal
walks from u to v in G. We consider the following optimization criteria.

Earliest Arrival time: eaG (u, v) := min{ta(W) : W ∈ WG (u, v)};
Latest Departure time: ldG (u, v) := max{ts(W) : W ∈ WG (u, v)};
Minimum Transfers: mtG (u, v) := min{
(W) : W ∈ WG (u, v)};
Fastest Time: ftG (u, v) := min{dur(W) : W ∈ WG (u, v)};
Shortest Travelling time: stG (u, v) := min{tt(W) : W ∈ WG (u, v)}.
Consistently with the literature [3], we refer to the above definitions as dis-
tances.1 All these concepts are widely used (see [1,2,9,11,20,21]), although some-
times they appear with different names. For any d ∈ {ea, ld,mt, ft, st}, we
say that a temporal (u, v)-walk realizes dG (u, v) if it attains the minimum (or
maximum if d=ld) of the functions in the corresponding definition of dG (u, v).
Figure (1a) shows, for each d, a temporal walk from vertex 1 to 3 realizing
dG (u, v). Each distance is computable in polynomial-time: Table 1 reports the
time to compute dG (r, v) from a given vertex r to all the other vertices v.2

Optimal temporal branchings. In static directed graphs, spanning branch-
ings are well-studied objects; they represent a minimal set of arcs that connect
a special vertex called the root to any other vertex (out-branching), or any ver-
tex to the root (in-branching). They are also called arborescences or spanning
directed trees, since their underlying structure is a tree. Spanning branchings
1 They do not necessarily satisfy the triangle inequality.
2 Notice that [2] deals with waiting-time constrains. Nonetheless, to the best of our

knowledge, their algorithms provide the best running time for distances such as mt
and ft also when there are no time-constrains or restrictions on the elapsed times.

106 D. Bubboloni et al.

Fig. 2. Example of d-tobs of the temporal graph G in Figure (1a) for different dis-
tances. The grey vertex is the root of the tob.

representing shortest distances are also well-studied. Their existence is guaran-
teed simply by the reachability of any vertex from/to the root and they can
be computed in O(m logm) time by Dijkstra’s algorithm [7]. Branchings are,
to cite a few, important for engineering applications and in social networks in
relation to information dissemination and spreading. We can similarly define
spanning branchings in temporal graphs, here called spanning tobs (Temporal
Out-Branchings) and tibs (Temporal In-Branchings), representing the minimal
set of temporal arcs that temporally connect any vertex from/to the root. This
definition of tob has already appeared in the literature [11,12].3 In the context
of urban mobility, suppose that a concert is just finished in a remote location
X, and you want to guarantee that every person can go back home via public
transports, while optimizing the number of bus/train rides. This problem can be
solved by a spanning tob with root X. We also may ask this tob to arrive the
earliest possible in every point of interest of the city, or to use the least number
of transfers, or optimize any of the distances that we have introduced before.
It is then natural to extend the notion of shortest distance branchings to the
temporal framework. For each d ∈ {ea, ld,mt, ft, st}, we call spanning d-tob
a spanning tob representing the distance d, i.e. for every vertex v, the unique
(r, v)-walk within the branching realizes d(r, v). We define similarly spanning
d-tibs. Figure (1b) and Fig. 2 show, for each distance, a spanning d-tob with
root 1 of the temporal graph in Figure (1a). Notice that the mt-tob can be
modified by adding the arc (2, 3, 9, 10) and by deleting the arc (5, 3, 8, 9) while
still obtaining a spanning mt-tob. Thus, in general, d-tobs are not unique.

In [11] the authors prove that a spanning tob as well as a ea-tob exists iff
every vertex is temporally reachable from the root and provide an algorithm to
compute them in O(m) time. Nonetheless, for all the other distances but ea, the
problem of computing optimal branching is still open and seems to be a more
difficult task. We start observing that for d
= ea, the temporal reachability
from the root to any vertex is no longer sufficient for the existence of a spanning
d-tob; this is showed in Fig. 3 where for each d ∈ {ld,mt, st, ft} we present
a temporal graph that does not admit a spanning d-tob even if every vertex is

3 Notice that [12] proposes it in a simplified context, while the conditions listed in the
definition of [11] are not all necessary to describe the concept.

On Computing Optimal Temporal Branchings 107

Fig. 3. Examples of temporal graphs that do not admit a spanning d-tob with root
r. Solid arcs represent a maximum d-tob.

temporally reachable from r. In Figures (3a) and (3c), observe that there is a
unique temporal path from r to y; call it P . This is clearly the only spanning
tob of the temporal graphs under consideration. However, P does not realize
d(r, x), which is realized by the temporal arc from r to x. Therefore, P is not
a d-tob. We emphasize that adding the arc from r to x to P would no longer
form a tob (the underlying graph would not be a branching). As for Figure (3b),
notice that the temporal path (r, (r, v, 1, 1), v, (v, x, 1, 1), x) is the only temporal
path realizing ft(r, x). Similarly, the temporal path (r, (r, v, 2, 2), v, (v, y, 2, 2), y)
is the only one realizing ft(r, y). This implies that a possible spanning d-tob
must be equal to the graph itself, which clearly is not a branching. Notice that
in the examples τ = 2 for d ∈ {mt, ld}, which is the smallest value possible,
as when τ = 1 the temporal graph reduces to a static graph. When d = st, we
have that τ = 3: it can be proven that this is again the smallest value possible.
Notice also that in all the examples, we can always find a d-tob on the vertex
set {r, v, x}, with d chosen accordingly; this tob is highlighted by solid arcs in
the figures. In Figure (3b), also the dotted arcs form an ft-tob on the vertex
set {r, v, y}. The following questions naturally arise:

1. When does a spanning d-tob exist?
2. If it does not exist, can we identify the maximum set of vertices that can be

spanned by a d-tob (maximum d-tob)?
3. Can we compute a maximum d-tob in polynomial time?
4. Can we answer to all the above questions for d-tibs?

Our contribution. In this paper we solve all the above problems. For each
d ∈ {st,mt, ld}, we provide a necessary and sufficient condition for the exis-
tence of a spanning d-tob in a temporal graph; this property is based on the
concept of optimal substructure. Moreover, we characterize the vertex set of a
maximum d-tob, which turns out to be uniquely identified; this property is
crucial to find efficient polynomial-time algorithms for computing a maximum
d-tob (Sect. 4). In particular, our algorithms compute a d-tob whose path from
the root arrives the earliest possible in every vertex. The characterization does
not hold for d = ft, and in fact we show that computing an ft-tob is an
NP-complete problem (Sect. 5). Finally, we show that the same results hold for
optimal temporal in-branchings (Sect. 3). A summary of our results and of the
computational time of our algorithms can be found in Table 2. We underline that

108 D. Bubboloni et al.

any algorithm computing d(r, v) for all vertices v of a temporal graph cannot
suffice by itself to find a d-tob. Indeed we have seen in Figure (3a) and (3c) that
d(r, y) is well-defined because y is temporally reachable from the root r, but no
d-tobs can span y. In other words, there are no guarantees that the union of
the shortest paths, with respect to the considered distance d, computed by the
aforementioned algorithms would form a tob. In addition, for d =ft we have
the extreme case where computing ft(r, v) is polynomial-time, but finding an
ft-tob is NP-complete. Also, applying Dijkstra’s algorithm on the static expan-
sion of a temporal graph returns a branching on the static expansion, but does
not guarantee to obtain a tob in the original temporal graph.

Table 2. Our contribution: summary results. Second column refers to the time to
compute any tob/tib, the others refer to the time to compute any d-tob/d-tib.

any ea- mt- st- ld- ft-

tob O(m) [11] O(m) [11] O(m log n) O(m log m) O(m log m) NP-c

tib O(m) O(m log m) O(m log n) O(m log m) O(m) NP-c

Further Related Results. We already mentioned the results of [11], where they
also show that finding minimum weight spanning tobs is NP-hard. Kuwata et.
al. [13] are interested in the temporal reachability from the root that realizes ea,
and they obtain it by making use of Dijsktra’s algorithm on the static expansion
of the temporal graph, which we already observed does not translate into a
tob in the original temporal graph. Different versions of the problem of finding
arc-disjoint tobs in temporal graphs are investigated in [4,12].

2 Preliminaries

We set N0 = N ∪ {0}, [n] := {x ∈ N : x ≤ n} and [n]0 := {x ∈ N0 : x ≤ n}, for
n ∈ N0. Given a set X and a property P, we say that X is minimal for property P
if X has property P, and for all Y � X , Y does not have property P. A digraph is
a pair D = (V,A) where V is the nonempty, finite set of vertices, and A ⊆ V ×V
is the set of arcs. Informally, a multidigraph is a digraph where multiple arcs are
allowed; it is formalized by a quadruple D = (V,A, t,h), where V is the set of
vertices, A the set of arcs and t,h : A→ V are respectively the head and the tail
function where ∀a∈A, t(a)
= h(a), i.e. no selfloops are allowed. The in-degree
and out-degree of v are defined respectively as d−

D (v) := |{a ∈A : h(a) = v}|,
d+

D (v) := |{a ∈ A : t(a) = v}|. A (u, v)-walk of length k ∈ N0 in D is an
alternating ordered sequence W = (u, a1, v1, . . . , vk−1, ak, vk = v) of vertices
u, v1, . . . , vk ∈ V and arcs a1, . . . , ak ∈ A such that t(a1) = u, h(ak) = v and
h(ai) = vi = t(ai+1) for all i ∈ [k − 1]. The set of vertices of W is denoted by
V (W) and the set of arcs of W by A(W). A path is a walk where the vertices are
all distinct. The concatenation of two walks W1 and W2 is denoted by W1 +W2.

On Computing Optimal Temporal Branchings 109

For h ∈ [k] the vh-prefix of W is the subwalk of W given by (u, a1, v1, . . . , vh);
the vh-suffix of W is the subwalk of W given by (vh, ah+1, . . . , ak, vk). Note that,
for a fixed z ∈ V (W), there are, in general, many z-prefixes and many z-suffixes
of W ; they are unique if W is a path. A digraph D = (V,A) is called an out-
branching (resp. in-branching) with root r ∈ V if for every v ∈ V there exists a
unique (r, v)-walk (resp. (v, r)-walk) in D. In a branching, every walk is a path.
A temporal graph G′ = (V ′, A′, τ ′) is a temporal subgraph of G = (V,A, τ) if
V ′ ⊆ V , A′ ⊆ A and τ ′ ≤ τ . For V ′ ⊆ V, we denote by G[V ′] the temporal
subgraph of G on vertex set V ′. When the temporal graph is clear from the
context, we usually omit the subscripts.

3 Temporal Branching and Preliminary Results

3.1 Temporal Out-Branching

In this section, we present the formal notion of temporal out-branching and
define related optimization problems.

Definition 1. A temporal graph B = (V,A, τ) is called a temporal out-
branching (tob) with root r ∈ V if A is a minimal set of temporal arcs such
that for all v ∈ V , there exists a temporal (r, v)-walk in B.

The following lemma provides characterizations of a tob, which are crucial for
the proofs of the results of Sect. 4.

Lemma 1. Let B=(V,A, τ) be a temporal graph. The following facts are equiv-
alent:

1. B is a TOB with root r;
2. For all v ∈ V there is a temporal (r, v)-walk in B. Additionally, d−

B (r) = 0
and, for all v ∈ V \ {r}, d−

B (v) = 1;
3. For all v ∈ V there is a temporal (r, v)-walk in B, and |A| = |V | − 1;
4. The underlying digraph DB of B is an out-branching with root r and for all

v ∈ V , the unique (r, v)-walk in B is temporal.

In a tob with root r, the unique temporal walk from r to v is a temporal path.

Definition 2. Let G = (V,A, τ) be a temporal graph and B = (VB , AB , τB) a
tob with root r. We say that G admits the tob B if B is a temporal subgraph of
G. B is also said to be a tob of G. B is called a spanning tob of G if VB = V ;
a maximum tob of G if |VB | is the largest possible.

We now expand the concept of tob to the various distances considered in the
introduction. The idea is that we are not only interested in temporally reaching
the maximum number of vertices from the root, but we want also to minimize
their distance from the root, which can translate into arriving the earliest possi-
ble, the fastest possible, by starting the journey the latest possible, by travelling
the shortest time possible or by making the least number of transfers possible,
depending on the preferences and needs.

110 D. Bubboloni et al.

Definition 3. Let d ∈ {ea, ld,mt, ft, st} and let B = (VB , AB , τB) be a tob
with root r of a temporal graph G = (V,A, τ). We say that B is a d-tob of G if
dB(r, v) = dG (r, v) for every v ∈ VB . B is a spanning d-tob of G if VB = V ; is
a maximum d-tob of G if |VB | is the largest possible.

Problem 1 (Maximum d-tob). Let d ∈ {ea, ld,mt, st, ft} and G be a temporal
graph. Find a maximum d-tob of G.

Problem 1 has already been solved for d = ea in [11]. Their result also implies
that a maximum ea-tob spans all the vertices that are temporally reachable
from the root. We will see that also for every d ∈ {ld,mt, st}, the vertex set
of a maximum d-tob of a temporal graph is uniquely determined, which is key
for the polynomiality of the related problems. However, the property of being
temporally reachable from the root is not sufficient anymore, as showed in Fig. 3.
Instead for ft, we show that the related problem is NP-complete. As we will see,
in the polynomial cases we can constrain ourselves to the earliest arrival paths
that realize the distances.

Definition 4. Given a temporal graph G = (V,A, τ), for every u, v ∈ V and d ∈
{mt, st, ld, ft}, we define eadG (u, v) := min{ta(W) : W realizes dG (u, v)}. A
tob B = (VB , AB , τB) of G with root r is called an ead-tob if B is a d-tob
and, for every v ∈ VB , eadB(r, v) = eadG (r, v). B is called spanning if VB = V ;
maximum if |VB | is the largest possible.

3.2 Temporal In-Branching

In this section, we present definitions of temporal in-branchings and prove that
the related problems are computationally equivalent to tobs.

Definition 5. A temporal graph B = (VB , AB , τB) is said a temporal in-
branching (tib) with root r if AB is a minimal set of temporal arcs such that for
all v ∈ V , there exists a temporal (v, r)-walk in B. A temporal graph G = (V,A, τ)
admits the tib B with root r if B is a temporal subgraph of G; we also say that
B is a tib of G. B is spanning if VB = V ; B is maximum if |VB | is the largest
possible. Given d ∈ {ea, ld,mt, ft, st} and B a tib of G with root r, we say
that B is a d-tib of G if ∀ v ∈ VB , dB(v, r) = dG (v, r). B is called a spanning
d-tib if VB = V ; a maximum d-tib if |VB | is the largest possible.

Problem 2 (Maximum d-tib). Let d ∈ {ea, ld,mt, st, ft} and G be a temporal
graph. Find a maximum d-tib of G.

The next proposition shows that finding maximum tibs can be reduced to finding
maximum tobs in an auxiliary temporal graph. We define the reversal of a
temporal graph G = (V,A, τ) as the temporal graph G� = (V,A�, τ) where the
order of the timesteps is reversed as well as the direction of the arcs. Formally,
A� = {(h(a), t(a), τ − ta(a) + 1, τ − ts(a) + 1) : a ∈ A} := {a� : a ∈ A}. A
similar transformation has been used in [3].

On Computing Optimal Temporal Branchings 111

Proposition 1. Given a temporal graph G, it holds that:

– B is a maximum ea-tib of G iff B� is a maximum ld-tob of G�;
– B is a maximum ld-tib of G iff B� is a maximum ea-tob of G�;
– For each d∈{mt, st, ft}, B is a maximum d-tib of G iff B� is a maximum

d-tob of G�.

4 Computing Maximum D-TOBs for D ∈ {MT, ST, LD}
The following concept allows us to establish a necessary and sufficient condition
for the existence of a spanning d-tob with root r in a temporal graph.

Definition 6. Let G be a temporal graph and W be a temporal (u, v)-walk in G.
For every d ∈ {ld,mt, ft, st} we say that:

– W is d-prefix-optimal if ∀x ∈ V (W), any x-prefix of W realizes dG (u, x);
– W is ead-prefix-optimal if it is d-prefix-optimal and ∀x∈V (W), any x-prefix

of W realizes eadG (u, x).

Theorem 1. Let G = (V,A, τ) be a temporal graph, r ∈ V and d ∈ {ld,mt, st}.
Then G admits a spanning d-tob with root r if and only if for all v ∈ V , there
exists a d-prefix-optimal temporal (r, v)-path in G.

Notice that Theorem 1 does not hold for d = ft. Indeed the temporal graph
in Figure (3b) has an ft-prefix-optimal path from r to any other vertex, but
does not admit a spanning ft-tob as previously observed. We are now ready to
characterize the vertex set of a maximum d-tob.

Corollary 1. Let G = (V,A, τ) be a temporal graph, r ∈ V , and d ∈
{ld,mt, st}. Then a maximum d-tob with root r of G has vertex set:

VB = {v ∈ V : there exists a d-prefix-optimal (r, v)-path in G}. (1)

Proof. Consider G[VB]. Let v∈VB and W a d-prefix-optimal (r, v)-temporal walk
in G. By definition of d-prefix-optimal walk, ∀u∈V (W), u ∈ VB , so W is also a
d-prefix-optimal walk in G[VB]. Hence by Theorem 1, G[VB] admits a spanning
d-tob B, which is a d-tob of G. We now show that B is maximum. It suffices
to prove that if V ′ ⊆ V is such that V ′ \ VB
= ∅, then G[V ′] does not admit a
spanning d-tob with root r. Let u ∈ V ′ \VB . By hypothesis there does not exist
a d-prefix-optimal temporal (r, u)-walk in G, hence there does not exist one in
G[V ′]. Thus, by Theorem 1, G[V ′] does not admit a spanning d-tob. ��
Corollary 1 shows that, even if v is temporally reachable from r, if none of
the walks that realize d(r, v) is d-prefix-optimal, then no d-tob can span
v. The next sections present algorithms for finding d-tobs of a given tem-
poral graph in polynomial time when d ∈ {mt, st, ld}. In particular, we
show that these algorithms always return an ead-tob. This implies that for

112 D. Bubboloni et al.

d ∈ {mt, st, ld}, the existence of a d-prefix-optimal (r, v)-path in G is equiv-
alent to the existence of an ead-prefix-optimal (r, v)-path in G. For d = ft
this is no longer true: indeed consider Figure (3b). The only ft-prefix-optimal
(r, y)-path is W = (r, (r, v, 2), v, (v, y, 2), y), but it is not eaft-prefix-optimal: in
fact, eaft(r, v) = 1 since the path (r, (r, v, 1), v) realizes ft(r, v) and arrives in
v at time 1, while W arrives in v at time 2. This difference will be crucial for
showing that computing an ft-tob is an NP-complete problem (Sect. 5).

4.1 Algorithm for mt

A maximum mt-tob of a temporal graph can be computed in polynomial time.
Due to space constraints, we do not report the whole algorithm here, while
providing an informal description of it instead.

Theorem 2. A maximum eamt-tob of a temporal graph, for a chosen root,
can be computed in O(m log n) time. In particular, a maximum mt-tob can be
computed in O(m log n) time.

First observe that, given an mt-prefix-optimal temporal (r, v)-walk W = (r =
v0, a1, v1, . . . , ak, vk = v), we have that mt(r, vi)=mt(r, vi+1) − 1 < mt(r, vi+1)
for all i ∈ [k − 1], i.e. the sequence of distances in any mt-prefix-optimal walk
is strictly increasing. The main idea of the algorithm is to compute a priori the
mt-distances of all vertices from the root, and then build the mt-tob guided
by these computed distances, using their strict monotonicity property. More
specifically, given h = max{mt(r, v) : v ∈ V }, the algorithm grows an mt-tob
starting from the root and adding, at step i∈ [h], all the vertices at distance i.
During this process, when adding some vertex v, we choose, among its neighbors
at distance i− 1, which one can be the parent of v. To choose the right parent,
we look at the incoming temporal arcs having tail in vertices at distance i − 1
and we consider only the arcs a′ = (u′, v, s′, t′) such that, if Wu′ is the unique
temporal (r, u′)-path in the mt-tob built so far, then s′ ≥ ta(Wu′), i.e. the new
arc can be concatenated with Wu′ to obtain a temporal (r, v)-path. Among the
arcs fulfilling these constraints, we choose a′ minimizing t′, the arrival time in v;
such arc a′ exists if and only if there exists an mt-prefix-optimal (r, v)-path in G.
We prove that such choice of a′ ensures that we are actually representing in the
tob a temporal (r, v)-path that realizes the distance mt(r, v) and has the earliest
arrival time among the paths realizing such distance, i.e. we are computing an
eamt-tob. The algorithm takes O(m log n) time to compute all the initial mt
distances (see Table 1), while the remaining part of the algorithm takes O(m)
time as it requires only one scan of each temporal arc.

4.2 Algorithm for ld and st

Algorithm 1 computes a maximum d-tob B with root r for a given temporal
graph when d ∈ {ld, st}. The issue is that if W =(r=v0, a1, . . . , ak, vk =v) is
a d-prefix-optimal walk, then it is possible to have d(r, vi−1)=d(r, vi) for some

On Computing Optimal Temporal Branchings 113

Algorithm 1: Computing a maximum d-tob, with d ∈ {ld, st}.
Input: A temporal graph G = (V, A, τ), a vertex r ∈ V , d ∈ {ld, st}.
Output: A maximum d-tob B = (VB , AB , τB) of G with root r.

1 EA(r) ← 0; ∀v ∈ V \ {r}, EA(v) ← +∞;
2 d(r) ← 0; ∀v ∈ V \ {r}, d(v) ← dG (r, v);
3 〈d1, . . . , dh〉 ← list of the elements of the set {d(v) : v∈V, d(v) <+∞} in

increasing order;
4 VB ← {r}; AB ← ∅; τB ← 0, D0 ← {r};
5 for i = 1, . . . , h do
6 Di ← {v ∈ V \ {r} : d(v) = di};
7 if d = ld then enqueue all (r, v, s, t) ∈ A such that s = di in a min priority

queue Q with weight t;
8 if d = st then enqueue all (u, v, s, t) ∈ A such that u ∈ D0 ∪ . . . ∪ Di−1 and

v ∈ Di in a min priority queue Q with weight t;
9 while Q �= ∅ do

10 dequeue a ← (u, v, s, t) from Q;
11 while s < EA(u) or t ≥ EA(v) or (d = st and t − s �= di − d(u)) do
12 if Q = ∅ then go to Line 5 with next value of i;
13 dequeue a ← (u, v, s, t) from Q;

14 end
/* a = (u, v, s, t) is s.t. a ∈ arg min(u′,v′,s′,t′)∈Q t′, s ≥ EA(u),

t < EA(v) = +∞, and if d = st, t − s = di − d(u). */

15 EA(v) ← t, VB ← VB ∪ {v}, AB ← AB ∪ {a}, τB ← max{τB , t};
16 enqueue all (v, v′, s′, t′) ∈ A such that v′ ∈ Di in Q with weight t′;
17 end

18 end

i∈ [k]. Indeed, if d = ld, then all the vertices in the walk share the same latest
departure time, i.e. ts(W) = ld(r, vi) for all i ∈ [k]. If d = st and el(ai) = 0
for some i∈ [k], then st(r, vi−1) = st(r, vi). However, in any case we have that
d(r, vi−1) ≤ d(r, vi) for all i∈ [k]. This implies that, by letting Di denote the set
of vertices at distance di from r with the distances di being in increasing order,
to choose the parent of each vertex of Di in B, we cannot look only at vertices in
D0 ∪ · · · ∪Di−1, but also at the ones in Di itself (in particular, only at the ones
in Di when d = ld). Note that this gives us an additional difficulty as we cannot
simply choose an arbitrary vertex v ∈ Di to be the next one to be added to B,
as it might happen that the good parent of v (i.e. the in-neighbor of v within
an ead-prefix-optimal (r, v)-walk) has not been added to B yet. To overcome
this, we add vertices in Di to B in increasing order of the value of ead(r, v).
Observe however that ead(r, v) is not known a priori, so to do that we use a
queue that keeps the outgoing temporal arcs from vertices in B in increasing
order of their arrival time. These ideas are formalized below. At step i of the for
loop at lines 5–18, Algorithm 1 adds to B the vertices of Di that are reachable by
a d-prefix-optimal walk. To this aim, it uses a min priority queue Q for temporal
arcs a with head vertices in Di with weight ta(a). For d = ld, Q is initialized

114 D. Bubboloni et al.

with all the outgoing temporal arcs from r with starting time di, as they are
the only arcs that can realize a latest departure time equal to di. For d = st,
Q is initialized with all the temporal arcs with tail in D0 ∪ . . . ∪Di−1 and head
in Di. The vector EA in the algorithm, initialized at +∞ for all the vertices
but the root, keeps track of the arrival time in the vertices every time they are
added to the tob. In the while loop at lines 9–17, we dequeue temporal arcs
from Q that cannot possibly be within an ead-prefix-optimal walk. Formally,
if such loop is not broken in line 12, then at the end we are left with an arc
a = (u, v, s, t) ∈ arg min(u′,v′,s′,t′)∈Q t′, i.e. an arc that minimizes the arrival
time in the queue, satisfying:

– s ≥ EA(u), so that a is temporally compatible with the temporal (r, u)-walk
Wu that is already present in the tob, i.e. Wu + (u, a, v) is a temporal walk;

– t < EA(v), which ensures that we add to the tob a new vertex each time;
– t− s = di − d(u) if d = st, ensuring that Wu + (u, a, v) realizes st(r, v).

We then add v and the temporal arc a to the tob and we update the arrival
time in v to EA(v) = t, which is equal to ead(r, v) and will be no longer updated
until the end of the algorithm. Finally, we add to Q all the outgoing arcs from v
with head vertices in Di. When at distance di there are no arcs satisfying these
constraints, i.e. the queue Q at line 12 is empty, we go to the next distance
di+1, as it means that we have already spanned all the possible vertices in Di.
The initial computation of all d(r, v) requires O(m logm) by Table 1. Concerning
the remaining part of the algorithm, the i-th iteration of the for loop considers
only arcs whose head is in Di, hence each arc is considered only in one of the
iterations of the for loop. Moreover, each arc is dequeued from Q at most once.
As the dequeue from Q costs O(logm) we obtain a running time of O(m logm).

Theorem 3. For any d∈{ld, st}, Algorithm 1 returns a maximum d-tob of
a temporal graph, for a chosen root, in O(m logm) time. Besides, the output is
an ead-tob.

5 Computing Maximum ft-tobs

As previously observed, Theorem 1 does not hold for d = ft. Indeed for ft the
problem becomes NP-complete even in the following very constrained situations:
when el(a) = 0 for all a ∈ A, also called nonstrict temporal graphs, and when
el(a) = 1 for all a ∈ A, also called strict temporal graphs (see e.g. [5,8]). The
nonstrict model is used when the time-scale of the measured phenomenon is
relatively big: this is the case in a disease-spreading scenario [22] where the
spreading speed might be unclear, or in time-varying graphs [17], where a single
snapshot corresponds e.g. to all the streets available within a day.4

4 The literature often focused on nonstrict/strict variations to provide stronger nega-
tive results. In this paper, we have used the more general model to provide stronger
positive results, while using the nonstrict/strict when providing negative ones.

On Computing Optimal Temporal Branchings 115

Theorem 4. Let G = (V,A, τ) be a temporal graph and r∈V . Deciding whether
G admits a spanning ft-tob with root r is NP-complete, even if τ = 2 and
el(a)=0 for every a ∈ A, or if τ = 3 and el(a)=1 for every a∈A.

Sketch of the proof. The problem is in NP, since computing ftG (r, v) for every
vertex v can be done in polynomial time (Table 1), and because testing whether
a given temporal subgraph B is a tob can be done in polynomial time. To
prove hardness, we make a reduction from 3-SAT, largely known to be NP-
complete [6,15]. For this, consider a formula φ in CNF form on variables X =
{x1, . . . , xn} and on clauses C = {c1, . . . , cm}. We first construct G = (V,A, τ)
for the case where every arc has elapsed time 0 (observe Figure (4a) to follow
the construction). First, let V = X ∪ C ∪ {r}. For each variable xi, add to A
the temporal arcs (r, xi, 1, 1) and (r, xi, 2, 2). Then, for each clause cj and each
variable xi appearing in cj , add temporal arc (xi, cj , 1, 1) if xi appears in cj
positively, while add the temporal arc (xi, cj , 2, 2) if xi appears in cj negatively.
It is possible to prove that φ is satisfiable if and only if there exists a spanning
ft-tob rooted in r. In the case where el(a) = 1 for every arc a, the reduction is
similar to the previous one. Specifically, for each xi ∈ X, we add arcs (r, xi, 1, 2)
and (r, xi, 2, 3). For each clause cj , if xi appears positively in cj we add the
temporal arc (xi, cj , 2, 3), while if xi appears negatively in cj we add the temporal
arc (xi, cj , 3, 4), see also Figure (4b). Similar correctness proof applies. ��

Fig. 4. Example of the construction in the proof of Theorem 4. Clause c1 is equal to
(x1 ∨ x2 ∨ ¬x3). The value on top of each arc represents the starting time.

The gaps left by the above theorem are when τ = 1 or when τ = 2 and
el(a) ≥ 1 for all a ∈ A. In the former case, the temporal graph reduces to a static
graph, so the problem is solvable in polynomial time by Dijkstra’s algorithm. In
the latter case, one can see that the maximum ft-tob rooted in r contains
exactly r and every u ∈ V such that (r, u, 1, 2) is an arc in G.

6 Conclusions and Future Work

We have showed that for d ∈ {mt,st,ld}, a spanning d-tob does not always
exist, but computing a d-tob that spans the maximal number of vertices is

116 D. Bubboloni et al.

polynomial-time. When d=ft, also finding a maximum ft-tob becomes NP-
complete. The fact that not all the vertices can be spanned by a maximum
d-tob could be an issue, for example, in a public transports setting, where we
still want to reach all possible places. A natural follow-up of our work would
be to relax the definition of spanning d-tob, by asking to find a subgraph that
reaches all the vertices from the root with a path realizing the distance, while
having the least amount of arcs possible. Preliminary results suggest that this
might become a much harder problem.

References

1. Himmel, A.-S., Bentert, M., Nichterlein, A., Niedermeier, R.: Efficient computation
of optimal temporal walks under waiting-time constraints. In: Cherifi, H., Gaito,
S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019.
SCI, vol. 882, pp. 494–506. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-36683-4 40

2. Brunelli, F., Viennot, L.: Minimum-cost temporal walks under waiting-time con-
straints in linear time. arXiv:2211.12136 (2023)

3. Calamai, M., Crescenzi, P., Marino, A.: On computing the diameter of (weighted)
link streams. ACM J. Exp. Algorithmics 27, 4.3:1–4.3:28 (2022)

4. Campos, V., Lopes, R., Marino, A., Silva, A.: Edge-disjoint branchings in temporal
graphs. Electronic J. Combinatorics 28 (2020). https://doi.org/10.1007/978-3-030-
48966-3 9

5. Casteigts, A.: Finding structure in dynamic networks. arXiv:1807.07801 (2018)
6. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the

Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)
7. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill,

MIT Press, third ed. edn. (2001)
8. Deligkas, A., Potapov, I.: Optimizing reachability sets in temporal graphs by delay-

ing. Inf. Comput. 285, 104890 (2022)
9. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm. ACM

J. Exp. Algorithmics 23 (2018)
10. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
11. Huang, S., Fu, A.W.C., Liu, R.: Minimum spanning trees in temporal graphs. In:

ACM SIGMOD International Conference on Management of Data, pp. 419–430
(2015)

12. Kamiyama, N., Kawase, Y.: On packing arborescences in temporal networks. Inf.
Process. Lett. 115(2), 321–325 (2015)

13. Kuwata, Y., Blackmore, L., Wolf, M., Fathpour, N., Newman, C., Elfes, A.: Decom-
position algorithm for global reachability analysis on a time-varying graph with an
application to planetary exploration. In: Intelligent Robot and System, pp. 3955–
3960 (2009)

14. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-
eling of interactions over time. Soc. Netw. Anal. 8(1), 611–6129 (2018)

15. Levin, L.: Universal sequential search problems. Problemy peredachi informatsii
9(3), 115–116 (1973)

16. Marino, A., Silva, A.: Eulerian walks in temporal graphs. Algorithmica 85, 805–830
(2023)

https://doi.org/10.1007/978-3-030-36683-4_40
https://doi.org/10.1007/978-3-030-36683-4_40
http://arxiv.org/abs/2211.12136
https://doi.org/10.1007/978-3-030-48966-3_9
https://doi.org/10.1007/978-3-030-48966-3_9
http://arxiv.org/abs/1807.07801

On Computing Optimal Temporal Branchings 117

17. Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components
in time-varying graphs. Chaos: Interdisc. J. Nonlinear Sci. 22(2) (2012)

18. Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.:
Anomaly detection in dynamic networks: a survey. WIREs Comput. Stat. 7(3),
223–247 (2015)

19. Tang, J.K., Mascolo, C., Musolesi, M., Latora, V.: Exploiting temporal complex
network metrics in mobile malware containment. In: 2011 IEEE International Sym-
posium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–9 (2010)

20. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems in temporal
graphs. Proc. VLDB Endow. 7(9), 721–732 (2014)

21. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for
temporal path computation. Knowl. Data Eng. 28(11), 2927–2942 (2016)

22. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding
small separators in temporal graphs. J. Comp. Syst. Sci. 107, 72–92 (2020)

Contracting Edges to Destroy a Pattern:
A Complexity Study

Dipayan Chakraborty1,2 and R. B. Sandeep3(B)

1 LIMOS, Université Clermont Auvergne, Aubière, France
dipayan.chakraborty@uca.fr

2 Department of Mathematics and Applied Mathematics,
University of Johannesburg, Johannesburg, South Africa

3 Department of Computer Science and Engineering, Indian Institute of Technology
Dharwad, Dharwad, India

sandeeprb@iitdh.ac.in

Abstract. Given a graph G and an integer k, the objective of the Π-
Contraction problem is to check whether there exists at most k edges
in G such that contracting them in G results in a graph satisfying the
property Π. We investigate the problem where Π is ‘H-free’ (without
any induced copies of H). It is trivial that H-free Contraction is
polynomial-time solvable if H is a complete graph of at most two vertices.
We prove that, in all other cases, the problem is NP-complete. We then
investigate the fixed-parameter tractability of these problems. We prove
that whenever H is a tree, except for seven trees, H-free Contraction
is W[2]-hard. This result along with the known results leaves behind only
three unknown cases among trees.

Keywords: Edge contraction problem · H-free · NP-completeness ·
W[2]-hardness · Trees

1 Introduction

Let Π be any graph property. Given a graph G and an integer k, the objective of
the Π-Contraction problem is to check whether G contains at most k edges
so that contracting them results in a graph with property Π. This is a vertex
partitioning problem in disguise: Find whether there is a partition P of the ver-
tices of G such that each set in P induces a connected subgraph of G, G/P
(the graph obtained by contracting each set in P into a vertex) has property

This work is partly sponsored by SERB (India) grants “Complexity dichotomies for
graph modification problems” (SRG/2019/002276), and “Algorithmic study on heredi-
tary graph properties” (MTR/2022/000692), and a public grant overseen by the French
National Research Agency as part of the “Investissements d’Avenir” through the
IMobS3 Laboratory of Excellence (ANR-10-LABX-0016), and the IDEX-ISITE ini-
tiative CAP 20-25 (ANR-16-IDEX-0001). We also acknowledge support of the ANR
project GRALMECO (ANR-21-CE48-0004).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 118–131, 2023.
https://doi.org/10.1007/978-3-031-43587-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_9

Contracting Edges to Destroy a Pattern: A Complexity Study 119

Π, and n− |P| ≤ k. These problems, for various graph properties Π, have been
studied for the last four decades. Asano and Hirata [2] proved that the problem
is NP-complete if Π is any of the following classes - planar, series-parallel, out-
erplanar, chordal. When Π is a singleton set {H}, then the problem is known
as H -Contraction. Brouwer and Veldman [5] proved that H -Contraction
is polynomial-time solvable if H is a star, and NP-complete if H is a connected
triangle-free graph other than a star graph. Belmonte, Heggernes, and van ’t
Hof [3] proved that it is polynomial-time solvable when H is a split graph. Golo-
vach, Kaminski, Paulusma, and Thilikos [13] studied the problem when Π is
‘minimum degree at least d’ and proved that the problem is NP-complete even
for d = 14 and W[1]-hard when parameterized by k. Heggernes, van ’t Hof,
Lokshtanov, and Paul [16] proved that the problem is fixed parameter tractable
when Π is the class of bipartite graphs. Guillemot and Marx [14] obtained a
faster FPT algorithm for the problem. Cai, Guo [8], and Lokshtanov, Misra, and
Saurabh [20] proved that the problem is W[2]-hard when Π is the class of chordal
graphs. Garey and Johnson [11] mentioned that, given two graphs G and H, the
problem of checking whether H can be obtained from G by edge contractions
is NP-complete. Edge contraction has applications in Graph minor theory (see
[21]), Hamiltonian graph theory [17], and geometric model simplification [12].

We consider the H-free Contraction problem: Given a graph G and
an integer k, find whether G can be transformed, by at most k edge contrac-
tions, into a graph without any induced copies of H. The parameter we con-
sider is k. Unlike graph contraction problems, other major graph modification
problems are well-understood for these target graph classes. In particular, P
versus NP-complete dichotomies are known for H-free Edge Editing, H-
free Edge Deletion, H-free Edge Completion [1], and H-free Vertex
Deletion [19] (here, the allowed operations are edge editing, edge deletion,
edge completion, and vertex deletion respectively). It is also known that all
these problems are in FPT for every graph H [6]. The picture is far from com-
plete for H-free Contraction. See Table 1. It is trivial to note that H-free
Contraction is polynomial-time solvable if H is a complete graph of at most
2 vertices. Cai, Guo [8,15], and Lokshtanov, Misra, and Saurabh [20] proved the
following results for H-free Contraction.

– FPT when H is a complete graph
– If H is a path or a cycle, then the problem is FPT when H has at most 3

edges, and W[2]-hard otherwise.
– W[2]-hard when H is 3-connected but not complete, or a star graph on at

least 5 vertices, or a diamond.

The W[2]-hardness results mentioned above also imply NP-completeness of the
problems. Guo [15] proved that the problem is NP-complete when H is a com-
plete graph on t vertices, for every t ≥ 3. Eppstein [10] proved that the Hadwiger
number problem (find whether the size of a largest clique minor of a graph is at
least k) is NP-complete. This problem is essentially 2K1-free Contraction,
if we ignore the parameter. This result implies that the problem is NP-complete
when H is a P3. We build on these results and prove the following.

120 D. Chakraborty and R. B. Sandeep

Table 1. Complexities of various graph modification problems where the target prop-
erty is H-free. The number of vertices, the number of edges, and the number of nonedges
in H are denoted by n, m, m′ respectively.

Problem P NPC FPT W-hard

Edge Editing n ≤ 2 [trivial] otherwise [1] For all H [6]

Edge Deletion m ≤ 1 [trivial] otherwise [1] For all H [6]

Edge Completion m′ ≤ 1 [trivial] otherwise [1] For all H [6]

Vertex Deletion n ≤ 1 [trivial] otherwise [19] For all H [6]

Edge Contraction K1, K2 [trivial] otherwise

[Theorem 1]

Kt (t ≥ 3) [15,20],

P3, P4, K2 + K1([8,20],

MSO1 expressibility)

W[2]-hard for 3-connected

non-complete graphs,

diamond [8,15], Ct

(t ≥ 4) [8,20], all trees

except 7

trees [Theorem 2]

– H-free Contraction is NP-complete if H is not a complete graph on at
most 2 vertices.

– H-free Contraction is W[2]-hard if H is a tree which is neither a star on

at most 4 vertices (, , ,) nor a bistar in { , , }.

Our W[2]-hardness results, along with known positive results, leaves behind only

three open cases among trees - , , .
Due to space constraints, many proofs are moved to a full version of the

paper.

2 Preliminaries

Graphs. All graphs considered in this paper are simple and undirected. A
complete graph and a path on t vertices are denoted by Kt and Pt respectively.
A universal vertex of a graph is a vertex adjacent to every other vertex of the
graph. An isolated vertex is a vertex with degree 0. For an integer t ≥ 0, a
star on t + 1 vertices, denoted by K1,t, is a tree with a single universal vertex
and t degree-1 vertices. The universal vertex in K1,t is also called the center of
the star. For integers t, t′ such that t ≥ t′ ≥ 0, a bistar on t + t′ + 2 vertices,
denoted by Tt,t′ , is a tree with two adjacent vertices v and v′, where t degree-1
vertices are attached to v and t′ degree-1 vertices are attached to v′. The bistar
Tt,0 is the star K1,t+1 and the bistar T1,1 is P4. We say that vv′ is the central
edge of the bistar. By G1 + G2 we denote the disjoint union of the graphs G1

and G2. A graph is H-free if it does not contain any induced copies of H. In a
graph G, replacing a vertex v with a graph H is the graph obtained from G by
removing v, introducing a copy of H, and adding edges between every vertex of
the H and every neighbor of v in G. A separator S of a connected graph G is a
subset of its vertices such that G− S (the graph obtained from G by removing
the vertices in S) is disconnected. A separator is universal if every vertex of the
separator is adjacent to every vertex outside the separator. We will be using the

Contracting Edges to Destroy a Pattern: A Complexity Study 121

term ‘universal K1 (resp. K2) separator’ to denote a universal separator which
induces a K1 (resp. K2). Let V ′ be a subset of vertices of a graph H. By H[V ′]
we denote the graph induced by V ′ in H. For a graph G and two subsets A and
B of vertices of G, by E[A,B] we denote the set of edges in G, where each edge
in the set is having one end point in A and the other end point in B.

Contraction. Contracting an edge uv in a graph G is the operation in which
the vertices u and v are identified to be a new vertex w such that w is adjacent
to every vertex adjacent to either u or v. Given a graph G and a subset F of
edges of G, the graph G/F obtained by contracting the edges in F does not
depend on the order in which the edges are contracted. Every vertex w in G/F
represents a subset W of vertices (which are contracted to w) of G such that
W induces a connected graph in G. Let GF be the subgraph of G containing all
vertices of G and the edges in F . There is a partition P of vertices of G implied
by F : Every set in P corresponds to the vertices of a connected component in
GF . We note that many subsets of edges may imply the same partition - it
does not matter which all edges of a connected subgraph are contracted to get
a single vertex. The graph G/F is nothing but the graph in which there is a
vertex corresponding to every set in P and two vertices in G/F are adjacent if
and only if there is at least one edge in G between the corresponding sets in P.
The graph G/F is equivalently denoted by G/P. Assume that P ′ is a partition
of a subset of vertices of G. Then by G/P ′ we denote the graph obtained from
G by contracting each set in P ′ into a single vertex. The cost of a set P in P is
the number |P | − 1, which is equal to the minimum number of edges required to
form the set P . The cost of P, denoted by cost(P), is the sum of costs of the sets
in P. We observe that |P|+cost(P) = n, where n is the number of vertices of G.
We say that F touches a subset W of vertices of G, if there is at least one edge
uv in F such that either u or v is in W . Let u, v be two non-adjacent vertices of
G. Identifying u and v in G is the operation of removing u and v, adding a new
vertex w, and making w adjacent to every vertex adjacent to either u or v.

Fixed Parameter (in)tractability. A parameterized problem is fixed-
parameter tractable (FPT) if it can be solved in time f(k)|I|O(1)-time, where
f is a computable function and (I, k) is the input. Parameterized problems fall
into different levels of complexities which are captured by the W-hierarchy. A
parameterized reduction from a parameterized problem Q′ to a parameterized
problem Q is an algorithm which takes as input an instance (I ′, k′) of Q′ and
outputs an instance (I, k) of Q such that the algorithm runs in time f(k′)|I ′|O(1)

(where f is a computable function), and (I ′, k′) is a yes-instance of Q′ if and
only if (I, k) is a yes-instance of Q, and k ≤ g(k′) (for a computable function g).
We use parameterized reductions to transfer fixed-parameter intractability. For
more details on these topics, we refer to the textbook [9]. The problem that we
deal with in this paper is defined as follows.

122 D. Chakraborty and R. B. Sandeep

H-free Contraction: Given a graph G and an integer k, can G be mod-
ified into an H-free graph by at most k edge contractions?

3 NP-Completeness

In this section we prove that H-free Contraction is NP-complete whenever
H is not a complete graph of at most two vertices. First we obtain reductions
for the cases when H is connected but does not have any universal K1 separator
and universal K2 separator. Then we deal with non-star graphs with universal
K1 separator or universal K2 separator. Next we resolve the case of stars. Then
the cases when H is a 2K2 or a K2 +K1 are handled. These come as base cases
in the inductive proof of the main result of the section. We crucially use the
following results.

Proposition 1 ([10,15]). H-free Contraction is NP-complete when H is
a 2K1, or a P3, or a Kt, for any t ≥ 3.

3.1 A General Reduction

Inspired by a reduction by Asano and Hirata [2], we introduce the following
reduction from Vertex Cover which handles connected graphs H without any
universal K1 separator and universal K2 separator.

Construction 1. Let G′ be a graph without any isolated vertices, and H be a
connected non-complete graph. We obtain a graph G from G′ and H as follows.

– Subdivide each edge of G′ once, i.e., for every edge uv, introduce a new vertex
and make it adjacent to both u and v, and delete the edge uv.

– Replace each new vertex by a copy H.
– Let w be a non-universal vertex of H (the existence of w is guaranteed as H

is not a complete graph). Identify w of every copy of H (introduced in the
previous step) to be a single vertex named w.

Let the resultant graph be G. The vertices in G copied from G′ form the set
V ′, which forms an independent set in G. For each edge uv in G′, the vertices,
except w, of the copy of H is denoted by Wuv. By W we denote any such set. We
note that w is adjacent to every vertex in V ′, as G′ does not have any isolated
vertices. This completes the construction. An example is shown in Fig. 1.

Let H be a connected non-complete graph with h vertices and without any
universal K1 or K2 separator. Let G′ be a graph without any isolated vertices.
Let G be obtained from (G′,H) by Construction 1. Assume that (G′, k) is a
yes-instance of Vertex Cover and let T be any vertex cover of size at most
k of G′. Let F = {wu : u ∈ T}. Let w itself denote the vertex obtained by
contracting the edges in F . It can be seen that w is a universal vertex in G/F .
If we remove w from G/F , then the resultant graph is a disjoint union of W ’s

Contracting Edges to Destroy a Pattern: A Complexity Study 123

w

z

x y

Wxz Wyz

Wxy

Fig. 1. Construction of G from (G′, H) by Construction 1, where G′ is a triangle and
H is a P4. The vertices of G′ in G are darkened.

and graphs obtained by adding universal vertices to W . This helps us to prove
that G/F is H-free. Let F be a solution of (G, k). Then we can create a vertex
cover T of G′ as follows: If F touches u for some vertex u ∈ V ′, then add u to
T . If F touches an edge in the graph induced by Wuv ∪ {w}, then arbitrarily
add either u or v in T . Since H is induced by Wuv ∪ {w} for every uv in G′, the
graph induced by Wuv ∪ {u, v, w} is touched by F . Therefore, T contains either
u or v. Thus we obtain Lemma 1.

Lemma 1. Let H be a connected non-complete graph with neither a universal
K1 separator nor a universal K2 separator. Then H-free Contraction is
NP-complete.

3.2 Graphs with Universal Clique Separators

Now we handle the graphs H with either a universal K1 separator (except stars)
or with a universal K2 separator. We note that H cannot have both a universal
K1 separator and a universal K2 separator. Further H cannot have more than
one such separator.

Construction 2. Let G′,H be any graphs and let V ′ be any subset of vertices of
H. Let b, c, k be positive integers. We obtain a graph G from (G′,H, V ′, b, c, k) as
follows. For every set S of vertices of G′, where S induces a clique on b vertices
in G′, do the following: Introduce k+c copies of H[V ′] and make every vertex of
the copies adjacent to every vertex of S. Let WS denote the set of new vertices
introduced for S, and let W be the set of all new vertices.

Let H be a graph with a universal K1 separator or a universal K2 separator.
Let the set of vertices of the separator be denoted by K. Assume that there exists
at least two non-isomorphic components in H − K (therefore, H cannot be a
star). Let J be a component in H −K with minimum number of vertices. Let c
be the number of times J appears (as a component) in H−K. Let V ′ be the set
of vertices of a copy of J . Let H ′ be the graph obtained from H by removing the
vertices of every component isomorphic to J in H−K. Let (G′, k) be an instance

124 D. Chakraborty and R. B. Sandeep

Fig. 2. Construction of G from (G′, H, V ′, b, c, k) by Construction 2, where G′ is a
triangle and H is a paw. Since paw has a universal K1 separator (denote it by K),
b = |K| = 1. Since we get a K1 and a K2 after removing the universal K1 separator
from paw, the smallest component is K1. Therefore V ′ contains a single vertex. Since
there are only one copy of K1 (as a component) in H − K, c = 1. Assume that k = 1.
The vertices of G′ in G are darkened.

of H ′-free Contraction. Let G be obtained from (G′,H, V ′, b = |K|, c, k) by
Construction 2. An example of the construction is shown in Fig. 2.

Let F ′ be a solution of (G′, k). If there is an induced H in G/F ′ then every
vertex in W can only act as a vertex in J in the induced H. Therefore, there will
be an induced H ′ in G′/F ′, which is a contradiction. Unmanageable number of
copies of J attached to the cliques of size b in G′ ensures that one has to kill all
H ′s in G′ to kill all H in G. This gives us Lemma 2.

Lemma 2. Let H be a graph with a universal K1 separator or a universal K2

separator, denoted by K. Assume that H−K has at least two components which
are not isomorphic. Let J be a component in H − K with minimum number
of vertices. Let H ′ be obtained from H by removing all components of H −
K isomorphic to J . Then there is a polynomial-time reduction from H ′-free
Contraction to H-free Contraction.

What remains to handle is the case when H has a universal K1 separator or
a universal K2 separator K such that H −K is a disjoint union of a graph J .
The diamond graph is an example. For this we need the concept of an enforcer
- a structure to forbid contraction of certain edges. Enforcers are used widely
in connection with proving hardness results for edge modification problems (see
[7,15,22]). We use enforces to come up with a reduction which gives us Lemma 3.

Lemma 3. Let H be a graph with a universal K1 separator or a universal K2

separator, denoted by K. Assume that H − K is a disjoint union of t copies
of a graph J , for some t ≥ 2. Let H be not a star and let H ′ be tJ . Then
there is a polynomial-time reduction from H ′-free Contraction to H-free
Contraction.

3.3 Stars and Small Graphs

Here, we resolve the cases of 2K2, K2 + K1, and star graphs. We start with a
reduction for 2K2.

Construction 3. Let G′ be a graph and k be an integer. We obtain a graph G
by attaching k + 1 pendant vertices, denoted by a set Zu, to every vertex u in
G′. Let Z denote the set of all newly added vertices.

Contracting Edges to Destroy a Pattern: A Complexity Study 125

Let (G′, k) be an instance of 2K1-free Contraction. We obtain an instance
(G, k) of 2K2-free Contraction by applying Construction 3 on (G′, k).

Lemma 4. Let (G′, k) be a yes-instance of 2K1-free Contraction. Then
(G, k) is a yes-instance of 2K2-free Contraction.

Proof. Let P ′ be a partition of vertices of G′ such that cost(P ′)≤ k and G′/P ′

is H-free. We obtain a partition P of vertices of G from P ′ by introducing
singleton sets corresponding to the vertices in Z. Clearly, cost(P)=cost(P ′)≤ k.
Since there is no edge induced by the sets corresponds to vertices in Z, we obtain
that if G/P is not 2K2-free, then there is an induced 2K1 in G′/P ′, which is a
contradiction.

Lemma 5. Let (G, k) be a yes-instance of 2K2-free Contraction. Then
(G′, k) is a yes-instance of 2K1-free Contraction.

Proof. Let P be a partition of vertices of G such that G/P is 2K2-free and
cost(P)≤ k. We obtain a partition P ′ of vertices of G′ as follows: For every set
P ∈ P, include P \Z in P ′. Since P induces a connected graph in G, P \Z induces
a connected graph in G′. Assume that there is a 2K1 induced by P ′

u, P
′
v ∈ P ′.

Let u ∈ P ′
u and v ∈ P ′

v. Since there is a set Zu of k+1 pendant vertices attached
to u and a set Zv of k+1 pendant vertices attached to v, at least one vertex from
Zu and at least one vertex from Zv form singleton sets in P. Then, those two
sets along with the sets containing P ′

u and the set containing P ′
v in P induces a

2K2 in G/P, which is a contradiction.

Now, the NP-completeness of 2K2-free Contraction follows from that of
2K1-free Contraction (Proposition 1) and Lemmas 4 and 5.

Lemma 6. 2K2-free Contraction is NP-complete.

The hardness ofK2+K1-free Contraction can be proved by a reduction from
Domatic Number. Domatic number of a graph is the size of a largest set of
disjoint dominating sets of the graph, which partitions the vertices of the graph.
For example, the domatic number of a complete graph is the number of vertices
of it, and that of a star graph is 2. The Domatic Number problem is to find
whether the domatic number of the input graph is at least k or not. It is known
that Domatic Number is NP-complete [11] even for various classes of graphs [4,
18]. Recall thatK2+K1-free graphs are exactly the class of complete multipartite
graphs. The reduction that we use is exactly the same as the reduction for the
NP-completeness of Hadwiger number problem (which is equivalent to 2K1-free
Contraction) described by Eppstein [10]. The proof requires some adaptation.

Lemma 7. K2 +K1-free Contraction is NP-complete.

A reduction from 2K1-free Contraction resolves the case of star graph of at
least 4 vertices.

Lemma 8. For t ≥ 3, K1,t-free Contraction is NP-complete.

126 D. Chakraborty and R. B. Sandeep

3.4 Putting Them Together

Recall that the reduction from Vertex Cover does not handle disconnected
graph. This is the main ingredient that remains to be added to obtain the main
result of the section. This turns out to be easy. Guo [15] has a reduction for
transferring the hardness ofH ′-free Contraction toH-free Contraction,
where H ′ is any component of H.

Proposition 2 ([15]). Let H be a disconnected graph. Let H ′ be any component
of it. Then there is a polynomial-time reduction from H ′-free Contraction
to H-free Contraction.

Proposition 2 does not help us to prove the hardness when every component of
H is either a K1 or a K2. But there are simple reductions to handle them.

Lemma 9. Let H be a disconnected graph with an isolated vertex v. There is a
polynomial-time reduction from (H − v)-free Contraction to H-free Con-
traction.

Repeated application of Lemma 9 implies that there is a polynomial-time reduc-
tion from 2K1-free Contraction to tK1-free Contraction, for every
t ≥ 3. Then the NP-Completeness of 2K1-free Contraction (Proposition 1)
implies Lemma 10.

Lemma 10. For every t ≥ 3, tK1-free Contraction is NP-complete.

Now, we handle the case when H is a disjoint union of t copies of K2.

Lemma 11. Let H = tK2, for any integer t ≥ 3 and let H ′ be (t − 1)K2.
There is a polynomial-time reduction from H ′-free Contraction to H-free
Contraction.

Repeated application of Lemma 11 and the NP-completeness of 2K2-free Con-
traction (Lemma 6) give us the following Lemma.

Lemma 12. For every t ≥ 3, tK2-free Contraction is NP-complete.

Now we are ready to prove the main result of this section.

Theorem 1. Let H be any graph other than K1 and K2. Then H-free Con-
traction is NP-complete.

Proof. We prove this by induction on n, the number of vertices of H. The base
cases are when n = 2 and n = 3, i.e., when H is 2K1 or P3 or triangle (Propo-
sition 1), or 3K1 (Lemma 10), or K2 +K1 (Lemma 7). Assume that n ≥ 4.

Let H be a disconnected graph. Assume that H has a component H ′ with
at least three vertices. By Proposition 2, there is a polynomial-time reduction
from H ′-free Contraction to H-free Contraction. Then we are done by
induction hypothesis. Assume that every component of H is either a K2 or a
K1. If H has an isolated vertex, then we are done by Lemma 9. If there are no

Contracting Edges to Destroy a Pattern: A Complexity Study 127

isolated vertex in H, then H is isomorphic to tK2, for t ≥ 2. Then we are done
by Lemma 12.

Let H be a connected graph. If H is complete, then Proposition 1 is sufficient.
Assume that H is non-complete. Therefore, there is a non-universal vertex in
H. Assume that H has neither a universal K1 separator nor a universal K2

separator. Then we are done by Lemma 1. Assume that H has either a universal
K1 separator or a universal K2 separator, denoted by K. Further assume that H
is not a star. Let H −K has at least two non-isomorphic components. Let J be
any component in H−K with least number of vertices. Let H ′ be obtained from
H by removing all copies of J in H−K. Then by Lemma 2, there is a polynomial-
time reduction from H ′-free Contraction to H-free Contraction, and
we are done. Assume that H −K is disjoint union of t copies of a graph J , for
some t ≥ 2. Then Lemma 3 gives us a polynomial-time reduction from tJ-free
Contraction to H-free Contraction. For the last case, assume that H is
a star graph. Then we are done by Lemma 8.

4 W[2]-Hardness

In this section, we prove that H-free Contraction is W[2]-hard whenever
H is a tree, except for 7 trees. All our reductions are from Dominating Set,
which is well-known to be a W[2]-hard problem. First we obtain a reduction for
all trees which are neither stars nor bistars. Then we come up with a reduction
for a subset of bistars, a corner case of the same proves the case of stars. Then
we come up with a reduction which handles the remaining bistars.

Recall that a dominating set D of a graph G is a subset of vertices of G such
that every vertex of G is either in D or adjacent to a vertex in D. The objective
of the Dominating Set problem is to check whether a graph has a dominating
set of size at most k or not.

4.1 A General Reduction for Trees

Here we handle all trees which are neither stars nor bistars. The reduction that
we use is an adapted version of a reduction used in [8] (to handle 3-connected
graphs) and a reduction used in [20] (to handle cycles).

Construction 4. Let G′,H be graphs and k be an integer. Let {v1, v2, . . . , vn}
be the set of vertices of G′. We construct a graph G from (G′,H, k) as follows.

– Introduce a clique X = {x1, x2, . . . , xn}.
– Introduce n copies of H denoted by H1,H2, . . . , Hn. Let Vi denote the set of

vertices of Hi, for 1 ≤ i ≤ n.
– Let w be any vertex in H. Identify w’s of all copies of H. Let the vertex

obtained so be denoted by w. Let the remaining vertices in each copy Hi be
denoted by Wi, i.e., Wi ∪ {w} induces H, for 1 ≤ i ≤ n.

– Make w adjacent to every vertex in X.

128 D. Chakraborty and R. B. Sandeep

– Make xi adjacent to every vertex in Wj if and only if i = j or vi is adjacent
to vj in G′.

This completes the construction. An example is shown in Fig. 3.

Fig. 3. Construction of G from (G′ = P3, H) by Construction 4

Let (G′, k) be an instance of Dominating Set. Let H be a tree which is
neither a star nor a bistar. We obtain a graph G from (G′,H, k) by applying
Construction 4.

Lemma 13. Let (G′, k) be a yes-instance of Dominating Set. Then (G, k) is
a yes-instance of H-free Contraction.

Proof. Let D be a dominating set of size at most k of G′. Let F = {wxi|vi ∈ D}.
Clearly, |F | = |D| ≤ k. We claim that G/F is H-free. Let w itself denote the
vertex obtained by contracting the edges in F . To get a contradiction, assume
that there is an H induced by a set U of vertices of G/F . We observe that
w is a universal vertex in G/F , due to the fact that D is a dominating set of
G′. Since H does not contain a universal vertex (a tree has a universal vertex
if and only if it is a star), w cannot be in U . Since H is triangle-free, U can
have at most two vertices from X. Assume that U has no vertex in X. Then U
must be a subset of Wi, which is a contradiction (observe that Wi and Wj are
nonadjacent in G/F for i
= j). Assume that U has exactly one vertex, say xi,
from X. Then the rest of the vertices are from Wjs adjacent to xi. Recall that
xi is adjacent to either all or none of vertices in Wj . Since H is triangle-free,
the vertices in U from Wjs adjacent to xi form an independent set. Then H is a
star, which is a contradiction. If U has exactly two vertices from X, then with
similar arguments, we obtain that H is a bistar, which is a contradiction.

Lemma 14. Let (G, k) be a yes-instance of H-free Contraction. Then
(G′, k) is a yes-instance of Dominating Set.

Contracting Edges to Destroy a Pattern: A Complexity Study 129

Proof. Let F ′ be a subset of edges of G such that G/F ′ is H-free and |F ′| ≤ k.
We construct a new solution F from F ′ as follows. If F ′ contains an edge touching
Wj , then we replace that edge with the edge wxj in F . Clearly |F | ≤ |F ′| ≤ k.
Since an edge touching Wj kills only the H induced by Wj ∪{w}, which is killed
by wxj , we obtain that G/F is H-free. Let P be the partition of vertices of G
corresponds to F . Let Pw be the set in P containing w. Let D = Pw∩X. Clearly,
|D| ≤ |cost(P)| ≤ k. We claim that D′ = {vi|xi ∈ D} is a dominating set of G′.
Assume that there is a vertex vj in G′ not dominated by D′. Then Wj ∪ {w}
induces an H in G/F , which is a contradiction.

Lemmas 14 and 13 imply that there is a parameterized reduction from Dom-
inating Set to H-free Contraction.

Lemma 15. Let H be a tree which is neither a star nor a bistar. Then H-free
Contraction is W[2]-hard.

4.2 Stars and Bistars

First we generalize a reduction given in [15] for K1,4-free Contraction. This
generalized reduction covers all bistars Tt,t′ such that t ≥ 3 and t > t′ ≥ 0. As
a boundary case (when t′ = 0) we obtain hardness result for all stars of at least
5 vertices.

Construction 5. Let G′ be a graph with a vertex set V ′ = {v1, v2, . . . , vn} and
let k, t, t′ be integers. We construct a graph G from (G′, k, t, t′) as follows.

– Create two cliques X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}.
– Make xi adjacent to yj if and only if i = j or vivj is an edge in G′.
– Create a vertex w and two cliques A and B of k + 1 vertices each.
– Make w adjacent to all vertices of X ∪A ∪B. Make A ∪B ∪ Y a clique.
– Introduce t− 1 cliques with k+1 vertices each and make them adjacent to A.

Let A′ denote the set of these vertices.
– Introduce t− 1 cliques with k+1 vertices each and make them adjacent to B.

Let B′ denote the set of these vertices..
– Introduce t−1 cliques with k+1 vertices each and make them adjacent to X.

Let X ′ denote the set of these vertices.
– Introduce a clique of k+ 1 vertices and make it adjacent to Y . Let Y ′ denote

the set of these vertices.
– For every vertex in A′ ∪B′ ∪X ′ ∪ Y ′, attach t′ degree-1 vertices.

Let H be Tt,t′ for t > t′ ≥ 0 and t ≥ 3. Let (G′, k) be an instance of
Dominating Set. We obtain G from (G′, t, t′, k) by Construction 5. An example
is shown in Fig. 4. Let D be a dominating set of size at most k of G′. Let
F = {wxi|vi ∈ D}. We can prove that G/F is H-free. For the other direction,
let F be a minimal subset of edges of G such that G/F is H-free and |F | ≤ k.
We can prove that F does not contain any edges of G other than those from
E[w,X]∪E[X,X]∪E[Y, Y]. Then we can come up with a dominating set of size
at most k for G′.

130 D. Chakraborty and R. B. Sandeep

w

A

A B

Y

X

B

XY

Fig. 4. Construction of G from (G′ = P3, k = 1, t = 3, t′ = 1) by Construction 5.
Dashed circles denote cliques. This corresponds to the reduction for T3,1-free Con-
traction.

Lemma 16. Let t > t′ ≥ 0 and t ≥ 3. Then Tt,t′-free Contraction is W[2]-
hard.

Now, we are left with the bistars Tt,t′ where t = t′. For this, we come up with
a reduction that handles more than this case and obtain the following Lemma.

Lemma 17. Let t ≥ t′ ≥ 3. Then Tt,t′-free Contraction is W[2]-hard.

Now, Lemmas 15, 16, and 17 imply the main result of this section.

Theorem 2. Let T be a tree which is neither a star of at most 4 vertices
({K1,K2, P3,K1,3}) nor a bistar in {T1,1, T2,1, T2,2}. Then Tt,t′-free Con-
traction is W[2]-hard.

We believe that our W[2]-hardness result on trees will be a stepping stone for
an eventual parameterized complexity classification of H-free Contraction.
The most challenging hurdle for such a complete classification can be the graphs
H where each component is of at most 2 vertices, and the case of claw, the usual
trouble-maker for other graph modification problems to H-free graphs.

We conclude with some folklore observations. As noted in a version of [20],
the property that “there exists at most k edges contracting which results in
an H-free graph” can be expressed in MSO1. The length of the corresponding
MSO1 formula will be a function of k. Then, there exists FPT algorithms for
H-free Contraction, whenever H-free graphs have bounded rankwidth (See
Chap. 7 of the textbook [9]). This, in particular, implies that K2 + K1-free
Contraction can be solved in FPT time. It is known that every component
of a paw-free graph is either triangle-free or complete multipartite [23], where

where paw is the graph . Then the existance of FPT algorithms for K3-
free Contraction and K2 +K1-free Contraction imply that there exists
an FPT algorithm for paw-free Contraction.

Contracting Edges to Destroy a Pattern: A Complexity Study 131

References

1. Aravind, N.R., Sandeep, R.B., Sivadasan, N.: Dichotomy results on the hardness
of H-free edge modification problems. SIAM J. Disc. Math. 31(1), 542–561 (2017)

2. Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2),
197–208 (1983)

3. Belmonte, R., Heggernes, P., van’t Hof, P.: Edge contractions in subclasses of
chordal graphs. Disc. Appl. Math. 160(7–8), 999–1010 (2012)

4. Bonuccelli, M.A.: Dominating sets and domatic number of circular arc graphs.
Disc. Appl. Math. 12(3), 203–213 (1985)

5. Brouwer, A.E., Veldman, H.J.: Contractibility and np-completeness. J. Graph The-
ory 11(1), 71–79 (1987)

6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

7. Cai, L., Cai, Y.: Incompressibility of H-free edge modification problems. Algorith-
mica 71(3), 731–757 (2015). https://doi.org/10.1007/s00453-014-9937-x

8. Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs.
In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 97–109. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 10

9. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

10. Eppstein, D.: Finding large clique minors is hard. J. Graph Algor. Appl. 13(2),
197–204 (2009)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H Freeman, New York City (1979)

12. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 209–216 (1997)

13. Golovach, P.A., Kaminski, M., Paulusma, D., Thilikos, D.M.: Increasing the min-
imum degree of a graph by contractions. Theor. Comput. Sci. 481, 74–84 (2013)

14. Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Inf.
Process. Lett. 113(22–24), 906–912 (2013)

15. Guo, C.: Parameterized complexity of graph contraction problems. Ph.D. thesis,
Chinese University of Hong Kong, Hong Kong (2013)

16. Heggernes, P., van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph
by contracting few edges. SIAM J. Disc. Math. 27(4), 2143–2156 (2013)

17. Hoede, C., Veldman, H.J.: Contraction theorems in hamiltonian graph theory. Disc.
Math. 34(1), 61–67 (1981)

18. Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph
families. Inf. Process. Lett. 49(1), 51–56 (1994)

19. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

20. Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small
induced subgraphs by contracting edges. In: Gutin, G., Szeider, S. (eds.) IPEC
2013. LNCS, vol. 8246, pp. 243–254. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03898-8 21

21. Lovász, L.: Graph minor theory. Bull. Am. Math. Soc. 43(1), 75–86 (2006)
22. Marx, D., Sandeep, R.B.: Incompressibility of H-free edge modification problems:

towards a dichotomy. J. Comput. Syst. Sci. 125, 25–58 (2022)
23. Olariu, S.: Paw-fee graphs. Inf. Process. Lett. 28(1), 53–54 (1988)

https://doi.org/10.1007/s00453-014-9937-x
https://doi.org/10.1007/978-3-319-03898-8_10
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-03898-8_21
https://doi.org/10.1007/978-3-319-03898-8_21

Distance-Based Covering Problems
for Graphs of Given Cyclomatic Number

Dibyayan Chakraborty1 , Florent Foucaud2 , and Anni Hakanen2,3(B)

1 Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1,
LIP UMR5668, Lyon, France

2 Université Clermont Auvergne, CNRS, Clermont Auvergne INP,
Mines Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France

3 Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland

anehak@utu.fi

Abstract. We study a large family of graph covering problems, whose
definitions rely on distances, for graphs of bounded cyclomatic number
(that is, the minimum number of edges that need to be removed from
the graph to destroy all cycles). These problems include (but are not
restricted to) three families of problems: (i) variants of metric dimension,
where one wants to choose a small set S of vertices of the graph such that
every vertex is uniquely determined by its ordered vector of distances to
the vertices of S; (ii) variants of geodetic sets, where one wants to select
a small set S of vertices such that any vertex lies on some shortest path
between two vertices of S; (iii) variants of path covers, where one wants
to select a small set of paths such that every vertex or edge belongs to
one of the paths. We generalize and/or improve previous results in the
area which show that the optimal values for these problems can be upper-
bounded by a linear function of the cyclomatic number and the degree 1-
vertices of the graph. To this end, we develop and enhance a technique
recently introduced in [C. Lu, Q. Ye, C. Zhu. Algorithmic aspect on the
minimum (weighted) doubly resolving set problem of graphs, Journal of
Combinatorial Optimization 44:2029–2039, 2022] and give near-optimal
bounds in several cases. This solves (in some cases fully, in some cases
partially) some conjectures and open questions from the literature. The
method, based on breadth-first search, is of algorithmic nature and thus,
all the constructions can be computed in linear time. Our results also
imply an algorithmic consequence for the computation of the optimal
solutions: they can all be computed in polynomial time for graphs of
bounded cyclomatic number.

Research funded by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP
20–25) and by the ANR project GRALMECO (ANR-21-CE48-0004).
A. Hakanen—Research supported by the Jenny and Antti Wihuri Foundation and
partially by Academy of Finland grant number 338797.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 132–146, 2023.
https://doi.org/10.1007/978-3-031-43587-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_10&domain=pdf
http://orcid.org/0000-0003-0534-6417
http://orcid.org/0000-0001-8198-693X
http://orcid.org/0000-0001-7473-2456
https://doi.org/10.1007/978-3-031-43587-4_10

Distance-Based Graph Covering Problems 133

1 Introduction

Distance-based covering problems in graphs are a central class of problems in
graphs, both from a structural and from an algorithmic point of view, with
numerous applications. Our aim is to study such problems for graphs of bounded
cyclomatic number. The latter is a measure of sparsity of the graph that is
popular in both structural and algorithmic graph theory. We will mainly focus
on three types of such problems, as follows.

Metric Dimension and Its Variants. In these concepts, introduced in the
1970s [16,33], the aim is to distinguish elements in a graph by using distances.
A set S ⊆ V (G) is a resolving set of G if for all distinct vertices x, y ∈ V (G)
there exists s ∈ S such that d (s, x)
= d (s, y). The smallest possible size of a
resolving set of G is called the metric dimension of G (denoted by dim(G)). Dur-
ing the last two decades, many variants of resolving sets and metric dimension
have been introduced. In addition to the original metric dimension, we consider
the edge and mixed metric dimensions of graphs. A set S ⊆ V (G) is an edge
resolving set of G if for all distinct edges x, y ∈ E(G) there exists s ∈ S such
that d (s, x)
= d (s, y), where the distance from a vertex v to an edge e = e1e2 is
defined as min{d (v, e1) , d (v, e2)} [18]. A mixed resolving set is both a resolving
set and an edge resolving set, but it must also distinguish vertices from edges
and vice versa; a set S ⊆ V (G) is a mixed resolving set of G if for all distinct
x, y ∈ V (G) ∪ E(G) there exists s ∈ S such that d (s, x)
= d (s, y) [17]. The
edge metric dimension edim(G) (resp. mixed metric dimension mdim(G)) is the
smallest size of an edge resolving set (resp. mixed resolving set) of G. More on the
different variants of metric dimension and their applications (such as detection
problems in networks, graph isomorphism, coin-weighing problems or machine
learning) can be found in the recent surveys [22,34].

Geodetic Numbers. A geodetic set of a graph G is a set S of vertices such that any
vertex of G lies on some shortest path between two vertices of S [15]. The geodetic
number of G is the smallest possible size of a geodetic set of G. The version where
the edges must be covered is called an edge-geodetic set [3]. “Strong” versions
of these notions have been studied. A strong (edge-) geodetic set of graph G is
a set S of vertices of G such that we can assign for any pair x, y of vertices
of S a shortest xy-path such that each vertex (edge) of G lies on one of the
chosen paths [2,24]. Recently, the concept of monitoring edge-geodetic set was
introduced in [14] as a strengthening of a strong edge-geodetic set: here, for every
edge e, there must exist two solution vertices x, y such that e lies on all shortest
paths between x and y. These concepts have numerous applications related to
the field of convexity in graphs, see the book [27].

We also consider the concept of distance-edge-monitoring-sets introduced
in [12,13], which can be seen as a relaxation of monitoring edge-geodetic sets. A
set S is a distance-edge-monitoring-set if, for every edge e of G, there is a vertex
x of S and a vertex y of G such that e lies on all shortest paths between x and
y. The minimum size of such a set is denoted dem (G).

134 D. Chakraborty et al.

Path Covering Problems. In this type of problem, one wishes to cover the vertices
(or edges) of a graph using a small number of paths. A path cover is a set of paths
of a graph G such that every vertex of G belongs to one of the paths. If one path
suffices, the graph is said to be Hamiltonian, and deciding this property is one
of the most fundamental algorithmic complexity problems. The paths may be
required to be shortest paths, in which case we have the notion of an isometric
path cover [5,11]; if they are required to be chordless, we have an induced path
cover [25]. The edge-covering versions have also been studied [1]. This type of
problems has numerous applications, such as program and circuit testing [1,26],
or bioinformatics [4].

Our Goal. Our objective is to study the three above classes of problems, on
graphs of bounded cyclomatic number. (See Fig. 1 for a diagram showing the
relationships between the optimal solution sizes of the studied problems.) A
feedback edge set of a graph G is a set of edges whose removal turns G into a
forest. The smallest size of such a set, denoted by c (G), is the cyclomatic number
of G. It is sometimes called the feedback edge (set) number or the cycle rank of
G. For a graph G on n vertices, m edges and k connected components, it is not
difficult to see that we have c (G) = m− n+ k, since a forest on n vertices with
k components has n − k edges. In this paper, we assume all our graphs to be
connected. To find an optimal feedback edge set of a connected graph, it suffices
to consider a spanning tree; the edges not belonging to the spanning tree form
a minimum-size feedback edge set.

Graphs whose cyclomatic number is constant have a relatively simple struc-
ture. They are sparse (in the sense that they have a linear number of edges).
They also have bounded treewidth (indeed the treewidth is at most the cyclo-
matic number), a parameter that plays a central role in the area of graph algo-
rithms, see for example Courcelle’s celebrated theorem [8]. Thus, they are stud-
ied extensively from the perspective of algorithms (for example for the metric
dimension [10], the geodetic number [19] or other graph problems [7,35]). They
are also studied from a more structural angle [30–32].

Conjectures Addressed in this Paper. In order to formally present the conjec-
tures, we need to introduce some structural concepts and notations. A leaf of a
graph G is a vertex of degree 1, and the number of leaves of G is denoted by
 (G).
Consider a vertex v ∈ V (G) of degree at least 3. A leg attached to the vertex v
is a path p1 . . . pk such that p1 is adjacent to v, degG(pk) = 1 and degG(pi) = 2
for all i
= k. The number of legs attached to the vertex v is denoted by l (v).

A set R ⊆ V (G) is a branch-resolving set of G, if for every vertex v ∈ V (G)
of degree at least 3 the set R contains at least one element from at least l (v)−1
legs attached to v. The minimum cardinality of a branch-resolving set of G is
denoted by L (G), and we have

L (G) =
∑

v∈V (G), deg(v)≥3, l(v)>1

(l (v) − 1).

Distance-Based Graph Covering Problems 135

It is well-known that for any tree T with at least one vertex of degree 3, we
have dim(T) = L (T) (and if T is a path, then dim(T) = 1) [6,16,20,33]. This
has motivated the following conjecture.

Conjecture 1 ([32]). Let G be a connected graph with c (G) ≥ 2. Then dim(G) ≤
L (G) + 2c (G) and edim(G) ≤ L (G) + 2c (G).

The restriction c (G) ≥ 2 is missing from the original formulation of Conjec-
ture 1 in [32]. However, Sedlar and Škrekovski have communicated to us that
this restriction should be included in the conjecture. Conjecture 1 holds for cacti
with c (G) ≥ 2 [32]. The bound dim(G) ≤ L (G) + 18c (G) − 18 was shown in
[10] (for c (G) ≥ 2), and is the first bound established for the metric dimension
in terms of L (G) and c (G).

Conjecture 2 ([31]). If δ(G) ≥ 2 and G
= Cn, then dim(G) ≤ 2c (G) − 1 and
edim(G) ≤ 2c (G) − 1.

In [31], Sedlar and Škrekovski showed that Conjecture 2 holds for graphs
with minimum degree at least 3. They also showed that if Conjecture 2 holds for
all 2-connected graphs, then it holds for all graphs G with δ(G) ≥ 2. Recently,
Lu at al. [23] addressed Conjecture 2 and showed that dim(G) ≤ 2c(G)+1 when
G has minimum degree at least 2.

Conjecture 3 ([30]). Let G be a connected graph. If G
= Cn, then mdim(G) ≤

 (G) + 2c (G).

Conjecture 3 is known to hold for trees [17], cacti and 3-connected graphs [30],
and balanced theta graphs [29].

The following conjecture was also posed recently.

Conjecture 4 ([12,13]). For any graph G, dem (G) ≤ c (G) + 1.

The original authors of the conjecture proved the bound when c (G) ≤ 2,
and proved that the bound dem (G) ≤ 2c (G)−2 holds when c (G) ≥ 3 [12]. The
conjectured bound would be tight [12,13].

Our Contributions. In this paper, we are motivated by Conjectures 1–4, which
we address. We will show that both dim(G) and edim(G) are bounded from
above by L (G) + 2c (G) + 1 for all connected graphs G. Moreover, we show that
if L (G)
= 0, then the bounds of Conjecture 1 hold.

We show that Conjecture 3 is true when δ(G) = 1, and when δ(G) ≥ 2 and G
contains a cut-vertex. We also show that mdim(G) ≤ 2c (G)+1 in all other cases.
We also consider the first part of Conjecture 1, that dim(G) ≤ L (G) + 2c (G)
from [32], in the case where δ(G) = 1, and we show that it is true when L (G) ≥ 1
and otherwise we have dim(G) ≤ 2c (G)+1. We also consider the conjecture that
edim(G) ≤ L (G) + 2c (G) from [32], and we show that it is true when δ(G) = 1
and L (G) ≥ 1, and when δ(G) ≥ 2 and G contains a cut-vertex. We also show
that edim(G) ≤ 2c (G) + 1 in all other cases.

136 D. Chakraborty et al.

Thus, our results yield significant improvements towards the Conjectures 1–
3, since they are shown to be true in most cases, and are approximated by an
additive term of 1 for all graphs. Moreover, we also resolve in the affirmative
Conjecture 4.

monitoring
edge-geodetic number

distance
edge-monitoring number

isometric path
edge-cover number

isometric path
cover number

induced path
edge-cover number

induced path
cover number

path
edge-cover number

path
cover number

strong edge-geodetic
number

strong geodetic
number

edge-geodetic
number

geodetic
number

mixed metric
dimension

metric
dimension

edge metric
dimension

Fig. 1. Relations between the parameters discussed in the paper. If a parameter A has
a directed path to parameter B, then for any graph, the value of A is upper-bounded
by a linear function of the value of B.

To obtain the above results, we develop a technique from [23], who introduced
it in order to study a strengthening of metric dimension called doubly resolving
sets in the context of graphs of minimum degree 2. We notice that the technique
can be adapted to work for all graphs and in fact it applies to many types of
problems: (variants of) metric dimension, (variants of) geodetic sets, and path-
covering problems. For all these problems, the technique yields upper bounds of
the form a ·c (G)+f(
(G)), where
(G) is the number of leaves of G, f is a linear
function that depends on the respective problem, and a is a small constant.

The technique is based on a breadth-first-search rooted at a specific vertex,
that enables to compute an optimal feedback edge set F by considering the
edges of the graph that are not part of the breadth-first-search spanning tree.
We then select vertices of the edges of F (or neighbouring vertices); the way
to select these vertices depends on the problem. For the metric dimension and
path-covering problems, a pre-processing is done to handle the leaves of the
graph (for the geodetic set variants, all leaves must be part of the solution). Our

Distance-Based Graph Covering Problems 137

results demonstrate that the techniques used by most previous works to handle
graphs of bounded cyclomatic number were not precise enough, and the simple
technique we employ is much more effective. We believe that it can be used with
sucess in similar contexts in the future.

Algorithmic Applications. For all the considered problems, our method in fact
implies that the optimal solutions can be computed in polynomial time for graphs
with bounded cyclomatic number. In other words, we obtain XP algorithms
with respect to the cyclomatic number. This was already observed in [10] for
the metric dimension (thanks to our improved bounds, we now obtain a better
running time, however it should be noted that in [10] the more general weighted
version of the problem was considered).

Organisation. We first describe the general method to compute the special feed-
back edge set in Sect. 2. We then use it in Sect. 3 for the metric dimension and
its variants. We then turn to geodetic sets and its variants in Sect. 4, and to
path-covering problems in Sect. 5. We describe the algorithmic consequence in
Sect. 6, and conclude in Sect. 7.

2 The General Method

The length of a path P , denoted by |P |, is the number of its vertices minus one.
A path is induced if there are no graph edges joining non-consecutive vertices. A
path is isometric if it is a shortest path between its endpoints. For two vertices
u, v of a graph G, d (u, v) denotes the length of an isometric path between u and
v. Let r be a vertex of G. An edge e = uv ∈ E(G) is a horizontal edge with
respect to r if d (u, r) = d (v, r) (otherwise, it is a vertical edge). For a vertex u of
G, let Br(u) denote the set of edges uv ∈ E(G) such that d (u, r) = d (v, r) + 1.
A set F of edges of G is good with respect to r if F contains all horizontal edges
with respect to r and for each u
= r, |Br(u)∩F | = |Br(u)|−1. A set F of edges
is simply good if F is good with respect to some vertex r ∈ V (G). For a set F of
good edges of a graph G, let TF denote the subgraph of G obtained by removing
the edges of F from G.

Lemma 5. For any connected graph G with n vertices and m edges and a vertex
r ∈ V (G), a good edge set with respect to r can be computed in O(n+m) time.

Proof. By doing a Breadth First Search on G from r, distances of r from u for all
u ∈ V (G) can be computed in O(n+m) time. Then the horizontal and vertical
edges can be computed in O(m) time. Then the sets Br(u) for all u ∈ V (G) can
be computed in O(n + m) time. Hence the set of good edges with respect to r
can be computed in O(n+m) time. ��
Lemma 6. For a set F of good edges with respect to a vertex r of a connected
graph G, the subgraph TF is a tree rooted at r. Moreover, every path from r to a
leaf of TF is an isometric path in G.

138 D. Chakraborty et al.

Proof. First observe that TF is connected, as each vertex u has exactly one edge
uv ∈ E(TF) with d (u, r) = d (v, r) + 1. Now assume for contradiction that TF

has a cycle C. Let v ∈ V (C) be a vertex that is furthest from r among all vertices
of C. Formally, v is a vertex such that d (r, v) = max{d (r, w) : w ∈ V (C)}. Let
E′ denote the set of edges in TF incident to v. Observe that |E′| is at least two.
Hence either E′ contains an horizontal edge, or E′ ∩Br(v) contains at least two
edges. Either case contradicts that F is a good edge set with respect to r. This
proves the first part of the observation.

Now consider a path P from r to a leaf v of TF and write it as u1u2 . . . uk

where u1 = r and uk = v. By definition, we have d (r, ui) = d (r, ui−1) + 1 for
each i ∈ [2, k]. Hence, P is an isometric path in G. ��
Observation 7. Any set F of good edges of a connected graph G is a feedback
edge set of G with minimum cardinality.

Proof. Due to Lemma 6 we have that TF is a tree and therefore |F | = m−n+1
which is same as the cardinality of a feedback edge set of G with minimum
cardinality. ��

The base graph [10] Gb of a graph G is the graph obtained from G by itera-
tively removing vertices of degree 1 until there remain no such vertices. We use
the base graph in some cases where preprocessing the leaves and other tree-like
structures is needed.

3 Metric Dimension and Variants

In this section, we consider three metric dimension variants and conjectures
regarding them and the cyclomatic number. We shall use the following result.

Distinct vertices x, y are doubly resolved by v, u ∈ V (G) if d (v, x)−d (v, y)
=
d (u, x) − d (u, y). A set S ⊆ V (G) is a doubly resolving set of G if every pair of
distinct vertices of G are doubly resolved by a pair of vertices in S. Lu et al. [23]
constructed a doubly resolving set of G with δ(G) ≥ 2 by finding a good edge
set with respect to a root r ∈ V (G) using breadth-first search. We state a result
obtained by Lu et al. [23] using the terminologies of this paper.

Theorem 8 ([23]). Let G be a connected graph such that δ(G) ≥ 2 and r ∈
V (G). Let S ⊆ V (G) consist of r and the endpoints of the edges of a good edge
set with respect to r.

(i) The set S is a doubly resolving set of G.
(ii) If r is a cut-vertex, then the set S \ {r} is a doubly resolving set of G.
(iii) We have |S| ≤ 2c (G) + 1.

A doubly resolving set of G is also a resolving set of G, and thus dim(G) ≤
2c (G)+1 when δ(G) ≥ 2 due to Theorem 8. Moreover, if G contains a cut-vertex
and δ(G) ≥ 2, we have dim(G) ≤ 2c (G). Therefore, Conjecture 1 holds for the
metric dimension of a graph with δ(G) ≥ 2 and at least one cut-vertex.

Distance-Based Graph Covering Problems 139

A doubly resolving set is not necessarily an edge resolving set or a mixed
resolving set. Thus, more work is required to show that edge and mixed resolving
sets can be constructed with good edge sets. A layer of G is a set Ld = {v ∈
V (G) | d (r, v) = d} where r is the chosen root and d is a fixed distance.

Proposition 9. Let G be a graph with δ(G) ≥ 2, and let r ∈ V (G). If the set
S contains r and the endpoints of a good edge set F with respect to r, then S is
an edge resolving set.

Proof. Suppose to the contrary that there exist distinct edges e = e1e2 and
f = f1f2 that are not resolved by S. In particular, we have d (r, e) = d (r, f).
Due to this, say, e1 and f1 are in the same layer Ld, and e2 and f2 are in
Ld ∪ Ld+1. If e is a horizontal edge with respect to r, then e1, e2 ∈ S and e and
f are resolved. Thus, neither e nor f is a horizontal edge with respect to r and
we have e2, f2 ∈ Ld+1.

If e2 = f2, then e, f ∈ Br(e2). Thus, we have e2 ∈ S and at least one of e1
and f1 is also in S. Now e and f are resolved by e1 or f1. Therefore, we have
e2
= f2 and e2, f2 /∈ S.

Let w ∈ V (G) be a leaf in TF such that e2 lies on a path between w and
r in TF . Since δ(G) ≥ 2, the vertex w is an endpoint of some edge in F , and
thus w ∈ S. Since e and f are not resolved by S, we have d (w, f2) = d (w, e2) =
d′ − d − 1, where w ∈ Ld′ , due to the path between w and r being isometric
(Lemma 6). Let Pf be a shortest path w − f2 in G, and assume that Pf is such
that it contains an element of S as close to f2 as possible. Denote this element
of S by s. We have s ∈ Li for some d + 1 < i ≤ d′ (notice that we may have
s = w). As the edges e and f are not resolved by S, we have d (s, e) = d (s, f),
which implies that d (s, e2) = d (s, f2) = i − d − 1. Let P ′

e and P ′
f be shortest

paths s− e2 and s− f2, respectively. The paths P ′
e and P ′

f are internally vertex
disjoint, since otherwise the vertex after which the paths diverge is an element
of S which contradicts the choice of Pf and s. Let ve and vf be the vertices
adjacent to s in P ′

e and P ′
f , respectively. Now, we have sve, svf ∈ Br(s), and

thus ve ∈ S (otherwise, vf ∈ S, which contradicts the choice of Pf and s). If
d (ve, e2) < d (ve, f2), then ve resolves e and f , a contradiction. Thus, we have
d (ve, e2) ≥ d (ve, f2), but now there exists a shortest path w − f2 that contains
ve, which is closer to f2 than s is, a contradiction. ��
Proposition 10. Let G be a graph with δ(G) ≥ 2, and let r ∈ V (G). If the set
S contains r and the endpoints of a good edge set F with respect to r, then S is
a mixed resolving set.

Proof. The set S resolves all pairs of distinct vertices by Theorem 8 and all pairs
of distinct edges by Proposition 9. Therefore we only need to show that all pairs
consisting of a vertex and an edge are resolved.

Suppose to the contrary that v ∈ V (G) and e = e1e2 ∈ E(G) are not resolved
by S. In particular, the root r does not resolve v and e, and thus v, e1 ∈ Ld for
some d ≥ 1. If e is a horizontal edge, then e1, e2 ∈ S and e and v are resolved.
Thus, assume that e2 ∈ Ld+1. Let w ∈ V (G) be a leaf in TF such that e2 lies

140 D. Chakraborty et al.

on a path between w and r in TF . Since δ(G) ≥ 2, the vertex w is an endpoint
of some edge in F , and thus w ∈ S. We have d (w, e2) = d′ − d − 1, where
w ∈ Ld′ . However, now d (w, v) ≥ d′ − d > d (w, e2), and w resolves v and e, a
contradiction. ��

As pointed out in [23], if R is a doubly resolving set that contains a cut-vertex
v, then the set R \ {v} is also a doubly resolving set. The following observation
states that the same result holds for mixed resolving sets, and with certain
constraints to (edge) resolving sets.

Observation 11. Let G be a connected graph with a cut-vertex v.

(i) Let R ⊆ V (G) be such that there are at least two connected components in
G−v containing elements of R. If d (v, x)
= d (v, y) for some x, y ∈ V (G)∪
E(G), then there exists an element s ∈ R, s
= v, such that d (s, x)
= d (s, y).

(ii) If R ⊆ V (G) is a mixed resolving set of G, then every connected component
of G− v contains at least one element of R.

(iii) If R ⊆ V (G) is a resolving set or edge resolving set of G, then at most one
connected component of G−v does not contain any elements of R, and that
component is isomorphic to Pn for some n ≥ 1.

The following corollary follows from Propositions 9 and 10, and Observa-
tion 11.

Corollary 12. Let G be a graph with δ(G) ≥ 2.

(i) If G contains a cut-vertex, then edim(G) ≤ 2c (G) and mdim(G) ≤ 2c (G).
(ii) If G does not contain a cut-vertex, then edim(G) ≤ 2c (G) + 1 and

mdim(G) ≤ 2c (G) + 1.

We then turn our attention to graphs with δ(G) = 1. We will show that a
good edge set can be used to construct a (edge, mixed) resolving set also in this
case. Moreover, we show that Conjecture 3 holds, and Conjecture 1 holds when
L (G) ≥ 1. We also show that dim(G) and edim(G) are at most 2c (G) + 1 when
L (G) = 0. We use the following results on trees in our proof.

Proposition 13 ([17]). Let T be a tree, and let R ⊆ V (T) be the set of leaves
of T . The set R is a mixed metric basis of T .

Proposition 14 ([18,20]). Let T be a tree that is not a path. If R ⊆ V (T) is a
branch-resolving set of T , then it is a resolving set and an edge resolving set.

Theorem 15. Let G be a connected graph that is not a tree such that δ(G) = 1.
Let r ∈ V (Gb), and let S ⊆ V (Gb) contain r and the endpoints of a good edge
set F ⊆ E(Gb) with respect to r. If R is a branch resolving set of G, then the set
R ∪ S is a resolving set and an edge resolving set of G. If R is the set of leaves
of G, then the set R ∪ S is a mixed resolving set of G.

Distance-Based Graph Covering Problems 141

Proof. Let R be either a branch-resolving set of G (for the regular and edge
resolving sets) or the set of leaves of G (for mixed metric dimension). We will
show that the set R ∪ S is a (edge, mixed) resolving set of G.

The graph G−E(Gb) is a forest (note that some of the trees might be isolated
vertices) where each tree contains a unique vertex of Gb. Let us denote these
trees by Tv, where v ∈ V (Gb).

Consider distinct x, y ∈ V (G)∪E(G). We will show that x and y are resolved
by R ∪ S.

– Assume that x, y ∈ V (Tv)∪E(Tv) for some v ∈ V (Gb). Denote Rv = (V (Tv)∩
R)∪{v}. The set Rv is a (edge, mixed) resolving set of Tv by Propositions 14
and 13. If x and y are resolved by some element in Rv that is not v, then we
are done. If x and y are resolved by v, then they are resolved by any element
in S \ {v}. Since G is not a tree, the set S \ {v} is clearly nonempty, and x
and y are resolved in G.

– Assume that x, y ∈ V (Gb) ∪ E(Gb). Now x and y are resolved by S due to
Theorem 8, Proposition 9 or Proposition 10.

– Assume that x ∈ V (Tv)∪E(Tv) and y ∈ V (Tw)∪E(Tw) where v, w ∈ V (Gb),
v
= w. The set S is a doubly resolving set ofGb according to Theorem 8. Thus,
there exist distinct s, t ∈ S such that d (s, v) − d (s, w)
= d (t, v) − d (t, w).
Suppose to the contrary that d (s, x) = d (s, y) and d (t, x) = d (t, y). Now we
have

d (w, y) − d (v, x) = d (s, v) − d (s, w)
= d (t, v) − d (t, w) = d (w, y) − d (v, x) ,

a contradiction. Thus, s or t resolves x and y.
– Assume that x ∈ V (Tv) ∪ E(Tv) for some v ∈ V (Gb), v
= x, and y =
y1y2 ∈ E(Gb). Suppose that d (r, x) = d (r, y). Without loss of generality,
we may assume that d (r, y) = d (r, y1) = d. Now y1 ∈ Ld and v ∈ Ld−dx

,
where dx = d (v, x) ∈ {0, . . . , d}. If y2 ∈ Ld, then y is a horizontal edge and
y1, y2 ∈ S. Now x and y are resolved by y1 or y2. So assume that y2 ∈ Ld+1.
Let z ∈ V (Gb) be a leaf in TF such that y2 lies on a path from r to z in TF .
Since δ(Gb) ≥ 2, the vertex z is an endpoint of some edge in F , and thus
z ∈ S. Now z ∈ Ld′ for some d′ > d+1 and d (z, y2) = d′−d−1 by Lemma 6.
Consequently,

d (z, x) = d (z, v) + dx ≥ d′ − (d− dx) + dx = 2dx + 1 + d (z, y2) > d (z, y) .

��
Since the root r can be chosen freely, we can choose the root to be a cut-

vertex in G whenever G contains cut-vertices. The bounds in the next corollary
then follow from Observations 7 and 11, and Theorem 15.

Corollary 16. Let G be a connected graph that is not a tree such that δ(G) = 1.
We have dim(G) ≤ λ(G) + 2c (G), edim(G) ≤ λ(G) + 2c (G), and mdim(G) ≤

 (G) + 2c (G), where λ(G) = max{L (G) , 1}.

142 D. Chakraborty et al.

The relationship of metric dimension and edge metric dimension has garnered
a lot of attention since the edge metric dimension was introduced. Zubrilina [36]
showed that the ratio edim(G)

dim(G) cannot be bounded from above by a constant, and

Knor et al. [21] showed the same for the ratio dim(G)
edim(G) . Inspired by this, Sedlar

and Škrekovski [28] conjectured that for a graph G
= K2, we have |dim(G) −
edim(G)| ≤ c (G). This bound, if true, is tight due to the construction presented
in [21]. It is easy to see that dim(G) ≥ λ(G) and edim(G) ≥ λ(G) (the fact
that dim(G) ≥ L (G) is shown explicitly in [6], for example). Thus, we now
obtain the bound |dim(G) − edim(G)| ≤ 2c (G) due to the bounds established
in Corollaries 12 and 16.

4 Geodetic Sets and Variants

We now address the problems related to geodetic sets, and show that the same
method can be applied in this context as well. Note that all leaves of a graph
belong to any of its geodetic sets. Due to lack of space, we only present the
constructions of the solution sets.

4.1 Geodetic Sets

Theorem 17 (*). Let G be a connected graph. If G has a cut-vertex then
g (G) ≤ 2c (G) +
 (G). Otherwise, g (G) ≤ 2c (G) + 1.

Proof (Sketch). We construct a good set F of edges of G by Lemma 5 (if G has
a cut-vertex then the root r shall be a cut-vertex). We select as solution vertices,
all leaves of G, all endpoints of edges of F , and r (only if G is biconnected). ��

The upper bound of Theorem 17 is tight when there is a cut-vertex, indeed,
consider the graph formed by a disjoint union of k odd cycles and l paths, all
identified via a single vertex. This graph has cyclomatic number k, l leaves, and
geodetic number 2k+ l. When there is no cut-vertex, any odd cycle has geodetic
number 3 and cyclomatic number 1, so the bound is tight in this case too.

4.2 Monitoring Edge-Geodetic Sets

It was proved in [14] that meg (G) ≤ 9c (G) +
 (G) − 8 for every graph G, and
some graphs were constructed for which meg (G) = 3c (G) +
 (G). We next
improve the former upper bound, therefore showing that the latter construction
is essentially best possible.

Theorem 18 (*). For any graph G, we have meg (G) ≤ 3c (G) +
 (G) + 1. If
G contains a cut-vertex, then meg (G) ≤ 3c (G) +
 (G).

Proof (Sketch). We construct a good set F of edges of G by Lemma 5, by choos-
ing r as a vertex belonging to a cycle, if possible. The solution set contains r (if
G is biconnected), all leaves of G, and for each edge of F , both its endpoints.
Moreover, for each vertex u of G with |Br(u)| ≥ 2, we add all endpoints of the
edges of Br(u). ��

Distance-Based Graph Covering Problems 143

4.3 Distance-edge-monitoring-sets

We now prove Conjecture 4.

Theorem 19 (*). For any connected graph G, dem (G) ≤ c (G) + 1.

Proof (Sketch). We construct a good set F of edges of the base graph Gb of G
by Lemma 5, and select as solution vertices the root r, one arbitrary endpoint
of each horizontal edges of F , as well as each vertex v with |Br(v)| ≥ 2. ��

5 Path Covers and Variants

In this section, we consider the path covering problems. We focus on isometric
path edge-covers (sets of isometric paths that cover all edges of the graph),
indeed those have the most restrictive definition and the bound thus holds for
all other path covering problems from Fig. 1.

Theorem 20 (*). For any graph G, ipec (G) ≤ 3c (G) + !(
 (G) + 1)/2".
Proof (Sketch). We construct a good set F of edges of the base graph Gb of G
by Lemma 5, and select as solution paths the horizontal edges of F ; for each
vertex v with |Br(v)| ≥ 2, we add to S, |Br(v)| shortest paths from v to r, each
starting with a different edge from Br(v). This covers the edges of Gb. To cover
the edges of G− E(Gb), we carefully construct (using an iterative procedure) a
pairing of the leaves of G and connect each paired pair by a shortest path. ��

The upper bound of Theorem 20 is nearly tight, indeed, consider (again)
the graph formed by a disjoint union of k odd cycles and l paths, all identified
via a single vertex. The obtained graph has cyclomatic number k, l leaves, and
isometric path edge-cover number 3k + !l/2".

6 Algorithmic Consequences

Theorem 21 (*). For all the problems considered here, if we have an upper
bound on the solution size of a · c (G) + f(
 (G)) for some a ∈ N, we obtain an
algorithm with running time O(na·c(G)) on graphs G of order n.

Proof (Sketch). One needs to be able to compute the optimal number of leaves
required in a solution, using the methods described in the proofs of the theorems.
Then, a simple brute-force algorithm trying all subsets of size a · c (G) completes
the algorithm. ��

144 D. Chakraborty et al.

7 Conclusion

We have demonstrated that a simple technique based on breadth-first-search
is very efficient to obtain bounds for various distance-based covering problems,
when the cyclomatic number and the number of leaves are considered. This
resolves or advances several open problems and conjectures from the literature
on this type of problems. There remain some gaps between the obtained bounds
and the conjectures or known constructions, that still need to be closed.

A refinement of the cyclomatic number of a (connected) graph G is called its
max leaf number, which is the maximum number of leaves in a spanning tree of
G. It is known that the cyclomatic number is always upper-bounded by the max
leaf number plus the number of leaves [9], so, all our bounds also imply bounds
using the max leaf number only.

Regarding the algorithmic applications, we note that the XP algorithms
described in Theorem 21 can sometimes be improved to obtain an FPT algo-
rithm. This is the case for geodetic sets [19], but whether this is possible for the
metric dimension remains a major open problem [9,19] (this is however shown
to be possible for the larger parameter “max leaf number” [9]).

References

1. Andreatta, G., Mason, F.: Path covering problems and testing of printed circuits.
Disc. Appl. Math. 62(1), 5–13 (1995)

2. Arokiaraj, A., Klavžar, S., Manuel, P.D., Thomas, E., Xavier, A.: Strong geodetic
problems in networks. Discussiones Mathematicae Graph Theory 40(1), 307–321
(2020)

3. Atici, M.: On the edge geodetic number of a graph. Int. J. Comput. Math. 80(7),
853–861 (2003)

4. Cáceres, M., Cairo, M., Mumey, B., Rizzi, R., Tomescu, A.I.: Sparsifying, shrinking
and splicing for minimum path cover in parameterized linear time. In: Proceedings
of SODA 2022, pp. 359–376. SIAM (2022)

5. Chakraborty, D., Dailly, A., Das, S., Foucaud, F., Gahlawat, H., Ghosh, S.K.:
Complexity and algorithms for isometric path cover on chordal graphs and beyond.
In: Proceedings of ISAAC 2022, LIPIcs, vol. 248, pp. 12:1–12:17 (2022)

6. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.: Resolvability in graphs
and the metric dimension of a graph. Disc. Appl. Math. 105(1–3), 99–113 (2000)

7. Coppersmith, D., Vishkin, U.: Solving NP-hard problems in ‘almost trees’: vertex
cover. Disc. Appl. Math. 10(1), 27–45 (1985)

8. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

9. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algor.
Appl. 19(1), 313–323 (2015)

10. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
Hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

11. Fisher, D.C., Fitzpatrick, S.L.: The isometric number of a graph. J. Comb. Math.
Comb. Comput. 38(1), 97–110 (2001)

12. Foucaud, F., Kao, S., Klasing, R., Miller, M., Ryan, J.: Monitoring the edges of a
graph using distances. Disc. Appl. Math. 319, 424–438 (2022)

Distance-Based Graph Covering Problems 145

13. Foucaud, F., Klasing, R., Miller, M., Ryan, J.: Monitoring the edges of a graph
using distances. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016,
pp. 28–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2 3

14. Foucaud, F., Narayanan, K., Sulochana, L.R.: Monitoring edge-geodetic sets in
graphs. In: Bagchi, A., Muthu, R. (eds.) Proceedings of CALDAM 2023. Lecture
Notes in Computer Science, vol. 13947, pp. 245–256. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-25211-2 19

15. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math.
Comput. Model. 17(11), 89–95 (1993)

16. Harary, F., Melter, R.: On the metric dimension of a graph. Ars Combinatoria 2,
191–195 (1976)

17. Kelenc, A., Kuziak, D., Taranenko, A., Yero, I.G.: Mixed metric dimension of
graphs. Appl. Math. Comput. 314, 429–438 (2017)

18. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the
edge metric dimension. Disc. Appl. Math. 251, 204–220 (2018)

19. Kellerhals, L., Koana, T.: Parameterized complexity of geodetic set. J. Graph
Algor. Appl. 26(4), 401–419 (2022)

20. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Disc. Appl.
Math. 70(3), 217–229 (1996)

21. Knor, M., Majstorović, S., Masa Toshi, A.T., Škrekovski, R., Yero, I.G.: Graphs
with the edge metric dimension smaller than the metric dimension. Appl. Math.
Comput. 401, 126076 (2021)

22. Kuziak, D., Yero, I.G.: Metric dimension related parameters in graphs: a survey on
combinatorial, computational and applied results. arXiv preprint arXiv:2107.04877
(2021)

23. Lu, C., Ye, Q., Zhu, C.: Algorithmic aspect on the minimum (weighted) doubly
resolving set problem of graphs. J. Comb. Optim. 44, 2029–2039 (2022)

24. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geode-
tic problem in networks. Open Math. 15(1), 1225–1235 (2017)

25. Manuel, P.D.: Revisiting path-type covering and partitioning problems. arXiv
preprint arXiv:1807.10613 (2018)

26. Ntafos, S., Hakimi, S.: On path cover problems in digraphs and applications to
program testing. IEEE Trans. Softw. Eng. SE 5(5), 520–529 (1979)

27. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-1-4614-8699-2

28. Sedlar, J., Škrekovski, R.: Bounds on metric dimensions of graphs with edge disjoint
cycles. Appl. Math. Comput. 396, 125908 (2021)

29. Sedlar, J., Škrekovski, R.: Extremal mixed metric dimension with respect to the
cyclomatic number. Appl. Math. Comput. 404, 126238 (2021)

30. Sedlar, J., Škrekovski, R.: Mixed metric dimension of graphs with edge disjoint
cycles. Disc. Appl. Math. 300, 1–8 (2021)

31. Sedlar, J., Škrekovski, R.: Metric dimensions vs. cyclomatic number of graphs with
minimum degree at least two. Appl. Math. Comput. 427, 127147 (2022)

32. Sedlar, J., Škrekovski, R.: Vertex and edge metric dimensions of cacti. Disc. Appl.
Math. 320, 126–139 (2022)

33. Slater, P.J.: Leaves of trees. In: Proceedings of the Sixth Southeastern Confer-
ence on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ.,
Boca Raton, Fla., 1975), pp. 549–559. Congressus Numerantium, No. XIV. Utili-
tas Math., Winnipeg, Man. (1975)

https://doi.org/10.1007/978-3-030-39219-2_3
https://doi.org/10.1007/978-3-031-25211-2_19
http://arxiv.org/abs/2107.04877
http://arxiv.org/abs/1807.10613
https://doi.org/10.1007/978-1-4614-8699-2
https://doi.org/10.1007/978-1-4614-8699-2

146 D. Chakraborty et al.

34. Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Getting the lay of the land in
discrete space: a survey of metric dimension and its applications. arXiv preprint
arXiv:2104.07201 (2021)

35. Uhlmann, J., Weller, M.: Two-layer planarization parameterized by feedback edge
set. Theor. Comput. Sci. 494, 99–111 (2013)

36. Zubrilina, N.: On the edge dimension of a graph. Disc. Math. 341(7), 2083–2088
(2018)

http://arxiv.org/abs/2104.07201

An Efficient Computation of the Rank
Function of a Positroid

Lamar Chidiac1(B) , Santiago Guzmán-Pro2 , Winfried Hochstättler1 ,
and Anthony Youssef3

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen,
Hagen, Germany

{lamar.chidiac,winfried.hochstaettler}@fernuni-hagen.de
2 Institut für Algebra, TU Dresden, Dresden, Germany

sanguzpro@ciencias.unam.mx
3 Reply S.p.A, London, UK

Abstract. Positroids are a class of matroids in bijection with several
combinatorial objects. In particular, every positroid can be constructed
from a decorated permutation or from a Le-graph.

In this paper, we present two algorithms, one that computes the rank
of a subset of a positroid using its representation as a Le-graph and the
other takes as input a decorated permutation σ and outputs the Le-graph
that represent the same positroid as σ. These two algorithms combined
form an improvement to Mcalmon and Oh’s result on the computation
of the rank function of a positroid from the decorated permutation.

Keywords: Decorated permutation · Le diagrams · Positroid ·
Algorithm

1 Introduction

A matroid is a combinatorial object that unifies several notions of independence.
It can be defined in many different but equivalent way. In this work we use the
definition of matroids in terms of bases as it is more convenient for studying
positroids. A matroid M is a pair M = (E,B) where E is the set of elements of
M and is finite, and B is its collection of bases which satisfies the following two
conditions: B is not empty and if B1 and B2 are members of B and x ∈ B1−B2,
then there is an element y of B2 −B1 such that (B1 − x) ∪ y ∈ B.

Positroids are a class of matroids, introduced by Postnikov in [7] as the
column sets of a matrix’s nonzero maximal minors, with all maximal minors
(d × d submatrices) being non-negative. In other terms, a positroid is a repre-
sentable matroid M(A) associated with a (d×n)-matrix A of rank d with all real
entries such that all its maximal minors are non-negative. Positroids seemed to
have several interesting combinatorial characteristics. In particular, Postnikov
[7] demonstrated that positroids are in bijection with a number of interesting
combinatorial objects, including Grassmann necklaces, decorated permutations,

This work was carried out during a visit of Guzmán-Pro at FernUniversität in Hagen,
supported by DAAD grant 57552339.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 147–161, 2023.
https://doi.org/10.1007/978-3-031-43587-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_11&domain=pdf
http://orcid.org/0000-0002-0075-2304
http://orcid.org/0000-0003-0312-9654
http://orcid.org/0000-0001-7344-7143
https://doi.org/10.1007/978-3-031-43587-4_11

148 L. Chidiac et al.

Le-graphs, and plabic graphs. Mcalmon and Oh [5] showed how to compute the
rank of an arbitrary subset of a positroid from the associated decorated per-
mutation using non-crossing partitions. It is not clear whether this algorithm
runs in polynomial time. This fact, together with the high technicality involved
to prove its correctness, encouraged us to search for a simpler approach. For
that purpose, we first notice that the rank of a set in a positroid P can be
easily computed using a Right-first-search variant of the Depth-first-search on a
Le-graph representing P . Secondly, we propose an efficient construction of the
Le-graph representing the same positroid from the given decorated permutation
σ using what we call the Le-graph-construction algorithm. Thus, by composing
both algorithms we obtain a polynomial-time algorithm that computes the rank
of a given set of a positroid represented by a decorated permutation.

The rest of this work is structured as follows. In Sect. 2, we define positroids
using Le-graphs and present all the background needed. In Sect. 3, we present the
Rank-Function algorithm along with an example and prove its correctness. In
Sect. 4, we recall the algorithm in [3] that computes the decorated permutation
from a Le-diagram and in Sect. 5, we present the algorithm that computes the
Le-diagram of a decorated permutation for the reverse direction. We conclude
with a small discussion in the last section.

2 Preliminaries

We assume familiarity with matroid theory, a reference is [6]. We start by defining
the Young diagram which is needed for the definition of Le-diagrams.

Definition 1 (Young diagram). A Young diagram Yλ (also called a Ferrers
diagram) is a finite collection of boxes arranged in left-justified rows, with the
row lengths (number of boxes in a row) in non-increasing order, where λ is a
partition of the total number of boxes of the diagram and the sets of λ are the
lengths of the rows. The Young diagram is said to be of shape λ, and it carries
the same information as that partition.

Definition 2 (Le-diagram). Fix d and n. A Le-diagram D of shape λ and type
(d, n) is a Young diagram Yλ contained in a d× (n−d) rectangle, where some of
its boxes are filled with dots in such a way that the L-property is satisfied: there
is no empty box which has a dot above it in the same column and a dot to its
left in the same row. Figure 1 is an example of a Le-diagram.

Given a Le-diagram we can always construct a Le-graph as follows.

Definition 3 (Le-graph). A Le-graph is constructed from a Le-diagram as
follows.

– Every dot of the Le-diagram is a vertex of the corresponding Le-graph.
– Add a vertex in the middle of each step of the east-south boundary and label

them from 1 to n starting at the north-east corner of the path and ending at
the south-west corner. We refer to these vertices as vertical and horizontal
vertices, depending on whether they lie on a vertical or horizontal step.

An Efficient Computation of the Rank Function of a Positroid 149

– Add edges directed to the right between any two vertices that lie in the same
row and which have no other vertices between them in the same row, and
edges directed upwards between any two nodes that lie in the same column
and which have no other vertices between them in the same column.

Fig. 1. A Le-diagram with λ = (3, 3, 2),
d = 3 and n = 7

Fig. 2. The corresponding Le-graph
obtained from Fig. 1

We always consider a Le-graph Γ to be embedded in the Le-diagram from
which Γ is constructed. This embedding is a planar embedding.

We define now a positroid using Le-graphs.

Definition 4 (Positroid). Let Γ be a Le-graph and B be the set of nodes
labelling vertical vertices of the boundary path of Γ and r = |B|. We define
the collection I of independent sets of the positroid P (Γ) to be all sets I ∈ (

[n]
k

)

where k ≤ r, such that there exist k pairwise vertex-disjoint paths from I to B
in Γ . A matroid M = ([n], I) is a positroid if there is a Le-graph Γ such that
M ∼= P (Γ). Note that if x ∈ I ∩ B then x is the trivial path from I to B and
therefore every element of B is an independent set on its own.

As it is commonly done, we identify a matroid with its collection of basis.
These are the independent sets of size r. For example, the positroid built from
the Le-graph in Fig. 2 is

P = {235, 236, 245, 246, 256, 257, 267, 356, 357, 367, 456, 457, 467}.

Notice that given a Le-graph Γ , the loops in P (Γ) correspond to isolated
horizontal vertices, as 1 in Fig. 2; while coloops correspond to isolated vertical
vertices.

We state without a proof the following proposition.

Proposition 1 ([3]). Positroids are closed under taking duals and minors.

150 L. Chidiac et al.

3 The Rank-Function Algorithm

Our algorithm takes a subset S ⊆ [n] of a positroid P of n elements and return
its rank. A routing from S to B in Γ is a set of vertex-disjoint paths with initial
vertices in S and end vertices in B. The rank of a subset S is the size of the
biggest independent set that it contains. Thus, our goal is to find the maximal
number of vertex-disjoint paths from S to B, that is the size of a maximum
routing from S to B. Recall that B denotes the set of vertical vertices of Γ . Let
D be a subdigraph of Γ , x a vertex of D, and T a set of vertices of D such
that there is an xT -directed path in D. An all along the wall path from x to T
in D, W (x, T,D) is a directed path obtained by Depth-First-Search starting in
x, with preference to the east and ending in T . We recall that a Depth-First-
Search algorithm is an algorithm that starts at a root node and explores as far
as possible along each branch before backtracking. Clearly, if P and Q are all
along the wall paths from x to T in D, then P = Q. In particular, if x ∈ T then
W (x, T,D) is the trivial path x.

Let P be a positroid on n elements, represented by a Le-graph D, and S a
subset of P whose rank we want to compute. The following is a pseudocode of
the Rank-function algorithm.

Arrange the set S in increasing order

Create B, the set of all vertical vertices of D

r = |B| (r is the rank of the positroid)

rk(S) = 0.

For i in S

If rk(S) = r

Break

If W(i,B,D) exists

rk(S) = rk(S) + 1

D = D - W(i,B,D) (Delete all vertices of the path W(i,B,D))

Else

U = All visited vertices during the search for W(i,B,D)

D = D - U (Delete all visited vertices during the search for W(i,B,D))

print rk(S)

Notice that since we are looking for vertex-disjoint paths, we can delete all
vertices of W (i, B,D) once it is found. Similarly, if W (i, B,D) does not exist,
that is if no path is found from i to B in D, we can delete all vertices traversed
during the search; that is to avoid visiting them again knowing they do not
lead to successful paths. It is important to mention that W (i, B,D) can be
constructed in linear time with respect to the size of the edge set of D, which
is O(n2). In the following example we use a marker to emphasis the steps done
by the algorithm. We also color all visited vertices in red. Note that all edges
are directed upwards and from left to right, but for the simplicity of graphs we
draw simple edges instead.

An Efficient Computation of the Rank Function of a Positroid 151

Remark 1. Positroids form a subclass of the gammoids (see e.g. [2]). While rank
computation even in represented gammoids can be hard as it involves the com-
putation of a maximal set of vertex disjoint paths, the simple structure of the
underlying digraph makes the computation a lot easier in the case of Le-graphs.

Example 1. Let us find the rank of S = {3, 4, 5, 8, 9}, a subset of the positroid
P(D) using its Le-diagram D shown below. We first create the set of verticals
B = {2, 3, 6, 8}. Let rk(S) = 0 and r = |B| = 4. We start by placing the marker
on 3. Since 3 is in B, then W (3, B,D) is the trivial path 3. We delete the vertex
3, increase the rank of S by one and move on to the second element in S, and
so on. After finding the trivial path 8 we move the marker to the last element
9 and continue our search but one can notice that W (9, B,D − U) does not
exist, where D − U is the diagram shown in the last row of this example. After
completing the Rank-function algorithm we get that the rank of the subset S is
rk(S) = 3.

We next prove that the paths W (i, B,D) found in the Rank-Function algo-
rithm form a maximum routing from S to B, which we call the all along the wall
routing. Given a set S ⊆ [n], we recursively define the all along the wall routing
of S, AWR(S) as follows. We define the base case AWR(∅) = ∅. When S
= ∅,
let s = max(S), U be the union of vertices of the paths in AWR(S − s) and
T = B \ U .

152 L. Chidiac et al.

AWR(S) =

{
AWR(S − s) if there is no sT -directed path in D − U,

AWR(S − s) ∪ {W (s, T,D − U)} otherwise.

For the proof, the following lemma is needed. Let i ∈ [n] and consider a pair
P and Q of iB-directed paths in D. We say that P dominates Q if Q is never
strictly above P , in other words, if there are no vertices from the path Q that
are above the path P and not touching P .

Lemma 1. Let Γ be a Le-graph, B its set of vertical vertices and S a subset of
[n]. If S is an independent set, then |AWR(S)| = |S|, and for any maximum
routing R from S to B, we always have that Ri dominates Wi for all i ∈ S,
where Ri and Wi are paths of R and AWR(S) whose initial vertex is i.

Proof. Let i ∈ [n] and consider a pair P and Q of iB-directed paths in Γ .
Consider a positive integer j, i < j ≤ n. If P dominates Q, then any jB-
directed path that intersects Q also intersects P . Now we prove the lemma
by induction over |S| where the base case trivially holds. Let m = max(S)
and S′ = S − m. By induction we have that |S′| = |AWR(S′)| and that for
any routing R′ from S′ to B, if R′

i and W ′
i are paths in R′ and AWR(S′)

then R′
i dominates W ′

i . Consider a maximum routing R from S to B. The path
Rm does not intersect Ri for any i < m, and so Rm does not intersect R′

i

and since R′
i dominates W ′

i , Rm does not intersect any W ′
i . Therefore if U is

the union of the vertices in AWR(S′) and T = B \ U , then there is an mT -
directed path in Γ − U , and so, AWR(S) = AWR(S′) ∪ {W (m,T, Γ − U)}.
Hence |AWR(S)| = |AWR(S′)| + 1 = |S′| + 1 = |S|. and the claim follows. ��

Consider a routing R from a set S to B in Γ and let m be an integer in S. We
denote by R|m the subset of R that consists of those paths whose initial vertex
belongs to S∩[m]. In other words, paths whose initial vertex are i ∈ S and i ≤ m.
By the order in which we process the elements of S when we construct AWR(S),
the equality AWR(S ∩ [m]) = AWR(S)|m holds. This simple observation will
be used in the proof of the following proposition.

Proposition 2. Let Γ be a Le-graph and S a subset of [n]. The all along the
wall routing of S, AWR(S), is a maximum routing from S to B in Γ , where B
is the set of all vertical vertices of Γ .

An Efficient Computation of the Rank Function of a Positroid 153

Proof. We proceed by induction over |S| where we consider the base case to be
when S is an independent set, which holds by Lemma 1. Suppose that S is a
dependent set and let I be the set of initial vertices of the paths in AWR(S).
Let m = min(S \I) and I ′ = I ∩ [m]. We first prove that I ′∪{m} is a dependent
set. Proceeding by contradiction, suppose that I ′ ∪ {m} is an independent set.
By the choice of m, we know that I ′ ∪ {m} = S ∩ [m]. By the observation
above this paragraph and by the fact that m /∈ I, the following equation holds;
|AWR(S∩ [m])| = |AWR(S)|m| = |I ′| = |I ′∪{m}|−1. On the other hand, since
I ′ ∪ {m} is an independent set, by Lemma 1, we have that |AWR(I ′ ∪ {m})| =
|I ′ ∪ {m}|. This contradiction implies that I ′ ∪ {m} must be a dependent set.
So rk(S −m) = rk(S), and thus any maximum routing of S −m is a maximum
routing of S. Since m ∈ S \ I, by the recursive rule for constructing all along
the wall routings, we know that AWR(S) = AWR(S −m). Therefore, by our
induction hypothesis we conclude that AWR(S) is a maximum routing of S−m,
and thus it is a maximum routing of S. ��

We highlight that with an adequate implementation, the all along the wall
routing of any set S ⊆ [n] can be constructed in linear time with respect to
the edge set of Γ which is O(n2). Moreover, since the rank of a set S ⊆ [n]
in a positroid P (Γ), is the size of a maximum routing from S to B in Γ , by
Proposition 2 the following statement holds.

Corollary 1. Let n be a positive integer and Γ a Le-graph with boundary vertices
[n]. The rank of a given set of a positroid P (Γ) can be computed in O(n2)-time.

4 From Le-Diagram to Decorated Permutation

As previously mentioned, positroids are also in bijection with decorated permu-
tations. Before defining them, let us first recall that the i-order <i on the set
[n] is the total order

i <i i+ 1 <i · · · <i n <i 1 <i · · · <i i− 2 <i i− 1.

Definition 5 (Decorated Permutation). A decorated permutation of the set
[n] is a bijection σ : [n] → [n] whose fixed points are colored either “clockwise”
or “counterclockwise.” We denote a clockwise fixed point by σ(j) = j and a
counterclockwise fixed point by σ(j) = j̄. A weak i-excedance of the decorated
permutation σ is an element j ∈ [n] such that either j <i σ(j) or σ(j) = j̄. The
number of weak i-excedances of σ is the same for any i ∈ [n]; we will simply call
it the number of weak excedances of σ. A simple way to represent a permutation
σ is by the vector (σ(1), σ(2), . . . , σ(n)).

Postnikov proved in [7] that there is a bijection β between decorated permuta-
tion and Le-diagrams such that for every decorated permutation σ, the positroid
represented by σ, P (σ) is the same as P (β(σ)). Later on, in 2013, Ardila et al.
[3] presented a simple algorithm that, given a Le-graph Γ , efficiently computes

154 L. Chidiac et al.

β−1(Γ) (Lemma 2). However, we are unaware of a published algorithm that takes
as an input a decorated permutation σ and outputs β(σ). Although the existence
of such a bijection β was proven by Postnikov, he did not present an explicit
algorithm that computes it. In Sect. 5 we propose an algorithm that computes
β in polynomial time. For a clear understanding of the algorithm, one must first
understand the algorithm presented by Ardila et al. in [3] which we present now
along with an example. Recall that we consider a Le-graph together with an
embedding in a Le-diagram from which it was constructed. On the other hand,
for every Le-diagram we can easily construct a Le-graph. Thus, we will abuse the
nomenclature and speak about Le-graphs and Le-diagrams as the same object.

Lemma 2. The following algorithm gives a bijection α between the Le-diagrams
of type (d, n) and the decorated permutations on n letters with d weak excedances.

1. Replace each dot in the Le-diagram D with an uncross #, and each empty
box in D with a cross

2. The south and east border of Yλ gives rise to a path of length n from the
northeast corner to the southwest corner of the d × (n − d) rectangle. Label
the edges of this path with the numbers 1 through n.

3. Label the edges of the north and west border of Yλ so that opposite horizontal
edges and opposite vertical edges have the same label.

4. By following the “pipes” from the northwest border to the southeast border of
the Young diagram in the resulting “pipe dream” we get a permutation σ. If
the pipe originating at i ends at j, we define σ(i) = j. (No right angles turns
are possible. A turn is only possible with an uncross.)

5. If σ(j) = j and j labels two horizontal (respectively vertical) edges of Yλ, then
σ(j) = j (respectively σ(j) = j̄).

The following is an example that illustrates this procedure for a Le-diagramD.

Fig. 3. A Le-diagram D (on the left) with the pipe dream (on the right) con-
structed when computing α(D) according to Lemma 2. In this case α = (D) =
(1, 7, 9, 3, 2, 6̄, 5, 10, 4, 8).

An Efficient Computation of the Rank Function of a Positroid 155

5 From Decorated Permutation to Le-Diagram

5 As we have already mentioned, the aim of In this section we to propose a
polynomial-time computation of α−1, i.e., the inverse function of the mapping
defined by the algorithm in Lemma 2. The Le-graph-construction algorithm takes
a decorated permutation σ as an input and outputs the Le-diagram correspond-
ing to σ. It is evident that the first step of the algorithm can be inverted in
linear time with respect to the size of the Le-diagram. For this reason we will
identify Le-diagrams and pipe dreams, according to the construction in the first
step of the algorithm in Lemma 2. Allow us to formalize the concept of pipe
dream. A pipe dream D consists of a shape, a labelling and a filling. The shape
of D is a Young diagram Y contained in a d × (n − d) rectangle. The labelling
of D is a pair of labelling, one of the southeast border SE of Y and the second
of the northwest border NW of Y . The filling F of D is a function from the
boxes of D to the set { #,+}; the first element is an uncross and the second is a
cross. An empty pipe dream ED consists of the shape together with a labelling
as defined above, but with no filling. So every pipe dream can be described as
an ordered pair (ED,F). In the rest of this work we stick to the labelling used
in Lemma 2. In other words, if we have an empty pipe dream ED, then we label
the steps of the southeast borders from 1 to n (from northeast to southwest)
and label the steps of the north and west border by the same label of the step it
is facing. We call this the AL labelling. Notice that every pipe dream D defines
a bijection fD : NW → SE by following the pipes from the northwest border to
the southeast border. We call this function the bijection defined by D.

We start by presenting our algorithm along with an example and then prove
it in Theorem 1. Let σ : NW → SE be a decorated permutation on the set [n] of
a positroid P whose pipe dream D = (ED,F) we want to find. First, we have to
determine the shape of the empty pipe dream ED. For that purpose it suffices to
determine which steps are the vertical steps of the southeast border. Notice that,
starting from the northwest border, a cross or an uncross can only take a path
downwards or to the right. When using the AL labelling of ED, for any step with
label i on the north border, we must have that σ(i) ≤ i and for any step with
label j on the west border, we must have σ(j) ≥ j. Thus, the set B of all vertical
edges is the set of weak 1-excedances of the decorated permutation σ. Observe
that the color of the fixed points on decorated permutation are important to
determine the vertical steps of the southeast border. The empty pipe dream
ED we get from σ in this way is called the empty pipe dream defined by σ and
we denote it by ED(σ). E.g. consider the decorated permutation σ from the
previous example. The set of weak 1-excedances is B = {2, 3, 6, 8}, thus the
second, third, sixth and eighth steps are vertical. Having determined the shape
of the southeast border of ED, we add boxes to the left of the path in the Ferrers
shape and give the borders the AL labelling. Now we still have to find a filling
F such that σ is the bijection defined by D = (ED,F).

We present now a recursive algorithm that generates the filling F of D that
satisfies the L-property, and later prove that such a filling always exists. The

156 L. Chidiac et al.

algorithm consists of three steps which we explain separately in the following
subsections.

5.1 Removing Fixed Points

After constructing the shape of ED and labelling the borders with the AL
labelling, we start the filling process. Thepaths of fixed points in the decorated
permutation are easy to fill. For instance, in the example of Lemma 2, there is
only one way to link 6 to 6 and that’s with a series of crossings from left to right.
Similarly, with “clockwise” fixed point, we draw a series of crossings from top to
bottom. Therefore, for the simplicity of the algorithm we remove fixed points,
since they can be added later on after completing the filling of ED. Removing
fixed points means removing the entire row or column of the fixed point from
ED. Since these rows and columns are filled with crosses, removing them will
not affect any other paths. We now have a new empty pipe dream ED′ that we
relabel again with the AL labelling. The decorated permutation will change as
well and it will be computed using the function l.

Let X = {x1, x2, . . . , xt} be the set of fixed points in the decorated permuta-
tion σ such that x1 < x2 < · · · < xt. First we remove X from σ and then define
l as follows:

l : [n] −X −→ [n− t]

e �−→

⎧
⎪⎨

⎪⎩

e− i if xi < e < xi+1

e− t if e > xt

e otherwise.

Note that e is a non-fixed element of the permutation σ i.e., e = σ(i)
and σ(i)
= i. For example let us consider the decorated permutation σ =
(2, 3, 5, 4, 1, 6̄, 8, 7, 9, 11, 10, 1̄2, 14, 13). Here σ has 4 fixed points x1 = 4, x2 = 6,
x3 = 9 and x4 = 12. Every element e > 12 in σ will be replaced by e − 4 and
every element e < 4 is invariant. Moreover, 5 is replaced by 5 − 1 = 4 (since
x1 < 5 < x2), 8 by 8 − 2 = 6 and 7 by 7 − 2 = 5, 11 by 11 − 3 = 8 and 10
by 10 − 3 = 7. The new permutation we get after removing all fixed points is
σ′ = (2, 3, 4, 1, 6, 5, 8, 7, 10, 9).

5.2 Filling the Bottom Row

After removing rows and columns corresponding to fixed points from ED, a new
empty pipe dream ED′ is obtained. The algorithm will now fill the bottom row
of ED′, from left to right.

Proposition 3. After removing rows and columns corresponding to fixed points
from an empty pipe dream ED, the bottom row of the new empty pipe dream
ED′, is either filled with uncrosses or with a series of crosses followed by a
series of uncrosses.

An Efficient Computation of the Rank Function of a Positroid 157

Proof. Recall that the Le-diagram of P fulfills the L-property. This implies that
a filling F of a pipe dream satisfies the L-property if there is no box with a cross
which has an uncross above it in the same column and to the left of it in the
same row. So, by identifying empty boxes with crosses and dots with uncrosses,
we have a bijection between pipe dreams that satisfy the L-property and Le-
diagrams that satisfy the same property. In order to fill the bottom row, we look
at the lowest vertical i of the west border and its image in the new decorated
permutation σ′. Since i is a vertical vertex, we have that σ′(i) > i, which means
that σ′(i) is on the south border below i. Thus, there is always only one way
to route this vertical to its image. That is by one uncross or a series of crosses
that ends with an uncross. After we complete the path from i to σ′(i), if there
is still empty boxes to the right of the box with an uncross, they should be filled
with uncrosses, otherwise we get a fixed point, since there cannot be an uncross
above it by the L-property. ��

Let us consider the permutation from Fig. 3: σ = (1, 7, 9, 3, 2, 6̄, 5, 10, 4, 8) as
an example, and let ED be the empty pipe dream constructed from σ. After
using the function l to remove fixed points we get a new empty pipe dream ED′

and the permutation σ′ = (5, 7, 2, 1, 4, 8, 3, 6). We have σ′(6) = 8 and there is
one way to route this, namely with an uncross. The box to the right should also
contain an uncross, since otherwise we either get a fixed point or the L-property
is no longer fulfilled as we have already shown in the proof of Proposition 3. The
following is ED′ and the filling of the last row.

5.3 Contracting an Element

Once the last row of ED′ is filled, the labels from the last row can now be shifted
to the upper row following the partial paths formed from the filling of the last
row. By doing so, the last row is in fact no longer needed. We can remove it
from ED′, and the algorithm will now work on a new empty pipe dream ED′′

that has one element less than ED′. As a matter of fact, the positroid P(D′′)
where D′′ is the pipe dream we get after removing the last row from a pipe
dream D′ correspond to a minor of the positroid P(D′). We prove this in the
next proposition.

158 L. Chidiac et al.

As shown in the figures above, after filling the last row and shifting the
labels following the partial paths, we can now delete the last row, relabel the
borders using the AL labelling and work on a new empty pipe dream. Certainly,
the decorated permutation changes as well since now we have one less element,
which is 8 in this example.

Proposition 4. Let P(D) be the positroid coming from a Le-diagram D, and a
decorated permutation σ, and let vk be the bottom vertical in D. Removing the
bottom row from D, is in fact contracting e = σ(vk) in P(D).

Proof. Let D′ be the Le-diagram obtained after removing the bottom row from
D. First, we have to prove that any basis B′ of the positroid P(D′) is equal to
B−e for a basis B in P(D) such that e ∈ B. Since e = σ(vk) and vk is a vertical,
we have e ≥ vk. Let e − 1, e − 2, . . . , vk denote the elements before e including
the bottom vertical vk. If B′ ∩ {e− 1, . . . , vk} = φ then B = B′ + e is a base in
P(D) since we can route vk to e.

If B′ ∩ {e − 1, . . . , vk} = {e − j}j∈J such that ∅
= J ⊆ {1, . . . , e − vk}, let
e− i be the largest element in B′ ∩ {e− 1, . . . , vk} and let e− i be routed to a
vertical vi in the D. Now B = B′ + e is a basis in P(D), since we can route e to
vi, and reroute e− i to vk.

For the other direction, we need to prove that any basis B in P(D) such that
e ∈ B, B−e is a basis in P(D′). We consider two cases here. If e was routed to vk

in B, then by removing e and the bottom row, the routing of the other elements
stays the same in B−e, and B−e is a basis in P(D′). However, if e was not routed
to vk but to a vertical ve, this means that one element from {e− 1, . . . , vk − 1}
was routed to vk or vk ∈ B. Now let B ∩ {e− 1, . . . , vk} = {e− j}j∈J such that
J = {j1, j2, . . . , jp}
= ∅ and J is arranged in increasing order. Now B − e is a
basis in D′ since we can route e− j1 to ve, e− j� to ve−j�−1 (that is the vertical
that e− j1 was routed to in B) for
 = 2, . . . , p. ��

In order to compute the new permutation after contracting an element e, we
use the function le which we define as follows:

le : [n] − e −→ [n− 1]

x �−→
{
x− 1 if x > e

x otherwise.

An Efficient Computation of the Rank Function of a Positroid 159

Note that x is an element of the permutation σ′ different from e i.e., x =
σ′(i) implies σ′(i)
= e. Positroids are closed under minors, and therefore after
contracting an element and computing the new permutation, by induction we
can now repeat the same process. We remove fixed points, fill the last row and
then contract the image of the last vertical. We repeat until the pipe dream is
completely filled.

For the reader’s sake we continue with the example. After contracting 8, the
new permutation is now (5, 7, 2, 1, 4, 3, 6). We see that there are no fixed points,
so we can skip the first step and start by filling the last row. The image of 2
(the last vertical) is 7 so the first box to the left of the last row contains an
uncross and now the other boxes in that row should also contain uncrosses. Now
we contract 7, that means we remove the last row and shift all the labels from
the last row following the partial paths, and we compute the new permutation
using the function l7. The new permutation is now (5, 2, 1, 4, 3, 6). We got now
three new fixed points. We remove them using the function l and we get the
permutation (3, 1, 2). Now we only have one row which we fill with uncrosses
since the image of 1 is 3, and we get the following pipe dream.

All the boxes of ED were filled with crosses and uncrosses during the process.
The final output of the algorithm, which is the complete filling F of ED satisfying
the L-property, can be computed in two ways.

1. The algorithm enumerates each box of the initial empty diagram ED and
saves the filling of each box during the process. The output is then an array
containing the filling of all boxes.

2. The algorithm does not store the filling of each box during the process but
keeps track of the fixed points deleted, and the elements contracted, at each
step. Then, after the process is completed and we are down to one row, we
start to reconstruct the original pipe dream by adding deleted fixed points
using l−1 and contracted elements using l−1

e .

Theorem 1. Let σ be a decorated permutation and ED the empty pipe dream
defined by σ and has the AL labelling. There exists a unique filling F such that
σ equals the bijection defined by (ED,F) and F satisfies the L-property.

Proof. We proceed by strong induction over the number of boxes in ED. The
base case is when there are no boxes in ED so the southeast border equals the
northwest border and all elements in σ are fixed points. In this case the empty
filling ∅ obviously satisfies the L-property. For the inductive case we consider
two cases.

Case 1: σ has a fixed point i.
Let i be the label of a north step such that σ(i) = i (if i is the label of a

west step, the argument is similar to the following one). Consider the empty pipe

160 L. Chidiac et al.

dream ED′ obtained by removing the column C determined by the step with
label i, and let σ′ : [n]− i→ [n]− σ(i) be the restriction of σ to the set of labels
[n] − i. Suppose F ′ is a filling of ED′ such that (ED,F ′) defines the bijection
σ′. Consider the extension F of F ′ where every box of C is filled with a cross. It
is not hard to notice that (ED,F) defines the function σ. Moreover, since every
box with a cross in F that does not belong to ED′ has only crosses on top, F
satisfies the L-property whenever F ′ does.

Case 2: σ has no fixed point.
Let R be the bottom row of ED and i the label of the lowest vertical of the

west border. Since σ has no fixed points and i is the label of a vertical step,
this means that σ(i) is the label of a step on the south border below i. Let B
be the box whose bottom edge is σ(i). Consider the partial filling F0 defined for
the boxes of R as follows: every box to the left of B is filled with a cross, and
every box to the right of B including B is filled with an uncross. Notice that
i reaches σ(i) by following the pipe dream of F0. Let ED′ be the empty pipe
dream obtained from ED after removing R. Preserve the labelling of all steps
not in R and shift all labels of the steps in R along the pipes of the partial filling
F0. Notice that the labels of the northwest border of ED′ are in [n]− i and the
labels of the southeast border are in [n] − σ(i). So let σ′ : [n] − i → [n] − σ(i)
be the restriction of σ to [n] − i. Again, by extending the filling F ′ obtained by
our induction hypothesis to the filling F ′ ∪ F0, we conclude that the function
defined by (ED,F ′ ∪ F0) equals σ. Finally the fact that F ′ ∪ F0 satisfies the
L-property, follows from the induction hypothesis and the fact that every cross

in R has only crosses to the left. ��
We highlight that, given an empty pipe dream ED defined by a decorated

permutation σ : [n] → [n], the inductive proof of Theorem 1 yields an O(n2)-time
construction of the filling F such that σ is the bijection defined by (ED,F).

Lemma 3. For any decorated permutation σ : [n] → [n], the Le-diagram α−1(σ)
can be constructed in quadratic time with respect to n.

Proof. First, notice that we can construct an empty pipe dream ED(σ) in O(n2)-
time. By Theorem 1, there is a filling F such that the bijection defined by
(ED(σ), F) is σ. Clearly, this function coincides with the permutation in Lemma
4, so if D = (ED(σ), F) then α(D) = σ. Finally, since F can be constructed in
O(n2)-time then the Le-diagram D can also be constructed O(n2)-time. ��

By composing the construction in the proof of Lemma 3 and Corollary 1 we
obtain a quadratic time algorithm that calculates the rank of a given set of a
positroid represented by a decorated permutation.

Corollary 2. The rank of a given set of a positroid represented by a decorated
permutation can be computed in polynomial time from the decorated permutation.

An Efficient Computation of the Rank Function of a Positroid 161

6 Discussion

This paper was inspired by the work of Oh and Mcalmon in [5]. We noticed
that the rank of an arbitrary subset of a positroid can easily be computed from
the Le-diagram instead of the decorated permutation. Later, we showed that
given a decorated permutation σ we can efficiently compute the Le-diagram that
represents the same positroid as σ. It is worth mentioning that an equivalent
way of doing this would be to compute the Grassmann Necklace of a given
decorated permutation and then use the algorithm of Agarwala and Fryer in [1]
that constructs the Le-diagram associated to the Grassmann Necklace.

To conclude this brief work we stand out the following. It is important to
notice that the all along the wall routings defined in Sect. 3 stem from the linear-
time algorithm of Ulrick Brandes and Dorothea Wagner in [4] for the arc disjoint
Menger problem in planar directed graphs. The problem of finding a maximum
number of internally vertex-disjoint s-t paths can be reduced to the arc-disjoint
case by replacing each vertex v
= s, t by two vertices v′, v′′, while each arc with
head v is redirected to v′ and each arc with tail v is redirected from v′′; moreover,
an arc (v′, v′′) is added ([8] page 137). In general, this reduction does not preserve
planarity, but in the case of Le-graphs planarity is preserved. Nonetheless, when
adding a source and a sink to the Le-graph, planarity might be destroyed. Thus,
we could not simply reduce our problem to the one considered in [4], but a similar
technique to the one used in [4] also worked for us.

References

1. Agarwala, S., Fryer, S.: An algorithm to construct the Le diagram associated to a
Grassmann necklace. Glasg. Math. J. 62(1), 85–91 (2020)

2. Albrecht, I.: Contributions to the problems of recognizing and coloring gammoids.
FernUniversität in Hagen (2018). https://doi.org/10.18445/20180820-090543-4

3. Ardila, F., Rincón, F., Williams, L.: Positroids and non-crossing partitions. Trans.
Amer. Math. Soc. 368(1), 337–363 (2016)

4. Brandes, U., Wagner, D.: A linear time algorithm for the arc disjoint Menger prob-
lem in planar directed graphs. In: Burkard, R., Woeginger, G. (eds.) ESA 1997.
LNCS, vol. 1284, pp. 64–77. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-63397-9 6

5. Mcalmon, R., Oh, S.: The rank function of a positroid and non-crossing partitions.
Electron. J. Combin., 27(1) (2020). Paper No. 1.11, 13

6. Oxley, J.: Matroid theory, second edition. In: Oxford Graduate Texts in Mathemat-
ics, vol. 12. Oxford University Press, Oxford (2011)

7. Postnikov, A.: Total positivity, grassmannians, and networks (2006)
8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, volume B

(2003)

https://doi.org/10.18445/20180820-090543-4
https://doi.org/10.1007/3-540-63397-9_6
https://doi.org/10.1007/3-540-63397-9_6

Minimizing Query Frequency to Bound
Congestion Potential for Moving Entities

at a Fixed Target Time

William Evans(B) and David Kirkpatrick

Computer Science, University of British Columbia, Vancouver, Canada
{will,kirk}@cs.ubc.ca

Abstract. Consider a collection of entities moving continuously with
bounded speed, but otherwise unpredictably, in some low-dimensional
space. Two such entities encroach upon one another at a fixed time if
their separation is less than some specified threshold. Encroachment, of
concern in many settings such as collision avoidance, may be unavoid-
able. However, the associated difficulties are compounded if there is
uncertainty about the precise location of entities, giving rise to potential
encroachment and, more generally, potential congestion within the full
collection.

We consider a model in which entities can be queried for their current
location (at some cost) and the uncertainty region associated with an
entity grows in proportion to the time since that entity was last queried.
The goal is to maintain low potential congestion, measured in terms
of the (dynamic) intersection graph of uncertainty regions, at specified
(possibly all) times, using the lowest possible query cost. Previous work
[SoCG’13, EuroCG’14, SICOMP’16, SODA’19], in the same uncertainty
model, addressed the problem of minimizing the congestion potential
of point entities using location queries of some bounded frequency. It
was shown that it is possible to design query schemes that are O(1)-
competitive, in terms of worst-case congestion potential, with other, even
clairvoyant query schemes (that exploit knowledge of the trajectories of
all entities), subject to the same bound on query frequency.

In this paper we initiate the treatment of a more general problem
with the dual optimization objective: minimizing the query frequency,
measured as the reciprocal of the minimum time between queries (gran-
ularity), while guaranteeing a fixed bound on congestion potential of
entities with positive extent at one specified target time. This comple-
mentary objective necessitates quite different schemes and analyses. Nev-
ertheless, our results parallel those of the earlier papers, specifically tight
competitive bounds on required query frequency.

Keywords: data in motion · uncertain inputs · collision avoidance ·
online algorithms · competitive analysis

This work was funded in part by Discovery Grants from the Natural Sciences and
Engineering Research Council of Canada.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 162–175, 2023.
https://doi.org/10.1007/978-3-031-43587-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_12&domain=pdf
http://orcid.org/0000-0002-7611-507X
http://orcid.org/0000-0002-3276-2734
https://doi.org/10.1007/978-3-031-43587-4_12

Frequency-Competitive Query Strategies 163

1 Introduction

This paper addresses a fundamental issue in algorithm design, of both theoret-
ical and practical interest: how to cope with unavoidable imprecision in data.
We focus on a class of problems associated with location uncertainty arising
from the motion of independent entities when location queries to reduce uncer-
tainty are expensive. For concreteness, imagine a collection of robots following
unpredictable trajectories with bounded speed. If an individual robot is not mon-
itored continuously there is uncertainty, growing with the duration of unmoni-
tored activity, concerning its precise location. This portends some risk of collision
with neighbouring robots, necessitating some perhaps costly collision avoidance
protocol. Nevertheless, robots that are known to be well-separated at some point
in time will remain free of collision for the near future. How then should a limited
query budget be allocated over time so as to minimize the risk of collisions or,
more realistically, help focus collision avoidance measures on robot pairs that
are in serious risk of collision?

We adopt a general framework for addressing such problems, essentially the
same as the one studied by Evans et al. [10] (which unifies and improves [8,9])
and by Busto et al. [5]. In this model, an entity may be queried at any time
in order to reveal its true location but between queries, location uncertainty,
represented by a region surrounding the last known location, grows. Our goal
is to understand with what frequency such queries need to be performed, and
which entities should be queried, in order to maintain a particular measure of the
congestion potential of the entities, formulated in terms of the overlap of their
uncertainty regions. We describe query schemes that ensure a specified bound on
two measures of congestion potential at a specified target time. Our schemes are
shown to be competitive, in terms of query granularity, with any other schemes
that ensure the same bound.

While the problem of guaranteeing low congestion potential at a fixed target
time is of interest in its own right, it also serves to set the stage for the more
ambitious task of guaranteeing low congestion potential continuously (i.e. at all
times). This task is taken up in an expanded version of this paper (see [7]) where
we present query schemes to maintain several measures of congestion potential
that, over every modest-sized time interval, are competitive in terms of the
frequency of their queries, with any scheme that maintains the same measure
over that interval alone.

1.1 The Query Model

To facilitate comparisons with earlier results, we adopt much of the notation
used by Evans et al. [10] and Busto et al. [5]. Let E be a set {e1, e2, . . . , en} of
(mobile) entities. Each entity ei is modelled as a d-dimensional closed ball with
fixed extent and bounded speed, whose position (centre location) at any time is
specified by the (unknown) continuous function ζi from [0,∞) (time) to Rd. We
take the entity radius to be our unit of distance, and take the time for an entity
moving at maximum speed to move a unit distance to be our unit of time.

164 W. Evans and D. Kirkpatrick

∗

Fig. 1. Uncertainty regions
(light grey) of four unit-
radius entities (dark grey).
(Color figure online)

The n-tuple (ζ1(t), ζ2(t), . . . , ζn(t)) is called the
E-configuration at time t. Entities ei and ej are said
to encroach upon one another at time t if the dis-
tance ‖ζi(t) − ζj(t)‖ between their centres is less
than some fixed encroachment threshold Ξ. For sim-
plicity we assume to start that the distance between
entity centres is always at least 2, i.e. the separation
‖ζi(t)− ζj(t)‖−2 between entities ei and ej at time
t, is always at least zero—so entities never properly
intersect, and that the encroachment threshold is
exactly 2 (i.e. we are only concerned with avoiding
entity contact). The concluding section considers a
relaxation (and decoupling) of these assumptions in
which ‖ζi(t)−ζj(t)‖ is always at least some positive
constant ρ0 (possibly less than 2), and the encroachment threshold Ξ is some
constant at least ρ0.

We wish to maintain knowledge of the positions of the entities over time by
making location queries to individual entities, each of which returns the exact
position of the entity at the time of the query. A (query) scheme S is just an
assignment of location queries to time instances. We measure the performance
of a scheme over a specified time interval T as the minimum query granularity
(the time between consecutive queries) over T .

At any time t ≥ 0, let pS
i (t) denote the time, prior to t, that entity ei was last

queried; we define pS
i (0) = −∞. The uncertainty region of ei at time t, denoted

uS
i (t), is defined as the ball with centre ζi(pS

i (t)) and radius 1 + t − pS
i (t); note

that uS
i (0) is unbounded. (We omit S when it is understood and the dependence

on t when t is fixed.) Fig. 1 illustrates the uncertainty regions of four unit-radius
entities shown at their most recently known locations, four, three, two and one
time unit in the past, respectively.

The set U(t) = {u1(t), . . . , un(t)} is called the (uncertainty) configuration at
time t. Entity ei is said to potentially encroach upon entity ej in configuration
U(t) if ui(t) ∩ uj(t)
= ∅ (that is, there are potential locations for ei and ej at
time t such that ei ∩ ej
= ∅).

In this way any configuration U gives rise to an associated (symmetric) poten-
tial encroachment graph PEU on the set E . Note that, by our assumptions above,
the potential encroachment graph associated with the initial uncertainty config-
uration U(0) is complete.

We define the following notions of congestion potential (called interference
potential in [5]) in terms of configuration U and the graph PEU .

– The (uncertainty) max-degree (hereafter degree) of the configuration U
is given by δU = maxi{δU

i } where δU
i is defined as the degree of entity ei

in PEU (the maximum number of entities ej , including ei, that potentially
encroach upon ei in configuration U).

– The (uncertainty) ply ωU of configuration U is the maximum number of
uncertainty regions in U that intersect at a single point. This is the largest

Frequency-Competitive Query Strategies 165

number of entities in configuration U whose mutual potential encroachment
is witnessed by a single point.

– The (uncertainty) thickness χU of configuration U is the chromatic number
of PEU . This is the size of the smallest decomposition of E into independent
sets (sets with no potential for encroachment) in configuration U .

The configuration illustrated in Fig. 1 has uncertainty degree four and uncer-
tainty ply three (witnessed by point ∗).

Note that ωU ≤ χU ≤ δU , so upper bounds on uncertainty degree, and lower
bounds on uncertainty ply, apply to all three measures. As we will see, even when
we seek to minimize congestion at one fixed target time, the query frequency
required to guarantee that uncertainty degree does not exceed some fixed value
x can exceed the query frequency required to guarantee that uncertainty ply
does not exceed x, by a factor of Θ(x).

The assumption that entities never properly intersect is helpful since it means
that if uncertainty regions are kept sufficiently small, uncertainty ply can be kept
to at most two. Similarly, for x larger than some dimension-dependent sphere-
packing constant, it is always possible to maintain uncertainty degree at most
x, using sufficiently high query frequency.

1.2 Related Work

One of the most widely-studied approaches to computing functions of moving
entities uses the kinetic data structure model which assumes precise information
about the future trajectories of the moving entities and relies on elementary geo-
metric relations among their locations along those trajectories to certify that a
combinatorial structure of interest, such as their convex hull, remains essentially
the same. The algorithm can anticipate when a relation will fail, or is informed
if a trajectory changes, and the goal is to update the structure efficiently in
response to these events [1,11,12]. Another less common model assumes that
the precise location of every entity is given to the algorithm periodically. The
goal again is to update the structure efficiently when this occurs [2–4].

More similar to ours is the framework introduced by Kahan [13,14] for study-
ing data in motion problems that require repeated computation of a function
(geometric structure) of data that is moving continuously in space where data
acquisition via queries is costly. There, location queries occur simultaneously in
batches, triggered by requests (Kahan refers to these requests as “queries”) to
compute some function at some time rather than by a requirement to main-
tain a structure or property at all times. Performance is compared to a “lucky”
algorithm that queries the minimum amount to calculate the function. Kahan’s
model and use of competitive evaluation is common to much of the work on
query algorithms for uncertain inputs (see Erlebach and Hoffmann’s survey [6]).

As mentioned, our model is essentially the same as the one studied by Evans
et al. [10] and by Busto et al. [5], both of which focus on point entities. Like
the current paper, paper [10] contains strategies whose goal is to guarantee

166 W. Evans and D. Kirkpatrick

competitively low congestion potential, compared to any other (even clairvoy-
ant) scheme, at one specified target time. It provides precise descriptions of
the impact on this guarantee using several measures of initial location knowl-
edge and available lead time before the target. The other paper [5] contains a
scheme for guaranteeing competitively low congestion potential at all times. For
this more challenging task the scheme maintains congestion potential over time
that is within a constant factor of that maintained by any other scheme over
modest-sized time intervals. All of these results dealt with optimizing congestion
potential measures subject to fixed query frequency.

In this paper, we consider the dual problem: optimizing query frequency
required to guarantee fixed bounds on congestion. These two problems are funda-
mentally different: being able to optimize congestion using fixed query frequency
provides little insight into how to optimize query frequency to maintain a fixed
bound on congestion. In particular, even for stationary entities, a small change in
the congestion bound can lead to an arbitrarily large change in the required query
frequency. Our frequency optimization involves maximizing the minimum query
granularity which requires more than just minimizing the number of queries
made over a specified interval.

1.3 Our Results

The overarching goal of this line of research is to formulate efficient query
schemes that, for all possible collections of moving entities, maintain fixed bounds
on congestion potential measures continuously (i.e. at all times). Naturally for
many such collections the required query frequency changes over time as enti-
ties cluster and spread, so efficient query schemes need to adapt to changes in
the configuration of entities. While such changes are continuous and bounded in
rate, they are only discernible through queries to individual entities, so entity
configurations are never known precisely; future configurations are of course
entirely hidden. In this latter respect our schemes and the competitive analysis
of their efficiency, using as a benchmark a clairvoyant scheme that bases its
queries on full knowledge of all entity trajectories (and hence all future config-
urations), resembles familiar scenarios that arise in the design and analysis of
on-line algorithms.

Our goal in this paper is to show how to optimize query frequency to guar-
antee low congestion potential at one fixed target time, say time τ in the future,
starting from a state of complete uncertainty of entity locations. In an expanded
version of this paper [7] we turn our attention to the optimization of query
frequency to guarantee low congestion potential continuously. Motivation for
restricting attention to a fixed target time comes in part from the desire to
prepare for a computation, at some known time in the future, whose efficiency
depends on this low congestion potential (see [15] for example). As we will see, it
also plays an important role in the efficient initialization of query schemes that
optimize queries to guarantee low congestion potential continuously, from some
point in time onward [7], and provides an informative contrast to those schemes.

Frequency-Competitive Query Strategies 167

We begin by describing a query scheme to achieve uncertainty ply at most
x at one fixed target time in the future, reminiscent of the objective in [10].
The detailed description and analysis of our fixed target time scheme shows
that uncertainty ply at most x can be achieved using query granularity that is
at most a factor Θ(x) smaller than that used by any, even clairvoyant, query
scheme to achieve the same goal. A similar, but more intricate scheme and anal-
ysis establishes the same result for uncertainty degree. An example shows that
the competitive factor for both congestion potential measures is asymptotically
optimal in the worst case. Nevertheless, if we relax our objective, allowing instead
uncertainty degree at most x+Δ, where 1 ≤ Δ ≤ x, the competitive factor Θ(x)
drops to Θ(x

1+Δ). Again, this competitive factor is shown to be asymptotically
optimal in the worst case. This analysis of a query scheme that solves a slightly
relaxed optimization, relative to a clairvoyant scheme that solves the un-relaxed
optimization, foreshadows similar analyses of our schemes for continuous-time
query optimization [7].

In the concluding discussion, we describe modifications to our model that
make our query optimization framework even more broadly applicable.

2 Geometric Preliminaries

Fig. 2. A configuration of five unit
radius entities. The 3-ball B2(3) of
entity e2 is shown shaded.

In any E-configuration Z = (z1, z2, . . . , zn)
and for any positive integer x, we call the
separation between ei and its xth closest
neighbour (not including ei) its x-separation,
and denote it by σZ

i (x). We call the closed
ball with radius (called the x-radius of ei)
rZ
i (x) = σZ

i (x)+1 and centre zi, the x-ball of
ei, and denote it by BZ

i (x) (cf. Figure 2). We
will omit Z when the configuration is under-
stood. Note that, for all entities ei and ej ,

σZ
j (x) ≤ ‖zj − zi‖ + σZ

i (x), (1)

since the ball with radius ‖zj − zi‖ + σZ
i (x)

centred at zj contains the ball with radius
σZ

i (x) centred at zi (by the triangle inequal-
ity).

We have assumed that entities do not
properly intersect. Define cd,x to be the small-
est constant such that a unit-radius d-dimensional ball B can have x disjoint
unit-radius d-dimensional balls (not including itself) with separation from B at
most cd,x. Thus, σZ

i (x) ≥ cd,x and hence

1 − λd,x

λd,x
σZ

i (x) ≥ 1 and rZ
i (x) ≤ σZ

i (x)/λd,x (2)

168 W. Evans and D. Kirkpatrick

where λd,x = cd,x

1+cd,x
. Observe that, for any ξ ≥ 0, cd,x ≥ ξ provided x ≥ (3+ξ)d,

since unit-radius balls with separation at most ξ from B must all fit within a
ball of radius 3 + ξ concentric with B. Thus 1/2 ≤ λd,x < 1 if x ≥ 4d.

Let Xd be the largest value of x for which cd,x = 0 (e.g., X2 = 6). Clearly,
if x ≤ Xd, there are entity configurations Z with σZ

i (x) = 0. Thus, for such
x, maintaining uncertainty degree at most x, even at one specified target time,
might be impossible in general, for any query scheme.

Remark. Hereafter we will assume that x,our bound on congestion potential, is
greater than Xd. The constants Xd and λd,x will factor in both the formulation
and analysis of our query schemes in (arbitrary, but fixed) dimension d.

Since we assume x > Xd, 0 < λd,x < 1. If the reader prefers to focus on
dimension 2, then it will be safe to assume hereafter that x ≥ 16 (and so 1/2 ≤
λd,x < 1).

3 Query Optimization at a Fixed Target Time

Suppose our goal, for a given entity set E , is to optimize queries to guarantee
low congestion potential at some fixed target time τ in the future, starting from
a state of complete uncertainty of entity locations.

Since we assume unbounded uncertainty regions at the start, any query
scheme must query at least a fixed fraction of the entities over the interval
[0, τ], provided E is sufficiently large compared to the allowed potential con-
gestion measure. Hence the minimum query granularity over this interval must
be O(τ/|E|). Furthermore, if granularity is not an issue, O(|E|) queries suffice,
provided they are made sufficiently close to the target time. Maximizing the
minimum query granularity is less straightforward. Nevertheless, it is clear that
any reasonable query scheme using minimum query granularity γ, that guaran-
tees a given measure of congestion potential at most x at the target time τ , will
not query any entity more than once within the final n queries. Thus any such
optimal query scheme determines a radius 1 + kiγ for each entity ei ∈ E , where
(i) k1, k2, . . . , kn is a permutation of 1, 2, . . . , n, and (ii) the uncertainty configu-
ration, in which entity ei has an uncertainty region ui with centre ζi(τ−kiγ) and
radius 1+kiγ, has the given congestion measure at most x. For any measure, we
associate with E an intrinsic fixed-target granularity, defined to be the largest γ
for which these conditions are satisfiable.

It is not hard to see that, by projecting the current uncertainty regions to
the target time (assuming no further queries), some entities can be declared
“safe” (meaning their projected uncertainty regions cannot possibly contribute
to making a congestion measure, for itself or any other entity, exceed x at the
target time). This idea is exploited in query schemes that query entities in rounds
of geometrically decreasing duration, following each of which a subset of such
“safe” entities are set aside with no further attention, until no “unsafe” entities
remain.

Frequency-Competitive Query Strategies 169

The Fixed-Target-Time-ply (FTT-ply) query scheme. This query scheme shows
that, for any Δ, 0 ≤ Δ ≤ x, uncertainty ply at most x+Δ can be guaranteed
at a fixed target time using minimum query granularity that is at most Θ(x

1+Δ)
smaller than that used by any (even clairvoyant) query scheme that guaran-
tees uncertainty ply at most x. Since the uncertainty regions of all entities are
unbounded at time 0, none of the entities are (x+Δ)-ply-safe to start (assum-
ing x+Δ < n). Thus any scheme, including a clairvoyant scheme, must query
all but x of the entities at least once in order to avoid ply greater than x at
the target time. The FTT-ply[x+Δ] scheme starts by querying all entities in
a single round using query granularity τ

2n , which is O(1)-competitive, assuming
n− (x+Δ) = Ω(x+Δ), with what must be done by any other scheme.

At this point, the FTT-ply[x+Δ] scheme identifies the set of n1 entities that
are not yet (x+Δ)-ply-safe (the unsafe survivors). All other entities are set aside
and attract no further queries.

The scheme then queries, in a second round, all n1 survivors using query
granularity τ

4n1
. In general, after the rth round, the scheme identifies nr unsafe

survivors which, assuming nr > 0, continue into an (r+ 1)st round using granu-
larity τ

2r+1nr
. The rth round completes at time τ−τ/2r. Furthermore, all entities

that have not been set aside have a projected uncertainty region whose radius
is in the range (1 + τ/2r, 1 + τ/2r−1].

Theorem 1. For any Δ, 0 ≤ Δ ≤ x, the FTT-ply[x+Δ] query scheme guar-
antees uncertainty ply at most x+Δ at target time τ and uses minimum query
granularity over the interval [0, τ] that is at most a factor Θ(x

1+Δ) smaller than
the intrinsic fixed-target granularity for guaranteeing uncertainty ply at most x.

Proof. We claim that any query scheme S that guarantees uncertainty ply at
most x at time τ must use at least Θ(nr(1+Δ)

x+Δ) queries after the start of the rth
query round of the FTT-ply[x+Δ] query scheme; any fewer queries would result
in one or more entities having ply greater than x at the target time.

To see this observe first that each of the nr unsafe survivors is either queried
by S after the start of the rth query round or has its projected uncertainty
ply reduced to at most x by at least 1+Δ queries to its projected uncertainty
neighbours after the start of the rth query round. Assuming that fewer than
nr/2 unsafe survivors are queried by S after the start of the rth query round,
we argue that at least nr(1+Δ)

2·4d(x+Δ)
queries must be made after the start of the rth

query round to reduce the projected uncertainty ply of the remaining unsafe
survivors to some value at most x.

Note that any query after the start of the rth round to an entity set aside
in an earlier round cannot serve to lower the projected uncertainty ply of any of
the nr unsafe survivors. Furthermore, any query to one of the survivors of the
(r− 1)st round can serve to decrease by one the projected uncertainty ply of at
most 4d(x+Δ) of the unsafe survivors whose projected uncertainty ply is at most
x+Δ. (This follows because (i) the projected uncertainty regions of all survivors
are within a factor of 2 in size, and (ii) any collection of 4dx̂ unit radius balls
that are all contained in a ball of radius 4, must have ply at least x̂.) Thus any

170 W. Evans and D. Kirkpatrick

scheme that guarantees uncertainty ply at most x at time τ must make at least
nr(1+Δ)

2·4d(x+Δ)
queries after the start of the rth query round.

Since query scheme S must use at least nr(1+Δ)
2·4d(x+Δ)

≥ nr

4d+1
1+Δ

x queries over the
interval [τ − τ/2r−1, τ], it follows that our query scheme is Θ(x

1+Δ)-competitive,
in terms of minimum query granularity, with any, even clairvoyant, query scheme
that guarantees uncertainty ply at most x at the target time. ��

The Fixed-Target-Time-degree (FTT-degree) query scheme. This somewhat
more involved query scheme shows that for any Δ, 0 ≤ Δ ≤ x, uncertainty
degree at most x+Δ can be guaranteed at a fixed target time using minimum
query granularity that is at most Θ(x

1+Δ) smaller than that used by any query
scheme that guarantees uncertainty degree at most x. As before, since the pro-
jected uncertainty regions of all entities are unbounded at time 0, any scheme,
including a clairvoyant scheme, must query all but x of the entities at least once
in order to avoid degree (and also ply) greater than x at the target time. The
FTT-degree[x+Δ] scheme starts by querying all entities in a single round using
query granularity τ

2n , which is O(1)-competitive, assuming n−(x+Δ) = Ω(x+Δ),
with what must be done by any other scheme.

At this point, the FTT-degree[x+Δ] scheme identifies two sets of entities (i)
the n1 entities that are not yet (x+Δ)-degree-safe (the unsafe survivors), and
(ii) the m1 entities that are (x+Δ)-degree-safe and whose projected uncertainty
region intersects the projected uncertainty region of one or more of the unsafe
survivors (the safe survivors). All other entities are set aside and attract no
further queries.

The scheme then queries, in a second round, all n1+m1 survivors using query
granularity τ

4(n1+m1)
. In general, after the rth round, the scheme identifies nr

unsafe survivors and mr safe survivors, which, assuming nr +mr > 0, continue
into an (r+ 1)st round using granularity τ

2r+1(nr+mr) . The rth round completes
at time τ−τ/2r. Furthermore, all entities that have not been set aside have a
projected uncertainty region whose radius is in the range (1 + τ/2r, 1 + τ/2r−1].

Theorem 2. For any Δ, 0 ≤ Δ ≤ x, the FTT-degree[x+Δ] query scheme
guarantees uncertainty degree at most x+Δ at target time τ and uses minimum
query granularity over the interval [0, τ] that is at most a factor Θ(x

1+Δ) smaller
than the intrinsic fixed-target granularity for guaranteeing uncertainty degree at
most x.

Proof. We claim that any query scheme S that guarantees uncertainty degree
at most x at time τ must use at least Θ((nr+mr)(1+Δ)

x+Δ) queries after the start of
the rth query round of the FTT-degree[x+Δ] query scheme; any fewer queries
would result in one or more entities having degree greater than x at the target
time.

To see this observe first that each of the nr unsafe survivors must be satisfied,
meaning, is either queried by S after the start of the rth query round or has
its projected uncertainty degree reduced below x by at least 1+Δ queries to

Frequency-Competitive Query Strategies 171

its projected uncertainty neighbours after the start of the rth query round.
Assuming that fewer than nr/2 unsafe survivors are queried by S after the start
of the rth query round, we argue that at least nr(1+Δ)

2·4d(x+Δ)
queries must be made

after the start of the rth query round to reduce below x the projected uncertainty
degree of the remaining unsafe survivors.

Note that any query after the start of the rth round to an entity set aside in
an earlier round cannot serve to lower the projected uncertainty degree of any
of the nr unsafe survivors. As in the proof of Theorem 1, any query to one of
the survivors of the (r − 1)st round can serve to decrease by one the projected
uncertainty degree of at most 4d(x+Δ) of the unsafe survivors whose uncertainty
degree is at most x+Δ. Thus any scheme that guarantees uncertainty degree at
most x at time τ must make at least nr(1+Δ)

2·4d(x+Δ)
queries after the start of the rth

query round.
Similarly, observe that each of the mr safe survivors must have each of its

unsafe neighbours satisfied in the sense described above. But, since the projected
uncertainty regions of all survivors are within a factor of 2 in size, each query
that serves to lower the projected uncertainty degree of an unsafe neighbour of
some safe survivor ei must be to an entity ej that has the projected uncertainty
region of ei in its projected uncertainty near-neighbourhood (the ball centred at
zj , whose radius is 9 times the projected uncertainty radius of ej). But ej has
at most 18d(x+Δ) such safe near-neighbours, since any collection of 18dx̂ unit
radius balls that are all contained in a ball of radius 18, must have degree (and
also ply) at least x̂.

It follows that, even if a query to ej lowers the projected uncertainty degree
of all of the unsafe neighbours of ei, a total of at least mr(1+Δ)

18d(x+Δ)
queries must

be made after the start of the rth query round by any scheme that guarantees
uncertainty degree at most x at time τ .

Thus, query scheme S must use at least

max
{

nr(1+Δ)
2 · 4d(x+Δ)

,
mr(1+Δ)
18d(x+Δ)

}

≥ nr +mr

2 · (18)d

1+Δ
x+Δ

≥ nr +mr

4 · (18)d

1+Δ
x

queries over the interval [τ − τ/2r−1, τ]. It follows that our query scheme is
Θ(x

1+Δ)-competitive, in terms of minimum query granularity, with any, even
clairvoyant, query scheme that guarantees uncertainty degree at most x at the
target time. ��

The competitive factor in both of the preceding theorems is worst-case opti-
mal. Specifically, the following example demonstrates that, for 0 ≤ Δ < x degree
at most x can be guaranteed at a fixed target time by a clairvoyant scheme that
uses query granularity one, yet any non-clairvoyant scheme that guarantees ply
at most x+Δ at the target time must use query granularity that is O(x

1+Δ).

Example 1. Imagine a configuration involving two collections A and B each with
(x + 1 + Δ)/2 point entities located in R1, on opposite sides of a point O. At
time 0 all of the entities are at distance x+3+3Δ from O, but have unbounded

172 W. Evans and D. Kirkpatrick

uncertainty regions. All entities begin by moving towards O at unit speed, but
at time x+1+Δ a subset of 1+Δ entities in both A and B (the special entities)
change direction and move away from O at unit speed, while all of the others
carry on until the target time x+3+3Δ when they simultaneously reach O and
stop.

To avoid uncertainty degree greater than x at the target time a clairvoyant
scheme needs only to (i) query all entities (in arbitrary order) up to time x+1+Δ,
and then (ii) query just the special entities (in arbitrary order) in the next
2(1 +Δ) time prior to the target, using query granularity 1, since doing so will
leave the uncertainty regions of the (x+ 1 +Δ)/2 entities in A disjoint from the
uncertainty regions of the 1 +Δ special entities in B, and vice versa.

On the other hand, to avoid ply x + 1 + Δ at the target time any non-
clairvoyant scheme must query at least one of the special entities (in either A
or B) in the last 2(1 +Δ) time before the target. Since special and non-special
entities are indistinguishable before this time interval, at least x/2 + 1 entities
in at least one of A or B must be queried in the last 2(1 + Δ) time before the
target in order to be sure that at least one special entity is queried late enough
to confirm that its uncertainty region will not contain O at the target time. This
requires query granularity at most 4(1+Δ)

x+2 . Thus in the worst case every scheme
that achieves uncertainty ply at most x+Δ at the target time needs to use at
least a factor Θ(x

1+Δ) smaller query granularity on some instances than the best
query scheme for achieving uncertainty degree at most x at the target time on
those same instances. ��

Theorems 1 and 2 speak to the query frequency requirements for bounding
congestion at a fixed target time, measured in terms of ply or degree individually.
This leaves open the question of how these measures relate to one another. The
following example demonstrates that in some cases the granularity required to
bound congestion degree by x+Δ can be a factor Θ(x

1+Δ) smaller than that
required to bound congestion ply by x.

Example 2. The example involves two clusters A and B of (x+ 1 +Δ)/2 point
entities separated by distance 4(1+Δ). To maintain uncertainty ply at most x it
suffices to query 1+Δ entities in both clusters once every 2(1+Δ) steps, which can
be achieved with query frequency one. Since the uncertainty regions associated
with queried entities in cluster A never intersect the uncertainty regions associ-
ated with queried entities in cluster B, the largest possible ply involves entities
in one cluster (say A) together with unqueried entities in the other cluster (B),
for a total of x.

On the other hand, to maintain degree at most x+Δ no uncertainty region
can be allowed to have radius 4(1+Δ). Thus all x + 1 + Δ entities need to be
queried with frequency at least 1/(4(1+Δ)), giving a total query demand of
x+ 1 +Δ over any time interval of length 4(1+Δ). ��

Nevertheless, bounding congestion degree at a fixed target time cannot be
too much worse than bounding congestion ply.

Frequency-Competitive Query Strategies 173

Theorem 3. The FTT-degree[x+Δ] scheme uses a query granularity that is at
most a factor x2

1+Δ smaller than the best, even clairvoyant, scheme that guarantees
ply at most x.

Proof. (Sketch) The idea is that, in FTT-degree[x+Δ], mr (the number of safe
survivors in round r) is O(nr(x+Δ)). Thus the “extra” queries (to handle the
safe survivors) are at most a factor x+Δ more numerous than the queries to
handle the unsafe survivors. If FTT-ply[x+Δ] is modified so that the queries in
round r occur with granularity τ

2r+1nr
(i.e. half of their previous granularity),

completing at the midpoint of the round, and FTT-degree[x+Δ] is modified so
that the queries in round r occur with granularity τ

2r+1(nr+mr) (i.e. half of their
previous granularity), starting at the midpoint of the round. Since the queries
of FTT-degree[x+Δ] in round r now occur after the corresponding queries in
FTT-ply[x+Δ], it is straightforward to see that the unsafe survivors in round r
of FTT-degree[x+Δ] are no more numerous than the unsafe survivors in round r
of FTT-ply[x+Δ]. It follows that the granularity of queries in FTT-degree[x+Δ]
is no more than a factor Θ(x+Δ) smaller than that of FTT-ply[x+Δ]. ��

4 Towards Continuous Query Optimization

If the configuration of n entities E does not change over time, uncertainty degree
at most x can be maintained on a continuous basis using granularity at least
Θ(γE,x

ln n), where γE,x denotes the intrinsic fixed-target granularity required to
achieve uncertainty degree at most x at any fixed time. Furthermore, a simple
example shows that this Θ(1

ln n) gap is unavoidable in the worst case. See [7,
Appendix C] for details.

While the case of stationary entities exhibits some of the difficulties in main-
taining uncertainty regions with low congestion, mobile entities add an additional
level of complexity. Since an E-configuration may now change over time, we add
a parameter t to our stationary definitions, and refer to Bi(x, t), σi(x, t), and
ri(x, t) in place of their stationary counterparts at time t, where it is understood
that the configuration in question is just the E-configuration at time t.

Perception Versus Reality. For any query scheme, the true location of a moving
entity ei at time t, ζi(t), may differ from its perceived location, ζi(pi(t)), its
location at the time of its most recent query. Let Ni(x, t) be ei plus the set of x
entities whose perceived locations at time t are closest to the perceived location
of ei at time t. The perceived x-separation of ei at time t, denoted σ̃i(x, t), is
the separation between ei and its perceived xth-nearest-neighbour at time t, i.e.,
σ̃i(x, t) = maxej∈Ni(x,t) ‖ζi(pi(t)) − ζj(pj(t))‖ − 2. The perceived x-radius of ei

at time t, denoted r̃i(x, t), is just 1 + σ̃i(x, t).
Since a scheme only knows the perceived locations of the entities, it is

important that each entity ei be probed sufficiently often that its perceived x-
separation σ̃i(x, t) closely approximates its true x-separation σi(x, t) at all times
t. It turns out that once a close relationship between perception and reality has

174 W. Evans and D. Kirkpatrick

been established, it can be sustained by ensuring that the time between queries
to an entity is bounded by some small fraction of its perceived x-separation. See
[7, Lemma 8] for details.

Prior to performing any queries, our perception of the x-separation between
entities is far from reality. Fortunately, this close relationship can be initialized
at some time t0 by using a modified version of the FTT-degree[x+Δ] scheme
of Sect. 3, using higher query frequency and a more restrictive criterion than
(x+Δ)-degree-safety. See [7, Lemma 9] for details.

5 Discussion

To this point, we have assumed that the distance between entity centres is always
at least 2 (i.e. entities never properly intersect), and that the encroachment
threshold is exactly 2 (i.e. we are only concerned with avoiding entity contact).
However, without changing the units of distance and time, we can model a collec-
tion of unit-radius entities, any pair of which possibly intersect but whose centres
always maintain distance at least some positive constant ρ0 < 2, by simply scal-
ing the constant cd,x by ρ0/2 and the constant λd,x accordingly. Similarly (and
simultaneously), we can model a collection of unit-radius entities with encroach-
ment threshold Ξ > 2 by (i) changing the basic uncertainty radius (the radius of
the uncertainty region of an entity immediately after it has been queried) to Ξ/2
thereby ensuring that entities with disjoint uncertainty regions do not encroach
on one another, and (ii) changing Xd to be the largest x such that cd,x ≥ Ξ − 2
since for x exceeding this changed Xd there can be at most x − 1 entities that
are within the encroachment threshold of any fixed entity.

This flexibility makes it possible to relax our assumption that location queries
are answered exactly, since potential error in the response to location queries
can be modelled by an increase in the basic uncertainty radius. Furthermore, it
increases significantly the scope of applications of our results.

Recall the problem concerning collision avoidance mentioned in the introduc-
tion, where entity encroachment might reasonably be held to hold well before
contact. It follows from our results that, by achieving uncertainty degree at most
x at time τ , we obtain for each entity ei a certificate identifying the, at most x−1,
other entities that could potentially encroach upon ei at that time (those war-
ranting more careful local monitoring). An additional application, considered
in [5], concerns entities that are mobile transmission sources with associated
broadcast ranges, that one would expect might sometimes properly intersect,
where the goal is to minimize the number of broadcast channels at time τ so as
to eliminate potential transmission interference. In this case, achieving uncer-
tainty thickness at most x using minimum query frequency serves to obtain a
fixed bound on the number of broadcast channels required at time τ , an objec-
tive that seems to be at least as well-motivated as optimizing the number of
channels for a fixed query frequency (the objective in [5]).

Frequency-Competitive Query Strategies 175

References

1. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algo-
rithms 31(1), 1–28 (1999)

2. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic compressed quadtrees in the
black-box model with applications to collision detection for low-density scenes. In:
Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 383–394. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2 34

3. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic convex hulls, Delaunay trian-
gulations and connectivity structures in the black-box model. J. Comput. Geom.
3(1), 222–249 (2012)

4. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic 2-centers in the black-box
model. In: Symposium on Computational Geometry, pp. 145–154 (2013)

5. Busto, D., Evans, W., Kirkpatrick, D.: Minimizing interference potential among
moving entities. In: Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2400–2418 (2019)

6. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. Eur. Assoc. Theor. Comput. Sci. 2(116) (2015)

7. Evans, W., Kirkpatrick, D.: Frequency-competitive query strategies to maintain
low congestion potential among moving entities (2023). arXiv:2205.09243

8. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Competitive query strategies
for minimising the ply of the potential locations of moving points. In: Symposium
on Computational Geometry, pp. 155–164 (2013)

9. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Query strategies for minimizing
the ply of the potential locations of entities moving with different speeds. In: Abstr.
30th European Workshop on Computational Geometry (EuroCG) (2014)

10. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Minimizing co-location potential
of moving entities. SIAM J. Comput. 45(5), 1870–1893 (2016)

11. Guibas, L.J.: Kinetic data structures: a state of the art report. In: Proceedings of
the Third Workshop on the Algorithmic Foundations of Robotics on Robotics: The
Algorithmic Perspective, pp. 191–209. WAFR ’98, A. K. Peters Ltd, USA (1998)

12. Guibas, L.J., Roeloffzen, M.: Modeling motion. In: Toth, C.D., O’Rourke, J., Good-
man, J.E. (eds.) Handbook of Discrete and Computational Geometry, chap. 53, pp.
1401–1420. CRC Press (2017)

13. Kahan, S.: A model for data in motion. In: Twenty-third Annual ACM Symposium
on Theory of Computing, pp. 265–277. STOC ’91 (1991)

14. Kahan, S.: Real-Time Processing of Moving Data. Ph.D. thesis, University of Wash-
ington (1991)

15. Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time
after preprocessing. Comput. Geom.: Theory Appl. 43(3), 234–242 (2010)

https://doi.org/10.1007/978-3-642-33090-2_34
http://arxiv.org/abs/2205.09243

Complexity of Conformant Election
Manipulation

Zack Fitzsimmons1(B) and Edith Hemaspaandra2

1 College of the Holy Cross, Worcester, MA 01610, USA
zfitzsim@holycross.edu

2 Rochester Institute of Technology, Rochester, NY 14623, USA

Abstract. It is important to study how strategic agents can affect the
outcome of an election. There has been a long line of research in the com-
putational study of elections on the complexity of manipulative actions
such as manipulation and bribery. These problems model scenarios such
as voters casting strategic votes and agents campaigning for voters to
change their votes to make a desired candidate win. A common assump-
tion is that the preferences of the voters follow the structure of a domain
restriction such as single peakedness, and so manipulators only consider
votes that also satisfy this restriction. We introduce the model where the
preferences of the voters define their own restriction and strategic actions
must “conform” by using only these votes. In this model, the election
after manipulation will retain common domain restrictions. We explore
the computational complexity of conformant manipulative actions and
we discuss how conformant manipulative actions relate to other manip-
ulative actions.

1 Introduction

The computational study of election problems is motivated by the utility of elec-
tions to aggregate preferences in multiagent systems and to better understand
the computational tradeoffs between different rules. A major direction in this
area has been to study the computational complexity of manipulative actions on
elections (see, e.g., Faliszewski and Rothe [15]).

The problems of manipulation [1] and bribery [14] in elections represent two
important ways that agent(s) can strategically affect the outcome of an election.
Manipulation models the actions of a collection of strategic voters who seek
to ensure that their preferred candidate wins by casting strategic votes. Bribery
models the actions of an agent, often referred to as the briber, who sets the votes
of a subcollection of the voters to ensure that the briber’s preferred candidate
wins. These problems each relate nicely to real-world scenarios such as how
voters may attempt to work together to strategically vote, or the actions of a
campaign manager looking to influence the preferences of a group of voters to
ensure their candidate wins.

In the manipulation problem each manipulator can cast any strategic vote,
and similarly for the bribery problem the votes can be set to any collection
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 176–189, 2023.
https://doi.org/10.1007/978-3-031-43587-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_13

Complexity of Conformant Election Manipulation 177

of preferences. However, this is not always a reasonable assumption to make.
Voters may have preferences that satisfy a domain restriction such as single-
peaked preferences [6] or single-crossing preferences [27] where the manipulator
or the briber are restricted to using votes that also satisfy the restriction. We
introduce new models of manipulation and bribery where the votes cast by the
manipulators or set by the briber must have already been stated in the election,
i.e., the votes must conform to the views of the electorate. In these conformant
models of manipulation and bribery the election after the given manipulative
action will retain common domain restrictions such as being single-peaked or
single-crossing.

We consider how the computational complexity of our conformant models of
manipulation and bribery compare to the standard models. Specifically, we show
that there are settings where manipulation and bribery are easy in the standard
model, but computationally difficult in the conformant model, and vice versa.
This shows that there is no reduction in either direction between the standard
and conformant cases (unless P = NP).

Conformant manipulation and bribery are also each related to electoral con-
trol. The study of electoral control was introduced by Bartholdi, Tovey, and
Trick [2], and it models the actions of an agent who can modify the structure of
an election to ensure a preferred candidate wins (e.g., by adding or deleting vot-
ers). We explore the connection between conformant manipulation and the exact
variant of voter control as well as conformant bribery and the model of control by
replacing voters introduced by Loreggia et al. [26]. This includes showing reduc-
tions between these problems as well as showing when such reductions cannot
exist. Exact versions of electoral control problems can model scenarios where
the election chair seeks to ensure their preferred outcome by adding exactly the
number of voters required to meet the quorum for a vote. This is in line with
the standard motivation for control by replacing voters which includes settings
such as voting in a parliament where the chair may replace some of the voters,
but makes sure to leave the total number the same to avoid detection [26].

Our main contributions are as follows.

– We introduce the problems of conformant manipulation and conformant
bribery, which model natural settings for manipulative attacks on elections.

– We show that there is no reduction in either direction between the standard
and conformant versions of manipulation (Theorems 1 and 2) and between
the standard and conformant versions of bribery (Theorem 8 and Corollary 2)
(unless P = NP).

– We show conformant manipulation reduces to exact control by adding vot-
ers (Theorem 3), conformant bribery reduces to control by replacing vot-
ers (Theorem 11), and that reductions do not exist in the other direction
(Theorems 4 and 12) (unless P = NP).

– We obtain a trichotomy theorem for the complexity of exact control by adding
voters problem (Theorem 5) for the important class of pure scoring rules.

Due to space constraints some of our proofs have been deferred to the full ver-
sion [17].

178 Z. Fitzsimmons and E. Hemaspaandra

2 Related Models

Since the conformant model of manipulation uses only the votes stated in the
initial election, it is related to the possible winner problem with uncertain weights
introduced by Baumeister et al. [3], which was recently extended by Neveling
et al. [29]. In this problem weights of voters are initially unset and it asks if
there exists a way to set the weights such that a given candidate is a winner. As
Baumeister et al. [3] mention, this generalizes control by adding/deleting voters
(rather than manipulation or bribery).

There are other models for manipulative actions that have a similar motiva-
tion to our conformant models, i.e., to have the manipulative action not stand
out. Examples are bribery restrictions where the briber cannot put the preferred
candidate first in the bribed votes (negative bribery [14]), restrictions on how
much the votes of voters are changed [34], and restrictions on which voters can
be bribed [10]. However, it is easy to see that in these models all sorts of new
votes can be used by the briber, not just votes appearing in the initial election.

Another model in which the votes of the strategic agents are restricted is
that of manipulative actions on restricted domains such as single-peaked [6]
and single-crossing preferences [27]. For example, for manipulation of a single-
peaked election the manipulators must all cast votes that are single-peaked with
respect to the rest of the electorate [32]. Notice that in the conformant models
we typically keep the domain restriction, but manipulative actions for domain
restrictions are quite different since in those settings the manipulators can cast
a vote not stated by any of the nonmanipulators as long as it satisfies the given
restriction.

3 Preliminaries

An election (C, V) consists of a set of candidates C and a collection of voters
V . Each voter v ∈ V has a corresponding vote, which is a strict total order
preference over the set of candidates.

A voting rule, E , is a mapping from an election to a subset of the candidate
set referred to as the winner(s).

3.1 Scoring Rules

Our results focus on (polynomial-time uniform) pure scoring rules. A scoring rule
is a voting rule defined by a family of scoring vectors of the form 〈α1, α2, . . . , αm〉
with αi ≥ αi+1 such that for a given election with m candidates the m-length
scoring vector is used and each candidate receives αi points for each vote where
they are ranked ith. The candidate(s) with the highest score win. We use the
notation score(a) to denote the score of a candidate a in a given election. Impor-
tant examples of scoring rules are

– k-Approval, 〈1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0〉

Complexity of Conformant Election Manipulation 179

– k-Veto, 〈0, . . . , 0,−1, . . . ,−1
︸ ︷︷ ︸

k

〉

– Borda, 〈m− 1,m− 2, . . . , 1, 0〉
– First-Last, 〈1, 0, . . . , 0,−1〉1

Note that there are uncountably many scoring rules, that scoring vectors may
not be computable, and that the definition of scoring rule does not require any
relationship between the scoring vectors for different numbers of candidates. To
formalize the notion of a natural scoring rule, we use the notion of (polynomial-
time uniform) pure scoring rules [4]. These are families of scoring rules where
the scoring vector for m+ 1 candidates can be obtained from the scoring vector
for m candidates by adding one coefficient and for which there is a polynomial-
time computable function that outputs, on input 0m, the scoring vector for m.
Note that the election rules above are all pure scoring rules. Also note that
manipulative action problems for pure scoring rules are in NP.

3.2 Manipulative Actions

Two of the most commonly-studied manipulative actions on elections are manip-
ulation [1] and bribery [14]. We consider conformant variants of these standard
problems by requiring that the strategic votes cast by the manipulators or set by
the briber must have appeared in the initial election. We define these problems
formally below.

Name: E-Conformant Manipulation
Given: An election (C, V), a collection of manipulative votersW , and a preferred

candidate p.
Question: Does there exist a way to set the votes of the manipulators in W

using only the votes that occur in V such that p is an E-winner of the election
(C, V ∪W)?

Name: E-Conformant Bribery
Given: An election (C, V), a bribe limit k, and a preferred candidate p.
Question: Does there exist a way to set the preferences of a subcollection of at

most k voters in V to preferences in V such that p is an E-winner?

3.3 Computational Complexity

We assume the reader is familiar with the complexity classes P and NP,
polynomial-time many-one reductions, and what it means to be complete for a
given class. Our NP-completeness proofs utilize reductions from the well-known
NP-complete problem 3-Dimensional Matching [23].

Name: 3-Dimensional Matching (3DM)
1 We will see that this rule exhibits very unusual complexity behavior. This rule has

also been referred to as “best-worst” in social choice (see, e.g., [24]).

180 Z. Fitzsimmons and E. Hemaspaandra

Given: Pairwise disjoint sets X, Y , and Z such that ‖X‖ = ‖Y ‖ = ‖Z‖ = k > 0
and set M ⊆ X × Y × Z.

Question: Does there exist a M′ ⊆ M of size k such that each a ∈ X ∪ Y ∪ Z
appears exactly once in M′.

3-Dimensional Matching remains NP-complete when each element a ∈ X ∪ Y ∪
Z appears in exactly three triples (Garey and Johnson [19] show this for at
most three triples, which can be adapted to exactly three by the approach from
Papadimitriou and Yannakakis [30]). Note that in that case ‖M‖ = 3k.

For our polynomial-time algorithms, we will reduce to polynomial-time com-
putable (edge) matching problems. We define the most general version we use,
Max-Weight b-Matching for Multigraphs, below. The version of this problem
for simple graphs was shown to be in P by Edmonds and Johnson [12], and as
explained in [20, Section 7], it is easy to reduce such problems to Max-Weight
Matching, which is well-known to be in P [11], using the construction from [31].
(Note that we can assume that the b-values are bound by the number of edges
in the graph.)

Name: Max-Weight b-Matching for Multigraphs
Given: An edge-weighted multigraph G = (V,E), a function b : V → N, and

integer k ≥ 0.
Question: Does there exist an E′ ⊆ E of weight at least k such that each vertex

v ∈ V is incident to at most b(v) edges in E′?

In addition to NP-hardness and polynomial-time results, we have results that link
the complexity of voting problems to the complexity of Exact Perfect Bipartite
Matching [30].

Name: Exact Perfect Bipartite Matching
Given: A bipartite graph G = (V,E), a set of red edges E′ ⊆ E, and integer

k ≥ 0.
Question: Does G contain a perfect matching that contains exactly k edges from

E′?

This problem was shown to be in RP by Mulmuley, Vazirani, and Vazirani [28],
but it is a 40-year-old open problem whether it is in P.

4 Conformant Manipulation

The problem of manipulation asks if it is possible for a given collection of manip-
ulative voters to set their votes so that their preferred candidate wins. This prob-
lem was first studied computationally by Bartholdi, Tovey, and Trick [1] for the
case of one manipulator and generalized by Conitzer, Sandholm, and Lang [8]
for the case of a coalition of manipulators.

In our model of conformant manipulation the manipulators can only cast
votes that at least one nonmanipulator has stated. As mentioned in the intro-
duction, this is so that the manipulators vote realistic preferences for the given

Complexity of Conformant Election Manipulation 181

election by conforming to the preferences already stated. Since this modifies the
standard model of manipulation, we will consider how the complexity of these
problems relate to one another.

Manipulation is typically easy for scoring rules. Hemaspaandra and
Schnoor [22] showed that manipulation is in P for every pure scoring rule with
a constant number of different coefficients. However, our model of conformant
manipulation is NP-complete for even the simple rule 4-approval. To show hard-
ness, we use a construction similar to the construction that shows hardness for
control by adding voters from Lin [25].

Theorem 1. 4-Approval Conformant Manipulation is NP-complete.

Proof. Let the pairwise disjoint sets X, Y , and Z such that ‖X‖ = ‖Y ‖ = ‖Z‖ =
k > 0 and M ⊆ X × Y × Z be an instance of 3DM where each a ∈ X ∪ Y ∪ Z
appears in exactly three triples. Note that ‖M‖ = 3k. We construct an instance
of conformant manipulation as follows.

Let the candidate set C consist of preferred candidate p, and for each a in
X ∪ Y ∪ Z, we have candidate a and three padding candidates a1, a2, and a3.
We now construct the collection of nonmanipulators.

– For each (x, y, z) in M, we have a voter voting p > x > y > z > · · · .
– For each a in X∪Y ∪Z, we have 4k−4 voters voting a > a1 > a2 > a3 > · · · .

We have k manipulators.
Note that we have the following scores from the nonmanipulators. score(p) =

3k and for a ∈ X ∪ Y ∪ Z, score(a) = 4k − 4 + 3 = 4k − 1 and score(a1) =
score(a2) = score(a3) = 4k − 4.

If there is a matching, let the k manipulators vote corresponding to the
matching. Then p’s score increases by k, for a total of 4k, and for each a ∈
X ∪ Y ∪ Z, score(a) increases by 1 for a total of 4k. The scores of the dummy
candidates remain unchanged. Thus, p is a winner.

For the converse, suppose the manipulators vote such that p is a winner.
Since k > 0, after manipulation there is a candidate a in X ∪ Y ∪ Z with
score at least 4k. The highest possible score for p after manipulation is 4k, and
this happens only if p is approved by every manipulator. It follows that every
manipulator approves p and for every a in X ∪ Y ∪Z, a is approved by at most
one manipulator. This implies that the votes of the manipulators correspond to
a cover. ��

We just saw a case where the complexity of conformant manipulation is
harder than the standard problem (unless P = NP). This is not always the case.
One setting where it is clear to see how to determine if conformant manipula-
tion is possible or not is when there are only a fixed number of manipulators.
We have only a polynomial number of votes to choose from (the votes of the
nonmanipulators) and so a fixed number of manipulators can brute force these
choices in polynomial time as long as determining the winner can be done in
polynomial time.

182 Z. Fitzsimmons and E. Hemaspaandra

Theorem 2. Conformant Manipulation is in P for every voting rule with a
polynomial-time winner problem when there are a fixed number of manipulators.

This behavior is in contrast to what can occur for the standard model of
manipulation. One well-known example is that manipulation for the Borda rule
is NP-complete even when there are only two manipulators [5,9]. Intuitively the
hardness of manipulation in this case is realized by the choice of different votes
that the manipulator(s) have.

Corollary 1. For Borda, Manipulation with two manipulators is NP-complete,
but Conformant Manipulation with two manipulators is in P.

In some ways conformant manipulation acts more like the problem of electoral
control introduced by Bartholdi, Tovey, and Trick [2], specifically Control by
Adding Voters, which asks when given an election, a collection of unregistered
voters, add limit k, and preferred candidate p, if p is a winner of the election
after adding at most k of the unregistered voters. In conformant manipulation
we can think of the nonmanipulative voters as describing the different votes to
choose from for the manipulators.

At first glance it may appear that there is a straightforward reduction from
conformant manipulation to control by adding voters, but in conformant manip-
ulation all k of the manipulators must cast a vote, while in control by adding
voters at most k votes are added. In this way conformant manipulation is closer
to the “exact” variant of control by adding voters where exactly k unregistered
voters must be added. The following is immediate.

Theorem 3. Conformant Manipulation polynomial-time many-one reduces to
Exact Control by Adding Voters.

Below we show that conformant manipulation is in P for the voting rule 3-
approval, but exact control by adding voters is NP-complete. And so there is
no reduction from exact control by adding voters to conformant manipulation
(unless P = NP).

Theorem 4. For 3-Approval, Exact Control by Adding Voters is NP-complete,
but Conformant Manipulation is in P.

Proof. Given an election (C, V), k manipulators, and a preferred candidate p,
we can determine if conformant manipulation is possible in the following way.

If there is no nonmanipulator that approves p then p is a winner if and only
if there are no voters.

If there is at least one nonmanipulator that approves p, the manipulators
will all cast votes that approve of p, and so we know the final score of p after
manipulation: fsp = score(p) + k. However, these manipulator votes will each
also approve of two other candidates. To handle this we can adapt the approach
used by Lin [25] to show control by adding voters is in P for 3-approval elections,
which constructs a reduction to Max-Cardinality b-Matching for Multigraphs.

Complexity of Conformant Election Manipulation 183

For each candidate a
= p, let b(a) = fsp − score(a), i.e., the maximum
number of approvals that a can receive from the manipulators without beating
p. If b(a) is negative for any candidate a
= p then conformant manipulation is
not possible. For each distinct nonmanipulative vote of the form {p, a, b} > . . . ,
add k edges between a and b. Conformant manipulation is possible if and only
if there is a b-edge matching of size at least k.

We now consider the complexity of exact control by adding voters. Given
an instance of 3-Dimensional Matching: pairwise disjoint sets X, Y , and Z such
that ‖X‖ = ‖Y ‖ = ‖Z‖ = k, and M ⊆ X × Y × Z with M = {M1, . . . ,M3k}
we construct the following instance of exact control by adding voters.

Let the candidate set C = {p, d1, d2} ∪X ∪ Y ∪ Z, the preferred candidate
be p, and the add limit be k.

Let there be one registered voter voting p > d1 > d2 > . . . , and let the
set of unregistered voters consist of one voter voting x > y > z > . . . for each
Mi = (x, y, z).

It is easy to see that p can be made a winner by adding exactly k unregistered
voters if and only if there is a matching of size k. ��

The standard case of control by adding voters for 3-approval is in P [25],
but as shown above the exact case is NP-complete. Related work that mentions
exact control has results only where the exact variant is also easy [13,16]. Note
that, as observed in [16], control polynomial-time reduces to exact control, since,
for example, p can be made a winner by adding at most k voters if and only if p
can be made a winner by adding 0 voters or 1 voter or 2 voters or . . .), and so if
exact control is easy, the standard case will be as well, and if the standard case
is hard, then the exact case will be hard. Note that we are using a somewhat
more flexible notion of reducibility than many-one reducibility here, since we
are allowing the disjunction of multiple queries to the exact control problem.
Such a reduction is called a disjunctive truth-table (dtt) reduction. This type of
reduction is still much less flexible than a Turing reduction.

Is 3-approval special? For the infinite and natural class of pure scoring rules,
Table 1 completely classifies the complexity of exact control by adding voters and
compares this behavior to the complexity of control by adding voters [21] and
control by deleting voters [22]. In particular, and in contrast to earlier results,
we obtain a trichotomy theorem for exact control by adding voters.2

Theorem 5. For every pure scoring rule f ,

1. If f is ultimately (i.e., for all but a finite number of candidates) equivalent to
0-approval, 1-approval, 2-approval, 1-veto, or 2-veto, exact control by adding
voters is in P.

2. If f is ultimately equivalent to first-last, then exact control by adding voters
is (dtt) equivalent to the problem Exact Perfect Bipartite Matching [30].

2 Exact Perfect Bipartite Matching [30] is defined in Sect. 3.3. As mentioned there the
complexity of this problem is still open. And so Theorem 5 is a trichotomy theorem
unless we solve a 40-year-old open problem.

184 Z. Fitzsimmons and E. Hemaspaandra

Table 1. This table classifies the complexity of all pure scoring rules for the specified
control action. A scoring rule entry represents all pure scoring rules that are ultimately
equivalent to that scoring rule. The dichotomy for control by adding voters is due
to [21], the dichotomy for control by deleting voters to [22], and the result for exact
control by adding voters for first-last is due to [16]. EPBM stands for the Exact Perfect
Bipartite Matching, which is defined in Sect. 3.3.

P eq. to EPBM NP-complete

Exact Control by
Adding Voters

0/1/2-approval, 1/2-veto first-last all other cases

Control by
Adding Voters

0/1/2/3-approval, 1/2-veto,
first-last, 〈α, β, 0, . . . , 0〉

all other cases

Control by
Deleting Voters

0/1/2-approval, 1/2/3-veto,
first-last, 〈0, . . . , 0, −β, −α〉

all other cases

3. In all other cases, exact control by adding voters is NP-complete (under dtt
reductions).

Proof.

1. The case for 0-approval is trivial, since all candidates are always winners. The
1-approval and 1-veto cases follow by straightforward greedy algorithms. The
case for 2-approval can be found in [16] and the case for 2-veto is similar.

2. The case for first-last can be found in [16].
3. Note that the remaining cases are hard for control by adding voters or for

control by deleting voters. We have already explained how we can dtt reduce
control by adding voters to exact control by adding voters. Similarly, we can
dtt reduce control by deleting voters to exact control by adding voters, since
p can be made a winner by deleting at most k voters if and only p can be
made a winner by adding to the empty set n − k voters or n − k + 1 voters
or n− k + 2 voters or . . . or n voters, where n is the total number of voters.
It follows that all these cases are NP-complete (under dtt reductions). ��
In this section, we compared conformant manipulation with manipulation

and conformant manipulation with exact control by adding voters. We can also
look at conformant manipulation versus control by adding voters. Here we also
find voting rules where the manipulative actions differ. In particular, control
by adding voters for first-last is in P [21], but we show in the full version that
conformant manipulation for first-last is equivalent to exact perfect bipartite
matching.

Theorem 6. First-Last Conformant Manipulation is equivalent to Exact Per-
fect Bipartite Matching (under dtt reductions).

We also show in the full version that there exists a voting rule where control
by adding voters is hard and conformant manipulation is easy.

Complexity of Conformant Election Manipulation 185

Theorem 7. There exists a voting rule where Control by Adding Voters is NP-
complete, but Conformant Manipulation is in P.

This shows that a reduction from control by adding voters to conformant
manipulation does not exist (unless P = NP).

5 Conformant Bribery

We now turn to our model of conformant bribery. The standard bribery problem
introduced by Faliszewski, Hemaspaandra, and Hemaspaandra [14] asks when
given an election, a bribe limit k, and a preferred candidate p, if there exists a
subcollection of at most k voters whose votes can be changed such that p is a
winner. In our model of conformant bribery the votes can only be changed to
votes that appear in the initial election. As with conformant manipulation, this
is so that the votes are changed to preferences that are still realistic with respect
to the preferences already stated. Notice how this also nicely models how a voter
can convince another to vote their same vote. In the same way as we did with
manipulation in the previous section, we can compare the complexity behavior
of our conformant model with respect to the standard model.

Bribery is in P for the voting rule 3-veto [25], but we show below that our
model of conformant bribery is NP-complete for this rule.

Theorem 8. 3-Veto Conformant Bribery is NP-complete.

Proof. Let X, Y , and Z be pairwise disjoint sets such that ‖X‖ = ‖Y ‖ = ‖Z‖ =
k, and M ⊆ X×Y ×Z with M = {M1, . . . ,M3k} be an instance of 3DM where
each element a ∈ X ∪ Y ∪ Z appears in exactly three triples. We construct an
instance of conformant bribery as follows.

Let the candidate set C = {p} ∪X ∪ Y ∪Z ∪ {p1, p2}. Let p be the preferred
candidate and let k be the bribe limit. Let there be the following voters.

– For each Mi = (x, y, z),
• One voter voting · · · > x > y > z

– k + 4 voters voting · · · > p > p1 > p2

We view the corresponding scoring vector for 3-veto as 〈0, . . . , 0,−1,−1,−1〉 to
make our argument more straightforward. And so, before bribery score(p) =
score(p1) = score(p2) = −k − 4 and for each a ∈ X ∪ Y ∪ Z, score(a) = −3.

If there exists a matching M′ ⊆ M of size k, for each Mi ∈ M′ such that
Mi = (x, y, z) we can bribe one of the voters voting · · · > p > p1 > p2 to
vote · · · > x > y > z. Since M′ is a matching the score of each candidate
a ∈ X ∪ Y ∪ Z decreases by 1 to be −4, and since k of the voters vetoing p are
bribed the score of p increases by k to −4 and p is a winner.

For the converse, suppose there is a successful conformant bribery. Only the
voters vetoing p should be bribed, and so the score of p after bribery is −4.
The score of each candidate a ∈ X ∪ Y ∪ Z must decrease by at least 1, and so
it is easy to see that a successful conformant bribery of at most k voters must
correspond to a perfect matching. ��

186 Z. Fitzsimmons and E. Hemaspaandra

We now consider the case where bribery is hard for the standard model, but
easy in our conformant model. Since the briber is restricted to use only votes that
appear in the initial election we have the same behavior as stated in Theorem 2
for conformant manipulation.

Theorem 9. Conformant Bribery is in P for every voting rule with a
polynomial-time winner problem when there is a fixed bribe limit.

There are generally fewer results looking at a fixed bribe limit than there
are looking at a fixed number of manipulators. One example is that for Single
Transferable Vote (STV), bribery is NP-complete even when the bribe limit is
1 [33], but our focus is on scoring rules. Brelsford at al. [7] show bribery is NP-
complete for Borda, but do not consider a fixed bribe limit. However, it is easy
to adapt the NP-hardness proof for Borda manipulation with two manipulators
from Davies et al. [9]. The main idea is to add two voters that are so bad for the
preferred candidate that they have to be bribed.

Theorem 10. Borda Bribery with a bribe limit of 2 is NP-complete.

Proof. We need to following properties of the instance of Borda Manipulation
with two manipulators constructed in Davies et al. [9]. (For this proof we use
the notation from Davies et al. [9].) The constructed election has a collection of
(nonmanipulative) voters V and q + 3 candidates. Preferred candidate p scores
C and candidate aq+1 scores 2(q+2)+C. This implies that in order for p to be a
winner, the two manipulators must vote p first and aq+1 last. We add two voters
voting aq+1 > · · · > p. Note that such votes are very bad for p and that we
have to bribe two voters voting aq+1 > · · · > p. In order to ensure that we bribe
exactly the two added voters, it suffices to observe that we can ensure in the
construction from Davies et al. [9] that p is never last in any vote in V . So, p can
be made a winner by bribing two voters in V ∪ {aq+1 > · · · > p, aq+1 > · · · > p}
if and only if p can be made a winner by two manipulators in the election
constructed by Davies et al. [9]. ��
Corollary 2. For Borda, Bribery is NP-complete with a bribe limit of 2, but
Conformant Bribery is in P with a bribe limit of 2.

Bribery can be thought of as control by deleting voters followed by manip-
ulation. For conformant bribery we can see that the same will hold, just with
conformant manipulation. However, we also have a correspondence to the prob-
lem of control by replacing voters introduced by Loreggia et al. [26]. Control by
replacing voters asks when given an election, a collection of unregistered voters,
parameter k, and preferred candidate p, if p can be made a winner by replacing
at most k voters in the given election with a subcollection of the unregistered
voters of the same size. It is straightforward to reduce conformant bribery to
control by replacing voters (for each original voter v, we have a registered copy
of v and k unregistered copies of v), and so we inherit polynomial-time results
from this setting.

Complexity of Conformant Election Manipulation 187

Theorem 11. Conformant Bribery polynomial-time many-one reduces to Con-
trol by Replacing Voters.

It’s natural to ask if there is a setting where conformant bribery is easy, but
control by replacing voters is hard, and we show in the full version that this is
in fact the case.

Theorem 12. There exists a voting rule where Control by Replacing Voters is
NP-complete, but Conformant Bribery is in P.

In the related work on control by replacing voters, only the complexity for
2-approval remained open (see Erdélyi et al. [13]). This was recently shown to be
in P by Fitzsimmons and Hemaspaandra [18]. This result immediately implies
that conformant bribery for 2-approval is also in P.

Theorem 13. 2-Approval Conformant Bribery is in P.

2-approval appears right at the edge of what is easy. For 3-approval, control by
deleting voters and bribery are hard [25], control by replacing voters is hard [13],
and we show in the full version that conformant bribery is hard as well (recall
that for 3-approval, conformant manipulation (Theorem 4) and control by adding
voters [25] are easy, essentially because all we are doing is “adding” votes that
approve p).

Theorem 14. 3-Approval Conformant Bribery is NP-complete.

As a final note, we mention that for first-last, conformant bribery, like con-
formant manipulation, is equivalent to exact perfect bipartite matching again
showing the unusual complexity behavior of this rule.

Theorem 15. First-Last Conformant Bribery is equivalent to Exact Perfect
Bipartite Matching (under dtt reductions).

The proof of the above theorem can be found in the full version.

6 Conclusion

The conformant models of manipulation and bribery capture a natural setting for
election manipulation. We found that there is no reduction between the standard
and conformant models in either direction (unless P = NP), and further explored
the connection between these models and types of electoral control.

We found the first trichotomy theorem for scoring rules. This theorem con-
cerns the problem of exact control by adding voters and highlights the unusual
complexity behavior of the scoring rule first-last. We show that this unusual
complexity behavior also occurs for our conformant models.

We also observed interesting behavior for exact variants of control, including
a nontrivial case where the complexity of a problem increases when going from
the standard to the exact case.

188 Z. Fitzsimmons and E. Hemaspaandra

We see several interesting directions for future work. For example, we could
look at conformant versions for other bribery problems (e.g., priced bribery) or
for restricted domains such as single-peakedness. We are also interested in further
exploring the complexity landscape of problems for the scoring rule first-last.

Acknowledgements. This work was supported in part by grant NSF-DUE-1819546.
We thank the anonymous reviewers for their helpful comments and suggestions.

References

1. Bartholdi, J., Tovey, C., Trick, M.: The computational difficulty of manipulating
an election. Soc. Choice Welfare 6(3), 227–241 (1989)

2. Bartholdi, J., Tovey, C., Trick, M.: How hard is it to control an election? Math.
Comput. Model. 16(8/9), 27–40 (1992)

3. Baumeister, D., Roos, M., Rothe, J., Schend, L., Xia, L.: The possible winner
problem with uncertain weights. In: Proceedings of the 20th European Conference
on Artificial Intelligence, pp. 133–138 (2012)

4. Betzler, N., Dorn, B.: Towards a dichotomy of finding possible winners in elections
based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010)

5. Betzler, N., Niedermeier, R., Woeginger, G.: Unweighted coalitional manipulation
under the Borda rule is NP-hard. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pp. 55–60 (2011)

6. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34
(1948)

7. Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Approx-
imability of manipulating elections. In: Proceedings of the 23rd National Confer-
ence on Artificial Intelligence, pp. 44–49 (2008)

8. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard
to manipulate? J. ACM 54(3), 1–33 (2007)

9. Davies, J., Katsirelos, G., Narodytska, N., Walsh, T., Xia, L.: Complexity of and
algorithms for the manipulation of Borda, Nanson’s and Baldwin’s voting rules.
Artif. Intell. 217, 20–42 (2014)

10. Dey, P., Misra, N., Narahari, Y.: Frugal bribery in voting. Theor. Comput. Sci.
676, 15–32 (2017)

11. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res.
National Bureau Standards–B. Math. Math. Phys. 69B(1/2), 125–130 (1965)

12. Edmonds, J., Johnson, E.: Matching: a well-solved class of integer linear programs.
In: Combinatorial Structures and Their Applications (Gordon and Breach), pp.
89–92 (1970)

13. Erdélyi, G., Neveling, M., Reger, C., Rothe, J., Yang, Y., Zorn, R.: Towards com-
pleting the puzzle: complexity of control by replacing, adding, and deleting candi-
dates or voters. Auton. Agent. Multi-Agent Syst. 35(41), 1–48 (2021)

14. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in
elections? J. Artif. Intell. Res. 35, 485–532 (2009)

15. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Handbook of Compu-
tational Social Choice, pp. 146–168. Cambridge University Press (2016)

16. Fitzsimmons, Z., Hemaspaandra, E.: Insight into voting problem complexity using
randomized classes. In: Proceedings of the 31st International Joint Conference on
Artificial Intelligence, pp. 293–299 (2022)

Complexity of Conformant Election Manipulation 189

17. Fitzsimmons, Z., Hemaspaandra, E.: Complexity of conformant election manipu-
lation. Tech. Rep. arXiv:2307.11689 [cs.GT], arXiv.org (2023)

18. Fitzsimmons, Z., Hemaspaandra, E.: Using weighted matching to solve 2-
approval/veto control and bribery. In: Proceedings of the 26th European Con-
ference on Artificial Intelligence (2023), to appear

19. Garey, M., Johnson, D.: Computers and Intractability: a guide to the theory of
NP-completeness. W. H, Freeman and Company (1979)

20. Gerards, A.: Matching. In: M.B. et al., (ed.) Handbooks in OR and MS Vol. 7,
chap. 3, pp. 135–224. Cambridge University Press (1995)

21. Hemaspaandra, E., Hemaspaandra, L., Schnoor, H.: A control dichotomy for pure
scoring rules. In: Proceedings of the 28th AAAI Conference on Artificial Intelli-
gence, pp. 712–720 (2014)

22. Hemaspaandra, E., Schnoor, H.: Dichotomy for pure scoring rules under manip-
ulative electoral actions. In: Proceedings of the 22nd European Conference on
Artificial Intelligence, pp. 1071–1079 (2016)

23. Karp, R.: Reducibility among combinatorial problems. In: Proceedings of Sympo-
sium on Complexity of Computer Computations, pp. 85–103 (1972)

24. Kurihara, T.: Axiomatic characterisations of the basic best-worst rule. Econ. Lett.
172, 19–22 (2018)

25. Lin, A.: The complexity of manipulating k-approval elections. In: Proceedings of
the 3rd International Conference on Agents and Artificial Intelligence, pp. 212–218
(2011)

26. Loreggia, A., Narodytska, N., Rossi, F., Venable, K., Walsh, T.: Controlling elec-
tions by replacing candidates or votes. In: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems, pp. 1737–1738 (2015)

27. Mirrlees, J.: An exploration in the theory of optimum income taxation. Rev. Econ.
Stud. 38(2), 175–208 (1971)

28. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion.
Combinatorica 7(1), 105–113 (1987)

29. Neveling, M., Rothe, J., Weishaupt, R.: The possible winner problem with uncer-
tain weights revisited. In: Proceedings of the 23rd International Symposium on
Fundamentals of Computation Theory, pp. 399–412 (2021)

30. Papadimitriou, C., Yannakakis, M.: The complexity of restricted spanning tree
problems. J. ACM 29(2), 285–309 (1982)

31. Tutte, W.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6,
347–352 (1954)

32. Walsh, T.: Uncertainty in preference elicitation and aggregation. In: Proceedings
of the 22nd National Conference on Artificial Intelligence, pp. 3–8 (2007)

33. Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings
of the 12th ACM Conference on Electronic Commerce, pp. 982–999 (2012)

34. Yang, Y., Shrestha, Y., Guo, J.: On the complexity of bribery with distance restric-
tions. Theor. Comput. Sci. 760, 55–71 (2019)

http://arxiv.org/abs/2307.11689
http://arxiv.org/abs/org

α-β-Factorization and the Binary Case
of Simon’s Congruence

Pamela Fleischmann1(B), Jonas Höfer2, Annika Huch1, and Dirk Nowotka1

1 Kiel University, Kiel, Germany
{fpa,dn}@informatik.uni-kiel.de, stu216885@mail.uni-kiel.de

2 University of Gothenburg, Gothenburg, Sweden
jonas.hofer@gu.se

Abstract. In 1991 Hébrard introduced a factorization of words that
turned out to be a powerful tool for the investigation of a word’s scattered
factors (also known as (scattered) subwords or subsequences). Based
on this, first Karandikar and Schnoebelen introduced the notion of k-
richness and later on Barker et al. the notion of k-universality. In 2022
Fleischmann et al. presented at DCFS a generalization of the arch fac-
torization by intersecting the arch factorization of a word and its reverse.
While the authors merely used this factorization for the investigation of
shortest absent scattered factors, in this work we investigate this new
α-β-factorization as such. We characterize the famous Simon congruence
of k-universal words in terms of 1-universal words. Moreover, we apply
these results to binary words. In this special case, we obtain a full charac-
terization of the classes and calculate the index of the congruence. Lastly,
we start investigating the ternary case, present a full list of possibilities
for αβα-factors, and characterize their congruence.

1 Introduction

A scattered factor, subsequence, subword or scattered subword of a word w is a
word that is obtained by deleting any number of letters from w while preserving
the order of the remaining letters. For example, oiaoi and cmbntrcs are both
scattered factors of combinatorics. In contrast to a factor, like combinat, a
scattered factor is not necessarily contiguous. Note that a scattered factor v can
occur in different ways inside a word w, for example, ab occurs in aab as aab and
aab as marked by the lines below the letters. The relation of u being a scattered
factor of v is a partial order on words.

In this paper, we focus on the congruence relation∼k for k ∈ N0 which is known
as Simon’s congruence [22]. For two words, we have u ∼k v iff they share all scat-
tered factors up to length k. Unions of the congruence classes of this relation are
used to form the piecewise testable languages (first studied by Simon [22]), which
are a subclass of the regular languages (they are even subregular).

A long-standing open question, posed by Sakarovitch and Simon [21], is the
exact structure of the congruence classes of ∼k and the index of the congruence
relation itself. Two existing results include a characterization of the congruence

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 190–204, 2023.
https://doi.org/10.1007/978-3-031-43587-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_14

α-β-Factorization and the Binary Case 191

in terms of a special common upper bound of two words [23, Lemma 6], as well
as a characterization of the (not unique) shortest elements of the congruence
classes [21, Theorem 6.2.9] and [1,4,22]. The index of the relation is described
asymptotically by Karandikar et al. [12]. Currently, no exact formula is known.
One approach for studying scattered factors in words is based on the notion of
scattered factor universality. A word w is called
-universal if it contains all words
of length
 over a given alphabet as scattered factors. For instance, the word
alfalfa1 is 2-universal since it contains all words of length two over the alphabet
{a, l, f} as scattered factors. Barker et al. and Fleischmann et al. [1,5] study the
universality of words, as well as how the universality of a word changes when
considering repetitions of a word. Fleischmann et al. [6] investigate the classes
of Simon’s congruence separated by the number of shortest absent scattered
factors, characterize the classes for arbitrary alphabets for some fixed numbers
of shortest absent scattered factors and give explicit formulas for these subsets.
The shortest absent scattered factors of alfalfa are fff, ffl lll, and fll. A
main tool in this line of research is a newly introduced factorization, known as the
α-β-factorization [6] which is based on the arch factorization by Hébrard [9]. The
arch factorization factorizes a word into factors of minimal length containing the
complete alphabet. The α-β-factorization takes also the arch factorization of the
reversed word into account. Kosche et al. [16] implicitly used this factorization
to determine shortest absent scattered factors in words. In this paper, we study
this factorization from a purely combinatorial point of view. The most common
algorithmic problems regarding Simon’s congruence are SimK (testing whether
two words u, v are congruent for a fixed k) and MaxSimK (the optimization
problem of finding the largest k such that they are congruent). The former
was approached by finding the (lexicographical least element of the) minimal
elements of the congruence classes of u and v. Results regarding normal forms
and the equation pwq ∼k r for given words p, q, r can be found in [17,20].
The computation of the normal form was improved first by Fleischer et al. [4]
and later by Barker et al. [1]. The latter was approached in the binary case by
Hébrard [9], and was solved in linear time using a new approach by Gawrychowski
et al. [8]. A new perspective on ∼k was recently given by Sungmin Kim et al.
[14,15] when investigating the congruence’s closure and pattern matching w.r.t.
∼k.

Our Contribution. We investigate the α-β-factorization as an object of inde-
pendent interest and give necessary and sufficient conditions for the congruence
of words in terms of their factors. We characterize ∼k in terms of 1-universal
words through their αβα-factors. We use these results to characterize the con-
gruence classes of binary words and their cardinality, as well as to calculate the
index in this special case. Moreover, we give a short and conceptually straight-
forward algorithm for MaxSimK for binary words. Lastly, we start to transfer
the previous results to the ternary alphabet.

Structure of the Work. First, in Sect. 2 we establish basic definitions and nota-
tion. In Sect. 3, we give our results regarding the α-β-factorization for arbitrary

1 Alfalfa (Medicago sativa) is a plant whose name means horse food in Old Persian.

https://en.wikipedia.org/wiki/Alfalfa

192 P. Fleischmann et al.

alphabets, including the characterization of the congruence of words w.r.t. ∼k in
terms of their αβα-factors. Second, in Sect. 4, we present our results regarding
binary words. We characterize the congruence classes of binary words in terms
of their α- and β-factors, and apply them to calculate the index of ∼k in this
special case. Third, in Sect. 5, we consider a ternary alphabet and investigate the
cases for the β-factors. Last, in Sect. 6, we conclude and give ideas for further
research.

2 Preliminaries

We set N := {1, 2, 3, . . . } and N0 := {0} ∪ N as well as [m] := {1, . . . ,m} and
[m]0 := {0} ∪ [m]. We denote disjoint unions by �. If there exists a bijection
between two sets A,B, then we write A ∼= B. An alphabet is a finite set Σ whose
elements are called letters. An alphabet of cardinality i ∈ N is abbreviated by
Σi. A word w is a finite sequence of letters from Σ where w[i] denotes the ith

letter of w. The set of all words over the alphabet Σ is denoted by Σ∗ and the
empty word by ε. Set Σ+ := Σ∗ \ {ε}. The length |w| of w is the number of
letters in w, i.e., |ε| = 0. We denote the set of all words of length k ∈ N0 by
Σk and set Σ≤k := {w ∈ Σ∗| |w| ≤ k}. Set alph(w) := {w[i] ∈ Σ | i ∈ [|w|]}.
Set |w|a := |{i ∈ [|w|] | w[i] = a}| for all a ∈ Σ. A word u ∈ Σ∗ is called factor
of w ∈ Σ∗ if there exist x, y ∈ Σ∗ with w = xuy. In the case that x = ε, u is
called prefix of w and suffix if y = ε. The factor of w from its ith letter to its jth

letter is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For j < i we define w[i..j] := ε.
If w = xy we write x−1w for y and wy−1 for x. For u ∈ Σ∗ we set u0 := ε and
inductively u� := uu�−1 for all
 ∈ N. For w ∈ Σ∗ define wR as w[|w|] · · ·w[1].
For more background information on combinatorics on words see [18].

Now, we introduce the main notion of our work, the scattered factors also
known as (scattered) subwords or subsequence (also cf. [21]).

Definition 1. A word u ∈ Σ∗ of length n ∈ N0 is called a scattered factor of
w ∈ Σ∗ if there exist v0, . . . , vn ∈ Σ∗ with w = v0u[1]v1 · · · vn−1u[n]vn, denoted
by u % w. Let ScatFact(w) := {v ∈ Σ∗ | v % w} as well as ScatFactk(w) :=
ScatFact(w) ∩Σk and ScatFact≤k(w) := ScatFact(w) ∩Σ≤k.

For instance, we have and % agenda but nada
% agenda. For comparing
words w.r.t. their scattered factors, Simon introduced a congruence relation
nowadays known as Simon’s congruence [22]. Two words are called Simon k-
congruent, if they have the same set of scattered factors up to length k. We refer
to this k as the level of the congruence. This set is the full k-spectrum of a word,
whereas the k-spectrum only contains all scattered factors of exactly length k.

Definition 2. Let k ∈ N. Two words u, v ∈ Σ∗ are called Simon k-congruent
(u ∼k v) iff ScatFact≤k(u) = ScatFact≤k(v). Let [u]∼k

denote the congruence
class of u w.r.t. ∼k.

For instance, over Σ = {a, b}, the words abaaba and baab are Simon 2-
congruent since both contain each all words up to length 2 as scattered factors.

α-β-Factorization and the Binary Case 193

On the other hand, they are not Simon 3-congruent since we have aaa % abaaba
but aaa
% baab.

Starting in [11–13] special k-spectra were investigated in the context of piece-
wise testable languages: the rich resp. k-rich words. This work was pursued from
the perspective of the universality problem for languages in [1,3,5,8] with the
new notion of k-universal words.

Definition 3. A word w ∈ Σ∗ is called k-universal w.r.t. Σ if ScatFactk(w) =
Σk. The maximal k such that w is k-universal is denoted by ιΣ(w) and called
w’s universality index.

Remark 4. If we investigate a single word w ∈ Σ∗, we assume Σ = alph(w)
implicitly and omit the Σ as index of ι.

In [6] the notion of universality was extended to m-nearly k-universal words,
which are words where exactly m scattered factors of length k are absent, i.e.,
|ScatFactk(w)| = |Σ|k −m. In the last section of their paper the authors intro-
duce a factorization of words based on the arch factorization (cf. [9]) in order to
characterize the 1-nearly k-universal words with ι(w) = k−1. This work is closely
related to the algorithmic investigation of shortest absent scattered factors [8].
Therefore, we introduce first the arch factorization and based on this the α-β-
factorization from [6]. An arch is a factor of minimal length (when read from left
to right) containing the whole alphabet. Consider the word w = abaccaabca.
This leads to the arch factorization (abac) · (caab) · ca where the arches are
visualized by the brackets.

Definition 5. For a word w ∈ Σ∗ the arch factorization is given by w =:
ar1(w) · · · ark(w) re(w) for k ∈ N0 with alph(ari(w)) = Σ for all i ∈ [k], the last
letter of ari(w) occurs exactly once in ari(w) for all i ∈ [k], and alph(re(w)) ⊂ Σ.
The words ari(w) are called arches of w and re(w) is the rest of w. Define
the modus of w as m(w) := ar1(w)[| ar1(w)|] · · · ark(w)[| ark(w)|] ∈ Σk. For
abbreviation let ari..j(w) denote the concatenation from the ith arch to the jth

arch.

The following remark is a direct consequence of the combination of the k-
universality and the arch factorization.

Remark 6. Let w,w′ ∈ Σ∗ such that w ∼k w
′ for some k ∈ N0. Then either both

w,w′ have k or more arches or they both have less than k and the same number
of arches. Moreover, we have ι(w) = k iff w has exactly k arches.

A generalization of the arch factorization was introduced in [6] inspired by
[16]. In this factorization not only the arch factorization of a word w but also
the one of wR is taken into consideration. If both arch factorisations, i.e., the
one of w and the one of wR are considered simultaneously, we get overlaps of the
arches and special parts which start at a modus letter of a reverse arch and end
in a modus letter of an arch. For better readability, we use a specific notation
for the arch factorisation of wR where we read the parts from left to right: let
↼ari(w) := (arι(w)−i+1(wR))R the ith reverse arch, let ↼re(w) := (re(wR))R the
reverse rest, and define the reverse modus ↼m(w) as m(wR)R.

194 P. Fleischmann et al.

Definition 7. For w ∈ Σ∗ define w’s α-β-factorization (cf. Figure 1) by w =:
α0β1α1 · · ·αι(w)−1βι(w)αι(w) with ari(w) = αi−1βi and ↼ari(w) = βiαi for all
i ∈ [ι(w)], ↼re(w) = α0, as well as re(w) = αι(w). Define corei := ε if |βi| ∈ {1, 2}
and corei = βi[2..|βi| − 1] otherwise, i.e., as the βi without the associated letters
of the modus and reverse modus.

For example, consider w = bakebananacake ∈ {a, b, c, k, e}∗. We get ar1(w) =
bakebananac, re(w) = ake and ↼ar1(w) = bananacake, ↼re(w) = bake. Thus, we
have α0 = bake, β1 = bananac and α1 = ake. Moreover, we have m(w) = c and
↼m(w) = b. This leads to core1 = anana.

re(w)ar1(w) ar2(w) ar3(w) ar4(w)

re(w) ar1(w) ar2(w) ar3(w) ar4(w)

α0w α1 α2 α3 α4β1 β2 β3 β4

Fig. 1. α-β-Factorization of a word w with 4 arches.

Remark 8. In contrast to the arch factorization, the α-β-factorization is left-
right-symmetric. Note that the ith reverse arch always starts inside the ith arch
since otherwise an arch or the rest would contain at least two reverse arches or
a complete arch and thus the arch would contain the complete alphabet more
than once or once.

For better readability, we do not parametrize the αi and βi by w. Instead,
we denote the factors according to the word’s name, i.e. α̃iβ̃i+1 is an arch of w̃.

Remark 9. Since | alph(αi)| ≤ |Σ| − 1 we can build the arch factorization of αi

w.r.t. some Ω with alph(αi) ⊆ Ω ∈ (
Σ

|Σ|−1

)
. This yields the same factorization

for all Ω because either alph(αi) = Ω or alph(αi) ⊂ Ω and thus re(αi) = αi.

Last, we recall three lemmata regarding Simon’s congruence which we need
for our results. The first lemma shows that if we prepend or append a sufficiently
universal word to two congruent words each, we obtain congruent words with an
increased level of congruence.

Lemma 10 ([12, Lemma 4.1][13, Lemma 3.5]). Let w, w̃ ∈ Σ∗ such that
w ∼k w̃, then for all u, v ∈ Σ∗ we have uwv ∼ι(u)+k+ι(v) uw̃v.

The next lemma characterizes the omittance of suffixes when considering
words up to ∼k.

Lemma 11 ([23, Lemma 3]). Let u, v ∈ Σ+ and x ∈ Σ. Then, uv ∼k u iff
there exists a factorization u = u1u2 · · ·uk such that alph(u1) ⊇ alph(u2) ⊇
. . . ⊇ alph(uk) ⊇ alph(v).

α-β-Factorization and the Binary Case 195

The last lemma characterizes letters which can be omitted when we consider
words up to ∼k. The last two of its conditions follow from the previous lemma.

Lemma 12 ([23, Lemma 4]). Let u, v ∈ Σ∗ and x ∈ Σ. Then, uv ∼k uxv iff
there exist p, p′ ∈ N0 with p+ p′ ≥ k and ux ∼p u and xv ∼p′ v.

3 α-β-Factorization

In this section, we investigate the α-β-factorization based on results of [12] in
the relatively new light of factorizing an arch into an α and a β part. The main
result states that it suffices to look at 1-universal words in order to gain the
information about the congruence classes of ∼k.

Remark 13. By the left-right symmetry of the α-β-factorisation, it suffices to
prove most of the claims only for one direction (reading the word from left to
right) and the other direction (reading the word from right to left) follows imme-
diately. Thus, these claims are only given for one direction and it is not always
mentioned explicitly that the analogous claim holds for the other direction.

Our first lemma shows that cutting of
 arches from two k-congruent words
each, leads to (k−
)-congruence. Here, we use the α-β-factorization’s symmetry.

Lemma 14. Let w, w̃ ∈ Σ∗ with w ∼k w̃ and ι(w) = ι(w̃) < k. Then we have
αiβi+1αi+1 · · ·αj ∼k−ι(w)+j−i α̃iβ̃i+1α̃i+1 · · · α̃j for all 0 ≤ i ≤ j ≤ ι(w).

The following proposition shows that two words having exactly the same β-
factors are k-congruent iff the corresponding α-factors are congruent at a smaller
level. The proof uses a similar idea to the one presented by Karandikar et al. [12,
Lemma 4.2].

Proposition 15. For all w, w̃ ∈ Σ∗ with m := ι(w) = ι(w̃) < k such that
βi = β̃i for all i ∈ [m], we have w ∼k w̃ iff αi ∼k−m α̃i for all i ∈ [m]0.

As an immediate corollary, we obtain the following statement which allows
us to normalize the α-factors when proving congruence of words.

Corollary 16. Let w, w̃ ∈ Σ∗ with m := ι(w) = ι(w̃) < k, then w ∼k w̃ iff
αi ∼k−m α̃i for all i ∈ [m]0 and for w′ := α0β̃1α1 · · · β̃mαm we have w ∼k w

′.

Next, we show the central result for this section. We can characterize the
congruence of words by the congruence of their αβα-factors. Therefore, it suffices
to consider 1-universal words in general. Again, the proof uses Lemma 10 and is
inspired by Karandikar et al. [12, Lemma 4.2] and repeatedly exchanges factors
up to k-Simon congruence.

Theorem 17. Let w, w̃ ∈ Σ∗ with m := ι(w) = ι(w̃) < k. Then, w ∼k w̃ iff
αi−1βiαi ∼k−m+1 α̃i−1β̃iα̃i for all i ∈ [m].

196 P. Fleischmann et al.

Proof. Assume w ∼k w̃, then the congruences follow directly by Lemma 14 for
i, j ∈ N0 with |j − i| = 1.

Assume αi−1βiαi ∼k−m+1 α̃i−1β̃iα̃i for all i ∈ [m]. By Lemma 14, we obtain
that αi ∼k−m α̃i for all i ∈ [m]0. By Corollary 16, we have αi−1βiαi ∼k−m+1

αi−1β̃iαi for all i ∈ [m], and it suffices to show that w ∼k α0β̃1α1 · · ·βmαm.
Now, we have by repeated applications of Lemma 10 that

α0β1α1 · β2α2 · · ·βmαm ∼k α0β̃1α1 · β2α2 · · ·βmαm ∼k . . . ∼k w̃. ��
In the light of Theorem 17, in the following, we consider some special cases

of these triples w.r.t. the alphabet of both involved α. Hence, let w, w̃ ∈ Σ∗ with
1 = ι(w) = ι(w̃).

Proposition 18. Let α0 = α1 = α̃0 = α̃1 = ε. Then w ∼k w̃ iff k = 1 or k ≥ 2,
m(w) = m(w̃), ↼m(w) = ↼m(w̃), and core1 ∼k c̃ore1.

Proposition 19. Let alph(α0) = alph(α1) = alph(α̃0) = alph(α̃1) ∈ (
Σ

|Σ|−1

)
.

We have w ∼k w̃ iff αi ∼k−1 α̃i for all i ∈ [1]0.

In the last two propositions, we considered special cases of congruence classes,
where all words in such a congruence class have not only the same modus but
also the same reverse modus. This is not necessarily always the case witnessed
by w = ababeabab · abecd · cdcdcd ∼4 ababeabab · baedc · cdcdcd = w̃ with
m(w) = d
= c = m(w̃) and ↼m(w) = a
= b = ↼m(w̃). This case occurs if one of the
α satisfies α0x ∼k−1 α0 and the alphabet of α1 factor is missing at least x for
all x ∈ {↼m(w̃) | w̃ ∈ [w]∼k

}. The conditions for m(w) are analogous. In the last
proposition of this section, we show a necessary condition for the α-factors of
words which are congruent to words with a different modus. The proof uses the
same factorization as the proof of Lemma 11 (cf. [23, Lemma 3]). By identifying
permutable factors, similar ideas also appear when characterizing the shortest
elements in congruence classes (cf. [21, Theorem 6.2.9][4, Proposition 6]).

Proposition 20. Let w ∈ Σ∗ with ι(w) = 1, k ∈ N, and
↼

M := {↼m(w̃)[1] | w̃ ∈
[w]∼k

}, i.e., we capture all modus letters of words which are k-congruent to w.
If | ↼

M | ≥ 2 then there exists a factorization α0 =: u1 · · ·uk−1 with alph(u1) ⊇
. . . ⊇ alph(uk−1) ⊇ ↼

M.

4 The Binary Case of Simon’s Congruence

In this section, we apply our previous results to the special case of the binary
alphabet. Here, for x ∈ Σ, let x be the well defined other letter of Σ. First, we
characterize the congruence of binary words in terms of α- and β-factors. We
show that in this scenario in each congruence class of a word w with at most
k arches, we have |{↼m(w̃) | w̃ ∈ [w]∼k

}| = 1 (cf. Proposition 20). We present
results such that a full characterization of the structure of the classes in the
binary case is given, implying as a byproduct a simple algorithm for MaxSimK
in this special case (cf. [9]). Moreover, we can calculate |Σ∗

2/∼k|.

α-β-Factorization and the Binary Case 197

Proposition 21. For all w ∈ Σ∗
2 , we have for all i ∈ [ι(w)]

1. βi ∈ {a, b, ab, ba},
2. if βi = x, then αi−1, αi ∈ x+ with x ∈ Σ2,
3. if βi = xx, then αi−1 ∈ x∗ and αi ∈ x∗ with x ∈ Σ2.

Thus, we get immediately that the αβα-factors are of the following forms:
a�1+1ba�2+1, b�1+1ab�2+1, b�3baa�4 , or a�3abb�4 for some
1,
2,
3,
4 ∈ N0. The
following lemma shows that in the binary case the k-congruence of two words
with identical universality less than k leads to the same modi and same β.

Lemma 22. Let w,w′ ∈ Σ∗
2 with w ∼k w′ and m := ι(w) = ι(w′) < k, then

m(w) = m(w′) and thus, βi = β′
i for all i ∈ [m].

Combining the Lemmata 22, 14 and Proposition 15 yields the following char-
acterization of ∼k for binary words in terms of unary words and factors.

Theorem 23. Let w,w′ ∈ Σ∗
2 such that m := ι(w) = ι(w′) < k, then w ∼k w

′

iff βi = β′
i for all i ∈ [m] and αi ∼k−m α′

i for all i ∈ [m]0.

Using the characterization, we can also give an O(|u|+|v|)-time algorithm for
finding the largest k with u ∼k v for u, v ∈ Σ∗

2 . This special case was originally
solved by Hébrard [9] just considering arches. Recently, a linear time algorithm
for arbitrary alphabets was presented by Gawrychowski et al. [8]. Nonetheless,
we give Algorithm 1, as it is a conceptually simple algorithm exploiting that αi

factors can be treated similar to re(w) in the arch factorization.

Algorithm 1: MaxSimK for binary words
Input: u, ũ ∈ Σ∗

2

Result: if u = u′ then ∞ and otherwise the maximum k such that u ∼k ũ
1 (α0, β1, . . . , αι(u)) := α-β-Fact(u); // w.r.t. Σ2

2 (α̃0, β̃1, . . . , α̃ι(ũ)) := α-β-Fact(ũ);

3 if ι(u) �= ι(ũ) ∨ alph(u) �= alph(ũ) then // 2nd condition for u = xi, ũ = xj

4 return min(ι(u), ι(ũ));

5 else if β1 = β̃1 ∧ · · · ∧ βι(u) = β̃ι(ũ) then
6 for i ∈ [ι(u)]0 do // solve MaxSimK for unary α pairs

7 ei := if |αi| = |α̃i| then ∞ else min(|αi|, |α̃i|)
8 return ι(u) + min{ei | i ∈ [ι(u)]0};

9 else
10 return ι(u);

We can use Theorem 23 to answer a number of questions regarding the
structure of the congruence classes of Σ∗

2/∼k. For instance, for each w with
|[w]∼k

| = ∞, we have xk % w for some x ∈ Σ by the pigeonhole-principle. The
contrary is not true in general witnessed by the word v = bbabb with respect
to ∼4. Its scattered factors of length four are bbab, babb and bbbb. Therefore,

198 P. Fleischmann et al.

Table 1. Index of ∼k restricted to binary words with a fixed number of arches

Number of Arches

0 1 2 3 4 5 6 7 m
S
ca

t
F
a
ct

L
en

g
th

1 3 1
2 5 10 1
3 7 26 34 1
4 9 50 136 116 1
5 11 82 358 712 396 1
6 13 122 748 2 564 3 728 1 352 1
7 15 170 1 354 6 824 18 364 19 520 4 616 1

k 2k + 1

each word in its class contains exactly one a (aa
% v but a % v is), at least
two b succeeding and preceding the a (bba, abb % v) but not more than two b
(bbba, abbb
% v). Therefore, bbabb is the only word in this class, but it contains
b4. By a famous result of Simon [21, Corollary 6.2.8], all congruence classes of ∼k

are either infinite or singletons. In the binary case, we can give a straightforward
characterization of the finite/singleton and infinite classes.

Theorem 24. Let w ∈ Σ∗
2 , then |[w]∼k

| <∞. In particular, we have |[w]∼k
| = 1

iff ι(w) < k and |αi| < k − ι(w) for all i ∈ [ι(w)]0.

In the following, we will use Theorem 23 to derive a formula for the precise
value of |Σ∗

2/∼k|. Note that in the unary case, we have |Σ∗
1/∼k| = k + 1 because

the empty word has its own class. By Remark 6, we know that there exists exactly
one class w.r.t. ∼k of words with k arches. We can consider the other classes by the
common number of arches of their elements. By Theorem 23, we can count classes
based on the valid combinations of β-factors and number of classes for each α-
factors. Because the α are unary, we already know their number of classes. These
valid combinations are exactly given by Proposition 21. The first values for the
number of classes separated by the number of arches are given in Table 1.

Theorem 25. The number of congruence classes of Σ∗
2/∼k of words with m < k

arches (the entries of Table 1) is given by
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

⎛

⎝
k −m k −m k −m

1 2 1
k −m k −m k −m

⎞

⎠

m

·
⎛

⎝
k −m

1
k −m

⎞

⎠

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
1

= cmk

where c−1
k := 1, c0k := 2k+ 1, and cmk := 2 · (k−m+ 1) · cm−1

k−1 − 2 · (k−m) · cm−2
k−2

where ‖·‖1 denotes the 1-norm.

Proof. First, we show that the matrix representation produces the correct values,
then we show the characterization as recurrence. Note that k − m is fixed on
the diagonals of Table 1. Therefore, increasing both, increases just the exponent

α-β-Factorization and the Binary Case 199

of the matrix. We show that the first column is correct and then proceed by
induction along the diagonals. Denote the above matrix by Dk,m.

Let k ∈ N0 and w ∈ Σ∗ with m := ι(w) < k. For i ∈ [m]0, all elements
v ∈ [w]∼k

have k−m congruent αi by Theorem 23. By definition, their alphabets
are proper subsets of Σ2. Therefore, they are either empty or non-empty unary
words consisting of just a or b. We separate the choice of αi into these three
cases. Let M �

ε := {[w] ∈ Σ∗
2/∼(k−m)+� | ι(w) =
, α0 ∼k−m ε} and M �

x :=
{[w] ∈ Σ∗

2/∼(k−m)+� | ι(w) =
, α0 ∼k−m xr, r ∈ N} for x ∈ Σ2 be sets of

+(k−m) congruence classes of words with
 arches, separated by the alphabet
of α0. Denote by ek,m := (|M0

a |, |M0
ε |, |M0

b |)ᵀ = (k −m, 1, k −m)ᵀ the number
of classes for zero arches. We show ‖D�

k,m · ek,m‖1 = (|M �
a |, |M �

ε |, |M �
b |)ᵀ. There

are four choices for βi which are given by Proposition 21. Each choice of βi+1

depends on the preceding αi and limits the choices for the succeeding αi+1.
These are given by Proposition 21, and correspond to the entries of the matrix
because for
 ≥ 1 we have

M �
ε = {[w]∼(k−m)+�

∈M �
ε | x ∈ Σ2, β1(w) = xx, α1(w) ∼k−m ε}

� {[w]∼(k−m)+�
∈M �

ε | x ∈ Σ2, β1(w) = xx, α1(w) ∼k−m xr, r ∈ N}
∼= {ab, ba} ×M �−1

ε � {ab} ×M �−1
b � {ba} ×M �−1

a

M �
x = {[w]∼(k−m)+�

∈M �
x | β1(w) = x}

� {[w]∼(k−m)+�
∈M �

x | β1(w) = xx, α1(w) ∼k−m xr, r ∈ N}
� {[w]∼(k−m)+�

∈M �
x | β1(w) = xx, α1(w) ∼k−m ε}

∼= [k −m] × ({x} ×M �−1
x � {xx} ×M �−1

x � {xx} ×M �−1
ε).

Therefore, each multiplication with the matrix increases the number
 of arches
by one. Thus, for m =
 we have the desired value as Mm

ε and Mm
x are sets of k

congruence classes with m arches. Therefore, ‖Dm
k,m · ek,m‖1 corresponds to the

number of classes with respect to ∼k of words with m arches.
The equivalence of the two formulas is left to show. The characteristic poly-

nomial of Dk,m is given by χDk,m
= det(Dk,m − λI) = −λ3 + 2λ2 + 2(k −

m)λ2 − 2(k −m)λ. By the Cayley-Hamilton theorem [7], Dk,m is a root of its
characteristic polynomial and thus satisfies the recurrence

D�+2
k,m = 2 ·D�+1

k,m + 2 · (k −m) ·D�+1
k,m − 2 · (k −m) ·D�

k,m

= 2 · (k −m+ 1) ·D�+1
k,m − 2 · (k −m) ·D�

k,m

for
 ∈ N. Note that ek,m = ek+�,m+� for all
 ∈ N0. Now we conclude by
induction that

‖Dm+2
k+2,m+2 · ek+2,m+2‖1 = ‖Dm+2

k,m · ek,m‖1

= ‖(2 · (k −m+ 1) ·Dm+1
k,m − 2 · (k −m) ·Dm

k,m) · ek,m‖1

= 2 · (k −m+ 1) · ‖Dm+1
k,m · ek,m‖1 − 2 · (k −m) · ‖Dm

k,m · ek,m‖1

= 2 · (k −m+ 1) · cm+1
k+1 − 2 · (k −m) · cmk = cm+2

k+2 ,

200 P. Fleischmann et al.

Table 2. Number of classes of perfect universal binary words restricted to a fixed
number of arches

Number of Arches

0 1 2 3 4 5 6 7 8 m

S
ca

t
F
a
ct

L
en

g
th

2 1 4 1
3 1 6 14 1
4 1 8 32 48 1
5 1 10 58 168 164 1
6 1 12 92 416 880 560 1
7 1 14 134 840 2 980 4 608 1 912 1
8 1 16 184 1 488 7 664 21 344 24 344 6 528 1

k 1 2k

because ‖u± v‖1 = ‖u‖1±‖v‖1 for all u = (ui), v = (vi) ∈ Rn for which ujvj ≥ 0
for all j ∈ [n]. ��
Remark 26. Note that by setting Δ := k−m, the family of recurrences depends
only on one variable Δ, because k −m = (k −
) − (m−
) holds for all
 ∈ N.

Remark 27. Some sequences in Table 1 are known sequences. The first and sec-
ond diagonal are A007052 and A018903 resp. in [19]. Both sequences are investi-
gated in the work of Janjic [10]. There, the two sequences appear as the number
of compositions of n ∈ N, considering three (resp. five) differently colored 1s.
Furthermore, the sequences cmk seem to be equivalent to the family of sequences
(sn) where s0 = 1 and s1 is fixed and sn+2 is the smallest number such that
sn+2
sn+1

> sn+1
sn

. These sequences where studied by Boyd [2].

By Remark 6, we can count the number of classes separated by the univer-
sality of words with less than k arches. This leads to the following immediate
corollary which allows us to efficently calculate |Σ∗

2/∼k|.
Corollary 28. Let k ∈ N0. Over a binary alphabet, the number of congruence
classes of ∼k is given by |Σ∗

2/∼k| = 1 +
∑k−1

m=0 c
m
k .

The first values of the sequence, some of which are already given in [12], are

1, 4, 16, 68, 312, 1560, 8528, 50864, 329248, 2298592, 17203264, 137289920,
1162805376, 10409679744, 98146601216, 971532333824, 10068845515264, . . .

We can use the idea of Theorem 25 to count the number of perfect k-universal
words, i.e., k-universal words with an empty rest (cf. [5]). We can count them by
replacing the vector from Theorem 25 with the initial distribution of αi values
with (0, 1, 0)ᵀ. Thus, the formula counts words starting or ending with an empty
α. Because the matrix does not change, we obtain the same recurrence with
different initial values. The þk diagonal, shifted by one, is now given by the
Lucas sequence of the first kind U(2 · k + 2, 2 · k), where Un(P,Q) is given by

https://oeis.org/A007052
https://oeis.org/A018903

α-β-Factorization and the Binary Case 201

U0(P,Q) = 0, U1(P,Q) = 1, Un(P,Q) = P · Un−1(P,Q) − Q · Un−2(P,Q). The
first calculated values are given in Table 2. The first three diagonals of the table
are the known integer sequences A007070, A084326, and A190978 in [19].

5 Towards the Ternary Case of Simon’s Congruence

In the following, we will consider cases for the ternary alphabet based on the
alphabets of the α-factors with the goal of proving similar results to Proposition
21 and Theorem 23 for ternary words, leading to Theorem 30. By Theorem 17, it
suffices to consider αβα-factors for characterizing congruence classes. In Sect. 3
we already considered some cases for αβα-factors for arbitrary alphabets. Note
that if m1(w) = ↼m1(w) then core1 = ε. Otherwise, if m1(w)
= ↼m1(w), then
core1 ∈ (Σ \ {m1(w), ↼m1(w)})∗. Thus, cores of ternary words are unary, and we
denote the well-defined letter of the core by y ∈ Σ3.

We use a variant of the Kronecker-δ for a boolean predicate P as δP (x) = 1 if
P (x) is true and 0 otherwise to express a condition on the alphabet of the rest
of a binary α-factor (cf. Figure 2). If an α0’s rest contains the letter y different
from the reverse modus x := ↼m(w), then re(α0) ↼m(w) builds another arch ending
before the core (left). This lowers the level of congruence, up to which we can
determine the core, by one. If y � re(α0) the next y is in the core (right).

u y x y

ar1(u)

↼ar1(u)α0

v x xy

ar1(v)

α0 ↼ar1(v)

Fig. 2. Factorization of α in the ternary case assuming core ∈ y+.

We always assume that k ≥ 2 because we characterize the congruence of
1-universal words. Moreover, let w, w̃ ∈ Σ∗

3 with 1 = ι(w) = ι(w̃).
First, we prove a useful lemma which characterizes the congruence of two

ternary words with the same modus and reverse modus. Together with Proposi-
tion 20, this immediately implies several cases.

Lemma 29. Let m(w) = m(w̃) and ↼m(w) = ↼m(w̃), we have w ∼k w̃ iff αi ∼k−1

α̃i for all i ∈ [1]0 and core1 ∼k−c c̃ore1 ∈ y∗ where c := ι(α0) + δy�re(α0) +
ι(α1) + δy� ↼re(α1).

Since in the ternary case, there are congruent words having different modi
or reverse modi, Lemma 29 does not imply a full characterization. This leads
to two cases in the following classification (case 3 and 5 out of the 9 cases in
Table 3). These two cases correspond to the first case in the following theorem.

https://oeis.org/A007070
https://oeis.org/A084326
https://oeis.org/A190978

202 P. Fleischmann et al.

Table 3. The possibilities for the β-factor of w = α0βα1, assuming a, b, c ∈ Σ3 differ-
ent. Note that in the cases (1,1), (1,0), (0,0) the letters not fixed by the α-factors can
be chosen arbitrarily but differently from Σ3.

|alph(α0)|,|alph(α1)| alph(α0) alph(α1) β RegExp Stated In

2,2 {a, b} {a, c} ba∗c Proposition 19

{a, b} {a, b} c

2,1 {a, b} {c} (ab+ | ba+)c

{a, b} {a} ba∗c

2,0 {a, b} ∅ (ab+ | b+a)c

1,1 {a} {b} ab+c | ac+b | ca+b

{a} {a} ba∗c

1,0 {a} ∅ ba∗c | ab+c

0,0 ∅ ∅ ab+c Proposition 18

Theorem 30. For w, w̃ ∈ Σ∗
3 we have w ∼k w̃ iff αi ∼k−1 α̃i for all i ∈ [1]0,

and one of the following
1. | alph(αi)| = 2, alph(α1−i)∩alph(αi) = ∅, and ι(αi) ≥ k−1 for some i ∈ [1]0,
2. m(w) = m(w̃), ↼m(w) = ↼m(w̃), core ∼k−c c̃ore with c := ι(α0)+δy�α0 +ι(α1)+
δy∈α1 .
For all possibilities distinguishing the β-factors, see Table 3.

6 Conclusion

In 2021, Kosche et al. [16] first implicitly used a new factorization to find absent
scattered factors in words algorithmically. Later, in 2022, Fleischmann et al. [6]
introduced this factorization as α-β-factorization and used it to investigate the
classes of Simon’s congruence separated by the number of shortest absent scat-
tered factors, to characterize the classes for arbitrary alphabets for some fixed
numbers of shortest absent scattered factors and to give explicit formulas for
these subsets. In this paper, we investigated the α-β-factorization as an object
of intrinsic interest. This leads to a result characterizing k-congruence of m-
universal words in terms of their 1-universal αβα-factors. In the case of the
binary and ternary alphabet, we fully characterized the congruence of words in
terms of their single factors. Moreover, using this characterization, we gave a
formula for the number of classes of binary words for each k, characterized the
finite classes, and gave a conceptually simple linear time algorithm for testing
MaxSimK for binary words.

The modus of the layered arch factorizations used in the proof of Propostion
20 and throughout the literature [4,21,23], can be regarded as the optimal word
to jump to certain letters in certain parts of the word. The α-β-factorization
encapsulates the first layer (arches w.r.t.Σ) of these factorizations for all indicies.
For small alphabets (this paper) and shortest abscent scattered factors (c.f. [6])
this allows the characterization and enumeration of classes. Extending this idea
to lower layers (arches w.r.t. some Ω ⊂ Σ), is left as future work.

α-β-Factorization and the Binary Case 203

References

1. Barker, L., Fleischmann, P., Harwardt, K., Manea, F., Nowotka, D.: Scattered
factor-universality of words. In: DLT (2020)

2. Boyd, D.W.: Linear recurrence relations for some generalized Pisot sequences. In:
CNTA, pp. 333–340 (1993)

3. Day, J., Fleischmann, P., Kosche, M., Koß, T., Manea, F., Siemer, S.: The edit
distance to k-subsequence universality. In: STACS, vol. 187, pp. 25:1–25:19 (2021)

4. Fleischer, L., Kufleitner, M.: Testing Simon’s congruence. In: Potapov, I., Spirakis,
P.G., Worrell, J. (eds.) MFCS, vol. 117, pp. 62:1–62:13 (2018)

5. Fleischmann, P., Germann, S., Nowotka, D.: Scattered factor universality - the
power of the remainder. Preprint arXiv:2104.09063 (published at RuFiDim) (2021)

6. Fleischmann, P., Haschke, L., Huch, A., Mayrock, A., Nowotka, D.: Nearly k-
universal words - investigating a part of Simon’s congruence. In: DCFS. LNCS,
vol. 13439, pp. 57–71. Springer (2022). https://doi.org/10.1007/978-3-031-13257-
5 5

7. Frobenius, H.: Über lineare Substitutionen und bilineare Formen, vol. 1878. De
Gruyter (1878)

8. Gawrychowski, P., Kosche, M., Koß, T., Manea, F., Siemer, S.: Efficiently testing
Simon’s congruence. In: STACS. LIPIcs, vol. 187, pp. 34:1–34:18 (2021)

9. Hébrard, J.: An algorithm for distinguishing efficiently bit-strings by their subse-
quences. TCS 82(1), 35–49 (1991)

10. Janjic, M.: Generalized compositions with a fixed number of parts. arXiv:1012.3892
(2010)

11. Karandikar, P., Schnoebelen, P.: The height of piecewise-testable languages with
applications in logical complexity. In: CSL (2016)

12. Karandikar, P., Kufleitner, M., Schnoebelen, P.: On the index of Simon’s congru-
ence for piecewise testability. Inf. Process. Lett. 115(4), 515–519 (2015)

13. Karandikar, P., Schnoebelen, P.: The height of piecewise-testable languages and
the complexity of the logic of subwords. LMCS 15(2) (2019)

14. Kim, S., Han, Y., Ko, S., Salomaa, K.: On simon’s congruence closure of a string.
In: Han, Y., Vaszil, G. (eds.) DCFS. LNCS, vol. 13439, pp. 127–141. Springer
(2022). https://doi.org/10.1007/978-3-031-13257-5 10

15. Kim, S., Ko, S., Han, Y.: Simon’s congruence pattern matching. In: Bae, S.W.,
Park, H. (eds.) ISAAC. LIPIcs, vol. 248, pp. 60:1–60:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

16. Kosche, M., Koß, T., Manea, F., Siemer, S.: Absent subsequences in words. In:
Bell, P.C., Totzke, P., Potapov, I. (eds.) RP 2021. LNCS, vol. 13035, pp. 115–131.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89716-1 8

17. Kátai-Urbán, K., Pach, P., Pluhár, G., Pongrácz, A., Szabó, C.: On the word
problem for syntactic monoids of piecewise testable languages. Semigroup Forum
84(2) (2012)

18. Lothaire, M.: Combinatorics on Words, 2nd edn. Cambridge Mathematical Library,
Cambridge University Press, Cambridge (1997)

19. OEIS Foundation Inc.: The on-line encyclopedia of integer sequences (2022).
http://oeis.org

20. Pach, P.: Normal forms under Simon’s congruence. Semigroup Forum 97(2) (2018)
21. Sakarovitch, J., Simon, I.: Subwords, chap. 6, pp. 105–144. In: Cambridge Mathe-

matical Library [18], 2 edn. (1997)

http://arxiv.org/abs/2104.09063
https://doi.org/10.1007/978-3-031-13257-5_5
https://doi.org/10.1007/978-3-031-13257-5_5
http://arxiv.org/abs/1012.3892
https://doi.org/10.1007/978-3-031-13257-5_10
https://doi.org/10.1007/978-3-030-89716-1_8
http://oeis.org

204 P. Fleischmann et al.

22. Simon, I.: Hierarchies of Events with Dot-depth One. Ph.D. thesis, University of
Waterloo, Department of Applied Analysis and Computer Science (1972)

23. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23

Bounds for c-Ideal Hashing

Fabian Frei(B) and David Wehner

ETH Zürich, Zürich, Switzerland
{fabian.frei,david.wehner}@inf.ethz.ch

Abstract. In this paper, we analyze hashing from a worst-case per-
spective. To this end, we study a new property of hash families that
is strongly related to d-perfect hashing, namely c-ideality. On the one
hand, this notion generalizes the definition of perfect hashing, which has
been studied extensively; on the other hand, it provides a direct link
to the notion of c-approximativity. We focus on the usually neglected
case where the average load α is at least 1 and prove upper and lower
parametrized bounds on the minimal size of c-ideal hash families.

As an aside, we show how c-ideality helps to analyze the advice com-
plexity of hashing. The concept of advice, introduced a decade ago, lets
us measure the information content of an online problem. We prove hash-
ing’s advice complexity to be linear in the hash table size.

1 Introduction

Hashing is one of the most popular tools in computing, both from a practical and
a theoretical perspective. Hashing was invented as an efficient method to store
and retrieve information. Its success began at latest in 1968 with the seminal
paper “Scatter Storage Techniques” by Robert Morris [19], which was reprinted
in 1983 with the following laudation [20]:

From time to time there is a paper which summarizes an emerging research
area, focuses the central issues, and brings them to prominence. Morris’s
paper is in this class. [. . .] It brought wide attention to hashing as a pow-
erful method of storing random items in a data structure with low average
access time.

This quote illustrates that the practical aspects were the focus of the early
research, and rightly so. Nowadays, hashing has applications in many areas in
computer science. Before we cite examples of how hashing can be applied, we
state the general setting.

1.1 General Setting and Notation

We have a large set U , the universe, of all possible elements, the keys. In our
example, this would be the set of all possible car plates, so all strings of length
8 over the alphabet {A, . . . , Z, 0, . . . , 9}. Then, there is a subset S ⊆ U of keys
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 205–220, 2023.
https://doi.org/10.1007/978-3-031-43587-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_15

206 F. Frei and D. Wehner

from the universe. This set stands for the unknown elements that appear in our
application. In our example, S corresponds to the set of all car plates that we
see on this day. Then, there is a small set T , the hash table, whose m elements
are called cells or slots. In our example, T corresponds to our notebook and
we organize the entries in our notebook according to the last character on the
car plate, so each cell corresponds to a single letter of the alphabet. Typically,
the universe is huge in comparison to the hash table, for instance, |U | = 2|T |.
Every function from U to T is called a hash function; it hashes (i.e., maps) keys
to cells. We have to choose a function h from U to T such that the previously
unknown set S is distributed as evenly as possible among the cells of our hash
table. For an introduction to hashing, one of the standard textbooks is the book
by Mehlhorn [16]. We recommend the newer book by Mehlhorn and Sanders [17],
and to German readers in particular its German translation by Dietzfelbinger,
Mehlhorn and Sanders [5].

While U and T can be arbitrary finite sets, we choose to represent their
elements by integers—which can always be achieved by a so-called pre-hash
function—and let U := {1, . . . , u} and T := {1, . . . , m}. For convenience, we
abbreviate {1, . . . , k} by [k] for any natural number k. We assume the size n of
the subset to be at least as large as the size of the hash table, that is, |S| = n ≥
m and, to exclude the corner case of hashing almost the entire universe, also
|U | ≥ n2.

1.2 Applications of Hashing

Among the numerous applications of hashing, two broad areas stand out. First, as
we have seen, hashing can be used to store and retrieve information. With hash-
ing, inserting new information records, deleting records, and searching records
can all be done in expected constant time, that is, the number of steps needed
to insert, find, or delete an information record does not depend on the size of U ,
S, or T . One example of this are dictionaries in Python, which are implemented
using a hash table and thus allow for value retrieval by key, inserting new key-
value-pairs, and deleting key-value-pairs in time independent of the dictionary
size. Another example is the Rabin-Karp algorithm [12], which searches a pat-
tern in a text and can be used for instance to detect plagiarism. The second
main application area is cryptography. In cryptographic hashing, the hash func-
tion has to fulfill additional requirements, for example that it is computationally
very hard to reconstruct a key x from its hash h(x) or to find a colliding key,
that is, a y ∈ U with h(y) = h(x). Typical use cases here are, for example, digital
signatures and famous examples of cryptographic hash functions are the check-
sum algorithms such as MD5 or SHA, which are often used to check whether
two files are equal. Moreover, and perhaps particularly interesting for computer
science, hashing is a useful tool in the design of randomized algorithms and their
derandomization. Further examples and more details can be found for example
in the useful article by Luby and Wigderson [15].

Bounds for c-Ideal Hashing 207

1.3 Theory of Hashing

Soon after the early focus on the practical aspect, a rich theory on hashing
evolved. In this theory, randomization plays a pivotal role. From a theory point
of view, we aim for a hash function h that reduces collisions among the yet-
to-be-revealed keys of S to a minimum. One possibility for selecting h is to
choose the image for each key in U uniformly at random among the m cells of
T . We can interpret this as picking a random h out of the family Hall of all
hash functions.1 Then the risk that two keys x, y ∈ U collide is only 1/m, that
is, ∀x, y ∈ U, x �= y : P

h∈Hall
(h(x) = h(y)) = 1

m . On the downside, this random
process can result in computationally complex hash functions whose evaluation
has space and time requirements in Θ(u ln m). Efficiently computable functions
are necessary in order to make applications feasible, however. Consequently, the
assumption of such a simple uniform hashing remains in large part a theoreti-
cal one with little bearing on practical applications; it is invoked primarily to
simplify theoretical manipulations.

The astonishing discovery of small hashing families that can take on the role
of Hall addresses this problem. In their seminal paper in 1979, Larry Carter and
Mark Wegman [3] introduced the concept of universal hashing families and showed
that there exist small universal hashing families. A family H of hash functions is
called universal if it can take the place of Hall without increasing the collision risk:
H is universal ⇐⇒ ∀x, y ∈ U, x �= y : P

h∈H
(h(x) = h(y)) ≤ 1/m. In the follow-

ing years, research has been successfully dedicated to revealing universal hashing
families of comparably small size that exhibit the desired properties.

1.4 Determinism Versus Randomization

Deterministic algorithms cannot keep up with this incredible performance of
randomized algorithms, that is, as soon as we are forced to choose a single
hash function without knowing S, there is always a set S such that all keys
are mapped to the same cell. Consequently, deterministic algorithms have not
been of much interest. Using the framework of advice complexity, we measure
how much additional information deterministic algorithms need in order to hold
their ground or to even have the edge over randomized algorithms.

In order to analyze the advice complexity of hashing, we have to view hashing
as an online problem. This is not too difficult; being forced to take irrevocable
decisions without knowing the whole input is the essence of online algorithms,
as we describe in the main introduction of this thesis. In the standard hashing
setting, we are required to predetermine our complete strategy, that is, our hash
function h, with no knowledge about S at all. In this sense, standard hashing
is an ultimate online problem. We could relax this condition and require that
S = {s1, . . . , sn} is given piecemeal and the algorithm has to decide to which
cell the input si is mapped only upon its arrival. However, this way, an online
algorithm could just distribute the input perfectly, which would lead, as in the
case of Hall, to computationally complex functions.

1 Note that the number of hash functions, |Hall| = mu, is huge.

208 F. Frei and D. Wehner

Therefore, instead of relaxing this condition, we look for the reason why
there is such a gap between deterministic and randomized strategies. The reason
is simple: Deterministic strategies are measured according to their performance
in the worst case, whereas randomized strategies are measured according to
their performance on average. However, if we measure the quality of randomized
strategies from a worst-case perspective, the situation changes. In particular,
while universal hashing schemes prove incredibly useful in everyday applications,
they are far from optimal from a worst-case perspective, as we illustrate now.

We regard a hash function h as an algorithm operating on the input set of
keys S. We assess the performance of h on S by the resulting maximum cell load:
cost(h, S) := αmax := max{α1, . . . , αm}, where αi is the cell load of cell i, that
is, αi :=

∣
∣h−1(i) ∩ S

∣
∣, the number of keys hashed to cell i. This is arguably the

most natural cost measurement for a worst-case analysis. Another possibility,
the total number of collisions, is closely related.2

The average load is no useful measurement option as it is always α := n/m.
The worst-case cost n occurs if all n = |S| keys are assigned to a single cell.
The optimal cost, on the other hand, is �n/m� = �α� and it is achieved by
distributing the keys of S into the m cells as evenly as possible.

Consider now a randomized algorithm Alg that picks a hash function h ∈
Hall uniformly at random. A long-standing result [9], proven nicely by Raab and
Steger [22], shows the expected cost Eh∈Hall [cost(h, S)] to be in Ω

(ln m
ln ln m

)

, as
opposed to the optimum �α�. The same holds true for smaller universal hashing
schemes such as polynomial hashing, where we randomly choose a hash function
h out of the family of all polynomials of degree O(ln n

ln ln n

)

. However, no matter
which universal hash function family is chosen, it is impossible to rule out the
absolute worst-case: For every chosen hash function h there is, due to u ≥ n2, a
set S of n keys that are all mapped to the same cell.

1.5 Our Model and the Connection to Advice Complexity

We are, therefore, interested in an alternative hashing model that allows for
meaningful algorithms better adapted to the worst case: What if we did not
choose a hash function at random but could start with a family of hash functions
and then always use the best function, for any set S? What is the trade-off
between the size of such a family and the upper bounds on the maximum load
they can guarantee? In particular, how large is a family that always guarantees
an almost optimal load?

In our model, the task is to provide a set H of hash functions. This
set should be small in size while also minimizing the term cost(H, S) :=
maxS∈S minh∈H cost(h, S), which is the best cost bound that we can ensure
across a given set S of inputs by using any hash function in H. Hence, we look
for a family H of hash functions that minimizes both |H| and cost(H, S). These
two goals conflict, resulting in a trade-off, which we parameterize by cost(H, S),
using the notion of c-ideality.

2 This number can be expressed as
∑m

k=1

(
αk
2

)
∈ Θ

(
α2

1 + . . . + α2
m

)
⊆ O

(
m · α2

max
)
.

Bounds for c-Ideal Hashing 209

Definition 1. (c-Ideality). Let c ≥ 1. A function h : U → T is called c-ideal
for a subset S ⊆ U of keys if cost(h, S) = αmax ≤ cα. In other words, a c-ideal
hash function h assigns at most cα elements of S to each cell of the hash table T .

Similarly, a family of hash functions H is called c-ideal for a family S of
subsets of U if, for every S ∈ S, there is a function h ∈ H such that h is c-ideal
for S. This is equivalent to cost(H, S) ≤ cα. If H is c-ideal for Sn := {S ⊆
U ; |S| = n} (that is, all sets of n keys), we simply call H c-ideal.

We see that c-ideal families of hash functions constitute algorithms that
guarantee an upper bound on cost(H) := cost(H, Sn), which fixes one of the
two trade-off parameters. Now, we try to determine the other one and find,
for every c ≥ 1, the minimum size of a c-ideal family, which we denote by
Hc := min{|H|; cost(H) ≤ cα}. Note that c ≥ m renders the condition of
c-ideality void since n = mα is already the worst-case cost; we always have
cost(H) ≤ n ≤ cα for c ≥ m. Consequently, every function is m-ideal, every
non-empty family of functions is m-ideal, and Hm = 1.

With the notion of c-ideality, we can now talk about c-competitiveness of
hashing algorithms. Competitiveness is directly linked to c-ideality since, for
each S, cost(Alg(S)) := αmax and the cost of an optimal solution is always
cost(Opt(S)) = �α�. Therefore, a hash function that is c-ideal is c-competitive
as well. Clearly, no single hash function is c-ideal; however, a hash function family
H can be c-ideal and an algorithm that is allowed to choose, for each S, the best
hash function among a c-ideal family H is thus c-competitive. Such a choice cor-
responds exactly to an online algorithm with advice that reads �log(|H|)� advice
bits, which is just enough to indicate the best function from a family of size |H|.
Since, by definition, there is a c-ideal hash function family of size Hc, there is an
online algorithm with advice complexity �log(Hc)� as well. Moreover, there can
be no c-competitive online algorithm Alg that reads less than �log Hc� advice
bits: If there were such an algorithm, there would be a c-ideal hash function
family of smaller size than Hc, which contradicts the definition of Hc. We will
discuss the relation between c-ideal hashing and advice complexity in more depth
in Sect. 6.

1.6 Organization

This paper is organized as follows. In Sect. 2, we give an overview of related
work and our contribution. We present our general method of deriving bounds
on the size of c-ideal families of hash functions in Sect. 3. Section 4 is dedicated to
precisely calculating these general bounds. In Sect. 5, we give improved bounds
for two edge cases. In Sect. 6, we analyze the advice complexity of hashing. We
recapitulate and compare our results in Sect. 7.

2 Related Work and Contribution

There is a vast body of literature on hashing. Indeed, hashing still is a very active
research area today and we cannot even touch upon the many aspects that have

210 F. Frei and D. Wehner

been considered. Instead, in this section, we focus on literature very closely
connected to c-ideal hashing. For a coarse overview of hashing in general, we
refer to the survey by Chi and Zhu [4] and the seminar report by Dietzfelbinger
et al. [6].

The advice complexity of hashing has not yet been analyzed; however, c-
ideality is a generalization of perfect k-hashing, sometimes also called k-perfect
hashing. For n ≤ m (i.e., α ≤ 1) and c = 1, our definition of c-ideality allows
no collisions and thus reduces to perfect hashing, a notion formally introduced
by Mehlhorn in 1984 [16]. For this case, Fredman and Komlós [8] proved in 1984
the bounds

H1 ∈ Ω

(
mn−1 log(u)(m − n + 1)!

m! log(m − n + 2)

)

and H1 ∈ O
⎛

⎝
−n log(u)

log
(

1 − m!
(m−n)!mn

)

⎞

⎠.

In 2000, Blackburn [2] improved their lower bound for u large compared to n.
Recently, in 2022, Guruswami and Riazonov [10] improved their bound as well.
None of these proofs generalize to n > m, that is, α > 1.

Another notion that is similar to c-ideality emerged in 1995. Naor et al. [21]
introduced (u, n, m)-splitters, which coincide with the notion of 1-ideal families
for α ≥ 1. They proved a result that translates to

H1 ∈ O
(√

2πα
m

e m
12α

√
n ln u

)

. (1)

Since the requirements for c-ideality are strongest for c = 1, this upper bound
holds true for the general case of c ≥ 1 as well.

We extend these three results to the general case of n ≥ m and c ≥ 1.
Moreover, we tighten the third result further for large c. Specifically, we prove
the following new bounds:

Hc ≥ (1 − ε) exp
(

m

eα
(1 − ε)

(
α

cα + 1

)cα+1
)

(Theorem 3) (2)

Hc ≥ ln u − ln (cα)
ln m

(Theorem 5) (3)

Hc ≤ upperboundHc (Theorem 4) (4)

Hc ∈ O
(

n ln u

ln t

)

for any t ≥ 1 and c ∈ ω

(

t
ln n

ln ln n

)

(Theorem 6) (5)

Note that (4) coincides with (1) for c = 1 and is only an improvement for α and c
slightly larger than 1. Since Hc ≤ Hc′ for c ≥ c′, the bound still improves slightly
upon (1) in general, depending on the constants hidden in the O-notation in (1).
Interestingly, the size u of the universe does not appear in (2); a phenomenon
discussed in [8]. Fredman and Komlós used information-theoretic results based
on the Hansel Lemma [11] to obtain a bound that takes the universe size into
account. Körner [14] expressed their approach in the language of graph entropy.

Bounds for c-Ideal Hashing 211

It is unclear, however, how these methods could be generalized to the case α > 1
in any meaningful way.

The straightforward approach of proving a lower bound on H1 is to use good
Stirling estimates for the factorials in H1 ≥ (

u
n

)

/
(

u/m
α

)m
; see Mehlhorn [16].

This yields a lower bound of roughly
√

2πα
m−1

/
√

m, which is better than (2)
for c = 1, see Lemma 3 for details. Unfortunately, it turns out that we cannot
obtain satisfying results for c > 1 with this approach. However, the results
from Dubhashi and Ranjan [7] and the method of Poissonization enable us to
circumnavigate this obstacle and derive Eq. (2).

We use our bounds to derive bounds for the advice complexity of hashing,
which we will discuss in Sect. 6.

3 General Bounds on Hc

We present our bounds on Hc, which is the minimum size of c-ideal families of
hash functions. First, we establish a general lower and upper bound.

We use a volume bound to lower-bound Hc. We need the following definition.
Let Mc be the maximum number of sets S ∈ Sn that a single hash function can
map c-ideally, that is,

Mc := max
h∈Hall

|{S ∈ Sn; αmax ≤ cα}| = max
h∈Hall

|{S ∈ Sn; ∀i ∈ [m] : αi ≤ cα}|.

Lemma 1 (Volume Bound). The number of hash functions in a family of
hash functions that is c-ideal is at least the number of sets in Sn divided by the
number of sets for which a single hash function can be c-ideal, that is, Hc ≥
|Sn|/Mc.

Proof. |Sn| =
(

u
n

)

is the number of subsets of size n in the universe U and Mc

is the maximum number of such subsets for which a single function h can be
c-ideal. A function family H is thus c-ideal for at most |H| · Mc of these subsets.
If H is supposed to be c-ideal for all subsets—that is, to contain a c-ideal hash
function for every single one of them— we need |H| · Mc ≥ |Sn|.

To be able to estimate Mc, we consider hash functions that distribute the u
keys of our universe as evenly as possible:

Definition 2 (Balanced Hash Function). A balanced hash function h parti-
tions the universe into m parts by allotting to each cell �u/m� or �u/m� elements.
We denote the set of balanced hash functions by Heq. We write heq to indicate
that h is balanced.3

Theorem 1, whose proof is omitted due to the space constraints, states that
exactly all balanced hash functions attain the value Mc. Therefore, we can limit
ourselves to such functions.
3 Note that, for any heq, there are exactly (u mod m) cells of size �u/m� since
∑m

k=1 |h−1
eq (k)| = u.

212 F. Frei and D. Wehner

Theorem 1. (Balance Maximizes Mc). A function is c-ideal for the maxi-
mal number of subsets if and only if it is balanced. In other words, the number
of subsets that are hashed c-ideally by a hash function equals Mc if and only if
h is balanced.

Now fix a balanced hash function h ∈ Heq. We switch to a randomization
perspective: Draw an S ∈ Sn uniformly at random. The cell loads αk are consid-
ered random variables that assume integer values based on the outcome S ∈ Sn.
The probability that our fixed h hashes the random S c-ideally is exactly

P(αmax ≤ cα) = |{S ∈ Sn; h hashes S c-ideally}|
|Sn| = Mc

|Sn| .

We suspend our analysis of the lower bound for the moment and switch to
the upper bound to facilitate the comparison of the bounds. The proof of the
following lemma is omitted to the space constraints.

Lemma 2 (Probability Bound). We can bound the minimal size of a c-ideal
family by Hc ≤

⌈
|Sn|
Mc

n ln u
⌉

.

We combine Lemma 1 and Lemma 2 and summarize our findings:

Corollary 1 (General Bounds on Family Size Hc). The size of a c-ideal
family of hash functions is bounded by 1

P(αmax≤cα) ≤ Hc ≤ n ln u
P(αmax≤cα) .

Now, to lower-bound Hc, we first consider for c = 1 a straightforward appli-
cation of Lemma 1 suggested by Mehlhorn [16] and then ponder whether we
could extend this approach for c larger than 1.

Lemma 3. The number of hash functions in a 1-ideal family of hash functions
is bounded from below by approximately ≈

√
2πα

m−1
√

m
.

The natural extension of this approach yields Hc ≥ K(n, m, cα)
(

u
n

)

/
(

u/m
cα

)m
,

where K(n, m, cα) denotes the number of compositions of n into m non-negative
integers between 0 and cα. This factor, which accounts for the number of possi-
bilities to split the n keys into m different cells, equals 1 for c = 1. For general
c, however, to the best of our knowledge, even the strongest approximations for
K(n, m, cα) do not yield a meaningful lower bound. Therefore, we are forced
to use a different strategy for general c and we estimate Mc via the probability
P(αmax ≤ cα) in the following section.

4 Estimations for P(αmax ≤ cα)

It remains to find good bounds on the probability P(αmax ≤ cα), which will
immediately yield the desired bounds on Hc. We start by establishing an upper
bound on P(αmax ≤ cα).

Bounds for c-Ideal Hashing 213

4.1 Upper Bound

Recall that we fixed a balanced hash function h ∈ Heq and draw an S ∈ Sn

uniformly at random. For every cell k ∈ T , we model its load αk as a random
variable. The joint probability distribution of the αi follows the hypergeomet-

ric distribution, that is, P((α1, . . . , αm) = (�1, . . . , �m)) = (|h−1(1)|
�1)···(|h−1(m)|

�m
)

(u
n) .

There are two obstacles to overcome. First, calculating with probabilities with-
out replacement is difficult. Second, the sum of the αi is required to be n; in
particular, the variables are not independent. The first obstacle can be overcome
by considering drawing elements from U with replacement instead, that is, draw-
ing multisets instead of sets. As the following lemma, whose proof is omitted due
to the space constraints, shows, we do not lose much by this assumption.

Lemma 4 (Switching to Drawing With Replacement) For any fixed ε >
0, there are u and n large enough such that Mc

|Sn| ≤ (1 + ε)P(Ti ≤ cα, i ∈ [m]),
where we use T1, . . . Tm to model the cell loads as binomially distributed random
variables with parameters n and 1/m. In other words, for u and n large enough,
we can consider drawing the elements of S ∈ Sn with replacement and only lose
a negligible factor.

If we consider drawing elements from U with replacement, we have a multino-
mial distribution, that is, P((T1, . . . , Tm) = (�1, . . . , �m)) =

(
n

�1,...,�m

)

/mn. This
is easier to handle than the hypergeometric distribution. The Ti, i ∈ [m], are
still not independent, however. The strong methods by Dubhashi and Ranjan [7]
provide us with a simple way to overcome this second obstacle:

Lemma 5 (Proposition 28 and Theorem 31 from [7]). The joint distribu-
tion of the random variables αi for i ∈ [m] is upper-bounded by their product:
P(αi ≤ cα, i ∈ [m]) ≤ ∏m

i=1 P(αi ≤ cα). The same holds if we consider the Ti,
i ∈ [m], instead of the αi.

We are ready to give an upper bound on the probability that a hash function
family is c-ideal. The proof of the following theorem is omitted due to the space
constraints.

Theorem 2 (Upper Bound on P(αmax ≤ cα)). For arbitrary ε > 0,

P(αmax ≤ cα) ≤ (1 + ε) exp
(

−me−α(1 − ε)
(

α
cα+1

)cα+1
)

, where n tends to

infinity.

Corollary 1 translates Theorem 2’s upper bound into a lower bound on Hc.

Theorem 3 (Lower Bound on Family Size Hc). For arbitrary ε > 0, the
number of hash functions in a c-ideal family of hash functions is bounded from

below by Hc ≥ 1
P(αmax≤cα) ≥ (1 − ε) exp

(

m
eα (1 − ε)

(
α

cα+1

)cα+1
)

.

214 F. Frei and D. Wehner

4.2 Lower Bound

Another way to overcome the obstacle that the variables are not independent
would have been to apply a customized Poissonization technique. The main
monograph presenting this technique is in the book by Barbour et al. [1]; the
textbook by Mitzenmacher and Upfal [18] gives a good illustrating example. A
series of arguments would have allowed us to bound the precision loss we incur
by a constant factor of 2, leading to

P(Tmax ≤ cα) ≤ 2P(Y ≤ cα)m,

where we use Tmax to denote max{T1, . . . , Tm} and where Y is a Poisson random
variable with mean α. By using Lemma 5, we were able to abbreviate this app-
roach. However, part of this Poissonization technique can be used for the lower
bound on P(αmax ≤ cα).

Recall that a random variable X following the Poisson distribution—
commonly written as X ∼ Pλ and referred to as a Poisson variable—takes on
the value k with probability P(X = k) = 1

eλ
λk

k! . The following lemma, whose
proof is omitted due to the space constraints, is the counterpart to Lemma 4.

Lemma 6. We can bound Mc/|Sn| = P(αmax ≤ cα) from below by P(Tmax ≤
cα).

For the counterpart to Theorem 2, we use Poissonization to turn the binomial
variables into Poisson variables.

The next lemma, whose proof is omitted due to the space constraints, shows
that (T1, . . . , Tm) has the same probability mass function as (Y1, . . . , Yn) under
the condition Y = n.

Lemma 7 (Sum Conditioned Poisson Variables). For any natural num-
bers �1, . . . , �m with �1 + . . . + �m = n, we have that

P((Y1, . . . , Ym) = (�1, . . . , �m) | Y = n) = P((T1, . . . , Tm) = (�1, . . . , �m)).

The result of Lemma 7 immediately carries over to the conditioned expected
value for any real function f(�1, . . . , �m), by the definition of expected values.

Corollary 2 (Conditioned Expected Value). Let f(�1, . . . , �m) be any real
function. We have E[f(Y1, . . . , Ym) | Y = n] = E[f(T1, . . . , Tm)].

We are ready to state the counterpart to Theorem 2. The proof is omitted
due to the space constraints.

Lemma 8 (Lower Bound on Non-Excess Probability). Set d = cα. We
have P(Tmax ≤ d) ≥

√
2πn

(2πd)m/(2c)
1

cn
1

e
m

12cd
(α + 1)m(1− 1

c).

Bounds for c-Ideal Hashing 215

Proof. Using Corollary 2, we can formulate this probability with Poisson vari-
ables:

P(Tmax ≤ d) = E[χTmax≤d]
Corollary 2 = E[χmax{Y1,...,Ym}≤d | Y = n]

Definition of conditional probability =
E[χ{Y =n}χmax{Y1,...,Ym}≤d]

P(Y = n) .

We know that Y ∼ Pn; hence, the denominator equals nn/(n!en). For the numer-
ator, we use the fact that Yi ∼ Pα for all i to write:

E[χ{Y =n}χmax{Y1,...,Ym}≤d] =
∑

�1,...,�m∈N

�1+...+�m=n
�1,...,�m≤d

m∏

i=1

1
eα

α�i

�i!

We estimate the sum by finding a lower bound for both the number of sum-
mands and the products that constitute the summands. The product attains its
minimum when the �i are distributed as asymmetrically as possible, that is, if
almost all �i are set to either d or 0, with only one being (n mod d). This fact is
an extension of the simple observation that for any natural number n, we have

n!n! = n(n − 1)(n − 2) · . . . · 1 · n! < 2n(2n − 1)(2n − 2) · . . . · (n + 1) · n! = (2n)!.

To obtain a rigorous proof we extend the range of the expression to the real
numbers and analyze the extremal values by observing where the projection of
the gradient onto the hyperplane defined by the side condition vanishes. The
details are omitted due to the space constraints.

The next step is to find a lower bound on the number of summands, that is,
the number of integer compositions �1 + . . . + �m = n. As we mentioned at the
very end of Sect. 3, we are not aware of strong approximation for this number
and the following estimation is very crude for many values of n, m, and c: If we
let the first m − m

c integers, �1, . . . , � m
c

, range freely between 0 and α, we can
always ensure that the condition �1 + . . . + �m = n is satisfied by choosing the
remaining m

c summands � m
c +1, . . . , �m appropriately. Therefore, the number of

summands is at least (α+1)m(1− 1
c). Together with the previous calculation, this

leads to

E[χ{Y =n}χmax{Y1,...,Ym}≤d] ≥ αn

en

(α + 1)m(1− 1
c)

(d!)m/c
.

Putting everything together and using the Stirling bounds [23] for the factorials,
we obtain the desired result.

Combining the results in this section in the straightforward way—the execu-
tion is omitted due to the space constraints— yields the following upper bound
on Hc.

216 F. Frei and D. Wehner

Theorem 4 (Upper Bound on Minimal Family Size Hc). The minimal
number of hash functions in a c-ideal family of hash functions is bounded from
above by Hc ≤ upperboundHc.

Theorem 4 states that for constant α, the number of functions such that for each
set of keys of size n, there is a function that distributes this set among the hash
table cells at least as good as c times an optimal solution is bounded from above
by a number that grows exponentially in m, but only with the square root in
n and only logarithmically with the universe size. However, our bounds do not
match, hence the exact behavior of Hc within the given bounds remains obscure.
It becomes easier if we analyze the advice complexity, using the connection
between c-ideality and advice complexity described in the introduction of this
paper. We first improve our bounds on Hc for some edge cases in the next section
before we then use and interpret the results in Sect. 6.

5 Improvements for Edge Cases

As discussed in the introduction, the size u of the universe does not appear in the
lower bound on Hc of Corollary 1. The following lower bound on Hc, which is a
straightforward generalization of an argument presented in the classical textbook
by Mehlhorn [16], features u in a meaningful way. The proof is omitted due to
the space constraints.

Theorem 5. We have that Hc ≥ ln(u)−ln(cα)
ln(m) .

This demonstrates that, while it is easy to find bounds that include the size
of the universe, it seems to be very difficult to incorporate u into a general
bounding technique that does not take it into account naturally, such as the first
inequality of Corollary 1. However, it is not too difficult to obtain bounds that
improve upon Corollary 1 for large—possibly less interesting—values of c. The
proof for the following theorem is omitted due to the space constraints.

Theorem 6 (Yao Bound). For every c ∈ ω
(

t ln n
ln ln n

)

, where t ≥ 1, we have
Hc ∈ O(ln |Sn|/ ln t). In particular, we obtain that Hc ∈ O(n ln u) for t ∈ O(1).

6 Advice Complexity of Hashing

With the conceptualization of hashing as an ultimate online problem mentioned
in the introduction of this paper, we can use the bounds on Hc to provide bounds
on the advice complexity of c-competitive algorithms. Theorem 5 immediately
yields the following theorem.

Theorem 7. Every Alg for hashing with less than ln(ln(u) − ln(cα)) −
ln(ln(m)) advice bits cannot achieve a lower cost than cost(Alg) = cα and
is thus not better than c-competitive. In other words, there exists an S ⊆ U such
that the output h : U → T of Alg maps at least cα elements of S to one cell.

Bounds for c-Ideal Hashing 217

With a lower bound on the size of c-ideal families of hash functions, this
bound can be improved significantly, as the following theorem shows.

Theorem 8. Every Alg for hashing needs at least

log
(

(1 − ε) exp
(

m

eα
(1 − ε)

(
α

cα + 1

)cα+1
)

advice bits in order to be c-competitive, for an arbitrary fixed ε > 0.

We want to determine the asymptotic behavior of this bound and hence analyze
the term (α/(cα+1))cα+1. We are going to use the fact that limn→∞(1−1/n)n =
1/e.

(
α

cα + 1

)cα+1
=

(1
c (cα + 1 − 1)

cα + 1

)cα+1

=
(

1
c

(

1 − 1
cα + 1

))cα+1

for any ε′ > 0 and cα + 1 large enough ≥
(

1
c

)cα+1
(1 − ε′)1

e

Therefore, the bound from Theorem 8 is in Ω
(

m
eα

(1
c

)cα+1
)

. Before we interpret
this result, we turn to the upper bounds. Theorem 4 yields the following result.

Theorem 9. There is a c-competitive algorithm with advice that reads

log upperboundHc

∈ upperboundHcOnotation

advice bits.

The factor after m is minimal for c = α = 1; this minimal value is larger
than 1.002. This upper bound is therefore always at least linear in m. For c =
ω
(

ln(n)
ln(ln(n))

)

, we can improve on this and remove the last summand completely,
based on Theorem 6.

Theorem 10. For c ∈ ω
(

t ln n
ln ln n

)

, t > 1, there exists a c-competitive algorithm
that reads O

(

log
(

ln |Sn

| ln t
))

many advice bits. In particular, for t ∈ O(1), there
exists an ln n

ln ln n -competitive algorithm that reads O(ln ln u + ln n) many advice
bits.

Theorem 8 and Theorem 9 reveal the advice complexity of hashing to be linear
in the hash table size m. While the universe size u still appears in the upper
bound, it functions merely as a summand and is mitigated by a double logarithm.
Unless the key length log2(u) is exponentially larger than the hash table size

218 F. Frei and D. Wehner

m, the universe size cannot significantly affect this general behavior. The more
immediate bounds for the edge cases do not reveal this dominance of the hash
table over the universe. Moreover, changing the two parameters α and c has no
discernible effect on the edge case bounds despite the exponential influence on
the main bounds.

7 Conclusion

This paper analyzed hashing from an unusual angle by regarding hashing as an
online problem and then studying its advice complexity. Online problems are
usually studied with competitive analysis, which is a worst-case measurement.
As outlined in the introduction, it is impossible to prevent a deterministic algo-
rithm from incurring the worst-case cost by hashing all appearing keys into a
single cell of the hash table. Therefore, randomized algorithms are key to the
theory and application of hashing. In particular the surprising discovery of small
universal hashing families gave rise to efficient algorithms with excellent expected
cost behavior. However, from a worst-case perspective, the performance of ran-
domized algorithms is lacking.

This motivated the conceptualization of c-ideal hashing families as a gener-
alization of perfect k-hashing families to the case where α > 1. Our goal was
to analyze the trade-off between size and ideality of hashing families since this
is directly linked to the competitiveness of online algorithms with advice. Our
bounds generalize results by Fredman and Komlós [8] as well as Naor et al. [21]
to the case α > 1 and c ≥ 1.

As a first step, we proved that balanced hash functions are suited best for
hashing in the sense that they maximize the number of subsets that are hashed
c-ideally. Building on this, we applied results by Dubhashi and Ranjan [7] to
obtain our main lower bound of (2). Our second lower bound, (3), is a straight-
forward generalization of a direct approach for the special case c = α = 1 by
Mehlhorn [16]. We used two techniques to find complementing upper bounds.
The first upper bound, (4), uses a Poissonization method combined with direct
calculations and is mainly useful for c ∈ o

(ln m
ln ln m

)

. Our second upper bound, (5),
relies on a Yao-inspired principle [13] and covers the case c ∈ ω

(ln m
ln ln m

)

.
With these results on the size of c-ideal hash function families, we discovered

that the advice complexity of hashing is linear in the hash table size m and only
logarithmic in n and double logarithmic in u (see Schmidt and Siegel [24] for
similar results for perfect hashing). Moreover, the influence of both α and c is
exponential in the lower bound. In this sense, by relaxing the pursuit of perfection
only slightly, the gain in the decrease of the size of a c-ideal hash function family
can be exponential. Furthermore, only O(ln ln u + ln n) advice bits are necessary
for deterministic algorithms to catch up with randomized algorithms.

Further research is necessary to close the gap between our upper and lower
bounds. For the edge cases, that is, for c ≥ log n/ log log n, the upper and lower
bounds (5) and (3) differ by a factor of approximately n ln m. The interesting
case for us, however, is c ≤ log n/ log log n, which is the observed worst-case cost

Bounds for c-Ideal Hashing 219

for universal hashing. Contrasting (2) and (4), we note that the difference has
two main reasons. First, there is a factor of n ln u that appears only in the upper
bound; this factor stems from the general bounds in Corollary 1. Second, the
probability P(αmax ≤ cα) is estimated from below in a more direct fashion than
from above, leading to a difference between these bounds that increases with
growing c. The reason for the more direct approach is the lack of a result similar
to Lemma 5.

Moreover, it remains an open question whether it is possible to adapt the
entropy-related methods in the spirit of Fredman-Komlós and Körner in such a
way as to improve our general lower bound (2) by accounting for the universe
size in a meaningful way.

References

1. Barbour, A.D., Holst, L., Janson, S.: Poisson Approximation. Clarendon Press,
Oxford (1992)

2. Blackburn, S.R.: Perfect hash families: probabilistic methods and explicit construc-
tions. J. Comb. Theory Ser. A 92(1), 54–60 (2000)

3. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

4. Chi, L., Zhu, X.: Hashing techniques: a survey and taxonomy. 50(1) (2017)
5. Dietzfelbinger, M., Mehlhorn, K., Sanders, P.: Algorithmen und Datenstrukturen.

Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-05472-3
6. Dietzfelbinger, M., Mitzenmacher, M., Pagh, R., Woodruff, D.P., Aumüller, M.:

Theory and applications of hashing (dagstuhl seminar 17181). Dagstuhl Rep. 7(5),
1–21 (2017)

7. Dubhashi, D.P., Ranjan, D.: Balls and bins: a study in negative dependence. Ran-
dom Struct. Algorithms 13(2), 99–124 (1998)

8. Fredman, M.L., Komlós, J.: On the size of separating systems and families of
perfect hash functions. SIAM J. Alg. Disc. Meth. 5, 61–68 (1984)

9. Gonnet, G.H.: Expected length of the longest probe sequence in hash code search-
ing. J. ACM 28(2), 289–304 (1981)

10. Guruswami, V., Riazanov, A.: Beating Fredman-Komlós for perfect k-hashing. J.
Comb. Theory, Ser. A 188, 105580 (2022)

11. Hansel, G.: Nombre minimal de contacts de fermeture nécessaires pour réaliser une
fonction booléenne symétrique de n variables. Comptes Rendus Hebdomadaires des
Séances de l’Académie des Sciences, 258 (1964)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

13. Komm, D.: An Introduction to Online Computation - Determinism, Randomiza-
tion, Advice. Texts in Theoretical Computer Science. An EATCS Series. Springer
(2016). https://doi.org/10.1007/978-3-319-42749-2

14. Körner, J.: Fredman-komlós bounds and information theory. SIAM J. Algebraic
Discrete Methods 7(4), 560–570 (1986)

15. Luby, M., Wigderson, A.: Pairwise independence and derandomization. Founda-
tions and Trends in Theoretical Computer Science 1(4) (2005)

16. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching, volume 1
of EATCS Monographs on Theoretical Computer Science. Springer (1984). https://
doi.org/10.1007/978-3-642-69672-5

https://doi.org/10.1007/978-3-642-05472-3
https://doi.org/10.1007/978-3-319-42749-2
https://doi.org/10.1007/978-3-642-69672-5
https://doi.org/10.1007/978-3-642-69672-5

220 F. Frei and D. Wehner

17. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox.
Springer (2008). https://doi.org/10.1007/978-3-540-77978-0

18. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press, Cambridge (2017)

19. Morris, R.H.: Scatter Storage Techniques. 11(1) (1968)
20. Morris, R.H.: Scatter storage techniques (reprint). Commun. ACM 26(1), 39–42

(1983)
21. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-

tion. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, USA, 23–25 October 1995, pp. 182–191 (1995)

22. Raab, M., Steger, A.: Balls into bins - a simple and tight analysis. In: Random-
ization and Approximation Techniques in Computer Science, Second International
Workshop, RANDOM’98, Barcelona, Spain, October 8–10, 1998, Proceedings, pp.
159–170 (1998)

23. Robbins, H.E.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)
24. Schmidt, Jeanette P., Siegel, Alan: The spatial complexity of oblivious k-probe

hash functions. SIAM J. Comput. 19(5), 775–786 (1990)

https://doi.org/10.1007/978-3-540-77978-0

Parameterized Complexity
of the Th+1-Free Edge Deletion Problem

Ajinkya Gaikwad and Soumen Maity(B)

Indian Institute of Science Education and Research, Pune, India

ajinkya.gaikwad@students.iiserpune.ac.in, soumen@iiserpune.ac.in

Abstract. Given an undirected graph G = (V, E) and two integers
k and h, we study Th+1-Free Edge Deletion, where the goal is to
remove at most k edges such that the resulting graph does not con-
tain any tree on h + 1 vertices as a (not necessarily induced) subgraph,
that is, we delete at most k edges in order to obtain a graph in which
every component contains at most h vertices. This is desirable from the
point of view of restricting the spread of a disease in transmission net-
works. Enright and Meeks (Algorithmica, 2018) gave an algorithm to
solve Th+1-Free Edge Deletion whose running time on an n-vertex
graph G of treewidth tw(G) is bounded by O((tw(G)h)2tw(G)n). However,
it remains open whether the problem might belong to FPT when param-
eterized only by the treewidth tw(G); they conjectured that treewidth
alone is not enough, and that the problem is W[1]-hard with respect
to this parameterization. We resolve this conjecture by showing that
Th+1-Free Edge Deletion is indeed W[1]-hard when parameterized by
tw(G) alone. We resolve two additional open questions posed by Enright
and Meeks (Algorithmica, 2018) concerning the complexity of Th+1-Free
Edge Deletion on planar graphs and Th+1-Free Arc Deletion. We
prove that the Th+1-Free Edge Deletion problem is NP-complete even
when restricted to planar graphs. We also show that the Th+1-Free Arc
Deletion problem is W[2]-hard when parameterized by the solution size
on directed acyclic graphs.

1 Introduction

Graph theoretic problems show immense applicability in real-life scenarios such
as those involving transportation, flows, relationships and complex systems. The
spread of a disease, for instance, can be modeled via such mathematical verbiage.
A way to describe this idea is as follows: Livestock are often carriers of various
pathogens, and thus their movement, among other reasons, plays a key role in
inducing a pandemic amongst humans or livestock [9]. To point at a particular
instance, the cause of the 2001 FMD epidemic in the UK can be traced to long-
range movements of sheep combined with local transmissions amongst the flocks
[9,14]. Thus, an effective way of mitigating the spread of livestock diseases could
be modelled by studying the underlying transmission networks based on the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 221–233, 2023.
https://doi.org/10.1007/978-3-031-43587-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_16

222 A. Gaikwad and S. Maity

routes of cattle movement. Such models can allow for early detection and better
management of disease control strategies [11].

More precisely, we consider a graph with its nodes as livestock farms and
edges denoting common routes of livestock movement between farms. Using this
graph, we can identify certain edges, or routes, such that connected compo-
nents of the network obtained by deleting these edges are manageably small in
size. Then, these deleted edges will precisely correspond to those trade routes
which require more disease surveillance, vaccination stops, movement controls
etc., required for disease management. In essence, we have divided our disease
control strategies to a few routes and smaller manageable networks. Naturally,
for maximum efficiency, one would also like to minimise the number of edges
being deleted, and this provides us enough information to chalk out a graph the-
oretic problem, which we shall describe in the next section. It should be noted
that the damaging effect such pandemics have on public health, economies, and
businesses, essentially validates the need for such a study.

Many properties that might be desirable from the point of view of restricting
the spread of a disease can be expressed in terms of forbidden subgraphs: delete
edges so that each connected component in the resulting graph has at most h ver-
tices, is equivalent to edge-deletion to a graph avoiding all trees on h+1 vertices.
One question of particular relevance to epidemiology would be the complexity of
the problem on planar graphs; this would be relevant for considering the spread of
a disease based on the geographic location (in situations where a disease is likely
to be transmitted between animals in adjacent fields) [5]. Furthermore, in prac-
tice animal movement networks can capture more information when considered
as directed graphs. The natural generalisation of Th+1-Free Edge Deletion
to directed graphs in this contexts follows: given a directed graph and a positive
integer k, the goal is to verify whether it is possible to delete at most k edges
from a given directed graph so that the maximum number of vertices reachable
from any given starting vertex is at most h. The Th+1-Free Edge Deletion
problem on planar graph and directed graphs were introduced by Enright and
Meeks [5]. Exploiting information on the direction of movements might allow
more efficient algorithms for Th+1-Free Edge Deletion; a natural first ques-
tion would be to consider whether there exists an efficient algorithm to solve
this problem on directed acyclic graphs.

1.1 Notations and Definitions

Unless otherwise stated, all graphs are simple, undirected, and loopless. Let
G = (V,E) be a graph. We denote by V (G) and E(G) its vertex and edge sets
respectively. For a vertex v ∈ V (G), let NG(v) = {y ∈ V (G) : (v, y) ∈ E(G)},
and dG(v) = |NG(v)| denote its open neighborhood and degree respectively. Let
E′ ⊆ E(G) be a set of edges of G. Then the graph obtained by deleting E′ from
G, denoted by G \ E′, is the subgraph of G containing the same vertices as G
but all the edges of E′ removed. We are interested in solving the Th+1-Free
Edge Deletion problem. This problem is of particular interest because it can
be seen as the problem of removing connections so as to obtain a network where

The Th+1-Free Edge Deletion Problem 223

each connected component has at most h vertices, an abstract view of numerous
real world problems. In this paper, we study Th+1-Free Edge Deletion and
Th+1-Free Arc Deletion. We define the problems as follows:

Th+1-Free Edge Deletion
Input: An undirected graph G = (V,E), and two positive integers k and h.
Question: Does there exist E′ ⊆ E(G) with |E′| ≤ k such that each connected
component in G\E′ has at most h vertices, that is, the graph G\E′ does not
contain any tree on h+ 1 vertices as a (not necessarily induced) subgraph?

The natural generalization of this problem to directed graphs in this context
would be to consider whether it is possible to delete at most k arcs from a given
directed graph so that the maximum number of vertices reachable from any given
starting vertex is at most h.

Th+1-Free Arc Deletion
Input: A directed graph G = (V,E), and two positive integers k and h.
Question: Does there exist E′ ⊆ E(G) with |E′| ≤ k such that the maximum
number of vertices reachable from any given starting vertex is at most h in
G \ E′?

A problem with input size n and parameter k is said to be fixed-parameter
tractable (FPT) if it has an algorithm that runs in time O(f(k)nc), where f is
some (usually computable) function, and c is a constant that does not depend
on k or n. What makes the theory more interesting is a hierarchy of intractable
parameterized problem classes above FPT which helps in distinguishing those
problems that are unlikely to be fixed-parameter tractable. We refer to [2] for
further details on parameterized complexity.

The graph parameter we discuss in this paper is treewidth. We review the
concept of a tree decomposition, introduced by Robertson and Seymour in [16].
Treewidth is a measure of how “tree-like” the graph is.

Definition 1. [4] A tree decomposition of a graphG = (V,E) is a tree T together
with a collection of subsets Xt (called bags) of V labeled by the vertices t of T
such that

⋃
t∈V (T)Xt = V (G) and (1) and (2) below hold:

1. For every edge uv ∈ E(G), there is some t ∈ V (T) such that {u, v} ⊆ Xt.
2. (Interpolation Property) If t is a vertex on the unique path in T from t1 to

t2, then Xt1 ∩Xt2 ⊆ Xt.

Definition 2. [4] The width of a tree decomposition is the maximum value of
|Xt| − 1 taken over all the vertices t of the tree T of the decomposition. The
treewidth tw(G) of a graph G is the minimum width among all possible tree
decompositions of G.

224 A. Gaikwad and S. Maity

Definition 3. [4] If the tree T of a tree decomposition is a path, then we say
that the tree decomposition is a path decomposition. The pathwidth pw(G) of a
graph G is the minimum width among all possible path decompositions of G.

1.2 Our Results

Enright and Meeks [5] gave an algorithm to solve Th+1-Free Edge Dele-
tion whose running time on an n-vertex graph G of treewidth tw(G) is
O((tw(G)h)2tw(G)n). However, it remains open whether the problem might
belong to FPT when parameterized only by the treewidth tw(G); they con-
jectured that treewidth alone is not enough, and that the problem is W[1]-hard
with respect to this parameterization. We resolve this conjecture by showing
that Th+1-Free Edge Deletion is indeed W[1]-hard when parameterized by
tw(G) alone. In this paper we also resolve two additional open problems stated
by Enright and Meeks (Algorithmica, 2018) concerning the complexity of Th+1-
Free Edge Deletion on planar graphs and Th+1-Free Arc Deletion on
directed acyclic graphs. Our results are the following:

– The Th+1-Free Edge Deletion problem is W[1]-hard when parameterized
by the treewidth of the input graph.

– The Th+1-Free Edge Deletion problem is NP-complete even when
restricted to planar graphs.

– The Th+1-Free Arc Deletion problem is W[2]-hard parameterized by the
solution size k, even when restricted to directed acyclic graphs.

1.3 Review of Previous Work

Several well-studied graph problems can be formulated as edge-deletion prob-
lems. Yannakakis [19] showed that the edge-deletion problem is NP-complete for
the following properties: (1) without cycles of specified length
, for any fixed

 ≥ 3, (2) connected and degree-constrained, (3) outer-planar, (4) transitive
digraph, (5) line-invertible, (6) bipartite, (7) transitively orientable. Watanabe,
Ae, and Nakamra [18] showed that the edge-deletion problem is NP-complete if
the required property is finitely characterizable by 3-connected graphs. Natan-
zon, Shamir and Sharan [15] proved the NP-hardness of edge-deletion prob-
lems with respect to some well-studied classes of graphs. These include per-
fect, chordal, chain, comparability, split and asteroidal triple free graphs. This
problem has also been studied in generality under paradigms such as approx-
imation algorithms [6,13] and parameterized complexity [1,10]. Cai [1] showed
that edge-deletion to a graph class characterisable by a finite set of forbidden
induced subgraphs is fixed-parameter tractable when parameterized by k (the
number of edges to delete); he gave an algorithm to solve the problem in time
O(r2k · nr+1), where n is the number of vertices in the input graph and r is the
maximum number of vertices in a forbidden induced subgraph. FPT algorithms
have been obtained for the problem of determining whether there are k edges
whose deletion results in a split graph [8] and to chain, split, threshold, and

The Th+1-Free Edge Deletion Problem 225

co-trivially perfect graphs [10]. Given a graph G = (V,E) and a set F of for-
bidden subgraphs, Enright and Meeks [5] studied the F-Free Edge Deletion
problem, where the goal is to remove a minimum number of edges such that the
resulting graph does not contain any F ∈ F as a (not necessarily induced) sub-
graph. They gave an algorithm for the F-Free Edge Deletion problem with
running time 2O(|F|tw(G)r)n where tw(G) is the treewidth of the input graph G
and r is the maximum number of vertices in any element of F ; this is a significant
improvement on Cai’s algorithm [1] but does not lead to a practical algorithm
for addressing real world problems. Gaikwad and Maity [7] complemented this
result by showing that F-Free Edge Deletion is W[1]-hard when param-
eterized by tw(G) + |F|. They also showed that F-Free Edge Deletion is
W[2]-hard when parameterized by the combined parameters solution size, the
feedback vertex set number and pathwidth of the input graph. The special case
of this problem in which F is the set of all trees on h+1 vertices is of particular
interest from the point of view of the control of disease in livestock. Enright and
Meeks [5] have proved that Th+1-Free Edge Deletion is NP-hard for every
h ≥ 3. Gaikwad and Maity [7] showed that the Th+1-Free Edge Deletion
is fixed-parameter tractable when parameterized by the vertex cover number
of the input graph. Enright and Meeks [5] have derived an improved algorithm
for this special case, running in time O((tw(G)h)2tw(G)n). However, it remained
open whether the problem might belong to FPT when parameterized only by
the treewidth; they conjectured that treewidth alone is not enough, and that
the problem is W[1]-hard with respect to this parameterization. In this paper,
we resolve this conjecture. Gaikwad and Maity [7] gave a polynomial kernel for
Th+1-Free Edge Deletion parameterized by k + h where k is the solution
size. As Th+1-Free Edge Deletion is NP-hard for every h ≥ 3 [5], it is not
possible to obtain an FPT-algorithm parameterized by h alone (unless P=NP).
However, the parameterized complexity of this problem when parameterized by
k alone remains open. In this paper we study the complexity of this problem on
planar and directed acyclic graphs.

2 W[1]-Hardness of Th+1-Free Edge Deletion
Parameterized by Treewidth

To show W[1]-hardness of Th+1-Free Edge Deletion, we reduce from Min-
imum Maximum Outdegree, which is known to be W[1]-hard parameterized
by the treewidth of the graph [17]. An orientation of an undirected graph is an
assignment of a direction to each of its edges. The Minimum Maximum Out-
degree Problem (MMO) takes as input an undirected, edge-weighted graph
G = (V,E,w), where V , E, and w denote the set of vertices of G, the set of
edges of G, and an edge-weight function w : E → Z+, respectively, and asks for
an orientation of G that minimizes the resulting maximum weighted outdegree
taken over all vertices in the oriented graph. More formally

226 A. Gaikwad and S. Maity

Minimum Maximum Outdegree
Input: An undirected edge-weighted graph G = (V,E,w), where w denote
an edge-weight function w : E → Z+ where the edge weights w are given in
unary, and a positive integer r.
Question: Is there an orientation of the edges of G such that, for each v ∈
V (G), the sum of the weights of outgoing edges from v is at most r?

Theorem 1. The Th+1-Free Edge Deletion problem is W[1]-hard when
parameterized by the treewidth of the input graph.

Proof. Let I = (G = (V,E,w), r) be an instance of Minimum Maximum Out-
degree. We construct an instance I ′ = (G′, k) of Th+1-Free Edge Deletion
the following way. See Fig. 1. The construction of G′ starts with V (G′) := V (G)
and then add the following new vertices and edges.

1. For each edge (u, v) ∈ E(G), create a set of w(u, v) vertices Vuv =
{xuv

1 , . . . , xuv
w(u,v)}. Make u and v adjacent to every vertex of Vuv. For every

1 ≤ i ≤ w(u, v)− 1, introduce an edge (xuv
i , xuv

i+1) and an edge (xuv
w(u,v), x

uv
1).

2. Let ω =
∑

e∈E(G)

w(e) and h = 4ω. For each u ∈ V (G), we add a set Vu =

{xu
1 , . . . , x

u
h−r−1} of h− r − 1 new vertices and make them adjacent to u.

3. We set k = ω.

Clearly I ′ can be computed in time polynomial in the size of I. We now show
that the treewidth of G′ is bounded by a function of the treewidth of G. We do
so by modifying an optimal tree decomposition T of G as follows:

– For every edge (u, v) of G, we take an arbitrary node in T whose bag X
contains both u and v; add to this node a chain of nodes 1, 2, . . . , w(u, v)− 1
such that the bag of node i is

X ∪ {xuv
1 , xuv

i , xuv
i+1}.

– For every edge u ∈ V (G), we take an arbitrary node in T whose bag X
contains u. Add to this node a chain of nodes 1, 2, . . . h − (r + 1) such that
the bag of node i is X ∪ {xu

i } where xu
i ∈ Vu.

It is easy to verify that the result is a valid tree decomposition of G′ and its
width is at most the treewidth of G plus three. Now we show that our reduction
is correct. That is, we prove that I = (G = (V,E,w), r) is a yes instance of
Minimum Maximum Outdegree if and only if I ′ = (G′, k) is a yes instance
of Th+1-Free Edge Deletion. Let D be the directed graph obtained by an
orientation of the edges of G such that for each vertex the sum of the weights of
outgoing edges is at most r. We claim that the set of edges

E′ =
⋃

(u,v)∈E(D)

{
(v, x) | x ∈ Vuv

} ⊆ E(G′)

The Th+1-Free Edge Deletion Problem 227

Fig. 1. The reduction from Minimum Maximum Outdegree to Th+1-Free Edge
Deletion in Theorem 1. (a) An instance (G, r) of Minimum Maximum Outdegree
with r = 3. The orientation (a, d), (d, c), (c, b), (b, a) satisfies the property that for each
v ∈ V (G), the sum of the weights of outgoing edges from v is at most 3. (b) The graph
G′ produced by the reduction algorithm.

is a solution of I ′. In Fig. 1, the orientation (a, d), (d, c), (c, b), (b, a) satisfies the
property that for each v ∈ V (G), the sum of the weights of outgoing edges from v
is at most 3. Therefore E(D) = {(a, d), (d, c), (c, b), (b, a)} and E′ = {(d, x) | x ∈
Vad} ∪ {(d, x) | x ∈ Vdc} ∪ {(b, x) | x ∈ Vbc} ∪ {(a, x) | x ∈ Vab}. Note that
the edges of D are directed. Clearly, we have |E′| = ω. We need to show that
G̃′ = G′ \E′ does not contain any connected components of size h+ 1. Observe
that every connected component in G̃′ contains exactly one vertex from V (G).
For each u ∈ V (G̃′) ∩ V (G), let Cu be the component of G̃′ that contains u.
Then Cu = {u} ∪ Vu ∪ ⋃

(u,v)∈E(D)

Vuv. For each u ∈ V (D), let wu
out denote the

sum of the weights of outgoing edges of vertex u in D. Note that for every
u ∈ V (G),

∣
∣

⋃

(u,v)∈E(D)

Vuv

∣
∣ = wu

out ≤ r and |Vu| = h − (r + 1). Therefore we

have |Cu| ≤ 1 + h− (r + 1) + r = h.
For the reverse direction, let E′ ⊆ E(G′) be a solution for I ′, that is, |E′| = ω

and G′ \E′ does not contain any connected component of size more than h. We
first claim that deletion of E′ from G′ destroys all paths between any pair of
vertices u, v ∈ V (G) ∩ V (G̃′). For the sake of contradiction, let us assume that
there is a path between u and v in G̃′ = G′ \E′. Note that u (resp. v) is adjacent
to h− (r + 1) vertices of Vu (resp. Vv) in G′. If there is a path between u and v
in G′ \ E′ then we get a connected component Cuv consists of u, v and at least
|Vu| + |Vv| − ω vertices of Vu ∪ Vv. The reason is this. If E′ contains s edges
between u and Vu or between v and Vv, then Cuv contains |Vu|+ |Vv|−s vertices

228 A. Gaikwad and S. Maity

of Vu ∪ Vv. Thus, we have

|Cuv| ≥ 2h− 2(r + 1) − ω + 2
= 8ω − 2r − ω

≥ 8ω − 2ω − ω as r < ω

= 5ω
≥ 4ω + 1
= h+ 1

This contradict the assumption that G′ \ E′ does not contain any connected
component of size more than h. This concludes the proof of the claim.
As we delete at most ω edges, a solution E′ must contain either Euv ={
(u, x) | x ∈ Vuv

}
or Evu =

{
(v, x) | x ∈ Vuv

}
for every edge (u, v) ∈ E(G);

otherwise there will be a path between u and v. We now define a directed graph
D by V (D) = V (G) and

E(D) =
{

(u, v) | Evu ⊆ E′
}⋃{

(v, u) | Euv ⊆ E′
}
.

We claim that for each vertex x in D the sum of the weights of outgoing edges
is at most r. For the sake of contradiction, suppose there is a vertex x in D for
which wx

out > r. In this case, we observe that x is adjacent to h−(r+1)+wx
out ≥

h− (r + 1) + (r + 1) = h vertices in graph G̃′ = G′ \E′. This is a contradiction
as vertex x and its h neighbours form a connected component of size at least
h+ 1, which is a forbidden graph in G̃′. ��

3 Th+1-Free Edge Deletion on Planar Graphs

Enright and Meeks [5] have discussed the importance of studying Th+1-Free
Edge Deletion on planar graphs. We show that Th+1-Free Edge Deletion
remains NP-complete even when restricted to planar graphs. To prove this, we
give a polynomial time reduction from Multiterminal Cut. The Multiter-
minal Cut problem can be defined as follows: Given a graph G = (V,E), a set
T = {t1, t2, ..., tp} of p specified vertices or terminals, and a positive weight w(e)
for each edge e ∈ E, find a minimum weight set of edges E′ ⊆ E such that the
removal of E′ from E disconnects each terminal from all the others. Dahlhaus
et al. [3] proved the following result:

Theorem 2. [3] If p is not fixed, the Multiterminal Cut problem for planar
graphs is NP-hard even if all edge weights are equal to 1.

Theorem 3. The Th+1-Free Edge Deletion problem is NP-complete even
when restricted to planar graphs.

Proof. It is easy to see that the problem is in NP. In order to obtain the NP-
hardness result for the Th+1-Free Edge Deletion problem, we obtain a poly-
nomial reduction from the Mutliterminal Cut problem on planar graphs with

The Th+1-Free Edge Deletion Problem 229

all edge weights equal to 1. Let I = (G,T = {t1, t2, ..., tp},
) be an instance of
Multiterminal Cut. The objective in Multiterminal Cut is to find a set
E′ ⊆ E of at most
 edges such that the removal of E′ from E disconnects each
terminal from all the others. We produce an equivalent instance I ′ = (G′, k, h)
of Th+1-Free Edge Deletion in the following way. Start with G = G′ and
then add the following new vertices and edges. For each t ∈ T , we introduce a
set Vt of h+1

2 +
 vertices and make them adjacent to t. We take h = 100n3. This
completes the construction of G′. We set k =
. Let us now show that I and I ′

are equivalent instances.

Assume first that there exists a set E′ ⊆ E(G) of at most
 edges such that
the removal of E′ from E disconnects each terminal from all the others. We
claim that the same set E′ ⊆ E(G′) is a solution of I ′. That is, we show that

G̃′ = G′ \ E′

does not contain any connected component of size h+ 1. For each t ∈ T , let Ct

be the component of G̃′ that contains t. Note that t is adjacent to every vertex in
Vt and some vertices in V (G). Therefore the size of Ct is at most n+ 100n3+1

2 +
.
This is true because there is no path between t and any vertex in Vt′ ∪ {t′} for
all t′ ∈ T , t
= t′. Thus, we have

|Ct| ≤ n+
100n3 + 1

2
+

≤ n+
100n3 + 1

2
+ |E(G)|

≤ n+
100n3 + 1

2
+

(
n

2

)

≤ 100n3

= h

Hence the size of each component in G̃′ is at most h.
Conversely, suppose that there exists a set E′ ⊆ E(G′) of k edges such that

G̃′ = G′ \E′ does not contain any connected component of size h+ 1. We claim
that there is no path between ti and tj in G̃′ for all 1 ≤ i, j ≤ k and i
= j.
For the sake of contradiction, assume that there is a path between terminals ti
and tj in G̃′. Note that ti and tj are each adjacent to h+1

2 +
 many pendent
vertices in G′, and we have deleted at most k =
 many edges. Therefore the
connected component containing ti and tj contains at least h+1 vertices, which
is a contradiction. This concludes the proof of the claim.

We now claim S = E′ ∩E(G) is a solution of I. That is, we claim that G \S
disconnects each terminal from all the others. Note that |S| ≤ |E′| ≤
. For the
sake of contradiction, assume that there is a path between two terminals ti and
tj in G \ S. Then there is also a path between ti and tj in G′ \ E′. Note that if
there exists a path between two terminals ti and tj in G′\E′ then clearly we get a
connected components of size h+1, a contradiction. Therefore G\S disconnects
each terminal from all the other terminals, and hence I is a yes-instance. ��

230 A. Gaikwad and S. Maity

4 W[2]-Hardness of Th+1-Free Arc Deletion
Parameterized by Solution Size

Enright and Meeks [5] explained the importance of studying Th+1-Free Arc
Deletion. A directed acyclic graph (DAG) is a directed graph with no directed
cycles. One natural problem mentioned in [5] is to consider whether there exists
an efficient algorithm to solve this problem on directed acyclic graphs. In this
section, we show that the problem is W[2]-hard parameterized by the solution
size k, even when restricted to directed acyclic graphs (DAG). We prove this
result via a reduction from Hitting Set. In the Hitting Set problem we are
given as input a family F over a universe U , together with an integer k, and the
objective is to determine whether there is a set B ⊆ U of size at most k such
that B has nonempty intersection with all sets in F . It is proved in [2] (Theorem
13.28) that Hitting Set problem is W[2]-hard parameterized by the solution
size.

Theorem 4. The Th+1-Free Arc Deletion problem is W[2]-hard parameter-
ized by the solution size k, even when restricted to directed acyclic graphs.

Proof. Let I = (U,F , k) be an instance of Hitting Set where U =
{x1, x2, . . . , xn}. We create an instance I ′ = (G′, k′, h) of Th+1-Free Arc Dele-
tion the following way. For every x ∈ U , create two vertices vx and v′

x and add
a directed edge (vx, v

′
x). For every F ∈ F , create one vertex vF . Next, we add

vx1

Vx1

vx2

Vx2

vx3

Vx3

vx4

Vx4

vF1

VF1

vF2

VF2

vF3

VF3

vx1 vx2 vx3 vx4

Fig. 2. The graph in the proof of Theorem 4 constructed from Hitting Set instance
U = {x1, x2, x3, x4}, F = {{x1, x2}, {x2, x3}, {x3, x4}} and k = 2.

The Th+1-Free Edge Deletion Problem 231

a directed edge (vF , vx) if and only if x ∈ F . For each x ∈ U , we add a set
Vx of h

n many new vertices and add a directed edge from v′
x to every vertex of

Vx. We specify the value of h at the end of the construction. For each vertex
F ∈ F , we add a set VF of (h + 1) − ∑

x∈F

|Vx| new vertices and add a directed

edge from vF to every vertex of VF . Finally, we set k′ = k and h = nc for some
large constant c. This completes the construction of G′. Next, we show that I
and I ′ are equivalent instances.

Let us assume that there exists a subset S ⊆ U such that |S| ≤ k and
S ∩F
= ∅ for all F ∈ F . We claim that every vertex in G̃′ = G′ \ ⋃

x∈S

(vx, v
′
x) can

reach at most h vertices. Let us assume that there exists a vertex in G̃′ which
can reach more than h vertices. Clearly that vertex must be vF for some F ∈ F .
Without loss of generality assume that x1 ∈ S∩F . As we have removed the edge
(vx1 , v

′
x1

) from G′, clearly vF cannot reach any vertex in Vx1 . Note that in such a
case vF cannot reach more than h vertices as h = nc for some large constant. In
particular, vF can reach at most h+1− (

∑

x∈F

|Vx|)+ (
∑

x∈F\{x1}
|Vx|) < h vertices

(Fig. 2).
In the other direction, let us assume that there exists a set E′ ⊆ E(G′) such

that |E′| ≤ k and every vertex in G̃′ = G′ \ E′ can reach at most h vertices.
First we show that, given a solution E′ we can construct another solution E′′

such that E′′ ⊆ ⋃

x∈U

(vx, v
′
x) and |E′′| ≤ |E′|. To do this, we observe that the

only vertices that can possibly reach more than h vertices are vF . Note that if
E′ contains an edge of the form (vF , u) for some u ∈ VF then we can replace it
by an arbitrary edge (vx, v

′
x) for some x ∈ F . This will allow us to disconnect

at least h
n vertices from vF rather than just 1. Similar observation can be made

for edges of type (vF , vx) for some x ∈ F by replacing it with edge (vx, v
′
x).

Therefore, we can assume that E′′ ⊆
n⋃

x∈U

(vx, v
′
x). Next, we show that if there

exists a vertex vF such that for every x ∈ F we have (vx, v
′
x)
∈ E′′ then vF can

reach h+1 vertices. Clearly, vF can reach VF , {vx | x ∈ F} and also {Vx | x ∈ F}.
Due to construction, this set is of size more than h. This implies that for every
F ∈ F , there exists an edge (vx, v

′
x) for some x ∈ F which is included in E′′. As

|E′′| ≤ k, we can define S = {x | (vx, v
′
x) ∈ E′′}. Due to earlier observations, S

is a hitting set of size at most k.

5 Conclusions and Open Problems

The main contributions in this paper are that the Th+1-Free Edge Deletion
problem is W[1]-hard when parameterized by the treewidth of the input graph.
Thus we resolved a conjecture stated by Enright and Meeks [5] concerning the
complexity of Th+1-Free Edge Deletion parameterized by the treewidth of
the input graph. We also studied the following important open questions stated
in [5]: The Th+1-Free Edge Deletion problem is NP-complete even when

232 A. Gaikwad and S. Maity

Fig. 3. Relationship between vertex cover (vc), neighbourhood diversity (nd), twin
cover (tc), modular width (mw), feedback vertex set (fvs), pathwidth (pw), treewidth
(tw) and clique width (cw). Arrow indicate generalizations, for example, treewidth
generalizes both feedback vertex set and pathwidth.

restricted to planar graphs; and the Th+1-Free Arc Deletion problem is
W[2]-hard parameterized by the solution size k, even when restricted to directed
acyclic graphs. However, it remains open whether Th+1-Free Edge Deletion
problem is FPT when parameterized by the solution size k. See Fig. 3 for a
schematic representation of the relationship between selected graph parameters
[12]. Note that A → B means that there exists a function f such that for all
graphs, f(A(G)) ≥ B(G); therefore the existence of an FPT algorithm param-
eterized by B implies the existence of an FPT algorithm parameterized by A,
and conversely, any negative result parameterized by A implies the same negative
result parameterized by B. Gaikwad and Maity [7] proved that the Th+1-Free
Edge Deletion problem is fixed-parameter tractable when parameterized by
the vertex cover number of the input graph. Here we have proved that the
Th+1-Free Edge Deletion problem is W[1]-hard when parameterized by the
treewidth of the input graph. The parameterized complexity of the Th+1-Free
Edge Deletion problem remains open when parameterized by other structural
parameters such as feedback vertex set, pathwidth, treedepth, neighbourhood
diversity, cluster vertex deletion set, modular width etc.

References

1. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

3. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(2012). https://doi.org/10.1007/978-1-4612-0515-9

5. Enright, J., Meeks, K.: Deleting edges to restrict the size of an epidemic: a new
application for treewidth. Algorithmica 80(6), 1857–1889 (2018)

6. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret.
Appl. Math. 86(2), 213–231 (1998)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9

The Th+1-Free Edge Deletion Problem 233

7. Gaikwad, A., Maity, S.: Further parameterized algorithms for the f -free edge dele-
tion problem. Theor. Comput. Sci. (2022)

8. Ghosh, E., et al.: Faster parameterized algorithms for deletion to split graphs.
Algorithmica 71(4), 989–1006 (2015)

9. Gibbens, J.C., et al.: Descriptive epidemiology of the 2001 foot-and-mouth disease
epidemic in great Britain: the first five months. Veterinary Rec. 149(24), 729–743
(2001)

10. Guo, J.: Problem kernels for NP-complete edge deletion problems: split and related
graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77120-3 79

11. Kerr, B., et al.: Networks and the epidemiology of infectious disease. Interdisc.
Perspect. Infect. Dis. 2011, 284909 (2011)

12. Knop, D., Masař́ık, T., Toufar, T.: Parameterized complexity of fair vertex evalu-
ation problems. In: MFCS (2019)

13. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41(5), 960–981 (1994)

14. Mansley, L.M., Dunlop, P.J., Whiteside, S.M., Smith, R.G.H.: Early dissemina-
tion of foot-and-mouth disease virus through sheep marketing in February 2001.
Veterinary Rec. 153(2), 43–50 (2003)

15. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discret. Appl. Math. 113(1), 109–128 (2001)

16. Robertson, N., Seymour, P.D.: Graph minors. iii. planar tree-width. J. Comb. The-
ory Ser. B 36(1), 49–64 (1984)

17. Szeider, S.: Not so easy problems for tree decomposable graphs. CoRR,
abs/1107.1177 (2011). http://arxiv.org/abs/1107.1177, arXiv:1107.1177

18. Watanabe, T., Ae, T., Nakamura, A.: On the np-hardness of edge-deletion and
-contraction problems. Discret. Appl. Math. 6(1), 63–78 (1983)

19. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pp.
253–264. Association for Computing Machinery, New York, NY, USA (1978)

https://doi.org/10.1007/978-3-540-77120-3_79
http://arxiv.org/abs/1107.1177
http://arxiv.org/abs/1107.1177

On the Parallel Complexity of Group
Isomorphism via Weisfeiler–Leman

Joshua A. Grochow1 and Michael Levet2(B)

1 University of Colorado Boulder, Boulder, CO 80309, USA
joshua.grochow@colorado.edu

2 College of Charleston, Charleston, SC 29492, USA
levetm@cofc.edu

Abstract. In this paper, we show that the constant-dimensional
Weisfeiler–Leman algorithm for groups (Brachter & Schweitzer, LICS
2020) can be fruitfully used to improve parallel complexity upper bounds
on isomorphism testing for several families of groups. In particular, we
show:

– Groups with an Abelian normal Hall subgroup whose complement
is O(1)-generated are identified by constant-dimensional Weisfeiler–
Leman using only a constant number of rounds. This places isomor-
phism testing for this family of groups into L; the previous upper
bound for isomorphism testing was P (Qiao, Sarma, & Tang, STACS
2011).

– We use the individualize-and-refine paradigm to obtain a quasiSAC1

isomorphism test for groups without Abelian normal subgroups, pre-
viously only known to be in P (Babai, Codenotti, & Qiao, ICALP
2012).

– We extend a result of Brachter & Schweitzer (ESA, 2022) on direct
products of groups to the parallel setting. Namely, we also show that
Weisfeiler–Leman can identify direct products in parallel, provided
it can identify each of the indecomposable direct factors in parallel.
They previously showed the analogous result for P.

We finally consider the count-free Weisfeiler–Leman algorithm, where we
show that count-free WL is unable to even distinguish Abelian groups
in polynomial-time. Nonetheless, we use count-free WL in tandem with
bounded non-determinism and limited counting to obtain a new upper
bound of β1MAC0(FOLL) for isomorphism testing of Abelian groups. This
improves upon the previous TC0(FOLL) upper bound due to Chattopad-
hyay, Torán, & Wagner (ACM Trans. Comput. Theory, 2013).

Keywords: Group Isomorphism · Graph Isomorphism ·
Weisfeiler–Leman · Descriptive Complexity

ML thanks Keith Kearnes for helpful discussions, which led to a better understanding
of the Hella-style pebble game. ML also wishes to thank Richard Lipton for helpful
discussions regarding previous results. We wish to thank J. Brachter and P. Schweitzer
for helpful feedback. JAG was partially supported by NSF award DMS-1750319 and
NSF CAREER award CCF-2047756 and during this work. ML was partially supported
by J. Grochow startup funds.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 234–247, 2023.
https://doi.org/10.1007/978-3-031-43587-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_17

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 235

1 Introduction

The Group Isomorphism problem (GpI) takes as input two finite groups G
and H, and asks if there exists an isomorphism ϕ : G → H. When the groups
are given by their multiplication (a.k.a. Cayley) tables, it is known that GpI
belongs to NP∩coAM. The generator-enumerator algorithm, attributed to Tarjan
in 1978 [63], has time complexity nlogp(n)+O(1), where n is the order of the
group and p is the smallest prime dividing n. In more than 40 years, this bound
has escaped largely unscathed: Rosenbaum [67] (see [57, Sec. 2.2]) improved
this to n(1/4) logp(n)+O(1). And even the impressive body of work on practical
algorithms for this problem, led by Eick, Holt, Leedham-Green and O’Brien
(e. g., [11,12,19,29]) still results in an nΘ(log n)-time algorithm in the general
case (see [77, Page 2]). In the past several years, there have been significant
advances on algorithms with worst-case guarantees on the serial runtime for
special cases of this problem including Abelian groups [49,68,74], direct product
decompositions [50,76], groups with no Abelian normal subgroups [5,6], coprime
and tame group extensions [9,34,56,66], low-genus p-groups and their quotients
[16,58], Hamiltonian groups [25], and groups of almost all orders [28].

In addition to the intrinsic interest of this natural problem, a key motiva-
tion for the Group Isomorphism problem is its close relation to the Graph
Isomorphism problem (GI). In the Cayley (verbose) model, GpI reduces to GI
[79], while GI reduces to the succinct GpI problem [41,62] (recently simplified
[40]). In light of Babai’s breakthrough result that GI is quasipolynomial-time
solvable [4], GpI in the Cayley model is a key barrier to improving the com-
plexity of GI. Both verbose GpI and GI are considered to be candidate NP-
intermediate problems, that is, problems that belong to NP, but are neither in P
nor NP-complete [55]. There is considerable evidence suggesting that GI is not
NP-complete [2,4,17,47,53,69]. As verbose GpI reduces to GI, this evidence also
suggests that GpI is not NP-complete. It is also known that GI is strictly harder
than GpI under AC0 reductions [20]. Torán showed that GI is DET-hard [72],
which provides that Parity is AC0-reducible to GI. On the other hand, Chat-
topadhyay, Torán, and Wagner showed that Parity is not AC0-reducible to GpI
[20]. To the best of our knowledge, there is no literature on lower bounds for GpI
in the Cayley table model. The absence of such lower bounds begs the question
of how much existing polynomial-time isomorphism tests can be parallelized,
even for special cases for GpI.

Despite GpI in the Cayley table model being strictly easier than GI under
AC0-reductions, there are several key approaches in the GI literature such as par-
allelization and individualization that have received comparatively little atten-
tion in the setting of GpI—see the discussion of Related Work on Page 8. In
this paper, using Weisfeiler–Leman for groups [13] as our main tool, we begin to
bring both of these techniques to bear on GpI. As a consequence, we also make
advances in the descriptive complexity theory of finite groups.

Main Results. In this paper, we show that Weisfeiler–Leman serves as a key
subroutine in developing efficient parallel isomorphism tests.

236 J. A. Grochow and M. Levet

Brachter & Schweitzer [13] actually introduced three different versions of
WL for groups. While they are equivalent in terms of pebble complexity up
to constant factors, their round complexity may differ by up to an additive
O(log n) (details to appear in the full version), and their parallel complexities
differ. Because of these differences we are careful to specify which version of WL
for groups each result uses.

As we are interested in both the Weisfeiler–Leman dimension and the number
of rounds, we introduce the following notation.

Definition 1. Let k ≥ 2 and r ≥ 1 be integers, and let J ∈ {I, II, III}. The
(k, r)-WL Version J algorithm for groups is obtained by running k-WL Version
J for r rounds. Here, the initial coloring counts as the first round.

We first examine coprime extensions of the form H �N where N is Abelian.
When either H is elementary Abelian or H is O(1)-generated, Qiao, Sarma, &
Tang [66] gave a polynomial-time isomorphism test for these families of groups,
using some nontrivial representation theory. Here, as a proof of concept that WL
can successfully use and parallelize some representation theory (which was not
yet considered in [13,14]), we use WL to improve their result’s parallel complexity
in the case that H is O(1)-generated. We remark below about the difficulties in
extending WL to handle the case that H is Abelian (without restricting the
number of generators).

Theorem 1. Groups of the form H � N , where N is Abelian, H is O(1)-
generated, and |H| and |N | are coprime are identified by (O(1), O(1))-WL Ver-
sion II. Consequently, isomorphism between a group of the above form and arbi-
trary groups can be decided in L.

Remark 1. Despite Qiao, Sarma, and Tang giving a polynomial-time algorithm
for case whereH andN are coprime,N is arbitrary Abelian, andH is elementary
Abelian (no restriction on number of generators for H or N), we remark here
on some of the difficulties we encountered in getting WL to extend beyond the
case of H being O(1)-generated. When H is O(1)-generated, we may start by
pebbling the generators of H. After this, by Taunt’s Lemma [71], all that is
left is to identify the multiset of H-modules appearing in N . In contrast, when
H is not O(1)-generated, this strategy fails quite badly: if only a small subset
of H’s generators are pebbled, then it leaves open automorphisms of H that
could translate one H-module structure to another. But the latter translation-
under-automorphism problem is equivalent to the entire problem in this family
of groups (see, e.g., [66, Theorem 1.2]).

This same difficulty is encountered even when using the more powerful second
Ehrenfeucht–Fraïssé pebble game in Hella’s [42,43] hierarchy, in which Spoiler
may pebble two elements per turn instead of just one. This second game in
Hella’s hierarchy is already quite powerful: it identifies semisimple groups using
only O(1) pebbles and O(1) rounds [33]. It seems plausible to us that with only
O(1) pebbles, neither ordinary WL nor this second game in Hella’s hierarchy
identifies coprime extensions where both H,N are Abelian with no restriction
on the number of generators.

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 237

We next parallelize a result of Brachter & Schweitzer [14], who showed that
Weisfeiler–Leman can identify direct products in polynomial-time provided it can
also identify the indecomposable direct factors in polynomial-time. Specifically,
we show:

Theorem 2. For all G = G1 × · · · × Gd with the Gi directly indecomposable,
and all k ≥ 5, if (k,O(logc n))-WL Version II identifies each Gi for some c ≥ 1,
then (k + 1, O(logc n))-WL identifies G.

More specifically, we show that for k ≥ 5 and r(n) ∈ Ω(logn), if a direct
product G is not distinguished from some group H by (k, r)-WL Version II,
then H is a direct product, and there is some direct factor of H that is not
distinguished from some direct factor of G by (k − 1, r)-WL.

Prior to Theorem2, the best-known upper bound on computing direct prod-
uct decompositions was P [50,76]. While Weisfeiler–Leman does not return
explicit direct factors, it can implicitly compute a direct product decomposi-
tion in O(log n) rounds, which is sufficient for parallel isomorphism testing. In
light of the parallel WL implementation due to Grohe & Verbitsky, our result
effectively provides that WL can decompose direct products in TC1.

We next consider groups without Abelian normal subgroups. Using the indi-
vidualize and refine paradigm, we obtain a new upper bound of quasiSAC1 for
not only deciding isomorphisms, but also listing isomorphisms. While this does
not improve upon the upper bound of P for isomorphism testing [6], this does
parallelize the previous bound of nΘ(log log n) runtime for listing isomorphisms [5].

Theorem 3. Let G be a group without Abelian normal subgroups, and let H be
arbitrary. We can test isomorphism between G and H using an SAC circuit of
depth O(log n) and size nΘ(log log n). Furthermore, all such isomorphisms can be
listed in this bound.

Remark 2. The key idea in proving Theorem 3 is to prescribe an isomorphism
between Soc(G) and Soc(H) (as in [5]), and then use Weisfeiler–Leman to test
in L whether the given isomorphism of Soc(G) ∼= Soc(H) extends to an isomor-
phism of G ∼= H. The procedure from [5] for choosing all possible isomorphisms
between socles is easily seen to parallelize; our key improvement is in the paral-
lel complexity of testing whether such an isomorphism of socles extends to the
whole groups.

Previously, this latter step was shown to be polynomial-time computable [5,
Proposition 3.1] via membership checking in the setting of permutation groups.
Now, although membership checking in permutation groups is in NC [3], the
proof there uses several different group-theoretic techniques, and relies on the
Classification of Finite Simple Groups (see the end of the introduction of [3] for a
discussion). Furthermore, there is no explicit upper bound on which level of the
NC hierarchy these problems are in, just that it is O(1). Thus, it does not appear
that membership testing in the setting of permutation groups is known to be even
AC1-computable. So already, our quasiSAC1 bound is new (the quasi-polynomial
size comes only from parallelizing the first step). Furthermore, Weisfeiler–Leman

238 J. A. Grochow and M. Levet

provides a much simpler algorithm; indeed, although we also rely on the fact that
all finite simple groups are 2-generated (a result only known via CFSG), this is
the only consequence of CFSG that we use, and it is only used in the proof of
correctness, not in the algorithm itself. We note, however, that although WL
improves the parallel complexity of these particular instances of membership
testing, it requires access to the multiplication table for the underlying group,
so this technique cannot be leveraged for more general membership testing in
permutation groups.

In the case of serial complexity, if the number of simple direct factors of
Soc(G) is just slightly less than maximal, even listing isomorphism can be done
in FP [5]. Under the same restriction, we get an improvement in the parallel
complexity to FL:

Corollary 1 (Cf. [5, Corollary 4.4]). Let G be a group without Abelian normal
subgroups, and let H be arbitrary. Suppose that the number of non-Abelian simple
direct factors of Soc(G) is O(log n/ log log n). Then we can decide isomorphism
between G and H, as well as list all such isomorphisms, in FL.

It remains open as to whether isomorphism testing of groups without Abelian
normal subgroups is even in NC.

Given the lack of lower bounds on GpI, and Grohe & Verbitsky’s parallel
WL algorithm, it is natural to wonder whether our parallel bounds could be
improved. One natural approach to this is via the count-free WL algorithm,
which compares the set rather than the multiset of colors at each iteration. We
show unconditionally that this algorithm fails to serve as a polynomial-time
isomorphism test for even Abelian groups.

Theorem 4. There exists an infinite family (Gn,Hn)n≥1 where Gn
∼= Hn

are Abelian groups of the same order and count-free WL requires dimension
≥ Ω(log |Gn|) to distinguish Gn from Hn.

Remark 3. Even prior to [18], it was well-known that the count-free variant of
Weisfeiler–Leman failed to place GI into P [46]. In fact, count-free WL fails
to distinguish almost all graphs [31,44], while two iterations of the standard
counting 1-WL almost surely assign a unique label to each vertex [7,8]. In light
of the equivalence between count-free WL and the logic FO (first-order logic
without counting quantifiers), this rules out FO as a viable logic to capture P on
unordered graphs. Finding such a logic is a central open problem in Descriptive
Complexity Theory. On ordered structures such a logic was given by Immerman
[45] and Vardi [73].

Theorem 4 establishes the analogous result, ruling out FO as a candidate logic
to capture P on unordered groups. This suggests that some counting may indeed
be necessary to place GpI into P. As DET is the best known lower bound for GI
[72], counting is indeed necessary for GI. There are no such lower bound known
for GpI. Furthermore, the work of [20] shows that GpI is not hard (under AC0-
reductions) for any complexity class that can compute Parity, such as DET.

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 239

Determining which families of groups can(not) be identified by count-free WL
remains an intriguing open question.

While count-free WL is not sufficiently powerful to compare the multiset of
colors, it turns out that O(log log n)-rounds of count-free O(1)-WL Version III
will distinguish two elements of different orders. Thus, the multiset of colors com-
puted by the count-free (O(1), O(log logn))-WL Version III for non-isomorphic
Abelian groupsG andH will be different. We may use O(log n) non-deterministic
bits to guess the color class where G and H have different multiplicities, and then
an MAC0 circuit to compare said color class. This yields the following.

Theorem 5. Abelian Group Isomorphism is in β1MAC0(FOLL).

Remark 4. We note that this and Theorem 3 illustrate uses of WL for groups
as a subroutine in isomorphism testing, which is how it is so frequently used
in the case of graphs. To the best of our knowledge, the only previous uses of
WL as a subroutine for GpI were in [15,59]. In particular, Theorem5 motivated
follow-up work by Collins & Levet [22,23], who leveraged count-free WL Version
I in a similar manner to obtain novel parallel complexity bounds for isomorphism
testing of several families of groups. Most notably, they improved the complexity
of isomorphism testing for the CFI groups from TC1 [13] to β1MAC0(FOLL). The
CFI groups are highly non-trivial, arising via Mekler’s construction [40,62] from
the CFI graphs [18].

Remark 5. The previous best upper bounds for isomorphism testing of Abelian
groups are linear time [49,68,74] and L∩TC0(FOLL) [20]. As β1MAC0(FOLL) ⊆
TC0(FOLL), Theorem 5 improves the upper bound for isomorphism testing of
Abelian groups.

Methods. We find the comparison of methods at least as interesting as the com-
parison of complexity. Here discuss at a high level the methods we use for our
main theorems above, and compare them to the methods of their predecessor
results.

For Theorem1, its predecessor in Qiao–Sarma–Tang [66] leveraged a result
of Le Gall [56] on testing conjugacy of elements in the automorphism group of
an Abelian group. (By further delving into the representation theory of Abelian
groups, they were also able to solve the case where H and N are coprime and
both are Abelian without any restriction on number of generators; we leave that
as an open question in the setting of WL.) Here, we use the pebbling game.
Our approach is to first pebble generators for the complement H, which fixes
an isomorphism between H and its image. For groups that decompose as a
coprime extension of H and N , the isomorphism type is completely determined
by the multiplicities of the indecomposable H-module direct summands ([71]).
So far, this is the same group-theoretic structure leveraged by Qiao, Sarma, and
Tang [66]. However, we then use the representation-theoretic fact that, since |N |
and |H| are coprime, each indecomposable H-module is generated by a single
element (details to appear in the full version); this is crucial in our setting, as it

240 J. A. Grochow and M. Levet

allows Spoiler to pebble that one element in the WL pebbling game. Then, as the
isomorphism ofH is fixed, we show that any subsequent bijection that Duplicator
selects must restrict to H-module isomorphisms on each indecomposable H-
submodule of N that is a direct summand.

For Theorem3, solving isomorphism of semisimple groups took a series of
two papers [5,6]. Our result is really only a parallel improvement on the first
of these (we leave the second as an open question). In Babai et al. [5], they
used Code Equivalence techniques to identify semisimple groups where the
minimal normal subgroups have a bounded number of non-Abelian simple direct
factors, and to identify general semisimple groups in time nO(log log n). In con-
trast, WL—along with individualize-and-refine in the second case—provides a
single, combinatorial algorithm that is able to detect the same group-theoretic
structures leveraged in previous works to solve isomorphism in these families.

In parallelizing Brachter & Schweitzer’s direct product result in Theorem 2,
we use two techniques. The first is simply carefully analyzing the number of
rounds used in many of the proofs. In several cases, a careful analysis of the
rounds used was not sufficient to get a strong parallel result. In those cases, we
use the notion of rank, which may be of independent interest and have further
uses.

Given a subset C of group elements, the C-rank of g ∈ G is the minimal
word-length over C required to generate g. If C is easily identified by Weisfeiler–
Leman, then WL can identify 〈C〉 in O(log n) rounds. This is made precise (and
slightly stronger) with our Rank Lemma:

Lemma 1 (Rank lemma). If C ⊆ G is distinguished by (k, r)-WL, then any
bijection f chosen by Duplicator must respect C-rank, in the sense that rkC(g) =
rkf(C)(f(g)) for all g ∈ G, or Spoiler can win with k+1 pebbles and max{r, log d+
O(1)} rounds, where d = diam(Cay(〈C〉, C)) ≤ |〈C〉| ≤ |G|.

One application of our Rank Lemma is that WL identifies verbal
subgroups where the words are easily identified. Given a set of words
w1(x1, . . . , xn), . . . , wm(x), the corresponding verbal subgroup is the subgroup
generated by {wi(g1, . . . , gn) : i = 1, . . . ,m, gj ∈ G}. One example that we use
in our results is the commutator subgroup. If Duplicator chooses a bijection
f : G → H such that f([x, y]) is not a commutator in H, then Spoiler pebbles
[x, y] �→ f([x, y]) and wins in two additional rounds. Thus, by our Rank Lemma,
if Spoiler does not map the commutator subgroup [G,G] to the commutator
subgroup [H,H], then Duplicator wins with 1 additional pebble and O(log n)
additional rounds.

Brachter & Schweitzer [14] obtained a similar result about verbal subgroups
using different techniques. Namely, they showed that if WL assigns a distinct
coloring to certain subsets S1, . . . , St, then WL assigns a unique coloring to
the set of group elements satisfying systems of equations over S1, . . . , St. They
analyzed the WL colorings directly. As a result, it is not clear how to compose
their result with the pebble game. For instance, while their result implies that
if Duplicator does not map f([G,G]) = [H,H] then Spoiler wins, it is not clear

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 241

how Spoiler wins nor how quickly Spoiler can win. Our result addresses these
latter two points more directly. Recall that the number of rounds is the crucial
parameter affecting both the parallel complexity and quantifier depth.

Related Work. There has been considerable work on efficient parallel (NC)
isomorphism tests for graphs [1,26,27,30,37,39,48,54,60,75]. In contrast with
the work on serial runtime complexity, the literature on the space and par-
allel complexity for GpI is quite minimal. Around the same time as Tarjan’s
nlogp(n)+O(1)-time algorithm for GpI [63], Lipton, Snyder, and Zalcstein showed
that GpI ∈ SPACE(log2(n)) [61]. This bound has been improved to β2AC1 (AC1

circuits that receive O(log2(n)) non-deterministic bits as input) [78], and subse-
quently to β2L ∩ β2FOLL ∩ β2SC2 [20,70]. In the case of Abelian groups, Chat-
topadhyay, Torán, and Wagner showed that GpI ∈ L ∩ TC0(FOLL) [20]. Tang
showed that isomorphism testing for groups with a bounded number of genera-
tors can also be done in L [70].

Combinatorial techniques, such as individualization with Weisfeiler–Leman
refinement, have also been incredibly successful in GI, yielding efficient isomor-
phism tests for several families [10,21,36–39,52]. Weisfeiler–Leman is also a key
subroutine in Babai’s quasipolynomial-time isomorphism test [4]. Despite the
successes of such combinatorial techniques, they are known to be insufficient
to place GI into P [18,64]. In contrast, the use of combinatorial techinques for
GpI is relatively new [13–15,59], and it is a central open problem as to whether
such techniques are sufficient to improve even the long-standing upper-bound of
nΘ(log n) runtime.

Examining the distinguishing power of the counting logic Ck serves as a mea-
sure of descriptive complexity for groups. In the setting of graphs, the descriptive
complexity has been extensively studied, with [35] serving as a key reference in
this area. There has been recent work relating first order logics and groups [65],
as well as work examining the descriptive complexity of finite abelian groups [32].
However, the work on the descriptive complexity of groups is scant compared to
the algorithmic literature on GpI.

2 Conclusion

We combined the parallel WL implementation of Grohe & Verbitsky [39] with
the WL for groups algorithms due to Brachter & Schweitzer [13] to obtain an
efficient parallel canonization procedure for several families of groups, including:
(i) coprime extensions H �N where N is Abelian and H is O(1)-generated, and
(ii) direct products, where WL can efficiently identify the indecomposable direct
factors.

We also showed that the individualize-and-refine paradigm allows us to list
all isomorphisms of semisimple groups with an SAC circuit of depth O(log n) and
size nO(log log n). Prior to our paper, no parallel bound was known. And in light
of the fact that multiplying permutations is FL-complete [24], it is not clear that
the techniques of Babai, Luks, & Seress [3] can yield circuit depth o(log2 n).

242 J. A. Grochow and M. Levet

Finally, we showed that Ω(log(n))-dimensional count-free WL is required
to identify Abelian groups. It follows that count-free WL fails to serve as a
polynomial-time isomorphism test even for Abelian groups. Nonetheless, count-
free WL distinguishes group elements of different orders. We leveraged this fact
to obtain a new β1MAC0(FOLL) upper bound on isomorphism testing of Abelian
groups.

Our work leaves several directions for further research that we believe are
approachable and interesting.

Question 1. Show that coprime extensions of the form H � N with both H,N
Abelian have constant WL-dimension (the WL analogue of [66]). More generally,
a WL analogue of Babai–Qiao [9] would be to show that when |H|, |N | are
coprime and N is Abelian, the WL dimension of H �N is no more than that of
H (or the maximum of that of H and a constant independent of N,H).

Question 2. Is the WL dimension of semisimple groups bounded?

It would be of interest to address this question even in the non-permuting case
when G = PKer(G). Alternatively, establish an upper bound of O(log log n) for
the WL dimension of semisimple groups. These questions would form the basis
of a WL analogue of [5], without needing individualize-and-refine.

For the classes of groups we have studied, when we have been able to give
an O(1) bound on their WL-dimension, we also get an O(log n) bound on the
number of rounds needed. The dimension bound alone puts the problem into
P, while the bound on rounds puts it into TC1. A priori, these two should be
distinct. For example, in the case of graphs, Kiefer & McKay [51] have shown
that there are graphs for which color refinement takes n− 1 rounds to stabilize.

Question 3. Is there a family of groups identified by O(1)-WL but requiring
ω(log n) rounds?

We also wish to highlight a question that essentially goes back to [20], who
showed that GpI cannot be hard under AC0 reductions for any class contain-
ing Parity. In Theorem 4, we showed that count-free WL requires dimension
≥ Ω(log(n)) to even identify Abelian groups. This shows that this particular,
natural method does not put GpI into FO(poly log logn), though it does not
actually prove GpI /∈ FO(poly log logn), since we cannot rule out clever bit
manipulations of the Cayley (multiplication) tables. While we think the latter
lower bound would be of significant interest, we think even the following question
is interesting:

Question 4 (cf. [20]). Show that GpI does not belong to (uniform) AC0.

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 243

References

1. Arvind, V., Das, B., Köbler, J., Kuhnert, S.: The isomorphism problem for k-trees
is complete for logspace. Inf. Comput. 217, 1–11 (2012). https://doi.org/10.1016/
j.ic.2012.04.002

2. Arvind, V., Kurur, P.P.: Graph isomorphism is in SPP. Inf. Comput. 204(5), 835–
852 (2006). https://doi.org/10.1016/j.ic.2006.02.002

3. Babai, L., Luks, E., Seress, A.: Permutation groups in NC. In: STOC 1987. STOC
’87, pp. 409–420. Association for Computing Machinery, New York, NY, USA
(1987). https://doi.org/10.1145/28395.28439

4. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
STOC’16–Proceedings of the 48th Annual ACM SIGACT Symposium on The-
ory of Computing, pp. 684–697. ACM, New York (2016). https://doi.org/10.1145/
2897518.2897542, preprint of full version at arXiv:1512.03547v2 [cs.DS]

5. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group
isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA11), pp. 1395–1408. SIAM, Philadelphia, PA
(2011). https://doi.org/10.1137/1.9781611973082.107

6. Babai, L., Codenotti, P., Qiao, Y.: Polynomial-time isomorphism test for groups
with no abelian normal subgroups - (extended abstract). In: International Collo-
quium on Automata, Languages, and Programming (ICALP), pp. 51–62 (2012).
https://doi.org/10.1007/978-3-642-31594-7_5

7. Babai, L., Erdös, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980). https://doi.org/10.1137/0209047

8. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In: 20th
Annual Symposium on Foundations of Computer Science (SFCS 1979), pp. 39–46
(1979). https://doi.org/10.1109/SFCS.1979.8

9. Babai, L., Qiao, Y.: Polynomial-time isomorphism test for groups with Abelian
Sylow towers. In: 29th STACS, pp. 453–464. LNCS, vol. 6651. Springer (2012).
https://doi.org/10.4230/LIPIcs.STACS.2012.453

10. Babai, L., Wilmes, J.: Quasipolynomial-time canonical form for Steiner designs.
In: STOC 2013, pp. 261–270. Association for Computing Machinery, New York,
NY, USA (2013). https://doi.org/10.1145/2488608.2488642

11. Besche, H.U., Eick, B.: Construction of finite groups. J. Symb. Comput. 27(4),
387–404 (1999). https://doi.org/10.1006/jsco.1998.0258

12. Besche, H.U., Eick, B., O’Brien, E.: A millennium project: constructing small
groups. Int. J. Algebra Comput. 12, 623–644 (2002). https://doi.org/10.1142/
S0218196702001115

13. Brachter, J., Schweitzer, P.: On the Weisfeiler-Leman dimension of finite groups. In:
Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.) LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, 8–
11 July 2020, pp. 287–300. ACM (2020). https://doi.org/10.1145/3373718.3394786

14. Brachter, J., Schweitzer, P.: A systematic study of isomorphism invariants of
finite groups via the Weisfeiler-Leman dimension (2022). https://doi.org/10.4230/
LIPIcs.ESA.2022.27

15. Brooksbank, P.A., Grochow, J.A., Li, Y., Qiao, Y., Wilson, J.B.: Incorporating
Weisfeiler-Leman into algorithms for group isomorphism. arXiv:1905.02518 [cs.CC]
(2019)

16. Brooksbank, P.A., Maglione, J., Wilson, J.B.: A fast isomorphism test for groups
whose Lie algebra has genus 2. J. Algebra 473, 545–590 (2017). https://doi.org/
10.1016/j.jalgebra.2016.12.007

https://doi.org/10.1016/j.ic.2012.04.002
https://doi.org/10.1016/j.ic.2012.04.002
https://doi.org/10.1016/j.ic.2006.02.002
https://doi.org/10.1145/28395.28439
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
http://arxiv.org/abs/1512.03547v2
https://doi.org/10.1137/1.9781611973082.107
https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.1137/0209047
https://doi.org/10.1109/SFCS.1979.8
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1145/2488608.2488642
https://doi.org/10.1006/jsco.1998.0258
https://doi.org/10.1142/S0218196702001115
https://doi.org/10.1142/S0218196702001115
https://doi.org/10.1145/3373718.3394786
https://doi.org/10.4230/LIPIcs.ESA.2022.27
https://doi.org/10.4230/LIPIcs.ESA.2022.27
http://arxiv.org/abs/1905.02518
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1016/j.jalgebra.2016.12.007

244 J. A. Grochow and M. Levet

17. Buhrman, H., Homer, S.: Superpolynomial circuits, almost sparse oracles and the
exponential hierarchy. In: Shyamasundar, R. (ed.) FSTTCS 1992. LNCS, vol. 652,
pp. 116–127. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56287-
7_99

18. Cai, J.Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4), 389–410 (1992). https://
doi.org/10.1007/BF01305232, originally appeared in SFCS ’89

19. Cannon, J.J., Holt, D.F.: Automorphism group computation and isomorphism test-
ing in finite groups. J. Symb. Comput. 35, 241–267 (2003). https://doi.org/10.
1016/S0747-7171(02)00133-5

20. Chattopadhyay, A., Torán, J., Wagner, F.: Graph isomorphism is not AC0-
reducible to group isomorphism. ACM Trans. Comput. Theory 5(4), 13 (2013).
https://doi.org/10.1145/2540088, preliminary version appeared in FSTTCS ’10;
ECCC Technical report TR10-117

21. Chen, X., Sun, X., Teng, S.H.: Multi-stage design for quasipolynomial-time iso-
morphism testing of Steiner 2-systems. In: Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing. STOC ’13, pp. 271–280. Association
for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/
2488608.2488643

22. Collins, N.A.: Weisfeiler-Leman and group isomorphism (2023). Undergraduate
Thesis; In-Preparation. University of Coloardo Boulder

23. Collins, N.A., Levet, M.: Count-free Weisfeiler-Leman and group isomorphism
(2022). https://doi.org/10.48550/ARXIV.2212.11247

24. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. J.
Algorithms 8(3), 385–394 (1987). https://doi.org/10.1016/0196-6774(87)90018-6

25. Das, B., Sharma, S.: Nearly linear time isomorphism algorithms for some non-
abelian group classes. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS,
vol. 11532, pp. 80–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19955-5_8

26. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: 2009 24th Annual IEEE Conference on Computa-
tional Complexity, pp. 203–214 (2009). https://doi.org/10.1109/CCC.2009.16

27. Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Graph isomorphism for K3,3-
free and K5-free graphs is in Log-space. In: Kannan, R., Kumar, K.N. (eds.) IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science. Leibniz International Proceedings in Informatics (LIPIcs), vol. 4, pp.
145–156. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2009). https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2314

28. Dietrich, H., Wilson, J.B.: Group isomorphism is nearly-linear time for most orders.
In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 457–467 (2022). https://doi.org/10.1109/FOCS52979.2021.00053

29. Eick, B., Leedham-Green, C.R., O’Brien, E.A.: Constructing automorphism groups
of p-groups. Comm. Algebra 30(5), 2271–2295 (2002). https://doi.org/10.1081/
AGB-120003468

30. Elberfeld, M., Schweitzer, P.: Canonizing graphs of bounded tree width in logspace.
ACM Trans. Comput. Theory 9(3) (2017). https://doi.org/10.1145/3132720

31. Fagin, R.: Probabilities on finite models. J. Symb. Logic 41(1), 50–58 (1976).
https://doi.org/10.2307/2272945

32. Gomaa, W.: Descriptive complexity of finite abelian groups. IJAC 20, 1087–1116
(2010). https://doi.org/10.1142/S0218196710006047

https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1007/3-540-56287-7_99
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1016/S0747-7171(02)00133-5
https://doi.org/10.1145/2540088
https://doi.org/10.1145/2488608.2488643
https://doi.org/10.1145/2488608.2488643
https://doi.org/10.48550/ARXIV.2212.11247
https://doi.org/10.1016/0196-6774(87)90018-6
https://doi.org/10.1007/978-3-030-19955-5_8
https://doi.org/10.1007/978-3-030-19955-5_8
https://doi.org/10.1109/CCC.2009.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2314
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.1145/3132720
https://doi.org/10.2307/2272945
https://doi.org/10.1142/S0218196710006047

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 245

33. Grochow, J.A., Levet, M.: On the descriptive complexity of groups without Abelian
normal subgroups (2022). https://doi.org/10.48550/ARXIV.2209.13725

34. Grochow, J.A., Qiao, Y.: Polynomial-time isomorphism test of groups that are
tame extensions - (extended abstract). In: Algorithms and Computation - 26th
International Symposium, ISAAC 2015, Nagoya, Japan, 9–11 December 2015, Pro-
ceedings, pp. 578–589 (2015). https://doi.org/10.1007/978-3-662-48971-0_49

35. Grohe, M.: Descriptive Complexity, Canonisation, and Definable Graph Struc-
ture Theory, Lecture Notes in Logic, vol. 47. Association for Symbolic Logic,
Ithaca, NY; Cambridge University Press, Cambridge (2017). https://doi.org/10.
1017/9781139028868

36. Grohe, M., Kiefer, S.: A linear upper bound on the Weisfeiler-Leman dimension of
graphs of bounded genus. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi,
S. (eds.) 46th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 132, pp. 117:1–117:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.117

37. Grohe, M., Kiefer, S.: Logarithmic Weisfeiler-Leman Identifies All Planar Graphs.
In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 198, pp. 134:1–134:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.
4230/LIPIcs.ICALP.2021.134

38. Grohe, M., Neuen, D.: Isomorphism, canonization, and definability for graphs of
bounded rank width. Commun. ACM 64(5), 98–105 (2021). https://doi.org/10.
1145/3453943

39. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a
game. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006.
LNCS, vol. 4051, pp. 3–14. Springer, Heidelberg (2006). https://doi.org/10.1007/
11786986_2

40. He, X., Qiao, Y.: On the Baer-Lovász-Tutte construction of groups from graphs:
isomorphism types and homomorphism notions. Eur. J. Combin. 98, 103404 (2021).
https://doi.org/10.1016/j.ejc.2021.103404

41. Heineken, H., Liebeck, H.: The occurrence of finite groups in the automorphism
group of nilpotent groups of class 2. Arch. Math. (Basel) 25, 8–16 (1974). https://
doi.org/10.1007/BF01238631

42. Hella, L.: Definability hierarchies of generalized quantifiers. Ann. Pure Appl. Logic
43(3), 235–271 (1989). https://doi.org/10.1016/0168-0072(89)90070-5

43. Hella, L.: Logical hierarchies in PTIME. Inf. Comput. 129(1), 1–19 (1996). https://
doi.org/10.1006/inco.1996.0070

44. Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput.
Syst. Sci. 25(1), 76–98 (1982). https://doi.org/10.1016/0022-0000(82)90011-3

45. Immerman, N.: Relational queries computable in polynomial time. Inf. Control
68(1–3), 86–104 (1986). https://doi.org/10.1016/S0019-9958(86)80029-8

46. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph
canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81.
Springer, New York (1990). https://doi.org/10.1007/978-1-4612-4478-3_5

47. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

https://doi.org/10.48550/ARXIV.2209.13725
https://doi.org/10.1007/978-3-662-48971-0_49
https://doi.org/10.1017/9781139028868
https://doi.org/10.1017/9781139028868
https://doi.org/10.4230/LIPIcs.ICALP.2019.117
https://doi.org/10.4230/LIPIcs.ICALP.2021.134
https://doi.org/10.4230/LIPIcs.ICALP.2021.134
https://doi.org/10.1145/3453943
https://doi.org/10.1145/3453943
https://doi.org/10.1007/11786986_2
https://doi.org/10.1007/11786986_2
https://doi.org/10.1016/j.ejc.2021.103404
https://doi.org/10.1007/BF01238631
https://doi.org/10.1007/BF01238631
https://doi.org/10.1016/0168-0072(89)90070-5
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1016/0022-0000(82)90011-3
https://doi.org/10.1016/S0019-9958(86)80029-8
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774

246 J. A. Grochow and M. Levet

48. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph iso-
morphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003). https://doi.org/10.1016/
S0022-0000(03)00042-4

49. Kavitha, T.: Linear time algorithms for abelian group isomorphism and related
problems. J. Comput. Syst. Sci. 73(6), 986–996 (2007). https://doi.org/10.1016/j.
jcss.2007.03.013

50. Kayal, N., Nezhmetdinov, T.: Factoring groups efficiently. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009.
LNCS, vol. 5555, pp. 585–596. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02927-1_49

51. Kiefer, S., McKay, B.D.: The iteration number of colour refinement. In: Czumaj,
A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2020, 8–11 July 2020, Saarbrücken, Germany
(Virtual Conference). LIPIcs, vol. 168, pp. 73:1–73:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.73

52. Kiefer, S., Ponomarenko, I., Schweitzer, P.: The Weisfeiler-Leman dimension of
planar graphs is at most 3. J. ACM 66(6) (2019). https://doi.org/10.1145/3333003

53. Köbler, J., Schöning, U., Torán, J.: Graph isomorphism is low for pp. Comput.
Complex. 2, 301–330 (1992). https://doi.org/10.1007/BF01200427

54. Köbler, J., Verbitsky, O.: From invariants to canonization in parallel. In: Hirsch,
E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol.
5010, pp. 216–227. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79709-8_23

55. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1),
155–171 (1975). https://doi.org/10.1145/321864.321877

56. Le Gall, F.: Efficient isomorphism testing for a class of group extensions. In:
Proceedings of 26th STACS, pp. 625–636 (2009). https://doi.org/10.4230/LIPIcs.
STACS.2009.1830

57. Le Gall, F., Rosenbaum, D.J.: On the group and color isomorphism problems.
arXiv:1609.08253 [cs.CC]

58. Lewis, M.L., Wilson, J.B.: Isomorphism in expanding families of indistinguishable
groups. Groups - Complexity - Cryptology 4(1), 73–110 (2012). https://doi.org/
10.1515/gcc-2012-0008

59. Li, Y., Qiao, Y.: Linear algebraic analogues of the graph isomorphism problem and
the Erdös-Rényi model. In: 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 463–474 (2017). https://doi.org/10.1109/FOCS.
2017.49

60. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In:
Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Com-
puting. STOC ’92, pp. 400–404. Association for Computing Machinery, New York,
NY, USA (1992). https://doi.org/10.1145/129712.129750

61. Lipton, R.J., Snyder, L., Zalcstein, Y.: The complexity of word and isomorphism
problems for finite groups. Yale University, Department of Computer Science
Research Report # 91 (1977). https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.
pdf

62. Mekler, A.H.: Stability of nilpotent groups of class 2 and prime exponent. J. Symb.
Logic 46(4), 781–788 (1981). https://doi.org/10.2307/2273227

63. Miller, G.L.: On the nlog n isomorphism technique (a preliminary report). In: Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing. STOC
’78, pp. 51–58. Association for Computing Machinery, New York, NY, USA (1978).
https://doi.org/10.1145/800133.804331

https://doi.org/10.1016/S0022-0000(03)00042-4
https://doi.org/10.1016/S0022-0000(03)00042-4
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.1007/978-3-642-02927-1_49
https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://doi.org/10.1145/3333003
https://doi.org/10.1007/BF01200427
https://doi.org/10.1007/978-3-540-79709-8_23
https://doi.org/10.1007/978-3-540-79709-8_23
https://doi.org/10.1145/321864.321877
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
http://arxiv.org/abs/1609.08253
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1109/FOCS.2017.49
https://doi.org/10.1109/FOCS.2017.49
https://doi.org/10.1145/129712.129750
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://doi.org/10.2307/2273227
https://doi.org/10.1145/800133.804331

On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman 247

64. Neuen, D., Schweitzer, P.: An exponential lower bound for individualization-
refinement algorithms for graph isomorphism. In: Diakonikolas, I., Kempe, D.,
Henzinger, M. (eds.) Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, Los Angeles, CA, USA, 25–29 June 2018,
pp. 138–150. ACM (2018). https://doi.org/10.1145/3188745.3188900

65. Nies, A., Tent, K.: Describing finite groups by short first-order sentences. Israel J.
Math. 221(1), 85–115 (2017). https://doi.org/10.1007/s11856-017-1563-2

66. Qiao, Y., Sarma, J.M.N., Tang, B.: On isomorphism testing of groups with normal
Hall subgroups. In: Proceedings of 28th STACS, pp. 567–578 (2011). https://doi.
org/10.4230/LIPIcs.STACS.2011.567

67. Rosenbaum, D.J.: Bidirectional collision detection and faster deterministic isomor-
phism testing. arXiv:1304.3935 [cs.DS] (2013)

68. Savage, C.: An O(n2) algorithm for abelian group isomorphism. Technical report.
North Carolina State University (1980)

69. Schöning, U.: Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci.
37(3), 312–323 (1988). https://doi.org/10.1016/0022-0000(88)90010-4

70. Tang, B.: Towards Understanding Satisfiability, Group Isomorphism and Their
Connections. Ph.D. thesis, Tsinghua University (2013). http://papakonstantinou.
org/periklis/pdfs/bangsheng_thesis.pdf

71. Taunt, D.R.: Remarks on the isomorphism problem in theories of construction of
finite groups. Math. Proc. Cambridge Philos. Soc. 51(1), 16–24 (1955). https://
doi.org/10.1017/S030500410002987X

72. Torán, J.: On the hardness of graph isomorphism. SIAM J. Comput. 33(5), 1093–
1108 (2004). https://doi.org/10.1137/S009753970241096X

73. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, 5–7 May 1982, San
Francisco, California, USA, pp. 137–146. ACM (1982). https://doi.org/10.1145/
800070.802186

74. Vikas, N.: An O(n) algorithm for abelian p-group isomorphism and an O(n log n)
algorithm for abelian group isomorphism. J. Comput. Syst. Sci. 53(1), 1–9 (1996).
https://doi.org/10.1006/jcss.1996.0045

75. Wagner, F.: Graphs of bounded treewidth can be canonized in AC1. In: Kulikov,
A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 209–222. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20712-9_16

76. Wilson, J.B.: Existence, algorithms, and asymptotics of direct product decomposi-
tions, I. Groups Complex. Cryptol. 4(1) (2012). https://doi.org/10.1515/gcc-2012-
0007

77. Wilson, J.B.: The threshold for subgroup profiles to agree is logarithmic. Theory
Comput. 15(19), 1–25 (2019). https://doi.org/10.4086/toc.2019.v015a019

78. Wolf, M.J.: Nondeterministic circuits, space complexity and quasigroups.
Theor. Comput. Sci. 125(2), 295–313 (1994). https://doi.org/10.1016/0304-
3975(92)00014-I

79. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism
problem. J. Soviet Math. 29(4), 1426–1481 (1985). https://doi.org/10.1007/
BF02104746

https://doi.org/10.1145/3188745.3188900
https://doi.org/10.1007/s11856-017-1563-2
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.4230/LIPIcs.STACS.2011.567
http://arxiv.org/abs/1304.3935
https://doi.org/10.1016/0022-0000(88)90010-4
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
http://papakonstantinou.org/periklis/pdfs/bangsheng_thesis.pdf
https://doi.org/10.1017/S030500410002987X
https://doi.org/10.1017/S030500410002987X
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
https://doi.org/10.1006/jcss.1996.0045
https://doi.org/10.1007/978-3-642-20712-9_16
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.4086/toc.2019.v015a019
https://doi.org/10.1016/0304-3975(92)00014-I
https://doi.org/10.1016/0304-3975(92)00014-I
https://doi.org/10.1007/BF02104746
https://doi.org/10.1007/BF02104746

The Complexity of (Pk, P�)-Arrowing

Zohair Raza Hassan(B), Edith Hemaspaandra, and Stanis�law Radziszowski

Rochester Institute of Technology, Rochester, NY 14623, USA
zh5337@rit.edu, {eh,spr}@cs.rit.edu

Abstract. For fixed nonnegative integers k and �, the (Pk, P�)-Arrowing
problem asks whether a given graph, G, has a red/blue coloring of E(G)
such that there are no red copies of Pk and no blue copies of P�. The
problem is trivial when max(k, �) ≤ 3, but has been shown to be coNP-
complete when k = � = 4. In this work, we show that the problem
remains coNP-complete for all pairs of k and �, except (3, 4), and when
max(k, �) ≤ 3.

Our result is only the second hardness result for (F, H)-Arrowing for
an infinite family of graphs and the first for 1-connected graphs. Previous
hardness results for (F, H)-Arrowing depended on constructing graphs
that avoided the creation of too many copies of F and H, allowing easier
analysis of the reduction. This is clearly unavoidable with paths and thus
requires a more careful approach. We define and prove the existence of
special graphs that we refer to as “transmitters.” Using transmitters,
we construct gadgets for three distinct cases: 1) k = 3 and � ≥ 5,
2) � > k ≥ 4, and 3) � = k ≥ 4. For (P3, P4)-Arrowing we show a
polynomial-time algorithm by reducing the problem to 2SAT, thus suc-
cessfully categorizing the complexity of all (Pk, P�)-Arrowing problems.

Keywords: Graph arrowing · Ramsey theory · Complexity

1 Introduction and Related Work

Often regarded as the study of how order emerges from randomness, Ramsey
theory has played an important role in mathematics and computer science; it
has applications in several diverse fields, including, but not limited to, game
theory, information theory, and approximation algorithms [17]. A key operator
within the field is the arrowing operator: given graphs F,G, and H, we say
that G → (F,H) (read, G arrows F,H) if every red/blue coloring of G’s edges
contains a red F or a blue H. In this work, we categorize the computational
complexity of evaluating this operator when F and H are fixed path graphs.
The problem is defined formally as follows.

Problem 1 ((F,H)-Arrowing). Let F and H be fixed graphs. Given a graph G,
does G→ (F,H)?

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 248–261, 2023.
https://doi.org/10.1007/978-3-031-43587-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_18

The Complexity of (Pk, P�)-Arrowing 249

The problem is clearly in coNP; a red/blue coloring of G’s edges with no red
F ’s and no blue H’s forms a certificate that can be verified in polynomial time
since F and H are fixed graphs. We refer to such a coloring as an (F,H)-good
coloring. The computational complexity of (F,H)-Arrowing has been categorized
for a number of pairs (F,H), with a significant amount of work done in the 80 s
and 90 s. Most relevant to our work is a result by Rutenburg, who showed that
(P4, P4)-Arrowing is coNP-complete [18], where Pn is the path graph on n ver-
tices. Burr showed that (F,H)-Arrowing is in P when F and H are star graphs
or when F is a matching [5]. Using “senders”—graphs with restricted (F,H)-
good colorings introduced a few years earlier by Burr et al. [6,7], Burr showed
that (F,H)-Arrowing is coNP-complete when F and H are members of Γ3, the
family of all 3-connected graphs and K3. The generalized (F,H)-Arrowing prob-
lem, where F and H are also part of the input, was shown to be Πp

2 -complete by
Schaefer [19].1 Aside from categorizing complexity, the primary research avenue
concerned with the arrowing operator is focused on finding minimal—with dif-
ferent possible definitions of minimal—graphs for which arrowing holds. The
smallest orders of such graphs are referred to as Ramsey numbers. Folkman
numbers are defined similarly for graphs with some extra structural constraints.
We refer the interested reader to surveys by Radziszowski [16] and Bikov [4] for
more information on Ramsey numbers and Folkman numbers, respectively.

Our work provides the first complexity result for (F,H)-Arrowing for an
infinite family of graphs since Burr’s Γ3 result from 1990. It is important to
note that Burr’s construction relies on that fact that contracting less than three
vertices between pairs of 3-connected graphs does not create new copies of said
graph. Let F be 3-connected and u, v ∈ V (F). Construct G by taking two
copies of F and contracting u across both copies, then contracting v across
both copies. Observe that no new copies of F are constructed in this process;
if a new F is created then it must be disconnected by the removal of the two
contracted vertices, contradicting F ’s 3-connectivity. This process does not work
for paths since contracting two path graphs will always make several new paths
across the vertices of both paths. Thus, we require a more careful approach when
constructing the gadgets necessary for our reductions. We focus on the problem
defined below and prove a dichotomy theorem categorizing the problem to be in
P or be coNP-complete. We note that such theorems for other graph problems
exist in the literature, e.g., [1,8,11,14].

Problem 2 ((Pk, P�)-Arrowing). Let k and
 be fixed integers such that 2 ≤ k ≤
.
Given a graph G, does G→ (Pk, P�)?

Theorem 1. (Pk, P�)-Arrowing is coNP-complete for all k and
 unless k = 2,
(k,
) = (3, 3), or (k,
) = (3, 4). For these exceptions, the problem is in P.

Before this, the only known coNP-complete case for paths was when k =
 =
4 [18]. Despite being intuitively likely, generalizing the hardness result to larger

1 Πp
2 = coNPNP, the class of all problems whose complements are solvable by a non-

deterministic polynomial-time Turing machine having access to an NP oracle [15].

250 Z. R. Hassan et al.

paths proved to be an arduous task. Our proof relies on proving the existence
of graphs with special colorings—we rely heavily on work by Hook [12], who
categorized the (Pk, P�)-good colorings of the largest complete graphs which do
not arrow (Pk, P�). After showing the existence of these graphs, the reduction
is straightforward. The polynomial-time cases are straightforward (Theorem 2)
apart from the case where (k,
) = (3, 4), wherein we reduce the problem to
2SAT (Theorem 3).

The rest of this paper is organized as follows. We present the necessary
preliminaries in Sect. 2. The proof for Theorem 1 is split into Sects. 3 (the
polynomial-time cases) and 4 (the coNP-complete cases). We conclude in Sect. 5.

2 Preliminaries

All graphs discussed in this work are simple and undirected. V (G) and E(G)
denote the vertex and edge set of a graph G, respectively. We denote an edge
in E(G) between u, v ∈ V (G) as (u, v). For two disjoint subsets A,B ⊂ V (G),
E(A,B) refers to the edges with one vertex in A and one vertex in B. The
neighborhood of a vertex v ∈ V (G) is denoted as N(v) and its degree as d(v) :=
|N(v)|. The path, cycle, and complete graphs on n vertices are denoted as Pn,
Cn, and Kn, respectively. The complete graph on n vertices missing an edge is
denoted as Kn − e. Vertex contraction is the process of replacing two vertices u
and v with a new vertex w such that w is adjacent to all remaining neighbors
N(u) ∪N(v).

An (F,H)-good coloring of a graph G is a red/blue coloring of E(G) where
the red subgraph is F -free, and the blue subgraph is H-free. We say that G
is (F,H)-good if it has at least one (F,H)-good coloring. When the context is
clear, we will omit (F,H) and refer to the coloring as a good coloring.

Formally, a coloring for G is defined as function c : E(G) → {red,blue} that
maps edges to the colors red and blue. For an edge (u, v) and coloring c, we
denote its color as c(u, v).

3 Polynomial-Time Cases

In this section, we prove the P cases from Theorem 1. Particularly, we describe
polynomial-time algorithms for (P2, P�)-Arrowing and (P3, P3)-Arrowing (Theo-
rem 2) and provide a polynomial-time reduction from (P3, P4)-Arrowing to 2SAT
(Theorem 3).

Theorem 2. (Pk, P�)-Arrowing is in P when k = 2 and when k =
 = 3.

Proof. Let G be the input graph. Without loss of generality, assume that G is
connected (for disconnected graphs, we run the algorithm on each connected
component).
Case 1 (k = 2). Coloring any edge in G red will form a red P2. Thereby, the
entire graph must be colored blue. Thus, a blue P� is avoided if and only if G is
P�-free, which can be checked by brute force, since
 is constant.

The Complexity of (Pk, P�)-Arrowing 251

Case 2 (k =
 = 3). Note that in any (P3, P3)-good coloring of G, edges of the
same color cannot be adjacent; otherwise, a red or blue P3 is formed. Thus, we
can check if G is (P3, P3)-good similarly to how we check if a graph is 2-colorable:
arbitrarily color an edge red and color all of its adjacent edges blue. For each
blue edge, color its neighbors red and for each red edge, color its neighbors blue.
Repeat this process until all edges are colored or a red or blue P3 is formed. This
algorithm is clearly polynomial-time. ��

The proof that (P3, P4)-Arrowing is in P consists of two parts. A preprocess-
ing step to simplify the graph (using Lemmas 1 and 2), followed by a reduction
to 2SAT, which was proven to be in P by Krom in 1967 [13].

Problem 3 (2SAT). Let φ be a CNF formula where each clause has at most two
literals. Does there exist a satisfying assignment of φ?

Lemma 1. Suppose G is a graph and v ∈ V (G) is a vertex such that d(v) = 1
and v’s only neighbor has degree at most two. Then, G is (P3, P4)-good if and
only if G− v is (P3, P4)-good.

Proof. Let u be the neighbor of v. If d(u) = 1, the connected component of v is
a K2 and the statement is trivially true. If d(u) = 2, let w be the other neighbor
of u, i.e., the neighbor that is not v. Clearly, if G is (P3, P4)-good, then G− v is
(P3, P4)-good. We now prove the other direction. Suppose we have good coloring
of G − v. It is immediate that we can extend this to a good coloring of G by
coloring (v, u) (the only edge adjacent to v) red if (u,w) is colored blue, and
blue if (u,w) is colored red. ��
Lemma 2. Suppose G is a graph and there is a P4 in G with edges
(v1, v2), (v2, v3), and (v3, v4) such that d(v1) = d(v2) = d(v3) = d(v4) = 2.
Then, G is (P3, P4)-good if and only if G− v2 is (P3, P4)-good.

Proof. If (v1, v4) is an edge, then the connected component of v2 is a C4 and
the statement is trivially true. If not, let v0, v5
∈ {v1, v2, v3, v4} be such that
(v0, v1) and (v4, v5) are edges. Note that it is possible that v0 = v5. Clearly, if G
is (P3, P4)-good then G − v2 is (P3, P4)-good. For the other direction, suppose
c is a (P3, P4)-good coloring of G − v2. We now construct a coloring c′ of G.
We color all edges other than (v1, v2), (v2, v3), and (v3, v4) the same as c. The
colors of the remaining three edges are determined by the coloring of (v0, v1)
and (v4, v5) as follows.

– If c(v0, v1) = c(v4, v5) = red, then c′(v1, v2), c′(v2, v3), c′(v3, v4) = blue, red,
blue.

– If c(v0, v1) = c(v4, v5) = blue, then c′(v1, v2), c′(v2, v3), c′(v3, v4) = red, blue,
red.

– If c(v0, v1) = red and c(v4, v5) = blue, then c′(v1, v2), c′(v2, v3), c′(v3, v4) =
blue, blue, red.

– If c(v0, v1) = blue and c(v4, v5) = red, then c′(v1, v2), c′(v2, v3), c′(v3, v4) =
red, blue, blue.

252 Z. R. Hassan et al.

Since the cases above are mutually exhaustive, this completes the proof. ��
Theorem 3. (P3, P4)-Arrowing is in P.

Proof. Let G be the input graph. Let G′ be the graph obtained by repeatedly
removing vertices v described in Lemma 1 and vertices v2 described in Lemma 2
until no more such vertices exist. As implied by said lemmas, G′ → (P3, P4) if
and only if G → (P3, P4). Thus, it suffices to construct a 2SAT formula φ such
that φ is satisfiable if and only if G′ is (P3, P4)-good.

Let re be a variable corresponding to the edge e ∈ E(G′), denoting that e is
colored red. We construct a formula φ, where a solution to φ corresponds to a
coloring of G′. For each P3 in G′, with edges (v1, v2) and (v2, v3), add the clause(
r(v1,v2) ∨ r(v2,v3)

)
. Note that this expresses “no red P3’s.” For each P4 in G′,

with edges (v1, v2), (v2, v3), and (v3, v4):

1. If (v2, v4) ∈ E(G′), add the clause
(
r(v1,v2) ∨ r(v3,v4)

)
.

2. If (v2, v4)
∈ E(G′) and d(v2) > 2, then add the clause
(
r(v2,v3) ∨ r(v3,v4)

)
.

It is easy to see that the conditions specified above must be satisfied by
each good coloring of G′, and thus G′ being (P3, P4)-good implies that φ is
satisfiable. We now prove the other direction by contradiction. Suppose φ is
satisfied, but the corresponding coloring c is not (P3, P4)-good. It is immediate
that red P3’s cannot occur in c, so we assume that there exists a blue P4, with
edges e = (v1, v2), f = (v2, v3), and g = (v3, v4) such that re = rf = rg =
false in the satisfying assignment of φ. Without loss of generality, assume that
d(v2) ≥ d(v3).

– If d(v2) > 2, φ would contain clause re ∨ rg or rf ∨ rg. It follows that d(v2) =
d(v3) = 2.

– If d(v1) = 1, v1 would have been deleted by applying Lemma 1. It follows that
d(v1) > 1. Similarly, d(v4) > 1.

– If d(v1) > 2, then there exists a vertex v0 such that (v0, v1), (v1, v2), (v2, v3) are
a P4 in G′, d(v1) > 2 and (v1, v3)
∈ E(G′) (since d(v3) = 2). This implies that
φ contains clause re ∨ rf , which is a contradiction. It follows that d(v1) = 2.
Similarly, d(v4) = 2.

– So, we are in the situation that d(v1) = d(v2) = d(v3) = d(v4) = 2. But then
v2 would have been deleted by Lemma 2.

Since the cases above are mutually exhaustive, this completes the proof. ��

4 coNP-Complete Cases

In this section, we discuss the coNP-complete cases in Theorem 1. In Sect. 4.1, we
describe how NP-complete SAT variants can be reduced to (Pk, P�)-Nonarrowing
(the complement of (Pk, P�)-Arrowing: does there exist a (Pk, P�)-good coloring
of G?). The NP-complete SAT variants are defined below.

The Complexity of (Pk, P�)-Arrowing 253

Fig. 1. The variable gadget for (Pk, P�)-Nonarrowing when 4 ≤ k < � is shown on the
left. The output vertices are filled in. Red jagged lines and blue spring lines represent
(k, �, x)-red- and (k, �, x)-blue-transmitters, respectively, where the value of x is shown
on the top, and the vertex the lines are connected to are the strict endpoints of the
monochromatic paths. Observe that when (a, b) is red, other edges adjacent to b must
be blue to avoid a red Pk. This, in turn, causes neighbors p and q to have incoming
blue P�−1’s, and vertices marked U are now strict endpoints of red Pk−1’s. Moreover,
edges adjacent to d (except (b, d)) must be red to avoid blue P�’s. Thus, r and s are
strict endpoints of red Pk−1’s, causing the vertices marked N to be strict endpoints of
blue P3’s. A similar pattern is observed when (a, b) is blue. Note that for k ≤ 4, the
(k, �, k−3)-red-transmitter can be ignored. On the right, the two kinds of (Pk, P�)-good
colorings of the gadget are shown. (Color figure online)

Problem 4 ((2, 2)-3SAT [3]). Let φ be a CNF formula where each clause contains
exactly three distinct variables, and each variable appears only four times: twice
unnegated and twice negated. Does there exist a satisfying assignment of φ?

Problem 5 (Positive NAE E3SAT-4 [2]). Let φ be a CNF formula where each
clause is an NAE-clause (a clause that is satisfied when its literals are not all
true or all false) containing exactly three (not necessarily distinct) variables,
and each variable appears at most four times, only unnegated. Does there exist
a satisfying assignment for φ?

Our proofs depend on the existence of graphs we refer to as “transmitters,”
defined below. These graphs enforce behavior on special vertices which are strict
endpoints of red or blue paths. For a graph G and coloring c, we say that v is
a strict endpoint of a red (resp., blue) Pk in c if k is the length of the longest
red (resp., blue) path that v is the endpoint of. We prove the existence of these
graphs in Sect. 4.2.

254 Z. R. Hassan et al.

Fig. 2. The clause gadget for (Pk, P�)-Nonarrowing when 4 ≤ k < � is shown on top.
The input vertices are filled in. Below it, we show the eight possible combinations of
inputs that can be given to the gadget. Observe that a (Pk, P�)-good coloring is always
possible unless the input is three red Pk−1’s (top left). As in Fig. 1, jagged and spring
lines represent transmitters. We use this representation of transmitters to depict the
two forms of input to the gadget. For � ≤ 5, the (k, �, � − 4)-blue-transmitter can be
ignored. (Color figure online)

Definition 1. Let 3 ≤ k <
. For an integer x ∈ {2, 3, . . . , k − 1} (resp., x ∈
{2, 3, . . . ,
− 1}) a (k,
, x)-red-transmitter (resp., (k,
, x)-blue-transmitter) is a
(Pk, P�)-good graph G with a vertex v ∈ V (G) such that in every (Pk, P�)-good
coloring of G, v is the strict endpoint of a red (resp., blue) Px, and is not adjacent
to any blue (resp., red) edge.

Definition 2. Let k ≥ 3 and x ∈ {2, 3, . . . , k − 1}. A (k, x)-transmitter is a
(Pk, Pk)-good graph G with a vertex v ∈ V (G) such that in every (Pk, Pk)-good
coloring of G, v is either (1) the strict endpoint of a red Px and not adjacent to
any blue edge, or (2) the strict endpoint of a blue Px and not adjacent to any
red edge.

4.1 Reductions

We present three theorems that describe gadgets to reduce NP-complete variants
of SAT to (Pk, P�)-Nonarrowing.

Theorem 4. (Pk, P�)-Arrowing is coNP-complete for all 4 ≤ k <
.

Proof. We reduce (2, 2)-3SAT to (Pk, P�)-Nonarrowing. Let φ be the input to
(2, 2)-3SAT. We construct Gφ such that Gφ is (Pk, P�)-good if and only if φ is
satisfiable. Let V G and CG be the variable and clause gadgets shown in Figs. 1
and 2. V G has four output vertices that emulate the role of sending a truth
signal from a variable to a clause. We first look at Fig. 1. The vertices labeled
U (resp., N) correspond to unnegated (resp., negated) signals. Being the strict
endpoint of a blue P3 corresponds to a true signal while being the strict endpoint
of a red Pk−1 corresponds to a false signal. We now look at Fig. 2. When three
red Pk−1 signals are sent to the clause gadget, it forces the entire graph to be
blue, forming a blue P�. When at least one blue P3 is present, a good coloring
of CG is possible.

The Complexity of (Pk, P�)-Arrowing 255

Fig. 3. The variable gadget for (P3, P�)-Nonarrowing where � ≥ 6 (top) and its two
good colorings (bottom). The variable gadget is a combination of two H’s, whose
properties we discuss in the proof of Theorem 5. Note that when (a, b) is red in H,
then (a′, b′) is blue in H’s copy, and vice versa; if both copies have the same coloring of
(a, b), then a red P3 is formed at y, or a blue P� is formed from the path from x to x′

and the (3, �, �−6)-blue-transmitter that x′ is connected to. When � = 5, the edge (a, d)
is added in H, in lieu of the � − 5 vertices connected to (3, �, 2)-red-transmitters. Note
that for � ≤ 8, the (3, �, � − 6)-blue-transmitter can be ignored. (Color figure online)

We construct Gφ like so. For each variable (resp., clause) in φ, we add a
copy of V G (resp., CG) to Gφ. If a variable appears unnegated (resp., negated)
in a clause, a U-vertex (resp., N-vertex) from the corresponding V G is con-
tracted with a previously uncontracted input vertex of the CG corresponding to
said clause. The correspondence between satisfying assignments of φ and good
colorings of Gφ is easy to see. ��

Theorem 5. (P3, P�)-Arrowing is coNP-complete for all
 ≥ 5.

Proof. We proceed as in the proof of Theorem 4. The variable gadget is shown
in Fig. 3. Blue (resp., red) P2’s incident to vertices marked U and N correspond
to true (resp., false) signals. The clause gadget is the same as Theorem 4’s, but
the good colorings are different since the inputs are red/blue P2’s instead. These
colorings are illustrated in the full version of this paper [10].

Suppose
 ≥ 6. Let H be the graph circled with a dotted line in Fig. 3. We
first discuss the properties of H. Note that any edge adjacent to a red P2 must
be colored blue to avoid a red P3. Let v1, v2, . . . , v�−5 be the vertices connected
to (3,
, 2)-red-transmitters such that v1 is adjacent to a. Observe that (a, b) and
(c, d) must always be the same color; if, without loss of generality, (a, b) is red
and (c, d) is blue, a blue P� is formed via the sequence a, v1, . . . , v�−5, d, c, b, x.
In the coloring where (a, b) and (c, d) are blue, the vertices a, v1, . . . , v�−5, d, c, b
form a blue C�−1, and all edges going out from the cycle must be colored red to

256 Z. R. Hassan et al.

Fig. 4. The clause gadget for (Pk, Pk)-Nonarrowing. The format is similar to Fig. 2.
(Color figure online)

Fig. 5. The variable gadget for (Pk, Pk)-Nonarrowing. Observe that the transmitters
connected to v must have different colors; otherwise, a red or blue Pk−1+k−2−1 is
formed, which is forbidden when k ≥ 4. When the (k, k − 1)-transmitter is red, v’s
other neighboring edges must be blue. Thus, vertices a, b, c, and d are strict endpoints
of blue Pk−1’s, causing the output vertices (filled) to be strict endpoints of red Pk−1’s.
A similar situation occurs when the (k, k − 1)-transmitter is blue. Both (Pk, Pk)-good
colorings are shown on the right. (Color figure online)

avoid blue P�’s. This forces the vertices marked U to be strict endpoints of blue
P2’s. If (a, b) and (c, d) are red, w, a, v1, . . . , v�−5, d, z forms a blue P�−1, forcing
the vertices marked U to be strict endpoints of red P2’s. Moreover, (x, b) and
(y, c) must also be blue.

With these properties of H in mind, the functionality of the variable gadget
described in Fig. 3’s caption is easy to follow. The
 = 5 case uses a slightly
different H, also described in the caption. ��
Theorem 6. (Pk, Pk)-Arrowing is coNP-complete for all k ≥ 4.

Proof. For k = 4, Rutenburg showed that the problem is coNP-complete by
providing gadgets that reduce from an NAE SAT variant [18]. For k ≥ 5, we take
a similar approach and reduce Positive NAE E3SAT-4 to (Pk, Pk)-Nonarrowing
using the clause and variable gadgets described in Figs. 4 and 5. The variable
gadget has four output vertices, all of which are unnegated. Without loss of

The Complexity of (Pk, P�)-Arrowing 257

Fig. 6. Illustrations of (Pk, P�)-good colorings of KR(Pk,P�)−1. (Color figure online)

generality, we assume that blue Pk−1’s correspond to true signals. The graph Gφ

is constructed as in the proofs of Theorems 4 and 5. Our variable gadget is still
valid when k = 4, but the clause gadget does not admit a (P4, P4)-good coloring
for all the required inputs. In the full version of this paper, we show a different
clause gadget that can be used to show the hardness of (P4, P4)-Arrowing using
our reduction. ��

4.2 Existence of Transmitters

Our proofs for the existence of transmitters are corollaries of the following.

Lemma 3. For integers k,
, where 3 ≤ k <
, (k,
, k−1)-red-transmitters exist.

Lemma 4. For all k ≥ 3, (k, k − 1)-transmitters exist.

Below, we will prove Lemma 3 for the case where k is even. The odd case and
the proof for Lemma 4 are discussed in the full version of this paper [10]. We
construct these transmitters by carefully combining copies of complete graphs.
The Ramsey number R(Pk, P�) is defined as the smallest number n such that
Kn → (Pk, P�). We know that R(Pk, P�) =
+ (k/2)− 1, where 2 ≤ k ≤
 [9]. In
2015, Hook characterized the (Pk, P�)-good colorings of all “critical” complete
graphs: KR(Pk,P�)−1. We summarize Hook’s results below.2

Theorem 7 (Hook [12]). Let 4 ≤ k <
 and r = R(Pk, P�) − 1. The possible
(Pk, P�)-good colorings of Kr can be categorized into three types. In each case,
V (G) is partitioned into sets A and B. The types are defined as follows:

– Type 1. Let |A| = (k/2)− 1 and |B| =
− 1. Each edge in E(B) must be blue,
and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

– Type 2. Let |A| = (k/2) − 1 and |B| =
 − 1, and let b ∈ E(B). Each edge
in E(B) \ {b} must be blue, and each edge in E(A,B) ∪ {b} must be red. Any
coloring of E(A) is allowed.

2 We note that Hook’s ordering convention differs from ours, i.e., they look at (P�, Pk)-
good colorings. Moreover, they use m and n in lieu of k and �.

258 Z. R. Hassan et al.

Fig. 7. An (H, u, m)-thread as described in Definition 3.

– Type 3. Let |A| = (
/2)− 1 and |B| = k− 1. Each edge in E(B) must be blue,
and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

Moreover, the types of colorings allowed vary according to the parity of k. If k
is even, then Kr can only have Type 1 colorings. If k is odd and
 > k+ 1, then
Kr can only have Type 1 and 2 colorings. If k is odd and
 = k+1, then Kr can
have all types of colorings.

For the case where k =
, Kr can have Type 1 and 2 colorings as described
in the theorem above. Due to symmetry, the colors in these can be swapped and
are referred to as Type 1a, 1b, 2a, and 2b colorings. The colorings described
have been illustrated in Fig. 6. We note the following useful observation.

Observation 1 Suppose
 > k ≥ 4 and r = R(Pk, P�) − 1.

– In Type 1 (Pk, P�)-good colorings of Kr: (1) each vertex in B is a strict end-
point of a blue P�−1, (2) when k is even (resp., odd), each vertex in B is a
strict endpoint of a red Pk−1 (resp., Pk−2), and (3) when k is even (resp.,
odd), each vertex in A is a strict endpoint of a red Pk−2 (resp., Pk−3).

– In Type 2 (Pk, P�)-good colorings of Kr: (1) each vertex in B is a strict end-
point of a blue P�−1, (2) each vertex in B is a strict endpoint of a red Pk−1,
and (3) each vertex in A is a strict endpoint of a red Pk−2.

– In Type 3 (Pk, P�)-good colorings of Kr: (1) each vertex in B is a strict end-
point of a red Pk−1, (2) each vertex in B is a strict endpoint of a blue P�−1,
and (3) each vertex in A is a strict endpoint of a blue P�−2.

We justify these claims in the full version of this paper [10], wherein we also
formally define the colorings Kr when k =
 and justify a similar observation.
Finally, we define a special graph that we will use throughout our proofs.

Definition 3 ((H,u,m)-thread). Let H be a graph, u ∈ V (H), and m ≥ 1 be
an integer. An (H,u,m)-thread G, is a graph on m|V (H)|+1 vertices constructed
as follows. Add m copies of H to G. Let Ui ⊂ V (G) be the vertex set of the ith

copy of H, and ui be the vertex u in H’s ith copy. Connect each ui to ui+1 for
each i ∈ {1, 2, . . . ,m − 1}. Finally, add a vertex v to G and connect it to um.
We refer to v as the thread-end of G. This graph is illustrated in Fig. 7.

Using Theorem 7, Observation 1, and Definition 3 we are ready to prove the
existence of (k,
, k−1)-red-transmitters and (k, k−1)-transmitters via construc-
tion. Transmitters for various cases are shown in Figs. 8 and 9.

The Complexity of (Pk, P�)-Arrowing 259

Fig. 8. (k, �, k − 1)-red-transmitters for even k with � > k, odd k with � > k + 1, and
odd k with � = k+1 are shown on the top-left, bottom-left, and top-right, respectively.
The latter construction does not work for the case where k = 5, so an alternative
construction for a (5, 6, 4)-red-transmitter is shown on the bottom-right. The graphs
(H and F) described in each case are circled so that the proofs are easier to follow. A
good coloring is shown for each transmitter. (Color figure online)

Proof of Lemma 3 when k is even. Let k ≥ 4 be an even integer and r =
R(Pk, P�)− 1. In this case, by Theorem 7, only Type 1 colorings are allowed for
Kr. The term A1-vertex (resp., B1-vertex) is used to refer to vertices belonging
to set A (resp., B) in a Kr with a Type 1 coloring, as defined in Theorem 7. We
first make an observation about the graph H, constructed by adding an edge
(u, v) between two disjoint Kr’s. Note that u must be an A1-vertex, otherwise
the edge (u, v) would form a red Pk−1 or blue P�−1 when colored red or blue,
respectively (Observation 1). Similarly, v must also be an A1-vertex. Note that
(u, v) must be blue; otherwise, by Observation 1, a red Pk−2+k−2 is formed,
which cannot exist in a good coloring when k ≥ 4.

We define the (k,
, k − 1)-red-transmitter, G, as the (Kr, u,
 − 1)-thread
graph, where u is an arbitrary vertex in V (Kr). The thread-end v of G is a
strict endpoint of a red Pk−1. Let Ui and ui be the sets and vertices of G as
described in Definition 3. From our observation about H, we know that each
edge (ui, ui+1) must be blue. Thus, u�−1 must be the strict endpoint of a blue
P�−1, implying that (u�−1, v) must be red. Since u�−1 is also a strict endpoint
of a red Pk−2 (Observation 1), v must be the strict endpoint of a red Pk−1.

For completeness, we must also show that G is (Pk, P�)-good. Let Ai and Bi

be the sets A and B as defined in Theorem 7 for each Ui. Note that the only
edges whose coloring we have not discussed are the edges in each E(Ai). It is
easy to see that if each edge in each E(Ai) is colored red, the resulting coloring
is (Pk, P�)-good. This is because introducing a red edge in E(Ai) cannot form
a longer red path than is already present in the graph, i.e., any path going

260 Z. R. Hassan et al.

Fig. 9. (k, k −1)-transmitters for even k (left) and odd k (right). (Color figure online)

through an edge (p, q) ∈ E(Ai) can be increased in length by selecting a vertex
from r ∈ E(Bi) using the edges (p, r) and (r, q) instead. This is always possible
since |E(Bi)| is sufficiently larger than |E(Ai)|. ��

Finally, we show how constructing (red-)transmitters where x = k − 1 is
sufficient to show the existence of all defined transmitters.

Corollary 1. For valid k,
, and x, (k,
, x)-blue-transmitters and (k,
, x)-red-
transmitters exist.

Proof. Let H be a (k,
, k − 1)-red-transmitter where u ∈ V (H) is the strict
endpoint of a red Pk−1 in all of H’s good colorings. For valid x, the (H,u, x−1)-
thread graph G is a (k,
, x)-blue-transmitter, where the thread-end v is the strict
endpoint of a blue Px in all good colorings of G; to avoid constructing red Pk’s
each edge along the path of ui’s is forced to be blue by the red Pk−1 from H,
where ui is the vertex u in the ith copy of H as defined in Definition 3.

To construct a (k,
, x)-red-transmitter, we use a similar construction. Let H
be a (k,
,
 − 1)-blue-transmitter where u ∈ V (H) is the strict endpoint of a
blue P�−1 in all good colorings of H. For valid x, the (H,u, x)-thread graph G
is a (k,
, x− 1)-red-transmitter, where the thread-end v is the strict endpoint of
a red Px in all good colorings of G. ��
Corollary 2. For valid k and x, (k, x)-transmitters exist.

Proof. Let H be a (k, k−1)-transmitter where u ∈ V (H) is the strict endpoint of
a red/blue Pk−1 in all of H’s good colorings. For valid x, the (k, u, x− 1)-thread
graph G is a (k, x)-transmitter, where the thread-end v is the strict endpoint of
a red or blue Px in all good colorings of G. Let ui be the vertex as defined in
Definition 3. Each ui is the strict endpoint of Pk−1 of the same color; otherwise,
the edge between two u’s cannot be colored without forming a red or blue Pk.
Thus, each such edge must be colored red (resp., blue) by the blue (resp., red)
Pk−1 coming from H. ��

5 Conclusion and Future Work

A major and difficult goal is to classify the complexity for (F,H)-Arrowing for all
fixed F and H. We conjecture that in this much more general case a dichotomy
theorem still holds, with these problems being either in P or coNP-complete. This
seems exceptionally difficult to prove. To our knowledge, all known dichotomy

The Complexity of (Pk, P�)-Arrowing 261

theorems for graphs classify the problem according to one fixed graph, and the
polynomial-time characterizations are much simpler than in our case. We see
this paper as an important first step in accomplishing this goal.

Acknowledgments. This work was supported in part by grant NSF-DUE-1819546.
We would like to thank the anonymous reviewers for their valuable comments.

References

1. Achlioptas, D.: The complexity of G-free colorability. Discrete Math. 165–166,
21–30 (1997)

2. Antunes Filho, I.T.F.: Characterizing Boolean Satisfiability Variants. Ph.D. thesis,
Massachusetts Institute of Technology (2019)

3. Berman, P., Karpinski, M., Scott, A.: Approximation Hardness of Short Symmetric
Instances of MAX-3SAT. ECCC (2003)

4. Bikov, A.: Computation and Bounding of Folkman Numbers. Ph.D. thesis, Sofia
University ”St. Kliment Ohridski” (2018)

5. Burr, S.A.: On the computational complexity of Ramsey-type problems. Math.
Ramsey Theory, Algorithms Comb. 5, 46–52 (1990)

6. Burr, S.A., Erdős, P., Lovász, L.: On graphs of Ramsey type. Ars Combin. 1(1),
167–190 (1976)

7. Burr, S.A., Nešetřil, J., Rödl, V.: On the use of senders in generalized Ramsey
theory for graphs. Discrete Math. 54(1), 1–13 (1985)

8. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10, 111–121 (1980)

9. Gerencsér, L., Gyárfás, A.: On Ramsey-type problems. Ann. Univ. Sci. Budapest.
Eötvös Sect. Math 10, 167–170 (1967)

10. Hassan, Z., Hemaspaandra, E., Radziszowski, S.: The complexity of (Pk, P�)-
arrowing. CoRR abs/2307.10510 (2023). https://arxiv.org/abs/2307.10510

11. Hell, P., Nes̆etr̆il, J.: On the complexity of H-coloring. J. Comb. Theory, Ser. B
48, 92–110 (1990)

12. Hook, J.: Critical graphs for R(Pn, Pm) and the star-critical Ramsey number for
paths. Discuss. Math. Graph Theory 35(4), 689–701 (2015)

13. Krom, M.R.: The decision problem for a class of first-order formulas in which all
disjunctions are binary. Math. Logic Q. 13(1–2), 15–20 (1967)

14. Le, H.O., Le, V.B.: Complexity of the cluster vertex deletion problem on H-free
graphs. In: MFCS 2022, vol. 241, pp. 68:1–68:10 (2022)

15. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: IEEE SWAT, pp. 125–129 (1972)

16. Radziszowski, S.: Small Ramsey Numbers. Electron. J. Comb. DS1, 1–116 (2021).
https://www.combinatorics.org/

17. Rosta, V.: Ramsey theory applications. Electron. J. Comb. DS13, 1–43 (2004).
https://www.combinatorics.org/

18. Rutenburg, V.: Complexity of generalized graph coloring. In: Gruska, J., Rovan,
B., Wiedermann, J. (eds.) MFCS 1986. LNCS, vol. 233, pp. 573–581. Springer,
Heidelberg (1986). https://doi.org/10.1007/BFb0016284

19. Schaefer, M.: Graph Ramsey theory and the polynomial hierarchy. J. Comput.
Syst. Sci. 62, 290–322 (2001)

https://arxiv.org/abs/2307.10510
https://www.combinatorics.org/
https://www.combinatorics.org/
https://doi.org/10.1007/BFb0016284

On Computing a Center Persistence Diagram

Yuya Higashikawa1, Naoki Katoh1, Guohui Lin2 , Eiji Miyano3 , Suguru Tamaki1,

Junichi Teruyama1, and Binhai Zhu4(B)

1 School of Social Information Science, University of Hyogo, Kobe, Japan
{higashikawa,tamak,junichi.teyuyama}@sis.u-hyogo.ac.jp

2 Department of Computing Science, University of Alberta, Edmonton, AB, Canada
guohui@ualberta.ca

3 Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, Japan
miyano@ces.kyutech.ac.jp

4 Gianforte School of Computing, Montana State University, Bozeman, MT 59717, USA
bhz@montana.edu

Abstract. Given a set of persistence diagrams P1, ..., Pm, for the data reduction
purpose, one way to summarize their topological features is to compute the cen-
ter C of them first under the bottleneck distance. Here we mainly focus on the
two discrete versions when points in C could be selected with or without replace-
ment from all Pi’s. (We will briefly discuss the continuous case, i.e., points in C
are arbitrary, which turns out to be closely related to the 3-dimensional geomet-
ric assignment problem). For technical reasons, we first focus on the case when
|Pi|’s are all the same (i.e., all have the same size n), and the problem is to com-
pute a center point set C under the bottleneck matching distance. We show, by a
non-trivial reduction from the Planar 3D-Matching problem, that this problem is
NP-hard even when m = 3 diagrams are given. This implies that the general cen-
ter problem for persistence diagrams under the bottleneck distance, when all Pi’s
possibly have different sizes, is also NP-hard when m ≥ 3. On the positive side,
we show that this problem is polynomially solvable when m = 2 and admits a
factor-2 approximation for m ≥ 3. These positive results hold for any Lp metric
when all Pi’s are point sets of the same size, and also hold for the case when
all Pi’s have different sizes in the L∞ metric (i.e., for the Center Persistence
Diagram problem). This is the best possible in polynomial time for Center Per-
sistence Diagram under the bottleneck distance unless P = NP. All these results
hold for both of the discrete versions and the continuous version; in fact, the NP-
hardness and approximation results also hold under the Wasserstein distance for
the continuous version.

Keywords: Persistence diagrams · Bottleneck distance · Center persistence
diagram · NP-hardness · Approximation algorithms

1 Introduction

Computational topology has found a lot of applications in recent years [7]. Among
them, persistence diagrams, each being a set of (topological feature) points above and
inclusive of the line Y = X in the X-Y plane, have also found various applications, for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 262–275, 2023.
https://doi.org/10.1007/978-3-031-43587-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_19&domain=pdf
http://orcid.org/0000-0003-4283-3396
http://orcid.org/0000-0002-4260-7818
http://orcid.org/0000-0002-3929-4128
https://doi.org/10.1007/978-3-031-43587-4_19

Computing a Center Persistence Diagram 263

instance in GIS [1], in neural science [12], in wireless networks [21], and in prostate
cancer research [20]. (Such a topological feature point (b, d) in a persistence diagram,
which we will simply call a point henceforth, indicates a topological feature which
appears at time b and disappears at time d. Hence b ≤ d. In the next section, we will
present some technical details.) A consequence is that practitioners gradually have a
database of persistence diagrams when processing the input data over a certain period
of time. It is not uncommon these days that such a database has tens of thousands of
persistence diagrams, each with up to several thousands of points. How to process and
search these diagrams becomes a new challenge for algorithm designers, especially
because the bottleneck distance is typically used to measure the similarity between two
persistence diagrams.

In [10] the following problem was studied: given a set of persistence diagrams
P1, ...,Pm, each with size at most n, how to preprocess them so that each has a key
ki for i = 1, ...,m and for a query persistence diagram Q with key k, an approxi-
mate nearest persistence diagram Pj can be returned by searching the key k in the data
structure for all ki’s. A hierarchical data structure was built and the keys are basically
constructed using snap roundings on a grid with different resolutions. There is a trade-
off between the space complexity (i.e., number of keys stored) and the query time. For
instance, if one wants an efficient (polylogarithmic) query time, then one has to use an
exponential space; and with a linear or polynomial space, then one needs to spend an
exponential query time. Different from traditional problems of searching similar point
sets [15], one of the main technical difficulties is to handle points near the line Y = X .

In prostate cancer research, one important part is to determine how the cancer pro-
gresses over a certain period of time. In [20], a method is to use a persistence diagram
for each of the histopathology images (taken over a certain period of time). Naturally,
for the data collected over some time interval, one could consider packing a corre-
sponding set of persistence diagrams with a center, which could be considered as a
median persistence diagram summarizing these persistence diagrams. A sequence of
such centers over a longer time period would give a rough estimate on how the prostate
cancer progresses. This motivates our research. On the other hand, while the traditional
center concept (and the corresponding algorithms) has been used for planar point sets
(under the Euclidean distance) [24] and on binary strings (under the Hamming distance)
[22]; recently we have also seen its applications in more complex objects, like polygo-
nal chains (under the discrete Frechet distance) [2,18]. In this sense, this paper is also
along this line.

Formally, in this paper we consider a way to pack persistence diagrams. Namely,
given a set of persistence diagrams P1, ...,Pm, how to compute a center persistence
diagram? Here the metric used is the traditional bottleneck distance and Wasserstein
distance (where we first focus on the former). We first describe the case when all Pi’s
have the same size n, and later we show how to withdraw this constraint (by slightly
increasing the running time of the algorithms). It turns out that the continuous case,
i.e., when the points in the center can be arbitrary, is very similar to the geometric 3-
dimensional assignment problem: Given three points sets Pi of the same size n and each
colored with color-i for i = 1..3, divide points in all Pi’s into n 3-clusters (or triangles)
such that points in each cluster or triangle have different colors, and some geometric

264 Y. Higashikawa et al.

quantity (like the maximum area or perimeter of these triangles) is minimized [13,26].
For our application, we need to investigate discrete versions where points in the center
persistence diagram must come from the input diagrams (might be from more than one
diagrams). We show that the problem is NP-hard even when m = 3 diagrams are given.
On the other hand, we show that the problem is polynomially solvable when m = 2 and
the problem admits a 2-approximation for m ≥ 3. At the end, we briefly discuss how
to adapt the results to Wasserstein distance for the continuous case. The following table
summarizes the main results in this paper (Table 1).

Table 1. Results for the Center Persistence Diagram problems under the bottleneck (dB) and
Wasserstein (Wp) distances when m ≥ 3 diagrams are given.

Hardness Inapproximability bound Approximation factor

dB , with no replacement NP-complete 2 − ε 2

dB , with replacement NP-complete 2 − ε 2

dB , continuous NP-hard 2 − ε 2

Wp, with no replacement ? ? 2

Wp, with replacement ? ? 2

Wp, continuous NP-hard ? 2

This paper is organized as follows. In Sect. 2, we give some necessary definitions
and we also show, as a warm-up, that the case when m = 2 is polynomially solv-
able. In Sect. 3, we prove that the Center Persistence Diagram problem under the bot-
tleneck distance is NP-hard when m = 3 via a non-trivial reduction from the Planar
three-dimensional Matching (Planar 3DM) problem. In Sect. 4, we present the factor-
2 approximation algorithm for the problem (when m ≥ 3). In Sect. 5, we conclude
the paper with some open questions. Due to space constraint, we leave out quite some
details, which can be found in [16].

2 Preliminaries

We assume that the readers are familiar with the standard terms in algorithms, like
approximation algorithms [4], and NP-completeness [11].

2.1 Persistence Diagram

Homology is a machinery from algebraic topology which gives the ability to count the
number of holes in a k-dimensional simplicial complex. For instance, let X be a simpli-
cial complex, and let the corresponding k-dimensional homology be Hk(X), then the
dimension of H0(X) is the number of path connected components of X and H1(X)
consists of loops in X , each is a ‘hole’ in X . It is clear that these numbers are invariant
under rigid motions (and almost invariant under small numerical perturbations) on the

Computing a Center Persistence Diagram 265

original data, which is important in many applications. For further details on the classi-
cal homology theory, readers are referred to [14], and to [7,25] for additional informa-
tion on computational homology. It is well known that the k-dimensional homology of
X can be computed in polynomial time [7,8,25].

Ignoring the details for topology, the central part of persistence homology is to track
the birth and death of the topological features when computing Hk(X). These features
give a persistence diagram (containing the birth and death times of features as pairs
(b, d) in the extended plane). See Fig. 1 for an example. Note that as a convention, the
line Y = X is included in each persistence diagram, where points on the line Y = X
provide infinite multiplicity, i.e., a point (t, t) on it could be considered as a dummy
feature which is born at time t then immediately dies. Formally, a persistence diagram
P is composed of a set P of planar points (each corresponding to a topological feature)
above the line Y = X , as well as the line Y = X itself, i.e., P = P ∪ {(x, y)|y = x}.
Due to the infinite multiplicity on Y = X , there is always a bijection between Pi and
Pj , even if Pi and Pj have different sizes.

X

Y

Y=X

p1

p2
p3

q1

q2

p’

b

d

Fig. 1. Two persistence diagrams P and Q, with feature point sets P = {p1, p2, p3} and Q =
{q1, q2} respectively. A point p1 = (b, d) means that it is born at time b and it dies at time d. The
projection of p1 on Y = X gives p′.

Given two persistence diagrams Pi and Pj , each with O(n) points, the bottleneck
distance between them is defined as follows:

dB(Pi,Pj) = inf
φ
{ sup

x∈Pi

‖x− φ(x)‖∞, φ : Pi → Pj is a bijection}.

Similarly, the p-Wasserstein distance is defined as

Wp(Pi,Pj) =

(

inf
φ

∑

x∈Pi

‖x− φ(x)‖p
∞

)1/p

, φ : Pi → Pj is a bijection.

We refer the readers to [7] for further information regarding persistence diagrams. Our
extended results regarding Wasserstein distance can be found in [16], hence we focus
only on the bottleneck distance here.

266 Y. Higashikawa et al.

For point sets P1, P2 of the same size, we will also use dp
B(P1, P2) to represent their

bottleneck matching distance, i.e., let β be a bijection between P1 and P2,

dp
B(P1, P2) = min

β
max
a∈P1

dp(a, β(a)).

Here, dp(−) is the distance under the Lp metric. As we mainly cover the case p =
2, we will use dB(Pi, Pj) instead of d2

B(Pi, Pj) henceforth. Note that in comparing
persistence diagrams, the L∞ metric is always used. For our hardness constructions, all
the valid clusters form either horizontal or vertical segments, hence the distances under
L2 and L∞ metrics are all equal in our constructions.

While the bottleneck distance between two persistence diagrams is continuous in
its original form, it was shown that it can be computed using a discrete method [7],
i.e., the traditional geometric bottleneck matching [9], in O(n1.5 log n) time. In fact, it
was shown that the multiplicity property of the line Y = X can be used to compute the
bottleneck matching between two diagrams P1 and P2 more conveniently — regardless
of their sizes [7]. This can be done as follows. Let Pi be the set of feature points in Pi.
Then project points in Pi perpendicularly on Y = X to have P ′

i respectively, for i =
1, 2. (See also Fig. 1.) It was shown that the bottleneck distance between two diagrams
P1 and P2 is exactly equal to the bottleneck (bipartite) matching distance, in the L∞
metric, between P1 ∪ P ′

2 and P2 ∪ P ′
1. Here the weight or cost of an edge c(u, v), with

u ∈ P ′
2 and v ∈ P ′

1, is set to zero; while c(u, v) = ‖u− v‖∞, if u ∈ P1 or v ∈ P2. The
p-Wasserstein distance can be computed similarly, using a min-sum bipartite matching
between P1 ∪ P ′

2 and P2 ∪ P ′
1, with all edge costs raised to cp. (Kerber, et al. showed

that several steps of the bottleneck matching algorithm can be further simplified [19].)
Later, we will extend this construction for more than two diagrams.

2.2 Problem Definition

Throughout this paper, for two points p1 = (x1, y1) and p2 = (x2, y2), we use
dp(p1, p2) to represent the Lp distance between p1 and p2, which is dp(p1, p2) =
(|x1 − x2|p + |y1 − y2|p)1/p, for p <∞. When p = ∞, d∞(p1, p2) = ‖p1 − p2‖∞ =
max{|x1−x2|, |y1−y2|}. We will mainly focus on L2 and L∞ metrics, for the former,
we simplify it as d(p1, p2).

Definition 1. The Center Persistence Diagram Problem under the Bottleneck Dis-
tance (CPD-B)

Instance: A set of m persistence diagrams P1, ...,Pm with the corresponding fea-
ture point sets P1, ..., Pm respectively, and a real value r.

Question: Is there a persistence diagram Q such that maxi dB(Q,Pi) ≤ r?

Note that we could have three versions, depending on Q. We mainly focus on the
discrete version when the points in Q are selected with no replacement from the multiset
∪i=1..mPi. It turns out that the other discrete version, i.e., the points in Q are selected
with replacement from the set ∪i=1..mPi, is different from the first version but all the
results can be carried over with some simple twist. We will briefly cover the continuous
case, i.e., when points Q are arbitrary; as we covered earlier in the introduction, when

Computing a Center Persistence Diagram 267

m = 3, this version is very similar to the geometric three-dimensional assignment
problem [13,26].

We will firstly consider two simplified versions of the corresponding problem.

Definition 2. The m-Bottleneck Matching Without Replacement Problem
Instance: A set of m planar point sets P1, ..., Pm such that |P1| = · · · = |Pm| = n,

and a real value r.
Question: Is there a point set Q, with |Q| = n, such that any q ∈ Q is selected from

the multiset ∪iPi with no replacement and maxi dB(Q,Pi) ≤ r?

Definition 3. The m-Bottleneck Matching With Replacement Problem
Instance: A set of m planar point sets P1, ..., Pm such that |P1| = · · · = |Pm| = n,

and a real value r.
Question: Is there a point set Q, with |Q| = n, such that any q ∈ Q is selected from

the set ∪iPi with replacement and maxi dB(Q,Pi) ≤ r?

b

c

e

d

f

a

Fig. 2. An example with P1 = {a, b}, P2 = {c, d} and P3 = {e, f}, with all the points (except
b) on a unit circle and b being the center of the circle. For the ‘without replacement’ version, the
optimal solution is Q1 = {b, c}, where b covers the 3-cluster {a, d, e}, c covers the 3-cluster
{b, c, f} and the optimal covering radius is 1. For the ‘with replacement’ version, the optimal
solution could be the same, but could also be {b, b}.

It turns out that these two problems are really to find center points in Q to cover
m-clusters with an optimal covering radius r, with each cluster being composed of m
points, one each from Pi. For m = 3, this is similar to the geometric three-dimensional
assignment problem which aims at finding m-clusters with certain criteria [13,26].
However, the two versions of the problem are slightly different from the geometric
three-dimensional assignment problem. The main difference is that in these discrete
versions a cluster could be covered by a center point which does not belong to the clus-
ter. See Fig. 2 for an example. Also, note that the two versions themselves are slightly
different; in fact, their solution values could differ by a factor of 2 (see Fig. 3).

Note that we could define a continuous version in which the condition on q is with-
drawn and this will be briefly covered at the end of each section. In fact, we focus

268 Y. Higashikawa et al.

more on the optimization versions of these problems. We will show that 3-Bottleneck
Matching, for both the discrete versions, is NP-hard, immediately implying CPD-B is
NP-hard for m ≥ 3. We then present a 2-approximation for the m-Bottleneck Matching
Problem and later we will show how to make some simple generalization so the ‘equal
size’ condition can be withdrawn for persistence diagrams — this implies that CPD-B
also admits a 2-approximation for m ≥ 3. We will focus on the ‘without replacement’
version in our writing, and later we will show how to generalize it to the ‘with replace-
ment’ version at the end of each section. Henceforth, we will refer to the ’without
replacement’ version simply as m-Bottleneck Matching unless otherwise specified.

At first, we briefly go over polynomial time solutions for the cases when m = 2,
which can be handled using maximum flow [23], bipartite matching [17] and geometric
bottleneck matching [9]. (Details can be found in [16].) We summarize as follows.

b
a

f

c

d

e

Fig. 3. An example with P1 = {a, b}, P2 = {c, d} and P3 = {e, f}, with all the points on a unit
line segment and a being the midpoint of the segment. For the ‘without replacement’ version, the
optimal solution is Q1 = {a, b}, where a covers the 3-cluster {a, c, f}, b covers the 3-cluster
{b, d, e} and the optimal covering radius is 1. For the ‘with replacement’ version, the optimal
solution is Q2 = {a, a}, with the same clusters {a, c, f} and {b, d, e}, and the optimal covering
radius being 1/2.

Theorem 1. The Center Persistence Diagram Problem can be solved in polynomial
time, for m = 2 and for all the three versions (‘Without Replacement’, ‘With Replace-
ment’ and continuous versions).

In the next section, we will consider the case for m = 3.

3 3-Bottleneck Matching Is NP-Complete

We will first focus on the L2 metric in this section and at the end of the proof it should
be seen that the proof also works for the L∞ metric. For m = 3, we can color points in
P1, P2 and P3 in color-1, color-2 and color-3. Then, in this case, the problem is really
to find n disks centered at n points from P1 ∪P2 ∪P3, with smallest radii r∗

i (i = 1..n)
respectively, such that each disk contains exactly 3 points of different colors (possibly
including the center of the disk); moreover, maxi=1..n r

∗
i is bounded from above by a

given value r. We also say that these 3 points form a cluster.
It is easily seen that (the decision version of) 3-Bottleneck Matching is in NP. Once

the n guessed disks are given, the problem is then a max-flow problem, which can be
verified in polynomial time.

Computing a Center Persistence Diagram 269

We next show that Planar 3-D Matching (Planar 3DM) can be reduced to 3-
Bottleneck Matching in polynomial time. The former is a known NP-complete prob-
lem [6]. In 3DM, we are given three sets of elements E1, E2, E3 (with |E1| = |E2| =
|E3| = γ) and a set T of n triples, where T ∈ T implies that T = (a1, a2, a3) with
ai ∈ Ei. The problem is to decide whether there is a set S of γ triples such that each
element inEi appears exactly once in (the triples of) S. The Planar 3DM incurs an addi-
tional constraint: if we embed elements and triples as points on the plane such that there
is an edge between an element a and a triple T iff a appears in T , then the resulting
graph is planar.

An example for Planar 3DM is as follows: E1 = {1, 2}, E2 = {a, b}, E3 =
{x, y}, and T = {(1, a, x), (2, b, x), (2, b, y), (1, b, y)}. The solution is S =
{(1, a, x), (2, b, y)}.

Given an instance for Planar 3DM and a corresponding planar graph G with O(n)
vertices, we first convert it to a planar graph with degree at most 3. This can be done
by replacing a degree-d element node x in G with a path of d nodes x1, ..., xd, each
with degree at most 3 and the connection between x and a triple node T is replaced by
a connection from xi to T for some i (see also Fig. 4). We have a resulting planar graph
G′ = (V (G′), E(G′)) with degree at most 3 and withO(n) vertices. Then we construct
a rectilinear embedding of G′ on a regular rectilinear grid with a unit grid length, where
each vertex u ∈ V (G′) is embedded at a grid point and an edge (u, v) ∈ E(G′) is
embedded as an intersection-free path between u and v on the grid. It is well-known
that such an embedding can be computed in O(n2) time [27].

Let x be in E1 or a black node (• in Fig. 4) with degree d in G. In the rectilinear
embedding of G′, the paths from xi to xi+1 (i = 1, ..., d − 1) will be the basis of the
element gadget for x. (Henceforth, unless otherwise specified, everything we talk about
in this reduction is referred to the rectilinear embedding of G′.) We put a copy of • at
each (grid point) xi as in Fig. 4. (If the path from xi to xi+1 is of length greater than
one, then we put • at each grid point on the path from xi to xi+1.)

We now put color-2 and color-3 points (� and �) at 1/3 and 2/3 positions at each
grid edge which is contained in some path in an element gadget (in the embedding
of G′). These points are put in a way such that it is impossible to use a discrete disk
centered at a • point with radius 1/3 to cover three points with different colors. These
patterns are repeated to reach a triple gadget, which will be given later. Note that this
construction is done similarly for elements y and z, except that the grid points in the
element gadgets for y and z are permuted, i.e., are of color-2 (�) and color-3 (�) respec-
tively. To be more precise, we proceed similarly for vertices inE2 and E3 by permuting
the colors, that is, for vertices in E2, color-2 points are placed at the grid points, and
color-1 and color-3 points are placed on the grid edges; and for vertices in E3, color-3
points are placed on the grid points, and color-1 and color-2 points are placed on the
grid edges.

Lemma 1. In an element gadget for x, exactly one xi is covered by a discrete disk (i.e.,
a disk centered at a colored grid point) of radius 1/3 out of the gadget.

Proof. Throughout the proof, we refer to Fig. 4. Let x be in E1 and colored by color-1
(e.g., •). In the rectilinear embedding, let the number of grid edges between x1 and xd

270 Y. Higashikawa et al.

be D. Then, the total number of points on the path from x1 to xd, of colors 1, 2 and 3,
is 3D + 1. By the placement of color-2 and color-3 points in the gadget for x, exactly
3D points of them can be covered by D discrete disks of radii 1/3 (centered either at
color-2 or color-3 points in the gadget). Therefore, exactly one of xi must be covered
by a discrete disk centered at a point out of the gadget. ��

When xi is covered by a discrete disk of radius 1/3 centered at a point out of the
gadget x, we also say that xi is pulled out of x.

Fig. 4. The gadget for element x.

We now illustrate how to construct a triple gadget T = (x, y, z). It is basically a
grid point on which we put three points with different colors. (In Fig. 5, we simply use a
� representing such a triple gadget.) The interpretation of T being selected in a solution
for Planar 3DM is that the three colored points at � is covered by a disk of radius zero,
centered at one of these three points. When one of these three points at � is covered by
a disk of radius 1/3 centered at some other points (on the path from one of the elements
x, y or z to T), we say that such a point is pulled out of the triple gadget T by the
corresponding element gadget.

Lemma 2. In a triple gadget for T = (x, y, z), to cover the three points representing
T using discrete disks of radii at most 1/3, either all the three points are pulled out of
the triple gadget T by the three element gadgets respectively, or none is pulled out. In
the latter case, these three points can be covered by a discrete disk of radius zero.

Proof. Throughout the proof, we refer to Fig. 5. At the triple gadget T , if only one point
(say •) is pulled out or two points (say, • and �) are pulled out, then the remaining
points in the triple, � and � or � respectively, could not be properly covered by a
discrete disk of radius 1/3 — such a disk would not be able to cover a cluster of exactly
three points of distinct colors. Therefore, either all the three points associated with T are
pulled out by the three corresponding element gadgets, hence covered by three different
discrete disks of radii 1/3; or none of these three points is pulled out. Clearly, in the
latter case, these three points associated with T can be covered by a discrete disk of
radius zero, as a cluster. ��

In Fig. 5, we show the case when x would not pull any point out of the gadget for
T . By Lemma 1, y and z would do the same, leading T = 〈x, y, z〉 to be selected in a

Computing a Center Persistence Diagram 271

solution S for Planar 3DM. Similarly, in Fig. 6, x would pull a • point out of T . Again,
by Lemma 1, y and z would pull � and � points (one each) out of T , which implies
that T would not be selected in a solution S for Planar 3DM.

We hence have the following theorem, whose proof can be found in [16].

Fig. 5. The triple gadget for T = 〈x, y, x〉 (represented as �, which is really putting three element
points on a grid point). In this case the triple 〈x, y, z〉 is selected in the final solution (assuming
operations are similarly performed on y, z). Exactly one of xi (in this case x2) is pulled out of
the gadget for the element x.

Fig. 6. The triple gadget for T = 〈x, y, x〉 (represented as �, which is really putting three element
points on a grid point). In this case the triple 〈x, y, z〉 would not be selected in the final solution.
Note that the black round point in the triple gadget is pulled out by the element x, and the other
two points are pulled out similarly by the element y and z.

Theorem 2. The decision versions of 3-Bottleneck Matching for both the ‘Without
Replacement’ and ‘With Replacement’ cases are NP-complete, and the decision ver-
sion of the continuous 3-Bottleneck Matching is NP-hard.

272 Y. Higashikawa et al.

Note that in the above proof, if Planar 3DM does not have a solution, then we
need to use discrete disks of radii at least 2/3 to have a valid solution for 3-Bottleneck
Matching. This implies that finding a factor-(2−ε) approximation for (the optimization
version of) 3-Bottleneck Matching remains NP-hard.

Corollary 1. It is NP-hard to approximate (the optimization version of) 3-Bottleneck
Matching within a factor 2 − ε, for some ε > 0 and for all the three versions.

We comment that the NP-hardness proofs in [13,26] also use a reduction from Pla-
nar 3DM; however, those proofs are only for the L2 metric. Here, it is clear that our
reduction also works for the L∞ metric without any modification — this is due to that
all clusters in our construction are either horizontal or vertical, therefore the distances
within a cluster would be the same under L2 and L∞. With respect to the CPD-B prob-
lem, points in color-i, i = 1, 2, 3, are the basis for us to construct a persistence diagram.
To handle the line Y = X in a persistence diagram, let the diameter of the (union of the)
three constructed point sets of different colors be D̂, we then translate these points as
a whole set rigidly such that all the points are at least 2D̂ distance away from Y = X .
We then have three persistence diagrams. (The translation is to neutralize the infinite
multiplicity of Y = X , i.e., to enforce that all points on Y = X can be ignored when
computing the bottleneck distance between the corresponding persistence diagrams.)
Hence, we have the following corollary.

Corollary 2. It is NP-hard to approximate (the optimization version of) Center Persis-
tence Diagram problem under the bottleneck distance for m ≥ 3 within a factor 2 − ε,
for some ε > 0 and for all the three versions.

In the next section, we present tight approximation algorithms for the above problems.

4 A Tight Approximation

4.1 Approximation for m-Bottleneck Matching

We first present a simple Algorithm 1 form-Bottleneck Matching as follows. Recall that
in them-Bottleneck Matching problem we are given m sets of planar points P1, ..., Pm,
all with the same size n. Without loss of generality, let the points in Pi be colored with
color-i.

1. Pick any color, say, color-1.
2. Compute the bottleneck matching M1,i between P1 and Pi for i = 2, ...,m.
3. For the m − 1 edges (p1

j1
, pi

ji
) ∈ M1,i for i = 2, ...m, where px

y ∈ Px for x =
1, ...,m, form a cluster {p1

j1
, p2

j2
, ..., pm

jm
} with p1

j1
as its center.

We comment that the algorithm itself is similar to the one given for m = 3 in [13],
which has a different objective function (i.e., minimizing the maximum perimeter of
clusters). We show next that Algorithm 1 is a factor-2 approximation for m-Bottleneck
Matching. Surprisingly, the main tool here is the triangle inequality of a metric. Note
that we cannot only handle for any given m ≥ 3, we also need some twist in the proof
a bit later for the three versions of the Center Persistence Diagram problem, where the
diagrams could have different sizes. We have the following theorem, whose proof can
again be found in [16].

Computing a Center Persistence Diagram 273

Theorem 3. Algorithm 1 is a polynomial time factor-2 approximation for m-
Bottleneck Matching for all the three versions (i.e., ‘Without Replacement’, ‘With
Replacement’ and continuous versions).

4.2 Generalization to the Center Persistence Diagram Problem Under
the Bottleneck Distance

First of all, note that the above approximation algorithm works for m-Bottleneck
Matching when the metric is L∞. Hence, obviously it works for the case when the
input is a set of m persistence diagrams (all having the same size), whose (feature)
points are all far away from Y = X , and the metric is the bottleneck distance. (Recall
that, when computing the bottleneck distance between two persistence diagrams using
a projection method, we always use the L∞ metric to measure the distance between
two points.)

We next show how to generalize the factor-2 approximation algorithm for m-
Bottleneck Matching to the Center Persistence Diagram problem, first for m = 3. Note
that we are given m persistence diagrams P1, P2, ..., and Pm, with the corresponding
non-diagonal point sets being P1, P2, ..., and Pm respectively. Here the sizes of Pi’s
could be different and we assume that the points in Pi are of color-i for i = 1, ...,m.

Given a point p ∈ Pi, let τ(p) be the (perpendicular) projection of p on the line
Y = X . Consequently, let τ(Pi) be the projected points of Pi on Y = X , i.e.,

τ(Pi) = {τ(p)|p ∈ Pi}.

When m = 2, i.e., when we are only given P1 and P2, not necessarily of the same
size, it was shown by Edelsbrunner and Harer that dB(P1,P2) = d∞

B (P1 ∪ τ(P2), P2 ∪
τ(P1)) [7]. (Note that |P1 ∪ τ(P2)| = |P2 ∪ τ(P1)|.) We next generalize this result.
For i ∈ M = {1, 2, ...,m}, let M(−i) = {1, 2, ..., i − 1, i + 1, ...,m}. We have the
following lemma, whose proof can be found in [16].

Lemma 3. Let {i, j} ⊆ M = {1, 2, ...,m}. Let τi(Pk) be the projected points of Pk

on Y = X such that these projected points all have color-i, with k ∈M, i
= k. Then,

dB(Pi,Pj) = d∞
B (Pi

⋃

k∈M(−i)

τi(Pk), Pj

⋃

k∈M(−j)

τj(Pk)).

The implication of the above lemma is that the approximation algorithm in the pre-
vious subsection can be used to compute the approximate center of m persistence dia-
grams. The algorithm can be generalized by simply projecting each point of color-i,
say p ∈ Pi, on Y = X to have m − 1 projection points with every color k, where
k ∈ M(−i). Then we have m augmented sets P ′′

i , i = 1, ...,m, of distinct col-
ors, but with the same size

∑
l=1..m |Pl|. Finally, we simply run Algorithm 1 over

{P ′′
1 , P

′′
2 , ..., P

′′
m}, with the distance in the L∞ metric, to have a factor-2 approxima-

tion. We leave out the details for the analysis as at this point all we need is the triangle
inequality of the L∞ metric.

274 Y. Higashikawa et al.

Theorem 4. There is a polynomial time factor-2 approximation for the Center Persis-
tence Diagram problem under the bottleneck distance with m input diagrams for all the
three versions (i.e., ‘Without Replacement’, ‘With Replacement’ and continuous ver-
sions).

Proof. The analysis of the approximation factor is identical with Theorem 3. However,
when m is part of the input, each of the augmented point set P ′′

i , i = 1...,m, has a
size

∑
l=1..m |Pl| = O(mn). Therefore, the running time of the algorithm increases to

O((mn)1.5 log(mn)), which is, nonetheless, still polynomial. ��
It is interesting to raise the question whether these results still hold if the p-

Wasserstein distance is used, which we depict in the appendix due to space constraint. In
a nutshell, the NP-hardness proof for the continuous case can be carried over with minor
modifications to the corresponding case under the Wasserstein distance; moreover, the
2-approximation can also be adapted to all the three cases under the Wasserstein dis-
tance. However, different from under the bottleneck distance, under the Wasserstein
distance a lot of questions still remain open.

5 Concluding Remarks

In this paper, we study systematically the Center Persistence Diagram problem under
both the bottleneck and p-Wasserstein distances. Under the bottleneck distance, the
results are tight as we have a 2−ε inapproximability lower bound and a 2-approximation
algorithm (in fact, for all the three versions). Under the p-Wasserstein distance, unfortu-
nately, we only have the NP-hardness for the continuous version and a 2-approximation,
how to reduce the gap poses an interesting open problem. In fact, a similar question
of obtaining some APX-hardness result was posed in [5] already, although the (min-
sum) objective function there is slightly different. For the discrete cases under the p-
Wasserstein distance, it is not even known whether the problems are NP-hard.

References

1. Ahmed, M., Fasy, B., Wenk, C.: Local persistent homology based distance between maps.
In: Proceedings of 22nd ACM SIGSPATIAL International Conference on Advances in GIS
(SIGSPATIAL 2014), pp. 43–52 (2014)

2. Buchin, K., et al.: Approximating (k, l)-center clustering for curves. In: Proceedings of 30th
ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 2922–2938 (2019)

3. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)
4. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, second edition,

MIT Press, Cambridge (2001)
5. Custic, A., Klinz, B., Woeginger, G.: Geometric versions of the three-dimensional assign-

ment problem under general norms. Discrete Optim. 18, 38–55 (2015)
6. Dyer, M., Frieze, A.: Planar 3DM is NP-complete. J. Algorithms 7, 174–184 (1986)
7. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathe-

matical Soc. (2010)
8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification.

Disc. Comp. Geom. 28, 511–513 (2002)

Computing a Center Persistence Diagram 275

9. Efrat, A., Itai, A., Katz, M.: Geometry helps in bottleneck matching and related problems.
Algorithmica 31(1), 1–28 (2001)

10. Fasy, B., He, X., Liu, Z., Micka, S., Millman, D., Zhu,B.: Approximate nearest neighbors in
the space of persistence diagrams. CoRR abs/1812.11257 (2018)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, W. H (1979)

12. Giusti, C., Pastalkova, E., Curto, C., Itskov, V.: Clique topology reveals intrinsic geometric
structure in neural correlations. Proc. Nat. Acad. Sci. 112(44), 13455–13460 (2015)

13. Goossens, D., Polyakovskiy, S., Spieksma, F., Woeginger, G.: The approximability of three-
dimensional assignment problems with bottleneck objective. Optim. Lett. 4, 7–16 (2010)

14. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)
15. Heffernan, P., Schirra, S.: Approximate decision algorithms for point set congruence. Com-

put. Geom. Theor. Appl. 4(3), 137–156 (1994)
16. Higashikawa, Y., et al.: On computing a center persistence diagram. CoRR abs/1910.01753

(2019)
17. Hopcroft, J., Karp, R.: An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM

J. Comput. 2(4), 225–231 (1973)
18. Indyk, P.: Approximate nearest neighbor algorithms for Frechet distance via product metrics.

In: Proceedings of the 18th Annual ACM Symposium on Computational Geometry (SoCG
2002), pp. 102–106 (2002)

19. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence dia-
grams. In: Proceedings of the 18th Workshop on Algorithm Engineering and Experiments
(ALENEX 2016), pp. 103–112, SIAM (2016)

20. Lawson, P., Schupbach, J., Fasy, B., Sheppard, J.: Persistent homology for the automatic
classification of prostate cancer aggressiveness in histopathology images. In: Proceedings of
Medical Imaging: Digital Pathology 2019, pp. 109560G (2019)

21. Le, N-K., Martins, P., Decreusefond, L., Vergne, A.: Simplicial homology based energy sav-
ing algorithms for wireless networks. In: 2015 IEEE International Conference on Communi-
cation Workshop (ICCW), pp. 166–172 (2015)

22. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. J. ACM 49(2), 157–
171 (2002)

23. Malhotra, V.M., Kumar, M.P., Maheshwari, S.N.: An O(|V |3) algorithm for finding maxi-
mum flows in networks. Info. Process. Lett. 7(6), 277–278 (1978)

24. Masuyama, S., Ibaraki, T., Hasegawa, T.: The computational complexity of the m-center
problems. Transac. of IEICE. E64(2), 57–64 (1981)

25. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. AMS, vol. 157.
Springer, New York (2004). https://doi.org/10.1007/b97315

26. Spieksma, F., Woeginger, G.: Geometric three-dimensional assignment problems. Eur. J.
Oper. Res. 91, 611–618 (1996)

27. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–
140 (1981)

https://doi.org/10.1007/b97315

Robust Identification in the Limit
from Incomplete Positive Data

Philip Kaelbling1(B), Dakotah Lambert2, and Jeffrey Heinz3

1 Department of Computer Science, Wesleyan University, Middletown, USA
pkaelbling@wesleyan.edu

2 Université Jean Monnet Saint-Étienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, Saint-Étienne, France

dakotahlambert@acm.org
3 Department of Linguistics and Institute for Advanced Computational Science,

Stony Brook University, Stony Brook, USA

jeffrey.heinz@stonybrook.edu

Abstract. Intuitively, a learning algorithm is robust if it can succeed
despite adverse conditions. We examine conditions under which learning
algorithms for classes of formal languages are able to succeedwhen the data
presentations are systematically incomplete; that is, when certain kinds of
examples are systematically absent. One motivation comes from linguis-
tics, where the phonotactic pattern of a language may be understood as
the intersection of formal languages, each of which formalizes a distinct
linguistic generalization. We examine under what conditions these gener-
alizations can be learned when the only data available to a learner belongs
to their intersection. In particular, we provide three formal definitions of
robustness in the identification in the limit from positive data paradigm,
and several theorems which describe the kinds of classes of formal lan-
guages which are, and are not, robustly learnable in the relevant sense. We
relate these results to classes relevant to natural language phonology.

Keywords: identification in the limit · grammatical inference ·
regular languages · model theory · locally testable · piecewise testable

1 Introduction

This paper presents an analysis of Gold-style learning [8] of formal languages
from systematically deficient data and the conclusions one can draw from three
different definitions of correctness. For our purposes, the omissions in the data
arise from other constraints. We specifically consider data presentations which
are the intersection of two languages, one of which is the target of learning.

The analysis is illustrated with, and motivated by, classes of formal languages
that are both computationally natural and of particular interest to natural lan-
guage phonology [11]. These classes are well-studied subregular classes which
often have multiple characterizations, including language-theoretic, automata-
theoretic, logical, and algebraic. The classes used to exemplify this work include
the Strictly Local languages [20], the Strictly Piecewise languages [23], and the
Tier-Based Strictly Local languages [13,18].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 276–290, 2023.
https://doi.org/10.1007/978-3-031-43587-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_20

Robust Identification in the Limit from Incomplete Positive Data 277

As an example, suppose we are interested in learning the formal language L
containing all strings which do not contain bb as a substring. As explained in more
detail in Sect. 2, a positive data presentation for this language would eventually
include strings like babaaca (because it does not contain the bb substring). Now
suppose the observable sequences are also subject to a constraint that words
must not contain a b preceding c at any distance. In this case, the word babaaca
would not be part of the data presentation. Is it still possible to learn L if such
words are never presented?

We provide three formal definitions of robustness in the identification in the
limit from positive data learning paradigm, and several theorems which describe
the kinds of classes of formal languages which are, and are not, robustly learnable
in the relevant sense.1

We opt to explore a modification of Gold-style instead of the Probably
Approximately Correct learning framework (PAC 26) in order to avoid the issue
of defining a distance between formal languages. In the PAC framework, data
is drawn from a stationary distribution, and a learner is required to be reason-
ably correct based on the data presented to it. This data could be considered
“deficient” if the distribution poorly represents the target concept. As discussed
by Eyraud et al. [5], PAC is not necessarily well-suited for the problem of learn-
ing formal languages. The approximate nature of correctness in PAC requires
a notion of distance between formal languages to judge the quality of a pro-
posed solution. There are many feasible metrics [4,22,25], and the PAC results
are expected to be sensitive to the chosen metric. We choose to study robust
learning in a model where this is not a concern.

Generally, research on identification in the limit from positive data in the
presence of data inaccuracies have identified the following three types [16,
chap. 8].

1. Noisy data. A data presentation for a formal language L includes intrusions
from the complement of L.

2. Incomplete data. A data presentation for a formal language L omits examples
from L. That is, if E represents the set of omitted examples, the presentation
is actually a text for L− E rather than for L itself.

3. Imperfect data. Data presentations for a formal language L which both
includes intrusions from the complement of L and omits examples from L.

In this work we only study the identification in the limit from incomplete positive
data. Fulk and Jain [7] study the problem of learning from incomplete data when
there are finitely many data points omitted, which is unlike the case we consider
where there can be infinitely many omitted examples. On the other hand, Jain
[14] considers cases where there are infinitely many omissions. This work, like

1 The notion of robustness studied here is different from the one studied by Case et al.
[3]. There, a class is “robustly learnable” if and only if its effective transformations
are learnable too. As such, their primary interest is classes “outside the world of the
recursively enumerable classes.” This paper uses the term “robustly learnable” to
mean learnable despite the absence of some positive evidence.

278 P. Kaelbling et al.

that of Fulk and Jain [7], establishes hierarchies of classes that are exactly learn-
able or not in the presence of inaccurate data. While our first theorem regards
exact identification, our other theorems relax that requirement. Additionally,
Freivalds et al. [6] and Jain et al. [15] consider learning from a finite set of
examples which contains at least all the good examples, which intuitively are
well-chosen illustrations of the language. As learners must succeed with finitely
many examples, this scenario potentially omits infinitely many. The scenario we
consider, however, does not make provision for good examples.

As just mentioned, our strongest definition of correctness requires a learner
to recover exactly the target language on a text drawn from the intersection of
two languages. A key result under this definition is that of its strength, namely
that very few classes of languages are independent of interference under it.

Our main result comes under our second notion of correctness, strong robust-
ness, which requires a learner only to recover a language compatible with the target
grammar when restricted to the intersection. Under this definition, we show that
classes of languages identifiable with string extension learners [10,12] are strongly
robust in the presence of interference from all other classes of languages.

Finally, we present our weakest correctness definition, weak robustness,
removing the prior requirement of learning a language in the correct concept
class. Under this definition the class of Tier-Based Strictly Local languages is
robustly learnable, specifically by the algorithm presented by Lambert [17].

More generally, the results here are related to the question of whether two
learnable classes of languages C and D imply a successful learning algorithm for
the class of languages formed by their pointwise intersection {LC ∩ LD : LC ∈
C,LD ∈ D}. In the case of identification in the limit from positive data, the
answer in the general case is negative.2 However, the results above – in particular
strong robustness – help us understand the conditions sufficient for this situation
to occur. In this way, this work helps take a step towards a compositional theory
of language learning.

2 Background

2.1 Identification in the Limit

Gold [8] introduced a number of different definitions of what it means to learn a
formal language. In this work, we concern ourselves only with the notion of learn-
ability in the limit from positive data (ilpd), which is also called explanatory
learning from text [16].

Let Σ denote a fixed finite set of symbols and Σ∗ the set of all strings of
finite length greater than or equal to zero. A formal language L (a constraint)
is a subset of Σ∗.

A text t can be thought of as a function from the natural numbers to Σ∗.
Let ⇀

tn represent the sequence 〈t0, t1, . . . , tn−1〉, the length-n initial segment of a

2 Alexander Clark (personal communication) provides a counterexample. Let C =
{L∞, L1, . . . } where Ln = {am : 0 < m < n} ∪ {bn+1} and L∞ = a+ ∪ {b}. Let
D = {a∗}. Both classes are ilpd-learnable but {LC ∩ LD : LC ∈ C, LD ∈ D} is not.

Robust Identification in the Limit from Incomplete Positive Data 279

text t. Note ⇀
tn is always of finite size. Let T denote all texts and

⇀
T represent the

collection of finite initial segments of these texts. Using the notation for sequences
instead of functions, we write ti instead of t(i). For a text t, let ct(t) = {w :
∃n ∈ N, tn = w}, and similarly ct(⇀

tn) = {w : 0 ≤ i < n, ti = w}. For a given
language L, we say t is a text for L if and only if ct(t) = L. The set of all texts
for a language L is denoted TL.

Osherson et al. [21] discuss a modification that allows a text to exist for
the empty language: tn may be either an element of L or a distinct symbol �
representing a lack of data. Consequently, the empty language has exactly one
text; for each n ∈ N, tn = �. We denote this text with t�.

We denote with G a collection of grammars, by which we mean a set of
finitely-sized representations, each of which is associated with a formal language
in a well-defined way. If a grammar G ∈ G is associated with a formal language
L, we write L(G) = L, and say that G recognizes, accepts, or generates L.

An ilpd-learner is a function ϕ :
⇀
T → G. The learner converges on t iff there

is some grammar G ∈ G and some i ∈ N such that for all j > i, L(ϕ(⇀
tj)) = L(G).

If, for all texts t for a language L, it holds that ϕ converges on t to a grammar
G such that L(G) = L, then ϕ identifies L in the limit. If this holds for
all languages of a class C, then ϕ identifies C in the limit and can be called a
C-ilpd-learner.

Angluin [1] proved the following theorem.

Theorem 1. Let C be a collection of languages which is indexed by some com-
putable function. C is ilpd-learnable iff there exists a computably enumerable
family of finite sets S such that for each Li ∈ C, there exists a finite Si ⊆ Li

such that for any Lj ∈ C which contains Si, Lj
⊂ Li.

The finite set Si is called a telltale set for Li with respect to C.

2.2 String Extension Learning

Heinz [10] introduced string extension learning, a general type of set-based ilpd-
learning algorithm based solely on the information contained in strings. A gener-
alization of this technique is discussed here; for another generalization, see Heinz
et al. [12]. The learner is defined as follows:

ϕ(⇀
ti) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if i = 0, ti = �
∅ ⊕ f(ti) if i = 0, ti
= �
ϕ(⇀

ti−1) if i
= 0, ti = �
ϕ(⇀

ti−1) ⊕ f(ti) otherwise,

where f is a function that extracts information from a string and ⊕ is an oper-
ation for inserting information into a grammar.

Finally there is an interpretation relation |=, describing the language rep-
resented by the grammar. The statement w |= G means that w satisfies the
interpretation of G given by this relation. The language of the grammar G then

280 P. Kaelbling et al.

Fig. 1. Piecewise, local, and tier-based factors [18].

is L(G) = {w : w |= G}. If it is the case that w |= (G ⊕ f(w)) for all G and w,
then ϕ is consistent. Often, a learner is defined with the following constraints:
f extracts a set of factors of some sort, grammars are sets of the same type, ⊕
is set union, and w |= G iff f(w) ⊆ G. Such a learner is consistent.

This may appear to simply refer to any incremental learner, but we add one
further restriction: the class of string extension learners is defined to be the
subfamily of these learners that are guaranteed to converge on any text. Every
learner defined by Heinz et al. [12] satisfies this property, as does the incremental
learner defined by Lambert [17] that will be explored further in Sect. 3.3.

2.3 Model-Theoretic Factors and Related Formal Language Classes

Lambert et al. [19] discuss a model-theoretic notion of factors. A simplification,
sufficient for the present discussion, involves only a collection of symbol-labeled
domain elements along with a binary relation between them. The relation induces
a graph. A k-factor of a model is a collection of k nodes connected by the
transitive closure of the relevant binary relation. Grammars and formal languages
can be defined in terms of such k-factors.

Different binary relations give rise to different k-factors. Figure 1 shows some
examples for the word ababc. The precedence relation (<) (upper left) yields
several 3-factors: aab, aac, aba, abb, abc, bab, bac. The sucessor relation (�) (lower
left) yields fewer 3-factors: aba, bab, abc. The precedence relation can be restricted
to a tier T ⊆ Σ of salient symbols. In Fig. 1, T = {b, c}. It follows that the
tier-precedence relation (<{b,c}) (upper right) yields only the 2-factors: bb, bc.
The tier-successor relation (�{b,c}) (lower right), is a binary relation relating
positions on the tier to the positions that are “next” on the tier. Hence, it yields
the 2-factors bb, bc.

Consider grammars G which are sets of k-factors and say w |= G only if the k-
factors in w are a subset of G. Such a definition for the relations �, <,�T yields
the classes of formal languages that are testable in the strict sense: strictly k-
local (sl) [20], strictly k-piecewise (sp) [9,23], or tier-based strictly k-local (tsl)
[13,18], respectively.3 Such classes are string extension learnable where f maps
w to its k-factors, and ⊕ is set union [10].
3 Technically, local classes need to be augmented with symbols marking word edges.

Robust Identification in the Limit from Incomplete Positive Data 281

Fig. 2. A hierarchy by subclass of subregular classes.

Next consider grammars G which are sets of sets of k-factors and say w |= G
only if the k-factors in w are an element of G. Such a definition for the �, <,
and <T relations yields the testable classes: locally k-testable (lt) [20], piecewise
k-testable (pt) [24], or tier-based locally k, T -testable (tlt) [18], respectively.
These classes are string extension learnable where f maps w to its k-factors, and
⊕ is set insertion [10].

The model-theoretic perspective combined provides a uniform way to char-
acterize these well-studied classes. It also fits well into the generalized string
extension scheme above because both the functions f and the operation ⊕ are
understood simply in terms of k-factors.

The aforementioned results hold for classes where the parameters k, T are
fixed. It is of special interest in linguistics to learn the family of k, T -tsl lan-
guages when k is fixed but T is not. Lambert [17] provides an incremental learn-
ing algorithm for this class of languages, and in Sect. 3.3, it is shown that this
class is robustly learnable in a weak sense.

The aforementioned language classes and others are shown in Fig. 2 including
some complement classes indicated with the prefix ‘co’. Many other subregular
classes exist, but only these few will be discussed in this work. For more details,
readers are referred to Lambert et al. [19]. SF is star-free [20].

3 Robustness

When two or more constraints interact, the intersection of their licensed sets
may no longer provide enough data to learn the constraints. Formally, we are
interested in whether languages in C can be ilpd-learned from texts that are
systematically deficient in some way.

A rare sort of robustness is when the individual constraints are retrievable
exactly from the intersection, entirely unaffected by the increased sparsity of
data. Consider any L ∈ C and any other language M . This sort of robustness
would mean that L is ilpd-learnable on all texts for L ∩M . In this case, there
is a learner ϕ which can still exactly learn L despite interference from M .

If L might be unrecoverable, there could still be a guarantee that one can
recover a grammar whose language produces the same intersection. This sort
of robustness would mean that a learner ϕ, on any text for L ∩M , need only
converge to a grammar G such that L(G) ∩M = L ∩M . In this case, there is a

282 P. Kaelbling et al.

learner ϕ which may fail to exactly learn L, but learns another language which
is ‘good enough’ up to M .

We study two types of this latter form of robustness. If this equivalent con-
straint L(G) always belongs to the same class C as the original constraint L,
then that class is strongly robust in the presence of the M ; else the robustness is
only weak. This section discusses these notions in order of decreasing strength.

3.1 Unaffectedness

The strongest form of robustness is that in which constraints are guaranteed to
be extractable without loss of information from the interacting pattern.

Definition 1. A class C is unaffected by another class D iff there is a learning
function ϕ such that for all languages L ∈ C and all languages M ∈ D, ϕ
converges to a grammar for L on all texts for L ∩M .

C is affected by D iff it is not unaffected by D. The strictness of this criterion
is suggested by the following theorem.

Theorem 2. Every ilpd-learnable class which includes two languages is
affected by any class D where ∅ ∈ D.

Proof. Let C be a class which contains distinct languages L1, L2 and let D be a
class containing ∅. There is only one text for L1 ∩∅ = L2 ∩∅ = ∅, which is t�.
If a learner exists which correctly converges to L1 on t�, it would not correctly
converge to L2 on this same text and vice versa. ��

Nearly every class in Fig. 2 contains the empty set. Over a non-empty alpha-
bet, the sole exception is the class of cofinite languages cofin, which may exclude
only finitely many strings. However, even the cofinite languages can be shown
to affect classes with general properties.

Theorem 3. Every ilpd-learnable class which includes two distinct finite lan-
guages is affected by cofin.

Proof. Let C be a class which contains two distinct finite language L1 and L2.
Because they are finite, their complements �L1 and �L2 belong to cofin. The
intersection L1∩�L1 = L2∩�L2 = ∅ has but a single text: t�. If a learner exists
which correctly converges to L1 on t�, it would not correctly converge to L2 on
this same text and vice versa. ��

Because both fin and sp contain both the empty language and at least
one nonempty finite language (Σk for nonzero k), neither they nor any of their
superclasses can be unaffected by either the fin or cofin classes.

The sl and sp classes are not saved from being affected by cofin even if
restricted to their subclasses containing only infinite languages. Let L be the
language of all and only those words over Σ which, if longer than n symbols, do
not contain a specific symbol a ∈ Σ. In other words, a appears only in words

Robust Identification in the Limit from Incomplete Positive Data 283

shorter than n symbols. Further let M be the cofinite language containing all
and only those words over Σ of length at least n. The intersection of L and M
is (Σ − {a})≥n, an (n + 2)-sl proper subset of L and which contains all and
only those piecewise factors (subsequences) over Σ − {a}. For k < n + 2, all
and only those local factors (substrings) over this same alphabet are present
in the language. In any case, because a does not appear in the data, it will be
forbidden. Therefore for any parameters, the sl and sp learners will converge on
some superset of this intersection which contains no instances of a, rather than
on L itself.

In general, ilpd-learnable classes are affected by certain overlapping classes.

Theorem 4. If L is a language in an ilpd-learnable class C, and M ⊂ L
belongs to C ∩D for some class D, then C is affected by D.

Proof. Let C and D be language classes such that C is ilpd-learnable and con-
tains a language L and D overlaps with C such that C ∩D contains a language
M ⊂ L. Then L ∩M = M and, since C is ilpd-learnable and M is in C, the
C-learner must converge to M on a text for L ∩M . ��
Corollary 1. An ilpd-learnable class that contains a language L is affected by
all subclasses of itself that contain any smaller language M ⊂ L.

Our main result on unaffectedness is a characterization of which classes C
are not affected by which classes D. We prove this result by adapting Angluin’s
[1980] characterization of the ilpd-learnable classes. Following Osherson et al.
[21], we obtain this result via an adaptation of Blum and Blum’s [1975].

Theorem 5. Let L,M ⊆ Σ∗ and suppose ϕ is a learning function which iden-
tifies L on all texts for L ∩M . Letting TL∩M denote all texts for L ∩M , then
there is some σ ∈ ⇀

TL∩M such that

1. ct(σ) ⊆ L ∩M
2. ϕ(σ) = G where L(G) = L.
3. ∀τ ∈ ⇀

TL∩M [ct(τ) ⊆ L ∩M → ϕ(στ) = ϕ(σ)].

In other words, if a learner identifies a language L in the limit on texts from
L ∩M , then there is some point in each text from which the learner is ‘locked’
into a particular grammatical hypothesis.

Proof. The proof is by contradiction. If the theorem is not true, it must be the
case that for every σ ∈ ⇀

TL∩M such that (1) and (2) above are true, there is a
τ ∈ ⇀

TL∩M such that ct(τ) ⊆ L ∩M , but ϕ(στ)
= ϕ(σ).
If this is true, then it is possible to construct a positive text for L ∩ M

with which ϕ fails to converge, thus contradicting the initial assumption that ϕ
identifies L in the limit on all texts for L∩M . It will be helpful to consider some
text t for L ∩M . Construct the new text q recursively as follows. Let q(0) = t0.
Note that ct(q(0)) is a subset of L∩M . q(n) is determined by the following cases:

284 P. Kaelbling et al.

Fig. 3. Dots represent a telltale set for L, distinguishing it from L′, despite interference
from some third language M whose intersection with L is X.

Case 1. ϕ(q(n−1)) = G where L(G) = L. Then by the reduction assumption
we know that there exists some τn such that ct(τn) ⊆ L∩M and ϕ(q(n−1)τn)
=
G. Let q(n) = q(n−1)τntn, and note that ct(q(n)) is a subset of L ∩M .

Case 2. ϕ(q(n−1)) = G where L(G)
= L. Then let q(n) = q(n−1)tn. As in the
other case, ct(q(n)) is a subset of L ∩M .

Observe that ct(q) = L∩M and thus q is a text for L∩M . This is because
t is a text for L ∩ M and an element of t is added to q at every step in its
construction. However, ϕ fails to converge on q because for every i ∈ N such
that ϕ(q(i)) = G where L = L(G), there is a later point q(i+1), where ϕ(q(i+1))
does not equal G by the construction above (Case 1). Therefore, we contradict
the original assumption that ϕ identifies L on all texts for L∩M and the reductio
assumption is false, proving the theorem. ��

Now one can state a property of all classes C which are unaffected by another
class D. A crucial concept is the telltale set despite interfence of a language
in some class, defined below and demonstrated in Fig. 3.

Definition 2. Any finite S ⊂ Σ∗ is a telltale set of a language L ∈ C despite
interference from M ∈ D iff S ⊆ L∩M and for any L′ ∈ C such that L′ ∩M
contains S, it holds that L′
⊂ L.

If a learner guesses language L upon observing a telltale set for L despite inter-
ference from M , then it is guaranteed that the learner has guessed the smallest
language in C which contains the sample. Thus the learner has not overgeneral-
ized as no other language in the class of languages which includes the sample is
strictly contained within L.

Theorem 6. Let C,D be collections of languages which are both indexed by
some computable functions. C is unaffected by D iff there exists a computably
enumerable family of finite sets S such that for each Li ∈ C and Mj ∈ D,
there exists a finite Si,j ⊆ Li ∩Mj such that Si,j is a telltale set for Li despite
interference from Mj.

Proof. (⇒) Suppose C is unaffected by D. Then there exists ϕ which for all
L ∈ C and M ∈ D identifies L despite interference from M . By Theorem 5, there
is a locking sequence σ for L where ct(σ) ⊆ L ∩M . We show that the ct(σ) is
a telltale set for L despite interference from M . First, as locking sequences are
finite, ct(σ) is finite too. Now for contradiction assume that there is some L′ ∈ C

Robust Identification in the Limit from Incomplete Positive Data 285

such that ct(σ) ⊆ L′, and L′ ⊂ L. Then, per Theorem 5, ϕ fails to identify L′

on a text t for L′ where t begins with στ , as ϕ(σ) = G where L(G) = L.
(⇐) Assume that for every L ∈ C and M ∈ D, L has a telltale set S despite

interference from M , and further assume some enumeration of grammars and of
these sets. Let X be the first (only) telltale set such that X ⊆ ct(⇀

ti) and let
G = ϕ(⇀

ti) be the first grammar in the enumeration such that X ⊆ ct(⇀
ti) ⊆

L(G) if such objects exist, otherwise let X and G be the first set and grammar
in their respective enumerations.

Now consider any L ∈ C,M ∈ D, any text t for L∩M and let G be the n-th
grammar in the enumeration, but the first such that L(G) = L. As S is finite,
there is an i1 such that S ⊆ ct(⇀

ti1) ⊆ L(G). Thus for all j ≥ i1, ϕ(⇀
tj) returns G

unless there is some G′ earlier in the enumeration such that L(G′) ∈ C, and S′

is a telltale set for L(G′) despite interference from M and S′ ⊆ ct(⇀
ti1) ⊆ L(G′).

However, we can find i2 ≥ i1 which ensures that no such G′ exists. Suppose
there is some G′ earlier in the enumeration such that S′ ⊆ ct(⇀

ti1) ⊆ L(G′).
Then L(G′) cannot properly include L because S′ is a telltale set for L(G′) and
both L,L(G′) ∈ C. Thus there must be some sentence s in L∩M that is not in
L(G′) ∩M . As t is a text for L ∩M , there is a k such that s ∈ ct(⇀

tk).
Thus for any j ≥ k, ϕ(⇀

tj)
= G′ since s
∈ L(G′) and thus ct(⇀
tj)
⊆ L(G′).

It follows that for each Gm (such that L(Gm) ∈ C) which occurs earlier in the
enumeration than G (i.e. m < n), there is some km such that ct(⇀

tkm
)
⊆ L(Gm).

There are only finitely many grammars before G in the enumeration and so by
letting i2 be the largest element of {i1}∪ {km : 0 ≤ m < n}}, we guarantee that
for any j ≥ i2, ϕ(⇀

tj) = G. ��
In short, for each L ∈ C and for each M ∈ D, there must be a telltale set for

L contained with L∩M . This highlights the difficulty of this paradigm. The only
classes unaffected by others to our knowledge are the singleton language classes
{L}, which are unaffected by every class D. Future work involves identification
of non-trivial C,D of linguistic interest such that C that is unaffected by D.

3.2 Strong Robustness

There are few cases of classes being unaffected by another. Yet this raises a
question: should we care if the learned constraint is incorrect only on data that
it cannot encounter? Learning a language consistent with the data should suffice.

Definition 3. A class C is strongly robust in the presence of another class
D iff there exists a learning function ϕ such that for all languages L ∈ C and
M ∈ D, there exists a grammar G such that L(G) ∈ C, L(G) ∩M = L ∩M ,
and ϕ converges to G on all texts for L ∩M .

Theorem 7. If a class C is intersection-closed (i.e. closed under finitary inter-
section) and string extension learnable by a learner ϕ which for any initial seg-
ment of a text ⇀

ti guarantees as output a unique minimum grammar G = ϕ(⇀
ti)

286 P. Kaelbling et al.

where L(G) ∈ C such that ct(⇀
ti) ⊆ L(ϕ(⇀

ti))4, then C is strongly robust in the
presence of any class D.

Proof. Let C be an intersection-closed, string extension learnable class whose
associated learner ϕ guarantees a unique minimum grammar whose language is
in C and compatible with the received text. That is, given any text t it holds
that for any initial segment ⇀

ti of t we have ct(⇀
ti) ⊆ L(ϕ(⇀

ti)) and there is
no grammar X
= ϕ(⇀

ti) such that L(X) ∈ C and ct(⇀
ti) ⊆ L(X) ⊆ L(ϕ(⇀

ti))
Further, let L ∈ C, let M be any language, and let G be the grammar obtained
by applying ϕ to a text drawn from L ∩M .

If L ⊂ L(G) then L(G) is not the minimal language in C compatible with
the data, contradicting the assumption.

Suppose by way of contradiction that L(G)∩M
= L∩M . If L(G)∩M ⊂ L∩M
then there exists some w ∈ L∩M such that w
|= G. But w is in the text, violating
the assumption that ϕ is compatible with the data it receives. Then it must be
that there is some v |= G such that v ∈M −L, and notably v cannot appear in
the text. The language L(G) ∩ L is in C by intersection-closure, is a subset of
L(G) by definition, and does not contain v; this violates the assumption that ϕ
returns a grammar for the smallest language compatible with the text.

The only remaining option is that L(G)∩M = L∩M . As M was unrestricted,
it follows that C is strongly robust in the presence of any class D. ��

Each of the fin, sl, lt, sp, and pt classes are intersection-closed and, when
appropriately parameterized, string extension learnable in a way that guarantees
a unique minimum language consistent with the text [10]. Therefore each of these
classes is strongly robust in the presence of any class.

Corollary 2. A intersection-closed class of ilpd-learnable languages C is
strongly robust in the presence of any of its subclasses C ′ ⊆ C.

Proof. Let C and D be classes of languages such that D ⊆ C, where C is ilpd-
learnable and intersection-closed. Let L ∈ C and M ∈ D. Then the intersection
L ∩M is in C. As C is ilpd-learnable, the intersection is learned exactly. ��

If two classes, A and B, are string-extension learnable by ϕA and ϕB , respec-
tively, then one can define a string-extension learner for their pointwise intersec-
tion, A �B = {a ∩ b: a ∈ A, b ∈ B}, as follows:

f(w) = 〈fA(w), fB(w)〉
〈GA, GB〉 ⊕ 〈x, y〉 = 〈GA ⊕A x,GB ⊕B y〉
w |= 〈GA, GB〉 ⇐⇒ w |= GA ∧ w |= GB .

The learner thus defined is a pointwise string extension learner for A�B.
For example, the intersection closure of the tsl class, mtsl, is pointwise

string extension learnable. Given the alphabet Σ over which the text is drawn,

4 Note that this is a stronger guarantee than consistency.

Robust Identification in the Limit from Incomplete Positive Data 287

construct 2|Σ| k-sl learners in parallel, one for each subset of Σ. Each of these
learners will be responsible for learning the constraints over its associated tier,
by first projecting to that subset of Σ the words it encounters, then extracting
the local factors of the result. Such a learner is not particularly efficient; for an
alphabet of ten unique symbols, this results in 1,024 parallel sl learners.

Theorem 8. If A and B are intersection-closed and string extension learnable,
and both A and B are strongly robust in the presence of the other pointwise
intersected with some third class C, then the class A � B is strongly robust in
the presence of C.

Proof. Let A and B be string extension learnable classes such that A is strongly
robust in the presence of B � C and B is strongly robust in the presence of
A � C. Let ϕA and ϕB be the learners for A and B, respectively. Finally, let
L = LA∩LB be some language in A�B and let L′ ∈ C. Given some text t drawn
from L∩L′, L(ϕA(t))∩LB∩L′ = LA∩LB∩L′ = L∩L′, and L(ϕB(t))∩LA∩L′ =
LA∩LB∩L′ = L∩L′ by strong robustness. The pointwise string extension learner
ϕ for A�B exists such that L(ϕ(t)) = L(ϕA(t))∩L(ϕB(t)) = L∩L′. Therefore
A �B is strongly robust in the presence of C. ��

Suppose that A and B are classes that satisfy the conditions of Theorem 7.
That is, they are string extension learnable in a way that guarantees as output a
unique minimum language in the respective class, compatible with the text they
were given. Then they are strongly robust in the face of any interactions, by
that theorem. It then follows immediately from Theorem 8 that their pointwise
intersection A�B is similarly strongly robust in the presence of any interactions.
However, we cannot turn this around and make strong claims about A or B based
on the learnability of A � B. Consider the case where A contains the empty
language and B is the singleton class containing only the empty language. Then
A � B = B, which as a singleton class is unaffected by any other class C, no
matter what A is. Furthermore, suppose A and C are identical and intersection-
closed, but not ilpd-learnable. Concretely, suppose A = C = Reg, the class of all
regular languages. Then A cannot be strongly robustly learnable in the presence
of C, because it is not learnable in the first place.

3.3 Weak Robustness

An ilpd-learner only guarantees convergence to a language in its target class
when presented with a text for such a language. When given a text from a
language not in the target class, the result can be anything, even a lack of
convergence. A weaker form of robustness might then be a guarantee that the
learner will necessarily converge to some language consistent with the data, even
if that language is not in the target class C.

Definition 4. A class C is weakly robust in the presence of another class
D iff there exists a learning function ϕ such that for all languages L ∈ C and
M ∈ D, there exists a grammar G such that L(G)∩M = L∩M , and ϕ converges
to G on all texts for L ∩M .

288 P. Kaelbling et al.

This suggests the existence of a third class X, a superclass of C, where X is
strongly robust in the presence of D.

As a concrete example of weak robustness, we shall consider C = D = tsl.
Membership in tsl is closure under suffix substitution on some tier T , and
under insertion and deletion of elements not on that tier. That is, for x ∈ T k,
if u1xu2 ∈ L, v1xv2 ∈ L, then u1xv2 ∈ L, and if u1au2 ∈ L for a /∈ T then
u1u2 ∈ L and vice versa. Let Σ = {a, b, c}, L be the language forbidding ab on
the {a, b} tier, M be that forbidding bc on the {b, c} tier. The intersection L∩M
is not tsl for any tier T . No letter is freely insertable or deletable in L ∩M , so
T = {a, b, c}. Notice that b(ak)a ∈ L ∩M and a(ak)c ∈ L ∩M . If it were tsl,
then we would expect by suffix-substitution that b(ak)c ∈ L ∩M , but it is not,
as b(ak)c /∈M . It follows that L ∩M /∈ tsl.

Recall the earlier discussion on pointwise intersections. Suppose that A and
B are classes such that A � B is ilpd-learnable. We have already noted that
this provides no guarantees regarding the robustness or even learnability of A
or B in the presence of some third class C. However, we can state that A and
B are weakly robust in the presence of one another, as the learner for A � B is
by definition guaranteed to converge exactly on texts from the intersection. In
fact, this example is just such a case. For A = B = tsl, their intersection is (a
subclass of) mtsl and therefore learnable by the algorithm which uses 2|Σ| k-sl
learners operating in parallel mentioned earlier. We have thus shown that TSL
is weakly robust in the presence of itself.

4 Conclusions

We motivated and discussed the notion of learning from data systematically lack-
ing in completeness. The result is four categories of learnability. The strongest,
unaffectedness, provides a guarantee that a telltale set for the target language
remains present despite interference. This requires that the correct generaliza-
tions be made even for data that can never appear. Strong robustness, while
weaker than unaffectedness, makes a more reasonable guarantee: the learned
language is only necessarily consistent with the target on data that can natu-
rally occur in the face of the other constraints. Weak robustness keeps this more
reasonable guarantee, but allows the learner to use grammars outside the target
class. Finally, if none of these hold, the class is not robust.

We showed that each of the fin, sl, lt, sp, and pt classes are strongly
robust in the presence of any other class. On the other hand, we showed that the
tier-based strictly local class of constraints, while quite natural for descriptive
phonology, fails to be even strongly robust in the case where the relevant tier
is unknown. Yet it has superclasses that are strongly robust in the presence of
some types of interference. Such a quality makes this class weakly robust: one
might fail to learn the target grammar, but learn instead a compatible grammar
from the superclass. In the case of tsl, the relevant superclass was mtsl.

Each of these robustness categories is parameterized by the class from which
interfering constraints are drawn. A class may be strongly robust in the pres-

Robust Identification in the Limit from Incomplete Positive Data 289

ence of one class, yet not robust at all when faced with another. Open ques-
tions include characterizing the strongly and weakly robust learning paradigms.
It would also be interesting to consider the effects of interference from other
constraints when learning from good examples [6,15], as well as the problem
of learning from data presentations which misrepresent the target language by
including examples that do not belong to it.

Finally, the strongly robust learning paradigm provides a sufficient condition
for when the pointwise intersection of two learnable classes of languages C and
D is itself also learnable. The fact that each of the fin, sl, lt, sp, and pt
classes are strongly robust in the presence of any other class implies that classes
of languages which must satisfy constraints from more than one of these classes
are also learnable. To put it another way, some learnable classes of languages
can be factored into simpler learnable classes. We hope this work helps lead to
a more fully developed compositional theory of language learning.

Acknowledgements. We acknowledge support from the Data + Computing = Dis-
covery summer REU program at the Institute for Advanced Computational Science at
Stony Brook University, supported by the NSF under award 1950052.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45(2), 117–135 (1980)

2. Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Inf.
Control 28(2), 125–155 (1975)

3. Case, J., Jain, S., Stephan, F., Wiehagen, R.: Robust learning-rich and poor. J.
Comput. Syst. Sci. 69(2), 123–165 (2004)

4. Clark, A., Lappin, S.: Linguistic Nativism and the Poverty of the Stimulus. Wiley-
Blackwell (2011)

5. Eyraud, R., Heinz, J., Yoshinaka, R.: Efficiency in the identification in the limit
learning paradigm. In: Heinz, J., Sempere, J.M. (eds.) Topics in Grammatical Infer-
ence, pp. 25–46. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
48395-4 2

6. Freivalds, R., Kinber, E., Wiehagen, R.: On the power of inductive inference from
good examples. Theoret. Comput. Sci. 110(1), 131–144 (1993)

7. Fulk, M., Jain, S.: Learning in the presence of inaccurate information. Theoret.
Comput. Sci. 161, 235–261 (1996)

8. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
9. Haines, L.H.: On free monoids partially ordered by embedding. J. Combinatorial

Theory 6(1), 94–98 (1969)
10. Heinz, J.: String extension learning. In: Proceedings of the 48th Annual Meeting

of the Association for Computational Linguistics, pp. 897–906. Association for
Computational Linguistics, Uppsala, Sweden (July 2010)

11. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,
L., Plank, F. (eds.) Phonological Typology, Phonetics and Phonology, vol. 23, chap.
5, pp. 126–195. Mouton de Gruyter (2018)

12. Heinz, J., Kasprzik, A., Kötzing, T.: Learning in the limit with lattice-structured
hypothesis spaces. Theoret. Comput. Sci. 457, 111–127 (2012)

https://doi.org/10.1007/978-3-662-48395-4_2
https://doi.org/10.1007/978-3-662-48395-4_2

290 P. Kaelbling et al.

13. Heinz, J., Rawal, C., Tanner, H.G.: Tier-based strictly local constraints for phonol-
ogy. In: Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Short Papers, vol. 2, pp. 58–64. Association for Computational
Linguistics, Portland (2011)

14. Jain, S.: Program synthesis in the presence of infinite number of inaccuracies. J.
Comput. Syst. Sci. 53, 583–591 (1996)

15. Jain, S., Lange, S., Nessel, J.: On the learnability of recursively enumerable lan-
guages from good examples. Theoret. Comput. Sci. 261, 3–29 (2001)

16. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn: An Intro-
duction to Learning Theory, 2nd edn. The MIT Press (1999)

17. Lambert, D.: Grammar interpretations and learning TSL online. In: Proceedings
of the Fifteenth International Conference on Grammatical Inference. Proceedings
of Machine Learning Research, vol. 153, pp. 81–91, August 2021

18. Lambert, D.: Relativized adjacency. Journal of Logic, Language and Information,
May 2023

19. Lambert, D., Rawski, J., Heinz, J.: Typology emerges from simplicity in represen-
tations and learning. J. Lang. Modelling 9(1), 151–194 (2021)

20. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press (1971)
21. Osherson, D.N., Stob, M., Weinstein, S.: Systems That Learn. MIT Press, Cam-

bridge (1986)
22. Pin, J.E.: Profinite methods in automata theory. In: 26th International Symposium

on Theoretical Aspects of Computer Science STACS 2009, February 2009
23. Rogers, J., et al.: On languages piecewise testable in the strict sense. In: Ebert,

C., Jäger, G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp.
255–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14322-
9 19

24. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

25. Smetsers, R., Volpato, M., Vaandrager, F., Verwer, S.: Bigger is not always better:
on the quality of hypotheses in active automata learning. In: Clark, A., Kanazawa,
M., Yoshinaka, R. (eds.) The 12th International Conference on Grammatical Infer-
ence. Proceedings of Machine Learning Research, vol. 34, pp. 167–181. PMLR,
Kyoto, Japan, 17–19 Sep 2014

26. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23

Cordial Forests

Feston Kastrati1, Wendy Myrvold2, Lucas D. Panjer3, and Aaron Williams4(B)

1 Bard College at Simon’s Rock, Great Barrington, USA
fkastrati13@simons-rock.edu

2 University of Victoria, Victoria, Canada
wendym@uvic.ca

3 Amazon Web Services, Seattle, USA
lucas@panjer.org

4 Williams College, Williamstown, USA
aaron.williams@williams.edu

Abstract. We prove that a forest is cordial if and only if it does not
have 4k+2 components and every vertex has odd-degree.

Keywords: Cordial labeling · graceful labeling · graceful tree
conjecture

1 Introduction

Consider a graph whose vertices are labeled with 0s and 1s. Let its edges be
labeled with the difference of their incident vertex labels taken modulo 2. In
other words, an edge is given an induced label of 0 if its two incident vertices
have the same label, or 1 if its two incident vertices have different labels. If the
number of vertices labeled 0 and 1 are equal or off-by-one, and the number of
edges labeled 0 and 1 are equal or off-by-one, then the labeling is said to be
cordial, and the graph is said to be cordial. See Fig. 1 for an example.

More formally, a binary-labeled graph is a graph in which the vertices are
labeled with 0 and 1, and each edge is labeled with the absolute difference of its
endpoints. Let nx(G) and mx(G) be the number of vertices and edges labeled x
in a labeled graph G, respectively. The number of extra vertex and edge labels
that equal 1 are respectively denoted with Δs as follows,

Δv(G) = n1(G) − n0(G) and Δe(G) = m1(G) −m0(G),

and we omit G from this notation when context allows.

Definition 1. A binary-labeled graph is cordial if

Δv ∈ {−1, 0, 1} and Δe ∈ {−1, 0, 1}.

Cahit introduced cordiality in 1987 and it is a weaker version of both graceful
and harmonious labelings [1]. The famous Graceful Tree Conjecture (or Ringel-
Kotzig Conjecture) asserts that all trees are graceful [5], and it has attracted

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 291–303, 2023.
https://doi.org/10.1007/978-3-031-43587-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_21

292 F. Kastrati et al.

Fig. 1. Every tree is cordial. Here a tree T is given two different cordial labelings. In
both cases, the vertex labels are balanced: Δv = n1 − n0 = 7 − 7 = 0; (a) has a surplus
of one 1-labeled edge, and (b) has a surplus of one 0-labeled edge.

considerable attention over the past 50 years (e.g., see the survey by Edwards
and Howard [2]). Trees have been proven to have other types of labels (e.g.,
3-equitable by Speyer and Szanislo [7]). Variations of cordial labelings have also
been considered, including Hovey’s introduction of A-cordial graphs. For a broad
overview of graph labels see Gallian’s dynamic survey [3].

By 1999 it was known that every tree is cordial [1] and that some forests are
not cordial [6]. However, there has never been a characterization of which forests
are cordial. In this paper, we provide the missing characterization. We define an
oddity to be a graph in which every vertex has odd-degree. An m-oddity is a
forest with m connected components in which every vertex has odd-degree. In
other words, an m-oddity is a forest oddity with m components.

Theorem 1. A forest is cordial if and only if it is not a (4k + 2)-oddity.

Theorem 1 is illustrated in Fig. 2. The negative direction of Theorem 1 (i.e.,
the forests that are not cordial) follows from a general theorem of Seoud and
Maqusoud [6]. For the positive direction (i.e., the forests that are cordial), we
construct a suitable labeling. Since every tree has one component, Theorem 1
generalizes the fact that every tree is cordial [1].

1.1 Parity Conditions for the Graceful Tree Conjecture

While the focus of this paper is on cordiality, our underlying motivation is to
understand parity requirements for proving (or disproving) the Graceful Tree
Conjecture. To illustrate this point, consider the tree with n = 14 vertices and
m = 13 edges in Fig. 3. The tree has been given two partial labelings that we
hope to extend to a graceful labeling. In other words, we want to continue labeling
the graph so that the vertices have distinct labels from {0, 1, . . . , n−1} and their
absolute differences result in unique induced edge labels from {1, 2, . . . ,m}.

Cordial Forests 293

Fig. 2. Characterizing cordial forests. The forest in (a) is not cordial since it is a (4k+2)-
oddity for k = 0 (i.e., every vertex has odd-degree and its number of components is 2
mod 4). The forest in (b) is a (4k + 3)-oddity, so it is cordial.

Theorem 1 implies that only one of the two starting points in Fig. 3 can hope
to succeed, while the other is doomed to fail. To understand why this is the
case, first note that deleting the labeled edge e in the tree gives the 2-oddity
from Fig. 2a. Now suppose that this edge e is given the induced label 8− 3 = 5,
as in Fig. 3a. Since this induced label is odd, and the full set of induced edge
labels in any graceful labeling of the tree is {1, 2, . . . , 13}, it must be that the
remaining 13 − 1 = 12 edges are equally split between even and odd induced
labels. Therefore, if we were to take the vertex labels and the remaining edge
labels modulo two, then we would have a cordial labeling for the forest in Fig. 2a.
But this is not possible by the negative direction of Theorem 1.

Fig. 3. Application to graceful labelings. The partial labeling in (a) cannot be extended
to a graceful labeling. This is because the deletion of the labeled edge e gives the 2-
oddity in Fig. 2a, and the remaining labels are cordial when taken modulo 2. Alterna-
tively, e is the tree’s only even-splitter (see Fig. 4a), so it cannot have an odd label. In
contrast, the labeling in (b) is completed in (c).

294 F. Kastrati et al.

To better understand this type of argument, we introduce a concept that
is illustrated in Fig. 4. In a tree T , an even-splitter is an edge e in which both
components of T − e have an even number of vertices. Obviously, trees with an
odd number of vertices have no such edges. Less obviously, if a tree has i even
splitters, then their deletion gives an (i+1)-oddity (see Sect. 3). Using Theorem
1 and the previous line of reasoning, we can conclude the following: If a tree
T has 4k + 1 even-splitters, then in any graceful labeling of T , the number of
even-splitters with an odd label is not 2k + 1. In particular, the labeled edge in
Fig. 2a is the tree’s only even-splitter, so it cannot have an odd label. Stronger
parity restrictions for the Graceful Tree Conjecture are discussed in Sect. 5.

Fig. 4. Even-splitters. In (a) the edge e is an even-splitter since its deletion gives
components with 6 and 8 vertices. Similarly, in (b) the deletion of e gives components
with 4 and 10 vertices, while deleting f gives 6- and 8-vertex components.

1.2 Outline

Section 2 proves that (4k + 2)-oddities are not cordial due to parity conditions
derived from [6]. Section 3 provides an inductive approach for building a tree
called a twin-construction. Section 4 proves that all other forests are cordial.
Section 5 discusses future work, including a stricter version of Cahit’s definition.

2 Parity Conditions

In this section we consider the forests that are not cordial. We begin by restating
a result by Seoud and Maqusoud [6].

Theorem 2. If a graph G has n vertices and m edges with n + m ≡ 2 mod 4,
then G is not cordial.

Now we can obtain our negative result for cordial forests.

Cordial Forests 295

Lemma 1. A (4k + 2)-oddity is not cordial for all k ≥ 0.

Proof. Suppose that F that is a (4k + 2)-oddity for some k ≥ 0 with n vertices
and m edges. Since F has 4k+2 components, we have n−m = 4k+2. Consider
the following series of equalities.

n−m = 4k + 2
n−m+ 2m = 4k + 2 + 2m

n+m = 2(2k) + 2 + 2m
n+m = 2(2k +m) + 2
n+m = 2(2k′) + 2
n+m = 4k′ + 2

Since k′ is an integer, we can conclude that n+m is congruent to 2 (mod 4).
Therefore, F is not cordial by Theorem 2. ��

3 Twin-Constructions

This section provides an unusual inductive definition of a tree, which will become
useful when we want to label vertices and edges as equitably as possible. The
method was developed independently, but is similar to one used by Cahit [1].

Our inductive approach relies on two twin-addition operations. In both cases
we suppose that T is a tree with vertex set V such that x ∈ V and y, z /∈ V .

1. A twin-leaf addition leaf(x, y, z) adds y and z with edges xy and xz to T .
2. A twin-path addition path(x, y, z) adds y and z with edges xy and yz to T .

These two addition operations are illustrated in Fig. 5.

Fig. 5. The two twin-addition operations, where the initial tree T is shown within the
dotted perimeter.

A twin-construction of a non-empty tree T is a sequence of twin-additions
that creates T ; the construction starts from a single vertex or a pair of vertices
connected by an edge that we call a base vertex or base edge, respectively. Theo-
rem 3 proves that every tree has a twin-construction, and Fig. 6 shows that these
constructions are not unique for a given tree.

Theorem 3. Every non-empty tree T can be built by starting from a base vertex
or a base edge followed by a sequence of twin-additions.

296 F. Kastrati et al.

Fig. 6. Two different twin-constructions of the tree from Fig. 4b. Each step adds a twin-
leaf or twin-path to an existing vertex. The tree’s even-splitters e and f are labeled
when they are added as the first edge on a twin-path addition.

Proof. If T has one or two vertices, then it is a base vertex or a base edge,
respectively. Otherwise, consider a longest path in T whose third-last, second-
last, and last vertices on one end are u, v, and w, respectively. There are two
cases based on the degree of v. In the first case, vertex v has degree two in T
and then T = T ′ + path(u, v, w) for some tree T ′. In the second case, vertex v
has degree at least three in T . Because w is an endpoint of a longest path in T ,
there has to be at least one more leaf x
= u that is adjacent to vertex v. Hence,
T = T ′ + leaf(v, w, x) for some tree T ′. In both cases, T ′ has two fewer vertices,
so the result follows by induction on the number of vertices in a tree. ��

We frequently refer to the parity of the number of vertices of a tree in the
remainder of this article. For this reason, we define an even-tree to be a tree that
has an even number of vertices and an odd-tree to be a tree that has an odd
number of vertices. Remark 1 follows from the fact that twin-additions always
add two vertices.

Remark 1. A tree T is an odd-tree if and only if its twin-constructions start with
a base vertex, and T is an even-tree if and only if its twin-constructions start
with a base edge.

An odd-degree tree is a tree T in which every vertex of T has odd degree.
In other words, it is a 1-oddity. Theorem 4 proves that these trees have special
twin-constructions.

Theorem 4. A tree is an odd-degree tree (1-oddity) if and only if it is an even-
tree and its twin-constructions use only twin-leaf additions.

Proof. A base edge is an odd-degree tree, and twin-leaf additions add two vertices
of degree one without changing the parities of the degrees of the vertices already
in the tree. Therefore, twin-constructions that start from a base edge and use
only twin-leaf additions will produce an odd-degree tree. On the other hand,

Cordial Forests 297

a base vertex has even degree, and a twin-path addition path(u, v, w) adds the
degree two vertex v. Further twin-path additions can change the degree of v so
that it is odd, but at the same time they add one new vertex of even degree.
Therefore, a twin-construction that starts from a base vertex or includes a twin-
path addition will create a tree with an even-degree vertex. ��

The next lemma shows that the even-splitters of a tree can be characterized
in terms of twin-constructions.

Lemma 2. For any twin-construction of an even-tree, the even-splitters of the
tree are the edges (u, v) that are added with a twin-path addition path(u, v, w)
for some vertex w.

Proof. Suppose T ′ is an even-tree, and consider T = T ′ + path(u, v, w). Notice
that (u, v) is an even-splitter in T , whereas (v, w) is not an even-splitter in T .
Similarly, in T = T ′ + leaf(x, y, z) neither (x, y) nor (y, z) are even-splitters. In
other words, the only edges of twin-additions that are even-splitters when they
are added to an even-tree are the (u, v) edges in path(u, v, w) additions.

To complete the proof consider an arbitrary edge e in an arbitrary tree T .
Notice that twin-additions to T do not change the parities of the vertices in
the two components in T − e, since both new vertices are added to the same
component of T − e. Hence an edge is an even-splitter if and only if it is an
even-splitter when initially added in the twin-construction. ��

A simple corollary of these last two results is that the odd-degree trees are
precisely the even-trees without even-splitters.

Corollary 1. An even-tree T is an odd-degree tree if and only if T has no even-
splitters.

Proof. By Theorem 4 the twin-constructions of an even-tree T use only twin-
leaves. Therefore, T has no even-splitters by Lemma 2. ��

An odd-degree forest is a forest that contains only odd-degree vertices. In
other words, an odd-degree forest is a collection of odd-degree trees; if the forest
contains c such trees, then it is a c-oddity. Now we ask the following question:

When can a set of edges S be deleted from a tree T to create an odd-degree
forest T − S? In other words, when is T − S an (|S| + 1)-oddity?

For example, deleting the edge sets {e} and {e, f} in Figs. 4a–4b result in the
2-oddity and 3-oddity in Figs. 2a–2b, respectively. The next theorem proves that
the above question is answered precisely when the deleted edges are the even-
splitters of an even-tree T . This generalizes Corollary 1, which covers the special
case when T has no even-splitters.

Theorem 5. Suppose that T is a tree and S is a subset of its edges. The forest
T −S is an odd-degree forest (or more precisely, an (|S|+ 1)-oddity) if and only
if T is an even-tree and S is its set of even-splitters.

298 F. Kastrati et al.

Proof. By the handshaking lemma, graphs have an even number of odd-degree
vertices. In addition, T has the same number of vertices as T − S. Therefore,
T − S can only be an odd-degree forest if T is an even-tree. We assume that T
is an even-tree and we prove the theorem in three cases.

Suppose that S is the set of even-splitters of T . Consider a twin-construction
of T and the corresponding edges that belong to T − S. By Lemma 2, the
construction begins with a base edge that is in T −S. Furthermore, each step of
the twin-construction extends an existing odd-tree by adding both edges from
some leaf(u, v, w) addition, or starts a new odd-tree containing the isolated edge
(v, w) from some path(u, v, w) addition. Therefore, by Remark 1 and Theorem 4,
each tree in T − S is an odd-degree tree.

Suppose that e is not an even-splitter of T and e ∈ S. Therefore, T − e
contains two odd-trees. Deleting further edges will always result in an odd-tree,
and odd-trees have at least one even-degree vertex.

Suppose that S is a strict subset of the even-splitters of T . Consider the
even-splitters of T that are not in S, with respect to a twin-construction of T .
Let (u, v) be the last even-splitter that is added during the twin-construction
such that (u, v) /∈ S. We complete the proof by arguing that v has even-degree in
T−S. By Lemma 2, (u, v) was added by a twin-path path(u, v, w) and (v, w) /∈ S.
Therefore, v is incident with both (u, v) and (v, w) in T − S. Each subsequent
twin-leaf addition leaf(v, x, y) has (v, x), (v, y) /∈ S by our choice of S. Thus,
each addition increases the degree of v in T −S by two. On the other hand, each
subsequent twin-path addition path(v, x, y) has (v, x) ∈ S and hence does not
contribute to the degree of v in T − S. ��

4 Characterization of Cordial Forests

This section completes our characterization of the forests that are cordial by
constructing suitable labelings for the forests that are not (4k+ 2)-oddities. We
describe six different types of labelings for trees in Sect. 4.1. Then we use these
labelings as building blocks for labeling forests in Sects. 4.2 and 4.3.

Our constructions are summarized by Tables 1, 2 and 3. These tables use
images to facilitate the calculation of Δv and Δe values, and our convention for
these images is explained at the end of Sect. 4.1.

4.1 Labeling Trees

A twin-addition to a binary-labeled tree is equitable if its added vertices and
edges are labeled such that the following two points hold.

1. One vertex has label 0 and one vertex has label 1.
2. One edge has induced label 0 and one edge has induced label 1.

The definition implies that a twin-leaf addition leaf(u, v, w) is equitable when
v and w are labeled oppositely. Similarly, a twin-path addition path(x, y, z) is
equitable when x and y are labeled equally, and z is labeled oppositely. The four
types of equitable additions are illustrated in Fig. 7.

Cordial Forests 299

Fig. 7. Equitable twin-additions. The new vertices and edges are drawn outside of the
dotted perimeter. In each case, the new vertex labels and edge labels are balanced (i.e.,
a single 0 label and a single 1 label).

When an equitable twin-addition is added to a tree its Δv and Δe values do
not change, since the new 0 and 1 labels offset each other.

Remark 2. If T is a binary-labeled tree, and T ′ is obtained by applying an equi-
table twin-addition to T , then Δv(T) = Δv(T ′) and Δe(T) = Δe(T ′).

Our approach to labeling trees is to label the base vertex or base edge in a
particular way, and then to extend the labeling equitably using Remark 2. The
following lemma describes the five distinct types of labelings that result from
this approach.

Lemma 3. All odd-trees have binary labelings such that

(i) (Δv,Δe) = (1, 0) and (ii) (Δv,Δe) = (-1, 0).

All non-empty even-trees have binary labelings such that

(iii) (Δv,Δe) = (2, -1), (iv) (Δv,Δe) = (0, 1), and (v) (Δv,Δe) = (-2, -1).

Proof. This follows from Remarks 1 and 2 by labeling the bases as (i) 1 , (ii)
0 , (iii) 0 11 , (iv) 1 10 , and (v) 0 00 . ��

To prove our main result, we need a sixth type of binary-labeled tree which
cannot be constructed by Lemma 3. A tree has mixed-degree if it has at least
one vertex of odd-degree and at least one vertex of even-degree. (Non-empty
trees contain a leaf of degree one, so mixed-degree trees are non-empty trees
containing an even-degree vertex.)

Lemma 4. If T is a mixed-degree even-tree, then T has a binary labeling such
that

(vi) (Δv,Δe) = (0, -1).

Proof. Suppose T is a mixed-degree even-tree and consider an arbitrary twin-
construction for T . By Remark 1, the twin-construction begins with a base edge.
We label the base as 0 00 so the base has (Δv,Δe) = (−2,−1). Since T is
a mixed-degree even-tree, Theorem 4 implies that one of the twin-additions in
the twin-construction is a twin-path. The proof now considers two cases.

If the first twin-addition is a twin-path, then we label it so that the resulting
tree has labels 0 1 000 1 1 , and so (Δv,Δe) = (0,−1) after this addi-
tion. From this point, we complete the labeling using equitable twin-additions.

300 F. Kastrati et al.

If the first twin-addition is a twin-leaf, then we label this twin-leaf and the
subsequent twin-leafs equitably until the first twin-path path(x, y, z). Without
loss of generality, we can assume that vertex x has label 0. This is because the
base vertices are both labeled 0, and the previous twin-leaf additions only need
to label its two new vertices oppositely to be equitable. Now we label y and z
with 1 as below.

Therefore, (Δv,Δe) = (−2 + 2,−1 + 0) = (0,−1) after this addition. Again,
we complete the labeling using equitable twin-additions. ��

In the remainder of this section we combine our six types of binary-labeled
trees in various ways and compute the Δv and Δe values of the resulting forest.
To facilitate these calculations we represent types (i)–(vi) so that the Δ values
are immediately apparent. To explain our representations, recall that Lemma 3
grows each tree equitably from a labeled base. Therefore, theΔ values of the final
tree equal the Δ values of the labeled base. Thus, the labelings of type (i)–(v)
in Lemma 3 can be represented simply by the labeled base. For example, we use

to refer to an arbitrary even-tree that is labeled so that (Δv,Δe) =
(2,−1). Notice that the Δ values follow from the image since there are two
vertices of label 1 and zero vertices of label 0, and so Δv = 2 − 0 = 0. Similarly
there are zero edges labeled 1 and one edge labeled 0, so Δe = 0 − 1 = −1.

In Lemma 4, we use to represent mixed-degree even-
trees labeled so that (Δv,Δe) = (0,−1). This image represents the labeling of
the base edge and first twin-path in the proof of Lemma 4. Again the Δ values
can be determined from the image since every other twin-addition is equitable.

Table 1 summarizes our six types of binary-labeled trees.

Table 1. Six types of binary-labeled trees. Each row gives a labeled base (i.e., a
base vertex or a base edge), the type of non-empty tree, and the Δ values obtained
by building the tree using equitable twin-additions. The representation in (vi) shows
labels for the tree’s base edge and its first twin-path (see Lemma 4).

Cordial Forests 301

4.2 Δ-Neutral Forests

If a binary-labeled forest F consists of binary-labeled trees T1, T2, . . . , Tk, then

Δv(F) =
k∑

i=1

Δv(Ti) and Δe(F) =
k∑

i=1

Δe(Ti). (1)

A forest has a Δ-neutral binary-labeling if (Δv,Δe) = (0, 0). Section 4.2 will
partition forests into various subsets of trees and label each subset; the Δ-neutral
labeled subsets are helpful in this context since they do not contribute to the
overall Δ values by (1).

We describe four types of Δ-neutral forests in Lemma 5 and their binary-
labelings are summarized by Table 2. To verify that each type of forest is Δ-
neutral, (1) allows us to simply count the vertex and edges labels in the graphical
representations of the constituent trees. For example, Table 2 (c) has a forest of
two odd-trees and two-even trees which are binary-labeled using 0 , 0 , 0 11

, and 0 10 according to Table 1. Note that there are three vertices labeled
1 and three vertices labeled 0 among these four images, so Δv = 3 − 3 = 0.
Similarly, there is one edge labeled 1 and one edge labeled 0, so Δe = 1− 1 = 0.
Thus, every forest labeled in this way is Δ-neutral.

Lemma 5. A forest has a Δ-neutral labeling if it consists of (a) two odd-trees,
(b) four even-trees, (c) two even-trees and two odd-trees, or (d) two even-trees
including at least one mixed-degree even-tree.

Proof. The forest types in Table 2 match the forest types given in the statement
of the lemma. In particular, row (d) includes the labeling of one mixed-degree
even-tree from Lemma 4. The (Δv,Δe) values of the rows can computed as
follows: (a) (1−1, 0) = (0, 0), (b) (4−4, 2−2) = (0, 0), (c) (3−3, 1−1) = (0, 0),
and (d) (3−3, 2−2) = (0, 0). ��

Table 2. Four types of Δ-neutral forests. Each row gives the number of odd-trees d
and even-trees e in the forest, and Δ-neutral labels according to Table 1. For example,
row (b) shows that a forest of four even-trees has a Δ-neutral labeling by labeling one
tree using (iii), two trees using (iv), and one tree using (v), as per Table 1. †Assumes
that one of the even-trees has mixed-degree.

302 F. Kastrati et al.

4.3 Labeling Forests

Now we prove that all forests that are not (4k+2)-oddies are cordial. Our proof
reduces a given forest by giving Δ-neutral binary-labels to various subsets of
trees from Table 2. For example, repeated use of subsets of type (a) and (b) can
reduce the forest down to d odd-trees and e even-trees with 0 ≤ d ≤ 1 and
0 ≤ e ≤ 3. However, we must avoid Δ-neutral reductions that terminate with
d = 0 odd-trees and e = 2 odd-degree even-trees. This is because the remaining
unlabeled forest would be a (4k + 2)-oddity, and thus by Lemma 1 and (1) we
could not complete the labeling to one that is cordial. For this reason we will
also make strategic use the Δ-neutral forests of type (c) and (d) in Table 2. More
specifically, we will use (c) and (d) at most once in total. After our Δ-neutral
reductions, we will be left with a small forest that can be labeled according to
one of the cases summarized by Table 3.

Theorem 6. If F is a forest that is not a (4k + 2)-oddity, then F is cordial.

Proof. Assume that F is a forest that is not a (4k + 2)-oddity with d odd-trees
and e even-trees. We binary-label the trees of F in three steps. The first two
steps use Δ-neutral labels, so the overall Δ-values for F are determined solely
from the third step by (1). After each step, we update d and e to equal the
number of unlabeled odd-trees and even-trees that remain in F , respectively.

The first step only involves forests with e mod 4 = 2. Since F is not a (4k+2)-
oddity, at least one of the following is true:
– F has at least one mixed-degree even-tree, or
– F has at least one odd-tree (d ≥ 1).

We complete the first step using one of three cases. If F has at least one mixed-
degree even-tree, then we label it and another even-tree using (d) in Table 2.
Otherwise, if F has at least two odd-trees (d ≥ 2), then we label two even-trees
and two odd-trees using (c) in Table 2. In both of these two cases the number
of unlabeled even-trees is reduced by two, and so e mod 4 = 0 at the end of the
first step. In the third case, there is a single odd-tree (d = 1) and we do nothing.
Therefore, the following implication holds at the end of the first step

e mod 4 = 2 =⇒ d = 1. (2)

In other words, if the first step wasn’t able to change the number of even-trees e
from being equal to 2 modulo 4, then the forest contains exactly d = 1 odd-tree.

In the second step we apply row (a) in Table 2 as many times as possible, and
then we apply row (b) in Table 2 as many times as possible. Since (a) consists
of two odd-trees and (b) consists of four even-trees, we have d ≤ 1 and e ≤ 3 at
the end of the second step. Furthermore, the implication in (2) still holds at the
end of the second step.

In the third step we label the remaining trees. Since d ≤ 1 and e ≤ 3, there
are up to eight cases to consider. However, if d = 0 and e = 0, then the forest
has already been given a suitable labeling. In addition, we can ignore the case
of d = 0 and e = 2 since the implication in (2) ensures that we avoid it. The
labelings for the remaining six cases are given by the rows of Table 3. ��

Cordial Forests 303

Table 3. Six types of cordial forests. The number of odd-trees in the forest is d and
its number of even-trees is e. Each row gives the binary-labels for the trees according
to Table 1 and the resulting Δ values. Note that there is no row for d = 0 and e = 0
(as it is an empty forest) and d = 1 and e = 2 (by avoidance).

5 Final Remarks

Cahit’s definition of cordiality allows the number of 0 and 1 labels to be equal,
or off by one in either direction. However, if one were to take the vertex and edge
labels of a graceful labeling modulo two, then any surplus would need to involve
an extra 1 for edge labels, or an extra 0 for vertex labels. In future work (also see
[4]), we’ll introduce a stricter version of cordiality which requires this higher level
of precision. We’ll also derive a strengthening of the graceful labeling application
discussed in Sect. 1.1: In any graceful labeling of a tree, an even number of its
even-splitters have an odd label. (In the case of Fig. 3, there is one even-splitter,
so it cannot have an odd label.)

References

1. Cahit, I.: Cordial graphs: a weaker version of graceful and harmonious graphs. Ars
Combin. 23, 201–207 (1987)

2. Cairnie, N., Edwards, K.: The computational complexity of cordial and equitable
labelling. Discret. Math. 216, 29–34 (2000)

3. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 5: Dynamic
Survey 6, 260 (2013). (electronic), 1998

4. Kastrati, F.: Graceful and cordial forests: A computational investigation of graph
labelings. Bachelor’s thesis, Bard College at Simon’s Rock (1991)

5. Rosa, A.: On certain valuations of the vertices of a graph. In: Theory of Graphs
(Internat. Sympos., Rome, 1966), pp. 349–355. Gordon and Breach, New York
(1967)

6. Seoud, M.A., Abdel Maqsoud, A.E.I.: On cordial and balanced labelings of graphs.
J. Egyptian Math. Soc. 7, 127–135 (1999)

7. Speyer, D.E., Szanislo, Z.: Every tree is 3-equitable. Discret. Math. 220, 283–289
(2000)

Vertex Ordering with Precedence
Constraints

Jeff Kinne1, Akbar Rafiey2, Arash Rafiey1(B), and Mohammad Sorkhpar1

1 Math and Computer Science, Indiana State University, Terre Haute, IN, USA
jkinne@cs.indstate.edu, arash.rafiey@indstate.edu,

msorkhpar@sycamores.indstate.edu
2 Computer Science, University of California San Diego, San Diego, CA, USA

arafiey@ucsd.edu

Abstract. We study bipartite graph ordering problem, which arises in
various domains such as production management, bioinformatics, and job
scheduling with precedence constraints. In the bipartite vertex ordering
problem, we are given a bipartite graph H = (B, S, E) where each vertex
in B has a cost and each vertex in S has a profit. The goal is to find a
minimum K together with an ordering < of the vertices of H, so that
i < j whenever i ∈ B is adjacent to j ∈ S. Moreover, at each sub-order
the difference between the costs and profits of the vertices in the sub-
order does not exceed K.

The bipartite ordering problem is NP-complete when the weights are
one, and the bipartite graph H is a bipartite circle graph. This restricted
version was used in the study of the secondary structure of RNA in [11].

Thus, we seek exact algorithms for solving the bipartite ordering prob-
lem in classes with simpler structures than bipartite circle graphs. We
give non-trivial polynomial time algorithms for finding the optimal solu-
tions for bipartite permutation graphs, bipartite trivially perfect graphs,
bipartite cographs, and trees. There are still several classes of bipar-
tite graphs for which the ordering problem could be polynomial, such
as bipartite interval graphs, bipartite convex graphs, bipartite chordal
graphs, etc.

In addition, we formulate the problem as a linear programming (LP)
model and conduct experiments on random instances. We did not find
any example with an integrality gap of two or more when limited to
bipartite circle graphs with unit weights. No example with an integral-
ity gap of more than 5/2 was found for arbitrary bipartite graphs with
random weights. It would be interesting to investigate the possibility of
designing a constant approximation algorithm for this problem.

Keywords: Vertex ordering · Bipartite graph classes · Precedence
constraints · Energy barrier

1 Introduction and Problem Definition

In this paper, we introduce the bipartite graph ordering problem, motivated by
a studying energy barrier problem for transitioning from one DNA secondary
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 304–317, 2023.
https://doi.org/10.1007/978-3-031-43587-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_22

Vertex Ordering with Precedence Constraints 305

structure (one folding) to another secondary DNA structure (with the same
sequence and different folding) [14].

The authors of [11] looked at the energy barrier problem as a combinatorial
problem on bipartite graphs, and they proved that the problem is NP-complete
even on circle bipartite graphs1 where the input weights are one.

Although the energy barrier problem is NP-complete, several algorithms have
been developed to solve it. In [6,7] heuristic methods were given. In [17,18],
the authors have focused on exact algorithms that take exponential time to
solve the problem. The running time of the algorithm in [18] is nO(K), where
K is the minimum energy required for this transformation. The worst-case time
complexity of the algorithm in [17] is O(|H|2|H|), where |H| is the Hamming
distance between the two input structures.

The bipartite ordering problem can be viewed as a variation of job schedul-
ing problems with precedence constraints. The goal of our problem is to find the
minimum initial budget required so that the vertices of the given bipartite graph
are ordered, respecting the precedence and non-negative budget constraints. Job
scheduling problems with precedence constraints have received much attention
in theoretical computer science and applied mathematics due to their real-world
applications in supply chain and production management. The aim of schedul-
ing problems with precedence constraints is to order the jobs while respecting
the precedence constraint. The objective function, however, can be different for
different scenarios. Most of the work on job scheduling with precedence con-
straints has focused on minimizing the weighted completion time of the jobs in
the single-processor or multi-processor setting [1,2,13,19]. The general problem
of finding an ordering of the jobs to schedule that respects the precedence con-
straints and minimizes the weighted completion time, or cost is NP-complete.
Therefore, some approximation algorithms and the hardness of approximation
results have been studied to solve the scheduling problem with precedence con-
straints [1,2,19]. There are also some special classes of scheduling problems with
precedence constraints that one can find an exact solution in polynomial time
[3,10].

Our Results: In this work, we develop algorithms for some special graph classes;
trivially perfect bipartite graphs, bipartite cographs, and bipartite permutation
graphs; that admit polynomial-time exact solutions for the bipartite graph order-
ing problem.

We briefly mention that these classes of bipartite graphs have been consid-
ered in other optimization problems. Trivially perfect bipartite graphs play an
important role in studying the list homomorphism problem. The authors of [5]
showed that the list homomorphism problem could be solved in logarithmic space
for these bipartite graphs. They were also considered in the fixed parametrized
version of the list homomorphism problem in [4]. The subclass of trivially perfect

1 A circle bipartite graph can be represented as two sets A, B where the vertices in
A are a set of non-crossing arcs on a real line and the vertices in B are a set of
non-crossing arcs from a real line; there is an edge between a vertex in A and a
vertex in B if their arcs cross.

306 J. Kinne et al.

bipartite graphs called laminar family bipartite graphs was considered in [15] to
obtain a polynomial time approximation scheme (PTAS) for special instances
of a job scheduling problem. Each problem instance in [15] is a bipartite graph
H = (J,M,E) where J is a set of jobs, and M is a set of machines. For every pair
of jobs u, v ∈ J , the set of machines that can process u, v are either disjoint or
one is a subset of the other. Bipartite permutation graphs, also known as proper
interval bipartite graphs are of interest in graph homomorphism problems [9],
and in energy production applications where resources (in our case B vertices)
can be assigned (bought) and used (sold) within some successive time steps [12].
There are recognition algorithms for bipartite permutation graphs [9,16].

1.1 Problem Definition

We are given a bipartite graph H = (B,S,E), where B∪S is the set of vertices,
and E is the set of edges, a subset of B × S. Each vertex u ∈ B has a negative
cost pu, and each vertex v ∈ S has a positive cost pv. The goal of the bipartite
graph ordering problem for H is to find a minimum value bg(H) and an ordering
v1 < v2 < · · · < vn of the vertices of H that satisfies:

– Precedence constraints: if (vi, vj) ∈ E, with vi ∈ B and vj ∈ S then vi < vj .
– Budget constraints: for every sub-order of the vertices v1 < v2 < · · · < vr,
r < |B ∪ S|, we have bg(H) +

∑k=r
k=1 pvk

≥ 0.

We often use the term process first (process next) for a subset of vertices of H,
and we mean order them before (after) some other vertices of H in the final total
ordering. Throughout the paper we denote the input instance by H = (B,S,E)
and we assume the cost of vertices in B are negative and the costs of vertices
in S are positive. Figure 1 describes an example of the problem when the costs
pv = 1, v ∈ S and pu = −1, u ∈ B.

a

b

1

2

3 c

2

1

0

3

2

b

1

a

c

Fig. 1. The left graph is a bipartite circle graph with B = {1, 2, 3}, and S = {a, b, c}.
Ordering 3, 2, b, 1, a, c and bg(H) = 2 give an optimal solution when the weights are 1
and −1.

The bipartite graph ordering problem is a natural variation of scheduling
problems with precedence constraints. It can be used to model the purchase of
supplies and production of goods when purchasing in bulk. Another way to view
the problem is that the items in B are training sessions that employees must
complete before employees (vertices in S) can begin to work.

Vertex Ordering with Precedence Constraints 307

No Bound on the Value of bg(G) When the Weights are One. In what follows,
we introduce a class of bipartite graphs G with maximum degree at most

√|G|
(|G| number of vertices) while bg(G) is greater than |G|/2. Let P be a projective
plane of order p2+p+1 with p prime. The projective plane of order n = p2+p+1
consists of n lines, each consisting of precisely p+ 1 points, and n points which
each are intersected by precisely p + 1 lines. We construct a bipartite graph
with each vertex in B corresponding to a line from the projective plane, each
vertex in S corresponding to a point from the projective plane and a connection
from b ∈ B to s ∈ S if the point corresponding to s is contained in the line
corresponding to B. Vertices in B are given weight −1, and vertices in S are
given weight 1. Note that the degree of each vertex in B is p + 1. One can
observe that the neighborhood of every set of p + 1 vertices in S is at least
p2 − (

p
2

)
. Therefore, to process the first p + 1 vertices in S we need to process

their neighborhood which decreases the budget by at least p2 − (
p
2

)
+ p > n/2;

implying that bg(G) > n/2.

1.2 Warm-Up (Simple Cases)

In this subsection, we consider simple instances of the problem. This gives a
better understanding of the problem and its difficulty. We provide this section
to assist the reader in developing an intuition for the problem.

Let H = (B,S,E) be a bipartite graph, and let X be a subset of vertices in
H. ‖X‖ refers to the mass of set X defined by

∑
x∈X |px|, where px is the cost

of vertex x. We often consider X to be entirely in B or entirely in S.

Proposition 1. Let H = (B,S,E) be an instance of the bipartite ordering prob-
lem where H is a disjoint union of bicliques (bipartite cliques), and random
weights. Then computing bg(H) is a polynomial-time task.

Proof. First, we note that if H is a biclique, then bg(H) = ‖B‖. Now we consider
the case where our graph is a disjoint union of bicliques H1,H2, ...,Hm where
each Hi = (Bi, Si, Ei) is a biclique. We start with value K =

∑j=m
j=1 ‖Bj‖ as

initial budget. Intuition suggests that we should first process those Hi with
‖Si‖ ≥ ‖Bi‖, which we call positive sets. If multiple positive sets exist, we
process the Hi with minimum ‖Bi‖ and increase K by ‖Si‖−‖Bi‖. Then we are
left with bicliques Hi = (Bi, Si) where ‖Bi‖ > ‖Si‖, which we call negative set.

In processing the remaining negative sets, the budget steadily goes down.
As we shall see momentarily, we should process the Hi with the largest ‖Si‖
first and decrease K by ‖Si‖− ‖Bi‖. Suppose on the contrary that ‖Si‖ > ‖Sj‖
but an optimal strategy opt processes Hj right before Hi. If K is the budget
before this step we first have that K − ‖Bj‖ + ‖Sj‖ ≥ ‖Bi‖ because otherwise,
there would not be sufficient budget after processing Hj to process Hi. Since we
assumed that ‖Si‖ > ‖Sj‖ we have K−‖Bi‖+‖Si‖ ≥ ‖Bj‖. Thus, we could first
process Hi and then Hj . We have thus given a method to compute an optimal
strategy for a disjoint union of bicliques: first process positive sets in decreasing
order of ‖Bi‖, and then process negative bicliques in decreasing order of ‖Si‖.

308 J. Kinne et al.

Suppose during this process K ′ is the minimum value of the current budget.
Thus, bg(H) =

∑j=m
j=1 ‖Bj‖ −K ′. ��

Notice that when bipartite graph H consists of disjoint paths each of length
4 (path P5) together with random weights, the approach in Proposition 1 does
not work, giving some indication of the difficulty of the problem.

Next, we assume the input graph is a tree, and the costs are pv = 1, v ∈ S
and pu = −1, u ∈ B.

Proposition 2. Let T = (B,S,E) be a tree with weights one. Then bg(T) =
‖B‖ − ‖S‖ + 1 and finding an optimal ordering is a polynomial time task.

Proof. Note that any leaf has a single neighbor (or none if it is an isolated
vertex). We can thus immediately process any leaf j ∈ S by processing its parent
in the tree and then processing j. This requires an initial budget of only 1. After
processing all leaves in S, we are left with a forest where all leaves are in B.
We can first remove from consideration any disconnected vertices in B (these
can, without loss of generality, be processed last). We are left with a forest H ′.
We next take a vertex j1 ∈ S (which is not a leaf because all leaves in S have
already been processed) and process all of its neighbors. After processing j1 we
return 1 unit to the budget. Since H ′ is a forest, the neighborhood of j1 has
an intersection at most 1 with the neighborhood of any other sold vertex in S.
Because we have already processed all leaves in S, we know that only j1 can be
processed after processing its neighbors.

After processing j1, we may be left with some leaves in S. If so, we deal with
these as above. We note that if removing the neighborhood of j1 does create any
leaves in S, then each of these has at least one vertex in B that is its neighbor
and is not the neighbor of any of the other leaves in S. When no leaves remain,
we pick a vertex j2 ∈ S and deal with it as we did j1.

This process is repeated until all of H ′ is processed. We note that after
initially dealing with all leaves in S, we gain at most a single leaf in S at a time.
That is, the budget initially increases as we process vertices in S and process
their parents in the tree, and then the budget goes down progressively, only ever
temporarily going up by a single unit each time a vertex in S is processed. Note
that the budget initially increases, and then once it is decreasing only a single
vertex in S is processed at a time. This implies that the budget required for our
strategy is ‖B‖−‖S‖+1, the best possible budget for T with weights 1 and −1.

2 Definitions and Concepts

In this section, we define key terms and concepts that are relevant to algorithms
solving the bipartite graph ordering problem.

Let H = (B,S,E) be a bipartite graph. For a subset, I ⊆ B, let N∗(I) be
the set of all vertices in S whose entire neighborhood lies in I. For example, in
Fig. 2, N∗(J) = F .

Vertex Ordering with Precedence Constraints 309

Definition 1 (Prime set). We say a set I ⊆ B is prime if there exists set
X ⊂ S, where N(X) = I and there is no X ′ with N(X ′) ⊂ I. Equivalently, I is
prime if N∗(I) is non-empty and for every I ′ ⊂ I , N∗(I ′) is empty.

In Fig. 2, J and I are primes, but I ∪ I1 is not prime since I1 ⊂ I ∪ I1, and
N∗(I1) = O
= ∅. Other examples for prime sets in Fig. 2 are J1 ∪ J2, J , I, I1
with N∗(J1 ∪ J2) = D, N∗(J) = F , N∗(I) = L, and N∗(I1) = Q. Note that the
bipartite graph induced by a prime set I and N∗(I) is a bipartite clique. For
X ⊂ B, let H[X ∪N∗(X)] be the induced subgraph of H by X ∪N∗(X).

Definition 2 (Positive/Negative set). A set I ⊆ B is called positive if
‖I‖ ≤ ‖N∗(I)‖ and it is negative if ‖I‖ > ‖N∗(I)‖.
Definition 3 (Positive minimal set). A set I ⊆ B is called positive minimal
if I is positive, and for every other positive subset I ′ of I we have bg(H[I ′ ∪
N∗(I ′)]) ≥ bg(H[I ∪N∗(I)]).

For the given graph in Fig. 2, I1 is the only positive minimal set where
N∗(I1) = O contains 7 vertices. Note that, in general, there can be more than
one positive minimal set. Positive minimal sets are key in algorithms solving the
general case of bipartite graph ordering because these are precisely the sets that
we can process first, as can be seen from Lemma 2. In the graph of Fig. 2, the
positive set I1 is the first to be processed.

J1 I 1

D E F

J J2 I

L

7 1

6

P Q

5

8 9

12

8

12

11

12

Fig. 2. Each bold line shows a complete connection, i.e. the induced sub-graph by
I ∪ L is a biclique. The numbers in the boxes are the number of vertices. The
sets J1, J2, J, I, I1 are the vertices B, with each vertex having weight -1. The sets
D, E, F, L, P, O are the vertices in S, with each vertex having weight 1.

Fixing an Order for B in Instance H = (B,S,E): Let ≺ be an arbitrary order of
the vertices in B. We order the positive minimal subsets of B, in the lexicographic
order ≺L. This means for two sets A1 ⊂ B and A2 ⊆ B, A1 ≺L A2 (A1 is before
A2) if the smallest element of A1 (according to ≺) say a1 is before the smallest
element A2, say a2. If a1 = a2 then A1 ≺L A2 if A1 \ {a1} ≺L A2 \ {a2}.
Definition 4 (Closure). For I ⊆ B of instance H = (B,S,E), let c
(I) =
∪r

i=1Ii ∪ I where each Ii ⊆ B, 1 ≤ i ≤ r is the lexicographically first positive

310 J. Kinne et al.

minimal subset in Hi = H \ (∪i−1
j=0Ij ∪N∗(∪i−1

j=0Ij)) (I0 = I) such that in Hi we
have bg(Ii) ≤ bg(H)−∪i−1

j=0‖Ij‖+∪i−1
j=0‖N∗(Ij)‖. Here r is the number of times

the process of ordering a positive minimal set can be repeated after I.

Note that c
(I) could be only I, in this case r = 0. For instance, consider
Fig. 2. In the graph induced by {J, J1, J2, I,D,E, F, L} we have c
(J) = J ∪ J1.

In what follows, we define trivially perfect bipartite graphs, bipartite
cographs, and bipartite permutation graphs. We discuss the key properties that
are used in our algorithm for solving the bipartite graph ordering problem on
these graph classes.

Definition 5 (Trivially perfect bipartite graph). A bipartite graph H =
(B,S,E) is called trivially perfect if it can be constructed using the follow-
ing operations. If H1 and H2 are trivially perfect bipartite graphs, then the
disjoint union of H1 and H2 is trivially perfect. If H1 = (B1, S1, E1) and
H2 = (B2, S2, E2) are trivially perfect bipartite graphs then by joining every ver-
tex in S1 to every vertex in B2, the resulting bipartite graph is trivially perfect.
Notice that a bipartite graph with one vertex is trivially perfect.

Bipartite graph H is trivially perfect if and only if it does not contain any of
the following as an induced sub-graph: C6, P6 [5].

Definition 6 (Bipartite cograph). A bipartite graph H = (B,S,E) is called
cograph if it can be constructed using the following operations. If H1 and H2 are
bipartite cographs then the disjoint union of H1 and H2 is a bipartite cograph. If
H1 = (B1, S1, E1) and H2 = (B2, S2, E2) are bipartite cographs, their complete
join—where every S1 is joined to every vertex in B2 and every vertex in B1 is
joined to every vertex in S2—is a cograph. A bipartite graph with one vertex is
a cograph.

The bipartite cographs studied in [8], and in terms of forbidden obstruction
characterization, H is a bipartite cograph if and only if it does not have any of
the following graphs depicted in Fig. 3 as an induced sub-graph.

Fig. 3. Forbidden constructions for bipartite cographs.

Vertex Ordering with Precedence Constraints 311

An example of each type of graph is given in Fig. 4. In the left figure (triv-
ially perfect) I = {I1, I2} and J = {I2, I3} are prime sets. On the right figure
(bipartite cograph) prime sets are R1 = {J1, J2, J3}, R2 = {J1, J2, J4}, R3 =
{J3, J4, J1}, R4 = {J3, J4, J2} are prime sets.

Fig. 4. Each bold line shows a complete connection, i.e. the induced sub-graph by
I1 ∪ P is a biclique (complete bipartite graph)

Definition 7 (Bipartite permutation graph). A bipartite graph H =
(B,S,E) is called permutation graph (proper interval bipartite graph) if there
exists an ordering b1, b2, . . . , bp of the vertices in B, and an ordering s1, s2, . . . , sq

of the vertices in S such that if sibj and si′bj′ are edges of H and j′ < j and
i < i′ then sibj′ , si′bj ∈ E(H). This ordering is called min-max ordering [9].

3 Polynomial Time Cases

We mention the following lemma which is correct for solving the general case of
bipartite graphs. Therefore, identifying the prime subsets of B, would lead us to
an optimal solution according to the following lemma.

Lemma 1. Let H = (B,S,E) be a bipartite graph without isolated vertices.
Then, there is an optimal strategy to compute bg(H) starting by a prime set.

Proof. Let u1, u2, . . . , un be an optimal ordering that does not start with a prime
set. Suppose ui, 2 ≤ i ≤ n, is the first vertex in S. Let M = {u1, u2, . . . , ui−1}.
Let I ⊆M be the smallest set with N∗(I)
= ∅. Note that such I exists since all
the adjacent vertices to ui are among vertices in M . Observe that changing the
processing order on vertices in M does not harm optimality. Therefore, we can
modify the order, by placing the vertices in I first, without changing the budget.
In addition, we can order N∗(I) immediately after the vertices in I.

We continue this section by two lemmas about the positive minimal subsets
which are used in designing our polynomial time algorithms, and they can also
be used in designing a heuristic.

Lemma 2. Let H = (B,S,E) be a bipartite graph that can be processed with
bg(H) = K. If H contains a positive minimal set I with bg(I) ≤ K then there
is a strategy for H with budget K that begins by processing a positive minimal
subset of H.

312 J. Kinne et al.

Lemma 3. Suppose that I+ is a positive subset with bg(H[I+ ∪N∗(I+)]) > K
and I− is a negative subset where bg(H[I− ∪N∗(I−)]) ≤ K and I+ ∩ I−
= ∅. If
bg(H[I+ ∪ I− ∪N∗(I+ ∪ I−)]) ≤ K then I+ ∪ I− forms a positive subset.

3.1 Polynomial Time Algorithm for Trivially Perfect Bipartite
Graph, Bipartite Cographs, and Bipartite Permutation Graphs

We continue this section by designing algorithms to solve the bipartite graph
ordering for Trivially perfect bipartite graphs and bipartite cograph.

Algorithm 1. BudgetTriviallyPerfect (H,K)
1: Input: Trivially perfect bipartite graph H = (B, S, E), integer K, and decompo-

sition tree T for H
2: Output: "True" if we can process H with budget at most K, otherwise "False".
3: if S = ∅ and K ≥ 0 then return True
4: if H is a bipartite clique and ‖B‖ ≤ K then process H by ordering vertices in B

first and then ordering vertices in S after and return True
5: if H is constructed by join operation between H1 = (B1, S1) and H2 = (B2, S2)

then
� bg(H1), bg(H2) already computed and B1 and S2 induce a bipartite clique.

6: if bg(H1) > K then return False;
7: else if bg(H2) > K − ‖B1‖ + ‖S1‖ then return False;
8: else first process H1 then process H2 and return True,
9: if H is constructed by union of H1 and H2 then

10: return Combine(H1, H2, K)

Our algorithm to solve bg(H) for trivially perfect bipartite graphs and bipar-
tite cographs centers around constructing H as in Definition 5. We view this
construction as a tree of operations that are performed to build up the final
bipartite graph, and where the leaves of the tree of operations are bicliques. If
H is not connected, then the root operation in the tree is a disjoint union, and
each of its connected components is a trivially perfect bipartite graph (respec-
tively, bipartite cograph). If H is connected, then the root operation is a join. It
is easy to construct a decomposition tree for a given trivially perfect bipartite
graph. We traverse the decomposition tree in a bottom-up manner. Algorithm
1, takes the input bipartite graph H with weights and a decomposition tree for
H = (B,S,E), together with integer K, and it returns yes together with an
ordering if bg(H) ≤ K. To guess the right value for bg(H), we do a binary search
between 1 and ‖B‖.

At each node of the decomposition tree, we assume the optimal budgets
for its children have been computed and stored for the graph associated with
a particular tree node. If H is constructed by union operation, it requires a
merging procedure, which is given in Algorithm 2 called Combine. Combine
takes optimal solutions of two trivially perfect (respectively co-bipartite) graphs

Vertex Ordering with Precedence Constraints 313

and return an optimal strategy for their union. We give the description of our
algorithm and prove its correctness. Recall that we assume every vertex in B
has at least one neighbor.

Algorithm 2. Combine (H1,H2,K)
1: Input: K and optimal strategies for H1 = (B1, S1, E1), H2 = (B2, S2, E2)
2: Output: "True" if we can process H = H1 ∪ H2 with budget at most K,

otherwise "False"
3: if H1 is empty then process H2 if bg(H2) ≤ K and return True, else return False.
4: if H2 is empty then process H1 if bg(H1) ≤ K and return True, else return False.
5: while ∃ positive minimal set I in H1 ∪ H2 with bg(I) ≤ K do
6: Process c�(I) and N∗(I).
7: if I ⊂ H1 then Set H1 \ (c�(I) ∪ N∗(c�(N∗(I))
8: else Set H2 \ (c�(I) ∪ N∗(c�(N∗(I)))

9: Set K ← K − ‖c�(I)‖ + ‖N∗(c�(I))‖.
10: Let J1 be the first prime set in an optimal solution for H1 and J2 be the first prime

set in optimal solution for H2.
11: if ‖J1‖ > K OR bg(H2) > K − ‖c�(J1)‖ + ‖N∗(c�(J1))‖ then
12: Process c�(J2) and N∗(c�(J2))
13: Call Combine(H1, H2 \ (c�(J2) ∪ N∗(c�(J2))), K − ‖c�(J2)‖ + ‖N∗(c�(J2))‖).
14: else
15: Process c�(J1) and N∗(c�(J1))
16: Call Combine (H1 \ (c�(J1) ∪ N∗(c�(J1))), H2, K − ‖c�(J1)‖ + ‖N∗(c�(J1))‖).

Theorem 1. For trivially perfect bipartite graph H with n vertices the Bud-
getTriviallyPerfect algorithm runs in O(n2) and correctly decides if H can
be processed with budget K (Algorithm 1 and Algorithm 2).

Our algorithm for computing bg(H) when H is bipartite cograph is simi-
lar to Algorithm 1. The main difference is in the way we deal with bipartite
cograph H = (B,S,E) when it is constructed from two bipartite cographs
H1 = (B1, S1, E1) and H2 = (B2, S2, E2) by join operation. Recall that in the
join operation for bipartite cographs, H[B1 ∪ S2] and H[B2 ∪ S1] are bipartite
cliques. Observe that, in this case, there are two possibilities for processing H:

– first process entire B2 then solve the problem for H1 with budget K − ‖B2‖,
and at the end process S2, or

– first process entire B1 then solve the problem for H2 with budget K − ‖B1‖,
and at the end process S1.

For the case when H is constructed from H1 and H2 by union operation, we
call Combine Algorithm 2. The proof of correctness is almost identical to the
proof of Theorem 1.

Theorem 2. bg(H) can be found in polynomial time for bipartite cograph H.

314 J. Kinne et al.

Let H = (B,S, , E) be a bipartite permutation graph. Notice that by defini-
tion 7, the neighborhood of each vertex in S and B form an interval. Note that
the class of circle bipartite graphs G = (X,Y), for which obtaining the optimal
budget is NP-complete, contains the class of bipartite permutation graphs. Let
B[i, j] denote the interval of vertices bi, bi+1, . . . , bj in B. We compute the opti-
mal budget for every B[i, j]. In order to compute bg(H[B[i, j] ∪N∗(B[i, j)]) we
assume that the optimal strategy starts with some sub-interval J of B[i, j] and
it processes c
(J), which is indeed an interval. This is because of the property
of the min-max ordering. We are left with two disjoint instances, B1 and B2

possibility with some vertices in S with neighbors in B1 ∪ c
(J) or in B2 ∪ c
(J).
We then argue how to combine the optimal solutions of B1 and B2 and obtain

an optimal strategy for B[i, j] \ c
(J). We must consider every possible prime
interval J in the range B[i, j] and take the minimum budget. For details, see
Algorithm 3.

Algorithm 3. BudgetPermutation (H,K)
1: Input: Bipartite permutation graph G = (B, S, E) with ordering < on vertices in

B, S i.e. b1 < b2 < · · · < bn, s1 < s2 < · · · < sm which is a min-max ordering
2: Output: Computing the budget for G and optimal strategy
3: for i = 1 to i = n − 1 do
4: for j = 1 to j ≤ n − i do
5: Let H ′ = (B[j, j + i], N∗(B[j, j + i]))
6: Let K′ be the minimum number s.t. Optimal-Budget(H ′, K′) is True
7: Set bg(H ′) = K′ and process H ′ be according to Optimal-Budget(H ′, K′)
8: Let Sr be the set of vertices with neighbors in both B[i, i+j], B[i+j +1, n])
9: Set Hr = H ′ ∪ Sr

10: Let K′ be the minimum number s.t. Optimal-Budget(Hr, K
′) is True

11: Set bg(Hr) = K′ and process Hr be according to Optimal-Budget(Hr, K
′)

12: Let Sl be the set of vertices with neighbors in both B[1, i − 1], B[i, j + i]
13: Set Hl = H ′ ∪ Sl

14: Let K′ be the minimum number s.t. Optimal-Budget(Hl, K
′) is True

15: Set bg(Hl) = K′ and process Hl be according to Optimal-Budget(Hl, K
′)

Theorem 3. Bipartite Ordering Problem on a bipartite permutation graph
with n vertices is solved in time O(n6 log ‖B‖).

We heavily use the min-max ordering property to find bg(H) when H =
(B,S,E) is a bipartite permutation graph. The next natural superclass of bipar-
tite permutation graphs is the class of convex bipartite graphs. A bipartite graph
H is convex if the vertices are ordered in B so that the neighborhood of each
vertex in S is an interval.

Problem 1. Let H be a convex bipartite graph. Is it polynomial to decide the
optimal value of bg(H)?

Vertex Ordering with Precedence Constraints 315

1: function Optimal-Budget(H = (B, S), K)
2: Input: Bipartite permutation graph H = (B, S, E) with ordering < on vertices

in B, S
3: Output: Process H with budget at most K, otherwise "False"
4: if S = ∅ and K ≥ 0 OR H is a bipartite clique and ‖B‖ ≤ K then process H

return True
5: if for every prime I ⊆ B, ‖I‖ > K then return False
6: while ∃ positive prime set I with bg(I) ≤ K do
7: Process c�(I) ∪ N∗(c�(I)) and set H ← H \ c�(I) ∪ N∗(c�(I)).
8: Set K ← K − ‖c�(I)‖ + ‖N∗(c�(I))‖
9: for every prime interval I of H do

10: Set B1 = {b1, b2, . . . , bi} and B2 = {bj , . . . , bn} where bi+1 is the first vertex
of c�(I) and bj−1 is the last vertex of c�(I) in the ordering <

11: Let Si, i = 1, 2 be the set of vertices in S that have neighbors in Bi

� S1 ∩ S2 = ∅
12: Let H1 = H[B1 ∪ S1] and H2 = H[B2 ∪ S2].
13: Set Flag=Combine(H1, H2, K − ‖c�(I)‖ + ‖N∗(c�(I))‖)
14: if Flag=True then
15: return Process of c�(I) together with process of H \ (c�(I)∪N∗(c�(I)))

by Combine Algorithm.

When the instance T = (B,S,E) is a tree with arbitrary weights. It is easy
to see that every prime and positive set form a sub-tree in T ; hence, we can
find all the positive sets in polynomial time. Moreover, once a prime set I and
N∗(I) is removed from T , the remaining becomes a forest. Suppose we have
bg(T1), bg(T2), . . . , bg(Tr), where T1, T2, . . . , Tr are disjoint sub-trees in T \ (I ∪
N∗(I)). Now we can use the Combine Algorithm 2 to combine the optimal
strategy of T1 and T2 and obtain an optimal strategy for T1 ∪ T2, and then the
optimal strategy for T1 ∪ T2 ∪ T3, and eventually an optimal strategy for T and
bg(T). Therefore, we have the following proposition.

Proposition 3. Let T = (B,S,E) together with arbitrary weights be an instance
of the bipartite graph ordering problem. If T is a tree, then bg(T) can be computed
in polynomial time.

4 Linear Program Formulation of the Problem

Let H = (B,S,E) together with the weight be an instance of the bipartite
ordering problem. Suppose there is an ordering < on the vertices of a given
bipartite graph H = (B,S,E) in which for every edge uv of H (u ∈ B and
v ∈ S) u is before v in <. Then we obtain a strategy for solving the budget
minimization on H and decide whether the budget would be K or smaller.
With a given value K for bg(H), we translate this ordering process into a linear
program as follows. For every pair of vertices u, v ∈ B ∪ S, we define variable
0 ≤ Xu,v ≤ 1. We interpret Xu,v = 1 (in integral solution) as placing u before

316 J. Kinne et al.

v in a total ordering. The linear program defines as follows. Minimize K such
that:

∀u ∈ B, v ∈ S, with uv ∈ E, Xu,v = 1
∀u, v ∈ B ∪ S, u
= v, Xu,v +Xv,u = 1

∀u, v, w ∈ B ∪ S, u
= v, Xu,v +Xv,w +Xw,u ≥ 1

∀y ∈ B ∪ S, K +
∑

u∈B

puXu,y +
∑

v∈S

pvXv,y ≥ 0

K ≥ min
v∈S

{
∑

u∈N(v)

|pu|}

∀u, v ∈ S if N(u) ⊂ N(v) then Xu,v = 1
∀u, v ∈ B, if N(u) ⊂ N(v) then Xv,u = 1

∀u, v, w ∈ B ∪ S with w
∈ {u, v} if N(u) = N(v) then Xu,w = Xv,w

There is a one-to-one correspondence between the optimal solutions of the
bg(H) and integral solutions of the above LP. The following table shows the
result of our experiment. We have run the LP on random graphs and integer LP
on those samples (each having 50 vertices) and taken the maximum ratio of the
integral LP by optimal fractional LP.

Graph type Circle
bipartite
graph

Circle
bipartite
graph with
weight

General
bipartite
graph

General
bipartite
graph with
weight

Max Ratio 1.818181818 2.813949433 2.179503945 4.311947725
Number of samples 1943 677 1687 932

We pose the following problem.

Problem 2. Does the bipartite ordering problem admit a constant factor approx-
imation?

Conclusion and Future Works. The bipartite ordering problem has several
applications, there are several open problems which leaves the door open for
future research.

References

1. Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: On the approximability of
single-machine scheduling with precedence constraints. Math. Oper. Res., 653–669
(2011)

Vertex Ordering with Precedence Constraints 317

2. Ambuhl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for sparsest
cut, optimal linear arrangement, and precedence constrained scheduling. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp.
329–337. IEEE (2007)

3. Berger, A., Grigoriev, A., Heggernes, P., van der Zwaan, R.: Scheduling unit-length
jobs with precedence constraints of small height. Oper. Res. Lett. 42(2), 166–172
(2014)

4. Chitnis, R., Egri, L., Marx, D.: List H-coloring a graph by removing few vertices.
In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 313–324.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_27

5. Egri, L., Krokhin, A., Larose, B., Tesson, P.: The complexity of the list homomor-
phism problem for graphs. In: Theory of Computing Systems, pp. 143–178 (2012)

6. Flamm, C., Hofacker, I.L., Maurer-Stroh, S., Stadler, P.F., Zehl, M.: Design of
multistable rna molecules. Rna, pp. 254–265 (2001)

7. Geis, M., et al.: Folding kinetics of large rnas. J. Mol. Biol., 160–173 (2008)
8. Giakoumakis, V., Vanherpe, J.-M.: Bi-complement reducible graphs. Advances in

Applied Mathematics, pp. 389–402 (1997)
9. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph

homomorphisms. Eur. J. Combinatorics, pp. 900–911 (2008)
10. Johannes, B.: On the complexity of scheduling unit-time jobs with or-precedence

constraints. Oper. Res. Lett. 33(6), 587–596 (2005)
11. Maňuch, J., Thachuk, C., Stacho, L., Condon, A.: NP-completeness of the direct

energy barrier problem without pseudoknots. In: Deaton, R., Suyama, A. (eds.)
DNA 2009. LNCS, vol. 5877, pp. 106–115. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10604-0_11

12. Mastrolilli, M., Stamoulis, G.: Restricted max-min fair allocations with inclusion-
free intervals. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012.
LNCS, vol. 7434, pp. 98–108. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32241-9_9

13. Möhring, R.H., Skutella, M., Stork, F.: Scheduling with and/or precedence con-
straints. SIAM J. Comput., 393–415 (2004)

14. Morgan, S.R., Higgs, P.G.: Barrier heights between ground states in a model of
rna secondary structure. J. Phys. A Math. General, 3153 (1998)

15. Muratore, G., Schwarz, U.M., Woeginger, G.J.: Parallel machine scheduling with
nested job assignment restrictions. Oper. Res. Lett., 47–50 (2010)

16. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math., 279–292 (1987)

17. Takizawa, H., Iwakiri, J., Terai, G., Asai, K.: Finding the direct optimal rna barrier
energy and improving pathways with an arbitrary energy model. Bioinformatics
36, 227–235 (2020)

18. Thachuk, C., Maňuch, J., Rafiey, A., Mathieson, L.-A., Stacho, L., Condon, A.:
An algorithm for the energy barrier problem without pseudoknots and temporary
arcs. In: Biocomputing 2010, pages 108–119. World Scientific (2010)

19. Woeginger, G.J.: On the approximability of average completion time scheduling
under precedence constraints. Discrete Appl. Math., 237–252 (2003)

https://doi.org/10.1007/978-3-642-40450-4_27
https://doi.org/10.1007/978-3-642-10604-0_11
https://doi.org/10.1007/978-3-642-10604-0_11
https://doi.org/10.1007/978-3-642-32241-9_9
https://doi.org/10.1007/978-3-642-32241-9_9

Forwards- and Backwards-Reachability
for Cooperating Multi-pushdown Systems

Chris Köcher1(B) and Dietrich Kuske2

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
ckoecher@mpi-sws.org

2 Technische Universität Ilmenau, Ilmenau, Germany

dietrich.kuske@tu-ilmenau.de

Abstract. A cooperating multi-pushdown system consists of a tuple of
pushdown systems that can delegate the execution of recursive proce-
dures to sub-tuples; control returns to the calling tuple once all sub-
tuples finished their task. This allows the concurrent execution since
disjoint sub-tuples can perform their task independently. Because of the
concrete form of recursive descent into sub-tuples, the content of the
multi-pushdown does not form an arbitrary tuple of words, but can be
understood as a Mazurkiewicz trace.

For such systems, we prove that the backwards reachability relation
efficiently preserves recognizability, generalizing a result and proof tech-
nique by Bouajjani et al. for single-pushdown systems. While this preser-
vation does not hold for the forwards reachability relation, we can show
that it efficiently preserves the rationality of a set of configurations; the
proof of this latter result is inspired by the work by Finkel et al. It
follows that the reachability relation is decidable for cooperating multi-
pushdown systems in polynomial time and the same holds, e.g., for safety
and liveness properties given by recognizable sets of configurations.

Keywords: Reachability · Formal Verification · Pushdown
Automaton · Distributed System

1 Introduction

In this paper, we introduce the model of cooperating multi-pushdown systems1

and study the reachability relation for such systems. To explain the idea of
a cooperating multi-pushdown system, we first look at well-studied pushdown
systems. They model the behavior of a sequential recursive program and possess
a control state as well as a pushdown. The top symbol of the pushdown stores
the execution context, e.g., parameters and local variables, the state can be used
1 A more descriptive name would be “cooperating systems of pushdown systems”, but

we refrain from using this term.
This work was done while Chris Köcher was affiliated with the Technische Universität
Ilmenau.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 318–332, 2023.
https://doi.org/10.1007/978-3-031-43587-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_23&domain=pdf
http://orcid.org/0000-0003-4575-9339
https://doi.org/10.1007/978-3-031-43587-4_23

Cooperating Multi-pushdown Systems 319

to return values from a subroutine to the calling routine. Such a system can,
depending on the state and the top symbol, do three types of moves: it can call
a subroutine (i.e., change state and top symbol and add a new symbol on top of
the pushdown), it can do an internal action (i.e., change state and top symbol),
and it can return from a subroutine (i.e., delete the top symbol and store the
necessary information into the state). This leads to the unifying definition of a
transition that, depending on state and top symbol, changes state and replaces
the top symbol by a (possibly empty) word.

A cooperating multi-pushdown system consists of a finite family of push-
down systems (indexed by a set P). Cooperation is realized by the formation
of temporary coalitions that perform a possibly recursive subroutine in a joint
manner. Suppose the system is in a configuration where C ⊆ P forms one of
the coalitions. The execution context of the joint task is distributed between the
top symbols of the pushdowns from the coalition and can only be changed in all
these components at once. As above, there are three types of moves depending
on the top symbols and the states of the systems from the coalition. First, a
(further) subroutine can be called on a sub-coalition C0 ⊆ C. Even more, sev-
eral subroutines can be called in parallel on disjoint sub-coalitions of C. This is
modeled as a change of states and top symbols of C and addition of some further
symbols on the pushdowns from subsets of C. Internal actions of the coalition C
can change the (common) top symbol as well as the states of the systems that
form the coalition C. Similarly, a return move deletes the common top symbol
and changes the states of the systems from C, in this moment, the coalition C is
dissolved and the systems from C are free to be assigned to new coalitions and
tasks by the calling routine. Since several, mutually disjoint coalitions can exist
and operate at any particular moment, the cooperating multi-pushdown system
is a non-sequential model.

Since a cooperating multi-pushdown system consists of several pushdown sys-
tems, a configuration consists of a tuple of local states and a tuple of pushdown
contents; the current division into coalitions is modeled by the top symbols of the
pushdowns: any component forms a coalition with all components that have the
same top symbol a on their stack. Since all these occurrences of the letter a can
only change at once, there is some dependency in the tuple of pushdown contents
of a configuration. It turns out to be convenient and fruitful to understand such
a “consistent” tuple of pushdown contents as a Mazurkiewicz trace. Since the
set of all Mazurkiewicz traces forms a monoid, we can define recognizable and
rational sets of traces and therefore of configurations: Both these classes of sets
of traces enjoy finite representations (by asynchronous automata [19] and NFAs,
resp.) that allow to decide membership, any recognizable set is rational but not
vice versa, any singleton is both, recognizable and rational, and inclusion of a
rational set (and therefore in particular of a recognizable set) in a recognizable
set is efficiently decidable (but not vice versa).

As our main results, we obtain that (1) backwards reachability efficiently pre-
serves the recognizability of sets of configurations while (2) forwards reachability

320 C. Köcher and D. Kuske

efficiently preserves the rationality.1 We also show that asynchronous multi-
pushdown systems (a slight generalization of our model) can model 2-pushdown
systems and therefore have an undecidable reachability relation.

From our positive results, we infer that the reachability relation as well as
certain safety and liveness properties are decidable in polynomial time. Further-
more, the first result implies that EF-model checking is decidable, although one
only obtains a non-elementary complexity bound.

Related Work. Corresponding results for pushdown systems can be found in
[6,11] where rationality and recognizability coincide [14]; Finkel et al. gave a
simple algorithm proving that the forwards reachability relation preserves the
recognizability while this preservation under the backwards reachability relation
was shown by Bouajjani et al. Our proof of (1) generalizes the one by Bouajjani
et al. while the work by Finkel et al. inspired our proof of (2).

Other forms of multi-pushdown systems have been considered by different
groups of authors, e.g., [1–5,7,8,12,15,16,18]. These alternative models may
contain a central control or, similarly to our cooperating systems, local control
states. The models can have a fixed number of processes and pushdowns or they
are allowed to spawn or terminate other processes. Local processes can differ
in their communication mechanism, e.g., by rendevouz or FIFO-channels. The
decidability results concern logical formulas of some form or bounded model
checking problems.

Mazurkiewicz traces as a form of storage mechanism have been considered
by Hutagalung et al. in [13], where multi-buffer systems were studied.

2 Preliminaries

For R ⊆ S2 and s, t ∈ S, let sR := {t ∈ S | sR t} and R t := {s ∈ S | sR t}.
For n ∈ N, [n] = {1, . . . , n}. Let (Si)i∈[n] be a tuple of sets, I, J ⊆ [n]

be two disjoint sets, and s = (si)i∈[n] and t be tuples from
∏n

i=1 Si. We write
s	I = (si)i∈I ∈ ∏

i∈I Si for the restriction of s to the components in I and
(s	I , t	J) for the joint tuple r ∈ ∏

i∈I∪J Si with r	I = s	I and r	J = t	J .
For a word w ∈ A∗, we write Alph(w) for the set of letters occurring in w.
A non-deterministic finite automaton or NFA is a tuple A = (Q,A, I, δ, F)

where Q is a finite set of states, A is an alphabet, I, F ⊆ Q are sets of initial
and accepting states, respectively, and δ ⊆ Q × A × Q is a set of transitions;
its size ‖A‖ is |Q| + |A|. We write Q1

w−→A Q2 if there is a run from some state
p ∈ Q1 to some state q ∈ Q2 labeled with w in A; {p} w−→A {q} is abbreviated
p

w−→A q. The language accepted by A is L(A) := {w ∈ A∗ | I w−→A F}.
We will model the contents of our multi-pushdown systems with the help

of Mazurkiewicz traces; for a comprehensive survey of this topic we refer to
[10]. Traces were first studied in [9] as “heaps of pieces” and later introduced

1 The full version of this paper also shows that backwards (forwards) reachability does
not preserve rationality (recognizability, resp.).

Cooperating Multi-pushdown Systems 321

into computer science by Mazurkiewicz to model the behavior of a distributed
system [17]. The fundamental idea is that any letter a ∈ A is assigned a set of
locations or processes aL ⊆ P it operates on (where P is some set):

A distributed alphabet is a triple D = (A,P,L) where A and P are two
alphabets of letters and processes, respectively, and L ⊆ A×P associates letters
to processes such that aL
= ∅ for each a ∈ A. In this paper, D will always
denote a distributed alphabet (A,P,L).

For a word w ∈ A∗ we denote the set of processes associated with w by
wL :=

⋃
a∈Alph(w) aL ⊆ P . In particular, we set εL := ∅. By πi : A∗ → A∗

i we
denote the projection onto Ai := L i (the alphabet of all letters associated to
process i), i.e., the monoid morphism with πi(a) = a for a ∈ Ai and πi(b) = ε
for b ∈ A \Ai.

Since πi : A∗ → A∗
i is a monoid morphism for all i ∈ [n], also the mapping

π : A∗ →
∏

i∈P
A∗

i : w �→ (πi(w))i∈P

is a monoid morphism. For w ∈ A∗, we call π(w) the (Mazurkiewicz) trace
induced by w. The trace monoid is the submonoid of

∏
i∈P A

∗
i with universe

M(D) = {π(w) | w ∈ A∗}; its elements are traces and its subsets are trace
languages.

We call two words v, w ∈ A∗ with vL∩wL = ∅ independent and denote this
fact by v ‖ w. We can see that v ‖ w implies π(vw) = π(wv).

Let A = (Q,A, I, δ, F) be an NFA. The accepted trace language of A is
T (A) := {π(w) | I w−→A F}. In other words, T (A) is the image of L(A) under
the morphism π. A trace language L ⊆ M(D) is called rational if there is an
NFA A with T (A) = L, i.e., iff L is the image of some regular language in A∗

under the morphism π. A trace language L is recognizable iff its preimage under
the morphism π, i.e. {w ∈ A∗ | π(w) ∈ L}, is regular. Clearly, any recognizable
trace language is rational. The converse implication holds only in case any two
letters are dependent.

A finite automaton that reads letters of a distributed alphabet should consist
of components for all i ∈ P such that any letter a ∈ A acts only on the com-
ponents from aL. This idea leads to the following definition of an asynchronous
automaton. But first, we fix a particular notation: For a tuple (Qi)i∈P of finite
sets Qi, we write Q for the direct product

∏
i∈P Qi.

Definition 2.1. An asynchronous automaton or AA is an NFA A =
(Q,A, I, δ, F) where Q = Q is the product of finite sets Qi of local states and
where, for every (p, a, q) ∈ δ and r ∈ ∏

i∈P\a L Qi, we have

(i) p	P\a L = q	P\a L and (ii) ((p	a L, r), a, (q	a L, r)) ∈ δ .

Here, (i) ensures that any a-transition of A only modifies components from
aL while the other components are left untouched, and (ii) guarantees that
a-transitions are insensitive to the local states of the components in P \ aL.

Every asynchronous automaton accepts a recognizable trace language. Con-
versely, every recognizable trace language L ⊆ M(D) is accepted by some deter-
ministic asynchronous automaton [19].

322 C. Köcher and D. Kuske

3 Introducing Cooperating Multi-pushdown Systems

An AA consists of several NFAs that synchronize by joint actions. In a similar
manner, we will now consider several pushdown systems.

Recall that a pushdown system (or PDS) consists of a control unit (that can
be in any of finitely many control states) and a pushdown (that can hold words
over the pushdown alphabet A). Its transitions read the top letter a from the
pushdown, write a word w onto it, and change the control state. In our model,
we have a pushdown system Pi for every i ∈ P whose pushdown alphabet is Ai.
These systems synchronize by the letters read and written onto their pushdown.

Definition 3.1. An asynchronous multi-pushdown system or aPDS is a tuple
P = (Q,Δ) where Q = Q holds for some finite sets Qi of local states and
Δ ⊆ Q×A×A∗ ×Q is a finite set of transitions such that, for each transition
(p, a, w, q) ∈ Δ and r ∈ ∏

i∈P\aw L Qi, we have

(i) p	P\aw L = q	P\aw L and (ii) ((p	aw L, r), a, w, (q	aw L, r)) ∈ Δ.

Its size ‖P‖ is |Q|+ k · |Δ| where k− 1 is the maximal length of a word written
by any of the transitions (i.e., Δ ⊆ Q×A×A<k ×Q).

The set of configurations ConfP of P equals Q×M(D). For two configurations
(p, π(u)), (q, π(v)) ∈ ConfP we set (p, π(u)) , (q, π(v)) if there is a transition
(p, a, w, q) ∈ Δ and a word x ∈ A∗ with π(u) = π(ax) and π(v) = π(wx). The
reflexive and transitive closure of , is the reachability relation ,∗.

Let C and D be sets of configurations.

– We write C ,∗ D if there are c ∈ C and d ∈ D with c ,∗ d.
– The set C is rational (recognizable, resp.) if, for all q ∈ Q, the trace language
Cq := {π(u) | (q, π(u)) ∈ C} is rational (recognizable, resp.).

– preP(C) := {c ∈ ConfP | c , C} and postP(C) := {d ∈ ConfP | C , d} are
the sets of predecessors/successors of configurations from C, and

pre∗
P(C) :=

⋃

k∈N
prek

P(C) and post∗
P(C) :=

⋃

k∈N
postk

P(C)

are the sets of configurations backwards (forwards, resp.) reachable from some
configuration in C.

The reachability relation for configurations of asynchronous multi-pushdown sys-
tems is, in general, undecidable:

Theorem 3.2. There exists an aPDS with undecidable reachability relation ,∗.

Proof. We start with a classical 2-pushdown system P with an undecidable
reachability relation (its set of states is Q and the two pushdowns use disjoint
alphabets A1 and A2). Let A = A1 ∪ A2 ∪ {-} and P = [2]. We consider the
distributed alphabet D with aL = {i} for a ∈ Ai and -L = {1, 2}.

We simulate P by an aPDS P′ over D as follows. The first process of P′

stores the state of the simulated system P together with a letter from A1 or

Cooperating Multi-pushdown Systems 323

ε, i.e., Q1 = Q(A1 ∪ {ε}), the second process can store a letter from A2 or the
empty word, i.e., Q2 = A2 ∪ {ε}.

A transition (p, (a, b), (u, v), q) of P (that replaces a and b by u and
v on the two pushdowns) is simulated by three transitions of the aPDS:
((pε, .), a, ε, (pa, .)) reads a from the first pushdown and stores it in the first local
state; ((., ε), b,-, (., b)) reads b from the second pushdown, stores it in the sec-
ond local state, and puts - onto both pushdowns; finally, ((pa, b),-, uv, (qε, ε))
replaces - by uv (i.e., π1(uv) = u is written onto the first pushdown and
π2(uv) = v onto the second). ��

To obtain a model with a decidable reachability relation, we therefore have
to restrict aPDS.2 To this aim, we require that any transition can only write
onto pushdowns it reads from.

Definition 3.3. A cooperating multi-pushdown system or cPDS is an aPDS
P = (Q,Δ) with wL ⊆ aL for each transition (p, a, w, q) ∈ Δ.

Example 3.4. Suppose D = ({a, b, c}, {1, 2}, {(a, 1), (a, 2), (b, 1), (c, 2)}). We con-
sider the cPDS P from Fig. 1 where edges from global state p to global state q
labeled a | w visualize global transitions (p, a, w, q). The set of global states of
P is the product {p1, q1}×{p2, q2}. Additionally, the transitions reading b and c
only depend on process 1 and 2, resp. Since bL, cL ⊆ aL, any global transition
(p, x, w, q) satisfies wL ⊆ xL, i.e., P is, indeed, a cPDS.

The following sequence is a run of P from ((p1, p2), π(ac)) to ((q1, q2), π(bb)):

((p1, p2), π(ac)) , ((q1, p2), π(abc)) , ((q1, p2), π(abbc))
, ((q1, q2), π(bbc)) , ((q1, q2), π(bb)) .

P :

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

a | ab
c | ε

a | ab, b | ε

a | ε, c | ε
c | ε

b | ε, c | ε

Fig. 1. The cPDS P from Example 3.4.

In order to decide the reachabil-
ity relation, we will compute, from
a set of configurations C, the set
pre∗

P(C). To represent possibly infi-
nite sets of configurations, we use
P-asynchronous automata (defined
next).

Definition 3.5. Let P = (Q,Δ) be a
cPDS. A P-asynchronous automaton
or P-AA is an AA A = (S, A, ∅, δ, F)
such that Qi ⊆ Si for all i ∈ P .

The P-AA A accepts the following
set C(A) of configurations of P:

{(q, π(w)) ∈ ConfP | q ∈ Q, q w−→A F}.

2 The proof of Theorem 3.2 shows that requiring aw to be connected for any transition
(p, a, w, q) does not yield decidability.

324 C. Köcher and D. Kuske

By the very definition, any set C(A) is a recognizable set of configurations.
Conversely, suppose C ⊆ ConfP is recognizable such that, by definition, all the
languages Cq are recognizable. Then we can represent each of the languages Cq

by an AA Aq. Since q is a P -tuple, we can assume, without loss of generality,
that q is the only initial state of the AA Aq. Following Bouajjani et al. [6], we
can further assume that all these AAs differ in their initial state, only. Thus, we
obtain the following result.

Observation 3.6. Let P = (Q,Δ) be a cPDS. A set of configurations C ⊆
ConfP is recognizable if, and only if, there is a P-AA A with C(A) = C.

4 Computing the Backwards Reachable Configurations

In this section we want to compute the backwards reachable configurations in a
cPDS P. The main result of this section states that the mapping pre∗

P effectively
preserves the recognizability of sets of configurations.

Theorem 4.1. Let P = (Q,Δ) be a cPDS and C ⊆ ConfP be a recognizable
set of configurations. Then the set pre∗

P(C) is recognizable.
Even more, from D, P, and a P-AA A(0), one can construct in polynomial

time a P-AA A that accepts the set pre∗
P(C(A(0))).

The rest of this section is devoted to the proof of this result.
Adapting ideas by Bouajjani et al. [6] from NFAs to AA, we construct a P-AA

A that accepts the set pre∗
P(C(A(0))) of configurations backwards reachable from

C(A(0)). To this aim, we will inductively add new transitions to the P-AA A(0) =
(S, A, ∅, δ(0), F), but leave the sets of states, initial states, and accepting states
unchanged. We can assume (and this assumption is crucial for the correctness of
the construction) that the automaton cannot enter a local state from the cPDS
P, i.e., we have qi ∈ Si \Qi for any (p, a, q) ∈ Δ and any i ∈ aL.

p q q s

p

f
a | u u x

a

P : A(k+1) :

Fig. 2. Visualization of the construction of A(k+1).

Suppose that we already constructed the P-AA A(k). To obtain A(k+1) from
A(k), we just add all transitions (p, a, s) with (p, a, u, q) ∈ Δ and q

u−→A(k) s for
some q ∈ Q and u ∈ A∗ (see Fig. 2). Note that (p, a, u, q) ∈ Δ as well as the
run q

u−→A(k) s operate on components from aL ⊇ uL, only. Hence, the same
applies to the new transition (p, a, s) ensuring that A(k+1) is asynchronous (this
argument requires aL ⊇ uL and would therefore not work for aPDS).

The “limit” of this construction is the P-AA A(∞) = (S, A, ∅, δ(∞), F) with
δ(∞) =

⋃
k∈N

δ(k).

Cooperating Multi-pushdown Systems 325

Example 4.2. Recall the cPDS P from Example 3.4. In Fig. 3 we depict our
algorithm on input P and the set of configurations C = {((q1, q2), ε)}. A P-AA
A(0) = (S1 × S2, A, ∅, δ, F) accepting this set is depicted in the left.

In A(1), we have (q1, p2)
ab−→A(1) (q1, q2) (depicted in bold and red) and, in P,

we have the transition ((p1, p2), a, ab, (q1, p2)) ∈ Δ. The definition of δ(2) implies
that ((p1, p2), a, (q1, q2)) is a new local transition.

The construction terminates with A(2) which is a P-AA that accepts the set
of configurations backwards reachable from C =

{
((q1, q2), ε)

}
.

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

c

c

b

a, c

b, c

c

a c

b

a, c

b, c

Fig. 3. The P-AA A(0), A(1), and A(2) (from left to right) from Example 4.2. (Color
figure online)

Now, we show C(A(∞)) = pre∗
P(C(A(0))). First, by induction on k ∈ N, one

can easily prove prek
P(C(A(0))) ⊆ C(A(k)) (which ensures the inclusion “⊇”).

On the other hand, Example 4.2 shows that the converse inclusion C(A(k)) ⊆
prek

P(C(A(0))) does not necessarily hold. The following lemma is the central
argument in the proof of the inclusion “⊆” as it allows to infer C(A(k)) ⊆
pre∗

P(C(A(0))) for all k ∈ N.

Lemma 4.3. Let k ∈ N, v ∈ A∗, p ∈ Q, and s ∈ S with p
v−→A(k) s. Then there

are a global state r ∈ Q and a word w ∈ A∗ with the following properties:

(a) (p, π(v)) ,∗ (r, π(w)) and (b) r w−→A(0) s.

Proof Idea. We only indicate where our proof differs significantly from a similar
one from [6] for pushdown systems. In general, the lemma is shown by induction
on k, and the significant difference occurs in the induction step. So assume the
lemma holds for k. To prove it for k+1, one proceeds by induction on the length
of the word v. Again, the significant difference occurs in the induction step.
Hence, we assume that the lemma holds for k + 1 and any word of length at
most n and we will prove it for a word v = v′a ∈ An+1 with a ∈ A and v′ ∈ An.

So let p ∈ Q and s ∈ S such that p v−→A(k+1) s. Since p v′a−−→A(k+1) s, there is

some global state s′ ∈ S with p
v′
−→A(k+1) s′ a−→A(k+1) s.

326 C. Köcher and D. Kuske

p

q′

r

s′ s

t

k + 1 k + 1

k + 1

0

0

0

v′ a

w′

a

w′′

w′

Fig. 4.

Since |v′| = n, the inductive hypothesis
provides a global state q′ ∈ Q and a word w′ ∈
A∗ with (p, π(v′)) ,∗ (q′, π(w′)) and q′ w′

−→A(0)

s′. Note that the former implies in particu-
lar (p, π(v)) = (p, π(v′a)) ,∗ (q′, π(w′a)). The
difficult case is if s′ a−→A(k) s does not hold (see
Fig. 4 where edges w−→A(�) are denoted by w−→�).
Then (s′, a, s) is a new transition in δ(k+1)

which implies s′
i ∈ Qi for all i ∈ aL. Recall

that the P-AA A(0) cannot enter a local state
of the pushdown system. Here, our argument differs from the one in [6]), as
we can only infer w′ L∩ aL = ∅. Setting t = (s	a L, q′	w′ L, s′	P\w′a L), one can
nevertheless complete the picture. ��

The remaining arguments for Theorem 4.1 are those from [6].

5 Computing the Forwards Reachable Configurations

The main result of this section is that the mapping post∗
P efficiently preserves

rationality. Here, we represent a rational set of configurations C ⊆ Q × M(D)
by a tuple A of NFAs Aq for q ∈ Q that, for all global states q, accept the trace
language T (Aq) = Cq = {π(w) | (q, π(w)) ∈ C}. If this is the case, we say “the
tuple A accepts C”.

Theorem 5.1. Let P be a cPDS and C ⊆ ConfP be rational. Then post∗
P(C) is

rational. In particular, we can compute a tuple of NFAs accepting post∗
P(C) from

P and a tuple of NFAs accepting C. If D is fixed, this construction is possible
in polynomial time.

The proof of this theorem is inspired by the work by Finkel et al. [11]. To
explain its idea and particularities, we first start with a classical pushdown sys-
tem P = (Q1,Δ). Suppose there are transitions (p, a, bv, q) and (q, b, ε, r) imply-
ing (p, ax) , (q, bvx) , (r, vx) for any word x. If we add the transition (p, a, v, r)
to Δ that allows to go from (p, ax) to (r, vx) in one step, the reachability relation
does not change. We keep adding such “shortcuts” and call the resulting push-
down system P(∞). Then, any run of the original system P can be simulated by
a run of the system with shortcuts P(∞) that first shortens the pushdown and
then writes onto the pushdown. It follows that, for pushdown systems P, the
mapping post∗

P preserves rationality.
The crucial point of the above construction is that any run of the system

P(∞) can be brought into some “simple form” by using shortcuts. Here, “simple
form” means that it consists of two phases: the pushdown decreases properly
in every step of the first phase and does not decrease in any step of the second
phase.

Our strategy in the proof of Theorem 5.1 will extend the above idea:

Cooperating Multi-pushdown Systems 327

1. First, one demonstrates that Theorem 5.1 holds for “homogeneous” systems
that formalize and strengthen the two types of phases from above:

A cPDS P = (Q,Δ) is homogeneous if one of the following holds.
(1) All transitions (p, a, w, q) ∈ Δ satisfy w = ε.

(2) There is X ⊆ P such that all transitions (p, a, w, q) ∈ Δ satisfy aL = X
and w
= ε.

This means, P is homogeneous if either no transition writes anything or if all
transitions read exactly from the same subset X ⊆ P of processes and write
at least one letter. In particular, in the second case we have aL = bL for
each pair of transitions (p, a, v, q), (r, b, w, s) ∈ Δ (but not necessarily a = b).

2. Using the result on homogeneous systems, one demonstrates Theorem 5.1 for
“saturated” systems, i.e., systems where no new “shortcuts” can be added:

A cPDS P = (Q,Δ) is saturated if (p, a, ubv, q), (q, b, ε, r) ∈ Δ with u ‖ b
implies (p, a, uv, r) ∈ Δ.

This step differs significantly from the above arguments from [11] as the main
difficulty is to show that the number of “phases” can be bounded (the bound
is linear in the number of sets aL ⊆ P which is bounded by |A|).

3. Finally, Proposition 5.6 proves Theorem 5.1 in full generality by showing that
any system can be saturated by adding shortcuts.

5.1 Forwards Reachability in Homogeneous Systems

Let P = (Q,Δ) be a cPDS and let D be a rational set of configurations.
If Δ ⊆ Q×A×{ε}×Q, then any transition shortens the pushdowns. Hence,

the effect of post∗
P is a left quotient of Dq wrt. a recognizable trace language.

Now suppose X ⊆ P and aL = X as well as u
= ε for all transitions
(p, a, u, q) ∈ Δ. Then, dually to the above case, the effect of post∗

P is the con-
catenation of Dq and a rational (not necessarily recognizable) trace language.

It follows (in both cases), that post∗
P(D) is rational. A closer analysis reveals

that also the remaining claims of Theorem 5.1 hold for homogeneous systems.

5.2 Forwards Reachability in Saturated Systems

Recall the constructed pushdown system with just one pushdown P(∞) from the
beginning of this section. This pushdown system is saturated. We learned that

(0, 0, 0) (1, 0, 0) (2, 0, 0) (3, 0, 0)

a | abc

a | c

b | ε

b | ε

b | bde

b | e

d | ε

Fig. 5. The cPDS from Example 5.2.

328 C. Köcher and D. Kuske

any run in P(∞) can be simulated by a run consisting of two phases: first, the
pushdown shortens and then, it increases. The following example shows that this
is not possible in systems with more than one pushdown.

Example 5.2. We consider the distributed alphabet D = (A,P,L) with A =
{a, b, c, d, e} and P = {1, 2, 3} where aL = P , bL = {1, 2}, cL = {3}, dL = {1},
and eL = {2}. Further, let P = (Q,Δ) be the saturated cPDS from Fig. 5. The
following is the only run from the configuration (0, π(a)) to the configuration
(3, π(e4c4)) where we write n for the state (n, 0, 0):

(0, π(a)) ,3 (0, π(abcbcbc)) , (1, π(cbcbcbc)) = (1, π(b3c4))

,2 (2, π(bc4))

,3 (2, π(bdededec4)) , (3, π(edededec4)) = (3, π(d3e4c4))

,3 (3, π(e4c4))

Note that this run splits into four phases (that correspond to the four lines
above); it increases its pushdowns in the first and third and decreases them in
the second and fourth.

So far, we used the term “phase” without defining it formally. To be a bit
more precise, a “phase” is a run of some maximal homogeneous subsystem of P.
These subsystems are defined next.

Definition 5.3. Let P = (Q,Δ) be a cPDS.

1. Let Δε = {(p, a, ε, q) ∈ Δ} and Pε = (Q,Δε).
2. For X ⊆ P , let ΔX = {(p, a, u, q) ∈ Δ | aL = X and u
= ε} and PX =

(Q,ΔX).

To simplify notation, we write ,ε for ,Pε
and ,X for ,PX

for any X ⊆ P .

Since Δ is the disjoint union of the subsets Δε and ΔX for X ⊆ P , any run of
P splits uniquely into maximal subruns of these subsystems and these subruns
are precisely what we called “phase”.

For X ⊆ P , set
X = ,∗
ε ◦ ,+

X ⊆ ConfP × ConfP. In other words, c1
X

c2 means that the system P has a run from c1 to c2 that first shortens the
pushdowns and then, in the second phase, uses transitions from ΔX , only. Note
that the first (deleting) phase is allowed to be empty while the second (writing)
phase is required to be non-empty.

For X = (Xi)i∈[n] with Xi ⊆ P , set
X =
X1 ◦
X2 ◦ · · · ◦
Xn
.

The binary relation ,∗ is the union of all relations
X ◦ ,∗
ε for X a sequence

of subsets of P of arbitrary length. Our next aim is to show that we only need to
consider sequences X of bounded length. The central lemma proves that, under
certain conditions,
X0 ◦
X is contained in
X , i.e., that we can shorten the
sequence X0X.

Lemma 5.4. Let P = (Q,Δ) be a saturated cPDS. Let X0, X1, . . . , Xn+1 ⊆ P
such that

(i) X0 ⊆ Xn+1 and (ii) Xi
⊆ Xn+1 for all 1 ≤ i ≤ n.
Then
(X0,X1,...,Xn+1) ⊆
(X1,...,Xn+1).

Cooperating Multi-pushdown Systems 329

Proof Idea. The central argument of the proof goes as follows: Suppose we have

c0 , c1
(X1,X2,...,Xn) ◦ ,∗
ε ◦ ,Xn+1 d

and let (p, a, u, q) ∈ Δ with aL = X0 denote the transition used in the first step.
The proof then proceeds by induction on the length of the word u. If u = ε, we
get c0 ,ε c1 implying c0
(X1,...,Xn+1) d. Now let u
= ε. By (i), the run from
c1 to d reads from its pushdowns, at least once, a letter b with bL∩X0
= ∅;
we consider the first such transition t. If t ∈ Δε, the choice of t allows to prove
that it can be executed at the very beginning (i.e., in the configuration c1).
Using that P is saturated, the first two transitions can be combined into one
of the form (p, a, u′, q′) with |u′| < |u| such that the induction hypothesis is
applicable. If t /∈ Δε, property (ii) implies that it is the very last transition
(that leads to the configuration d) and that aL = bL. Using (ii), it follows that
the very first transition can be postponed to the last-but-one position implying
c0
(X1,...,Xn) ◦ ,∗

ε ◦
2
Xn+1

d. ��
It follows from the above lemma that ,∗ is the union of all relations
X where

the sets in the sequence X are mutually distinct implying that the length of X
is bounded. Since the subsystems Pε and PX are homogenous, the arguments
from Sect. 5.1 ensure that Theorem 5.1 holds for saturated systems.

5.3 Saturating a System

It remains to transform an arbitrary system into an equivalent saturated one.
For a classical pushdown system (with just one pushdown), the idea is very
simple: if there are transitions (p, a, bw, q) and (q, b, ε, r), then adding the tran-
sition (p, a, w, r) does not change the behavior and transforms the system closer
to a saturated one. In the multi-pushdown setting, the technicalities are a bit
more involved: suppose we have the transitions (p, a, cbw, q) and (q, b, ε, r) with
cL∩ bL = ∅, i.e., b ‖ c. Then π(cbw) = π(bcw), i.e., after doing the first transi-
tion (that writes the trace π(cbw) = π(bcw)), the second transition (eliminating
b) can be executed immediately. Therefore, also in this situation, we add the
transition (p, a, cw, r) to get closer to a saturated system.

Now, we construct cPDS P(k) = (Q,Δ(k)) for any k ∈ N as follows:

– we set Δ(0) := {(p, a, lnf(w), q) | (p, a, w, q) ∈ Δ}.3
– To obtain Δ(k+1), we add to the set Δ(k) all transitions (p, a, lnf(uv), r)

for which there are a letter b ∈ A and a global state q ∈ Q such that
(p, a, ubv, q), (q, b, ε, r) ∈ Δ(k) and u ‖ b.

Let Δ(∞) =
⋃

k≥0Δ
(k) be the “limit” of the increasing sequence of sets Δ(k).

Note that the length of words written by transitions in Δ(∞) is bounded by the
length of words written by transitions in Δ(0); hence Δ(∞) is finite.

3 lnf(w) denotes the lexicographic normal form of the trace π(w). The use of lnf(w)
instead of w allows to easily prove a polynomial upper bound for the number of
transitions.

330 C. Köcher and D. Kuske

Example 5.5. Recall the cPDS P from Example 3.4. In Fig. 6 we depict our
construction of the multi-pushdown systems P(k) for k ∈ {0, 1, 2}. It can be
verified that P(2) = P(3).

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

(p1, p2)

(q1, p2)

(p1, q2)

(q1, q2)

a | ab

c | ε

a | ab, b | ε

a|ε, c|ε

c | ε

b | ε, c | ε

a | ab

c | ε

a | b

a | ab, b | ε

a|ε, c|ε
a | b

c | ε

b | ε, c | ε

a | ab

c | ε

a | b, a | ε

a | ab, b | ε

a|ε, c|ε
a | b

c | ε

b | ε, c | ε

Fig. 6. The cooperating multi-pushdown system P = P(0), P(1), and P(2) = P(∞)

(from left to right). New transitions are marked in bold and red. (Color figure online)

One can then show that the pair P(∞) = (Q,Δ(∞)) is a cPDS and that its
reachability relation coincides with that of the original system P.

Proposition 5.6. Let P be a cPDS. Then, in time polynomial in ‖P‖|P |, one
can construct an equivalent saturated system P(∞), i.e., a saturated cPDS with
,∗

P = ,∗
P(∞) .

6 Summary, Consequences, and Open Questions

We proved that the backwards reachability relation of communicating multi-
pushdown systems efficiently preserves the recognizability of a set of configura-
tions and that the forwards reachability relation efficiently preserves rationality.
Conversely, one can demonstrate that the backwards reachability relation does
not preserve rationality (i.e., there is a cPDS and a rational set C of configura-
tions such that pre∗(C) is not rational anymore). Similarly, one can demonstrate
that the forwards reachability relation does not preserve recognizability.

It is decidable whether a given rational set of traces is contained in a given
recognizable set of traces. Hence our positive results allow to decide, for C1

rational and C2 recognizable, the following questions.

– post∗(C1) ⊆ C2, or, since the class of recognizable trace languages is closed
under complementation, post∗(C1) ∩ C2 = ∅. This amounts to a safety prop-
erty.
Since singleton sets are both recognizable and rational, this also implies that
the reachability relation is decidable.

Cooperating Multi-pushdown Systems 331

– post∗(C1) ∩ C2
= ∅. Since the set C2 of configurations with a given global
state is recognizable, this implies that the control state reachability problem
is decidable for C1 rational.

– C1 ⊆ pre∗(C2).
– post∗(C1) ⊆ pre∗(C2) which amounts to a liveness property: From every con-

figuration reachable from C1, we can reach a configuration from C2. This
property can also by expressed by the EF-formula C1 ∧ ¬EF (¬EFC2). More
generally, EF-model checking is decidable for cPDS, although our results allow
to bound the running time only non-elementary.

The next and obvious open question regarding the verification of cPDS, one
would have to consider the recurrent reachability, i.e., the question whether,
starting from some configuration, there is an infinite run that visits some global
state infinitely often. This could then form the basis for algorithms deciding
properties that are given by formulas from linear time temporal logics.

Since we can see cPDS as a natural extension of pushdown systems from word
semantics to trace semantics, another open problem is to find some generalized
context-free grammars accepting the class of languages of cPDS. Additionally,
one could compare this new model with other known models for multi-pushdown
systems.

References

1. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Controllers for the verification of
communicating multi-pushdown systems. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 297–311. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44584-6 21

2. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Verifying communicating multi-
pushdown systems via split-width. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11936-6 1

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of ordered multi-pushdown
automata is 2ETIME-complete. Int. J. Found. Comput. Sci. 28(8), 945–976 (2017)

4. Babić, D., Rakamarić, Z.: Asynchronously communicating visibly pushdown sys-
tems. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE 2013. LNCS, vol.
7892, pp. 225–241. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38592-6 16

5. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model checking multi-stack
systems. Theory Comput. Syst. 60(4), 695–736 (2017)

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 10

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551
(2003)

https://doi.org/10.1007/978-3-662-44584-6_21
https://doi.org/10.1007/978-3-662-44584-6_21
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1007/978-3-642-38592-6_16
https://doi.org/10.1007/978-3-642-38592-6_16
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/3-540-63141-0_10

332 C. Köcher and D. Kuske

8. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 36

9. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et
réarrangements. Lecture Notes in Mathematics, vol. 85. Springer, Heidelberg
(1969). https://doi.org/10.1007/BFb0079468

10. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995)
11. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking

pushdown systems. Electron. Notes Theoretical Comput. Sci. 9, 27–37 (1997)
12. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-

nicating pushdown systems. Log. Methods Comput. Sci. 8(3) (2012)
13. Hutagalung, M., Hundeshagen, N., Kuske, D., Lange, M., Lozes, É.: Multi-buffer

simulations: decidability and complexity. Inf. Comput. 262(2), 280–310 (2018)
14. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shan-

non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–40. Annals of Mathematics
Studies, vol. 34. Princeton University Press (1956)

15. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE Computer Society (2007)

16. La Torre, S., Napoli, M., Parlato, G.: Reachability of scope-bounded multistack
pushdown systems. Inf. Comput. 275, 104588 (2020)

17. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. Ser. 6(78) (1977)

18. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

19. Zielonka, W.: Notes on finite asynchronous automata. RAIRO - Theor. Inf. Appl.
21(2), 99–135 (1987)

https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/11539452_36
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/978-3-540-31980-1_7

Shortest Dominating Set Reconfiguration
Under Token Sliding

Jan Matyáš Křišťan1(B) and Jakub Svoboda2

1 Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, 160 00, Prague, Czech Republic

kristja6@fit.cvut.cz
2 Institute of Science and Technology, Klosterneuburg, Austria

jakub.svoboda@ist.ac.at

Abstract. In this paper, we present novel algorithms that efficiently
compute a shortest reconfiguration sequence between two given dominat-
ing sets in trees and interval graphs under the Token Sliding model.
In this problem, a graph is provided along with its two dominating sets,
which can be imagined as tokens placed on vertices. The objective is
to find a shortest sequence of dominating sets that transforms one set
into the other, with each set in the sequence resulting from sliding a
single token in the previous set. While identifying any sequence has been
well studied, our work presents the first polynomial algorithms for this
optimization variant in the context of dominating sets.

Keywords: Reconfiguration · Dominating set · Trees · Interval
graphs · Algorithms

1 Introduction

Reconfiguration problems arise when the goal is to transform one feasible solu-
tion into another through a series of small steps, while ensuring that all interme-
diate solutions remain feasible. These problems have been widely studied in the
context of graph problems, such as Independent Set [1,2,7,14], Dominat-
ing Set [3–5,10,15,18], and Shortest Paths [8,13]. Reconfiguration problems
have also been studied in the context of Satisfiability [9,16]. See [17] for a
general survey.

In the case of the Dominating Set and other graph problems, the most com-
monly studied reconfiguration rules are Token Jumping and Token Sliding.
The feasible solution can be represented by tokens placed on the vertices of a
graph. Under Token Jumping, tokens can be moved one at a time to any other
vertex, while under Token Sliding, tokens can only be moved one at a time
to a neighboring vertex.

We focus on the Token Sliding variant, particularly on finding a shortest
reconfiguration sequence. This optimization variant has been extensively studied
in the context of reconfiguring solutions for Shortest Paths [13], Indepen-
dent Set [11,19], and Satisfiability [16].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 333–347, 2023.
https://doi.org/10.1007/978-3-031-43587-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_24&domain=pdf
http://orcid.org/0000-0001-6657-0020
http://orcid.org/0000-0002-1419-3267
https://doi.org/10.1007/978-3-031-43587-4_24

334 J. M. Křišťan and J. Svoboda

Table 1. Complexities of problems of reconfiguring dominating sets under Token
Sliding on various graph classes. The decision problem results are due to [4].

Graph class Decision problem Optimization variant

Trees P O(n) (Corollary 1)
Interval graphs P O(n3) (Theorem 2)
Dually chordal graphs P open
Split PSPACE-complete nω(1)

Bipartite PSPACE-complete nω(1)

Planar PSPACE-complete nω(1)

Our main contribution is the presentation of two polynomial algorithms for
finding a shortest reconfiguration sequence between dominating sets on trees
and on interval graphs. This is achieved through a novel approach to finding a
reconfiguration sequence, combined with a natural lower bound on their lengths.

We extend the results of Bonamy et al. [4], who have shown that a reconfig-
uration sequence between dominating sets under Token Sliding can be found
in polynomial time when the input graph is a dually chordal graph. This is a
class of graphs encompassing both trees and interval graphs.

We provide a brief overview of the known results in Table 1, along with our con-
tributions. The lower bound for cases where the reachability problem is PSPACE-
hard follows from the fact that the reconfiguration sequence must have superpoly-
nomial length in some instances (unless PSPACE = NP), as otherwise, a reconfig-
uration sequence would serve as a polynomial-sized proof of reachability.

2 Preliminaries

Graphs and Trees. Given a graph G and vertex v, we denote the set of neighbors
of v by N(v); moreover, N [v] = N(v) ∪ {v}. Given two vertices v and u, we
denote dG(v, u) as the distance between v and u, that is the number of edges on
a shortest path between v and u.

Given a rooted tree T rooted at r and vertex v, we denote: the subtree below
v as T [v]; the depth of vertex v as d(v) = d(v, r); the parent of v as p(v). Let
σ(u, v) be the set of vertices that follow u on a shortest path from u to v. We
assume that σ(u, u) = ∅.

Multisets. Formally, a multiset H of elements from a base set S is defined as a
multiplicity function H : S → N∪{0}. We define the support of H as Supp(H) =
{v | H(v) ≥ 1}. Let H and I be multisets, then H∩I = min(H, I), H∪I = H+I,
H \ I = max(H − I, 0), H/I = (H \ I) ∪ (I \H). The cardinality is defined as
|H| =

∑
v∈S H(v) and v ∈ H if v ∈ Supp(H). The Cartesian product H × I is a

multiset of base set S×S such that (H×I)((u, v)) = H(u) ·I(v) for all u, v ∈ S.
Note that if one of the operands is a set, we can assume that it is a multiset

with multiplicities of 1 for all elements in the set.

Shortest Dominating Set Reconfiguration Under Token Sliding 335

Graph Problems. Given a graph G = (V,E), a set D of vertices is dominating
if every vertex is either in D or a neighbor of a vertex in D. A multiset H is
dominating if Supp(H) is dominating. We say that given a set S of vertices, the
vertices with a neighbor in S are dominated from S.

For trees, we solve a more general problem called reconfiguration of hitting
sets. A hitting set of a set system S is a set H such that for each S ∈ S it holds
H ∩ S
= ∅. A multiset H is a hitting set if Supp(H) is a hitting set.

Reconfiguration Sequence. Given a graph G a multiset D of its vertices repre-
senting the placement of tokens, we denote D(u → v) = (D \ {u}) ∪ {v} the
multiset resulting from jumping a token on u to v (or sliding a token on u to v if
{u, v} ∈ E(G)). Given a graph G and a set Π of feasible solutions, we say that
a sequence of multisets D1, D2, . . . , D� (of length
) is a reconfiguration sequence
under Token Sliding between D1, D� ∈ Π if

– Di ∈ Π for all 1 ≤ i ≤
,
– Di+1 = Di(u → v) such that v ∈ V (G), u ∈ Di and {u, v} ∈ E(G) for all

1 ≤ i <
.

The sequence can be concisely represented by a sequence of moves. Given a
multiset Ds, moves (u1, v1), . . . , (uk−1, vk−1) induce sequence D1, . . . , Dk such
that D1 = Ds and Di+1 = Di(ui → vi) for all 1 ≤ i < k. This allows us to
formally give the main problem of this paper.

Shortest reconfiguration of dominating sets under Token Slid-
ing
Input: Graph G = (V,E) and two dominating sets Ds and Dt.
Output: Shortest sequence of moves (u1, v1), . . . , (uk−1, vk−1) inducing a
reconfiguration sequence under Token Sliding between Ds and Dt.

In the case of trees, we design an algorithm that finds a reconfiguration
sequence whenever the feasible solutions can be expressed as hitting sets of a set
system S such that every S ∈ S induces a subtree of the input tree T . Several
problems can be formulated in terms of such hitting sets.

If S is the set of all closed neighborhoods of T , then the hitting sets of S are
exactly the dominating sets of T . If S is the set of all edges, then the hitting
sets are exactly all vertex covers of T . An instance of an (unrestricted) vertex
multicut is equivalent to a hitting set problem with S being the set of all paths
which must be cut.

The general problem of reconfiguring hitting sets is as follows.

Shortest reconfiguration of hitting sets under Token Sliding
Input: Graph G = (V,E) and two hitting sets Hs and Ht of a set system
S ⊆ 2V (T).
Output: Shortest sequence of moves (u1, v1), . . . , (uk−1, vk−1) inducing a
reconfiguration sequence under Token Sliding between Hs and Ht.

336 J. M. Křišťan and J. Svoboda

Reconfiguration Graph. Given a graph G and an integer k, the reconfiguration
graph R(G, k) has as vertices all feasible solutions, in our case dominating mul-
tisets, of size k. Two vertices are adjacent whenever one can be reached from the
other in a single move, i.e. sliding a token. Note that the shortest reconfiguration
of dominating sets under Token Sliding between Ds and Dt is equivalent to
finding a shortest path in R(G, |Ds|) between Ds and Dt. Furthermore, as each
move under Token Sliding is reversible, the edges of R(G, k) are undirected.
Thus, finding a shortest path from Ds to Dt is equivalent to finding a shortest
path from Dt to Ds.

It follows that for Ds and Dt, if Ds
= Dt and both are in the same connected
component of R(G, |Ds|), then dR(G,|Ds|)(Ds, Dt) is the minimum number of
moves inducing a reconfiguration sequence between Ds and Dt. If G and |Ds| is
clear from the context, we consider R = R(G, |Ds|).
Interval Graphs. A graph G is an interval graph if each vertex v can be mapped
to a different closed interval I(v) on the real line so that v, u ∈ E if and only
I(v) ∩ I(u)
= ∅. Such a mapping to intervals is called interval representation.

We denote the endpoints of an interval I(v) as
(v) and r(v) so that
I(v) = [
(v), r(v)]. Every interval graph has an interval representation with
unique integer endpoints which can be computed in linear time [6], we assume
such representation is available.

We say that interval I is to the left of J (or that J is to the right of I)
if r(I) <
(J). Similarly, we say that I is nested in J (or that J contains I)
if
(J) <
(I), r(I) < r(J). Furthermore, we say that I left-intersects J (or
that J right-intersects I) if
(I) <
(J) < r(I) < r(J). Note that every pair of
intervals is in exactly one of those relations. We say that two vertices u and v of
an interval graph are in a given relationship if their intervals I(u) and I(v) in a
fixed interval representation are in the given relationship.

3 Lower Bounds on Lengths of Reconfiguration Sequences

We can obtain a lower bound on the length of a reconfiguration sequence by
dropping the requirement that the tokens induce a feasible solution (such as a
dominating set) at each step. The problem of finding such shortest reconfigu-
ration sequence is polynomial-time solvable by reducing to the minimum-cost
matching in bipartite graphs.

Let G be a graph, Ds, Dt ⊆ V (G) be the multisets representing tokens. Then
M ⊆ Ds × Dt is a matching between Ds and Dt if for every v ∈ Ds, there is
exactly Ds(v) pairs (v, ·) ∈ M and similarly for every v ∈ Dt, there is exactly
Dt(v) pairs (·, v) ∈ M . Note that M is a multiset and the same pair may be
contained in M multiple times.

We say that u ∈ Ds and v ∈ Dt are matched in M if (u, v) ∈ M . We also
use M(u) to denote the set of matches of u, that is the vertices v such that
(u, v) ∈M . The cost c(M) of the matching M is defined as

c(M) =
∑

(u,v)∈M

dG(u, v) ·M(u, v).

Shortest Dominating Set Reconfiguration Under Token Sliding 337

We say that a matching has minimum cost if its cost is the minimum over all
possible matchings between Ds and Dt and denote this cost as c∗(Ds, Dt). We
use σM (u) to denote the vertices which follow u on some shortest path to some
match M(u)
= u. Formally

σM (u) =
⋃

v
=u:(u,v)∈M

σ(u, v).

We define M−1 so that M−1(v, u) = M(u, v) for all u ∈ Ds, v ∈ Dt.

Lemma 1. Every sequence of moves inducing a reconfiguration sequence
between Ds and Dt under Token Sliding has length at least c∗(Ds, Dt).

Proof. Suppose a reconfiguration sequence using fewer than c∗(Ds, Dt) moves
exists. Let M be a matching between Ds and Dt of minimum cost. Then we can
track the moves of each token and construct a matching M ′ between Ds and Dt

given by the starting and ending position of each token. Note that the cost of
each matched pair is at most the length of the path travelled by the given token.
Thus in total the cost of M ′ is at most the total number of moves used. Hence,
we have c(M ′, Ds, Dt) < c∗(Ds, Dt), a contradiction. ��

The following observation shows that in a minimum-cost matching, if a token
can be matched with zero cost, we can assume that is the case for all such tokens.

Lemma 2. For graph G, let Ds, Dt be multisets of the same size and let I =
Ds ∩Dt. Then there exists minimum-cost matching M in G between Ds and Dt

such that for every v ∈ I we have M(v, v) = I(v).

Proof. Given a minimum matching M between Ds and Dt and v such that
M(v, v) < I(v), we show that we can produce M ′ of the same cost such that∑

u∈I M
′(u, u) >

∑
u∈I M(u, u). Note that there exist (x, v), (v, y) ∈ M with

x
= v, y
= v as otherwise M((v, v)) = I(v). Then we define

M ′ = (M \ {(x, v), (v, y)}) ∪ {(v, v), (x, y)}.

We have c(M ′) − c(M) = −dG(x, v) − dG(v, y) + dG(v, v) + dG(x, y) =
−dG(x, v)−dG(v, y)+dG(x, y). From the triangle inequality dG(x, y) ≤ dG(x, v)+
dG(v, y), thus we have that the cost of M ′ is at most the cost of M and thus
is minimum. By repeated application, we arrive at minimum-cost matching M∗

with M∗(v, v) = I(v) for all v. ��
The following observation shows that, given Ds and Dt, if we pick a token

in Ds and slide it along an edge to decrease its distance to its match in a
minimum-cost matching, the resulting D′

s and Dt have minimum cost of match-
ing of exactly one less than Ds and Dt. Thus if each move in the reconfiguration
sequence is of such a kind, the length of the resulting sequence will match the
lower bound of Lemma 1.

338 J. M. Křišťan and J. Svoboda

Lemma 3. Let M∗ be a minimum-cost matching between Ds and Dt, (u, g) ∈
M∗ and v ∈ σ(u, g) a vertex that follows u on a shortest path from u to g.
Furthermore, let

M =
(
M∗ \ {(u, g)}) ∪ {(v, g)}.

Then M is a minimum-cost matching between Ds(u→ v) and Dt. Furthermore,
c∗(Ds, Dt) = c∗(Ds(u→ v), Dt) + 1.

Proof. From definition c(M∗) − c(M) = dG(u, g) − dG(v, g), but v is the vertex
on the path from u to g, so dG(u, g) − dG(v, g) = 1 and c∗(Ds(u → v), Dt) ≤
c∗(Ds, Dt) − 1.

Suppose that c∗(Ds(u→ v), Dt) < c∗(Ds, Dt)− 1, i.e., there exists matching
M ′ between Ds(u→ v) and Dt such that c(M ′) < c(M). From M ′, we construct
a matching M ′′ between Ds and Dt such that c(M ′′) < c(M∗), which is a
contradiction.

Let x ∈ M ′(v) and set M ′′ = (M ′ \ {(v, x)}) ∪ {(u, x)}. The cost c(M ′′) ≤
c(M ′)+1, since the distance between v and u is 1. That means if c(M ′) < c(M),
then c∗(Ds, Dt) < c(M∗), but M∗ is minimum-cost matching.

Therefore, M is a minimum-cost matching between Ds(u → v) and Dt and
c∗(Ds, Dt) = c∗(Ds(u→ v), Dt) + 1. ��

4 Algorithms for Finding a Shortest Reconfiguration
Sequence

4.1 Trees

We present an algorithm that, given a tree T and two hitting sets Hs,Ht of a set
system S such that every S ∈ S induces a subtree of T , finds a shortest recon-
figuration sequence between Hs and Ht under Token Sliding. As dominating
sets are exactly the hitting sets of closed neighborhoods, the algorithm finds
a shortest reconfiguration sequence between two dominating sets. Note that S
need not be provided on the input.

Consider the reconfiguration graph R(G, |Hs|), whose vertices are all the
hitting multisets of S of size |Hs|. The high-level idea is to extend two paths
in R(G, |Hs|), one from Hs and another from Ht, until they reach a common
configuration. We repeatedly identify a subtree T [v] of the rooted T for which
the configurations Hs and Ht are identical, except for v itself. Then, we modify
either Hs or Ht by sliding the token (or tokens) on v to its parent, ensuring that
Hs and Ht become equal when restricted to T [v].

Algorithm 1 describes the algorithm. We assume that the input tree is rooted
in some vertex r. The proof of correctness uses techniques of Sect. 3. While
the correctness of the algorithm can be proved without them, we believe this
presentation is helpful for understanding the proofs in subsequent sections.

Theorem 1. Let T be a tree on n vertices and Hs and Ht hitting sets of a set
system S in which every S ∈ S induces a subtree of T . Then ReconfTree
(Algorithm 1) correctly computes a solution to Shortest reconfiguration
of hitting sets under Token Sliding. Furthermore, it runs in time O(n).

Shortest Dominating Set Reconfiguration Under Token Sliding 339

Algorithm 1. Reconfiguration of hitting sets in trees
1: procedure ReconfTree(T, Hs, Ht)
2: if Hs = Ht then return ∅
3: v ← vertex v such that Hs(v) �= Ht(v) and Hs(u) = Ht(u) for all u ∈ T (v).
4: if Hs(v) > Ht(v) then
5: return (v, p(v)) + ReconfTree(T, Hs(v → p(v)), Ht)
6: else
7: return ReconfTree(T, Hs, Ht(v → p(v))) + (p(v), v)

Fig. 1. Bold squares represent a token of Hs, bold circles represent a token of Ht, the
grey areas represent examples of S.

Proof. We will show that ReconfTree outputs a sequence of dR(Hs,Ht) moves
which induces a reconfiguration sequence between the two hitting sets Hs,Ht

of S. If Hs = Ht, then dR(Hs,Ht) = 0 and the procedure correctly outputs an
empty sequence. Thus assume that Hs
= Ht.

Suppose that T is rooted in r and let v be a vertex such that Hs(v)
= Ht(v)
and Hs(u) = Ht(u) for all u ∈ T (v). Without loss of generality, assume that
Hs(v) > Ht(v) as otherwise, we can swap Hs and Ht.

Claim. Hs(v → p(v)) is a hitting set of S.

Proof. Suppose that H ′
s = Hs(v → p(v)) is not a hitting set of S. It follows

that Supp(Hs) � Supp(H ′
s) and therefore Hs(v) = 1 and H ′

s(v) = 0 and H ′
s

is not intersecting only sets S ∈ S such that v ∈ S and p(v) /∈ S. Furthermore,
Ht(v) = 0 as Ht(v) < Hs(v).

Let S ∈ S be a set not intersecting H ′
s and let y ∈ S ∩Ht. Such y distinct

from v must exist as Ht is a hitting set of S and v /∈ Ht. If y ∈ T [v], then y ∈ Hs

as Hs(y) = Ht(y) by the choice of v, which contradicts H ′
s not intersecting S.

This case is shown in Fig. 1a.
Therefore y ∈ T \ T [v]. Note that the path connecting v with y must visit

p(v), thus as S induces a subtree and contains u and y, it contains p(v) as well
and therefore S intersects H ′

s. This case is shown in Fig. 1b. ��
Claim. The number of moves outputted by ReconfTree (T,Hs,Ht) is equal
to dR(Hs,Ht).

340 J. M. Křišťan and J. Svoboda

Proof. We first claim that if Hs,Ht are two hitting sets of S with the same size,
then dR(Hs,Ht) = c∗(Hs,Ht). Furthermore, we show that a move from v to
p(v) decreases the cost of a minimum-cost matching between Hs and Ht by one,
where v is a vertex such that Hs(v)
= Ht(v) and Hs(u) = Ht(u) for all u ∈ T (v).
This together implies that each outputted move decreases the distance in the
reconfiguration graph by one.

We prove the claim by induction on c∗(Hs,Ht) that dR(Hs,Ht) = c∗(Hs,Ht)
for any hitting sets Hs,Ht of the same size. First note that c∗(Hs,Ht) = 0 if
and only if Hs = Ht. Now, suppose that c∗(Hs,Ht) ≥ 1.

Let M∗ be a minimum-cost matching between Hs and Ht such that tokens
with distance 0 are matched to each other, such matching exists by Lemma 2.

Let H ′
s = Hs(v → p(v)). As all tokens in T (v) are matched by M∗ only to

the same vertex, it holds M∗(v) ⊆ V \T [v]. Therefore p(v) is the next vertex on
the path from v to some g ∈M∗(v) and thus by Lemma 3 it holds c∗(H ′

s,Ht) =
c∗(Hs,Ht) − 1. As H ′

s is a hitting set of S by the previous claim, it follows
from the induction hypothesis that dR(H ′

s,Ht) = c∗(H ′
s,Ht). Now, note that

dR(Hs,Ht) ≥ c∗(Hs,Ht) by Lemma 1. On the other hand,

dR(Hs,Ht) ≤ dR(H ′
s,Ht) + 1 = c∗(H ′

s,Ht) + 1 = c∗(Hs,Ht)

as Hs can be reached from H ′
s by a single token slide. This concludes the proof

of the inductive step.
As dR(H ′

s,Ht) = dR(Hs,Ht) − 1, each call of the algorithm decreases the
distance between the hitting sets by one and also outputs one move. Thus the
resulting reconfiguration sequence is shortest possible. ��

We now describe how to implement Algorithm 1 so that it achieves the linear
running time. Note that we assume that the input Hs and Ht of the initial call of
ReconfTree are subsets of V (T) and therefore |Hs|, |Ht| ≤ n. Next, we show
how to compress the output to O(n) size. Whenever |Hs(v)−Ht(v)| > 1, we can
perform all |Hs(v)−Ht(v)| moves from v to p(v) at once and output them as a
triple (v, p(v), |Hs(v) −Ht(v)|) if Hs(v) > Ht(v) or (p(v), v, |Hs(v) −Ht(v)|) in
case Hs(v) < Ht(v).

Note that with this optimization, the vertex v on line 3 is distinct for each
call of ReconfTree. Furthermore, we can fix in advance the order in which we
pick candidates of v on line 3 by ordering the vertices of T by their distance from
r in decreasing order. This is correct as the depth of the lowest vertex satisfying
the condition of line 3 cannot increase in the subsequent calls. Then, the process
of finding v on line 3 has total runtime of O(n) over the course of the whole
algorithm. ��
Corollary 1. Let T be a tree on n vertices and Ds, Dt dominating sets of T such
that |Ds| = |Dt|. Algorithm 1 finds a shortest reconfiguration sequence between
Ds and Dt under Token Sliding in O(n) time.

In general, the length of the reconfiguration sequence can be up to Ω(n2),
for instance when Ω(n) tokens are required to move from one end of a path to

Shortest Dominating Set Reconfiguration Under Token Sliding 341

Algorithm 2. Reconfiguration of dominating sets in interval graphs
1: procedure ReconfIG(G, Ds, Dt, M)
2: if Ds = Dt then return ∅
3: if ∃(u, v) ∈ M, u′ ∈ σ(u, v) such that Ds(u → u′) is dominating then
4: return (u → u′) + ReconfIG(G, Ds(u → u′), Dt)
5: if ∃(u, v) ∈ M, v′ ∈ σ(v, u) such that Dt(v → v′) is dominating then
6: return ReconfIG(G, Ds, Dt(v → v′)) + (v′ → v)

7: M ′ ← FixMatching(G, Ds, Dt, M)
8: return ReconfIG(G, Ds, Dt, M

′)
9: procedure FixMatching(G, Ds, Dt, M)

10: v ∈ Ds � Dt with minimum possible r(v).
11: if v ∈ Dt then
12: return FixMatching(G, Dt, Ds, M

−1)−1 � Symmetric, swap Ds, Dt

13: Find y ∈ Dt \ Ds, y
′ ∈ M(y), v′ ∈ M(v) such that D′

s = Ds(v → y) is dominat-
ing and M ′ = M \ {(v, v′), (y′, y)} ∪ {(v, y), (y′, v′)} is a minimum-cost matching

14: between Ds and Dt.
15: return M ′

the other end, as each must move to a distance of at least Ω(n). However, when
this happens, a lot of tokens move by one edge and we can move them at the
same time, so the running time of the algorithm can be smaller than the number
of moves.

4.2 Interval Graphs

In this section, we describe a polynomial-time algorithm for finding a shortest
reconfiguration sequence between two dominating sets under the Token Slid-
ing model in interval graphs. As with trees, we demonstrate that the distance
between two dominating sets in interval graphs is equal to the lower bound estab-
lished in Lemma 1. Our approach involves a minimum-cost matching between
the dominating sets Ds and Dt to identify a valid move. The key insight of
this algorithm is that we can always recalculate the minimum-cost matching to
enable sliding at least one token along a shortest path towards its corresponding
match.

Algorithm 2 outlines the algorithm. A minimum-cost matching M between
Ds and Dt is assumed to be provided on the input.

The bulk of the proof consists of showing that the procedure FixMatching
is correct, in particular that the call on line 13 succeeds. First, we present a
technical lemma related to shortest paths in interval graphs.

Lemma 4. Let P = (v1, v2, . . . , vk) be a shortest path between v1 and vk in an
interval graph with r(v1) < r(vk) and k ≥ 3. Then vi+1 right-intersects vi and
vi+2 does not intersect vi for all i ∈ {1, . . . , k − 2}.

342 J. M. Křišťan and J. Svoboda

Proof. If for some i ∈ {1, . . . , k − 2} vi+2 intersects vi, then we can create a
shorter path from v1 to vk by removing vi+1 from P , contradicting P being a
shortest path.

Suppose that for some i ∈ {1, . . . , k − 2} it holds r(vi+1) < r(vi). Note that
a shortest path contains no nested intervals with a possible exception of v1 and
vk, as every other nested interval can be removed to make the path shorter.
Thus vi+1 left-intersects vi. Let vj be the first next vertex after vi such that
r(vi) < r(vj). If none such exists, then vi must intersect vk and thus the path
can be made shorter. Otherwise we show that vj intersects vi. If it does not,
then
(vj) > r(vi). But for the path to be connected, another interval va must
cover [r(vi),
(vj)]. Such interval either has r(vj) < r(va), thus vj is nested in va

or r(vi) < r(va) < r(vj), contradicting the choice of vj . ��
The following lemma shows that we can efficiently recompute the minimum-

cost matching to ensure that for some token a valid move across a shortest path
to its match will be available.

Fig. 2. Grey represents tokens Ds, white represents tokens Dt.

Lemma 5. The call of FixMatching on line 7 returns a minimum-cost match-
ing M ′ between Ds and Dt such that at least one the following holds.

– There is (u, v) ∈M ′, u′ ∈ σ(u, v) such that Ds(u→ u′) is dominating,
– there is (u, v) ∈M ′, v′ ∈ σ(v, u) such that Dt(v → v′) is dominating.

Proof. The idea of the proof is in showing that if no token can move along a
shortest path to its match, then there is always a way to modify the matching
which does not increase cost and makes moving along a shortest path possible for
at least one token. In particular, we need to show that the operation of finding y
on line 13 always succeeds and the constructed M ′ is a minimum-cost matching
between Ds and Dt.

As the algorithm has not finished on line 2, it holds Ds
= Dt. Let M
be a minimum-cost matching between Ds and Dt. If for some (u, v) ∈ M ,
w ∈ σ(u, v), w′ ∈ σ(v, u) Ds(u → w) or Dt(v → w′) is dominating, then we
would not have reached line 7. Therefore, assume that for every (u, v) ∈ M ,
w ∈ σ(u, v), w′ ∈ σ(v, u) neither Ds(u→ w) nor Dt(v → w′) is dominating.

Let (v, v′) ∈ M such that v
= v′ and min(r(v), r(v′)) is minimum possible.
Without loss of generality, assume that r(v) < r(v′) as otherwise, we can swap
Ds and Dt.

Shortest Dominating Set Reconfiguration Under Token Sliding 343

Claim. For every w ∈ σM (v), I(w) right-intersects I(v).

Proof. Suppose that I(w) contains I(v). Then Ds(v → w) is dominating, a
contradiction. Now suppose that I(v) contains I(w). Then by Lemma 4 it holds
(v, w) ∈ M , which implies that v ∈ σ(w, v) and Dt(w → v) is dominating as
N [v] ⊆ N [w], a contradiction.

The remaining case is that I(w) left-intersects I(v). Then again, by Lemma 4
it holds (v, w) ∈M and this contradicts the choice of v as r(w) < r(v). ��

Now, let w ∈ σM (v) be a fixed vertex and consider why Ds(v → w) = D′
s

is not dominating. Let x1, . . . , xk ⊂ N(v) \ N(w) be the vertices that are not
dominated by D′

s.

Claim. There exists y ∈ N(v) ∩ (Dt \Ds) such that all xi are adjacent to y.

Proof. First, we will show that I(xi) is to the left of I(w) for all xi. Note that
as each no xi is adjacent to w, I(xi) is either to the left or to the right of I(w).

Suppose there is some I(xi) to the left of I(w) and some I(xj) to the right of
I(w), then I(v) contains I(w), which as previously argued may not be the case.
The remaining case is that all I(xi) are to the right of I(w), which would imply
that I(w) left-intersects I(v), which again was shown not to hold. Therefore,
each I(xi) is to the left of I(w). This further implies that
(v) < r(xi) <
(w),
thus each I(xi) is either nested in I(v) or left-intersects I(v).

Observe that each xi is adjacent to some yi ∈ Dt \ Ds and r(v) < r(yi)
by the choice of v. Therefore, there exists y ∈ Dt \Ds such that I(y) contains
min(r(x1), . . . , r(xk)). Together, we get

(y) < min
1≤i≤k

(r(xi)) ≤ max
1≤i≤k

(r(xi)) <
(w) < r(v) < r(y) (1)

and therefore y is adjacent to all xi. See Fig. 2a for an illustration. As
(y) <
r(v) < r(y), I(y) either right-intersects I(v) or contains I(v) and thus v and y
are adjacent. ��

The rest of the proof consists of two claims. The first is that Ds(v → y) is
dominating. The second is that (v, y) ∈ M ′ for some minimum-cost matching
M ′ between Ds and Dt.

Claim. Ds(v → y) is dominating.

Proof. Let D′ = Ds(v → y). If y contains v, then N [v] ⊆ N [y], therefore
Ds ⊆ D′

s and D′
s is dominating. Thus assume that y right-intersects v, which

is the only remaining case as shown above.
Suppose u ∈ N(v) is a vertex which is not dominated from D′

s. Note that u
must not be adjacent to y and at the same time be adjacent to v, therefore u is
to the left of y. Then u is to the left of all w ∈ σM (v) as
(y) <
(w), thus u is
not dominated in Ds(v → w) and therefore u = xi for some i. This implies that
u is not adjacent to y and this contradicts the choice of y. ��

344 J. M. Křišťan and J. Svoboda

Let v′ ∈ Dt such that v′
= v and (v, v′) ∈ M . Similarly, let y′ ∈ Ds such
that y′
= y and (y′, y) ∈M . We define the new matching M ′ as

M ′ =
(
M \ {(v, v′), (y′, y)}) ∪ {(v, y), (y′, v′)}.

Claim. M ′ is a minimum-cost matching between Ds and Dt.

Proof. We prove that c(M ′) ≤ c(M). Given that d(v, y) = 1 it suffices to show
that

d(v, y) + d(v′, y′) ≤ d(v, v′) + d(y, y′)
d(v′, y′) ≤ d(v, v′) + d(y, y′) − 1.

Let wv ∈ σ(v, v′) and wy ∈ σ(y′, y).

Case 1. Vertices wv and wy are adjacent.

We can construct a walkW from v′ to y′ by concatenating shortest paths between
each two consecutive vertices in (v′, wv, wy, y

′). It holds that d(v′, y′) is at most
the number of edges of W and therefore

d(v′, y′) ≤ d(v′, wv) + d(wv, wy) + d(wy, y
′)

= d(v′, v) − 1 + 1 + d(y, y′) − 1
= d(v, v′) + d(y, y′) − 1.

Case 2. Vertices wv and wy are not adjacent and I(wv) is nested in I(y).

Suppose that v′ = wv. Given that I(wv) is nested in I(y), it follows that
N [v′] ⊆ N [y] and thus as v′, y ∈ Dt we have that Dt \ {v′} is dominating.
Therefore, Dt(v′ → v) is dominating, a contradiction. See Fig. 2b for an illustra-
tion.

Assume further that v′
= wv and therefore d(v, v′) ≥ 2. Let w2
v ∈ σ(wv, v

′)
and note that w2

v must be adjacent to y as N [wv] ⊆ N [y]. See Fig. 2c for an
illustration. We can construct a walk between v′ and y′ by concatenating shortest
paths between each two consecutive vertices in (y′, y, w2

v, v
′) of total length

d(y′, y) + 1 + d(v, v′) − 2 = d(v, v′) + d(y, y′) − 1

and therefore d(v′, y′) ≤ d(v, v′) + d(y, y′) − 1.

Case 3. Vertices wv and wy are not adjacent and I(wv) is not nested in I(y).

Recall that by Equation (1) it holds
(y) <
(wv). Furthermore, r(y) < r(wv),
as otherwise I(wv) would be nested in I(y).

Let us now consider the possible orderings of the right endpoints of I(v), I(y),
I(wv), I(wy). The possibilities are restricted by the fact that by Equation (1)
it holds r(v) < r(y) < r(wv), thus there remain 4 possible orderings. The case
r(v) < r(y) < r(wv) < r(wy) can be ruled out as it contradicts I(y) and I(wy)
intersecting and I(wv) and I(wy) not intersecting at the same time. Similarly

Shortest Dominating Set Reconfiguration Under Token Sliding 345

r(v) < r(y) < r(wy) < r(wv) and r(v) < r(wy) < r(y) < r(wv) is not possible
as it would contradict I(v) and I(wv) intersecting and at the same time I(wv)
and I(wy) not intersecting.

Thus, the only remaining ordering is r(wy) < r(v) < r(y) < r(wv). This by
Lemma 4 implies that either wy = y′ or r(y′) < r(y). In either case, it follows
that r(y′) < r(v) which contradicts the choice of v. ��
We have shown that for any two dominating sets Ds
= Dt and a minimum-
cost matching M between them, we can construct another minimum matching
M ′ such that at least one of the following statements holds. There exists either
v ∈ Ds and y ∈ Dt such that (v, y) ∈M ′ and Ds(v → y) is dominating or, by a
symmetric proof with Ds and Dt swapped, there exists v ∈ Dt, y ∈ Ds such that
(y, v) ∈ M ′ and Dt(v → y) is dominating. In either case, we have shown that
v and y can be adjacent and thus y ∈ σ(v, y). Furthermore, M ′ is constructed
as described on line 7 and y can be found by testing all vertices in Dt. This
concludes the proof. ��
Theorem 2. Let G be an interval graph with n vertices and Ds, Dt its two
dominating sets such that |Ds| = |Dt|. Then ReconfIG correctly computes a
solution to Shortest reconfiguration of dominating sets under Token
Sliding in time O(n3), where k is the size of the output.

Proof. We first show that the resulting reconfiguration sequence has the shortest
possible length.

Claim. The number of moves outputted by ReconfIG is dR(Ds, Dt)

Proof. We will show that dR(Ds, Dt) = c∗(Ds, Dt) by induction over c∗(Ds, Dt).
If c∗(Ds, Dt) = 0, then Ds = Dt and dR(Ds, Dt) = 0, which we can efficiently
recognize.

Suppose that c∗(Ds, Dt) > 0. Let M be a minimum-cost matching between
Ds and Dt. Without loss of generality, let (u, v) ∈ M ′, u′ ∈ σ(u, v) such that
D′

s = Ds(u → u′) is dominating. By Lemma 5, either such u, u′, v already exist
or we can recompute M ′ so that they exist.

Note that by Lemma 3, c∗(D′
s, Dt) = c∗(Ds, Dt)−1 and thus by the induction

hypothesis dR(D′
s, Dt) = c∗(D′

s, Dt). Note that dR(Ds, Dt) ≤ dR(D′
s, Dt) + 1

as Ds can be reached from Ds by a single token slide. At the same time, by
Lemma 1, it holds dR(Ds, Dt) ≥ c∗(Ds, Dt) = c∗(D′

s, Dt) + 1 = dR(D′
s, Dt) + 1.

Thus dR(Ds, Dt) = dR(D′
s, Dt) and with each output of a token slide, we

decrease the distance in dR by exactly one. Therefore, the resulting reconfig-
uration is shortest possible. ��
Claim. ReconfIG can be implemented to run in time O(n3).

Proof. We initially compute a minimum-cost matching between Ds and Dt by
reducing to minimum-cost matching in bipartite graphs, which can be solved
in O(n3) [12].

346 J. M. Křišťan and J. Svoboda

Now, we describe how to implement Algorithm 2 efficiently. If we want to find
a suitable v in FixMatching, we suppose that all greedy moves, i.e. moves along
shortest paths to matches that result in a dominating set, have been done. This
is not necessary, we can see that the assumption is invoked only on constantly
many vertices for each call of FixMatching. Checking if a greedy move can be
performed requires only linear time and the total number of moves is at most
O(n2), thus the total running time is O(n3). ��
This concludes the proof of the theorem. ��

5 Conclusion

Fig. 3. The minimum cost of matching between the light-gray and the dark-gray dom-
inating sets is 2 but to reconfigure one into the other, we need at least 3 moves.

We have presented polynomial algorithms for finding a shortest reconfiguration
sequence between dominating sets on trees and interval graphs, addressing the
open question left by Bonamy et al. [4] regarding the complexity of the said
problem on dually chordal graphs. While in case of trees and interval graphs, we
can always match the lower bound of Lemma 1. That is not the case for dually
chordal graph in general, see Fig. 3.

The general case of dually chordal graphs remains open. Additionally, the
case of cographs is open and we conjecture that a polynomial-time solution is
achievable.

References

1. Bartier, V., Bousquet, N., Dallard, C., Lomer, K., Mouawad, A.E.: On girth and
the parameterized complexity of token sliding and token jumping. Algorithmica
83(9), 2914–2951 (2021). https://doi.org/10.1007/s00453-021-00848-1

2. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token
sliding on split graphs. Theory Comput. Syst. 65(4), 662–686 (2020). https://doi.
org/10.1007/s00224-020-09967-8

3. Bodlaender, H.L., Groenland, C., Swennenhuis, C.M.F.: Parameterized complex-
ities of dominating and independent set reconfiguration. In: 16th International
Symposium on Parameterized and Exact Computation, IPEC 2021. LIPIcs, vol.
214, pp. 9:1–9:16 (2021). https://doi.org/10.4230/LIPIcs.IPEC.2021.9

4. Bonamy, M., Dorbec, P., Ouvrard, P.: Dominating sets reconfiguration under token
sliding. Discrete Appl. Math. 301, 6–18 (2021). https://doi.org/10.1016/j.dam.
2021.05.014

https://doi.org/10.1007/s00453-021-00848-1
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.4230/LIPIcs.IPEC.2021.9
https://doi.org/10.1016/j.dam.2021.05.014
https://doi.org/10.1016/j.dam.2021.05.014

Shortest Dominating Set Reconfiguration Under Token Sliding 347

5. Bousquet, N., Joffard, A.: TS-reconfiguration of dominating sets in circle and
circular-arc graphs. In: Fundamentals of Computation Theory, FCT, pp. 114–
134. Lecture Notes in Computer Science (2021). https://doi.org/10.1007/978-3-
030-86593-1_8

6. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2010). https://doi.
org/10.1137/s0895480100373455

7. Demaine, E.D., et al.: Linear-time algorithm for sliding tokens on trees. Theor.
Comput. Sci. 600, 132–142 (2015). https://doi.org/10.1016/j.tcs.2015.07.037

8. Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in
graphs. Proc. AAAI Conf. Artif. Intelli. 36(9), 9758–9766 (2022). https://doi.org/
10.1609/aaai.v36i9.21211

9. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009). https://doi.org/10.1137/07070440X

10. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theor.
Comput. Sci. 651, 37–49 (2016). https://doi.org/10.1016/j.tcs.2016.08.016

11. Hoang, D.A., Khorramian, A., Uehara, R.: Shortest reconfiguration sequence for
sliding tokens on spiders. In: Heggernes, P. (ed.) Algorithms and Complexity - 11th
International Conference, CIAC, vol. 11485, pp. 262–273 (2019). https://doi.org/
10.1007/978-3-030-17402-6_22

12. Jonker, R., Volgenant, T.: A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing 38(4), 325–340 (1987). https://doi.
org/10.1007/BF02278710

13. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theor. Comput. Sci. 412(39), 5205–5210 (2011). https://doi.org/10.1016/j.tcs.
2011.05.021

14. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. ACM Trans. Algorithms 15(1), 1–19 (2019). https://doi.
org/10.1145/3280825

15. Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M., Saurabh, S.: Recon-
figuration on sparse graphs. J. Comput. Syst. Sci. 95, 122–131 (2018). https://doi.
org/10.1016/j.jcss.2018.02.004

16. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration
paths in the solution space of Boolean formulas. SIAM J. Discrete Math. 31(3),
2185–2200 (2017). https://doi.org/10.1137/16M1065288

17. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018).
https://doi.org/10.3390/a11040052

18. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets.
J. Comb. Optim. 32(4), 1182–1195 (2015). https://doi.org/10.1007/s10878-015-
9947-x

19. Yamada, T., Uehara, R.: Shortest reconfiguration of sliding tokens on subclasses of
interval graphs. Theor. Comput. Sci. 863, 53–68 (2021). https://doi.org/10.1016/
j.tcs.2021.02.019

https://doi.org/10.1007/978-3-030-86593-1_8
https://doi.org/10.1007/978-3-030-86593-1_8
https://doi.org/10.1137/s0895480100373455
https://doi.org/10.1137/s0895480100373455
https://doi.org/10.1016/j.tcs.2015.07.037
https://doi.org/10.1609/aaai.v36i9.21211
https://doi.org/10.1609/aaai.v36i9.21211
https://doi.org/10.1137/07070440X
https://doi.org/10.1016/j.tcs.2016.08.016
https://doi.org/10.1007/978-3-030-17402-6_22
https://doi.org/10.1007/978-3-030-17402-6_22
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02278710
https://doi.org/10.1016/j.tcs.2011.05.021
https://doi.org/10.1016/j.tcs.2011.05.021
https://doi.org/10.1145/3280825
https://doi.org/10.1145/3280825
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1137/16M1065288
https://doi.org/10.3390/a11040052
https://doi.org/10.1007/s10878-015-9947-x
https://doi.org/10.1007/s10878-015-9947-x
https://doi.org/10.1016/j.tcs.2021.02.019
https://doi.org/10.1016/j.tcs.2021.02.019

Computing Optimal Leaf Roots of Chordal
Cographs in Linear Time

Van Bang Le and Christian Rosenke(B)

Institut für Informatik, Universität Rostock, Rostock, Germany
{van-bang.le,christian.rosenke}@uni-rostock.de

Abstract. A graph G is a k-leaf power, for an integer k ≥ 2, if there is
a tree T with leaf set V (G) such that, for all vertices x, y ∈ V (G), the
edge xy exists in G if and only if the distance between x and y in T is
at most k. Such a tree T is called a k-leaf root of G. The computational
problem of constructing a k-leaf root for a given graph G and an integer
k, if any, is motivated by the challenge from computational biology to
reconstruct phylogenetic trees. For fixed k, Lafond [SODA 2022] recently
solved this problem in polynomial time.

In this paper, we propose to study optimal leaf roots of graphs G, that
is, the k-leaf roots of G with minimum k value. Thus, all k′-leaf roots
of G satisfy k ≤ k′. In terms of computational biology, seeking optimal
leaf roots is more justified as they yield more probable phylogenetic trees.
Lafond’s result does not imply polynomial-time computability of optimal
leaf roots, because, even for optimal k-leaf roots, k may (exponentially)
depend on the size of G. This paper presents a linear-time construction
of optimal leaf roots for chordal cographs (also known as trivially perfect
graphs). Additionally, it highlights the importance of the parity of the
parameter k and provides a deeper insight into the differences between
optimal k-leaf roots of even versus odd k.

Keywords: k-leaf power · k-leaf root · optimal k-leaf root · trivially
perfect leaf power · chordal cograph

1 Introduction

Leaf powers have been introduced by Nishimura, Ragde and Thilikos [12] to
model the phylogeny reconstruction problem from computational biology: given
a graph G that represents a set of species with vertices V (G) and the interspecies
similarity with edges E(G), how can we reconstruct an evolutionary tree T with
a given similarity threshold k? A k-leaf root of G, a tree T with species V (G) as
the leaf set and where species x, y ∈ V (G) have distance at most k in T if and
only if they are similar on account of xy ∈ E(G), is considered a solution to this
problem. In case T exists, the graph G is called a k-leaf power. The challenge
of finding a k-leaf root for given G and k has, yet, been modelled as the k-leaf
power recognition problem: given G and k, decide if G has a k-leaf root.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 348–362, 2023.
https://doi.org/10.1007/978-3-031-43587-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_25&domain=pdf
http://orcid.org/0000-0002-3303-8326
http://orcid.org/0009-0003-8222-8366
https://doi.org/10.1007/978-3-031-43587-4_25

Computing Optimal Leaf Roots of Chordal Cographs 349

v1 u1

u0

v2

v0G

v1 u1

u0

v2

v0T

v1 u1

u0

v2

v0T ′

Fig. 1. A graph G (left), a 5-leaf root T of G (middle), a 4-leaf root T ′ of G (right).

For an example, see Fig. 1 with the graph G called dart. The similarities between
the five species can be explained with similarity threshold k = 5 using the 5-leaf
root T and with k = 4 by the 4-leaf root T ′, both depicted in Fig. 1.

For a deeper discourse into the heavily studied field of k-leaf powers, the
reader is kindly referred to the survey [13]. Here, we just give a short overview.

Lately, Eppstein and Havvaei [8] showed that k-leaf power recognition for
graphs G with n vertices can be solved in O(f(k, ω) ·n) time with f(k, ω) expo-
nential in k and ω, the clique number of G. Quite simply put, they reduce k-leaf
power recognition to the decision of a certain monadic second order property in a
graph derived from G having tree-width bounded by k and ω. Lafond’s even more
recent algorithm [10] solves k-leaf power recognition in O(ng(k)) time, where g(k)
grows superexponentially with k. It applies sophisticated dynamic programming
on a tree decomposition of G and exploits structural redundancies in G. Observe
that, for fixed k, the latter method runs in polynomial time.

Before these advances, k-leaf power recognition had only been solved for all
fixed k between 2 and 6. The 2-leaf powers are exactly the graphs that have
just cliques as their connected components, which makes the problem trivial.
For k = 3 (see [12] and [3]), k = 4 (see [12] and [4]), k = 5 (see [5]) and
k = 6 (see [7]) individual algorithms have been developed, all creating a certain
(tree-) decomposition of the input graph G and then attempting to fit together
candidate k-leaf roots for the components into one k-leaf root for G.

A general controversial aspect of modelling the reconstruction of a phyloge-
netic tree T with the k-leaf power recognition problem is that k is part of the
input. In the biological context, the value of k describes an upper bound on the
number of evolutionary events in T that lie between two similar species x, y,
thus, species adjacent in the given graph G by an edge xy. Unlike the model
suggests, biologists do not always have control over the parameter k. Instead,
phylogenetic trees T with as few as possible evolutionary events between all pairs
of similar species are preferred. That is because, in reality, a higher number of
events between x and y makes a similarity between x and y less likely. Con-
versely, this means that a k-leaf root of G with a small parameter k models a
more probable phylogenetic tree. This paper therefore proposes a subtle change
in perspective towards considering the following optimization problem.

350 V. B. Le and C. Rosenke

Optimal Leaf Root (OLR)
Instance: A graph G.
Output: An optimal leaf root T of G, that is, a κ-leaf root of G such that

κ ≤ k for all k-leaf roots of G, or No, if T does not exist.

Subsequently, we use κ to indicate that the respective κ-leaf root is optimal.
OLR is in a certain sense an optimization version of k-leaf power recognition.
The answer No states that the given graph G is not a k-leaf power for any k
and, in particular, not for the given one. Getting an optimal κ-leaf root of G
helps to decide if G is a k-leaf power in many cases. A difficulty is that, for all
κ and k of different parity and with 2 ≤ κ < k < 2κ− 2, there are κ-leaf powers
that are not k-leaf powers [14]. Then, checking κ ≤ k does not decide correctly.

As for k-leaf power recognition, there are no known general efficient solutions
for OLR. If input was restricted to k-leaf powers with k ≤ K for some fixed K,
we could repurpose Lafond’s algorithm. Testing a given G with all 2 ≤ k ≤ K
would finally reveal the minimum κ for which G is κ-leaf power. At that point, a
κ-leaf root of G could also be extracted from the algorithm. But that classes of
k-leaf powers have not been characterized well for any k ≥ 5 makes restricting
input in the proposed way difficult. Then again, it is unknown how to decide if
a given graph G is a k-leaf power for any arbitrary k. And on top of that, the
minimum value κ for which a given G is a κ-leaf power, if any, may exponentially
depend on the size of G. This means that this brute force searching may take
exponentially or even infinitely many runs of Lafond’s algorithm.

It is known that, independent of k, all k-leaf powers are strongly chordal, but
not vice versa. Ptolemaic graphs are strongly chordal and a class of unbounded
leaf powers. That is, there is no bound β such that every Ptolemaic graph has
a k-leaf root for some k ≤ β. Nevertheless, every Ptolemaic graph on n vertices
has a 2n-leaf root [1,2]. Later, Theorem 2 shows that, often, this is not optimal.
This paper considers a subclass of Ptolemaic graphs, the chordal cographs (also
known as trivially perfect graphs), as input to OLR. By definition, they form
the intersection of the well-known chordal graphs and the cographs. Accordingly,
they are also characterized as the graphs without induced cycles on four ver-
tices and without induced paths on four vertices [9,15,16]. As a side effect of
Lemma 8, this paper proves that chordal cographs are still a class of unbounded
leaf powers. This means that k-leaf power recognition on this class cannot be
solved in polynomial time with the algorithm of Lafond or the one of Eppstein
and Havvaei. Nevertheless, the following main result of our work states that
OLR can be solved in linear time for chordal cographs.

Theorem 1. Given a chordal cograph G on n vertices and m edges, a (com-
pressed) κ-leaf root of G with minimum κ can be computed in O(n+m) time.

To the best of our knowledge, chordal cographs are, thus, the first class of
unbounded leaf powers with a polynomial-time solution for OLR. The word
compressed in Theorem 1 means that the κ-leaf root T is returned in a denser
representation, where long paths of degree two-vertices are compressed into sin-
gle weighted edges. Otherwise, the size of T alone would be quadratic.

Computing Optimal Leaf Roots of Chordal Cographs 351

While, in general, an OLR-solution does not entirely work for k-leaf power
recognition, as elaborated above, our OLR-approach can also be used for linear-
time k-leaf power recognition on chordal cographs. The key to this is the ability
of our method to solve OLR with a given parity, such that the computed κ-leaf
root comes with the minimum κ of the given parity. Hence, if we choose the
parity of the given k, we can tell that a given graph G is a k-leaf power if and
only if the computed κ-leaf root with κ of the same parity as k satisfies κ ≤ k.

As the desired parity of κ plays a certain role in our construction, we research
this discrepancy here, and show, for certain chordal cographs, that the minimum
κ can differ up to 25 percent depending on if it is wanted odd or even.

The next section presents basic notation, definitions, and facts on trees and
k-leaf powers used in this paper. The optimal leaf root construction method for
chordal cographs is introduced and proved correct in Sect. 3. Section 4 provides
a respective linear-time implementation, thus, proving Theorem 1. A deepened
evaluation of the difference between chordal cographs with κ-leaf roots of mini-
mum odd versus even κ is carried out in the concluding Sect. 5.

Proofs are omitted and will be included in the full version of this paper1.

2 Preliminaries

All considered graphs are finite and without multiple edges or loops. Let G =
(V,E) be a graph with vertex set V (G) = V and edge set E(G) = E. A universal
vertex in G is one that is adjacent to all other vertices. If all vertices of G
are universal than G is complete. A vertex x that is adjacent to exactly one
other vertex of G is called a leaf and the edge containing x is a pendant edge.
Two adjacent vertices x, y ∈ V (G) are true twins if xz ∈ E(G), if and only if
yz ∈ E(G) for all z ∈ V (G) \ {x, y}.

A graph H is an induced subgraph of G if V (H) ⊆ V (G) and xy ∈ E(H)
if and only if xy ∈ E(G) for all x, y ∈ V (H). All subgraphs considered in this
paper are induced. For X ⊂ V (G), G −X denotes the induced subgraph H of
G with V (H) = V (G) \X. If X consists of one vertex x then we write G−x for
G− {x}. Complete subgraphs of G are called cliques.

As usual, an x, y-path in G is a sequence v1, . . . , vn of distinct vertices from
V (G) such that x = v1, y = vn and vivi+1 ∈ E(G) for all i ∈ {1, . . . , n − 1}.
An x, y-path is called a cycle in G if xy ∈ E(G). The length of the x, y-path,
respective cycle, is the number of its edges, that is, n− 1 in the x, y-path and n
in the cycle. If there is an x, y-path in G for all distinct x, y ∈ V (G) then G is
connected. Otherwise, G is disconnected and, therefore, composed of connected
components G1, . . . , Gn, maximal induced subgraphs of G that are connected. A
connected component is non-trivial if it has more than one vertex and, otherwise,
it is called isolated vertex. We call C ⊆ V (G) a cut set if G − C has more
connected components than G. If C is just a single vertex c then c is a cutvertex.

Graphs G and H are isomorphic if a bijection σ : V (G) → V (H) exists with
xy ∈ E(G) if and only if σ(x)σ(y) ∈ E(H). If no induced subgraph of G is
1 https://arxiv.org/abs/2308.10756.

https://arxiv.org/abs/2308.10756

352 V. B. Le and C. Rosenke

isomorphic to a graph H then G is H-free. Trees are the connected cycle-free
graphs. This means, a tree T contains exactly one x, y-path for all x, y ∈ V (T).

In this paper, we learn that, dependent on the given parity, the construc-
tion of an optimal leaf root differs in several details. To avoid permanent case
distinctions, we use π(i) for the parity of an integer i, that is, π(i) = i mod 2.

2.1 Chordal Cographs and Cotrees

Chordal cographs, ccgs for short, are known as the graphs that are free of the
path and the cycle on 4 vertices. See the top row of Fig. 2 for an example ccg.
One particular ccg used in this paper is the star (with t leaves), which consists
of the vertices u, v1, . . . , vt for some t ≥ 2 and the edges uv1, . . . , uvt.

Like all cographs, ccgs can be represented with cotrees [6]. The second row
of Fig. 2 shows the cotree of the example cograph in the first row. For every
cograph G, the cotree T is a rooted tree with leaves V (G) and where every
internal node is labelled with 0 for disjoint union or 1 for full join. In this
way, the leaves define single vertex graphs and every internal node represents
the cograph G combining the cographs H1,H2, . . . , Hn of its children with the
respective graph operation. More precisely, V (G) = V (H1)∪V (H2)∪· · ·∪V (Hn)
and G = 0 (H1,H2, . . . , Hn) means the disconnected cograph on vertex set V (G)
and edge set E(G) = E(H1)∪E(H2)∪ · · · ∪E(Hn) and G = 1 (H1,H2, . . . , Hn)
means the connected cograph with vertex set V (G) and edge set E(G) = E(H1)∪
E(H2) ∪ · · · ∪ E(Hn) ∪ {xy | x ∈ V (Hi), y ∈ V (Hj), 1 ≤ i < j ≤ n}. The cotree
T is unique, can be constructed in linear time, and has the following properties:

– Every internal node has at least two children.
– No two internal nodes with the same label, 0 or 1 , are adjacent.
– The subtree TX rooted at node X is the cotree of the subgraph GX induced

by the leaves of TX . If X is labelled with 0 then GX is the disjoint union
of the cographs represented by the children of X and if it is labelled with 1

than GX is the full join of the children cographs.
– The cotree of an n-vertex cograph has at most 2n− 1 nodes.

We mostly work with ccgs without true twins, like G in Fig. 2. These graphs
have the following properties, as observed in the upper rows of the figure.

Proposition 1. If G is a ccg without true twins and T is the cotree of G then
every node of T labelled with 1 has exactly two children, one leaf and one node
labelled with 0 .

Proposition 2 (Wolk [15,16]). Every connected ccg G without true twins has
a unique universal vertex u and G−u is disconnected (that is, u is a cutvertex).

2.2 Diameter, Radius and Center in Trees

Let T be a tree. The following notions are throughout used in the paper:

Computing Optimal Leaf Roots of Chordal Cographs 353

– The distance between two vertices x and y in T , written distT (x, y), is the
length of the unique x, y-path in T .

– The diameter of T , denoted diam(T), is the maximum distance between two
vertices in T , that is, diam(T) = max{distT (x, y) | x, y ∈ V (T)}.

– A diametral path in T is a path of length diam(T).
– A vertex z is a center vertex of T if the maximum distance between z and any

other vertex in T is minimum, that is, all y ∈ V (T) satisfy max{distT (x, z) |
x ∈ V (T)} ≤ max{distT (x, y) | x ∈ V (T)}.

– The radius of T , denoted rad(T), is the maximum distance between a center
z and other vertices of T , that is, rad(T) = max{distT (v, z) | v ∈ V (T)}.

For convenience, we define π(T) = π(diam(T)), the parity of the diameter of
T . It is well known for all trees T that diam(T) = 2 · rad(T) − π(T) and
that there is a single center vertex if π(T) = 0 and two adjacent centers
if π(T) = 1. Furthermore, it is obvious for any diametral path in T that
the end-vertices x and y are leaves and the center coincides with the cen-
ter of T . Thus, we have min{distT (z, x),distT (z, y)} = rad(T) − π(T) and
max{distT (z, x),distT (z, y)} = rad(T) for any center vertex z of T .

We call a center vertex z a min-max center of T if, for all center vertices
z′ of T , min{distT (z, v) | v is a leaf of T} ≥ min{distT (z′, v) | v is a leaf of T}.
Thus, a min-max center maximizes the distance to the closest leaf of T . For a
min-max center z, the leaf distance is dmin

T = min{distT (z, v) | v is a leaf of T}.
The paper also needs the following technical lemma:

Lemma 1. If T1, . . . , Ts are s ≥ 2 trees with diam(T1) ≥ · · · ≥ diam(Ts) then

(i) rad(T1) ≥ rad(T2) ≥ · · · ≥ rad(Ts),
(ii) for all 1 ≤ i < j ≤ s, if rad(Ti) = rad(Tj) then π(Ti) ≤ π(Tj), and
(iii) for all 1 ≤ i < j ≤ s, rad(Ti) − π(Ti) ≥ rad(Tj) − π(Tj).

2.3 Leaf Powers, Leaf Roots and Their Basic Properties

Let k ≥ 2 be an integer. A graph G is a k-leaf power if a k-leaf root T of
G exists, a tree with leaves V (G) such that xy is an edge in G if and only if
distT (x, y) ≤ k. The example G in Fig. 2 therefore is an 11-leaf power because of
the 11-leaf root T of G in the third row and also a 12-leaf power by the 12-leaf
root T ′ in the bottom row. Note that Fig. 2 shows compressed illustrations of T
and T ′ where some long paths of vertices with degree two are depicted by single
weighted edges. It is well-known that

– a complete graph is a k-leaf power for all k ≥ 2,
– a graph is a k-leaf power if and only if all of its connected components are
k-leaf powers, and

– if x, y are true twins in G then G is a k-leaf power if and only if G − x is a
k-leaf power.

354 V. B. Le and C. Rosenke

Note for the last fact that Lemma 7.3 and Corollary 7.4 in [11] imply the pos-
sibility to identify and remove all true twins from a graph in linear time. So, in
the remainder of the paper, we smoothly focus on graphs without true twins.

Since the concept of k-leaf powers is slightly different for odd and even k,
we formalize this discrepancy as follows: We say that a k-leaf root is of even,
respectively odd parity, if k is even, respectively odd. A k-leaf root T of G is
an optimal even, respectively optimal odd leaf root if k is even, respectively
odd, and all k′-leaf roots of G with k′ of the same parity as k satisfy k ≤ k′.
Finally, a k-leaf root T of G is (just) optimal if k ≤ k′ for all k′-leaf roots of
G (independent of parity). See the third row of Fig. 2 for an optimal odd leaf
root T of the example graph G in the same figure and see the bottom row for an
optimal even leaf root T ′ of G. Since T is an 11-leaf root and T ′ a 12-leaf root,
it follows that T is an optimal leaf root of G.

We conclude this section by establishing a few properties for leaf roots as
considered in this paper. The first one concerns a bound on the distance between
center and leaves in T in case G is connected.

Lemma 2. Every k-leaf root T of a connected graph satisfies dmin
T ≤ k

2 .

See Fig. 2 with the 11-leaf root T of G having dmin
T = distT (u0, z0) = 2 ≤ 11

2
and the 12-leaf root T ′ with dmin

T ′ = distT (u0, z0) = 2 ≤ 12
2 . Secondly, if G has

a universal vertex u then the distance between u and the center in T cannot
exceed the difference between k and the radius of T .

Lemma 3. If G is a non-complete graph with a universal vertex u and T is a
k-leaf root of G then distT (u, z) ≤ k − rad(T) + π(T) for all center vertices z
of T . If z1
= z2 are the center vertices of T , then distT (u, z1) ≤ k − rad(T) or
distT (u, z2) ≤ k − rad(T).

For an illustration, see Fig. 2, where the distance of u0 and the farthest center
vertex z0 of T satisfies distT (u0, z0) = 2 ≤ 11− 10 + 1 = k− rad(T) +π(T) and,
in T ′, distT ′(u0, z0) = 2 ≤ 12− 11 + 1 = k′ − rad(T ′) + π(T ′). Lemma 3 implies
upper bounds on radius and diameter of T .

Corollary 1. If G is a graph with a universal vertex and T is a k-leaf root of
G then rad(T) ≤ k − 1 and, in particular, diam(T) ≤ 2k − 2.

As a matter of fact, k-leaf roots tend to contain long paths of vertices with
degree two. It is reasonable to compress such a path P = v0, . . . , vn into a single
weighted edge v0(n)vn. Clearly, weighted edges v0(n)vn add their weight n to
distances in T and, so, distT (v0, vn) = n.

3 Optimal Leaf Root Construction for CCGs

Aim of this section is the development of an optimal leaf-root construction app-
roach for ccgs G. In very simple terms, we describe a divide and conquer method
that splits G into smaller ccgs G1, G2, . . . , recursively obtains their optimal leaf
roots T1, T2, . . . , and then extends them into an optimal leaf root for G.

Computing Optimal Leaf Roots of Chordal Cographs 355

u0

u1 u2

u3

u4

u5 u6 u7 u8

u9

v0

v1

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v13 v14

G

G1 G2

G3

G4 G5 G6 G7 G8

G9

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

u0

u1

u3

u4 u5 u6 u7 u8

u9

u2

v0

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v13 v14

v1

T

T1 T2

T3

T4 T5 T6 T7 T8

T9

6

z0

3

z1

4

z2

6

4

z3 5

6
6

6
z4

5

6 6
z5

5

6 6
z6

5

6 6
z7

5

6 6
z8

5

6 6
z9

u0

u1 u2

u3

u4 u5 u6 u7 u8

u9

v0

v1

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v13 v14

T

T1 T2

T3

T4 T5 T6 T7 T8

T9

7

z0

3

z1

4

7

5

5

7
7

7
z4

5

6 6
z5

5

6 6
z2, z6

5

6 6
z7

5

6 6
z8

5

6 6
z3, z9

u0

u1 u2

u3

u4 u5 u6 u7 u8

u9
v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v13 v14

v0

v1

T ′

T ′
1 T ′

2

T ′
3

T ′
4 T ′

5 T ′
6 T ′

7 T ′
8

T ′
9

Fig. 2. A ccg G (top), the cotree T of G (2nd row), an optimal (odd) 11-leaf root T
of G (3rd row) as computed by Algorithm 1 (with input p = 1), and an optimal even
12-leaf root T ′ of G (bottom) as computed by Algorithm 1 with input p = 0.

356 V. B. Le and C. Rosenke

We start with introducing two basic leaf root operations and analyze their
properties. The first operation, the extension of trees, is used to level the recur-
sively found leaf roots T1, T2, . . . on the same k, which is essential for the subse-
quent composition into one k-leaf root. If T is a tree and δ ≥ 0 an integer then
T ′ = η(T, δ) is the tree obtained from T by subdividing every pendant edge δ
times, that is, replacing the edge with a new path of length δ+1 (hence, of δ+1
edges). The following property of this operation is well-known:

Lemma 4. If T is a k-leaf root of a graph G and δ ≥ 0 an integer then T ′ =
η(T, δ) is a (k + 2δ)-leaf root of G with same center, same min-max center
vertices, and diam(T ′) = diam(T) + 2δ, rad(T ′) = rad(T) + δ, dmin

T ′ = dmin
T + δ.

The second operation merges the individual k-leaf roots for the connected com-
ponents of a graph G into one k-leaf root T for the entire G. The goal here
is to minimize the diameter of T , which, in turn, allows making optimizations
to the value of k. Assume that G has s ≥ 0 non-trivial connected components
G1, . . . , Gs and t ≥ 0 isolated vertices v1, . . . , vt such that s + t ≥ 2 and let
T1, . . . , Ts be k-leaf roots for G1, . . . , Gs with min-max center vertices z1, . . . , zs.
If s > 0, we define the critical index m as the smallest element of {1, . . . , s} with
dmin

Tm
= min{dmin

Ti
| 1 ≤ i ≤ s} and call Tm the critical root. Then, the merging

μ(k, T1, . . . , Ts, v1, . . . , vt) results in the tree T produced by the following steps:

1. Create a new vertex c.
2. If s > 0 then connect c and the center zm of the critical root by a path of

length k+π(k)
2 − dmin

Tm
. If π(k) = 0 and dmin

Tm
= 1

2k then this means to identify
the vertices c and zm.

3. For all i ∈ {1, . . . ,m− 1,m+ 1, . . . , s}, connect c and zi by a path of length
k−π(k)

2 + 1 − dmin
Ti

.
4. For all j ∈ {1, . . . , t}, connect c and vj by a path of length k−π(k)

2 + 1.

Notice that the μ-operation is sensitive with respect to the parity π(k). For one
thing, this is necessary to guarantee that all added paths are of integer length,
which is done by in- or decreasing odd k. As a side note, we point out that
the lengths of added paths are also non-negative by Lemma 2, which makes the
μ-operation well-defined. On the other hand, the result is that merging works
slightly different for odd and even k. For odd k, all trees T1, . . . , Ts, including the
critical one, are essentially added in the same way by our construction method.
This is because, for odd k, k+π(k)

2 − dmin
Tm

= k−π(k)
2 + 1 − dmin

Tm
. The special

treatment of the critical root, thus, has an effect only if k is even. Specifically in
that case, we can sometimes save one in the diameter of T , if we put the critical
root closer to the center of T than the rest. The reason that this optimization
works is that, usually, the critical root has the largest diameter.

Lemma 5. Let G be a graph and k ≥ 2 an integer. If G is disconnected with
s ≥ 0 non-trivial connected components G1, . . . , Gs and t ≥ 0 isolated vertices
v1, . . . , vt such that s + t ≥ 2 and if T1, . . . , Ts are k-leaf roots for G1, . . . , Gs

then T = μ(k, T1, . . . , Ts, v1, . . . , vt) is a k-leaf root of G.

Computing Optimal Leaf Roots of Chordal Cographs 357

The two operations above simplify the description of the following leaf root con-
struction algorithm for ccgs since they hide away many of the technical details.
Foundation of the proposed recursive approach is that (i) induced subgraphs of
ccgs are ccgs and (ii) every connected ccg without true twins has a unique uni-
versal cut vertex (see Proposition 2). Also, recall from Sect. 2.3 that true twins
in graphs can be removed in linear time and, thus, be safely ignored. Therefore,
we define for all ccgs G without true twins and a given parity p ∈ {0, 1} the
result of the root operation ρ(G, p) as the tree T and the number k produced by
the following (recursive) procedure:

i. If G is a star then let u be the central vertex and v1, . . . , vt the leaves of
G (with t ≥ 2 because G does not have true twins)
1. If p = 1 (for odd) then let T ′ = η(G, 1), obtain T by attaching a new leaf

to u in T ′, and return (T, 3).
2. If p = 0 (for even) and t = 2 then return (T, 4) with T obtained from

a single vertex v by attaching the leaves u, v1 and v2 to v with paths of
lengths one, two and three, respectively.

3. If p = 0 and t > 2 then let T ′ = η(G, 2), obtain T by attaching a new leaf
to u in T ′, and return (T, 4).

ii. else if G is a connected graph then let u be the universal cut vertex of
G (by Proposition 2) and let G1, . . . , Gs be the s ≥ 1 non-trivial connected
components and v1, . . . , vt the t ≥ 0 isolated vertices of G− u.
1. Recursively find (T1, k1) = ρ(G1, p), . . . , (Ts, ks) = ρ(Gs, p).
2. If s = 1 then let k = k1 + 2(1 − π(T1)). Otherwise, let

ka = max{k1, . . . , ks},
kb = max{ki | 1 ≤ i ≤ s, i
= a} and, if s > 2 let
kc = max{ki | 1 ≤ i ≤ s, i
= a, i
= b}.

If p = 1 (for odd) then let k = ka +kb−1−2 ·π(Ta) ·π(Tb) and, otherwise,

k =

{
ka + kb − 2 · (π(Ta) + π(Tb) − π(Ta) · π(Tb)), if s = 2 or ka > kc

ka + kb − 2 · π(Ta) · π(Tb), otherwise.

3. Get the extended leaf root T ′
i = η

(
Ti,

k−ki

2

)
for all i ∈ {1, . . . , s} and let

T ′ = μ(k, T ′
1, . . . , T

′
s, v1, . . . , vt).

4. Return (T, k) with T obtained from T ′ by attaching the leaf u to a center
vertex of T ′.

iii. else G is a disconnected graph and then let G1, . . . , Gs be the s ≥ 0
non-trivial connected components and v1, . . . , vt the t ≥ 0 isolated vertices
of G.
1. Recursively find (T1, k1) = ρ(G1, p), . . . , (Ts, ks) = ρ(Gs, p).
2. Let k = max{k1, . . . , ks, p + 2} and let T ′

i = η
(
Ti,

k−ki

2

)
for all i ∈

{1, . . . , s}.
3. Return (T, k) with T = μ(k, T ′

1, . . . , T
′
s, v1, . . . , vt).

358 V. B. Le and C. Rosenke

Hence, if the input graph G is not a star then the approach is to firstly divide G
into smaller connected subgraphs G1, . . . , Gs (and isolated vertices v1, . . . , vt),
secondly find corresponding k-leaf roots T1, . . . , Ts by recursion and the η-
operation, and, last, conquer by merging them into a single leaf root of G with
the μ-operation. The divide-step is simple for disconnected G and, otherwise, is
carried out by removing the unique universal (cutvertex) of G.

The ρ-operation is sensitive to the given parity p for using μ as a subroutine.
Observe that p also decides how the resulting k is determined. There are four
cases when G is connected and not a star. In the first one, when s = 1, the
construction is the same for odd and even p and consists of adding u, v1, . . . , vt

at the correct distance to the center of T1 and computing k from k1. Secondly,
if s > 1 and p = 1, the μ-operation has only one way of merging the recursively
found leaf roots T1, . . . , Ts to minimize the diameter of the result T . Then, k
widely depends on the two largest values of k1, . . . , ks. But if p = 0, there is
one situation that, on the one hand, allows μ to use a smaller diameter for T by
prioritizing the critical leaf root and, on the other hand, lets ρ return a slightly
better value for k. This happens only when s = 2, or whenever the kc-leaf root,
with kc the third-largest value among k1, . . . , ks, properly fits into the diametral
space of T that is already required for the ka-leaf root and the kb-leaf root.

The third and bottom row of Fig. 2 illustrate the results (T, 11) of ρ(G, 1) and
(T ′, 12) of ρ(G, 0) on the example G. By recursion, both are produced bottom-
up, and it is difficult to follow their assembly at the deeper recursion levels.
The highest recursion level of ρ(G, 1), however, has received a 7-leaf root with
odd diameter for subgraph G1 and a 5-leaf root with even diameter for G2 in
Step (ii.1.). In Step (ii.2.), the ρ-procedure determines k = k1 + k2 − 1 = 11.
The extension of the trees in Step (ii.3.) produces the 11-leaf roots T1 and T2

for G1 and G2, respectively, as shown in Fig. 2. Their following merging and the
attachment of u0 in Step (ii.4.) produces the shown 11-leaf root T of G. Similarly,
ρ(G, 0) receives an odd-diameter 8-leaf root of G1 and an even-diameter 6-leaf
root of G2. Since s = 2, the critical root can be treated in the special way and,
thus, ρ(G, 0) determines k′ = k′

1 + k′
2 − 2 = 12. After the extension, we get

the 12-leaf roots T ′
1 for G1 and T ′

2 for G2 as in Fig. 2. Their merging and the
attachment of u0 yields the 12-leaf root T ′ of G as also illustrated there.

The following statement regards the correctness of our procedure.

Theorem 2. Let G be a ccg on n vertices and without true twins and let p ∈
{0, 1}. Then (T, k) = ρ(G, p) provides a k-leaf root T of G that is optimal for
parity p (hence, π(k) = p) and with k ≤ n+ 1. If G is connected then

(T1) rad(T) = k − 1,
(T2) dmin

T = 1 + π(T), and
(T3) diam(T ′) ≥ diam(T) + k′ − k for all k′-leaf roots T ′ of G with π(k′) = p.

Note that, with respect to the optimality of the result, the theorem above makes
a slightly stronger statement than our main result in Theorem 1. In fact, the
ρ-operation can find a κ-leaf root with minimum κ for every ccg G simply by
choosing the best from (T, k) = ρ(G, 1) and (T ′, k′) = ρ(G, 0). To prove Theo-
rem 1, the next section shows how to implement the ρ-operation in linear time.

Computing Optimal Leaf Roots of Chordal Cographs 359

4 Linear Time Leaf Root Construction for CCGs

The algorithm in this section is an implementation of the ρ-operation from
Sect. 3. Here, the recursive subdivision of the input ccg G is replaced with a
post-order iteration of the cotree of G. But before we go into the details, we
analyze the used submodules and show that the operations η and μ run effi-
ciently.

Lemma 6. Let T be a compressed tree with n leaves and with explicitly given
min-max center z, center Z, diameter diam(T), and leaf-distance dmin

T . For all
integers δ ≥ 0, the compressed tree T ′ = η(T, δ) with min-max center z′, center
Z ′, diameter diam(T ′), and leaf distance dmin

T ′ can be computed in O(n) time.

Lemma 7. Let s ≥ 0 be an integer and, for all i ∈ {1, . . . , s}, let Ti be a given,
compressed tree with explicitly given min-max center zi, center Zi, diameter
diam(Ti), and leaf-distance dmin

Ti
. For all integers k ≥ 2 and vertices v1, . . . , vt,

the merged compressed tree T ′ = μ(k, T1, . . . , Ts, v1, . . . , vt) with center Z ′ and
diameter diam(T ′) can be computed in O(s+ t) time.

The recursive definition of ρ(G, p) is implemented as an iterative traversal of the
cotree of G. We observe that connected and disconnected graphs G can easily
be distinguished with the cotree of G; the former have a root labelled by 1 and
the latter by 0 . Likewise, we detect small input graphs, stars, with the cotree
by checking if the root is labelled with 1 and if the only child that is labelled
with 0 has just leaf-children.

Recall that, for connected graphs G of sufficient size, the ρ-operation divides
G at the unique universal vertex u, to recurse into the non-trivial connected
components G1, . . . , Gs of G− u, and to conquer by merging the according leaf
roots T1, . . . , Ts into a parity-optimal solution for G. This divide-and-conquer
procedure is translated into a traversal of the cotree T as follows. Since input
consists of ccgs without true twins, we rely on Proposition 1. That means that
nodes with the label 1 , like the root X of T , always have exactly one leaf-child,
say u, and one child with label 0 , say Y . The leaf u marks the unique universal
vertex in G and Y has children Z1, . . . , Zs with label 1 and leaf-children v1, . . . vt

that represent the non-trivial connected components G1, . . . , Gs and the isolated
vertices v1, . . . , vt of G − u. The chosen post-order traversal of T makes sure
that, before processing X (and Y), the nodes Z1, . . . , Zs have been visited and
finished. Because we use a stack to pass interim results upwards, we always find
leaf roots T1, . . . , Ts for G1, . . . , Gs on the stack (in reverse order), when we need
to compute a leaf root T for the subgraph that corresponds to TX .

We present the details of our construction in Algorithm 1: OptimalLeafRoot
and summarize our results in the following theorem.

Theorem 3. Given a chordal cograph G on n vertices and m edges and p ∈
{0, 1}, a (compressed) κ-leaf root of G with minimum integer κ of parity p can
be computed in O(n+m) time.

360 V. B. Le and C. Rosenke

Algorithm 1: OptimalLeafRoot
Input: A ccg G = (V, E) without true twins and a parity p ∈ {0, 1}
Output: A pair (T, k) of a k-leaf root T of G with smallest p-parity integer k.

1 initialize empty stack S and compute the cotree T of G
2 foreach node X visited traversing T in post-order do
3 if X is labelled with 1 then
4 let Y be the 0 -child and u the leaf-child of X

5 let s be the number of 1 -children and v1, . . . , vt the leaf-children of Y
6 if s = 0 then // Case i., base case, input is a star
7 build T like Case i., Section 3 for star on edges uv1, . . . , uvt

8 push (T, 4 − p) onto S
9 else // Case ii., input is a connected graph

10 foreach i ∈ {s, s − 1, . . . , 1} do pop (Ti, ki) from S if s = 1 then
k ← k1 + 2(1 − π(T1)) else

11 ka ← max{k1, . . . , ks}
12 kb ← max{ki | 1 ≤ i ≤ s, i
= a}
13 if p = 1 then k ← ka + kb − 1 − 2 · π(Ta) · π(Tb) else
14 if s > 2 and ka > max{ki | 1 ≤ i ≤ s, i
= a, i
= b} then
15 k ← ka + kb − 2 · π(Ta) · π(Tb)
16 else k ← ka + kb − 2 · (π(Ta) + π(Tb) − π(Ta) · π(Tb))

17 end
18 end
19 foreach i ∈ {1, . . . , s} do T ′

i ← η(Ti, (k − ki)/2)

T ← μ(k, T ′
1, . . . , T ′

s, v1, . . . , vt) with ← a center of T
20 attach u as a leaf to a center of T
21 push (T, k) onto S
22 end
23 end
24 if X is 0 -node without parent then // Case iii., disconnected input
25 let s be the number of 1 -children and v1, . . . , vt the leaf-children of X
26 foreach i ∈ {1, . . . , s} do pop (Ti, ki) from S k ← max{k1, . . . , ks, p + 2}
27 foreach i ∈ {s, s − 1, . . . , 1} do T ′

i ← η(Ti, (k − ki)/2)

T ← μ(k, T ′
1, . . . , T ′

s, v1, . . . , vt)
28 push (T, k) onto S
29 end
30 pop (T, k) from S
31 return (T, k)

32 end

5 Conclusion

With Theorem 3, we have shown that the OLR problem is linear-time solvable
for chordal cographs. Our work also provides a linear-time solution for the k-leaf
power recognition problem on chordal cographs. Specifically, for a given ccg G
and an integer k, it is sufficient to compute (T, κ) = ρ(G, π(k)) (in linear time
with Algorithm 1) to see by κ ≤ k if G is a k-leaf power.

We conclude the paper by exploring the differences in the construction of
odd and even leaf-roots. As we have seen, merging three or more even leaf roots
sometimes requires a slightly stronger increase in k than for odd leaf roots. This
can accumulate to an arbitrary big gap between k and k′ of an optimal odd
k-leaf root and an optimal even k′-leaf root of a given ccg. For example, consider
the (infinite) series F1, F2, F3, . . . , Fi, . . . of ccgs defined as follows. Let F0 be
the path on three vertices and for all integers i > 0 define

Fi = ti 1 ((xi 1 (Fi−1 0 ui)) 0 (yi 1 (Fi−1 0 vi)) 0 (zi 1 (Fi−1 0 wi)))

Computing Optimal Leaf Roots of Chordal Cographs 361

with g ∈ {ti, ui, vi, wi, xi, yi, zi} denoting a graph with the single vertex g. By
Sect. 2, F1, F2, . . . are a family of ccgs and, apparently, all these graphs are
connected and without true twins.

Lemma 8. For all integers i ≥ 1, the graph Fi is a (odd) ki-leaf power for ki =
2i+2−1 but not a (ki−2)-leaf power and a (even) k′

i-leaf power for k′
i = ki+2i−1

but not a (k′
i − 2)-leaf power.

This means that, although odd and even leaf root construction follows the same
approach, there are k-leaf powers of odd k among the chordal cographs that have
optimal even k′-leaf roots with k′ roughly 1.25k.

References

1. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers.
In: LATIN 2008, pp. 479–491 (2008). https://doi.org/10.1007/978-3-540-78773-
0_42

2. Brandstädt, A., Hundt, C., Mancini, F., Wagner, P.: Rooted directed path graphs
are leaf powers. Discret. Math. 310(4), 897–910 (2010). https://doi.org/10.1016/
j.disc.2009.10.006

3. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Inf. Process. Lett. 98(4), 133–138 (2006). https://doi.org/10.1016/j.ipl.2006.01.004

4. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear-time recognition of
4-leaf powers. ACM Trans. Algorithms 5(1), 11:1–11:22 (2008). https://doi.org/
10.1145/1435375.1435386

5. Chang, M., Ko, M.: The 3-steiner root problem. In: WG 2007, pp. 109–120 (2007).
https://doi.org/10.1007/978-3-540-74839-7_11

6. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs.
Discrete Appl. Math. 3(3), 163–174 (1981). https://doi.org/10.1016/0166-
218X(81)90013-5

7. Ducoffe, G.: The 4-steiner root problem. In: WG 2019, pp. 14–26 (2019). https://
doi.org/10.1007/978-3-030-30786-8_2

8. Eppstein, D., Havvaei, E.: Parameterized leaf power recognition via embedding
into graph products. Algorithmica 82(8), 2337–2359 (2020). https://doi.org/10.
1007/s00453-020-00720-8

9. Golumbic, M.C.: Trivially perfect graphs. Discrete Math. 24(1), 105–107 (1978).
https://doi.org/10.1016/0012-365X(78)90178-4

10. Lafond, M.: Recognizing k-leaf powers in polynomial time, for constant k. In: SODA
2022, pp. 1384–1410. SIAM (2022). https://doi.org/10.1137/1.9781611977073.58

11. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica
37(2), 93–147 (2003). https://doi.org/10.1007/s00453-003-1032-7

12. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees.
J. Algorithms 42(1), 69–108 (2002). https://doi.org/10.1006/jagm.2001.1195

13. Rosenke, C., Le, V.B., Brandstädt, A.: Leaf powers, pp. 168–188. Encyclopedia
of Mathematics and its Applications, Cambridge University Press (2021). https://
doi.org/10.1017/9781108592376.011

14. Wagner, P., Brandstädt, A.: The complete inclusion structure of leaf power classes.
Theor. Comput. Sci. 410(52), 5505–5514 (2009). https://doi.org/10.1016/j.tcs.
2009.06.031

https://doi.org/10.1007/978-3-540-78773-0_42
https://doi.org/10.1007/978-3-540-78773-0_42
https://doi.org/10.1016/j.disc.2009.10.006
https://doi.org/10.1016/j.disc.2009.10.006
https://doi.org/10.1016/j.ipl.2006.01.004
https://doi.org/10.1145/1435375.1435386
https://doi.org/10.1145/1435375.1435386
https://doi.org/10.1007/978-3-540-74839-7_11
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.1007/978-3-030-30786-8_2
https://doi.org/10.1007/978-3-030-30786-8_2
https://doi.org/10.1007/s00453-020-00720-8
https://doi.org/10.1007/s00453-020-00720-8
https://doi.org/10.1016/0012-365X(78)90178-4
https://doi.org/10.1137/1.9781611977073.58
https://doi.org/10.1007/s00453-003-1032-7
https://doi.org/10.1006/jagm.2001.1195
https://doi.org/10.1017/9781108592376.011
https://doi.org/10.1017/9781108592376.011
https://doi.org/10.1016/j.tcs.2009.06.031
https://doi.org/10.1016/j.tcs.2009.06.031

362 V. B. Le and C. Rosenke

15. Wolk, E.: The comparability graph of a tree. Proc. Am. Math. Soc. 13, 789–795
(1962). https://doi.org/10.1090/S0002-9939-1962-0172273-0

16. Wolk, E.: A note on the comparability graph of a tree. Proc. Am. Math. Soc. 16,
17–20 (1965). https://doi.org/10.1090/S0002-9939-1962-0172273-0

https://doi.org/10.1090/S0002-9939-1962-0172273-0
https://doi.org/10.1090/S0002-9939-1962-0172273-0

Verified Exact Real Computation
with Nondeterministic Functions

and Limits

Sewon Park(B)

Kyoto University, Kyoto, Japan
sewon@kurims.kyoto-u.ac.jp

Abstract. The problems of computing limit points nondeterministically
from sequences of nondeterministic real numbers appear ubiquitously in
exact real computation along with root-finding of real and complex func-
tions. To provide a rigorous foundation of verified computations with
nondeterministic limits, we introduce a simple imperative language for
exact real computation with a nondeterministic limit operator as its
primitive. The operator’s formal semantics is defined. To make nontriv-
ial sequences of nondeterministic real numbers be defined within the
language, we further extend the language with lambda expressions for
constructing higher-order nondeterministic functions without side effects
and countable nondeterministic choices. We devise proof rules for the new
operations and prove their soundness. As an example, to demonstrate
the strength of the proof rules, we verify the correctness of a program,
a computational counterpart of a constructive Intermediate Value Theo-
rem, computing nondeterministically a root of a continuous locally non-
constant real function whose signs at each endpoint of the unit interval
differ.

Keywords: Exact real computation · Nondeterministic limits ·
Unbounded nondeterminism · Formal verification

1 Introduction

In exact real computation, real numbers are expressed and manipulated exactly
without introducing rounding errors; e.g., see [10]. Instead of approximating real
numbers to finite-precision floating-point numbers, which inevitably generate
and accumulate round-off errors, real numbers in exact real computation are
internally represented by infinite sequences and processed exactly via stream
computations. Despite an inevitable inefficiency compared to using hardware-
supported floating-point numbers, as the results of exact real computations are
guaranteed to be free from numerical errors, it is suitable where arbitrarily high
precision is required. Moreover, by abstracting representations away, the real
numbers and their operations form closely the classical structure of real numbers

The author is a JSPS International Research Fellow supported by JSPS KAKENHI
(Grant-in-Aid for JSPS Fellows) JP22F22071.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 363–377, 2023.
https://doi.org/10.1007/978-3-031-43587-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_26&domain=pdf
http://orcid.org/0000-0002-6443-2617
https://doi.org/10.1007/978-3-031-43587-4_26

364 S. Park

making it intuitive to reason about their computational behaviours. Implemen-
tations of exact real computation optimizing their performances suggest their
usefulness in mission-critical application domains; see [3,15,18] for examples.

Nondeterminism is essential in exact real computation [16].1 Instead of test-
ing order comparisons naively by iterating through the infinite representations,
which diverges (failing to terminate) when two real numbers that are compared
coincide [23, Theorem 4.1.16], the following total nondeterministic variant, so-
called soft comparison [5,16], is often used:

x <k y :≡ {true | x < y + 2−k} ∪ {false | y < x+ 2−k} . (1)

Here, k is an integer and the set-valued function value denotes the set of possi-
ble nondeterministic results. It says when x and y are far apart, the order gets
computed exactly and when they are close, either true or false gets returned
nondeterministically, relative to 2−k. It is a useful nondeterministic approxima-
tion of the order x < y, realized by evaluating the two possibly diverging tests
x < y + 2−k and y < x+ 2−k in parallel.

Constructing limits is a unique feature of exact real computation that makes
it more expressive than algebraic or symbolic computation [19]. An interest-
ing and inevitable case where nondeterminism gets engaged in exact real num-
ber computation is when it is combined with limits. (Note that such cases
appear ubiquitously along with root-finding of real and complex functions.) The
importance of constructing nondeterministic limits from their nondeterministic
approximations is noticed in [17] and later it is implemented in iRRAM, a C++
library for exact real computation, with an example of complex square root func-
tion [18, Section 8]. In [13], a formal specification of nondeterministic limits is
provided, as a theorem in a setting of constructive dependent type theory [14].

Programs in imperative programming languages can be specified naturally by
their precondition and postcondition. Furthermore, Hoare-style proof rules can
be designed for conveniently verifying the specifications; e.g., see [1]. A recent
work [20] has formalized an imperative programming language designed to pro-
vide a framework of formal verification of first-order exact real computations
with ordinary deterministic limits. There, the soundness of the verification cal-
culus is proved with regards to its formal semantics. As a demonstrating example,
the correctness of a (deterministic) root-finding program is proved. Dealing with
nondeterministic limits and higher-order computations are left as future works.

In this paper, we bring the concept of nondeterministic limits into the frame-
work of imperative programming and formal verification, to provide a rigorous
foundation of verified computations with nondeterministic limits. Based on an
imperative programming language for first-order exact real computation, we pro-
pose introducing a nondeterministic limit operator. We define the formal seman-
tics of the limit operator by translating the type-theoretic specification in [13]
to a set-theoretic function. To define nontrivial sequences, we extend the lan-
guage with lambda expressions for constructing nondeterministic (higher-order)

1 It is also often called multivaluedness or non-extensionality; see [6].

Exact Real Computation with Nondeterministic Functions and Limits 365

functions without side effects and countable nondeterminism. We further devise
sound Hoare-style proof rules for the suggested operations.

Here, we do not specify the base language, though we have [20] in our mind
since the specific design choices made in the base language are irrelevant to the
contribution of this paper. We demand the base language to provide data types
for (lazy) Boolean, integers, and real numbers; to admit an intuitive type system;
and to offer fully specified exact first-order operations over them. It can be con-
sidered as a language modelling a core first-order fragment of iRRAM. Under
this aspect, our work is extending the modelling language and its specification
logic with higher-order computation that C++ already provides and nondeter-
ministic limits. The latter includes modifying the nondeterministic limit operator
in iRRAM and giving it formal semantics for formal verification.

In order to deal with our nondeterministic functions, in logical assertions, we
adopt the program specification method of [12] with a minor modification and
equip our assertion language with the proposition

{{{ϕ}}} f • (e1, · · · , en)⇒ y {{{ψ}}}
saying the nondeterministic function f on its inputs e1, · · · , en satisfying ϕ yields
y satisfying ψ. Based on the specification language, we devise proof rules for the
nondeterministic limit operator and the countable nondeterminism operator.

This paper is organized as follows. In Sect. 2, we specify how we model nonde-
terministic functions, define the semantics of a nondeterministic limit operator,
and show that loops are well-defined. In Sect. 3, we define the formal syntax,
type system, and denotational semantics of the new operations. In Sect. 4, we
define the assertion language and program specification. Then, proof rules are
introduced and proved sound in Sect. 5. They are used in Sect. 6 when we verify
the correctness of a nondeterministic root-finding program.

2 Preliminaries

2.1 Nondeterministic Functions

We write f : X ⇒ Y for a partial nondeterministic function from X to Y .2 It is
denoted by a (potentially) set-valued function f : X → P�(Y) where

P�(Z) :≡ {S ⊆ Z | S is nonempty} ∪ {⊥} for any set Z.

We say f(x) is defined when f(x)
= ⊥. In this case, the nonempty set f(x) ⊆ Y
denotes the set of all possible outcomes of the nondeterministic computation that
f(x) represents, guaranteeing that there is no failing nondeterministic branch.
2 Often, a different notation f :⊆ X ⇒ Y is used for a partial nondeterministic func-

tion and f : X ⇒ Y denotes a total nondeterministic function. However, we do not
make a syntactic distinction between total and partial nondeterministic functions,
and assume that all nondeterministic functions are possibly partial. Hence, in this
paper, we use X ⇒ Y for the set of partial nondeterministic functions. For exam-
ple, (X ⇒ Y) ⇒ Z denotes the set of partial nondeterministic functions to Z from
partial nondeterministic functions from X to Y .

366 S. Park

Otherwise, when f(x) = ⊥, we say f(x) is undefined. It denotes that there
exists a failing nondeterministic branch in the computation. Note that we con-
sider failures contagious in the sense that we mark ⊥ whenever there is a branch
that fails. We may use the powerset of Y instead of P�(Y) and identify ⊥ with ∅;
however, then we need to modify the set union operator to deal with ∅ differently
from other subsets when merging two nondeterministic results.

When f : Y ⇒ Z and g : X ⇒ Y , their composition is expressed by f† ◦ g :
X ⇒ Z where f† : P�(Y) → P�(Z) is defined by

f†(S) =

{
⊥ if S = ⊥ ∨ ∃y ∈ S. f(y) = ⊥,
⋃

y∈S f(y) otherwise.

A product domain can be extended by considering all possible combinations:
sX1,··· ,Xn

: (P�(X1) × · · · × P�(Xn)) → P�(X1 × · · · ×Xn) defined by

sX1,··· ,Xn
(S1, · · · , Sn) :≡

{
⊥ if Si = ⊥ for some i,
S1 × · · · × Sn otherwise.

Similarly, for any X, sZ→X : (Z → P�(X)) → P�(Z → X) is defined by

sZ→X(f) :≡
{
⊥ if f(z) = ⊥ for some z ∈ Z,
{g | ∀z ∈ Z. g(z) ∈ f(z)} otherwise.

For example, suppose we want to add nondeterministic real numbers. The
addition + : R2 → R first gets lifted

(
(x, y) �→ {x + y}) : R2 → P�(R) to be a

nondeterministic function. To get applied to another nondeterministic result, we
extend its domain

(
(x, y) �→ {x+ y})† ◦ sR,R : P�(R) × P�(R) → P�(R). Though

the notation is complicated, it does exactly what we expect it to do:

(
(x, y) �→ {x+ y})† ◦ sR,R(S, T) =

{
⊥ if S = ⊥ ∨ T = ⊥,
⋃

s∈S,t∈T {s+ t} if S
= ⊥ ∧ T
= ⊥.

By abuse of notation, for a (partial) ordinary or nondeterministic function f ,
we write f† to refer to the partial nondeterministic function that is lifted and
domain extended. For example, we simply write S+†T for the above expression.
It should be clear from the context which operations are implicitly applied.

Lazy Boolean denotes the set L = {true, false, div} of truth values where
div denotes the delayed divergence.3 Based on lazy Boolean, a countable non-
determinism operator, similarly to [22] but on function arguments, is defined:

choose(f : Z → L) :≡ {z ∈ Z | f(z) = true}� (2)

where S� = S if and only if S
= ∅ and S� = ⊥ if and only if S = ∅. Given
indexed lazy Boolean objects f , choose(f) nondeterministically selects an index
3 In exact real computation, it is also called Kleenean; see [6].

Exact Real Computation with Nondeterministic Functions and Limits 367

for which f evaluates to true. Even when there are some that diverge, evaluating
to div, the choose operator safely gets rid of them as long as there is an index it
can choose. Note that i ∈ choose†(f : Z ⇒ L) if and only if true ∈ f(i), f(j) =
{true} for some j, and f(z)
= ⊥ for all z. Otherwise, choose†(f : Z ⇒ L) = ⊥.

The operation choose(f) can be realized by a scheduler that evaluates all
{f(i) | i ∈ Z} in parallel until it finds an index i such that f(i) terminates and
evaluates to true.

2.2 Nondeterministic Limits

Suppose an ordinary limit operator as the following partial function:

lim(f : Z → R) =

{
y if ∀p ∈ Z. |y − f(p)| ≤ 2−p,

⊥ otherwise.

It is defined on f : Z → R which approximates a real number rigorously in the
sense that when it receives a precision argument p, heading to ∞, it returns a 2−p

approximation to the real number. In other words, f is a (rapidly converging)
Cauchy sequence as p→ ∞; see [4,8].

Note that, using the construction in Sect. 2.1, the ordinary limit operator can
already be extended to accept sequences of nondeterministic real numbers:

lim†(f : Z ⇒ R) = {y | ∀p ∈ Z. ∀x ∈ f(p). |y − x| ≤ 2−p}�.

Though it is a natural extension, the problem is that it only accepts sequences
of nondeterministic real numbers that converge to deterministic points; observe
that the value lim†(f) can have at most one real number.

Instead, we recall the nondeterministic limit theorem in [13, Theorem 2].
The theorem states indirectly on how to construct limits nondeterministically.
Here, we translate the type-theoretic statement into our setting taking some
minor changes. Consider any set X. For a closed subset L ⊆ R and indexed
binary relations (Iq)q∈Z ⊆ R × X, a nondeterministic function f : Z × ((R ×
Z) × X) ⇒ R × X is called a nondeterministic refinement procedure for the
nondeterministic limit L w.r.t. the hint invariant I if the following holds. For
each inputs p ∈ Z, x ∈ R, q ∈ Z, h ∈ X such that q < p, ∃y ∈ L. |x − y| ≤ 2−q,
and (x, h) ∈ Iq, it holds that

1. f(p, ((x, q), h)) is defined (i.e., f(p, ((x, q), h))
= ⊥),
2. and for each (x′, h′) ∈ f(p, ((x, q), h)), the followings hold:

∃y′ ∈ L. |x′ − y′| ≤ 2−p, |x− x′| ≤ 2−q − 2−p, and (x′, h′) ∈ Ip.

In words, f , given a 2−q approximation x to some y ∈ L and a hint h that
satisfies Iq, nondeterministically refines it to a 2−p approximation x′ to some
(possibly different) y′ ∈ L, near the original x, and produces another hint h′

that together with x′ satisfies Ip. Let us write AL,I(f) for this condition on f .

368 S. Park

Furthermore, (x0, q0) and h0 are called an initial approximation and hint of
L w.r.t. I when there exists y ∈ L such that |y − x0| ≤ 2−q0 and (x0, h0) ∈ Iq0 .
Let us write BL,I(x0, q0, h0) for this condition on (x0, q0) and h0.

The theorem states that L gets constructed nondeterministically for some
I when f and (x0, q0, h0) are given such that AL,I(f) ∧ BL,I(x0, q0, h0). For
such f and (x0, q0, h0), what is happening operationally is intuitive. For some
infinite increasing sequence of integers p = p0, p1, · · · where p0 = q0, representing
an implementation-specific protocol on how we increase precision, it creates an
infinite sequence using this recursion-like procedure:

pick one (xn+1, hn+1) ∈ f(pn+1, ((xn, pn), hn)) .

Due to the conditions, this indefinite procedure nondeterministically constructs
one deterministic sequence (xn)n∈N that converges with ratio |xn − xm| ≤
2−pn + 2−pm . Also, for each n, there is yn ∈ L that is 2−pn close to xn. As L is
sequentially closed, the limit point of (xn)n∈N which is the limit point of (yn)n∈N

is in L. Therefore, applying an ordinary limit operation to (xn)n∈N, a point in L
gets computed. That means, depending on which deterministic sequence (xn)n∈N

is constructed, the procedure constructs a limit point nondeterministically in L.
However, thus far discussion is not sufficient in giving a definition to an

explicit nondeterministic limit operator of type

lim⇒
X : ((Z × ((R × Z) ×X)) ⇒ (R ×X)) × ((R × Z) ×X) ⇒ R (3)

parameterized by a set X. The reason is that for the arguments f and
((x0, q0), h0), the set L satisfying the above conditions is not unique. In order
to assign a specific value of lim⇒

X (f, ((x0, q0), h0)), let us consider the set of
nondeterministic limits that the input constructs:

Cf,x0,q0,h0 ≡ {L | ∃I. AL,I(f) ∧ BL,I(x0, q0, h0)}.
We take the most precise one:

Lemma 1. When Cf,x0,q0,h0 is not empty,
⋂

L∈Cf,x0,q0,h0
L ∈ Cf,x0,q0,h0 .

The lemma says, the common limit points in all possible nondeterministic limits
again form one nondeterministic limit. Hence, we define the limit operator as
follows:

lim⇒
X (f, ((x0, q0), h0)) :≡

⋂

L∈Cf,x0,q0,h0

L (4)

defined precisely at ∃I. AL,I(f) ∧ BL,I(x0, q0, h0).

2.3 While Loops

The denotation of a program is a partial nondeterministic function f : X ⇒ Y
for some sets X and Y . Sequential compositions are done by the liftings defined
earlier: when f : X ⇒ Y and g : Y ⇒ Z are the denotations of two programs,
the composition of the two programs denotes g† ◦ f : X ⇒ Z.

Exact Real Computation with Nondeterministic Functions and Limits 369

For subsets B ∈ P�(L), S, T ∈ P�(X) for some X, define the following
operator modeling the branching operator on a lazy Boolean condition:

ite(B,S, T) :≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⊥ if B = ⊥ or div ∈ B

or (true ∈ B ∧ S = ⊥)
or (false ∈ B ∧ T = ⊥),

⋃
{
S if true ∈ B,

T if false ∈ B,
otherwise.

Note that the statement is defined to fail when the condition is div when eval-
uating the condition diverges.

For a set of states X, a loop condition b : X ⇒ L, and a loop body c : X ⇒ X,
the loop is a function whileb,c : X ⇒ X that satisfies the recurrence equation:

whileb,c(x) = ite(b(x),while†
b,c(c(x)), {x}) .

Therefore, we define it to be a fixed-point of the operator:

Wb,c : f �→ (
x �→ ite(b(x),while†

b,c(c(x)), {x})).

Lemma 2. The operator Wb,c is monotone w.r.t. the point-wise ordering of
functions to the flat domain P�(X). In addition, it admits a fixed-point.

There are various ways to formalize denotations of loops in a setting of
unbounded nondeterminism and all of them involve complications; see [2,9] for
examples. Instead of specifying one construction, deferring it to a future work,
in this paper we define whileb,c to be a fixed-point of the operator that is known
to exist.

3 The Programming Language

3.1 Syntax and Typing Rules

We suppose there are the four base types: R for real numbers, Z for integers, lB
for the lazy Boolean, and U for a singleton unit. Based on the base types, there
are product types τ ××× σ and function types τ1 × · · · × τn ⇒⇒⇒ σ. In addition, for
each type τ , there is ro(τ) the read-only type of τ .

A context Γ is a finite partial mapping from variables to their data types
and we write Γ , e : τ for our typing rule judging an expression e to have type
τ under a context Γ . We write Γ , c #Δ for our typing rule judging a command
c to be well-formed yielding a new context Δ under a context Γ .

The expression language includes integer, real, and lazy Boolean constants
and operations. There are both a naive coercion Z � x �→ x ∈ R and an expo-
nential coercion Z � x �→ 2x ∈ R from integers to reals. Also reading read-only
types is done implicitly in the sense that Γ , e : τ holds when Γ , e : ro(τ). Of

370 S. Park

course, real number comparison x <<< y is defined to be lazy Boolean typed that
is meant to be div when x and y evaluate to the same real number.

Besides the operations on base types, there are lambda expressions λ(x1 :
τ1, · · · , xn : τn). c; e and function applications with the typing rules:

ro(Γ), v1 :τ1, · · · , vn :τn , c # Δ
Δ , e : σ

Γ , λ(v1 :τ1,· · · ,vn :τn). c; e :$τ ⇒⇒⇒ σ

Γ , f : τ1 × · · · × τn ⇒⇒⇒ σ
Γ , ei : τi (i = 1, · · · , n)
Γ , f(e1, · · · , en) : σ

Here, $τ is τ1 × · · · × τn and ro(Γ) is the context where each data type assigned
in Γ is casted by ro(·). The lambda expression mimics the lambda expression in
C++ and iRRAM [=](τ1 v1, · · · , τn vn){c; return(e); } that can read-only the
surrounding environment.

Countable choices and nondeterministic limits admit the following rules:

Γ , f : Z ⇒ lB

Γ , choose(f) : Z

Γ , f : Z × ((R××× Z)××× τ) ⇒⇒⇒ R××× τ
Γ , e : (R××× Z)××× τ

Γ , lim⇒⇒⇒
τ (f, e) : R

The limit operator is polymorphic in the sense that lim⇒⇒⇒
τ (f, e) for each data

type τ has type R. Compare the rule with the type of the limit operator in Eq.
(3).

3.2 Denotational Semantics

The denotations of data types are defined recursively as �R� :≡ R, �Z� :≡ Z,
�lB� :≡ L, �τ ××× σ� :≡ �τ� × �σ�, �τ1 × · · · × τn ⇒⇒⇒ σ� :≡ �τ1� × · · · × �τn� ⇒ �σ�,
and �ro(τ)� :≡ �τ�. A context Γ denotes the set of variable assignments. A well-
typed expression Γ , e : τ denotes a partial nondeterministic function �Γ , e :
τ� : �Γ � ⇒ �τ� where �Γ , e : τ�(γ) ⊆ �τ� denotes the set of nondeterministic
results of evaluating e under a state γ ∈ �Γ �. The evaluation failing is captured
by ⊥. A well-formed command Γ , c # Δ denotes a partial nondeterministic
function �Γ , c # Δ� : �Γ � ⇒ �Δ� where �Γ , c # Δ�(γ), when it is not ⊥, is the
set of resulting states executing c from a state γ.

For the new features, we let choose denote the countable choice choose from
Eq. (2), the nondeterministic limit operator lim⇒⇒⇒

τ denote the nondeterministic
limit lim⇒

�τ� from Eq. (4), and a while loop denotes the fixed point from Lemma
2. A lambda expression is defined to denote a partial nondeterministic function.

4 Specifications

4.1 Assertion Language for Nondeterministic Functions

We consider a many-sorted logic whose sorts are the data types as the assertion
language. That means the language provides terms of type $τ ⇒⇒⇒ σ which denote

Exact Real Computation with Nondeterministic Functions and Limits 371

partial nondeterministic functions from $τ to σ. Instead of introducing power-
sets and regarding nondeterministic functions be ordinary functions to them, we
take an axiomatic treatment. For any f : $τ ⇒⇒⇒ σ and (e1, · · · , en) : $τ , instead of
having f(e1, · · · , en) in the term language of some type, as in [12] we extend the
language of formulae with triples of the form:

{{{ϕ}}} f • (e1, · · · , en)⇒ y {{{ψ}}}
It says that the partial nondeterministic f on arguments (e1, · · · , en) satisfying
ϕ is well-defined and the resulting values represented by variable y satisfy ψ.

For example, suppose we want to make a predicate on f : R × Z × R ⇒⇒⇒ lB
saying that f is the soft comparison in Eq. (1). Then, instead of writing f(x, k, y)
which is not a well-typed term in our logical language, we use ∀x, y : R, k : Z.

{{{True}}} f • (x, k, y)⇒ b {{{b ↓ ∧(b⇒ x < y + 2−k) ∧ (¬b⇒ y < x+ 2−k)}}}.
Here, for a term b : lB, b used as a formula is an abbreviation for b = true, ¬b

is an abbreviation for b = false, and b ↓ is an abbreviation for b ∨ ¬b.
We extend the inference rules with some valid proof rules including:

{{{ϕ1}}} f • $e⇒ y {{{ψ1}}} {{{ϕ2}}} f • $e⇒ y {{{ψ2}}}
{{{ϕ1 ∧ ϕ2}}} f • $e⇒ y {{{ψ1 ∧ ψ2}}}

(5)

Furthermore, we axiomatize that for each f : $τ ⇒ σ, there is a binary relation
f̄ between $τ and σ such that

∀$x. {{{∃y. $xf̄y}}} f • $x⇒ y {{{$xf̄y}}}
which is optimal in the sense that for any ∀$x. {{{ϕ}}} f • $x⇒ y {{{ψ}}}, it holds that
∀$x. ϕ⇒ ∃y. $xf̄y and ∀$x, y. $xf̄y ⇒ ϕ ∧ ψ.

Though nondeterministic function becomes a primitive notion, we often
restrict to ordinary functions and reason about programs based on a classical
theory of ordinary functions in mathematical analysis. For the purpose, our log-
ical language provides also the ordinary function sorts $τ → σ which now admit
the ordinary function applications. We assume that the language is expressive
enough to do enough classical analysis. For a nondeterministic function f : $τ ⇒⇒⇒ σ
and an ordinary function g : $τ → σ define the proposition:

fun(g, f) :≡ ∀$x : $τ . {{{True}}} f • $x⇒ y {{{y = g($x)}}}
saying that f turns out to be an ordinary function which is g.

When we have a nondeterministic function f : $τ ⇒⇒⇒ σ, we pose an assumption
that f actually is a totally defined ordinary function by writing f↘:≡ ∃g : $τ →
σ. fun(g, f). Note that by the rule at Eq. (5), we can prove that if there exists
such g, it is unique. For a formula P on f : $τ ⇒⇒⇒ σ which regards f as an ordinary
function of type $τ → σ, we write [P]f for

∀g : $τ → σ. fun(g, f) ⇒ P [g/f]

where g does not appear free in f and P .

372 S. Park

Remark 1. For a partial nondeterministic f : $τ ⇒⇒⇒ σ, the well-formed formula
[P]f is derivable if P [g/f] is derivable for a variable g : $τ → σ that does not
appear free in P .

In other words, our language is expressive enough to restrict f to be an
ordinary function, do classical reasoning on it, and apply it back on f .

As an example, suppose cont is a predicate on ordinary real functions for their
continuity. For a nondeterministic f : R ⇒⇒⇒ R, we write f ↘ ∧[cont(f) ∧ f(0) ·
f(1) < 0]f to say that f is actually an ordinary function which is continuous and
admits a sign change in (0, 1). As our language proves the Intermediate Value
Theorem, according to Remark 1, we can derive f↘ ∧[∃x. 0 < x < 1∧f(x) = 0]f
which gives us the proposition on the nondeterministic f :

∃x. 0 < x < 1 ∧ {{{True}}} f • x⇒ y {{{y = 0}}}.

4.2 Total Correctness Specifications

We adopt the specification method using anchors in [11,12]. For a well-typed
expression Γ , e : τ , we write {{{ϕ}}} e :y {{{ψ}}} for some context of auxiliary
variables Υ to say that for any program state γ ∈ �Γ � and some free variables
ξ ∈ �Υ � satisfying γ, ξ |= ϕ, �Γ , e : τ�(γ) is well-defined and for each x ∈
�Γ , e : τ�(γ), it holds that γ, y �→ x, ξ |= ψ. In words, for any state γ and ξ
satisfying the precondition ϕ, the evaluation of e does not fail and any possible
value represented by the anchor y satisfies the postcondition ψ.

Similarly, we specify a well-typed command Γ , c#Δ with a triple {{{ϕ}}} c {{{ψ}}}
for some context of auxiliary variables Υ to say that for any γ ∈ �Γ � and ξ ∈ �Υ �
validating the precondition ϕ, �Γ , c # Δ�(γ) is not ⊥ and for each δ ∈ �Γ ,
c # Δ�(γ), δ, ξ validates postcondition ψ.

5 Proof Rules

The rules for lambda expressions and function applications are minor modifica-
tions from [12]:

{{{ϕ ∧ ψ ∧ $v = $v′}}} c {{{ψ′}}} {{{ψ′}}} e :y {{{θ[$v′/$v]}}}
{{{ϕ}}} λ(v1 : τ1, · · · , vn : τn). c; e :f {{{∀$v. {{{ψ}}} f • ($v)⇒ y {{{θ}}}}}}

{{{ϕ}}} f :g {{{θ}}} {{{ϕ}}} ei :vi
{{{ψi}}} (i = 1, · · · , n)

∀g,$v. ϕ ∧ θ ⇒ {{{ψ1 ∧ · · · ∧ ψn}}} g • (v1, · · · , vn)⇒ y {{{ψ}}}
{{{ϕ}}} f(e1, · · · , en) :y {{{ψ}}}

In the rule for lambda expressions, $v′ are fresh variables that capture the initial
values of the input variables $v. Note that $v in θ refer to the initial values not
the values that $v store at the end of c.

Exact Real Computation with Nondeterministic Functions and Limits 373

The rules for countable choices and limits are new. The rule for countable
choices is as follows:

{{{ϕ}}} f :g {{{choosableg ∧ ∀n : Z. {{{¬ψ}}} g • n⇒ y {{{y
= true}}}}}}
{{{ϕ}}} choose(f) :n {{{ψ}}}

where choosableg :≡ (∀n.{{{True}}} g • n⇒ y {{{True}}}) ∧ (∃n.{{{True}}} g • n⇒ y {{{y}}}).
Suppose a well-typed expression choose(f). For any state ϕ as a precondi-

tion, first we need to ensure that the expression f evaluates well to a function
g such that g satisfies (i) the abbreviated choosableg and (ii) that for any input
n not satisfying ψ, all return values y of g at n satisfy y
= true; i.e., g at such
n can only be either false or div. Hence, ψ is a condition that any input value
n of g must satisfy if true is one of the possible return values. Therefore, any n
that choose chooses from g satisfies ψ.

The other condition, the abbreviated choosableg, ensures that the nondeter-
ministic function g that f evaluates to has to be total and that there exists at
least one input n′ where the only possible return value of g on n′ is true. In
other words, the rule ensures that the argument function is well-defined for all
indices and there exists at least one index that choose can choose.

The rule for nondeterministic limits is as follows:

{{{ϕ}}} f :g {{{refine(g)}}} {{{ϕ}}} e :((x,q),h) {{{ψ ∧ x ≈q θ}}}
{{{ϕ}}} lim⇒⇒⇒

τ (f, e) :y {{{θ}}} ϕ⇒ closed(θ)

Here, the followings are abbreviations:

closed(θ) :≡∀y. ¬θ ⇒ ∃k ∈ Z. ∀z. |y − z| ≤ 2−k ⇒ ¬θ[z/y]
refine(g) :≡∀p, x, q, h. {{{ψ ∧ x ≈q θ ∧ q < p}}}

g • (p, ((x, q), h))⇒ (x′, h′)

{{{ψ[x′/x, h′/h] ∧ x′ ≈p θ ∧ |x− x′| ≤ 2−q − 2−p}}}
x ≈q θ :≡∃y. θ ∧ |x− y| ≤ 2−q

In order to apply the rule for limits and obtain {{{ϕ}}} lim⇒⇒⇒(f, e) :y {{{θ}}}, we first
need to prove the side-condition ϕ⇒ closed(θ) saying that under the assumption
ϕ, θ is a closed, hence also a sequentially closed, set on its free variable y. Then,
we need to prove that the evaluation of f leads to a nondeterministic function
g which is a nondeterministic refinement procedure with a hint invariant ψ: for
any (p, ((x, q), h)) such that q < p satisfying ψ and x ≈q θ, which means that x
approximates a real number that θ represents by 2−q, each output (x′, h′) of g on
(p, ((x, q), h)) satisfies (1) ψ[x′/x, h′/h], (2) x′ ≈p θ, and (3) |x−x′| ≤ 2−q−2−p.
In words, (1) ensures that the refinements that f produces respect the invariant
ψ, (2) ensures that f actually refines approximations, and (3) ensures that the
sequences that f creates are consistent.

Furthermore, the second premise requires that e evaluates to ((x, q), h) that
meets the hint invariant ψ and such that x is a 2−q approximation to a real
number represented by θ. Hence, they are an initial approximation and a hint.

374 S. Park

Thus far discussion constitutes a proof for the new rules.

Lemma 3. The proof rules for nondeterministic choices and limits are sound.

6 Examples

6.1 Two Dimensional Searching

Consider any enumeration function d̂ : Z → Z × Z in our assertion language.
Without specifying a lambda expression, we suppose we have an expression d̄
admitting the specification:

{{{True}}} d̄ :d {{{d↘ ∧∀v. [d(v) = d̂(v)]d}}}.

Using it, we can implement 2-dimensional searching:

choose2 :≡λ(f : Z × Z ⇒⇒⇒ lB). skip; d̄
(
choose

(
λ(z : Z). skip; f(d̄(z))

))
.

Then, we can obtain the derivation using the proof rules:

{{{ϕ}}} f :g {{{choosable2
g ∧ ∀i, j : Z. {{{¬ψ}}} g • (i, j)⇒ y {{{y
= true}}}}}}
{{{ϕ}}} choose2(f) :(i,j) {{{ψ}}}

(6)

where choosable2
g :≡ (∀(i, j) : Z ××× Z.{{{True}}} g • (i, j)⇒ y {{{True}}}) ∧ (∃(i, j) :

Z××× Z.{{{True}}} g • (i, j)⇒ y {{{y}}}).
The specification in Eq. (6) says that whenever a programming expression f

turns out to be a nondeterministic function g satisfying that (1) g(i, j) is not ⊥
for all i, j, (2) g(i, j) = {true} for some i, j, and (3) for all i, j satisfying ¬ψ,
true
∈ g(i, j) holds, the expression choose2(f) safely evaluates to (i, j) such
that ψ holds. The condition (1) ensures that evaluating f never fails, (2) ensures
that there exists an index (i, j) that ensures the termination of the searching
procedure, and (3) ensures that for any i, j such that true ∈ g(i, j), ψ holds.

6.2 Intermediate Value Theorem

Consider a continuous real function f and a < b such that f(a)·f(b) < 0. Though
the classical existence of a root in (a, b) is guaranteed by the Intermediate Value
Theorem, to compute it, we need to make more assumptions. Among many
variants, we assume f is continuous and locally non-constant [7]. Let us write
Cf for a formula stating the conditions. Moreover, let us abbreviate Sf,a,b for
a < b∧ f(a) · f(b) < 0 and let the initial search space be (0, 1); i.e., Sf,0,1 holds.

Suppose we have to refine an interval (a, b) where |a − b| = 2−h+1 for an
integer h into a sub-interval of width less than or equal to 2−p. For each d such
that p ≤ h + d, we split the interval (a, b) into 2d+1 equally spaced intervals
and consider the n’th and n+1’th adjacent intervals glued: (c(n)

a,b,d, c
(n+2)
a,b,d) where

c
(i)
a,b,d abbreviates a + i · (b − a) · 2−d−1 for each i. The condition p ≤ h + d

Exact Real Computation with Nondeterministic Functions and Limits 375

ensures that the new glued intervals have length less than or equal to 2−p. We
nondeterministically choose (d, n) such that the glued interval that the pair of
integers represents contains a root by passing the following lambda expression
J into the two-dimensional searching:

J :≡λ((n, d) : Z××× Z).var t : lB = false;

if Dn,d,h,p then t := f(c(n)
a,b,d) · f(c(n+2)

a,b,d)<<< 0 else skip end; t

Here, Dn,d,h,p abbreviates p ≤ h + d ∧ 0 < d ∧ 0 ≤ n ≤ 2d+1 − 2 where 0 <
d ∧ 0 ≤ n ≤ 2d+1 − 2 is needed to make d a counter and n an index. Using
the proof rules, we can prove {{{f ↘ ∧[Cf ∧ Sf,a,b]f}}} J :j {{{j ↘ ∧[j(n, d) ⇔
Dn,d,h,p ∧ S

f,c
(n)
a,b,d,c

(n+2)
a,b,d

]fj}}}. By a classical reasoning on f inside [·]fj , according
to Remark 1, based on the fact that f is locally non-constant, by postcondition
weakening, we can add [∃n, d. j(n, d) = true]fj in the postcondition.

By the rule of function applications and Eq. (6), we get the triple:

{{{f ↘ ∧[Cf ∧ Sf,a,b]f ∧ |a − b| = 2−h+1}}} choose
2(J) :(n,d) {{{[S

f,c
(n)
a,b,d

,c
(n+2)
a,b,d

]f ∧ Dn,d,h,p}}}.

It says indeed the new interval refines the original interval. Therefore, we can
prove that the following lambda expression is a refinement

R :≡λ(p : Z, ((x, q), h) : (R××× Z)××× Z).var a : R = y − 2−h;var b : R = y + 2−h;

var (n, d) : Z××× Z := choose2(J); (c(n+1)
a,b,d , h+ d)

for the limit points θ(y) :≡ 0 < y < 1 ∧ [f(y) = 0]f and the hint invariant
ψ :≡ [Sf,x−2−h,x+2−h]f . The initial approximation is (2−1, 1) and the initial hint
is 1. The limit points θ(y) can be proven closed by the condition that f is
continuous. Hence, applying the rule for limits, we get

{{{f↘ ∧[Cf ∧ Sf,0,1]f}}} lim⇒⇒⇒
Z (R, ((2−1, 1), 1)) :y {{{0 < y < 1 ∧ [f(y) = 0]f}}}

a formally proved specification for a program computing a root nondeterministi-
cally from a nondeterministic function f which happens to be a continuous and
locally non-constant ordinary function whose sign changes at the unit interval.

7 Conclusion and Future Work

We presented an imperative programming language with countable nondeter-
minism, nondeterministic functions, and nondeterministic limit operations for
exact real number computation. We also provided sound proof rules for proving
total correctness specifications and demonstrated its practicality by verifying a
constructive and nondeterministic Intermediate Value Theorem program.

Our future work includes extending the language with reference types, func-
tions with side effects, and higher-order general recursions. Along with that, we
plan to apply the verification methods to more advanced applications such as
differential equation solving in exact real computation [21].

Acknowledgements. The author would like to thank Holger Thies and the anony-
mous reviewers for constructive comments on the manuscript.

376 S. Park

References

1. Apt, K.R., Olderog, E.R.: Fifty years of Hoare’s logic. Formal Aspects Comput.
31, 751–807 (2019)

2. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J.
ACM (JACM) 33(4), 724–767 (1986)

3. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.: Ariadne: a framework for reachability analysis of hybrid automata.
In: Proceedings of 17th International Symposium on Mathematical Theory of Net-
works and Systems, Kyoto (2006)

4. Bishop, E.A.: Foundations of constructive analysis (1967)
5. Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4),

490–526 (1998). https://doi.org/10.1006/jcom.1998.0488
6. Brauße, F., Collins, P., Ziegler, M.: Computer science for continuous data. In:

Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) Computer Alge-
bra in Scientific Computing, pp. 62–82. Springer, Cham (2022)

7. Bridges, D.S.: A general constructive intermediate value theorem. Math. Log. Q.
35(5), 433–435 (1989)

8. Bridges, D.S.: Constructive mathematics: a foundation for computable analy-
sis. Theoret. Comput. Sci. 219(1), 95–109 (1999). https://doi.org/10.1016/S0304-
3975(98)00285-0

9. Di Gianantonio, P., Honsell, F., Plotkin, G.: Uncountable limits and the lambda
calculus. Nordic J. Comput. (1995)

10. Geuvers, H., Niqui, M., Spitters, B., Wiedijk, F.: Constructive analysis, types and
exact real numbers. Math. Struct. Comput. Sci. 17(1), 3–36 (2007)

11. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order func-
tions. In: Proceedings of the 6th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, pp. 191–202 (2004)

12. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order functions. In: 20th Annual IEEE Symposium on Logic
in Computer Science (LICS 2005), pp. 270–279. IEEE (2005)

13. Konečný, M., Park, S., Thies, H.: Certified computation of nondeterministic limits.
In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods, pp.
771–789. Springer, Cham (2022)

14. Konečný, M., Park, S., Thies, H.: Axiomatic reals and certified efficient exact real
computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021.
LNCS, vol. 13038, pp. 252–268. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88853-4_16

15. Konečný, M.: aern2-real: a Haskell library for exact real number computation.
https://hackage.haskell.org/package/aern2-real (2021)

16. Luckhardt, H.: A fundamental effect in computations on real numbers. Theoret.
Comput. Sci. 5(3), 321–324 (1977). https://doi.org/10.1016/0304-3975(77)90048-
2

17. Müller, N.T.: Implementing limits in an interactive realram. In: 3rd Conference on
Real Numbers and Computers, 1998, Paris, vol. 13, p. 26 (1998)

18. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45335-0_14

19. Neumann, E., Pauly, A.: A topological view on algebraic computation models. J.
Complex. 44, 1–22 (2018)

https://doi.org/10.1006/jcom.1998.0488
https://doi.org/10.1016/S0304-3975(98)00285-0
https://doi.org/10.1016/S0304-3975(98)00285-0
https://doi.org/10.1007/978-3-030-88853-4_16
https://doi.org/10.1007/978-3-030-88853-4_16
https://hackage.haskell.org/package/aern2-real
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1016/0304-3975(77)90048-2
https://doi.org/10.1007/3-540-45335-0_14

Exact Real Computation with Nondeterministic Functions and Limits 377

20. Park, S., et al.: Foundation of computer (algebra) ANALYSIS systems: Semantics,
logic, programming, verification. arXiv preprint arXiv:1608.05787 (2016)

21. Selivanova, S., Steinberg, F., Thies, H., Ziegler, M.: Exact real computation of
solution operators for linear analytic systems of partial differential equations. In:
Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021.
LNCS, vol. 12865, pp. 370–390. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85165-1_21

22. Tucker, J.V., Zucker, J.I.: Abstract versus concrete computation on metric partial
algebras. ACM Trans. Comput. Logic (TOCL) 5(4), 611–668 (2004)

23. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

http://arxiv.org/abs/1608.05787
https://doi.org/10.1007/978-3-030-85165-1_21
https://doi.org/10.1007/978-3-030-85165-1_21

Exact and Parameterized Algorithms
for the Independent Cutset Problem

Johannes Rauch1, Dieter Rautenbach1, and Uéverton S. Souza2(B)

1 Institute of Optimization and Operations Research, Ulm University, Ulm, Germany
{johannes.rauch,dieter.rautenbach}@uni-ulm.de

2 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
ueverton@ic.uff.br

Abstract. The Independent Cutset problem asks whether there is
a set of vertices in a given graph that is both independent and a cut-
set. Such a problem is NP-complete even when the input graph is pla-
nar and has maximum degree five. In this paper, we first present a
O∗(1.4423n)-time algorithm to compute a minimum independent cutset
(if any). Since the property of having an independent cutset is MSO1-
expressible, our main results are concerned with structural parameteriza-
tions for the problem considering parameters incomparable with clique-
width. We present FPT-time algorithms for the problem considering the
following parameters: the dual of the maximum degree, the dual of the
solution size, the size of a dominating set (where a dominating set is
given as an additional input), the size of an odd cycle transversal, the
distance to chordal graphs, and the distance to P5-free graphs. We close
by introducing the notion of α-domination, which allows us to identify
more fixed-parameter tractable and polynomial-time solvable cases.

Keywords: exact algorithms · parameterized algorithms ·
independent cutset

1 Introduction

The Matching Cutset problem is a well-studied problem in the literature,
both from a structural and from an algorithmic point of view. It asks whether
a graph G admits a set of edges M such that G −M is disconnected and no
two distinct edges of M are incident. A natural variation of this problem is
obtained by replacing the word “edges” by “vertices” and the word “incident”
by “adjacent” in the previous problem definition. Doing this yields the Indepen-
dent Cutset problem, which is also known as the Stable Cutset problem.
Tucker [29] studied Independent Cutset in the context of perfect graphs and
graph colorings in 1983. In 1993, Corneil and Fonlupt [8] explicitly asked for the
complexity of Independent Cutset. They studied the problem in the context
of perfect graphs, too.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 378–391, 2023.
https://doi.org/10.1007/978-3-031-43587-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_27&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_27

Exact and Parameterized Algorithms for the Independent Cutset Problem 379

It is not hard to see that a graph G with minimum degree at least two has
a matching cutset if and only if the line graph of G has an independent cut-
set. Therefore, the first NP-completeness proof of Independent Cutset is due
to Chvátal [7], who presented in 1984 the first NP-completeness proof for the
Matching Cutset problem. Brandstädt, Dragan, Le and Szymczak [4] showed
in 2000 that Independent Cutset stays NP-complete, even when restricted
to K4-free graphs. Note that the problem is trivial on K3-free graphs, since the
neighborhood of any vertex constitutes an independent cutset. They also con-
cluded that it is NP-complete on perfect graphs. Le and Randerath [18] proved
in 2003 that Independent Cutset is NP-complete on 5-regular line graphs
of bipartite graphs [18]. In 2008, Le, Mosca and Müller [16] showed that the
problem is NP-complete on planar graphs with maximum degree five.

On the other hand, several polynomial time solvable cases have been identi-
fied. In 2002, Chen and Yu [6] answered a question by Caro in the affirmative by
showing that all graphs with n vertices and at most 2n− 4 edges admit an inde-
pendent cutset. Their proof can be used for a polynomial time algorithm that
finds such a set. Le and Pfender [17] characterized in 2013 the extremal graphs
having 2n− 3 edges but no independent cutset. In particular, they showed that
Independent Cutset can be decided for graphs with n vertices and 2n − 3
edges in polynomial time. Le, Mosca and Müller [16] also showed that the prob-
lem can be decided in polynomial time for claw-free graphs of maximum degree
4, {claw,K4}-free graphs, and claw-free planar graphs. The general case for max-
imum degree four is still open. Some more polynomial time solvable cases can
be found in [4].

Regarding the parameterized complexity of Independent Cutset, Marx,
O’Sullivan and Razgon [21] showed in 2013 that the problem of finding a mini-
mum independent cutset in a graph can be solved in O(f(k) ·n) time, where n is
the number of vertices of the input graph and k is an upper bound on the solution
size. They transform the input graph to a graph of treewidth bounded by g(k),
where g is some function only depending on k. The transformed graph retains
all cutsets of size at most k of the input graph. An application of Courcelle’s
Theorem [10] then shows the fixed-parameter tractability. Beside that, to the
best of our knowledge, there is no other work about parameterized algorithms
for Independent Cutset in the literature.

Moreover, although a O∗(2n) time algorithm for Independent Cutset is
trivial, there is also no discussion on more efficient exact exponential-time algo-
rithms. Motivated by this, we present an O∗(3n/3) time algorithm for Indepen-
dent Cutset in Sect. 2. It is based on iterating through all maximal indepen-
dent sets of a graph. Note that 31/3 < 1.4423. In the same section we show how
to adapt this algorithm to compute a minimum independent cutset in the same
time (if there is one).

From the parameterized complexity point of view, an algorithmic meta-
theorem of Courcelle, Makowsky and Rotics [9] states that any problem express-
ible in monadic second-order logic (MSO1) can be solved in O(f(cw) · n) time,
where cw is the clique-width of the input graph. Originally this required a clique-

380 J. Rauch et al.

width expression as part of the input. This restriction was removed when Oum
and Seymour [23] gave an FPT algorithm, parameterized by the clique-width of
the input graph, that finds a 2O(cw)-approximation of an optimal clique-width
expression. Since the property of having an independent cutset can be expressed
in MSO1, it holds that Independent Cutset is in FPT concerning clique-width
parameterization. Therefore, our focus in this work is on structural parameters
that measure the distance from the input instance to some “trivial class” that
is relevant to the problem and does not have bounded clique-width.

We use the O∗-notation to suppress polynomial factors in the O-notation.

2 An Exact Exponential Algorithm

In this section, we present a single-exponential time algorithm for finding a min-
imum independent cutset (if any). It is structured as follows. First, we present
a preliminary structural result in Lemma 1. Corollary 1 is an immediate conse-
quence of Lemma 1. By combining these results with some known results from the
literature, we are able to solve Independent Cutset in O∗(3n/3) time, which
is given in Corollary 2. Furthermore, we get another polynomial-time solvable
case, which is stated in Corollary 3. We conclude this section with Lemma 2
and Corollary 4, where we show how to adapt the algorithm to find a minimum
independent cutset (if there is one).

We start with an easy but important structural observation.

Lemma 1. If a connected graph G has an independent cutset S, then every
independent set S′ ⊇ S is also a cutset of G.

Proof. Let G be a connected graph, and let S be an independent cutset of G.
Let S′ ⊃ S be another independent set of G. Since G is connected and S is a
cutset, any component of G− S has a vertex with a neighbor in S. This implies
that any component of G−S has a vertex not in S′. Thus, S′ is also a cutset of
G. �

Lemma 1 implies that it suffices to consider maximal independent sets to
decide Independent Cutset. This is fact is used in Corollary 1.

Corollary 1. Let G be a connected graph with n vertices. If there is an algo-
rithm that enumerates all maximal independent sets of G in O∗(f(n)) time, then
Independent Cutset with G as input is solvable in O∗(f(n)) time.

Proof. This follows from Lemma 1 and the fact that checking if a given set S is
a cutset of G can be done in polynomial time. �

By a result of Moon and Moser [22], a graph with n vertices has O(3n/3)
maximal independent sets. Johnson, Yannakakis and Papadimitrou [15] showed
that all maximal independent sets can be enumerated with O(n3) delay. This,
together with Corollary 1, gives a fast exponential algorithm for the problem,
and a graph class for which the problem is efficiently solvable.

Exact and Parameterized Algorithms for the Independent Cutset Problem 381

Corollary 2. Independent Cutset can be solved in O∗(3n/3) time.

Corollary 3. Independent Cutset on 2K2-free graphs can be solved in poly-
nomial time.

Proof. 2K2-free graphs with n vertices only have O(n2) maximal independent
sets [13]. �

We showed in the proof of Lemma 1 that, in order to decide whether a graph
admits an independent cutset, it suffices to consider all maximal independent
sets. In the following lemma we show how to obtain small independent cutsets
from maximal ones.

Lemma 2. Given a connected graph G and an independent cutset S′ of G, one
can compute in polynomial time the smallest independent cutset S of G contained
in S′.

Proof. Let G and S′ be as in the statement. We construct a hypergraph H. The
vertices of H are the vertices of S′ and the components of G−S′. The hyperedges
of H are

{v} ∪ {K |K is a component of G− S′ adjacent to v} for every v ∈ S′.

It is easy to see that a minimum edge cut of H corresponds to a smallest indepen-
dent cutset S being a subset of S′. Since a minimum edge cut can be computed
in polynomial time on hypergraphs, see for example [26], we can find such a set
S′ in polynomial time. �

The next corollary follows from Lemma 1 and Lemma 2.

Corollary 4. Given a connected graph G that admits an independent cutset, a
minimum independent cutset of G can be found in O∗(3n/3) time.

3 Parameterized Algorithms

Intuitively, one could expect the following. If a graph has few edges, then there
always exists an independent cutset, and it is easy to find one. This was made
precise by Caro’s Conjecture, and it was proved by Chen and Yu [6]. If a graph
has many edges, then independent cutsets (if there are any) must have a specific
structure, or there is no independent cutset at all. This can be seen by the given
parameterizations presented in this paper, under which Independent Cutset
is fixed-parameter tractable. Indeed, all our parameterizations have in common
that they are small if the input graph (or at least a part of it) is “dense”.

The section is structured as follows. In Subsect. 3.1, we consider the dual of
the maximum degree and the dual of the solution size as a parameter. What
follows in Subsect. 3.2 is our most important result, where we consider Inde-
pendent Cutset with a dominating set as an additional input, and the size of
the dominating set is the parameter. Then we consider the distance by vertex
removals from the input graph to three different graph classes and take such
distances as parameters in Subsects. 3.3, 3.4 and 3.5. The graph classes under
consideration are bipartite graphs, chordal graphs, and P5-free graphs. Finally,
we generalize the distance to P5-free graphs results in Subsect. 3.6.

382 J. Rauch et al.

3.1 Dual Parameterizations

We consider the dual of the maximum degree as a parameter in Theorem 1.
Actually, it also follows from Theorem 3 that the problem is fixed-parameter
tractable with respect to this parameter, because the size of a minimum dom-
inating set of a graph G with n vertices and maximum degree Δ is at most
n − Δ. Nevertheless, we give a direct proof of this fact, since it comprises a
faster algorithm.

Theorem 1. Let G be the connected input graph with n vertices and maximum
degree Δ, and let O∗(f(n)) be the running time of an algorithm enumerating
all maximal independent sets of G. It holds that Independent Cutset can be
solved in O∗(2k · f(k)) time, where k = n−Δ.

Proof. Let G be a connected graph with n vertices, let v be a vertex of G having
maximum degree, and let R = V (G) \NG[v].

Any independent cutset of G containing v is contained in R ∪ {v}, since
|R| = k, we can enumerate them in O(2k) time. So, we may assume from here
that every independent cutset of G (if any) does not contain v.

Let S∗ be a minimal independent cutset of G that does not contain v.
Observe that NG[v]\S∗ is nonempty and belongs to one component of G−S∗.

Thus, some subset ∅
= R′ ⊆ R \ S∗ belongs to the other components. Such a
set R′ can be guessed in O(2k) time. Assuming that we are dealing with the
correctly guessed set R′, the cutset S∗ can be seen as a minimal independent
cutset separating v from R′. Let I = NG(v) ∩ NG(R′). The set I must be a
subset of S∗; in particular, the set I must be independent in G.

Note that S∗ cannot contain a vertex w ∈ NG(v) \ I; otherwise, as S∗ is a
minimal cutset, there is a path P from v to R′ such that V (P) ∩ S∗ = {w} and
V (P)∩ (R \R′)
= ∅. This implies that a vertex of R \R′ is in neither S∗ nor in
the same component as v after the removal of S∗, contradicting the fact that R′

is the correctly guessed set.
Thus, after guessing R′, we can contract I into a single vertex xI and remove

NG[v] \ I. At this point, the reduced graph has size k, and we can enumerate
its maximal independent sets in O(f(k)) time, one of them must contain (S∗ \
I) ∪ {xI}. Let S′ be such a set. By Lemma 1, the set (S′ \ {xI}) ∪ I is also a
independent cutset of G (recall that S′ ⊇ S∗). This concludes the proof. �

Recall that O∗(2k ·f(k)) is faster than the running time O∗(3k) of Theorem 3,
since f(k) = O(3k/3) by Corollary 2.

We finish this subsection by considering a lower bound on the dual of the
solution size as a parameter.

Theorem 2. Let G be the connected input graph with n vertices, and let
O∗(f(k)) be the running time of an algorithm enumerating all vertex covers of
size at most k of G. Then there is an algorithm that correctly decides in O∗(f(k))
time if G has an independent cutset of size at least n− k.

Exact and Parameterized Algorithms for the Independent Cutset Problem 383

Proof. Let G, n and k be as in the statement. Assume that there is an indepen-
dent cutset S∗ of G such that |S∗| ≥ n− k. The set V (G) \ S∗ is a vertex cover
of size at most k of G. Therefore it suffices to iterate over all vertex covers X of
size at most k of G, and check whether V (G) \X is an independent cutset of G.
By assumption, this can be done in O∗(f(k)) time. �

We remark that all vertex covers of size at most k can be enumerated in
O∗(2k) time.

3.2 Dominating Set

In this subsection, we prove a central theorem of our paper. We consider Inde-
pendent Cutset with a dominating set X of G as an additional input. We
show that this variant is fixed-parameter tractable when parameterized by |X|.
We split the proof of this fact over three lemmata. Among other things, we dis-
tinguish the cases when X is split by an independent cutset or not. In Lemma 3
we settle the case when X is not split by an independent cutset.

Lemma 3. Let G be a connected graph, and let X be a dominating set of G.
Assume that there is an independent cutset S∗ of G such that X \S∗ is contained
in at most one component of G−S∗. Then there is an algorithm that returns an
independent cutset of G in O∗(2k) time, where k = |X|.
Proof. Let G, X, S∗ and k be as in the statement. In O∗(2k) time, we can
check whether any subset of X is an independent cutset of G. Therefore, we
may assume from here that S∗ is not a subset of X. Since X dominates G, the
set X is not a proper subset of S∗. In particular, S∗
= X.

To find an independent cutset of G, we iterate over all disjoint partitions
(A,X ′) of X such that A is nonempty and X ′ is independent in G. In one
iteration, we guess X∩S∗ as X ′. Let F = NG(X ′)\A and I = NG(A)\(X ′∪F).
Note that (A,X ′, F, I) is a partition of V (G), because X is a dominating set of
G. A vertex of I is either in S∗ or in the same component as a vertex of A.
Let B be the set of vertices that are not in a component with a vertex of A in
G− (X ′ ∪ I). Note that B ⊆ F , and since S∗ is an independent cutset of G and
X \ S∗ is contained in at most one component of G − S∗, it holds that B
= ∅.
This implies that there is a component K of G[B] with NG(K) ∩ I ⊆ S∗. For
such a component K, the set X ′ ∪ (NG(K) ∩ I) is an independent cutset of G.
Since all this can be done in O∗(2k) time, this finishes the proof. �

For the case when the dominating set is split by an independent cutset, we
need to consider the following situation. Let G′ be a connected graph whose
vertex set is the disjoint union of four sets A, B, NA and NB such that

(i) A and B are nonempty,
(ii) A ∪B is independent in G′, and
(iii) NG′(A) = NA and NG′(B) = NB . (Note that NG′(A) ∩NG′(B) = ∅.)

384 J. Rauch et al.

We show how to decide efficiently if G′ has an independent cutset S′ ⊆ NA∪NB

that separates A and B in G by testing the satisfiability of a 2-SAT formula. Let
H be the bipartite graph induced by the set of edges between NA and NB , and
let K1, . . . ,Kr be the vertex sets of the components of H. Let NA,i = Ki ∩NA

and NB,i = Ki ∩NB for all i ∈ [r]. We construct a 2-SAT formula fG′ over the
Boolean variables xi, i ∈ [r], with the following clauses:

– For all i ∈ [r], if G′[NA,i] contains an edge, then we add the clause (xi), and
if G′[NB,i] contains an edge, then we add the clause (x̄i).

– For every two distinct i, j ∈ [r], if there is an edge between NA,i and NA,j

in G′, then we add the clause (xi ∨ xj), and if there is an edge between NB,i

and NB,j in G′, then we add the clause (x̄i ∨ x̄j).

Lemma 4. In the above setting, there is an independent cutset S′ ⊆ NA ∪NB

separating A and B in G′ if and only if fG′ is satisfiable.

Proof. Let G′, fG′ and all corresponding sets be as in the statement.
For one direction, assume that there is an independent cutset S′ ⊆ NA ∪NB

separating A and B in G′. We claim that either Ki∩S′ = NA,i or Ki∩S′ = NB,i

is true for every i ∈ [r]. Assume, for a contradiction, that the opposite is true
for some i ∈ [r]. Let N ′

A,i = NA,i ∩ S′ and N ′
B,i = NB,i ∩ S′. Then both sets are

nonempty. Recall that NG(A) = NA, NG(B) = NB , H[Ki] is connected and S′ is
a cutset separating A and B in G′. Consider d = distH(N ′

A,i, N
′
B,i). Since H[Ki]

is connected, d <∞, since H is bipartite, d is odd, and since S′ is independent,
d ≥ 2. Altogether, we have d ≥ 3. Since every vertex of N ′

A,i has a neighbor in
A, and every vertex of N ′

B,i has a neighbor in B, the set S′ does not separate A
and B, a contradiction. Using the claim, the assignment

α(xi) =

{
false, if Ki ∩ S′ = NA,i

true, if Ki ∩ S′ = NB,i

for i ∈ [r]

is well-defined, and it satisfies fG′ .
For the opposite direction, let α be a satisfying assignment for fG′ . Then

S′ =

⎛

⎝
⋃

i∈[r]:α(xi)=false

NA,i

⎞

⎠ ∪
⎛

⎝
⋃

i∈[r]:α(xi)=true

NB,i

⎞

⎠

is a subset of NA ∪NB , and it is easy to verify that it is an independent cutset
of G′. This completes the proof. �

Lemma 5. Let G be a connected graph, and let X be a dominating set of G.
If G has an independent cutset S∗ such that the vertices of X \ S∗ are in at
least two different components of G − S∗, then an independent cutset of G can
be found in O∗(3k) time, where k = |X|.
Proof. Let G, X and k be as in the statement. If G has an independent cutset
S∗ such that the vertices of X \ S∗ are in at least two different components of

Exact and Parameterized Algorithms for the Independent Cutset Problem 385

G−S∗, then there is a partition (A∗, B∗, X∗) of X with the following properities.
We have X∗ = X ∩S∗, the set A is a maximal subset of vertices of X contained
in one component of G− S∗, and B = X \ (X∗ ∪A).

In O∗(3k) time one can enumerate all partitions of X into three sets A, B
and X ′ such that A and B are nonempty, there is no edge between A and B,
and X ′ is an independent set of G. In other words, X ′ is an independent cutset
of G[X] separating the nonempty sets A and B.

For each enumerated partition (A,B,X ′), let

– N = NG(A) ∩NG(B),
– NA = NG(A) \N ,
– NB = NG(B) \N , and
– let H be the bipartite subgraph of G induced by the edges between NA and
NB .

For the partition (A,B,X ′) = (A∗, B∗, X∗) it holds that (X ′ ∪ N) ⊆ S∗.
Thus, I = (X ′ ∪N) must be an independent set of G and NG(X ′ ∪N)∩S∗ = ∅.
Initialize F = NG(X ′ ∪ N). (F is the set of vertices forbidden to be in S∗).
Clearly, H has no edge with both endpoints in F ; otherwise, we are not dealing
with the partition (A,B,X ′) = (A∗, B∗, X∗). Also, for any edge uv ∈ E(H)
such that u ∈ F it holds that v ∈ S∗; otherwise S∗ does not separate A and B.
So, one can add v into I. Note that I is a subset of the vertices that must be
in S∗. So, reversely, any edge of H with one endpoint in I must have the other
endpoint forbidden to be in S∗, thus we can add it in F . This describes the rule
to construct a bipartition (IH , FH) of the vertices of H that are connected to
some vertex of NG(X ′ ∪ N) in H. In particular, IH ⊆ I, FH ⊆ F , and I must
be an independent set of G.

Let F ′ = F \ (NA ∪ NB). Note that the vertices of F ′ have neighbors in
X ′ but no neighbor in A ∪ B, also, there may exist paths of G from A to B
passing through F ′. For any path from A to B passing through F ′ having only
one vertex of NA, say a, and only one vertex of NB , say b, it holds that either
a or b must be in S∗. The same holds with edges ab ∈ E(G) such that a ∈ NA

and b ∈ NB . Also, if there is a path of G from A to B passing through F ′, then
there is a path from A to B passing through F ′ having only one vertex of NA

and only one vertex of NB .
At this point, let G′ be the graph obtained from G by

– contracting all components of A and B into a single vertex,
– inserting all possible edges between NG(K)∩NA and NG(K)∩NB , where K

is a component of F ′, and
– deleting all vertices of I ∪ F .

Now, according to Lemma 4, we can use a 2-SAT formula to decide in poly-
nomial time (cf. [1]) which vertices ofNA andNB should be in S∗. These vertices,
together with the vertices previously fixed in I, form an independent cutset of
G separating A and B.

Therefore, by checking all partitions (A,B,X ′) of X, we can in O∗(3k) time
either find the required cutset, or conclude that G does not admit such a cutset.
This completes the proof. �

386 J. Rauch et al.

Now we are in a position to formulate Theorem 3, which is a direct conse-
quence of Lemmata 3 and 5.

Theorem 3. Let G be the connected input graph, and let X be a dominating set
of G. Then Independent Cutset with X as an additional input can be solved
in time O∗(3k), where k = |X|.

As a corollary of Theorem 3, we obtain an FPT-algorithm for Independent
Cutset parameterized by the independence number that has single-exponential
dependence on the parameter. The fixed-parameter tractability of Independent
Cutset parameterized by the independence number also follows from the result
of Marx, O’Sullivan and Razgon [21]; however, their resulting dependence on the
parameter is larger.

Corollary 5. Independent Cutset can be solved in O∗(3k) time, where k is
the independence number of the input graph.

Proof. This follows from Theorem 3, because any maximal independent set is a
dominating set. �

3.3 Distance to Bipartite Graphs

Let G be a graph. An odd cycle transversal of G is a set of vertices X such
that G −X is bipartite. The minimum cardinality of such a set can be seen as
a distance measure of how far away a graph is from being bipartite. Given G
and a nonnegative integer k, it is NP-hard to decide whether G admits an odd
cycle transversal of size at most k [14]. Nevertheless, Reed, Smith and Vetta [28]
proved that it is fixed-parameter tractable with respect to the solution size.
Lokshtanov, Narayanaswamy, Raman, Ramanujan and Saket [19] showed that
it can be decided in time O∗(2.3146k) if G admits an odd cycle transversal of
size at most k. If the answer is affirmative, an odd cycle transversal of size at
most k can be determined as a byproduct. With this, we are able to formulate
Corollary 6.

Corollary 6. Independent Cutset can be solved in O∗(3k) time, where k is
the odd cycle transversal number of G.

Proof. If a vertex is not part of a triangle in G, then we return its neighborhood
as an independent cutset of G. Therefore we may assume every vertex is part
of a triangle in G. We compute an odd cycle transversal X of size at most k of
G. As stated, this is fixed-parameter tractable with respect to k as a parameter,
and can be done faster than O∗(3k) time. Since every vertex is part of a triangle
in G, the set X is a dominating set of G. Therefore the statement follows from
Theorem 3. �

A triangle-hitting set of G is a set of vertices whose removal makes the result-
ing graph triangle-free. It is easy to see that the previous proof works even if X
is a minimum triangle-hitting set instead of a minimum odd cycle transversal.
Since a triangle-hitting set of G having size at most k can be found in O∗(3k)
time, the following corollary also holds.

Exact and Parameterized Algorithms for the Independent Cutset Problem 387

Corollary 7. Independent Cutset can be solved in time O∗(3k), where k is
the size of a minimum triangle-hitting set of G.

3.4 Distance to Chordal Graphs

We begin by proving a more general theorem.
Dallard, Milanič and Štorgel [12] introduced a special kind of tree decompo-

sition. Given a nonnegative integer
, an
-refined tree decomposition of a graph
G is a pair T̂ = (T, {(Xt, Ut) : t ∈ V (T)}) such that T = (T, {Xt : t ∈ V (T)}) is
a tree decomposition, and for every t ∈ V (T) we have Ut ⊆ Xt and |Ut| ≤
. We
say T is the underlying tree decomposition of T̂ . We extend any concept defined
for tree decompositions to
-refined tree decompositions by considering them on
the underlying tree decomposition. The residual independence number of T̂ is
defined as maxt∈V (T) α(G[Xt \ Ut]) and denoted by α̂(T̂).

Theorem 4. Let G be the connected input graph, and let T̂ = (T, {(Xt, Ut) : t ∈
V (T)}) be a nice
-refined tree decomposition of G with residual independence
number at most k. Independent Cutset with T̂ as an additional input can be
decided in O∗(3�(2n)k) time.

Proof. Let G and T̂ be as in the statement, and let r be the root of T . Let Vt

denote the union of all sets Xt′ such that t′ ∈ V (T) is a descendant of t or t′ = t.
We call a partition (S,A,B) of Xt such that S is independent and there is no
edge crossing from A to B in G a potential t-partition.

We outline a dynamic programming algorithm that operates on the nice tree
decomposition T̂ in a bottom-up manner. At each node t ∈ V (T), and for all
potential t-partitions, we compute a Boolean variable cut[t, S,A,B] that is true
if and only if there is an independent cutset S∗ ⊇ S of G such that S∗ ∩Xt = S,
and A and B are in distinct components of G[Vt] − S∗. After computing these
variables, we return cut[r, ∅, ∅, ∅], which gives the correct answer. For the sake of
exposition, we refer the reader on how to compute these variables to our arxiv
article [27].

The key property of the algorithm is the following: Given that |Ut| ≤
, there
are at most 3� ways to partition Ut into three sets. Since α(G[Xt \ Ut]) ≤ k, it
holds that for any set S ⊆ Xt\Ut, the number of components of G[Xt\(Ut∪S)] is
at most k. Thus, there are at most O(nk) independent subsets S, and there are at
most 2k ways to partition the components of G[Xt\(Ut∪S)]. The computational
effort to compute one variable cut[t, S,A,B] is polynomial. Therefore the overall
running time is O∗(3l(2n)k). At this point, it is not hard to see how to perform
such a dynamic programming using a nice tree decomposition within the claimed
running time. This completes the proof of Theorem 4. �

Let G be a graph. A chordal (vertex-)deletion of G is a set of vertices X
such that G−X is chordal. The problem of deciding whether a graph admits a
chordal deletion of a fixed size
 is NP-complete [14]. Marx [20] showed that this
problem is fixed-parameter tractable when parameterized by
.

388 J. Rauch et al.

Corollary 8. Let G be the connected input graph, and let
 be the size of a
chordal deletion of G. If O∗(f(
) is the running time of an algorithm computing
a chordal deletion of size
 of a graph, then Independent Cutset can be solved
in O∗(f(
) + 3�) time.

Proof. First, we compute a chordal deletion X of size
 of G. Then, since G−X
is chordal, we compute a clique tree T of G−X, which is possible in polynomial
time [3]. To obtain a tree decomposition of G, we add the vertices of X to every
bag of T . We transform this tree decomposition into a nice tree decomposition
T̂ = (T, {Xt : t ∈ V (T)}) in polynomial time. Note that this can be done in
a way such that for every node t ∈ V (T), the set Xt \ X still induces a clique
in G. By letting Ut = X ∩ Xt for every node t ∈ V (T), we augment T̂ to a
nice
-refined tree decomposition with residual independence number 1. Now
the statement follows from Theorem 4. �

3.5 Distance to P5-Free Graphs

A P5-hitting set of G is a set of vertices X such that G −X is P5-free. In this
subsection, we consider Independent Cutset parameterized by the size of a
P5-hitting set. Bacsó and Tuza [2] showed that any connected P5-free graph has
a dominating clique or a dominating P3. Camby and Schaudt [5] generalized
this result and showed that such a dominating set can be computed in polyno-
mial time. We use the statement of the following corollary to prove a stronger
statement in Theorem 5.

Corollary 9. Independent Cutset can be solved in polynomial time for con-
nected P5-free graphs.

Proof. Let G be a connected P5-free graph. We compute a dominating set X as
in [5] in polynomial time, that is, the set X induces either a clique or a P3 in G.
We invoke the algorithm of Theorem 3 with G and X as input. Since X induces
a clique or a P3 in G, there are at most O(n) partitions (A,X ′) or (A,B,X ′)
of X such that there is no edge between A and B in G, and X ′ is independent
in G. Given that the relevant partitions of X can be enumerated in polynomial
time, the remaining steps of the algorithm of Theorem 3 can solve Independent
Cutset in polynomial time for P5-free graphs. �

For Theorem 5 we need the following fact.

Proposition 1. A P5-hitting set of G with size k (if any) can be found in FPT-
time with respect to k.

Proof. A simple bounded search tree algorithm has O∗(5k) running time. �

We will now prove the main theorem of this subsection.

Theorem 5. If a P5-hitting set with at most k vertices of a connected graph G
can be computed in O∗(f(k)) time, then Independent Cutset can be solved
in O∗(f(k) + 3k) time.

Exact and Parameterized Algorithms for the Independent Cutset Problem 389

Proof. Let G and k be as in the statement. First, we compute a P5-hitting set
X of size at most k of G. Let K1, . . . ,K� be the components of G − X. Then
we compute a dominating set Xi of G[Ki] as in [5], that is, the set Xi induces
either a clique or a P3 in G[Ki]. Note that Xi ∪ X dominates G[Ki ∪ X] for
every i ∈ [
]. Assume that G admits an independent cutset S∗. There are two
cases: Either X \ S∗ is contained in at most one component of G − S∗, or not.
We explain for both cases how to compute an independent cutset of G in time
O∗(3k).

Case 1: X \ S∗ is contained in at most one component of G − S∗. This
implies that there exists some i ∈ [
] such that S∗ ∩ (Ki ∪X) is an independent
cutset of G[Ki ∪X]. We iterate over all disjoint partitions (A∗, X∗) of X such
that X∗ is independent in G. In one iteration, we guess S∗ ∩X as X∗. Now we
invoke a modified version of the algorithm of Theorem 3 with G[Ki ∪ X] and
Xi ∪X as input. This version only considers partitions (A,X ′) or (A,B,X ′) of
X with A∗ ⊆ A and X∗ ⊆ X ′. As in Corollary 9, this takes only polynomial
time since the number of relevant partitions is polynomial. By Theorem 3, the
modified algorithm returns an independent cutset of G[Ki ∪X], which is also an
independent cutset of G. The described procedure can be implemented to run
O∗(2k) time.

Case 2: X \S∗ is contained in at least two components of G−S∗. We iterate
over all disjoint partitions (A∗, B∗, X∗) of X such that X∗ is an independent
cutset of G[X] that separates A∗
= ∅ and B∗
= ∅. In one iteration, we guess
A∗ and B∗ such that they are in different components of G− S∗, and we guess
S∗ ∩ X as X∗. This time, we invoke a modified version of the algorithm of
Lemma 5 with G[Ki ∪ X] and Xi ∪ X as input. This version only considers
partitions (A,B,X ′) with A∗ ⊆ A, B∗ ⊆ B and X∗ ⊆ X ′. As in Corollary 9,
this takes only polynomial time. The modified algorithm returns, for every i ∈ [
],
an independent cutset Si of G[Xi ∪X] with the following properties: the set Si

separates A∗ and B∗ in G[Xi∪X], and X∗ ⊆ Si. Now,
⋃

i∈� Si is an independent
cutset of G. The described procedure for this can be implemented to run in
O∗(3k) time.

The overall running time is O∗(f(k) + 3k), which completes the proof. �

3.6 Generalizing Distance to P5-Free Graphs

In this section, we generalize Corollary 9 and Theorem 5. Let G be a graph, and
let G be a class of graphs. We say that a set of vertices X is a αk-dominating
set of G if X is a dominating set of G and α(G[X]) ≤ k. If G admits a αk-
dominating set, we say that G is αk-dominated. In addition, if such a set can be
computed in polynomial time, we say that G is efficiently αk-dominated. The
(efficient) α-domination number of G is the minimum k such that G is (efficient)
αk-dominated. We say that a graph class G is (efficiently) αk-dominated if every
graph G ∈ G is (efficiently) αk-dominated. For example, Bacsó and Tuza [2] as
well as Cozzens and Kelleher [11] independently proved that {P5, C5}-free graphs
are α1-dominated, that is, they contain a dominating clique. Another example
is the class of P5-free graphs, which is efficiently α2-dominated.

390 J. Rauch et al.

We start by generalizing the polynomial time result on P5-free graphs. The
proof is similar to the one of Corollary 9.

Lemma 6. Independent Cutset on G can be solved in polynomial time,
whenever G is an efficiently αc-dominated graph class for some constant c.

In [24], Penrice presented some families of αk-dominated graph classes. For
example, Penrice shows that connected {P6,Ht+1}-free graphs are αt-dominated,
where Ht+1 denotes the graph obtained by subdividing each edge of a K1,t+1.
Penrice also shows that tK2-free graphs without isolated vertices are α2t−2-
dominated. From a thorough reading in [24], it can be seen that tK2-free graphs
without isolated vertices are efficiently α2t−2-dominated. Thus, from Lemma 6
and the results in [24] the following holds.

Corollary 10. Independent Cutset can be solved in polynomial time for
tK2-free graphs for any constant t ≥ 1.

It has been remarked that Prisner proved in [25] that, for any integer t, any
tK2-free graph has polynomially many maximal independent sets. We were not
able to verify this, because his article was inaccessible to us. With this, the
statement of Corollary 10 already follows from Corollary 1.

Theorem 6 is a generalization of Theorem 5 and Lemma 6, and its proof is
similar to the proof of Theorem 5.

Theorem 6. Let c be a fixed constant and G be the input graph. If a set X of
k vertices such that G−X is efficiently αc-dominated can be found in O∗(f(k))
time, then Independent Cutset can be solved in O∗(f(k) + 3k) time.

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979).
https://doi.org/10.1016/0020-0190(79)90002-4

2. Bacsó, G., Tuza, Z.: Dominating cliques in P5-free graphs. Period. Math. Hung.
21(4), 303–308 (1990)

3. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer (1993)

4. Brandstädt, A., Dragan, F.F., Le, V.B., Szymczak, T.: On stable cutsets in
graphs. Discret. Appl. Math. 105(1–3), 39–50 (2000). https://doi.org/10.1016/
S0166-218X(00)00197-9

5. Camby, E., Schaudt, O.: A new characterization of Pk-free graphs. Algorithmica
75(1), 205–217 (2016)

6. Chen, G., Yu, X.: A note on fragile graphs. Discret. Math. 249(1–3), 41–43 (2002).
https://doi.org/10.1016/S0012-365X(01)00226-6

7. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8(1), 51–53
(1984)

8. Corneil, D.G., Fonlupt, J.: Stable set bonding in perfect graphs and parity graphs.
J. Combinatorial Theory, Series B 59(1), 1–14 (1993)

https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/S0166-218X(00)00197-9
https://doi.org/10.1016/S0166-218X(00)00197-9
https://doi.org/10.1016/S0012-365X(01)00226-6

Exact and Parameterized Algorithms for the Independent Cutset Problem 391

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

10. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, pp. 193–242. Elsevier and MIT Press (1990). https://doi.org/10.
1016/b978-0-444-88074-1.50010-x

11. Cozzens, M.B., Kelleher, L.L.: Dominating cliques in graphs. Discret. Math. 86(1–
3), 101–116 (1990). https://doi.org/10.1016/0012-365X(90)90353-J

12. Dallard, C., Milanič, M., Štorgel, K.: Treewidth versus clique number. II, Tree-
independence number (2022)

13. Farber, M.: On diameters and radii of bridged graphs. Discret. Math. 73(3), 249–
260 (1989). https://doi.org/10.1016/0012-365X(89)90268-9

14. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

15. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

16. Le, V.B., Mosca, R., Müller, H.: On stable cutsets in claw-free graphs and planar
graphs. J. Discrete Algorithms 6(2), 256–276 (2008). https://doi.org/10.1016/j.
jda.2007.04.001

17. Le, V.B., Pfender, F.: Extremal graphs having no stable cutset. Electron. J. Com-
binatorics 20(1), 35 (2013). https://doi.org/10.37236/2513

18. Le, V.B., Randerath, B.: On stable cutsets in line graphs. Theoret. Comput. Sci.
301(1–3), 463–475 (2003). https://doi.org/10.1016/S0304-3975(03)00048-3

19. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 15:1–15:31 (2014). https://doi.org/10.1145/2566616

20. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–
768 (2010). https://doi.org/10.1007/s00453-008-9233-8

21. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9(4), 30:1–30:35 (2013). https://doi.
org/10.1145/2500119

22. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
23. Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. Journal of

Comb. Theory Ser. B 96(4), 514–528 (2006)
24. Penrice, S.G.: Clique-like dominating sets (1995)
25. Prisner, E.: Graphs with few cliques. Graph Theory, Combinatorics, and Algo-

rithms 1, 2 (1995)
26. Queyranne, M.: A combinatorial algorithm for minimizing symmetric submodular

functions. In: Clarkson, K.L. (ed.) Proceedings of the Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, 22–24 January 1995. San Francisco, California,
USA, pp. 98–101. ACM/SIAM (1995)

27. Rauch, J., Rautenbach, D., Souza, U.S.: Exact and parameterized algorithms for
the independent cutset problem (2023)

28. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004). https://doi.org/10.1016/j.orl.2003.10.009

29. Tucker, A.: Coloring graphs with stable cutsets. J. Comb. Theory Ser. B 34(3),
258–267 (1983)

https://doi.org/10.1016/b978-0-444-88074-1.50010-x
https://doi.org/10.1016/b978-0-444-88074-1.50010-x
https://doi.org/10.1016/0012-365X(90)90353-J
https://doi.org/10.1016/0012-365X(89)90268-9
https://doi.org/10.1016/j.jda.2007.04.001
https://doi.org/10.1016/j.jda.2007.04.001
https://doi.org/10.37236/2513
https://doi.org/10.1016/S0304-3975(03)00048-3
https://doi.org/10.1145/2566616
https://doi.org/10.1007/s00453-008-9233-8
https://doi.org/10.1145/2500119
https://doi.org/10.1145/2500119
https://doi.org/10.1016/j.orl.2003.10.009

Kernelization for Finding Lineal
Topologies (Depth-First Spanning Trees)

with Many or Few Leaves

Emmanuel Sam1(B) , Benjamin Bergougnoux2 , Petr A. Golovach1 ,
and Nello Blaser1

1 Department of Informatics, University of Bergen, Bergen, Norway
{emmanuel.sam,petr.golovach,nello.blaser}@uib.no

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
benjamin.bergougnoux@mimuw.edu.pl

Abstract. For a given graph G, a depth-first search (DFS) tree T of
G is an r-rooted spanning tree such that every edge of G is either an
edge of T or is between a descendant and an ancestor in T . A graph
G together with a DFS tree is called a lineal topology T = (G, r, T).
Sam et al. (2023) initiated study of the parameterized complexity of the
Min-LLT and Max-LLT problems which ask, given a graph G and an
integer k ≥ 0, whether G has a DFS tree with at most k and at least k
leaves, respectively. Particularly, they showed that for the dual parame-
terization, where the tasks are to find DFS trees with at least n − k and
at most n − k leaves, respectively, these problems are fixed-parameter
tractable when parameterized by k. However, the proofs were based on
Courcelle’s theorem, thereby making the running times a tower of expo-
nentials. We prove that both problems admit polynomial kernels with
O(k3) vertices. In particular, this implies FPT algorithms running in
kO(k) ·nO(1) time. We achieve these results by making use of a O(k)-sized
vertex cover structure associated with each problem. This also allows us
to demonstrate polynomial kernels for Min-LLT and Max-LLT for the
structural parameterization by the vertex cover number.

Keywords: DFS Tree · Spanning Tree · Kernelization · Parameterized
Complexity

1 Introduction

Depth-first search (DFS) is a well-known fundamental technique for visiting
the vertices and exploring the edges of a graph [6,30]. For a given connected
undirected graph with vertex set V (G) and edge set E(G), DFS explores E(G)
by always choosing an edge incident to the most recently discovered vertex that

The research leading to these results has received funding from the Research Council
of Norway via the projects (PCPC) (grant no. 274526) and BWCA (grant no. 314528).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 392–405, 2023.
https://doi.org/10.1007/978-3-031-43587-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_28&domain=pdf
http://orcid.org/0000-0001-7756-0901
http://orcid.org/0000-0002-6270-3663
http://orcid.org/0000-0002-2619-2990
http://orcid.org/0000-0001-9489-1657
https://doi.org/10.1007/978-3-031-43587-4_28

Kernelization for Finding Lineal Topologies with Many or Few Leaves 393

still has unexplored edges. A selected edge, either leads to a new vertex or a
vertex already discovered by the search. The set of edges that lead to a new
vertex during the DFS define an r-rooted spanning tree T of G, called a depth-
first spanning (DFS) tree, where r is the vertex from which the search started.
This tree T has the property that each edge that is not in T connects an ancestor
and a descendant of T . All rooted spanning trees of a finite graph with this
property, irrespective of how they are computed, such as a Hamiltonian path,
are generalized as trémaux trees [10]. Given a graph G and a DFS tree T rooted
at a vertex r ∈ V (G), it is easy to see that the family T of subsets of E(G)
induced by the vertices in all subtrees of T with the same root r as T constitute
a topology on E(G). For this reason, the triple (G,T, r) has been referred to as
the lineal topology (LT) of G in [29]. Many existing applications of DFS and DFS
trees — such as planarity testing and embedding [9,20], finding connected and
biconnected components of undirected graphs [19], bipartite matching [21], and
graph layout [1] — only require one to find an arbitrary DFS tree of the given
graph, which can be done in time O(n+m), where n and m are the number of
vertices and edges of the graph.

An application of a DFS tree, noted by Fellows et al. [14], that calls for a
DFS tree with minimum height is the use of DFS trees to structure the search
space of backtracking algorithms for solving constraint satisfaction problems [17].
This motivated the authors to study the complexity of finding DFS trees of a
graph G that optimize or near-optimize the maximum length or minimum length
of the root-to-leaf paths in the DFS trees of G. They showed that the related
decision problems are NP-complete and do not admit a polynomial-time absolute
approximation algorithm unless P = NP.

In this paper, we look at the Minimum Leafy LT (Min-LLT) and Maxi-
mum Leafy LT (Max-LLT) problems introduced by Sam et al. [29]. Given a
graph G and an integer k ≥ 0, Min-LLT and Max-LLT ask whether G has a
DFS tree with at most k and at least k leaves, respectively. These two problems
are related to the well-known NP-complete Minimum Leaf Spanning Tree
(Min-LST) and Maximum Leaf Spanning Tree (Max-LST) [18,27].

Sam et al. [29] proved that Min-LLT and Max-LLT are NP-hard. Moreover,
they proved that when parameterized by k, Min-LLT is para-NP-hard and Max-
LLT is W[1]-hard. They also considered the “dual” parameterizations, namely,
Dual Min-LLT and Dual Max-LLT, where the tasks are to find DFS trees
with at least n − k and at most n − k leaves, respectively. They proved that
Dual Min-LLT and Dual Max-LLT are both FPT parameterized by k. These
FPT algorithms are, however, based on Courcelle’s theorem [7], which relates
the expressibility of a graph property in monadic second order (MSO) logic to
the existence of an algorithm that solves the problem in FPT-time with respect
to treewidth [25]. As a by-product, their running times have a high exponential
dependence on the treewidth and the length of the MSO formula expressing the
property.

394 E. Sam et al.

1.1 Our Results

We prove that Min-LLT and Max-LLT admit polynomial kernels when param-
eterized by the vertex cover number of the given graph. Formally, we prove the
following theorem.

Theorem 1. Min-LLT and Max-LLT admit kernels with O(τ3) vertices when
parameterized by the vertex cover number τ of the input graph.

Based on these kernels, we show that Dual Min-LLT, and Dual Max-LLT
admit polynomial kernels parameterized by k.

Theorem 2. Dual Min-LLT and Dual Max-LLT admit kernels with O(k3)
vertices.

This last result follows from a win-win situation as either (1) the input graph
has a large vertex cover in terms of k and, consequently, both problems are
trivially solvable or (2) the input graph has a small vertex cover, and we can use
Theorem 1. Finally, we use our polynomial kernels to prove that Dual Min-
LLT, and Dual Max-LLT admit FPT algorithms parameterized by k with low
exponential dependency.

Theorem 3. Dual Min-LLT and Dual Max-LLT can be solved in kO(k) ·
nO(1) time.

As the previously known FPT algorithm for each of these problems was based
on Courcelle’s theorem, our algorithms are the first FPT-algorithms constructed
explicitly.

1.2 Related Results

Lu and Ravi [23] proved that the Min-LST, problem has no constant factor
approximation unless P = NP . From a parameterization point of view, Prieto
et al. [26] showed that this problem is W [P]-hard parameterized by the solution
size k. The Max-LST problem is, however, FPT parameterized by k and has
been studied extensively [2,3,13,15,24].

Dual Min-LLT is related to the well-studied k-Internal Spanning Tree
problem [16,26], which asks to decide whether a given graph admits a spanning
tree with at most n− k leaves (or at least k internal vertices). Prieto et al. [26]
were the first to show that the natural parameterized version of k-Internal
Spanning Tree has a O∗(2k log k)-time FPT algorithm and a O(k3)-vertex ker-
nel. Later, the kernel was improved to O(k2), O(3k), and O(2k) by Prieto et
al., Fomin et al. [16], and Li et al. [22] respectively. The latter authors also gave
what is now the fastest FPT algorithm for k-Internal Spanning Tree, which
runs in O∗(4k) time.

An independency tree (IT) is a variant of a spanning tree whose leaves cor-
respond to an independent set in the given graph. Given a connected graph on
n ≥ 3, G has no IT if it has no DFS tree in which the leaves and the root are
pairwise nonadjacent in G [4]. From a parameterization point of view, the Min

Kernelization for Finding Lineal Topologies with Many or Few Leaves 395

Leaf IT (Internal) and Max Leaf IT (Internal) problems [5], which ask,
given a graph G and an integer k ≥ 0, whether G has an IT with at least k
and at most k internal vertices, respectively, are related to Dual Min-LLT and
Dual Max-LLT, respectively. Casel et al. [5] showed that, when parameterized
by k, Min Leaf IT (Internal) has an O∗(4k)-time algorithm and a 2k vertex
kernel. They also proved that Max Leaf IT (Internal) parameterized by k
has a O∗(18k)-time algorithm and a O(k2k)-vertex kernel, but no polynomial
kernel unless the polynomial hierarchy collapses to the third level. Their tech-
niques, however, do not consider the properties of a DFS tree and, therefore, do
not work for our problems.

1.3 Organization of the Paper

Section 2 contains basic terminologies relevant to graphs, DFS trees, and param-
eterized complexity necessary to understand the paper. In Sect. 3, we first prove
a lemma about how, given a graph G and a vertex cover of G, the internal ver-
tices of any spanning tree of G relate to the given vertex cover. We then use
this lemma to demonstrate a polynomial kernel for Min-LLT and Max-LLT
for the structural parameterization by the vertex cover number of the graph.
This is followed by the kernelization algorithms for Dual Min-LLT and Dual
Max-LLT parameterized by k. In Sect. 4, we devise FPT algorithms for Dual
Min-LLT and Dual Max-LLT based on their polynomial kernels. Finally, we
conclude the paper in Sect. 5 with remarks concerning future studies.

2 Preliminaries

We consider only simple finite graphs. We use V (G) and E(G) to denote the
sets of vertices and edges, respectively, of a graph G. For a graph G, we denote
the number of vertices |V (G)| and the number of edges |E(G)| of G by n and m,
respectively, if this does not create confusion. For any vertex v ∈ V (G), the set
NG(v) denotes the neighbors of v in G and NG[v] denotes its closed neighborhood
NG(v) ∪ {v} in G. For a set of vertices X ⊆ V , NG(X) =

(⋃
v∈X NG(v)

) \X.
We omit the G in the subscript if the graph is clear from the context. For a
vertex v, its degree is dG(v) = |NG(v)|. Given any two graphs G1 = (V1, E1) and
G2 = (V2, E2), if V1 ⊆ V2 and E1 ⊆ E2 then G1 is a subgraph of G2, denoted
by G1 ⊆ G2. If G1 contains all the edges uv ∈ E2 with u, v ∈ V1, then we say
G1 is an induced subgraph of G2, or V1 induces G1 in G2, denoted by G[V1].
If G1 is such that it contains every vertex of G2, i.e., if V1 = V2 then G1 is
a spanning subgraph of G2. Given a set of vertices X ⊆ V (G), we express the
induced subgraph G[V (G)\X] as G−X. If X = {x}, we write V (G)\x instead
of V (G) \ {x} and G− x instead of G− {x}. Given a graph G, a set of vertices
S ⊆ V (G) is a vertex cover of G if, for every edge uv ∈ E(G), either u ∈ S or
v ∈ S; the vertex cover number of G, denoted by τ(G), is the minimum size of
a vertex cover. A set Y ⊆ V (G) is called an independent set, if for every vertex
pair u, v ∈ Y , uv /∈ E(G). A matching M in a given graph G is a set of edges, no
two of which share common vertices. A pendant vertex is a vertex with degree
one.

396 E. Sam et al.

For definitions of basic tree terminologies including root, child, parent, ances-
tor, and descendant, we refer the reader to [11]. Given a graph G, we denote a
spanning tree of G rooted at a vertex r ∈ V (G) by (T, r). When there is no
ambiguity, we simply use T instead of (T, r). For a rooted tree T , a vertex v
is a leaf if it has no descendants and v is an internal vertex if otherwise. A
spanning tree T with a root r is a DFS tree rooted in r if for very every edge
uv ∈ E(G), either uv ∈ E(T), or v is a descendant of u in T , or u is a descendant
of v in T . Equivalently, T is a DFS tree if it can be produced by the classical
depth-first search (DFS) algorithm [6]. We say that a path P in a rooted tree T
is a root-to-leaf path if one of its end-vertices is the root and the other is a leaf
of T .

Now we review some important concepts of Parameterized complexity (PC)
relevant to the work reported herein. For more details about PC, we refer the
reader to [8,12].

Definition 4. (Parameterized Problem). Let Σ be a fixed finite alphabet. A
parameterized problem is a language P ⊆ Σ∗ × N. Given an instance (x, k) ∈
Σ∗×N of a parameterized problem, k ∈ N is called the parameter, and the task is
to determine whether (x, k) belongs to P . A parameterized problem P is classified
as fixed-parameter tractable (FPT) if there exists an algorithm that answers the
question “(x, k) ∈ P?” in time f(k) · poly(|x|), where f : N → N is a computable
function.

Definition 5. A kernelization algorithm, or simply a kernel, for a parameterized
problem P is a function φ that maps an instance (x, k) of P to an instance (x′, k′)
of P such that the following properties are satisfied:

1. (x, k) ∈ P if and only if (x′, k′) ∈ P ,
2. k′ + |x′| ≤ g(k) for some computable function g : N → N, and
3. φ is computable in time polynomial in |x| and k.

If the upper-bound g(·) of the kernel (Property 2) is polynomial (linear) in terms
of the parameter k, then we say that P admits a polynomial (linear) kernel. It
is common to write a kernelization algorithm as a series of reduction rules. A
reduction rule is a polynomial-time algorithm that transform an instance (x, k)
to an equivalent instance (x′, k′) such that Property 1 is fulfilled. Property 1 is
referred to as the safeness or correctness of the rule.

3 Kernelization

In this section, we demonstrate polynomial kernels for Dual Min-LLT and
Dual Max-LLT. But first, we show that Min-LLT and Max-LLT admit poly-
nomial kernels when parameterized by the vertex cover number of the input
graph. The following simple lemma is crucial for our kernelization algorithms.

Lemma 6. Let G be a connected graph and let S be a vertex cover of G. Then
every rooted spanning tree T of G has at most 2|S| internal vertices and at most
|S| internal vertices are not in S.

Kernelization for Finding Lineal Topologies with Many or Few Leaves 397

Proof. Let T be a rooted spanning tree tree of G with a set of internal vertices
X. For every vertex v of T , we denote by child(v) the set of its childred in T . For
each internal vertex v of T , we have child(v)
= ∅ and if v /∈ S, then child(v) ⊆ S
because S is a vertex cover of G. Moreover, for any distinct internal vertices
u and v of T , child(u) ∩ child(v) = ∅. Given X \ S = {v1, . . . , vt}, we deduce
that child(v1), . . . , child(vt) are pairwise disjoint and non-empty subsets of S.
We conclude that |X \ S| ≤ |S| and |X| ≤ 2|S|. ��
We also use the following folklore observation.

Observation 7. The set of internal vertices of any DFS tree T of a connected
graph G is a vertex cover of G.

Proof. To see the claim, it is sufficient to observe that any leaf of a DFS tree T
is adjacent in G only to its ancestors, that is, to internal vertices. ��
We use Lemma 6 to show that, given a vertex cover, we can reduce the size of
the input graph for both Min-LLT and Max-LLT.

Lemma 8. There is a polynomial-time algorithm that, given a connected graph
G together with a vertex cover S of size s, outputs a graph G′ with at most
s2(s− 1) + 3s vertices such that for every integer t ≥ 0, G has a DFS tree with
exactly t internal vertices if and only if G′ has a DFS tree with exactly t internal
vertices.

Proof. Let G be a connected graph and let S be a vertex cover of G of size s.
As the lemma is trivial if s = 0, we assume that s ≥ 1. Denote I = V (G) \ S;
note that I is an independent set. We apply the following two reduction rules to
reduce the size of G.

The first rule reduces the number of pendant vertices. To describe the rule,
denote by pendant(v) for v ∈ S the set of pendant vertices of I adjacent to v.

Rule 1
foreach v ∈ S do

if |pendant(v)| > 2 then delete all but two vertices in pendant(v) from G
end

To see that Rule 1 is safe, denote by G′ the graph obtained from G by
the application of the rule. Notice that for every v ∈ S, at most one vertex of
pendant(v) is the root and the other vertices are leaves that are children of v in
any rooted spanning tree T of G.

Let T be a DFS tree of G rooted in r with t internal vertices. Because for
every v ∈ S, the vertices of pendant(v) have the same neighborhood in G and
Rule 1 does not delete all the vertices of pendant(v), we can assume without loss

398 E. Sam et al.

of generality that r ∈ V (G′). Let T ′ = T [V (G′)]. Because the deleted vertices
are leaves of T , we have that T ′ is a tree and, moreover, T ′ is a DFS tree of G′

rooted in r. Clearly, each internal vertex of T ′ is an internal vertex of T . Let
v ∈ S be a vertex such that |pendant(v)| > 2. Then v has a pendant neighbor
u
= r in G′ and u should be a child of v in T ′. Thus, v is an internal vertex of T ′.
This implies that every leaf v of T ′ is not adjacent to any vertex of V (G)\V (G′)
in G. Hence, v is a leaf of T . Because the deleted vertices are leaves of T , we
obtain that a vertex v ∈ V (G) is an internal vertex of T if and only if v is an
internal vertex of T ′. Then T and T ′ have the same number of internal vertices.

For the opposite direction, let T ′ be a DFS tree of G′ rooted in r with t
internal vertices. We construct the tree T from T ′ by adding each deleted vertex
u as a leaf to T ′: if u ∈ V (G) \ V (G′), then u ∈ pendant(v) for some v ∈ S
and we add u as a leaf child of v. Because the deleted vertices are pendants, we
have that T is a DFS tree of G. Observe that each internal vertex of T ′ remains
internal in T . In the same way as above, we observe that a vertex v ∈ S with
|pendant(v)| > 2 cannot be a leaf of T ′, because v has a pendant neighbor in
G′ distinct from r that should be a child of v. Hence, every leaf v of T ′ is not
adjacent to any vertex of V (G) \ V (G′) in G and, therefore, is a leaf of T . Since
the deleted vertices are leaves of T , we obtain that a vertex v ∈ V (G) is an
internal vertex of T if and only if v is an internal vertex of T ′. Thus, T and T ′

have the same number of internal vertices. This concludes the safeness proof.

The next rule is used to reduce the number of nonpendant vertices of I. For
each pair of vertices u, v ∈ S, we use common neighbor of u and v to refer to
a vertex w ∈ I that is adjacent to both u and v and denote by Wuv the set of
common neighbors of u and v. Rule 2 is based on the observation that if the
size of Wuv for any vertex pair u, v ∈ S is at least 2s + 1, then it follows from
Lemma 6 that every spanning tree T contains at most s internal vertices and
at least s + 1 leaves from Wuv. We prove that it is enough to keep at most 2s
vertices from Wuv for each u, v ∈ S.

Rule 2
forall the pairs {u, v} of distinct vertices of S do

Label max{|Wuv|, 2s} vertices in Wuv;
end
Delete the unlabeled vertices of I with at least two neighbors in S from G.

To show that Rule 2 is safe, let x ∈ I be a vertex with at least two neighbors
in S which is not labeled by Rule 2. Let G′ = G − x. We claim that G has a
DFS tree with exactly t internal vertices if and only if G′ has a DFS tree with
exactly t internal vertices.

We use the following auxiliary claim, the proof of which can be found in the
full version of this paper [28].

Kernelization for Finding Lineal Topologies with Many or Few Leaves 399

Claim 8.1. (i) For any DFS tree T of G, the vertices of NG(x) are vertices of
a root-to-leaf path of T .

(ii) For any DFS tree T ′ of G′, the vertices of NG(x) are vertices of a root-to-leaf
path of T ′.

(iii) For any DFS tree T ′ of G′, every vertex of NG(x) is an internal vertex of
T ′.

We use Claim 8.1 to show the following property.

Claim 8.2. If G has a DFS tree with t internal vertices, then G has a DFS tree
T with t internal vertices such that x is a leaf of T .

Proof of Claim. 8.2 Let T be a DFS tree of G with a root r that has exactly t
internal vertices. We prove that if x is an internal vertex of T , then T can be
modified in such a way that x would become a leaf. Observe that by Claim 8.1
(i), x has a unique child v in T . We have two cases depending on whether x = r
or has a parent u.

Suppose first that x = r. By Claim 8.1, the neighbors of x in G are vertices of
some root-to-leaf path of T . Let u be the neighbor of x at maximum distance from
r in T . Because dG(x) ≥ 2, u
= v. Since x is not labeled by Rule 2, |Wuv| > 2s.
By Lemma 6, there are at least s + 1 vertices Wuv that are leaves of T . These
leaves have their parents in S which has size s. By the pigeonhole principle,
there are distinct leaves w,w′ ∈ Wuv with the same parent. We rearrange T by
making w a root with the unique child v and making x a leaf with the parent u.
Denote by T ′ the obtained tree.

Because x is adjacent to u and some of its ancestors in T and w is adjacent
only to some of its ancestors in T , we conclude that T ′ is a feasible DFS tree.
Notice that w which was a leaf of T became an internal vertex of T ′ and x that
was an internal vertex is now a leaf. Because x is a leaf of T ′, we have that
T ′′ = T ′ − x is a DFS tree of G′ rooted in w. By Claim 8.1 (iii), u is an internal
vertex of T ′′. This implies that u is an internal vertex of both T and T ′. Since
the parent of w in T has w′
= w as a child, we also have that w is an internal
vertex of both T and T ′. Therefore, T and T ′ have the same number of internal
vertices. This proves that G has a DFS tree T ′ with t internal vertices such that
x is a leaf of T ′.

Assume now that x has a parent u in T . By Claim 8.1, the neighbors of x
in G are vertices of some root-to-leaf path of T . Denote by v′ be the neighbor
of x at maximum distance from r in T ; it may happen that v′ = v. As x is not
labeled by Rule 2, |Wuv| > 2s. Then by Lemma 6, there are at least s+1 vertices
Wuv that are leaves of T . These leaves have their parents in S which has size s.
By the pigeonhole principle, there are distinct leaves w,w′ ∈Wuv with the same
parent. We rearrange T by making w a child of u and a parent of v and making
x a leaf with the parent v′. Denote by T ′ the obtained tree.

Because x is adjacent to v′ and some of its ancestors in T and w is adjacent
only to some of its ancestors in T , including u and v, we have that T ′ is a feasible
DFS tree. Notice that w was a leaf of T and is now an internal vertex of T ′,
while x was an internal vertex in T and is now a leaf in T ′. Because x is a leaf

400 E. Sam et al.

of T ′, we have that T ′′ = T ′ − x is a DFS tree of G′ rooted in w. By Claim 8.1
(iii), v′ is an internal vertex of T ′′. Therefore, v′ is an internal vertex of both T
and T ′. Since the parent of w in T has w′
= w as a child, we also have that w is
an internal vertex of both T and T ′. Thus, T and T ′ have the same number of
internal vertices. We obtain that G has a DFS tree T ′ with t vertices such that
x is a leaf of T ′. This concludes the proof. ��

Now we are ready to proceed with the proof that G has a DFS tree with
exactly t internal vertices if and only if G′ has a DFS tree with exactly t internal
vertices.

For the forward direction, let T be a DFS tree of G with t internal vertices.
By Claim 8.2, we can assume that x is a leaf of T . Let T ′ = T − x. Because x is
a leaf of T , T ′ is a DFS tree of G′. Let u be the parent of x in T . Because u is
adjacent to x in G, we have that u is an internal vertex of T ′ by Claim 8.1 (iii).
This means that the number of internal vertices of T and T ′ is the same, that
is, G′ has a DFS tree with t vertices.

For the opposite direction, let T ′ be a DFS tree of G′ with t internal vertices
with a root r. By Claim 8.1 (ii), the neighbors of x in G are vertices of some
root-to-leaf path in T ′. Let v be the neighbor of x at maximum distance from
r in T ′. We construct T by making x a leaf with the parent v. Because x is
adjacent in G only to v and some of its ancestors in T ′, T is a DFS tree. By
Claim 8.1(iii), v is an internal vertex of T ′. Therefore, T ′ and T have the same
set of internal vertices. We obtain that G has a DFS tree with t vertices. This
concludes the proof of our claim.

Recall that G′ was obtained from G by deleting a single unlabeled vertex
x ∈ I of degree at least two. Applying the claim that G has a DFS tree with
exactly t internal vertices if and only if G′ = G− x has a DFS tree with exactly
t internal vertices inductively for unlabeled vertices of I of degree at least two,
we obtain that Rule 2 is safe.

Denote now by G′ the graph obtained from G by the application of Rules 1
and 2. Because both rules are safe, for any integer t ≥ 0, G has a DFS tree
with exactly t internal vertices if and only if G′ has a DFS tree with exactly
t internal vertices. Because of Rule 1, G′ − S has at most 2s pendant vertices.
Rule 2 guarantees that G′−S has at most 2s

(
s
2

)
= s2(s−1) vertices of degree at

least two. Then the total number of vertices of G′ is at most s2(s−1)+2s+ s =
s2(s− 1) + 3s.

It is straightforward to see that Rule 1 can be applied in O(sn) time and
Rule 2 can be applied in O(s2n) time. Therefore, the algorithm is polynomial.
This concludes the proof. ��

As a direct consequence of Lemma 8 we obtain that Min-LLT and Max-
LLT admit polynomial kernels when parameterized by the vertex cover number
of the input graph.

We are ready to prove our kernels parameterized by vertex cover.

Proof of Theorem. 1 We show the theorem for Min-LLT; the arguments for
Max-LLT are almost identical. Recall that the task of Min-LLT is to decide,

Kernelization for Finding Lineal Topologies with Many or Few Leaves 401

given a graph G and an integer k ≥ 0, whether G has a DFS tree with at
most k leaves. Equivalently, we can ask whether G has a DFS tree with at least
|V (G)| − k internal vertices. Let (G, k) be an instance of Min-LLT. We assume
that G is connected as, otherwise, (G, k) is a no-instance and we can return a
trivial no-instance of Min-LLT of constant size.

First, we find a vertex cover S of G. For this, we apply a folklore approxima-
tion algorithm (see, e.g., [8]) that greedily finds an inclusion-maximal matching
M in G and takes the set S of endpoints of the edges of M . It is well-known that
|S| ≤ 2τ . Then we apply the algorithm from Lemma 8. Let G′ be the output
graph. By Lemma 8, G′ has O(τ3) vertices. We set k′ = k − |V (G)| + |V (G′)|
and return the instance (G′, k′) of Min-LLT.

Suppose that G has a DFS tree with at most k leaves. Then G has a DFS tree
with t ≥ |V (G)|−k internal vertices. By Lemma 8, G′ also has a DFS tree with t
internal vertices. Then G′ has a DFS tree with |V (G′)|− t ≤ |V (G′)|− (|V (G)|−
k) = k′ leaves. For the opposite direction, assume that G′ has a DFS tree with
at most k′ leaves. Then G′ has a DFS tree with t ≥ |V (G′)| − k′ = |V (G)| − k
internal vertices. By Lemma 8, G has a DFS tree with t internal vertices and,
therefore, G has a DFS tree with at most k leaves.

Because S can be constructed in linear time and the algorithm from Lemma 8
is polynomial, the overall running time is polynomial. This concludes the proof.
��
Now we demonstrate a polynomial kernel for Dual Min-LLT.

Theorem 9. Dual Min-LLT admits a kernel with O(k3) vertices.

Proof. Recall that the task of Dual Min-DLL is to verify, given a graph G and
an integer k ≥ 0, whether G has a DFS tree with at most n − k leaves. Equiv-
alently, the task is to check whether G has a DFS tree with at least k internal
vertices. Let (G, k) be an instance of Dual Min-LLT. If G is disconnected, then
(G, k) is a no-instance and we return a trivial no-instance of Dual Min-DLL
of constant size. From now, we assume that G is connected.

We select an arbitrary vertex r of G and run the DFS algorithm from this
vertex. The algorithm produces a DFS tree T . Let S be the set of internal
vertices of T . If |S| ≥ k, then we conclude that (G, k) is a yes-instance. Then
the kernelization algorithm returns a trivial yes-instance of Dual Min-LLT of
constant size and stops. Assume that this is not the case and |S| ≤ k − 1.

By Observation 7, we have that S is a vertex cover of G of size s ≤ k − 1.
We use S to call the algorithm from Lemma 8. Let G′ be a graph produced by
the algorithm. By Lemma 8, G′ has O(k3) vertices. Our kernelization algorithm
returns (G′, k) and stops.

To see correctness, it is sufficient to observe that by Lemma 8, for any integer
t ≥ k, G has a DFS tree with t internal vertices if and only if G′ has a DFS
tree with t internal vertices. Because the DFS algorithm runs in linear time (see,
e.g., [6]) and the algorithm from Lemma 8 is polynomial, the overall running
time is polynomial. This completes the proof. ��
We use similar arguments to prove the following theorem. See the full version of
this paper for the proof [28].

402 E. Sam et al.

Theorem 10. Dual Max-LLT admits a kernel with O(k3) vertices.

Theorems 9 and 10 implies Theorem 2.

4 FPT Algorithms

In this section, we give algorithms that solve Dual Min-LLT and Dual Max-
LLT in FPT time using the kernels given in the previous section. Our algorithms
are brute force algorithms which guess internal vertices.

Recall that the standard DFS algorithm [6] outputs a labeled spanning tree.
More formally, given an n-vertex graph and a root vertex r, the algorithm out-
puts a DFS tree T rooted in r and assigns to the vertices of G distinct labels
d[v] from {1, . . . , n} giving the order in which the vertices were discovered by
the algorithm. Thus, the algorithm outputs a linear ordering of vertices. Given
an ordering v1, . . . , vn of V (G), we say that a DFS tree T respects the ordering
if T is produced by the DFS algorithm in such a way that d[vi] = i for every
i ∈ {1, . . . , n}. Observe that for an ordering of the vertices of G, there is a unique
way to run the DFS algorithm to obtain T respecting the ordering. This gives
us the following observation.

Observation 11. It can be decided in linear time, given an ordering v1, . . . , vn

of the vertices of a graph G, whether G has a DFS tree respecting the ordering.
Furthermore, if such a tree T exists, it is unique and can be constructed in linear
time.

Let G be a graph and let r ∈ V (G). For a tree T ⊆ G with r ∈ V (T), we say that
T is extendable to a DFS tree rooted in r, if there is a DFS tree T ′ of G rooted in
r such that T is a subtree of T ′. We call T ′ an extension of T . The definition of a
DFS tree immediately gives us the following necessary and sufficient conditions
for the extendability of T .

Observation 12. Let G be a graph with r ∈ V (G) and let T ⊆ G be a tree
containing r. Then T is extendable to a DFS tree rooted in r if and only if

(i) T is a DFS tree rooted in r of G[V (T)],
(ii) for every connected component C of G − V (T), the vertices of NG(V (C))

are vertices of a root-to-leaf path of T .

Note that (i) and (ii) can be verified in polynomial (in fact, linear) time. We need
the following variants of Observation 12 for special extensions in our algorithms.

Observation 13. Let G be a graph with r ∈ V (G) and let T ⊆ G be a tree
containing r. Then T is extendable to a DFS tree rooted in r with an extension
T ′ such that the vertices of V (T) are internal vertices of T ′ if and only if

(i) T is a DFS tree rooted in r of G[V (T)],
(ii) for every connected component C of G − V (T), the vertices of NG(V (C))

are vertices of a root-to-leaf path of T ,
(iii) for every leaf v of T , there is u ∈ V (G) \ V (T) that is adjacent to v.

Kernelization for Finding Lineal Topologies with Many or Few Leaves 403

Observation 14. Let G be a graph with r ∈ V (G) and let T ⊆ G be a tree
containing r. Then T is extendable to a DFS tree rooted in r with an extension
T ′ such that the vertices of L = V (G) \ V (T) are leaves of T ′ if and only if

(i) T is a DFS tree rooted in r of G[V (T)],
(ii) L is an independent set,
(iii) for every v ∈ L, the vertices of NG(v) are vertices of a root-to-leaf path of

T .

Now, we are ready to describe our algorithms. For the proof of Lemma 15, see
the full version of this paper [28].

Lemma 15. Dual Min-LLT and Dual Max-LLT can be solved in nO(k)

time.

Combining Lemma 15 and Theorem 2 implies Theorem 3 by providing kO(k) ·
nO(1) time algorithms for the dual problems.

5 Conclusion

We have shown that Dual Min-LLT and Dual Max-LLT admit kernels with
O(k3) vertices and can be solved in kO(k) · nO(1) time. A natural question is
whether the problems have linear kernels, such as for k-Internal Spanning
Tree [22]. Another question is whether the problems can be solved by single-
exponential FPT algorithms.

As a byproduct of our kernelization algorithms for Dual Min-LLT and
Dual Max-LLT, we also proved that Min-LLT and Max-LLT admit poly-
nomial kernels for the structural parameterization by the vertex cover number.
It is natural to wonder whether polynomial kernels exist for other structural
parameterizations. In particular, it could be interesting to consider the parame-
terization by the feedback vertex number, i.e., by the minimum size of a vertex
set X such that G−X is a forest.

Acknowledgements. We acknowledge support from the Research Council of Norway
grant “Parameterized Complexity for Practical Computing (PCPC)” (NFR, no. 274526)
and “Beyond Worst-Case Analysis in Algorithms (BWCA)” (NFR, no. 314528).

References

1. Biedl, T.: The DFS-heuristic for orthogonal graph drawing. Comput. Geom. 18(3),
167–188 (2001). https://doi.org/10.1016/S0925-7721(01)00006-2

2. Bonsma, P., Zickfeld, F.: Spanning trees with many leaves in graphs without dia-
monds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.)
LATIN 2008: Theoretical Informatics, pp. 531–543. Springer, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78773-0_46

https://doi.org/10.1016/S0925-7721(01)00006-2
https://doi.org/10.1007/978-3-540-78773-0_46

404 E. Sam et al.

3. Bonsma, P.S., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for
finding spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS
2003. LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45138-9_20

4. Böhme, T., Broersma, H., Göbel, F., Kostochka, A., Stiebitz, M.: Spanning trees
with pairwise nonadjacent endvertices. Discrete Math. 170(1), 219–222 (1997).
https://doi.org/10.1016/S0012-365X(96)00306-8

5. Casel, K., et al.: Complexity of independency and Cliquy trees. Discrete Appl.
Math. 272, 2–15 (2020). https://doi.org/10.1016/j.dam.2018.08.011, 15th Cologne-
Twente Workshop on Graphs and Combinatorial Optimization (CTW 2017)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

7. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

8. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer Publishing Com-
pany, Incorporated (2015). https://doi.org/10.1007/978-3-319-21275-3

9. De Fraysseix, H.: Trémaux trees and planarity. Electron. Notes Discrete Math. 31,
169–180 (2008)

10. de Fraysseix, H., Ossona de Mendez, P.: Trémaux trees and planarity. Eur. J. Comb.
33(3), 279–293 (2012). https://doi.org/10.1016/j.ejc.2011.09.012, topological and
Geometric Graph Theory

11. Diestel, R.: Graph Theory, 5th edn. Springer Publishing Company, Incorporated
(2017). https://doi.org/10.1007/978-3-662-53622-3

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer Publishing Company, Incorporated (2013). https://doi.org/10.1007/978-
1-4471-5559-1

13. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is p-time
extremal structure I. In: Broersma, H., Johnson, M., Szeider, S. (eds.) Algorithms
and Complexity in Durham 2005 - Proceedings of the First ACiD Workshop, 8–10
July 2005, Durham, UK. Texts in Algorithmics, vol. 4, pp. 1–41. King’s College,
London (2005)

14. Fellows, M.R., Friesen, D.K., Langston, M.A.: On finding optimal and near-optimal
lineal spanning trees. Algorithmica 3(1–4), 549–560 (1988)

15. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application
to combinatorial problems of VLSI design. SIAM J. Discrete Math. 5(1), 117–126
(1992)

16. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for
Maximum Internal Spanning Tree. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 275–282. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10631-6_29

17. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in con-
straint satisfaction problems. In: Proceedings of the 9th International Joint Confer-
ence on Artificial Intelligence - Vol. 2. pp. 1076–1078. IJCAI’85, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1985)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

19. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

20. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(4), 549–
568 (1974)

https://doi.org/10.1007/978-3-540-45138-9_20
https://doi.org/10.1007/978-3-540-45138-9_20
https://doi.org/10.1016/S0012-365X(96)00306-8
https://doi.org/10.1016/j.dam.2018.08.011
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ejc.2011.09.012
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-642-10631-6_29
https://doi.org/10.1007/978-3-642-10631-6_29

Kernelization for Finding Lineal Topologies with Many or Few Leaves 405

21. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973). https://doi.org/10.1137/0202019

22. Li, W., Cao, Y., Chen, J., Wang, J.: Deeper local search for parameterized and
approximation algorithms for maximum internal spanning tree. Inf. Comput. 252,
187–200 (2017)

23. Lu, H.I., Ravi, R.: The power of local optimization: approximation algorithms for
maximum-leaf spanning tree. In: Proceedings, Thirtieth Annual Allerton Confer-
ence on Communication, Control and Computing, pp. 533–542 (1996)

24. Michael, R.F., McCartin, C., Frances, A.R., Stege, U.: Coordinatized kernels and
catalytic reductions: an improved FPT algorithm for max leaf spanning tree and
other problems. In: Kapoor, S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974,
pp. 240–251. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44450-
5_19

25. Nešetřil, J., de Mendez, P.O.: Bounded height trees and tree-depth. In: Sparsity.
AC, vol. 28, pp. 115–144. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27875-4_6

26. Prieto, E., Sloper, C.: Either/Or: using Vertex Cover structure in designing
FPT-algorithms — the case of k -Internal Spanning Tree. In: Dehne, F., Sack,
J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45078-8_41

27. Rahman, M.S., Kaykobad, M.: Complexities of some interesting problems on span-
ning trees. Inf. Process. Lett. 94(2), 93–97 (2005). https://doi.org/10.1016/j.ipl.
2004.12.016

28. Sam, E., Bergougnoux, B., Golovach, P.A., Blaser, N.: Kernelization for finding lin-
eal topologies (depth-first spanning trees) with many or few leaves (2023). https://
doi.org/10.48550/arXiv.2307.00362

29. Sam, E., Fellows, M., Rosamond, F., Golovach, P.A.: On the parameterized com-
plexity of the structure of lineal topologies (depth-first spanning trees) of finite
graphs: The number of leaves. In: Mavronicolas, M. (ed.) Algorithms and Com-
plexity, pp. 353–367. Springer International Publishing, Cham (2023). https://doi.
org/10.1007/978-3-031-30448-4_25

30. Tarjan, R.: Depth-first search and linear graph algorithms. In: 12th Annual Sympo-
sium on Switching and Automata Theory (swat 1971), pp. 114–121 (1971). https://
doi.org/10.1109/SWAT.1971.10

https://doi.org/10.1137/0202019
https://doi.org/10.1007/3-540-44450-5_19
https://doi.org/10.1007/3-540-44450-5_19
https://doi.org/10.1007/978-3-642-27875-4_6
https://doi.org/10.1007/978-3-642-27875-4_6
https://doi.org/10.1007/978-3-540-45078-8_41
https://doi.org/10.1016/j.ipl.2004.12.016
https://doi.org/10.1016/j.ipl.2004.12.016
https://doi.org/10.48550/arXiv.2307.00362
https://doi.org/10.48550/arXiv.2307.00362
https://doi.org/10.1007/978-3-031-30448-4_25
https://doi.org/10.1007/978-3-031-30448-4_25
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/SWAT.1971.10

Two UNO Decks Efficiently Perform
Zero-Knowledge Proof for Sudoku

Kodai Tanaka1(B) and Takaaki Mizuki2

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
kodai.tanaka.r2@dc.tohoku.ac.jp

2 Cyberscience Center, Tohoku University, Sendai, Japan

Abstract. Assume that there is a challenging Sudoku puzzle such that
a prover knows a solution while a verifier does not know any solution. A
zero-knowledge proof protocol allows the prover to convince the verifier
that the prover knows the solution without revealing any information
about it. In 2007, Gradwohl et al. constructed the first physical zero-
knowledge proof protocol for Sudoku using a physical deck of playing
cards; its drawback would be to have a soundness error. In 2018, Sasaki
et al. improved upon the previous protocol by developing soundness-
error-free protocols; their possible drawback would be to require many
standard decks of playing cards, namely nine (or more) decks. In 2021,
Ruangwises designed a novel protocol using only two standard decks of
playing cards although it requires 322 shuffles, making it difficult to use
in practical applications. In this paper, to reduce both the numbers of
required decks and shuffles, we consider the use of UNO decks, which
are commercially available: we propose a zero-knowledge proof protocol
for Sudoku that requires only two UNO decks and 16 shuffles. Thus, the
proposed protocol uses reasonable numbers of decks and shuffles, and we
believe that it is efficient enough for humans to execute practically.

Keywords: Card-based cryptography · Sudoku · Zero-knowledge proof

1 Introduction

Sudoku is one of the most popular pencil puzzles in the world. A standard Sudoku
puzzle consists of a 9×9 grid divided into 9 sub-grids (whose sizes are 3×3); we
call such a sub-grid a block throughout this paper. Some of the cells on the grid
are already filled with numbers from 1 through 9, and the goal of the puzzle is
to place a number on each empty cell so that exactly one number from 1 to 9
appears in each row, each column, and each block. Figure 1 shows an example
of a puzzle instance and its solution.

Sudoku and UNO are trademarks or registered trademarks of Nikoli Co., Ltd. and
Mattel, Inc., respectively.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 406–420, 2023.
https://doi.org/10.1007/978-3-031-43587-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_29&domain=pdf
https://orcid.org/0009-0006-3524-4453
https://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-3-031-43587-4_29

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 407

1.1 Zero-Knowledge Proof for Sudoku

Assume that a player P had created a challenging Sudoku puzzle and P showed
the puzzle to another player V . The player V has spent much time and effort
finding a solution, but V cannot find any solution. The player V gets skeptical
about whether the puzzle really has a solution. As easily imaged, this is the right
opportunity to make use of the zero-knowledge proof [3]. Thus, this paper deals
with zero-knowledge proof protocols for Sudoku.

Fig. 1. Example of a standard Sudoku puzzle and its solution

In addition, we solicit physical zero-knowledge proof protocols that do not
use any electronic devices such as computers, but use everyday objects such
as a physical deck of playing cards. Physical protocols tend to be simple and
easy-to-understand so that lay-people can easily execute them.

1.2 The Existing Protocols

In 2007, for the first time, Gradwohl et al. [4,5] developed several physical zero-
knowledge proof protocols for Sudoku. Among them, the most easy-to-implement
protocol would be the one which uses a physical deck of playing cards. This
protocol is the first card-based zero-knowledge proof protocol for Sudoku; roughly
speaking, after a prover P places face-down cards to commit to the solution
P has, the protocol applies a series of actions, such as shuffling and turning
over cards, to convince a verifier V that P surely knows the solution. Since the
protocol has a soundness error, it must be repeated many times to make the
soundness error probability negligibly small.

Later in 2018, Sasaki et al. [28] improved upon the previous protocol by
devising a new technique (called the “uniqueness verification protocol” as will
be seen in Sect. 2.3) to eliminate the soundness error. Specifically, they proposed
three zero-knowledge proof protocols for Sudoku having no soundness error [27];
we name them Sasaki’s Protocols A, B, and C, whose performances are shown
as the first three protocols listed in Table 1. For instance, Sasaki’s Protocol A
uses 9 sets of 9 numbered cards 1 2 3 4 5 6 7 8 9 as well as arbitrary

408 K. Tanaka and T. Mizuki

Table 1. Comparison of the proposed protocol with the existing protocols

Protocols Number of cards Accommodating decks Number of shuffles Interactive?

Sasaki’s Protocol A [27] 90
{

9 standard decks
5 UNO decks

45 No

Sasaki’s Protocol B [27] 171
{

18 standard decks
9 UNO decks

36 No

Sasaki’s Protocol C [27] 243
{

27 standard decks
14 UNO decks

28 Yes

Ruangwises’s Protocol A [22] 120 3 standard decks 108 Yes
Ruangwises’s Protocol B [22] 108 2 standard decks 322 Yes

Ours 117 2 UNO decks 16 No

distinct 9 cards, and hence, it requires 90 cards in total and all the required
cards can be accommodated by 9 standard decks of playing cards. As for the
number of shuffles, it applies a “pile-scramble shuffle” (which is a kind of a
shuffling action as seen later in Sect. 2.2) 45 times. As known from Table 1,
Sasaki’s protocols require at least 9 standard decks and at least 28 shuffles. Note
that Sasaki’s Protocols A and B are “non-interactive” whereas Sasaki’s Protocol
C is “interactive.”i A non-interactive card-based zero-knowledge proof protocol
uses no prover’s knowledge after a prover commits to a solution with face-down
cards (and hence, the protocol can be executed by either a prover or a verifier, or
even a third party) [12]. By contrary, an interactive card-based zero-knowledge
proof protocol requires prover’s knowledge during the execution of the protocol.

In 2021, to reduce the number of required standard decks, Ruangwises [21,22]
proposed two novel interactive protocols, which we name Ruangwises’s Protocols
A and B, using two or three standard decks of playing cards. For instance,
Ruangwises’s Protocol B requires two sets of 13 × 4 = 52 cards

♣A♦A♥A♠A ♣2 ♦2 ♥2 ♠2 · · · ♣K♦K♥K♠K

along with two jokers (i.e., two cards of different patterns); therefore, two stan-
dard decks can accommodate all the required cards. Thus, Ruangwises’s Protocol
B is very efficient in terms of the number of required decks. However, the number
of required shuffles is 322, which is too many for humans to execute. Overall, as
known from Table 1, Ruangwises’s protocols use only two or three decks while
requiring at least 108 shuffles.

1.3 Contribution of This Paper

In this paper, instead of standard decks, we consider the use of UNO decks,
which are also commercially available over the world. Specifically, we construct
a zero-knowledge proof protocol for Sudoku that works on two UNO decks using
only 16 shuffles. Our proposed protocol is non-interactive (and has no soundness
error); see the last line in Table 1.

i The usage of these terms is valid only for card-based zero-knowledge proof protocols.

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 409

The specific numbers of required cards are as follows. We use four sets of
yellow numbered cards

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 ,

Fig. 2. UNO cards to use

three sets of red numbered cards

R1 R2 R3 R4 R5 R6 R7 R8 R9 ,

and three sets of blue numbered cards

B1 B2 B3 B4 B5 B6 B7 B8 B9

(as partially illustrated in Fig. 2(a)) along with 27 arbitrary distinct cards (as
illustrated in Fig. 2(b)). One can easily confirm that two UNO decks can accom-
modate all the necessary cards mentioned above.

Making use of “color information” of cards, as will be seen, we can aggregate
necessary shuffles, resulting in only the 16 shuffles. The shuffling operation our
protocol uses is also the pile-scramble shuffle; our protocol uses such a shuffle
for 27 cards whereas the existing ones use it for 9 cards or less. Note that a
pile-scramble shuffle for 27 cards is also easy-to-implement.

Needless to say, zero-knowledge proofs play an important role in providing
security and privacy. As Hanaoka [6] mentioned, for technology diffusion, we
require easy-to-understand structures of cryptographic tools whereby potential
users can easily understand the essential mechanisms. Since Sudoku is one of
the most famous puzzles and our protocol is quite simple, our protocol might
motivate potential users to try to use zero-knowledge proof technology.

410 K. Tanaka and T. Mizuki

1.4 Related Work

Aside from Sudoku, many physical zero-knowledge proof protocols have been
constructed for other pencil puzzles. Examples are as follows: Akari [1],
Hashiwokakero (Bridges) [25], Heyawake [19], Kakuro [1,14], Makaro [2,26],
Masyu [10], Numberlink [23,24], Nurikabe [18,19], Slitherlink [10,11], Sug-
uru [17,20], and Takuzu [1,13].

2 Preliminaries

In this section, we formally describe the cards and actions on them, and explain
the “pile-scramble shuffle.” Then, we introduce the “uniqueness verification pro-
tocol,” which we will use as a sub-protocol in our protocol.

2.1 Cards and Actions

First, as mentioned in Sect. 1.3, we use numbered cards of three colors (yellow,
red, and blue); the face of every card has a number from 1 through 9 and the
patterns of the backs of all cards are identical, illustrated as

face up: R1 Y6 B9 , face down: ? ? ? .

Specifically, as mentioned before, we use four sets of yellow numbered cards
Y1 Y2 · · · Y9 , three sets of red numbered cards R1 R2 · · · R9, and three sets of
blue numbered cards B1 B2 · · · B9. We call these cards encoding cards, which
we will use to represent a solution to a Sudoku puzzle.

In addition to the encoding cards, 27 distinct cards h1 h1 · · · h27 with the
identical backs ? ? · · · ? are used; these are called helping cards. We choose
helping cards from UNO decks as already illustrated in Fig. 2(b).

Our proposed protocol follows the standard computational model of card-
based cryptographic protocols [8,9,15,16], in which a protocol is formally defined
as an abstract machine. Here, we introduce three main actions, which are applied
to a sequence of cards; below, we assume a sequence of m cards.

Permute.

This is denoted by (perm, π), where π is a permutation applied to the sequence
of cards as follows:

1

?
2

? · · ·
m

? (perm,π)−−−−−→
π−1(1)

?
π−1(2)

? · · ·
π−1(m)

? .

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 411

Turn.

This is denoted by (turn, T), where T is a set of indices, indicating that for
every t ∈ T , the t-th card is turned over as follows:

1

?
2

? · · ·
t∈T

? · · ·
m

? (turn,T)−−−−−→
1

?
2

? · · ·
t∈T

R1 · · ·
m

? .

Shuffle.

This is denoted by (shuf, Π), where Π is a set of permutations, indicating
that π ∈ Π is drawn uniformly and is applied to the sequence of cards as
follows:

1

?
2

? · · ·
m

? (shuf,Π)−−−−−→
π−1(1)

?
π−1(2)

? · · ·
π−1(m)

? .

Although a protocol is supposed to be defined with a combination of the
actions above (or an abstract machine), in the sequel, we use a natural language
to describe a protocol for simplicity.

2.2 Pile-Scramble Shuffle

In our protocol, we use the pile-scramble shuffle, which was devised in [7].
Assume that there are k piles of cards, denoted by pi for every i, 1 ≤ i ≤ k,

such that all the piles have the same number of cards:

?
︸︷︷︸

p1

?
︸︷︷︸

p2

· · · ?
︸︷︷︸

pk

.

A pile-scramble shuffle is a shuffling action that applies a random permutation
r ∈ Sk to the sequence of piles, denoted by [·| · · · |·]:

[

?
︸︷︷︸

p1

∣
∣
∣ ?
︸︷︷︸

p2

∣
∣
∣ · · ·

∣
∣
∣ ?
︸︷︷︸

pk

]

→ ?
︸︷︷︸

pr−1(1)

?
︸︷︷︸

pr−1(2)

· · · ?
︸︷︷︸

pr−1(k)

,

where Sk denotes the symmetric group of degree k.
A pile-scramble shuffle can be implemented in practice by placing each pile

of cards in a sleeve or envelope and stirring the envelopes (until the original
sequence is no longer discernible).

412 K. Tanaka and T. Mizuki

2.3 Uniqueness Verification Protocol

This subsection explains the uniqueness verification protocol using the pile-
scramble shuffle described in Sect. 2.2. This protocol has been proposed by Sasaki
et al. [27,28].

Assume that there is a sequence of k face-down cards ? ? · · · ? such that
it consists of k distinct cards a1 a2 · · · ak arranged in an unknown order. The
uniqueness verification protocol enables us to confirm that the sequence surely
consists of these k distinct cards without revealing the unknown order while
keeping the original sequence unchanged. The protocol uses k helping cards
h1 h2 · · · hk and proceeds as follows.

1. Place the k helping cards below the unknown sequence, turn them face down,
and apply a pile-scramble shuffle as follows:

? ? · · · ?
h1 h2 · · · hk

→
⎡

⎣
?
?

∣
∣
∣
∣
∣
∣

?
?

∣
∣
∣
∣
∣
∣

· · ·
∣
∣
∣
∣
∣
∣

?
?

⎤

⎦ → ? ? · · · ?
? ? · · · ?

.

2. Turn over all the cards of the top sequence to verify that it consists of
{a1, a2, . . . , ak}:

? ? · · · ?
? ? · · · ?

→
a7 ak · · · a3

? ? · · · ?
.

3. After turning over all the cards of the top sequence, apply a pile-scramble
shuffle:

⎡

⎣
?
?

∣
∣
∣
∣
∣
∣

?
?

∣
∣
∣
∣
∣
∣

· · ·
∣
∣
∣
∣
∣
∣

?
?

⎤

⎦ → ? ? · · · ?
? ? · · · ?

.

Fig. 3. The names of the 9 blocks

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 413

4. Turn over all the cards of the bottom sequence and sort the piles so that the
bottom sequence becomes h1, h2, . . . , hk in this order:

? ? ?
h2 h5 h3

? ? ?
h1 h2 hk

.

This restores the original sequence.

As mentioned above, we utilize this uniqueness verification protocol as a
sub-protocol when constructing our protocol.

3 Building Blocks

Our proposed protocol consists of several sub-protocols: the color verification,
row verification, color change, and column verification sub-protocols. In this
section, we present these sub-protocols as building blocks for our proposed pro-
tocol (which will be shown in the next section). Hereinafter, we call the 9 blocks
of a Sudoku puzzle Blocks A, B, C, . . . , H, I as shown in Fig. 3.

We first explain how a prover P commits to a solution with face-down encod-
ing cards in Sect. 3.1, and then the sub-protocols will be presented in the suc-
ceeding subsections.

3.1 Commitment to a Solution

Assume that a prover knows a solution of a given 9×9 Sudoku puzzle. According
to the solution, the prover P secretly arranges face-down encoding cards as
follows.

Fig. 4. Commitment to a solution by a prover and color schemes for input blocks and
those after color change

414 K. Tanaka and T. Mizuki

1. Prepare three sets of encoding cards Y1 Y2 · · · Y9 R1 R2 · · · R9 B1 B2 · · · B9 .
2. P and V (or someone) publicly place an encoding card on each cell that

already has a number written on it such that the number of the card is equal
to the written number (on the cell) and its color matches the color scheme
for blocks shown in Fig. 4(c) (i.e., yellow cards are placed in Blocks A, B, and
C, red cards in Blocks D, E, and F , and blue cards in Blocks G, H, and I).

3. According to the solution, P secretly places face-down encoding cards on the
remaining empty cells (without V ’s seeing the faces), based on the same color
and number schemes as in the previous step.

In this way, the prover P commits to the solution with face-down encoding
cards; Fig. 4(a) illustrates an actual placement by P , and Fig. 4(b) shows the
placement after turning over all the face-up cards, which we sometimes call a
commitment to the solution.

3.2 Color Verification Sub-protocol

Given a commitment to a solution (as illustrated in Fig. 4(b)), we first want to
check that the face-down cards satisfy the color scheme properly. That is, given
three rows of length 9:

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

,

we want to verify that all cards have the same color, say yellow. More precisely,
the following color verification sub-protocol can confirm that the 27 cards consist
of three sets of Y1 Y2 · · · Y9 using 27 helping cards.

1. Make a sequence of length 27 from the three rows, and place the 27 helping
cards below it:

? ? ? ? ? · · · ? ? ?

h1 h2 h3 h4 h5 · · · h25 h26 h27
.

2. Apply the uniqueness verification protocol described in Sect. 2.3. If the opened
cards do not consist of three sets of Y1 Y2 · · · Y9 , the protocol aborts.

3. Move the face-down cards (of the top sequence) back to the original positions
to restore the three rows.

3.3 3-Row Verification Sub-protocol

Suppose that all the cards in Blocks A, B, and C are yellow, all the cards in
Blocks D, E, and F are red, and all the cards in Blocks G, H, and I are blue.
The 3-row verification sub-protocol can verify that each of the three rows (of

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 415

different colors) consists of numbers 1 through 9. Take Rows 1, 4, and 7 as an
example for row verification:

Row 1: ? ? ? ? ? ? ? ? ?

Row 4: ? ? ? ? ? ? ? ? ?

Row 7: ? ? ? ? ? ? ? ? ?

.

1. Make a sequence of 27 cards from the three row and place 27 helping cards
below it:

? ? ? ? ? · · · ? ? ?

h1 h2 h3 h4 h5 · · · h25 h26 h27
.

2. Apply the uniqueness verification protocol described in Sect. 2.3. If the opened
cards do not consist of

Y1 Y2 · · · Y9 R1 R2 · · · R9 B1 B2 · · · B9 ,

the protocol aborts.
3. Move the face-down cards (of the top sequence) back to the original positions

to restore the three rows.

The same can be applied to the other three rows (of different colors).

3.4 Color Change Sub-protocol

In this subsection, we present the color change sub-protocol, which changes only
the colors of the cards in blocks without changing their numbers as well as
provides block verification.

Assume that there are three blocks, the first one consisting of yellow cards,
the second one consisting of red cards, and the third one consisting of blue cards.
The following procedure exchanges the colors of the first and second blocks as
well as changes the color of the third block into yellowii.

1. Make a sequence of 27 cards from the three blocks and place 27 helping cards
below it:

? ? ? ? ? · · · ? ? ?

h1 h2 h3 h4 h5 · · · h25 h26 h27
.

ii The sub-protocol works for other combinations of colors.

416 K. Tanaka and T. Mizuki

2. Apply a pile-scramble shuffle to them. Turn the encoding cards face up, mak-
ing sure that the yellow, red, and blue cards from 1 to 9 appear without
omission (otherwise it aborts):

⎡

⎣
?
?

∣
∣
∣
∣
∣
∣

?
?

∣
∣
∣
∣
∣
∣

· · ·
∣
∣
∣
∣
∣
∣

?
?

⎤

⎦ → Y3 R3 B6 · · · Y5
? ? ? · · · ?

.

3. For yellow and red cards, swap the cards with the same number (for example,
swap the positions of the yellow 3 and the red 3). For blue cards, preparing
9 free yellow cards Y1 Y2 · · · Y9,iii swap the cards with the same number:

Y3 R3 B6 R8 · · · Y5
? ? ? ? · · · ?

→ R3 Y3 Y6 Y8 · · · R5
? ? ? ? · · · ?

.

4. Turn the encoding cards face down and apply a pile-scramble shuffle:
⎡

⎣
?
?

∣
∣
∣
∣
∣
∣

?
?

∣
∣
∣
∣
∣
∣

· · ·
∣
∣
∣
∣
∣
∣

?
?

⎤

⎦ → ? ? · · · ?
? ? · · · ?

.

5. Turn over all the cards of the bottom sequence and sort the piles so that the
bottom sequence become h1, h2, . . . , h27 in this order. Return the encoding
cards to their original positions:

? ? · · · ?
h2 h5 · · · h3

→ ? ? · · · ?
h1 h2 · · · h27

.

Note that this sub-protocol also checks that each of the three blocks consists
of numbers from 1 to 9.

3.5 3-Column Verification Sub-Protocol
Suppose that all the cards in Blocks A, D, and G are yellow, all the cards in
Blocks B, E, and H are red, and all the cards in Blocks C, F, and I are blue.
The 3-column verification sub-protocol can verify that each of the three columns
(of different colors) consists of numbers 1 through 9 while it does not revert
the blocks contrary to the 3-row verification sub-protocol presented in Sect. 3.3.
Take Columns 1, 4, and 7 as an example for column verification:

Column 1: ? ? ? ? ? ? ? ? ?

Column 4: ? ? ? ? ? ? ? ? ?

Column 7: ? ? ? ? ? ? ? ? ?

.

iii This is why our protocols needs four sets of yellow cards.

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 417

1. Make a sequence of 27 cards from the three columns and apply a pile-scramble
shuffle (i.e., a normal shuffle):

? ? · · · ? →
[

?
∣
∣
∣ ?

∣
∣
∣ · · ·

∣
∣
∣ ?

]

→ ? ? · · · ? .

2. Turn over all the 27 cards. If the opened cards do not consist of

Y1 Y2 · · · Y9 R1 R2 · · · R9 B1 B2 · · · B9 ,

the protocol aborts.

Since this sub-protocol will be used at the last step of our proposed protocol,
there is no need to restore the three retrieved columns. Therefore, the uniqueness
verification protocol described in Sect. 2.3 is not used. The same can be applied
to other three columns (of different colors).

4 Our Protocol for 9 × 9 Sudoku

In this section, we construct a zero-knowledge proof protocol for a standard
Sudoku puzzle.

A prover P who knows a solution places a commitment to the solution as
described in Sect. 3.1, and this is the input to the protocol. After the input is
given, the protocol does not require the knowledge of the prover P and can be
executed by anyone thereafter (because our protocol is non-interactive).

Given the placement by P along with 27 helping cards and free 9 cards
Y1 Y2 · · · Y9, our protocol proceeds as follows.

1. Apply the color verification sub-protocol given in Sect. 3.2 to each of Blocks
A, B, C, Blocks D, E, F , and Blocks G, H, I. If it does not abort, Blocks
A, B, C consist of three sets of Y1 Y2 · · · Y9 , Blocks D, E, F consist of
three sets of R1 R2 · · · R9 , and Blocks G, H, I consist of three sets of
B1 B2 · · · B9 .

2. Apply the 3-row verification sub-protocol given in Sect. 3.3 to Rows 1, 4, and
7. Apply also the 3-row verification sub-protocol to Rows 2, 5, and 8. If it
does not abort, Rows 1, 2, 4, 5, 7, and 8 consist of numbers 1 through 9. In
addition, this result together with the result of the color verification in the
previous step automatically implies that the remaining Rows 3, 6, and 9 must
consist of numbers 1 through 9.

3. In order to be able to verify the columns, we want to change the color of
Blocks A, D, and G to yellow, Blocks B, E, and H to red, and Blocks C, F,
and I to blue, as shown in Fig. 4(d). First, apply the color change sub-protocol
described in Sect. 3.4 to Blocks B, D, and G with colors yellow, red, and blue
in this order. This swaps the colors of Blocks B and D, and changes the color

418 K. Tanaka and T. Mizuki

of Block G to yellow. (This produces 9 free cards B1 B2 · · · B9.) Second,
apply the color change sub-protocol to Blocks H, F , and C with colors blue,
red, and yellow in this order. This swaps the colors of Blocks H and F , and
changes the color of Block C to blue. Through these color transformations,
Blocks B, C, D, F, G, and H are verified to consist of numbers 1 through 9. In
addition, based on the results of Step 1, it is automatically guaranteed that
the remaining Blocks A, E, and I consist of numbers 1 through 9.

4. Apply the 3-column verification sub-protocol described in Sect. 3.5 to
Columns 1, 4, and 7. The same procedure is applied to Columns 2, 5, and
8. The remaining Columns 3, 6, and 9 are automatically verified as in the row
case.

This is the proposed protocol for convincing a verifier that the numbers 1 to
9 appear exactly once in each row, each column, and each block.

The number of required cards is 117 and the number of shuffles is 16 although
we omit the breakdowns due to the space limitation. We also omit the security
proof in this extended abstract.

5 Conclusion

In this paper, we proposed a new card-based zero-knowledge proof protocol for
Sudoku. The main idea behind our proposed protocol is to make use of UNO
decks, which are commercially available over the world, and hence, they are
easy to prepare. The property that there are several UNO cards having the
same pair of a color and a number on their faces leads to reducing the number
of required shuffles. Specifically, two UNO decks and 16 shuffles are sufficient
for constructing a zero-knowledge proof protocol for a standard Sudoku puzzle.
We believe that this is efficient enough for humans to execute practically. The
proposed protocol can also be implemented with standard decks of playing cards
although it requires four decks along with two jokers of different designs.

Our techniques can be applied to a general n × n Sudoku although we omit
the details in this extended abstract.

Acknowledgements. We thank the anonymous referees, whose comments have
helped us to improve the presentation of the paper. This work was supported in part
by JSPS KAKENHI Grant Numbers JP21K11881 and JP23H00479.

References

1. Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Fun with Algorithms. LIPIcs, vol. 49,
pp. 8:1–8:20. Schloss Dagstuhl, Dagstuhl, Germany (2016)

2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

https://doi.org/10.1007/978-3-030-03232-6_8

Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku 419

3. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Annual ACM Symposium on Theory of Computing, STOC 1985,
pp. 291–304. ACM, New York (1985)

4. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. In: Crescenzi, P.,
Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3 16

5. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009)

6. Hanaoka, G.: Towards user-friendly cryptography. In: Paradigms in Cryptology-
Mycrypt 2016. Malicious and Exploratory Cryptology. LNCS, vol. 10311, pp. 481–
484. Springer, Cham (2017)

7. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9 16

8. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 5

9. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807.
Springer, Heidelberg (2015)

10. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theor. Comput. Sci. 888, 41–55 (2021)

11. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for
Slitherlink: How to perform physical topology-preserving computation. In: Heng,
S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34339-2 8

12. Miyahara, D., Haneda, H., Mizuki, T.: Card-based zero-knowledge proof protocols
for graph problems and their computational model. In: Huang, Q., Yu, Yu. (eds.)
ProvSec 2021. LNCS, vol. 13059, pp. 136–152. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90402-9 8

13. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Fun
with Algorithms. LIPIcs, vol. 157, pp. 20:1–20:21. Schloss Dagstuhl, Dagstuhl,
Germany (2020)

14. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundam. 102(9), 1072–1078 (2019)

15. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)

16. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. E100.A(1), 3–11 (2017)

17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for Suguru puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol.
12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64348-5 19

18. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP
for connectivity: Applications to Nurikabe and Hitori. In: Connecting with Com-
putability. LNCS, vol. 12813, pp. 373–384. Springer, Cham (2021)

https://doi.org/10.1007/978-3-540-72914-3_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19

420 K. Tanaka and T. Mizuki

19. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connec-
tivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40,
149–171 (2022)

20. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-
knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 285,
1–14 (2022)

21. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for
Sudoku. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON
2021. LNCS, vol. 13025, pp. 631–642. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-89543-3 52

22. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for
Sudoku. New Gener. Comput. 40, 49–65 (2022)

23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: Fun
with Algorithms. LIPIcs, vol. 157, pp. 22:1–22:11. Schloss Dagstuhl, Dagstuhl,
Germany (2020)

24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

25. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applica-
tions to Bridges puzzle and other problems. In: Unconventional Computation and
Natural Computation, pp. 149–163. Springer, Cham (2021)

26. Ruangwises, S., Itoh, T.: Physical ZKP for Makaro using a standard deck of cards.
In: Theory and Applications of Models of Computation. LNCS, vol. 13571, pp.43–
54. Springer, Cham (2022, to appear)

27. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

28. Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In:
Fun with Algorithms. LIPIcs, vol. 100, pp. 29:1–29:10. Schloss Dagstuhl, Dagstuhl,
Germany (2018)

https://doi.org/10.1007/978-3-030-89543-3_52
https://doi.org/10.1007/978-3-030-89543-3_52

Power of Counting by Nonuniform
Families of Polynomial-Size Finite

Automata

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

tomoyukiyamakami@gmail.com

Abstract. Lately, there have been intensive studies on strengths and
limitations of nonuniform families of promise decision problems solv-
able by various types of polynomial-size finite automata families, where
a “polynomial-size” finite automata family has polynomially-bounded
state complexity. In this line of study, we further expand the scope of
these studies to partial counting functions and their relevant (promise)
decision problems, defined in terms of nonuniform families of polynomial-
size nondeterministic finite automata. With no unproven hardness
assumption, we show numerous separations and collapses of complex-
ity classes of those counting function families and their relevant decision
problem families. We also investigate their relationships to pushdown
automata families of polynomial stack-state complexity.

Keywords: nonuniform polynomial state complexity · counting
functions · counting complexity classes · closure properties

1 Background and Quick Overview

1.1 Counting in Computational Complexity Theory

Counting is one of the most intensively studied subjects in computational com-
plexity theory. The basic notion of counting functions was formally introduced
by Valiant [16,17] to count the total number of accepting computation paths
of each run of underlying polynomial-time nondeterministic Turing machines
(NTMs). These counting functions form a function class known as #P. Typi-
cal #P-functions can compute the permanent of a given positive-integer matrix
and the total number of perfect matchings of a given graph. By contrast, a gap
function computes the difference between the number of accepting computa-
tion paths and the number of rejecting computation paths of a polynomial-time
NTM. Such gap functions form the function class GapP [4]. The power of count-
ing is demonstrated by an inclusion of the polynomial(-time) hierarchy (PH)
within P#P [15]. Those two function classes, #P and GapP, naturally induce
so-called “counting complexity classes” of decision problems, such as UP, C=P,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 421–435, 2023.
https://doi.org/10.1007/978-3-031-43587-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43587-4_30&domain=pdf
https://doi.org/10.1007/978-3-031-43587-4_30

422 T. Yamakami

⊕P, PP, and SPP (Stoic PP) [4], whose structural properties have been vig-
orously investigated over decades in the mainstream computational complexity
theory. Unfortunately, none of them is known to be equal to or separated from
each other.

Outside of the polynomial-time setting, logarithmic-space counting complex-
ity classes, such as UL, C=L, ⊕L, and PL, have been studied by Allender and
Ogihara [1], Àlvarez and Jenner [2], and Ruzzo, Simon, and Tompa [12]. Using
more restrictive models of one-tape linear-time Turing machines, counting com-
plexity classes, such as 1-C=LIN, 1-⊕LIN, and 1-PLIN, and their advised vari-
ants, 1-C=LIN/lin, 1-⊕LIN/lin, and 1-PLIN/lin, were studied in [14,20], where
“advice” is an external information source providing extra helpful information
to underlying Turing machines. Advice has been also supplemented to enhance
the computational power of finite automata in, e.g., [14,19–22]. Furthermore,
counting aspects of auxiliary pushdown automata were explored in [9,18] and
counting pushdown automata were discussed in [11].

Along the line of the literature, we wish to look into lower complexity levels in
the study of counting functions and their induced decision problems. More specif-
ically, we wish to expand the scope of them by taking a new, distinctive approach
with nonuniform families of nondeterministic finite automata of polynomially-
bounded state complexity. In the subsequent subsection, we quickly review the
background of these nonuniform families.

1.2 Nonuniform Families of Polynomial-Size Finite Automata

Finite automata have long served as a simple memoryless machine model to
help us understand the essence of computation. Associated with such automata,
the number of inner states of a finite automaton has been considered as an
important resource to measure the descriptional complexity of memoryless com-
putation produced by the automaton. Such a number therefore plays the role of
a complexity measure, known as the state complexity of the automaton. Berman
and Lingas [3] and Sakoda and Sipser [13] studied in the late 19701970ss the
“nonuniform” families {Mn}n∈N of two-way finite automata Mn whose state
complexities are upper-bounded by fixed polynomials in n.

In computational complexity theory, “nonuniformity” has played a distinctive
role. Nonuniform families of polynomial-size circuits, for instance, have been
treated as a nonuniform version of P and it has been discussed in comparison with
NP. As a clear difference from circuit families, nonetheless, automata can take
inputs of arbitrary lengths simply by moving their tape heads along semi-infinite
input tapes until the end of the inputs. Nonuniformity can be also implemented
in terms of “advice”.

To ease our further discussion, we now introduce two notations 1D and 1N
to denote respectively the collections of families of promise decision problems
over fixed alphabets1 solvable by nonuniform families of one-way deterministic

1 In this exposition, we always fix an alphabet for all promise problems in the same
family. This situation slightly differs from [5–8].

Power of Counting by Nonuniform Families 423

finite automata (or 1dfa’s, for short) and by nonuniform families of one-way non-
deterministic finite automata (or 1nfa’s) using polynomially many inner states.
By replacing 1dfa’s and 1nfa’s with their two-way head models called 2dfa’s and
2nfa’s, we obtain 2D and 2N.

Although 1nfa’s are known to be equivalent in computational power to 1dfa’s,
their state complexities are “exponentially” apart. This exponential state com-
plexity gap instantly leads to 1D
= 1N. After an early study of [3,13], Kapoutsis
[5,6] revitalized a study of nonuniform polynomial state complexity by expand-
ing the scope of underlying machines to probabilistic and alternating finite
automata. Nonuniform polynomial state complexity has lately become a sub-
ject of intensive studies in close connection to logarithmic-space computation.
Kapoutsis [7] and Kapoutsis and Pighizzini [8] exhibited a close relationship
between the two-way nonuniform polynomial state complexity classes 2D and 2N
and the logarithmic space-bounded complexity classes L and NL equipped with
polynomial-size advice. Yamakami further expanded those subjects and covered
the computational model of quantum finite automata [26], various restrictions
of 1nfa’s and 2nfa’s [27], width-bounded 2nfa’s in direct connection to the lin-
ear space hypothesis (LSH) [23], and relativization of nonuniform polynomial
sate complexity classes [24]. As a natural extension of finite automata families,
nonuniform families of pushdown automata were also studied lately [25].

Unlike the two-way models of finite automata, we can determine the com-
putational complexity of the one-way models of various finite automata with no
unproven hardness assumption. For example, numerous nonuniform complexity
classes located between 1D and 1N were investigated in [27] with respect to
the accepting behaviors of underlying nondeterministic finite automata. It was
shown in [27] that 1N and its unambiguous variant 1U are different whereas
their two-way head models, 2N and 2U, are equal when all valid instances are
polynomially long.

An expansion of the scope of the theory of nonuniform polynomial state com-
plexity has been expected to promote our basic understandings of this intriguing
theory. The importance of “counting” in theoretical computer science therefore
makes us conduct an initial study in this exposition on the power of “counting”
within the theory of nonuniform polynomial state complexity.

1.3 Quick Overview of Main Contributions

A series of recent studies along the line of Sakoda and Sipser [13] has made
a steady progress on the theory of nonuniform polynomial state complexity. A
main purpose of this exposition is therefore to enrich the field of nonuniform
polynomial state complexity by promoting the understanding of descriptional
complexity of nonuniform finite automata families.

As natural analogues of #P and GapP, we introduce two fundamental func-
tion classes 1# and 1Gap. Unlike #P and GapP, however, these classes are, in
fact, collections of nonuniform families of “partial” functions whose values are
“defined” only on predetermined domains. With the use of such partial func-
tion families in 1# and 1Gap, we can define 1U, 1⊕, 1C=, 1SP, and 1P, as

424 T. Yamakami

Fig. 1. Containments and separations of nonuniform polynomial state complexity
classes shown in this exposition. The class separations 1D �= 1U �= 1N and 1U �= co-1U
come from [27].

nonuniform-state-complexity analogues of UP, ⊕P, C=P, SPP, and PP, respec-
tively, although 1U and 1P were already studied in [5,6,26] in a slightly different
context. See Sect. 3 for their precise definitions.

As the main contribution of this exposition, we study the contain-
ments/separations among the aforementioned nonuniform polynomial state com-
plexity classes. A key is a discovery of a close connection between nonuniform
families of finite automata and one-tape linear-time Turing machines with advice.
We further compare the complexity classes 1U, 1N, and 1P with the complex-
ity classes 1DPD and 1NPD induced respectively by one-way deterministic and
nondeterministic pushdown automata families [25]. In summary, Fig. 1 depicts
the relationships among those complexity classes.

All omitted proofs, due to the page limit, will be included in the forthcoming
complete version of this exposition.

2 Preparation: Notions and Notation

2.1 Numbers, Strings, and Promise Decision Problems

Let us provide the basic notions and notation necessary to read through the rest
of this exposition. The notation Z indicates the set of all integers. All nonnegative
integers are called natural numbers and form a set denoted by N. We also set
N+ to express N − {0}. For two integers m and n with m ≤ n, [m,n]Z indicates
the integer set {m,m+ 1,m+ 2, . . . , n}. When n ∈ N+, we abbreviate [1, n]Z as
[n]. Given a set S, the notation P(S) stands for the power set of S.

We assume the reader’s familiarity with basic automata theory. Let Σ denote
an alphabet, which is a finite nonempty set of “symbols” or “letters”. A finite
sequence of symbols in Σ is called a string over Σ. The empty string is always
denoted by λ. A subset of Σ∗ is a language over Σ. Given a number n ∈ N, Σn

(resp., Σ≤n) denotes the set of all strings of length exactly n (resp., at most n).
A promise (decision) problem over alphabet Σ is a pair (A,R) of sets (or

languages) satisfying that A∪R ⊆ Σ∗ and A∩R = ∅, where instances in A are
called positive and those in R are negative. All strings in A ∪ R are customary

Power of Counting by Nonuniform Families 425

called valid or promised. A language can be seen as a special case of a promise
problem. Given a string w ∈ Σ∗ and a symbol σ ∈ Σ, #σ(w) denotes the total
number of occurrences of σ in w.

For any positive integer k, the notation bin(k) denotes the binary repre-
sentation of k leading with 1. For convenience, we also set bin(0) to be the
empty string λ. We further translate integers k to binary strings trans(k)
as follows: 0 is translated into trans(0) = λ, a positive integer k is trans-
lated into trans(k) = 1bin(k), and a negative integer −k is interpreted as
trans(−k) = 0bin(k).

For any k ∈ N+ and any i1, i2, . . . , ik ∈ N+, we use the special notation
[i1, i2, . . . , ik] to denote the binary string of the form 1i101i20 · · · 01ik0. Given
n ∈ N+, let An denote the collection of all such strings [i1, i2, . . . , ik] for arbi-
trary k ∈ N+ and i1, i2, . . . , ik ∈ [n]. We write A∞ for

⋃
n∈N

An. For any
r = [i1, i2, . . . , ik] ∈ A∞, we write Set(r) to denote the set {i1, i2, . . . , ik}. In
comparison, we use another notation MSet(r) for the corresponding “multi”
set of k elements. Obviously, it follows that |Set(r)| ≤ |MSet(r)| = k. For any
index e ∈ [n], the notation (r)(e) denotes the e-th entry ie in r. We further define
Σ

(n)
2 = {r1#r2 | r1, r2 ∈ An}. Moreover, given k numbers i1, i2, . . . , ik ∈ [0, n]Z

with m ≥ n, we define [[i1, i2, . . . , ik]] m to be 1i10m−i101i20m−i20 · · · 01ik0m−ik ,
where we treat 10 and 00 as λ. Let An(m) denote the set of all strings of the
form [[i1, i2, . . . , ik]] m with i1, i2, . . . , ik ∈ [0, n]Z. It follows that |[i1, i2, . . . , ik]| =
∑k

l=1 il+k, whereas |[[i1, i2, . . . , ik]] m| = km+k−1. See [27] for more information.

2.2 Various Types of One-Way Finite Automata

In association with the theme of “counting”, we use various models of finite
automata. Following [26], all finite automata in this exposition are restricted so
that they should move their tape heads only in one direction without making
any λ-move, where a “λ-move” refers to a step in which the tape head scans no
input symbol but it may change the automaton’s inner states. Such machines
are briefly called one way in this exposition. A one-way nondeterministic finite
automaton (or a 1nfa, for short) is of the form (Q,Σ, {�,�}, δ, q0, Qacc, Qrej),
where Q is a finite set of inner states, Σ is an (input) alphabet, � and � are
two endmarkers, δ is a transition function from (Q−Qhalt)× Σ̌ to P(Q), where
Σ̌ = Σ∪{�,�}, and Qacc and Qrej are respectively sets of accepting states and
of rejecting states with Qhalt = Qacc ∪Qrej ⊆ Q and Qacc ∩Qrej = ∅. Since we
deal with promise problems, we need Qacc and Qrej to allow the circumstances
where, after reading the right endmarker &, M enters neither accepting states
nor rejecting states. Since M makes no λ-move, it should halt within |x| + 2
steps for any input x. Given a computation path ζ, we say that M halts properly
on the path ζ if M enters a halting state in Qhalt on ζ. When M reads off &
without entering any halting state, on the contrary, M is said to halt improperly
on the path ζ. For any input x, we say that M halts properly on x if there is
a computation path ζ of M on x for which M halts properly on ζ. For a one-
way deterministic finite automaton (or a 1dfa), its transition function δ maps
(Q−Qhalt) × Σ̌ to Q. We write sc(M) for the state complexity |Q| of M .

426 T. Yamakami

A finite automaton M is said to solve a promise problem (L(+), L(−)) if M
accepts all instances in L(+) and rejects all instances in L(−). However, we do
not impose any condition on invalid instances.

Given an input string x, M(x) stands for the “outcome” of M on x when-
ever M halts properly on x. To express the total number of accepting computa-
tion paths of M on input x, we use the notation #M(x); by contrast, #M(x)
expresses the total number of rejecting computation paths of M on x.

Given a 1nfaM , we can modify it into another “equivalent” 1nfaN so that (1)
N makes exactly c nondeterministic choices at every step and (2) N produces
exactly c|�x�| computation paths on all inputs x, where c is an appropriately
chosen constant in N+. For convenience, we call this specific form the branching
normal form.

Lemma 1 (branching normal form). Let M be any 1nfa solving a promise
problem (L(+), L(−)). There exists another 1nfa N such that N is in a branching
normal form and sc(N) ≤ 3sc(M) + 1.

When a finite automaton is further equipped with a write-once2 output tape,
we call it a (finite) transducer to distinguish it from the aforementioned finite
automata. In this exposition, we consider only one-way (deterministic) finite
transducers (or 1dft’s, for short) equipped with transition functions δ mapping
Q×Σ̌ to Q×Γ ∗ for two alphabets Σ and Γ . We remark that, since a 1dft always
moves its input-tape head, it is allowed to write multiple symbols at once onto
its output tape by moving its tape head over multiple tape cells in a single step.

A one-way nondeterministic pushdown automaton (or a 1npda, for short)
M is a tuple (Q,Σ, {�,�}, Γ, δ, q0,⊥, Qacc, Qrej), additionally equipped with a
stack alphabet Γ and the bottom marker ⊥ for a stack, where δ maps (Q −
Qhalt)× Σ̌λ × Γ to P(Q× Γ ∗), where Σ̌λ = Σ̌ ∪ {λ}. We remark that, different
from 1nfa’s, M is allowed to make λ-moves. A deterministic variant of a 1npda
is called a one-way deterministic pushdown automaton (or a 1dpda) if the extra
condition |δ(q, σ, γ) ∪ δ(q, λ, γ)| ≤ 1 is met for all triplets (q, σ, γ) ∈ Q× Σ̌ × Γ .
The value ssc(M) = |Q||Γ≤e| is called the stack-state complexity of M , where
e is the push size of M defined by e = maxp,q,σ,γ{|a| : (p, a) ∈ δ(q, σ, γ)} with
p, q ∈ Q, σ ∈ Σ̌λ, and γ ∈ Γ .

2.3 Nonuniform Families of Promise Problems and Finite Automata

Given a fixed alphabet Σ, we consider a family L = {(L(+)
n , L

(−)
n)}n∈N of promise

problems, each of which (L(+)
n , L

(−)
n) indexed by n is a promise problem over Σ.

The set L(+)
n ∪L(−)

n of all promised instances is succinctly denoted by Σ(n). Notice
that instances in Σ(n) may not be limited to length-n strings. It is important to
note that the underlying alphabetΣ is fixed for all promise problems (L(+)

n , L
(−)
n)

in L in accordance with the setting of [23–27].

2 A write-once tape means that its tape head always moves to the next blank cell
whenever the tape head writes a non-blank symbol.

Power of Counting by Nonuniform Families 427

The complement of L is {(L(−)
n , L

(+)
n)}n∈N and is denoted co-L. Given two

families L = {(L(+)
n , L

(−)
n)}n∈N and K = {(K(+)

n ,K
(−)
n)}n∈N, we define the inter-

section L∩K to be {(L(+)
n ∩K(+)

n , L
(−)
n ∪K(−)

n)}n∈N and the union L∪K to be
{(L(+)

n ∪K(+)
n , L

(−)
n ∩K(−)

n)}n∈N.
To solve (or recognize) L, we use a nonuniform family M = {Mn}n∈N of finite

automata indexed by natural numbers. Formally, we say that M solves (or rec-
ognizes) L if, for any index n ∈ N, Mn solves (L(+)

n , L
(−)
n). We say that M is of

polynomial size if there is a polynomial p satisfying sc(Mn) ≤ p(n) for all n ∈ N.
The complexity class 1D (resp., 1N) consists of all families of promise prob-
lems solvable by nonuniform families of polynomial-size 1dfa’s (resp., 1nfa’s).
Similarly, we define the complexity classes 1DPD and 1NPD using 1dpda’s and
1npda’s, respectively [25].

We further consider nonuniform families of partial functions. Let f denote
a partial function from Σ∗ to Γ ∗ for two alphabets Σ and Γ , where “partial”
means that f is treated as “defined” only on its domain D, which is a subset
of Σ∗, and f is treated as “undefined” on Σ∗ −D. To clarify the domain of f ,
we intend to write (f,D) instead of f . Given two alphabets Σ and Γ , we write
F = {(fn, Dn)}n∈N for a family of partial functions mapping Σ∗ to Γ ∗.

A family {Mn}n∈N of 1dft’s is said to compute F if, for any n ∈ N and for
all x ∈ Dn, Mn begins with the input x and produces fn(x) on its write-once
output tape. Remark that, even if x /∈ Dn, Mn may possibly write a certain
string on the output tape. The notation 1F denotes the collection of all families
{(fn, Dn)}n∈N of partial functions computed by appropriate families {Mn}n∈N

of polynomial-size 1dft’s.

3 Introduction of Counting Functions and Counting
Complexity Classes

Let us explain numerous nonuniform state complexity classes associated with
“counting” used in the rest of this exposition.

In a similar way of defining #P and GapP by polynomial-time nondetermin-
istic Turing machines (NTMs), we introduce two counting-function classes 1#
and 1Gap using nondeterministic finite automata families as follows. The former
class 1# (pronounced “one sharp” or “one pound”) is the collection of all fami-
lies {(fn, Dn)}n∈N of partial functions such that there exists a nonuniform fam-
ily {Mn}n∈N of polynomial-size 1nfa’s satisfying fn(x) = #Mn(x) for all indices
n ∈ N and all strings x ∈ Dn. The latter class 1Gap is composed of all families
{(fn, Dn)}n∈N of partial functions of the form fn(x) = #Mn(x) − #Mn(x) for
all x ∈ Dn for a certain nonuniform family {Mn}n∈N of polynomial-size 1nfa’s.
Additionally, 1Gap≥0 denotes the class of all partial functions in 1Gap that take
only nonnegative integer values unless their outputs are undefined.

As a concrete example of counting function families, let us recall Σ(n)
2 and

define fn(x) = |{e ∈ N+ | (r1)(e) ∈ Set(r2)}|, where An is defined in Sect. 2.1. It
is not difficult to show that the function family {(fn, Σ

(n)
2)}n∈N belongs to 1#.

428 T. Yamakami

In Sect. 2.3, we have defined 1F as the class consisting of all families of par-
tial functions, mapping Σ∗ to Γ ∗ for arbitrary alphabets Σ and Γ , which are
computed by nonuniform families of polynomial-size 1dft’s. In accordance to 1#
and 1Gap, using the translation between integers and binary strings described
in Sect. 2.1, we treat some of these functions as functions mapping Σ∗ to Z.

Given a partial function f : Σ∗ → Z, we define f (trans) by setting
f (trans)(x) = trans(f(x)) whenever f(x) is defined. We write 1FZ (resp., 1FN)
to indicate the class composed of all families {(fn, Dn)}n∈N of partial func-
tions mapping Σ∗ to Z (resp., to N) for arbitrary alphabets Σ satisfying that
{(f (trans), Dn)}n∈N belongs to 1F. Here, we claim basic relationships among the
aforementioned function families.

Lemma 2. 1FN � 1# � 1Gap≥0, 1FZ � 1Gap≥0, and 1FZ � 1Gap.

Following [4], we define U − V for any two function classes U and V as
the collection of families {(fn, Dn)}n∈N such that there are two families G =
{(gn, Dn)}n∈N ∈ U and G′ = {(g′

n, D
′
n)}n∈N ∈ V for which Dn = D′

n and
fn = gn − g′

n (i.e., fn(x) = gn(x) − g′
n(x) for all x ∈ Dn) for any index n ∈ N.

Lemma 3. 1Gap = 1# − 1# = 1# − 1FN = 1FN − 1#.

In this exposition, we define counting classes 1U, 1⊕, 1C=, 1SP, and 1P in
terms of function families in 1# and 1Gap although 1P is originally defined in
terms of unbounded-error probabilistic finite automata in, e.g., [26]. We first
define the parity class 1⊕ (pronounced “one parity”) as the collection of all
families {(L(+)

n , L
(−)
n)}n∈N of promise problems such that there exists a function

family {(fn, Dn)}n∈N in 1# satisfying that, for any index n ∈ N, (1) L(+)
n ∪L(−)

n ⊆
Dn and (2) fn(x) is odd for all x ∈ L

(+)
n , and fn(x) is even for all x ∈ L

(−)
n . In

a similar way, the unambiguous class 1U is obtained by replacing (2) with the
following condition : fn(x) = 1 for all x ∈ L

(+)
n and fn(x) = 0 for all x ∈ L

(−)
n .

We remark that the aforementioned definition of 1N can be rephrased in terms
of function families in 1# by requiring the following condition: fn(x) > 0 for all
x ∈ L

(+)
n and fn(x) = 0 for all x ∈ L

(−)
n .

The exact counting class 1C= (pronounced “one C equal”) is defined as the
collection of all families {(L(+)

n , L
(−)
n)}n∈N of promise problems such that there

exists a function family {(fn, Dn)}n∈N in 1Gap satisfying the following: for any
index n ∈ N, (1′) L(+)

n ∪ L
(−)
n ⊆ Dn and (2′) fn(x) = 0 for all x ∈ L

(+)
n , and

fn(x)
= 0 for all x ∈ L
(−)
n . In contrast, the stoic probabilistic class 1SP refers to

the collection of all families {(L(+)
n , L

(−)
n)}n∈N defined by replacing (2′) with the

following condition: fn(x) = 1 for all x ∈ L
(+)
n , and fn(x) = 0 for all x ∈ L

(−)
n .

Finally, the bounded-error probabilistic class 1P is defined in a similar way but
with the following condition: fn(x) > 0 for all x ∈ L

(+)
n and fn(x) ≤ 0 for all

x ∈ L
(−)
n .

The following property of 1# is useful.

Power of Counting by Nonuniform Families 429

Lemma 4. For any 1nfa M with a set QM of inner states, there exists another
1nfa N with a set QN of inner states such that, for any x, if #M(x) = #M(x),
then #N(x) = #N(x), and if #M(x)
= #M(x), then #N(x) < #N(x). More-
over, |QN | ≤ 2|QM | holds.

The complexity classes 1C= and 1SP are closely related to co-1N and 1U,
respectively, because the latter two classes are obtained directly from the above
definitions of the former ones by replacing 1Gap in their definitions with 1#.

4 Relationships Among Counting Complexity Classes

Let us discuss relationships among various counting complexity classes intro-
duced in Sect. 3. In particular, we focus our attention on containments and sep-
arations of these classes, which are illustrated in Fig. 1.

In the polynomial-time setting, containment/separation relationships among
UP, NP, SPP, ⊕P, C=P, and PP are not yet known except for trivial ones. On the
contrary, it is possible in our setting to completely determine the relationships
among 1U, 1N, 1SP, 1⊕, 1C=, and 1P.

4.1 Basic Closure Properties

We briefly discuss basic closure properties of 1⊕, 1SP, and 1C=. We begin with
the closure under complementation. It was shown that co-1P coincides with 1P
[26]. A similar closure property holds for 1⊕ and 1SP.

Lemma 5. 1⊕ = co-1⊕ and 1SP = co-1SP.

It is known that 1N is closed under intersection and union but not under com-
plementation [6,26]. A similar argument used for this fact shows the following.

Lemma 6. 1C= is closed under intersection and co-1C= is closed under union.

Given two alphabets Σ and Γ , a homomorphism h : Σ → Γ ∗ is said to
be non-erasing if h(σ)
= λ for all σ ∈ Σ, and h is called prefix-free if there
is no pair σ, τ ∈ Σ such that h(σ) is a proper prefix of h(τ). As usual, h is
naturally expanded to a map from Σ∗ to Γ ∗. We write h−1(y) for the set {x ∈
Σ∗ | h(x) = y} for any string y ∈ Γ ∗. These homomorphisms and also inverse
homomorphisms can be applied to partial functions as well.

Lemma 7. 1# is closed under homomorphism and under inverse of non-erasing
prefix-free homomorphism.

430 T. Yamakami

4.2 Complexity Class 1U

We next discuss containments and separations concerning 1U. It was shown in
[27] that 1U
= co-1U (equivalently, co-1U � 1U). We first remark that 1U ⊆ 1SP
and co-1U ⊆ 1SP. It is possible to show that these inclusions are, in fact, proper.
Let Tn = {x#y | x, y ∈ {0, 1}2n} for each index n ∈ N

Proposition 8. 1U � 1SP.

Proof Sketch. For the proof of 1U ⊆ 1SP, let L = {(L(+)
n , L

(−)
n)}n∈N be any

family in 1U and take a family M = {Mn}n∈N of polynomial-size 1nfa’s solving
L, where each Mn is unambiguous at least on Σ(n) (= L

(+)
n ∪L(−)

n). The following
1nfa Nn solves L. Simulate Mn on x. If Mn enters an accepting state, then
Nn does the same. If Mn enters a rejecting state, then Nn branches into two
computation paths and accepts on one path and rejects on the other. For the
proof of 1U
= 1SP, we define L

(+)
n = {x#y ∈ Tn | #0(x) = #0(y) + 1},

L
(−)
n = {x#y ∈ Tn | #0(x) = #0(y)}, and Σ(n) = L

(+)
n ∪ L

(−)
n . We then set

Lsp = {(L(+)
n , L

(−)
n)}n∈N. With the use of this family, it is possible to prove that

Lsp ∈ 1SP and Lsp /∈ 1U. ��
We next extend the aforementioned class separation of co-1U � 1U to the

following class separation.

Proposition 9. co-1U � 1N.

4.3 Complexity Class 1C=

We continue discussing containment/separation relationships concerning 1C=.
We remark a close connection between nonuniform polynomial state complexity
classes in this exposition and one-tape linear-time Turing machines with linear-
size advice discussed in [14,20]. This close connection helps us adopt two key
lemmas of [20] into our setting and exploit them to prove the class separations
between 1N and 1C=, as shown below.

Proposition 10. 1. 1N � co-1C= and co-1N � 1C=.
2. 1C= � 1N and 1N � 1C=.

As an immediate consequence of this proposition, we obtain the following
non-closure property of 1C=.

Corollary 11. 1C= is not closed under complementation.

Proof. If 1C= = co-1C=, then 1N ⊆ 1C= follows because 1N ⊆ co-1C=. How-
ever, Proposition 10(2) shows that 1N � 1C=. ��

In what follows, we intend to prove Proposition 10. The desired proof requires
an idea from [20]. More specifically, in order to prove that 1-C=LIN/lin is not
closed under complementation, a useful, characteristic property of 1-C=LIN/lin
was presented in [20, Lemma 4.3]. As noted in Sect. 1.2, there is a close connection
between 1-C=LIN/lin and 1C=. We can exploit this connection to adapt the
above property of 1-C=LIN/lin into the setting of 1C= and to achieve the desired
separation results.

Power of Counting by Nonuniform Families 431

Lemma 12. Let {(L(+)
n , L

(−)
n)}n∈N denote any family in 1C= over alphabet Σ.

There exists a polynomial p that satisfies the following statement. Let n and l be
any two numbers in N with l ≤ n − 1, let z ∈ Σl, and let An,l,z = {x ∈ Σn−l |
xz ∈ L

(+)
n }. There exists a subset S ⊆ An,l,z with |S| ≤ p(n) such that, for any

y ∈ Σl, if {wy | w ∈ S} ⊆ L
(+)
n , then {xy | x ∈ An,l,z} ⊆ L

(+)
n .

With the use of Lemma 12, we can prove Proposition 10.

Proof Sketch of Proposition 10. Here, we prove only the second statement
of (2). An example family LN = {(L(+)

n , L
(−)
n)}n∈N is defined as follows. We first

write In for the set { [[i1, i2, . . . , in]] n2 | i1, i2, . . . , in ∈ [0, n2]Z}. For any string
z ∈ In, |z| = n(n2 + 1) follows. The desired sets L(+)

n and L
(−)
n are respectively

defined by L
(+)
n = {u#v | u, v ∈ In, Set(u)
= Set(v)} and L

(−)
n = {u#v | u, v ∈

In, Set(u) = Set(v)}. It is not difficult to show that LN ∈ 1N.
Next, we wish to prove that LN /∈ 1C=. Assuming for contradiction that

LN ∈ 1C=, we intend to apply Lemma 12 to LN . Take a polynomial p
that satisfies the lemma. Let m = 2n(n2) + 1 and l = n(n2 + 1). Take
z = [[1, 2, . . . , n]] n2 in In. Let us consider the set Am,l,z, which in fact equals
{x# ∈ Σm−l | x#z ∈ L

(+)
n }. There exists a set S ⊆ Am,l,z with |S| ≤ p(m)

satisfying the lemma. For convenience, we introduce Pn = { [[i1, i2, . . . , in]] n2 |
(i1, i2, . . . , in) is a permutation of (1, 2, . . . , n)}. Choose a string y in In − {u |
u ∈ Pn or ∃w# ∈ S[Set(w) = Set(u)]}. Clearly, the string y# belongs to Am,l,z.
It also follows by the definition of y that {w#y | w# ∈ S} ⊆ L

(+)
n . The lemma

then concludes that {x#y | x# ∈ Am,l,z} ⊆ L
(+)
n . Since y# ∈ Am,l,z, we obtain

y#y ∈ L
(+)
n , a contradiction. As a consequence, LN /∈ 1C= follows. ��

As another consequence of Proposition 10, we obtain the following.

Proposition 13. 1C= � 1P.

Proposition 14. 1SP � co-1C= and 1SP � 1C=.

4.4 Complexity Class 1P

We turn our attention to another complexity class 1P. In a demonstration of the
power of CFL over 1-PLIN/lin, a useful property of 1-PLIN/lin was presented
in [20, Lemma 4.7]. By exploiting a close connection between 1-PLIN/lin and
1P, we can show a similar property in our setting.

Lemma 15. Let {(L(+)
n , L

(−)
n)}n∈N be any family in 1P. There exists a poly-

nomial p that satisfies the following statement. Let n and l be any numbers in
N with l ≤ n − 1. There exists a set S = {w1, w2, . . . , wp(n)} ⊆ Σn−l with
|S| = p(n) for which the following implication holds: for any subset R ⊆ Σl, if
|{a(y)

1 a
(y)
2 · · · a(y)

p(n) | y ∈ R}| ≥ 2p(n), where a
(y)
i = 1 if wiy ∈ L

(+)
n , a(y)

i = 0

if wiy ∈ L
(−)
n , and a

(y)
i is undefined otherwise, then it follows that, for any

x ∈ Σn−l, there exists a pair y, y′ ∈ R satisfying that xy ∈ L
(+)
n and xy′ ∈ L

(−)
n .

432 T. Yamakami

We use Lemma 15 to prove the following class separation.

Proposition 16. 1⊕ � 1P.

Proof. For two binary strings x, y with |x| = |y|, the bitwise inner product x6y
of x and y is defined to be

∑n
i=1 xiyi, where x = x1x2 · · ·xn and y = y1y2 · · · yn.

Toward a contradiction, we assume that 1⊕ ⊆ 1P. We then take an example
family L⊕ = {(L(+)

n , L
(−)
n)}n∈N defined as follows. Fix n arbitrarily. We first

define Jn to be {u1$u2$ · · · $un | ∀i ∈ [n][ui ∈ {0, 1}�log n�]}, where $ is a special
separator. Using this set Jn, we define L(+)

n = {u#v | u, v ∈ Jn,
∑n

i=1 ui 6 vi ≡
1 (mod 2)}, where u = u1$u2$ · · · $un and v = v1$v2$ · · · $vn, and L

(−)
n =

{u#v | u, v ∈ Jn} − L
(+)
n . Consider the following 1nfa Nn. On input u#v,

nondeterministically choose a number i ∈ [n], read ui in u and remember it
in the form of inner states. After passing #, read vi in v and calculate ai =
ui 6vi (mod2). If ai = 1, then accept the input, and otherwise, reject the input.
The definition of Nn places L⊕ in 1⊕. Our assumption then implies L⊕ ∈ 1P.

Apply Lemma 15 and take a polynomial p provided by the lemma. By taking
a sufficiently large n ∈ N satisfying p(n) < 2n log n, we set n̂ = 2n(log n) and
l = n̂/2. There is a subset S = {w1, w2, . . . , wp(n)} of {0, 1}l that satisfies the
lemma. For each string r ∈ Σp(n) of the form r1r2 · · · rp(n) with ri ∈ {0, 1}
for all i ∈ [p(n)], we choose a string yr ∈ Σn−l such that, for any i ∈ [p(n)],
wi 6 yr ≡ ri (mod 2) holds. We then define the set Yn to be {yr | r ∈ {0, 1}p(n)}.
We also define ay = a1a2 · · · ap(n) with wi 6 y ≡ ai (mod 2) for any i ∈ [p(n)]. It
then follows that there exists a string x ∈ {0, 1}l satisfying x 6 yr ≡ 0 (mod 2)
for all r ∈ {0, 1}p(n). Notice that |{ay | y ∈ Yn}| ≥ 2p(n). By Lemma 15, there
is a pair y, y′ ∈ Yn such that xy ∈ L

(+)
n and xy′ ∈ L

(−)
n . This consequence is in

contradiction to the choice of x. ��
From Proposition 16, we obtain a class separation between 1SP and 1⊕.

Proposition 17. 1SP � 1⊕.

5 Relations to Nonuniform Families of Pushdown
Automata

The complexity classes 1DPD and 1NPD are induced naturally from nonuniform
families of polynomial-size pushdown automata that run in polynomial time. In
particular, their two-way head models, 2DPD and 2NPD, are closely related
to LOGDCFL/poly and LOGCFL/poly [25]. For the one-way head models, in
contrast, it is proven in [25] that 1N � 1DPD and 1DPD � 1N. Nonetheless,
we can strengthen the former separation to 1U � 1DPD and the latter one to
1DPD � 1P.

Proposition 18. (1) 1U � 1DPD. (2) 1DPD � 1P

Power of Counting by Nonuniform Families 433

Proof Sketch. Here, we prove only (1). Since 1DPD = co-1DPD [25], 1U ⊆
1DPD is equivalent to co-1U ⊆ 1DPD. Let us consider the family LU =
{(L(+)

n , L
(−)
n)}n∈N of promise problems with L

(+)
n = {u#v | u, v ∈ An(n),∃!e ∈

[n]((u)(e)
= (v)(e))} and L
(−)
n = {u#v | u, v ∈ An(n),∀e ∈ [n]((u)(e) = (v)(e))}.

Notice that |u#v| = 2k(n+1)+1 if |MSet(u)| = |MSet(v)| = k. Clearly, co-LU

falls into co-1U. We next want to verify that co-LU /∈ 1DPD. Toward a contra-
diction, we assume that co-LU ∈ 1DPD. Take a nonuniform family {Mn}n∈N of
polynomial-size 1dpda’s that solves co-LU . Let Qn denote a set of inner states
of Mn. It is possible to assume that Mn has only one accepting state, say, qacc,n

and that Mn always empties its stack at the end of computation.
A configuration of Mn is a triplet (q, σw, γ), which indicates that Mn is

in inner state q, a tape head is scanning σ, σw is a suffix of an input with
the endmarkers, and γ is the current stack content. The notation , refers to a
transition between two configurations in a single step and ,∗ is the transitive
closure of ,. We define Sn to be the collection of all quintuples (x, q1, y, q2, z)
satisfying that (i) xyz ∈ L

(+)
n with y
= λ and (ii) (q0, #xyz&,⊥) ,∗ (q1, yz&, γ) ,∗

(q2, z&, γ) ,∗ (aacc,n, λ,⊥), provided that Mn’s stack height does not go below
|γ| while reading y. We then define Bq1,q2,�1,�2 to be the set of all such tuples
(x, q1, y, q2, z) in Sn for which |x| =
1 and |y| =
2, where q1, q2 ∈ Qn and

1
2 ∈ [0, 2n(n+ 1) + 2]Z.

By an argument similar to the proof of [25, Proposition 5.2], the following
claim can be proven.

Claim. There exists a quadruple (q1, q2,
1,
2) satisfying |Bq1,q2,�1,�2 | ≥ 2.

Take a quadruple (q1, q2,
1,
2) that satisfies the claim. Choose two distinct
elements (x, q1, y1, q2, z1) and (x2, q1, y2, q2, z2) from Bq1,q2,�1,�2 . This implies
that x1y1z1 and x2y2z2 are accepted by Mn. Note that (q1, y1z1&, γ1) ,∗

(q2, z1&, γ1) and (q1, y2z2&, γ2) ,∗ (q2, z2&, γ2) are interchangeable in the cor-
responding computations of Mn on x1y1z1 and x2y2z2. Hence, x2y1z2 is also
accepted by Mn. Since y1 and y2 are nonempty and distinct, x2y1z2 and x2y1z2
must satisfy the condition of L(−)

n . This is absurd because of the definition of
L

(−)
n . Therefore, we conclude that co-LU /∈ 1DPD. ��

Lemma 19. 1N � 1NPD.

Counting is an important research subject in theoretical computer science.
We have initiated a study on “counting” within the framework of nonuniform
models of polynomial-size finite automata families. We would like to see further
progress on this study for the better understandings of the nature of counting
in low complexity classes.

References

1. Allender, E., Ogihara, M.: Relationships among PL, #L, and the determinant.
Informatique théorique et Applications 30, 1–21 (1996)

434 T. Yamakami

2. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107, 3–30 (1993)

3. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Science,
Warsaw (1977)

4. Fenner, S., Fortnow, L., Kurtz, S.: Gap-definable counting classes. J. Comput.
System Sci. 48, 116–148 (1994)

5. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 4

6. Kapoutsis, C.A.: Minicomplexity. J. Automat. Lang. Combin. 17, 205–224 (2012)
7. Kapoutsis, C.A.: Two-way automata versus logarithmic space. Theory Comput.

Syst. 55, 421–447 (2014)
8. Kapoutsis, C.A., Pighizzini, G.: Two-way automata characterizations of L/poly

versus NL. Theory Comput. Syst. 56, 662–685 (2015)
9. Niedermeier, R., Rossmanith, P.: Unambiguous auxiliary pushdown automata and

semi-unbounded fan-in circuits. Inf. Comput. 118, 227–245 (1995)
10. Ogiwara, M., Hemachandra, L.: A complexity theory for feasible closure properties.

J. Comput. System Sci. 46, 295–325 (1993)
11. Reinhardt, K.: Counting and empty alternating pushdown automata. In: The Pro-

ceedings of the 7th IMYCS, pp. 198–207 (1992)
12. Ruzzo, W., Simon, J., Tompa, M.: Space-bounded hierarchies and probabilistic

computation. J. Comput. System Sci. 28, 216–230 (1984)
13. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.

In: The Proceedings of STOC 1978, pp. 275–286 (1978)
14. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing

machines. Theor. Comput. Sci. 411, 22–43 (2010)
15. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20,

865–877 (1991)
16. Valiant, L.G.: Relative complexity of checking and evaluating. Inform. Process.

Lett. 5, 20–23 (1975)
17. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.

Comput. 8, 410–421 (1979)
18. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic

circuits. In: Conference on Structure in Complexity Theory, pp. 270–285 (1991)
19. Yamakami, T.: Swapping lemmas for regular and context-free languages.

Manuscript. (2008). arXiv:0808.4122
20. Yamakami, T.: The roles of advice to one-tape linear-time Turing machines and

finite automata. Int. J. Found. Comput. Sci. 21, 941–962 (2010)
21. Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theor.

Comput. Sci. 412, 6432–6450 (2011)
22. Yamakami, T.: Pseudorandom generators against advised context-free languages.

Theor. Comput. Sci. 613, 1–27 (2016)
23. Yamakami, T.: State complexity characterizations of parameterized degree-

bounded graph connectivity, sub-linear space computation, and the linear space
hypothesis. Theor. Comput. Sci. 798, 2–22 (2019)

24. Yamakami, T.: Relativizations of nonuniform quantum finite automata families.
In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 257–271.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19311-9 20

https://doi.org/10.1007/978-3-642-02737-6_4
http://arxiv.org/abs/0808.4122
https://doi.org/10.1007/978-3-030-19311-9_20

Power of Counting by Nonuniform Families 435

25. Yamakami, T.: Parameterizations of logarithmic-space reductions, stack-state
complexity of nonuniform families of pushdown automata, and a road to the
LOGCFL⊆LOGDCFL/poly question (2021). arXiv:2108.12779

26. Yamakami, T.: Nonuniform families of polynomial-size quantum finite automata
and quantum logarithmic-space computation with polynomial-size advice. Inform.
Comput. 286, article 104783 (2022)

27. Yamakami, T.: Unambiguity and fewness for nonuniform families of polynomial-
size nondeterministic finite automata. In: The Proceedings of RP 2022. LNCS,
vol. 13608, pp. 77–92. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19135-0 6

http://arxiv.org/abs/2108.12779
https://doi.org/10.1007/978-3-031-19135-0_6
https://doi.org/10.1007/978-3-031-19135-0_6

Author Index

A
Abbes, Samy 1
Alegría, Carlos 32
Aubrun, Nathalie 46

B
Berglund, Martin 60
Bergougnoux, Benjamin 392
Bitar, Nicolas 46
Björklund, Henrik 60
Björklund, Johanna 60, 74
Blaser, Nello 392
Brettell, Nick 88
Bubboloni, Daniela 103

C
Catalano, Costanza 103
Chakraborty, Dibyayan 132
Chakraborty, Dipayan 118
Chidiac, Lamar 147

D
Dallant, Justin 32

E
Evans, William 162

F
Fitzsimmons, Zack 176
Fleischmann, Pamela 190
Foucaud, Florent 132
Frei, Fabian 205

G
Gaikwad, Ajinkya 221
Golovach, Petr A. 392
Grochow, Joshua A. 234
Guzmán-Pro, Santiago 147

H
Hakanen, Anni 132
Hassan, Zohair Raza 248
Heinz, Jeffrey 276
Hemaspaandra, Edith 176, 248
Higashikawa, Yuya 262
Hochstättler, Winfried 147
Höfer, Jonas 190
Huch, Annika 190

K
Kaelbling, Philip 276
Kastrati, Feston 291
Katoh, Naoki 262
Kinne, Jeff 304
Kirkpatrick, David 162
Köcher, Chris 318
Křišťan, Jan Matyáš 333
Kuske, Dietrich 318

L
Lambert, Dakotah 276
Le, Van Bang 348
Levet, Michael 234
Lin, Guohui 262

M
Maity, Soumen 221
Marino, Andrea 103
Miyano, Eiji 262
Mizuki, Takaaki 406
Myrvold, Wendy 291

N
Niehren, Joachim 16
Nowotka, Dirk 190

O
Oostveen, Jelle J. 88

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
H. Fernau and K. Jansen (Eds.): FCT 2023, LNCS 14292, pp. 437–438, 2023.
https://doi.org/10.1007/978-3-031-43587-4

https://doi.org/10.1007/978-3-031-43587-4

438 Author Index

P
Pandey, Sukanya 88
Panjer, Lucas D. 291
Park, Sewon 363
Paulusma, Daniël 88
Pérez-Lantero, Pablo 32

R
Radziszowski, Stanisław 248
Rafiey, Akbar 304
Rafiey, Arash 304
Rauch, Johannes 378
Rautenbach, Dieter 378
Rosenke, Christian 348

S
Sam, Emmanuel 392
Sandeep, R. B. 118
Seara, Carlos 32
Serhali, Antonio Al 16
Silva, Ana 103
Sorkhpar, Mohammad 304

Souza, Uéverton S. 378
Svoboda, Jakub 333

T
Tamaki, Suguru 262
Tanaka, Kodai 406
Teruyama, Junichi 262

V
van Leeuwen, Erik Jan 88

W
Wehner, David 205
Williams, Aaron 291

Y
Yamakami, Tomoyuki 421
Youssef, Anthony 147

Z
Zhu, Binhai 262

	Preface
	A Good Tradition
	The Newest Edition: Trier 2023
	Highlights of the Conference
	Finally, Big Thanks …

	Organization
	Contents
	Convergence of Distributions on Paths
	1 Introduction
	2 Preliminaries
	3 Umbrella Digraphs
	4 Computing the Residual Matrix
	5 Convergence of Distributions
	References

	Subhedge Projection for Stepwise Hedge Automata
	1 Introduction
	2 Preliminaries
	3 Stepwise Hedge Automata (SHAs)
	4 Downward Stepwise Hedge Automata (SHA"3223379 s)
	5 Compiling SHAs to SHA"3223379 s with Projection States
	6 Streaming Evaluators for SHA"3223379 s
	7 Earliest Membership with Subhedge Projection
	8 Experimental Evaluation
	9 Conclusion and Future Work
	References

	The Rectilinear Convex Hull of Line Segments
	1 Introduction
	2 The Rectilinear Convex Hull
	3 Rectilinear Convex Hull of Line Segments
	3.1 Computing the -Wedges of Endpoints of Segments
	3.2 Computing the -Wedges of the Points Inside the Segments
	3.3 Computing
	3.4 Rectilinear Convex Hull of a Set of Simple Polygons

	4 Rectilinear Convex Hull of a Simple Polygonal Chain
	5 Concluding Remarks
	References

	Domino Snake Problems on Groups
	1 Introduction
	2 Preliminaries
	2.1 Symbolic Dynamics
	2.2 Combinatorial Group Theory

	3 Snake Behaviour
	3.1 General Properties

	4 Ossuary
	4.1 Skeletons and Decidability

	5 Snake Embeddings
	6 Virtually Nilpotent Groups
	7 Snakes and Logic
	References

	Parsing Unranked Tree Languages, Folded Once
	1 Introduction
	2 Preliminaries
	3 Regular Tree Foldings
	4 Unfolding Folded Trees
	References

	The Impact of State Merging on Predictive Accuracy in Probabilistic Tree Automata: Dietze's Conjecture Revisited
	1 Introduction
	2 Preliminaries
	3 Dietze's Conjecture
	4 Conclusion
	References

	Computing Subset Vertex Covers in H-Free Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Hardness Results
	4 Polynomial-Time Results
	5 The Proof of Theorems 5 and 6
	6 Conclusions
	References

	On Computing Optimal Temporal Branchings
	1 Introduction
	2 Preliminaries
	3 Temporal Branching and Preliminary Results
	3.1 Temporal Out-Branching
	3.2 Temporal In-Branching

	4 Computing Maximum d-tobs for d {mt,st,ld}
	4.1 Algorithm for mt
	4.2 Algorithm for ld and st

	5 Computing Maximum ft-tobs
	6 Conclusions and Future Work
	References

	Contracting Edges to Destroy a Pattern: A Complexity Study
	1 Introduction
	2 Preliminaries
	3 NP-Completeness
	3.1 A General Reduction
	3.2 Graphs with Universal Clique Separators
	3.3 Stars and Small Graphs
	3.4 Putting Them Together

	4 W[2]-Hardness
	4.1 A General Reduction for Trees
	4.2 Stars and Bistars

	References

	Distance-Based Covering Problems for Graphs of Given Cyclomatic Number
	1 Introduction
	2 The General Method
	3 Metric Dimension and Variants
	4 Geodetic Sets and Variants
	4.1 Geodetic Sets
	4.2 Monitoring Edge-Geodetic Sets
	4.3 Distance-edge-monitoring-sets

	5 Path Covers and Variants
	6 Algorithmic Consequences
	7 Conclusion
	References

	An Efficient Computation of the Rank Function of a Positroid
	1 Introduction
	2 Preliminaries
	3 The Rank-Function Algorithm
	4 From Le-Diagram to Decorated Permutation
	5 From Decorated Permutation to Le-Diagram
	5.1 Removing Fixed Points
	5.2 Filling the Bottom Row
	5.3 Contracting an Element

	6 Discussion
	References

	Minimizing Query Frequency to Bound Congestion Potential for Moving Entities at a Fixed Target Time
	1 Introduction
	1.1 The Query Model
	1.2 Related Work
	1.3 Our Results

	2 Geometric Preliminaries
	3 Query Optimization at a Fixed Target Time
	4 Towards Continuous Query Optimization
	5 Discussion
	References

	Complexity of Conformant Election Manipulation
	1 Introduction
	2 Related Models
	3 Preliminaries
	3.1 Scoring Rules
	3.2 Manipulative Actions
	3.3 Computational Complexity

	4 Conformant Manipulation
	5 Conformant Bribery
	6 Conclusion
	References

	–Factorization and the Binary Case of Simon's Congruence
	1 Introduction
	2 Preliminaries
	3 –Factorization
	4 The Binary Case of Simon's Congruence
	5 Towards the Ternary Case of Simon's Congruence
	6 Conclusion
	References

	Bounds for c-Ideal Hashing
	1 Introduction
	1.1 General Setting and Notation
	1.2 Applications of Hashing
	1.3 Theory of Hashing
	1.4 Determinism Versus Randomization
	1.5 Our Model and the Connection to Advice Complexity
	1.6 Organization

	2 Related Work and Contribution
	3 General Bounds on Hc
	4 Estimations for P(maxc)
	4.1 Upper Bound
	4.2 Lower Bound

	5 Improvements for Edge Cases
	6 Advice Complexity of Hashing
	7 Conclusion
	References

	Parameterized Complexity of the -Free Edge Deletion Problem
	1 Introduction
	1.1 Notations and Definitions
	1.2 Our Results
	1.3 Review of Previous Work

	2 W[1]-Hardness of -Free Edge Deletion Parameterized by Treewidth
	3 -Free Edge Deletion on Planar Graphs
	4 W[2]-Hardness of -Free Arc Deletion Parameterized by Solution Size
	5 Conclusions and Open Problems
	References

	On the Parallel Complexity of Group Isomorphism via Weisfeiler–Leman
	1 Introduction
	2 Conclusion
	References

	The Complexity of (Pk, P)-Arrowing
	1 Introduction and Related Work
	2 Preliminaries
	3 Polynomial-Time Cases
	4 coNP-Complete Cases
	4.1 Reductions
	4.2 Existence of Transmitters

	5 Conclusion and Future Work
	References

	On Computing a Center Persistence Diagram
	1 Introduction
	2 Preliminaries
	2.1 Persistence Diagram
	2.2 Problem Definition

	3 3-Bottleneck Matching Is NP-Complete
	4 A Tight Approximation
	4.1 Approximation for m-Bottleneck Matching
	4.2 Generalization to the Center Persistence Diagram Problem Under the Bottleneck Distance

	5 Concluding Remarks
	References

	Robust Identification in the Limit from Incomplete Positive Data
	1 Introduction
	2 Background
	2.1 Identification in the Limit
	2.2 String Extension Learning
	2.3 Model-Theoretic Factors and Related Formal Language Classes

	3 Robustness
	3.1 Unaffectedness
	3.2 Strong Robustness
	3.3 Weak Robustness

	4 Conclusions
	References

	Cordial Forests
	1 Introduction
	1.1 Parity Conditions for the Graceful Tree Conjecture
	1.2 Outline

	2 Parity Conditions
	3 Twin-Constructions
	4 Characterization of Cordial Forests
	4.1 Labeling Trees
	4.2 -Neutral Forests
	4.3 Labeling Forests

	5 Final Remarks
	References

	Vertex Ordering with Precedence Constraints
	1 Introduction and Problem Definition
	1.1 Problem Definition
	1.2 Warm-Up (Simple Cases)

	2 Definitions and Concepts
	3 Polynomial Time Cases
	3.1 Polynomial Time Algorithm for Trivially Perfect Bipartite Graph, Bipartite Cographs, and Bipartite Permutation Graphs

	4 Linear Program Formulation of the Problem
	References

	Forwards- and Backwards-Reachability for Cooperating Multi-pushdown Systems
	1 Introduction
	2 Preliminaries
	3 Introducing Cooperating Multi-pushdown Systems
	4 Computing the Backwards Reachable Configurations
	5 Computing the Forwards Reachable Configurations
	5.1 Forwards Reachability in Homogeneous Systems
	5.2 Forwards Reachability in Saturated Systems
	5.3 Saturating a System

	6 Summary, Consequences, and Open Questions
	References

	Shortest Dominating Set Reconfiguration Under Token Sliding
	1 Introduction
	2 Preliminaries
	3 Lower Bounds on Lengths of Reconfiguration Sequences
	4 Algorithms for Finding a Shortest Reconfiguration Sequence
	4.1 Trees
	4.2 Interval Graphs

	5 Conclusion
	References

	Computing Optimal Leaf Roots of Chordal Cographs in Linear Time
	1 Introduction
	2 Preliminaries
	2.1 Chordal Cographs and Cotrees
	2.2 Diameter, Radius and Center in Trees
	2.3 Leaf Powers, Leaf Roots and Their Basic Properties

	3 Optimal Leaf Root Construction for CCGs
	4 Linear Time Leaf Root Construction for CCGs
	5 Conclusion
	References

	Verified Exact Real Computation with Nondeterministic Functions and Limits
	1 Introduction
	2 Preliminaries
	2.1 Nondeterministic Functions
	2.2 Nondeterministic Limits
	2.3 While Loops

	3 The Programming Language
	3.1 Syntax and Typing Rules
	3.2 Denotational Semantics

	4 Specifications
	4.1 Assertion Language for Nondeterministic Functions
	4.2 Total Correctness Specifications

	5 Proof Rules
	6 Examples
	6.1 Two Dimensional Searching
	6.2 Intermediate Value Theorem

	7 Conclusion and Future Work
	References

	Exact and Parameterized Algorithms for the Independent Cutset Problem
	1 Introduction
	2 An Exact Exponential Algorithm
	3 Parameterized Algorithms
	3.1 Dual Parameterizations
	3.2 Dominating Set
	3.3 Distance to Bipartite Graphs
	3.4 Distance to Chordal Graphs
	3.5 Distance to P5-Free Graphs
	3.6 Generalizing Distance to P5-Free Graphs

	References

	Kernelization for Finding Lineal Topologies (Depth-First Spanning Trees) with Many or Few Leaves
	1 Introduction
	1.1 Our Results
	1.2 Related Results
	1.3 Organization of the Paper

	2 Preliminaries
	3 Kernelization
	4 FPT Algorithms
	5 Conclusion
	References

	Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku
	1 Introduction
	1.1 Zero-Knowledge Proof for Sudoku
	1.2 The Existing Protocols
	1.3 Contribution of This Paper
	1.4 Related Work

	2 Preliminaries
	2.1 Cards and Actions
	2.2 Pile-Scramble Shuffle
	2.3 Uniqueness Verification Protocol

	3 Building Blocks
	3.1 Commitment to a Solution
	3.2 Color Verification Sub-protocol
	3.3 3-Row Verification Sub-protocol
	3.4 Color Change Sub-protocol
	3.5 3-Column Verification Sub-Protocol

	4 Our Protocol for 99 Sudoku
	5 Conclusion
	References

	Power of Counting by Nonuniform Families of Polynomial-Size Finite Automata
	1 Background and Quick Overview
	1.1 Counting in Computational Complexity Theory
	1.2 Nonuniform Families of Polynomial-Size Finite Automata
	1.3 Quick Overview of Main Contributions

	2 Preparation: Notions and Notation
	2.1 Numbers, Strings, and Promise Decision Problems
	2.2 Various Types of One-Way Finite Automata
	2.3 Nonuniform Families of Promise Problems and Finite Automata

	3 Introduction of Counting Functions and Counting Complexity Classes
	4 Relationships Among Counting Complexity Classes
	4.1 Basic Closure Properties
	4.2 Complexity Class 1U
	4.3 Complexity Class 1C=
	4.4 Complexity Class 1P

	5 Relations to Nonuniform Families of Pushdown Automata
	References

	Author Index

