
Dissertation

On the Relative Descriptional
Complexity of Regular Expressions and

Finite Automata

Stefan Gulan

1. Gutachter: Prof. H. Fernau, Universität Trier
2. Gutachter: Prof. M. Holzer, Universität Gießen

Zusammenfassung

Reguläre Ausdrücke und endliche Automaten modellieren jeweils die Familie
der regulären Sprachen. Derartige Sprachen bestehen aus Zeichenfolgen hoher
Regelmäßigkeit und sind geeignet, um textuelle Muster, Kontrollflüsse sowie
Systemspezifikationen formal – und damit algorithmisch – zu behandeln.

Es zeigt sich, dass Ausdrücke eine aus menschlicher Sicht intuitive Darstellung
regulärer Sprachen erlauben. Andererseits lassen sich Automaten bereits als
Datenstrukturen auffassen und bilden damit den Kern einer maschinellen Be-
handlung. Somit ergibt sich die die Frage nach einer effizienten Umwandlung
zwischen den beiden Darstellungen. Für die Formalismen bestehen allerdings
wesentliche Unterschiede hinsichtlich möglichen Kompaktheit der Darstellung,
insbesondere bezüglich der jeweiligen Mindestgröße eines beschreibenden Ob-
jektes. Daraus ergeben sich wiederum theoretische Grenzen an die mögliche
Effizienz der genannten Umwandlungen.

Derartige quantitative Aspekte bilden den wesentlichen Untersuchungsgegen-
stand der vorliegenden Arbeit. Sie gliedert sich in zwei Teile. Im ersten Teil
werden zunächst Methoden zur Verkürzung von regulären Ausdrücken betrachtet
und quantitativ bewertet. Weiter wird eine Konstruktion zur Umwandlung
von Ausdrücken in Automaten vorgestellt, die ebendiese Verkürzung implizit
vornimmt. Dabei zeigt sich, dass die angegebene Konstruktion das theoretisch
bestmögliche Ergebnis bezüglich der relativen Größe von Ein- zu Ausgabe
ergibt.

Im zweiten Teil der Arbeit werden die strukturellen Eigenschaften von Auto-
maten ermittelt, die durch Ausdrücke nur mit erheblichem darstellerischem
Mehraufwand beschrieben werden können. Dies geschieht indirekt, indem
zunächst eine Klasse gerichteter Graphen untersucht und durch eine Menge
abwesender Teilstrukturen charakterisiert wird. Es wird gezeigt, dass diese
Klasse exakt diejenigen Strukturen enthält, die durch reguläre Ausdrücke kodiert
werden können. Hieraus folgt, dass die abwesenden Teilstrukturen genau die
Eigenschaften von Automaten darstellen, die besagten Mehraufwand verur-
sachen.

3

Contents

1 Introduction 7
1.1 Overview . 8

2 Preliminaries 11
2.1 Sets, Relations, and Maps . 11
2.2 Abstract Rewriting Systems . 12
2.3 Graphs . 13
2.4 Expressions and Automata . 16

3 Simplifying Regular Expressions 23
3.1 Measures for Expressions and Languages 25
3.2 Strong Star Normal Form . 29

4 Converting Expressions to Automata 43
4.1 Expansions and Eliminations 44
4.2 Refining the ARS to Functionality 50
4.3 Invariance under Strong Star Normal Form 61
4.4 Implementation Details and Running Time 65

5 Conversion Ratio 75
5.1 Worst Case Expressions . 76
5.2 A Lower Bound on Conversion Ratio 97

6 Series Parallel Loop Graphs 105
6.1 Definition and Decidability . 107
6.2 Implementation Details . 115

7 Forbidden Minor Characterization 125
7.1 Effects of Expansion . 128
7.2 Effects of Reduction . 133

8 SPL-Graphs and Regular Expressions 155
8.1 Encoding Graphs by Expressions 158

5

Contents

8.2 Decoding Expressions to Graphs 167
8.3 Duality of Encoding and Decoding 170

Bibliography 175

6

1 Introduction

This work is concerned with two kinds of objects: regular expressions and finite
automata. These formalisms describe regular languages, i.e., sets of strings
that share a comparatively simple structure. Such languages — and, in turn,
expressions and automata — are used in the description of textual patterns,
workflow and dependence modeling, or formal verification. Testing words for
membership in any given such language can be implemented using a fixed —
i.e., finite — amount of memory, which is conveyed by the phrasing “finite”
automaton. In this aspect they differ from more general classes, which require
potentially unbound memory, but have the potential to model less regular, i.e.,
more involved, objects.

Other than expressions and automata, there are several further formalisms to
describe regular languages (see, e.g. [57]). These formalisms are all equiva-
lent and conversions among them are well-known. However, expressions and
automata are arguably the notions which are used most frequently: regular
expressions come natural to humans in order to express patterns, while finite
automata translate immediately to efficient data structures. This raises the
interest in methods to translate among the two notions efficiently. In particular,
the direction from expressions to automata, or from human input to machine
representation, is of great practical relevance.

Probably the most frequent application that involves regular expressions and
finite automata is pattern matching in static text and streaming data. Common
tools to locate instances of a pattern in a text are the grep application or
its (many) derivatives, as well as awk, sed and lex (discussed extensively
in [17]) Notice that these programs accept slightly more general patterns,
namely “POSIX expressions”. Concerning streaming data, regular expressions
are nowadays used to specify filter rules in routing hardware; this topic is
discussed in the introductory section of Ch. 5. These applications have in
common that an input pattern is specified in form a regular expression while
the execution applies a regular automaton.

7

1 Introduction

As it turns out, the effort that is necessary to describe a regular language, i.e.,
the size of the descriptor, varies with the chosen representation. For example, in
the case of regular expressions and finite automata, it rather easy to see that any
regular expression can be converted to a finite automaton whose size is linear
in that of the expression1. For the converse direction, however, it is known
that there are regular languages for which the size of the smallest describing
expression is exponential in the size of the smallest describing automaton.

This brings us to the subject at the core of the present work: we investigate
conversions between expressions and automata and take a closer look at the
properties that exert an influence on the relative sizes of these objects. We refer
to the aspects involved with these consideration under the titular term of

Relative Descriptional Complexity.

The following section gives a brief survey over the particular aspects of this line
of research that are addressed in the present work.

1.1 Per-Chapter Overview

Each chapter bears its own introduction, wherein the topic of the chapter is
briefly introduced, motivated, and as far as possible accompanied by providing
pointers to relevant related work. When fit, a chapter may be concluded with
proposals for future research that might build on the findings presented in the
chapter. The following overview states the main topic of each chapter and
highlights the main results it contributes to the current state of research.

- In Ch. 2, we introduce the basic terminology and notation used throughout
this document, mostly for well-known concepts, such as graphs and rewriting
systems. Some fundamental results, on which many proofs will be based
in this work are presented, notably Newman’s Lemma and the principle of
directional duality. Most of this chapter is a condensation of the definitions
found standard textbooks, such as [1, 40, 27, 44]. While our terminology
follows these references, and therefore usually the canonical nomenclature, the
notation differs to some extents from that in the references, so it is advised
to skim the chapter at least.

1To be precise, this is true only for so-called “nondeterministic” automata, see the introductory
section of Ch. 3 for details.

8

1.1 Overview

- In Ch. 3 we consider the question how certain redundancies in regular ex-
pressions can be avoided. From an algorithmic point of view, we aim to
remove these redundancies from expressions. This means that we start from
an arbitrary expression and construct a second expression which is free of
the redundant parts, while denoting the same language as the expression we
started from. Our concern for efficiency dictates that such a construction
operates on a purely syntactical level, meaning that the language denoted by
either expression is not taken into account at all. We thus restrict ourselves to
reorganizing the operators in an expression, which allows for some nontrivial
adjustment nevertheless. This is realized by introducing two operators that
rewrite an expression and terminate in a unique normal form, which is free of
the redundancies under consideration. We find that if the input and output
under this conversion differ at all, then the output — the normal form — is
strictly smaller than the input expression. We further give an alternative char-
acterization of expressions in this normal form by means of unary operators
in the expression.

- The topic of Ch. 4 is the construction of finite automata from regular expres-
sions. We present a rewriting system that operates on a class of automata.
These automata generalize both expressions and finite automata, and allow
for a lucid analysis of the construction’s properties. For one, we show that
the presented method produces unique outputs, i.e., it behaves as a function
from expressions to automata. The construction is shown to be related to the
normal form introduced in Ch. 3: we find that the generated automaton is
invariant under taking this normal form of the input expression. We finally
propose an implementations of the construction, taking several optimizing
steps into account.

- In Ch. 5 we investigate in the quantitative aspects of the automaton-to-
expression conversion presented in Ch. 4. In particular, we bound the size
of an output automaton relative to the size of its input expression. To this
end we infer an expression that maximizes this ratio; this expression will
further be used for bounding the considered size ration from below, i.e.,
for any construction of this type. We will find that the upper bound for
our construction coincides with the lower bound, which implies that the
presented construction is optimal. This also settles the open question about
how expression and automaton sizes relate fundamentally.

- In Ch. 6 we shift our focus towards purely graph theoretic considerations.
Therein, we extend the well known class of arc-series-parallel digraphs. This
class is defined as the graphs that can be constructed from an axiom graph

9

1 Introduction

by repeated application of two rules, each of which replaces an arc with a
slightly more complex subgraph. We augment this inductive definition by a
third rule, one that allows to introduce loops. In doing so, we generalize the
arc-series-parallel digraphs beyond the acyclic case. We proceed by showing
that our new class can be efficiently decided, essentially by constructing the
sequence of rule applications that may lead to a given graph backwards.

- In Ch. 7, we work out an alternative characterization of the class of graphs
introduced in Ch. 6. This second characterization is of the obstruction set
type, meaning that we give a set of structural properties — being graphs
themselves — that are necessarily and sufficiently absent in graphs of our new
class.

- Finally, in Ch. 8 we combine several of the results we found in the preceding
parts of this work. Foremost, we present an encoding of the graphs we
introduced in Ch. 6 by means of regular expressions. We then show that
under some mild restrictions, this encoding in one-to-one and in a sense
provides a bijection between regular expressions and such graphs. To this end
we identify labeled graphs with the kind of automaton that is also considered
in Ch. 4. The construction given in Ch. 4 will be used to decode expressions
back to graphs. We also apply these findings to the construction of regular
expressions from finite automata and, with help of the normal form presented
in Ch. 3, provide a linear (upper) bound on the size of expression constructed
from automata.

10

2 Basic Terminology and Notation

2.1 Sets, Relations, and Maps

The terms set, class, family and collection are used interchangeably. Enclosing
braces for singleton sets may be omitted. The union of disjoint sets M and N
is denoted M ·∪N .

Given sets Mi, 1 ≤ i ≤ n, a set R ⊆M1×M2× · · · ×Mn is a relation of arity n
on the Mi. A relation of arity two is called a binary relation. A binary relation
R ⊆M ×M is also called a relation on M . Members of a binary relation may
be written infixed as xRy instead of (x, y) ∈ R.

The product of two binary relations R ⊆M1 ×M2 and Q ⊆M2 ×M3 is

RQ := {(x, y) | ∃z : (x, z) ∈ R ∧ (z, y) ∈ Q} ⊆M1 ×M3.

The dual of a binary relation R is the binary relation

R−1 := {(x, y) | (y, x) ∈ R}

The n-fold iteration Rn of a binary relation R on M is defined inductively
as R0 := ∆M and Rn+1 := RRn = RnR. The transitive closure R+ and the
reflexive transitive closure R? of R are defined as

R+ :=
⋃
n∈N+

Rn resp. R? :=
⋃
n∈N

Rn

A map from A to B is a relation h ⊆ A×B s.t. for each a ∈ A there is at most
one b ∈ B with (a, b) ∈ h. We write h : A→ B to express that h is a map from
A to B. Instead of (a, b) ∈ h we also write h(a) = b and say that h maps a to b.
Further, we call b the image of a and a a preimage of b under h. An injection is
a map h : A→ B with at most one preimage of each b ∈ B under h. If h(a) = b
for an injection h, we set h−1(b) := a.

For h : A→ B and A1 ⊆ A, the restriction of h to A1 is the map

h�A1 := h ∩ (A1 ×B).

11

2 Preliminaries

2.2 Abstract Rewriting Systems

An abstract rewriting system (ARS) on M consists of a set M , called the universe,
and a set of binary relations on M , called the rules of the ARS. We write

A = 〈M, →α1 , . . . , →αn〉

to denote the ARS A with universe M and rules →αi⊆M ×M . A sub-ARS of
the ARS 〈M,→α1 , . . . ,→αn〉 is any ARS 〈M ′,→β1 , . . . ,→βm〉 where M ′ ⊆M
and each →βi is contained in some →αj .

An αi-rewriting is any member of →αi , and an αi-rewriting of m is any member
of αi with first element m, i.e., any m →αi m

′. For m →αi m
′ we might also

refer to m′ as an αi-rewriting of m; it shall always be clear from the context
which notion is used. An A-rewriting (of m) is any member of some →αi (with
m as first component).

Given a rewriting m→αi m, we say that applying→αi to m yields m′ or that m
rewrites to m′ with→αi . An A-rewriting of m may also be called a rewriting step
in A. More generally, a rewriting of length k in A is any sequence of rewritings
m→αi1

m1, m1 →αi2
m2, . . . , mk−1 →αik−1

mk. A rewriting may be of length
zero. More concisely, we write

m→αi1
m1 →αi2

· · ·mk−1 →αik−1
mk, or just m→αi1

→αi2
· · · →αik−1

mk,

for a rewriting of length k. Notice that the second notation conveys less
information then the first one, since the intermediate mi are usually not uniquely
determined.

If m admits no αi-rewritings, it is αi-normal . If m is αi-normal for every rule
→αi of A, it is A-normal. If there is a rewriting from m to m′ in A s.t. m′ is
αi-normal, then m′ is an αi-normal form of m in A. If m′ is an αi-normal form
of m in A for every rule in A, then m′ is simply a normal form of m in A. The
ARS A is terminating if for every m ∈ M there is some k ∈ N s.t. the length
of no rewriting of m in A exceeds k. This is equivalent to the property is that
every exhaustive rewriting eventually leads to a normal form.

Two objects m,m′ converge in A, denoted m ∼A m
′, if for some m′′ there are

rewritings m→? m′′ and m′ →? m′′ in A.

An ARS 〈M,R1, . . . , Rn〉 is locally confluent, if for every divergent pair of rewrit-
ings mRim

′ and mRjm
′′ there is some m′′′ with rewritings m′Ri1 · · ·Rikm′′′

and m′′Rj1 · · ·Rjlm′′′ in this ARS. Local confluence is of utmost importance
due to the following result by Newman:

12

2.3 Graphs

Newman’s Lemma ([39, 29]). An ARS that is terminating and locally confluent
admits unique normal forms.

2.3 Graphs

A finite directed pseudograph is a 4-tuple G = (V,A, t, h) where V and A are
finite disjoint sets, called the vertices, resp. arcs of G, and t and h are maps
from A to V , called the tail- and the head-maps of G. We will refer to such
objects just as graphs. The capital letters F , G, and H, will always denote
graphs. If G is not given explicitly, let G = (VG, AG, tG, hG). The order of G is
defined as |VG| while the size of G is |AG|.

The vertices t(a) and h(a) are called the tail and the head of the arc a, respec-
tively. An arc with head x and tail y is also called an arc from x to y, or just
an xy-arc. We write a = xy ∈ A, if a is an xy-arc in A.1 An xy-arc leaves x
and enters y, is referred to as an out-arc of x and an in-arc of y. If G contains
an xy-arc, x is called a predecessor of y in G, while y is called a successor of
x in G. For a = xy, the vertices x and y are called the endpoints of a. We
commonly refer to both a = xy and a′ = yx as an orientation of an (otherwise
unspecified) arc with endpoints x and y. An arc with coinciding endpoints is
called a loop; more specifically, an arc a = xx is called an x-loop. We say that
x carries a loop, if an x-loop is present. Any arc that is not a loop is also called
a proper arc.

The sets in-arcs and out-arcs of x in G are denoted InG(x) and OutG(x),
respectively. The in-degree of a vertex x in G is the number of in-arcs of this
vertex: d−G(x) = |InG(x)|; the out-degree of x is d+

G(x) = |OutG(x)|. If G is
known from the context, subscripts will be omitted. An xy-arc is a constriction
if d+(x) = d−(y) = 1. A vertex x is simple, if d−(x) = d+(x) = 1.

Elementary operations on graphs

We are often interested in manipulating graphs, i.e., in the construction of new
graphs from given ones. The manipulations considered in later chapters are
combinations of a few elementary ones. In the following we consider graphs
derived from G.

1The notation a = xy is rather informal, since there might be multiple xy-arcs in a graph,
i.e., xy does not determine a uniquely. The notation will only be used if it is irrelevant for
the particular argument which particular xy-arc is considered.

13

2 Preliminaries

- removing an arc a from G yields the graph

G \ a := (VG, AG \ a, tG �A\a, hG �A\a).

- adding a new xy-arc a to G, assuming that x, y ∈ AG, yields the graph

G ∪ xy := (VG, AG ·∪ a, tG ∪ (a, x), hG ∪ (a, y)).

- removing a vertex x from G yields the graph

G− x := (VG \ x, AG \ Inc(x), tG �AG\Inc(x), hG �AG\Inc(x)).

- adding a new vertex x to G yields the graph

G+ x := (VG ·∪x, AG, tG, hG).

In most cases, the order of two elementary operations that both manipulate
arcs or that both manipulate vertices can be swapped without affecting the
result. The following identities are inherited from the respective properties of
set theoretic union and difference; formal proofs are omitted.

Proposition 2.3.1. Let G be a graph.

1. For arbitrary x, y, the following identities hold

- (G− x)− y = (G− y)− x, (G+ x) + y = (G+ y) + x

- (G \ x) \ y = (G \ y) \ x, (G ∪ x) ∪ y = (G ∪ y) ∪ x

2. For distinct x, y, the following identities hold

- (G− x) + y = (G+ y)− x, (G \ x) ∪ y = (G ∪ y) \ x

Based on Prop. 2.3.1, adding and removing vertices of arcs naturally extends to
sets of arcs and vertices. For a set of arcs, A = {a1, a2, . . . , an}, we thus write
G \ A instead of (· · · ((G \ a1) \ a2) · · ·) \ an. Likewise, we write G ∪ A, and
G+ V and G− V for a set of vertices V .

A slightly less general property resembling Prop. 2.3.1 holds for the composition
of a vertex operation with an arc operation. In one case we require that the
vertex and arc that are manipulated are not incident. This is where we add an
arc and then remove one of its incident vertices, which removes the arc, too.
But swapping the order of these operations causes a “dangling” arc, which lacks
a tail or a head. Nevertheless, we have the following:

Proposition 2.3.2. Let G be a graph.

1. For arbitrary x, y, and z, the following identities hold

14

2.3 Graphs

- (G− x) \ yz = (G \ yz)− x

- (G− x) ∪ yz = (G ∪ yz)− x

- (G+ x) \ yz = (G \ yz) + x

2. For x /∈ {y, z} we find (G+ x) ∪ yz = (G ∪ yz) + x

To merge two vertices x and y in G yields the graph G[x = y], which is informally
described as the graph derived by identifying x and y, i.e., by replacing them
with a “super-vertex” m, and redirecting all in-arcs and out-arcs of x and y to
become in-arcs and out-arcs of m, respectively. The new vertex m is called the
merge vertex of x and y in G[x = y]. The formal definition is

G[x = y] := G− {x, y}+m ∪ {zm | zx ∈ AG or zy ∈ AG}
∪ {mz | zx ∈ AG or zy ∈ AG}.

To split a vertex x in G yields the graph G�x�, which is informally described
as the graph derived by replacing x with two vertices x1, x2, and an x1x2-arc,
and redirecting all in-arcs of x to become in-arcs of x1, and all out-arcs of x to
become out-arcs of x2. In particular, G�x� contains an x2x1-arc for every
x-loop in G. The vertices x1 and x2 are called the split vertices of x in G�x�.
The formal definition is

G�x�:= G− x+ {x1, x2} ∪ {zx1 | zx ∈ AG, z 6= x}
∪ {x2z | xz ∈ AG, z 6= x}
∪ {x2x1 | xx ∈ AG}.

In analogy to Props. 2.3.1 and 2.3.2, we establish some basic properties about
swapping pairs of operations that involve merging and splitting. Extra care
has to be taken for manipulation of arcs and vertices incident to these arcs, for
vertices might be renamed. Again, these properties are stated in a matter-of-fact
fashion; their proofs are routine.

Proposition 2.3.3. Let x, y and z be distinct vertices in G.

(G ∪ xz)[x, y] = G[x, y] ∪ [x, y]z, (G ∪ zx)[x, y] = G[x, y] ∪ z[x, y]

(G \ xz)[x, y] = G[x, y] \ [x, y]z, (G \ xz)[x, y] = G[x, y] \ [x, y]z

(G ∪ xy)�x� = G�x� ∪x′y, (G ∪ yz)�x� = G�x� ∪yz
(G \ xy)�x� = G�x� \x′y,

15

2 Preliminaries

We call F a subgraph of G, denoted F ⊆ G, if there are sets X ⊆ VG and
Y ⊆ AG s.t. F = (G−X) \ Y .

Walks, Paths and Cycles

An (x, y)-walk in G is a sequence of arcs a1 . . . an, ai ∈ AG s.t. x = t(a1),
h(ai) = t(ai+1) for 1 ≤ i < n, and h(an) = y. Let W = a1 . . . an be an
(x, y)-walk. As with arcs, W is said to leave x and enter y, and x and y are the
endpoints of W . Every vertex z with z = t(ai) for 1 < i ≤ n, or z = (h(ai)) for
1 ≤ i < n is called an internal vertex of W . If x is an internal vertex of W , we
say that W passes through x and that x lies on W . Observe that a vertex might
well be both an endpoint and an inner vertex of a walk. An (x, y)-segment of
a walk W is any subsequence of W that is an (x, y)-walk. If F1 and F2 are
subgraphs of G, an (F1, F2)-walk in G is an (x, y)-walk where x ∈ VF1 and
y ∈ VF2 .

An (x, y)-path is an (x, y)-walk a1 . . . an where no vertex occurs as both endpoint
and internal vertex, and for every internal vertex x there is exactly one 1 ≤ i < n
with h(ai) = x = t(ai+1). A path P = a1 . . . an in G is often identified as a
subgraph of G; consequently, we denote the arcs that constitute a path P as
AP , and the vertices on this path as VP . Two paths P1 and P2 are internally
disjoint, if every vertex in VP1 ∩ VP2 is an endpoint of each Pi. A graph G is
strongly connected , or just strong , if G contains an (x, y)-path for every distinct
pair x, y ∈ VG. All notions defined for walks carry over to paths.

A cycle in G is an (x, x)-path. A chord of the cycle C ⊆ G is an arc a ∈ AG \AC
whose endpoints lie on C. A graph is acyclic if it contains no cycles.

The converse of G is the graph GR := (VG, AG, hG, tG), which is G with all arcs
reversed. If G satisfies G = GR, it is called self-converse. An important concept
with respect to the converse of a graph is the following meta-theorem:

Principle of Directional Duality. If G and H are in any graph-theoretic relation,
then so are GR and HR.

2.4 Expressions and Automata

An alphabet is a nonempty set of symbols, called letters; the symbol A, possibly
indexed, always denotes an alphabet. The symbols ε and ∅ are assumed to not
occur in any alphabet. A word over A is a finite sequence of letters from A,

16

2.4 Expressions and Automata

usually written by juxtaposition of letters. The empty sequence of letters is
called the empty word and denoted ε, this word is defined over any alphabet.

The concatenation of two words w,w′, denoted w · w′ or simply ww′, is the
sequence consisting of the subsequences w and w′ in that order. The concate-
nation of words is associative. The empty word ε is neutral wrt. this operation:
for any word w holds εw = wε = w. The set of all words over A is denoted A∗.
A language L over A is a set of words over A, i.e., L ⊆ A∗. The concatenation
of two languages L and L′, denoted L · L′, or again just LL′, extends the
concatenation of words naturally:

LL′ := L · L′ := {ww′ | w ∈ L, w′ ∈ L′}.

The n-th power of a language L, denoted Ln, is defined recursively as

L0 := {ε}
Lk+1 := LkL

The Kleene-closure of L, denoted L∗, is defined as

L∗ :=
⋃
n∈N

Ln

Regular Expressions A regular expression is a term that contains symbols from
A ∪ {∅, ε, ·,+,∗ , (,)} for some A and adheres to a certain structure. A regular
expression is usually referred to as just an expression. The set of expressions
over A, denoted REA is defined as the smallest set that satisfies the following
properties:

- ∅ ∈ REA and ε ∈ REA

- a ∈ REA for every a ∈ A

- If r and s are in REA, so are

1. the product (r · s), where each of r and s is called a factor

2. the sum (r + s), where each of r and s is called an addend

3. the iteration (r∗), where r is called the base

4. the option (r?), where r is called the choice

17

2 Preliminaries

The expressions ∅, ε, and a, for a ∈ A, are referred to as trivial expressions or
literals, while any other expression is also called a compound expression. In most
cases, the particular alphabet over which an expression is defined, is irrelevant.
We may thus write only r ∈ RE to state that r is a regular expression over
some alphabet. Once more, the operator · is omitted and we write just rs as a
shorthand for r · s.

To each expression r ∈ REA we associate a language L(r) ⊆ A∗, and we say
that r denotes L(r). This language is defined recursively along the structure of
r, as follows:

- L(∅) := ∅, L(ε) := {ε}, and L(a) := {a} for a ∈ A

- L((rs)) := L(r) L(s)

- L((r + s)) := L(r) ∪ L(s)

- L((r∗)) := L(r)∗

- L((r?)) := L(r) ∪ ε

A language that is denoted by a regular expression is called a regular language.

Expressions following the above structure contain a plethora of parentheses,
which affects readability. To allow for a more pleasing denotation we slightly
loosen the syntax. Obviously, the outermost pair of parentheses can be omitted.
The semantics of expressions suggest several further simplifications. For one,
notice that the binary operators are associative. We thus omit parentheses for
nested products and for nested sums. Moreover, we agree on the (decreasing)
operator precedence u, ·,+, where u is either of the unary operators. Parentheses
between unary operators can be omitted as well, as their order of evaluation is
unambiguous. For example, we write

((a(b(c?))) + (d∗)) more concisely as abc? + d∗.

Two expressions r and r′ are equivalent, written r ≡ r′, if L(r) = L(r′). An
expression r is nullable if ε ∈ L(r). The set of subexpressions of r, denoted
sub(r), is defined recursively on r, as follows:

- sub(∅) := {∅}, sub(ε) := {ε}, and sub(a) := {a} for a ∈ A;

- sub(rs) := sub(r) ∪ sub(s) ∪ {rs},

- sub(r + s) := sub(r) ∪ sub(s) ∪ {r + s},

18

2.4 Expressions and Automata

- sub(r∗) := sub(r) ∪ {r∗}

- sub(r?) := sub(r) ∪ {r?}.

The set of proper subexpressions of r is defined as sub6=(r) := sub(r) \ r.

We use several notions to measure the frequency of symbols in an expression.
The alphabetic width of r, denoted |r|A, is the number of literals occurring at
different places in r. The formal definition is as follows:

- |∅|A := 1, |ε|A := 1, and |a|A := 1, for a ∈ A.

- |st|A := |s|A + t, |s+ t|A := |s|A + t, |s∗|A := |s|A, and |s?|A := |s|A.

We further write |r|·, |r|+, |r|∗, and |r|? to denote the number products, sums,
iterations, and options in r, respectively. We give the formal definition for |r|+
only, the other definitions are derived by applying the obvious changes.

- |ε|+ = 0, |∅|+ = 0, and |a|+ = 0, for a ∈ A.

- |st|+ = |s|+ + |t|+, |s+ t|+ = |s|+ + |t|+ +1, |s∗|+ = |s|+, and |s?|+ = |s|+.

The size of r is now defined as

|r| := |r|A + |r|· + |r|+ + |r|∗ + |r|?.

A position is a (possibly empty) sequence over {1, 2}. If σ is a position and r is
an expression, then (r)〈σ〉 denotes a subexpression of r, defined recursively on
r and σ, as follows:

- (r)〈〉 := r

- (r)〈1, σ′〉 :=

{
(s)〈σ′〉 for r = st, r = s+ t, r = s∗, or r = s?

undefined otherwise.

- (r)〈2, σ′〉 :=

{
(t)〈σ′〉 for r = st, or r = s+ t

undefined otherwise.

We generally assume that (r)〈σ〉 is defined. If s ∈ sub(r) and (r)〈σ〉 = s, we
call σ an s-position in r. If s is a literal, a product, etc., we respectively call an
s-position a literal position, a product position, etc., in r. It follows that |r|A
equals the number of literal positions in r, |r|· equals the number of product
positions, etc., and that |r| equals the overall number of positions in r.

A context, denoted r[] for some symbol r, is defined as follows:

19

2 Preliminaries

• The empty context [] is a context.

• If r[] is a context and s is an expression, then sr[], r[]s, and s+ r[] are
contexts. Moreover, (r[])∗ and (r[])? are contexts.

A context r[] should be understood as a regular expression with a “hole”.
Filling this hole with another expression s puts s in the context r. Let r[s]
denote the expression derived 2 from putting s in context r. For example, let
r[] = a+ ((b[])∗c)∗ and s = ab?, then r[s] = a+ ((bab?)∗c)∗

Extended Finite Automata An extended finite automaton (EFA) over A is a
quintuple E = (Q,A, δ, I, F) of finite sets, as follows: Q is the set of states, A
is an alphabet, δ ⊂ Q×REA×Q is called the transition relation, and I ⊆ Q and
F ⊆ Q are the sets of initial resp. final states. We set E = (QE ,AE , δE , IE , FE)
if the components of E are not given explicitly. The class of EFAs over A is
denoted EFAA.

For E as above, the transition relation δ induces the relation `E on Q ×A∗,
as follows: (q, w1w2) `E (q′, w2) iff (q, r, q′) ∈ δ and w1 ∈ L(r). We say that
the word w carries q to q′ in E, if (q, w) `?E (q′, ε). This may also be written

as q
w→E q′. The set of words that carry p to q in E is denoted LE(p, q), the

formal definition is

LE(p, q) := {w | p w→E q}.

The language accepted by an EFA E, denoted L(E), is the set of all words that
carry an initial state to a final one in E, so

L(E) :=
⋃
p∈IE
q∈FE

LE(p, q).

Two EFAs are equivalent if they accept the same language .

We further say that p reaches q in E, or equivalently, that q is reached from
p, if some word carries p to q in E. Moreover, a state q is accessible in E if q
is reached from an initial state. Symmetrically, p is co-accessible, if p reaches
some final state. A state that is both accessible and co-accessible, is called
useful . An EFA is trim, if all its states are useful.

2A formal definition of putting an expression in a context is easily given by induction on the
structure of the context.

20

2.4 Expressions and Automata

An EFA E is normalized , if it satisfies IE = {q0}, and FE = {qf}, s.t. q0 6= qf
and there are no transitions (p, r, q0) or (qf , r, p) in E. We often assume that
an EFA is trim and normalized. This is no serious restriction, as the following
proposition shows.

Proposition 2.4.1. For every EFA E there is an equivalent trim and normal-
ized EFA E′ s.t. |QE′ | ≤ |QE | + 2 and |δE′ | ≤ |δE | + |IE | + |FE |.

Proof. Given an EFA E let Qu denote the useful states in E, and let q0 and qf
be two states that are not in QE . These states will be the unique initial and
final states in E′. The transition relation of E is restricted to the set of useful
states, and ε-transitions from q0 to the initial states of E, resp. from the final
states of E to qf are added. Formally, let

δ′ := (δE ∩Qu × REAE ×Qu) ∪ {(q0, ε, q) | q ∈ IE} ∪ {(q, ε, qf ,) | q ∈ FE}.

Then the EFA E′ := (Qu ∪ {q0, qf},AE , δ′, q0, qf) is normalized. The construc-
tion ensures that for p ∈ IE and q ∈ FE , we have

p
w−→δE q iff q0

ε→δ′ p
w−→δ′ q

ε→ qf .

Since w = εwε, the EFAs E and E′ are equivalent. The number of states and
transitions of E′ follows as in the claim.

A finite automaton (FA) in the conventional sense is an EFA whose transition
relation is restricted to Q× (A ∪ {ε})×Q. The class of FAs over A is denoted
FAA. An FA is deterministic if its transition relation is further restricted to
Q×A×Q and for q ∈ Q and a ∈ A there is at most one transition (q, a, q′).

It is often convenient to treat EFAs as graphs. To this end we define the
underlying graph of an EFA E as the graph G(E) := (QE , δE , π

3
1, π

3
3), where πij

denotes the projection of an i-tuple to its j-th component. The graph G(E) is
also referred to as the graph structure of E.

We adopt graph theoretical terminology to EFAs, by attributing properties to
states and transitions of E, which are actually properties of the vertices and
arcs in G(E). We say that a state is “incident” to a transition, that a transition
is a “loop transition”, or that a state has “in-degree” n, and the like.

21

3 Simplifying Regular Expressions

Every regular language is denoted by an infinite number of distinct regular
expressions. This becomes clear, e.g. by observing that for expressions r and
s where L(s) ⊆ L(r), the expressions r and r + s are equivalent, so L(r) is
denoted by the longer expressions r+s. We naturally prefer a concise expression,
which we usually grasp more easily, not at least due to the fact that the very
perception of the object takes less time. Considering computational aspects,
shorter expressions are expected to allow for a more efficient processing, wrt.
both memory consumption and running time. This is due to the fact that a
first step in the computational utilization of expressions usually consists of
converting an input expression into a finite automaton. In most cases, this
automaton grows with the size of the expression.

There are exceptions to the argument above, primarily wrt. the correlation of
expression and automaton sizes. First, if extended expressions — i.e., expressions
with complement and intersection — are considered, an exponential blowup
manifests in the initial construction of finite automata. An example, taken from
Holzer & Kutrib [25], is the expression

r := (a+ b)∗a (a+ b) · · · (a+ b)︸ ︷︷ ︸
k times

b(a+ b)∗,

which allows for a finite automaton on k + 3 states, as constructed from r by
the method given in Ch. 4. However, the complement of r, containing a single
additional operator, requires at least 2k−2 states in any equivalent automaton.
Therefore although r and its complement are of “quite the same size”, their
equivalent automata differ significantly. However, as we shall not consider
complement and intersection of expressions in this work, these matters will not
concern us.

Second, there are constructions of finite automata from expressions that are non-
monotonic, i.e, where shorter input expressions do not guarantee smaller output
automata. This happens for constructions that realize on-the-fly optimizations,
that implicitly remove some amount of redundancy from the output that is

23

3 Simplifying Regular Expressions

present in the input. Therefore, a long redundant expression might be converted
to a smaller automaton than a short non-redundant expression. To compare
the sizes of the input and the output of such constructions in a meaningful way,
the input expressions must be devoid of such redundancis; in other words, they
must be normalized wrt. a particular property. Among these expressions the
monotonic behavior is reinstated.

For example, consider the expressions r = (a+b)∗ and s = a∗+a∗b(a+b)∗, which
denote the same language (example taken from [44]). Since the denoted language
becomes obvious from r, but arguably not so much from s, a mechanical way to
“simplify” s to r would come in handy. In particular, this leads to the following
problems:

1. Decide whether two expressions are equivalent.

2. Shorten an expression by removing redundancies.

Observe that the questions whether two expressions denote the same language,
and whether the language denoted by one expression is contained in that denoted
by a second expressions are equivalent. This becomes evident from observing
that for sets A, B, such as languages, we find 1) A = B iff A ⊆ B and B ⊆ A,
and 2) A ⊆ B iff A ∪B = B.

In some cases, the equivalence of two expressions is obvious from their structure.
For example, the equivalence of the expressions r + s and s+ r is immediately
clear, without even considering languages denoted by r and s. Another example
that does not rely on semantics would be the equivalence of r∗ and r∗∗; this
example also suggests a way to simplify expressions containing trivially nested
iterations. These equivalences follow from algebraic laws that hold for regular
operators wrt. the denoted languages: commutativity of sums and idempotency
of iterations.

A further example that merely states an algebraic property is the equivalence
of rs+ rt and r(s+ t). Again, this equivalence allows to shorten an expression
based on its structure. Of course, this property generalizes in that rs+ r′t can
be simplified to the shorter r(s + t) iff r ≡ r′ holds. The latter equivalence,
however, is based not only on the structure of the longer expression, but also
on the semantics of its subexpressions.

As far as the feasibility of these operations is concerned, it can be effectively
decided whether two expressions denote the same language. The canonical pro-
cedure would be to construct the — uniquely determined — minimal equivalent
deterministic finite automaton for each expression and then test these automata

24

3.1 Measures for Expressions and Languages

for isomorphism. The catch is that there are expressions for which the size of
any deterministic automaton is exponential in the size of the expression. For
example, any deterministic FA that accepts the language denoted by

(a+ b)∗a (a+ b)(a+ b) . . . (a+ b)︸ ︷︷ ︸
k times

requires more than 2k states. Therefore, the running time of any method that
involves the construction of deterministic automata is exponentially bound from
below.

A seemingly different method to test expressions for equivalence is based on
(nonlogical) deductive systems that formalize equational theories for expressions.
Two complete systems of this type were given by Salomaa [45]. However, all
efforts to employ such systems in a way that guarantees termination, come
down to implicitly constructing the derivative automata of the inputs, which is
a deterministic finite automaton again [19]. Therefore, the exponential lower
bound holds for this approach, too.

Without blaming the inefficiency of deciding expression equivalence on the
shortcomings of a particular method, it was shown by Meyer & Stockmeyer that
the equivalence problem for regular expressions is PSPACE-hard [37]. This holds
for deciding r ≡ A∗ already. Hence, unless P = PSPACE, which is improbable,
the size of expressions can not be reduced by semantic means in polynomial
time.

On the positive side, a recent result by Hovland [28] shows that the equivalence of
so-called one-unambiguous expressions [4, 9] can be decided in polynomial time.
This is done by an axiomatic system that reduces either expression stepwise.
The overall running time is O(n4), where n equals the sum of alphabetic widths
of the considered expressions. However, there are languages that do not allow
for expressions of this type [9], meaning that the system is not complete.

3.1 Measures for Expressions and Languages

As yet, we were appealing to intuition about the size of an expressions, let us
now consider a formalized notion. Various definitions for the size, or complexity ,
of regular expressions have been proposed; there is no general agreement in
favor of a particular measure. The following measures — among others — are
found in the literature:

25

3 Simplifying Regular Expressions

1. The string length counts all symbols, including parentheses, occurring in
the expression.

2. The reverse polish notation length counts the number of literals and
regular operators occurring in an expression. The terminology comes
from the fact that this measure coincides with the string length if an
expression is written in reverse polish notation, and therefore contains no
parentheses.

3. The alphabetic width, which counts the number of literals that occur
in an expression. This equals the number of leaves in the parse of an
expression.

4. The star height, defined as the maximal number of nested iterations.

The first systematic comparison of complexity measures for expression, including
alphabetic width and star height, was done in the seventies by Ehrenfeucht
& Zeiger [14, 15]. A more recent study by Ellul et al. [16] also takes string
length and reverse polish notation length into consideration. Under some mild
restrictions which prevent distortion of these measures, it is shown that for string
length, reverse polish notation length and alphabetic width of an expression,
each measure is at most a constant multiple of each other measure. In other
words, these measures need not be distinguished for asymptotic analysis. There
are still further complexity measures, each focusing on a different aspect of
expression complexity. A quite exhaustive survey is provided by Holzer &
Kutrib [26], who present various results about the interrelation of such measures
in a unified framework.

As stated in the preliminaries, we settle for reverse polish notation length to
measure for the complexity of expressions, and we refer to this value as the size
of an expressions. To repeat the definition, the size of an expression r is defined
as

|r| := |r|A + |r|· + |r|+ + |r|∗ + |r|?.

To motivate our choice of reverse polish notation for expression complexity, we
briefly compare the size of an expression (as defined above) to string length and
alphabetic width.

At the syntactic level, the difference between string length and size is merely a
consequence of the infix notation we adopt for expressions; for reverse polish
notation, i.e., postfix notation, the two notions coincide. 1

1String length, of course, comes with other merits. Consider an expression that contains only
parentheses that can not be removed due to associativity and precedence of operators,

26

3.1 Measures for Expressions and Languages

The alphabetic width contains no information at all about the number of unary
operators in an expression. This does not serve our purpose — which is to
simplify expressions by possibly reducing the number of unary operators; the
effects of such a simplification on expression complexity are not reflected by
this measure. Nevertheless, we will use alphabetic width of expressions for
evaluating the conciseness of an expression in terms of the number of unary
operators. In particular, we will show that the number of unary operators can
be bounded by the alphabetic width in several ways.

The star height is a rather interesting measure, although one that puts exclusive
focus on a very specific aspect of expression complexity. Rather than formalizing
our intuition of expression “conciseness”, this measure conveys information
about a particular graph-structural property of equivalent automata: its “cycle
rank”. Also, the star height of an expression does not relate linearly to the
measures discussed above. To see this, observe that any expression that denotes
a finite language has star height zero — that is, if we assume that subexpressions
such as s∗, for s ≡ ∅ or s ≡ ε, are absent. On the other hand, a finite language
may be of arbitrary cardinality, which is reflected in the respective expression.
Further (nontrivial) results are given in [26].

Following the discussion in this chapter’s introductory section, it seems unlikely
that the alphabetic width of arbitrary expressions can be reduced efficiently,
as this would require to analyze the equivalence of subexpressions. This con-
sequently holds for the number of binary operators, too, which is related to
alphabetic width by

|r|A = |r|· + |r|+ + 1.

This leaves the number of unary operators as the only contributor to expression
size that can possibly be reduced efficiently. We set

|r|ω := |r|∗ + |r|?

to denote the unary width of an expression r.

In order to measure the conciseness of an expression wrt. its unary width in
a meaningful way, some caution is still required. The unary width alone does
not reflect this intuition properly, since it might be possible to “trade” unary
operators for longer expressions. For example, the expression a?b? is equivalent
to ε + a + b + ab, whose unary width is certainly minimal, yet the overall

or are superfluous (which our expression syntax does not allow anyway). For such an
expressions, the string length, compared to the size, contains information on the number
of sums in products, as in r(s + t) and further on nontrivial bases, such as (st)∗.

27

3 Simplifying Regular Expressions

expression is less concise. We therefore need to take every equivalent expression
into account, which comes down to considering the denoted language. This
motivates the following

Definition 1. Let L be any regular language. The alphabetic complexity of L
is defined as the least alphabetic width among all expressions denoting L:

α(L) := min{|r|A | L(r) = L}.

The relative unary complexity of L is defined as the least unary width among all
expressions denoting L relative to the alphabetic complexity of L:

ω(L) := min{ |r|ω
α(L)

| L(r) = L}.

In the following, we frequently use the following equivalences that are easily
verified from the semantics of iteration and option:

- Idempotency of unary operators: r∗∗ ≡ r∗ and r?? ≡ r?.

- Absorption by star: r∗? ≡ r∗ and r?∗ ≡ r∗.

These equivalences can be put to immediate use for the simplification of ex-
pressions by syntactic means. This yields a first upper bound on the unary
complexity of languages.

Proposition 3.1.1. Let L be a regular language. Then the unary complexity
of L is bounded from above, as follows:

ω(L) ≤ 2− 1

|ΣL|
.

Proof. Let r be any expression s.t. |r|A = α(L). We construct an expression
equivalent to r by using idempotency of the unary operators and absorption
by star. That is, we replace every subexpression s∗∗ or s?? of r with s∗, resp.
s∗. We further replace every subexpression s∗? or s?∗ with s∗. Each such
replacement yields an equivalent expression. Iterating this process terminates
in an expression r′ which does not contain stacked unary operators. Therefore,
every operand of a unary operator is a literal, a product, or a sum. Thus r′

satisfies

|r′|ω ≤ |r′|A + |r′|· + |r′|+ = 2|r′|A − 1.

28

3.2 Strong Star Normal Form

Observe that the replacements we apply leave the literals of the original expres-
sion “untouched”, so we find |r′|A = |r|A. Since we assumed |r|A = α(L), and
by the definition of alphabetic complexity, we find

ω(L) ≤ |r
′|ω

α(L)
=

2|r|A − 1

|r|A
= 2− 1

|r|A
≤ 2− 1

|ΣL|
.

The expression r′, as constructed in Prop. 3.1.1, can be derived from r in time
O(|r|). A straightforward implementation consists of a term rewriting system2

that replaces a left-hand side of an equivalence in the proof of above proposition
with its corresponding right-hand side. It is also easy to see that r′ is unique.
We will not pursue this construction further; instead, in the next section, we
present a more powerful method which subsumes the one just described and
improves on the bound on ω(L). These results were in part published in [21].

3.2 Strong Star Normal Form

The original star normal form of regular expressions was introduced by Brügge-
mann-Klein in order to speed up the construction of position-automata from
expressions from cubic to quadratic time [8]. An expression in star normal
form is devoid of a single redundancy, namely, the nullability of bases. In other
words, if r is in star normal form and s∗ ∈ sub(r) then ε /∈ L(s).

In this section we generalize the star normal form to handle expressions with
options, i.e., the operator ?. The resulting normal form is shown to subsume
the original one. We keep close to Brüggemann-Klein’s notation, using two
operators which act as maps on expression, resp. subexpressions.

Definition 2. The operators ◦ and • are recursively defined on regular expres-
sions as follows.

- [·]◦: ε◦ := ∅◦ := ∅, a◦ := a for a ∈ A, r?◦ := r◦, (r + s)◦ := r◦ + s◦, r∗◦ := r◦

and

(rs)◦ :=

{
r◦ + s◦ if ε ∈ L(rs)

rs else

2We do not care about the actual implementation of term rewriting systems (for details, see,
e.g., [40]). It suffices to know that each single rewriting step requires time O(1).

29

3 Simplifying Regular Expressions

- [·]•: ∅• := ∅, ε• := ε, a• := a for a ∈ A, (rs)• := r•s•, (r + s)• := r• + s•,
r∗• := r◦•∗ and

r?• :=

{
r• if ε ∈ L(r)

r•? else

The expression r• is called the strong star normal form (ssnf) of r.

A contribution of the presented variation in itself is that the definition of the
operator ◦ is simplified in comparison to the original work. Therein, (st)◦

is overdetermined: instead of the necessary two cases, as above, four cases
are used. Since the strong star normal form coincides with the traditional
one if option-free expressions are considered, this improves over the original
formulation, notably easening inductive proofs.

One might argue that the distinction of cases for (st)◦ and s?• by nullability
of the operand is not a syntactic criterion but a semantic one. This, however,
is merely a matter of notation — the nullable expressions can alternatively be
defined syntactically; for convenience we use the Backus-Naur form. Recall that
REA denotes the class of regular expressions over A. The proper subset nREA
of nullable regular expressions over A is given by

nRE ::= ε | nRE · nRE | RE + nRE | nRE + RE | RE∗ | RE? .

Formally, the operators ◦ and • define maps RE → RE, thus the strong star
normal form of an expression, i.e., the image of r under •, is certainly unique.

Example. We compute the ssnf of r = ((a∗b?) + a + c?)∗. Steps that do not
depend on another will be performed in parallel, and for a ∈ Σ, op ∈ {∗, ?}, we
perform two steps at once by writing aop◦ = a.

r• = ((a∗b?) + a+ c?)∗• = ((a∗b?) + a+ c?)◦•∗

= ((a∗b?)◦ + a◦ + c?◦)•∗ = ((a∗◦ + b?◦) + a+ c)•∗

= (a+ b+ a+ c)•∗ = (a• + b• + a• + c•)∗

= (a+ b+ a+ c)∗

An important property of ssnf, i.e., the operator •, is that expressions are not
mapped to longer ones. This actually holds for either operator that is involved
in computing the ssnf. Regarding our initial motivation — the simplification of
expressions — this is certainly relevant. The property might be clear from the
definitions of ◦ and • already, where no regular operator is added. For the sake

30

3.2 Strong Star Normal Form

of being formally sound, we prove this claim by induction on the expressions
structure.

Proposition 3.2.1 (Monotonicity). For any expression r we find

|r◦| ≤ |r| and |r•| ≤ |r|.

Proof. We prove the claim for the operator ◦ first. The claim is true for the
three base cases, which satisfy |∅◦| ≤ |∅|, |ε◦| ≤ |∅|, and |a◦| ≤ |a| for a ∈ A.
Assume the claim is true for expressions r and s. For rs, the normal form (rs)◦

is either r◦ + s◦ or rs, depending on the nullability of rs. In the latter case, the
claim follows immediately, whereas in the former case, it follows due to

|(rs)◦| = |r◦s◦| = |r◦| + |s◦| + 1
IA
≤ |r| + |s| + 1 = |rs|.

By analogous reasoning, we find that the claim holds for s+ t as well. For r?

we find

|r?◦| = |r◦|
IA
≤ |r| < |r?|,

and for r∗ the analogous argument provides the claim again.

We can now prove the claim for •, too. For trivial expressions, we find |∅•| ≤ |∅|,
|ε•| ≤ |ε|, and |a•| ≤ |a| for a ∈ A. Let the claim be true for r and s, and
consider the compound expressions. For a product, we have

|(rs)•| = |r•s•| = |r•| + |s•| + 1
IA
≤ |r| + |s| + 1 = |rs|;

again, the inductive step is the same for the sum r+ s. For the iteration r∗, we
use that we have already shown monotonicity of the operator ◦. Thus follows

|r∗•| = |r◦•∗| ≤ |r•∗| = |r•| + 1
IA
≤ |r| + 1 = |r∗|.

Finally, for an option r? we need to consider two cases again, depending on
the nullability of the operand. In case that r is nullable, we have r?• = r•,
i.e., the operator is simply removed and the claim follows from the inductive
assumption. Otherwise, we obtain

|r?•| = |r•?| = |r•| + 1
IA
≤ |r| + 1 = |r?|.

This completes the proof.

31

3 Simplifying Regular Expressions

Apart from showing that ssnf does at least not behave contrary to our primary
intention, Prop. 3.2.1 also allows us to prove further properties of ◦ and • by
induction over the length of expressions. In fact, structural induction is not
always applicable, as will become apparent in the proof of Prop. 3.2.3.

To prove further properties of our normal form, or equivalently, the operator •,
we need to examine the “inner” operator ◦ first. To this end, we make use of
two equivalences involving iterations.

Proposition 3.2.2.

1. Any pair of expressions r, s, satisfies

(r + s)∗ ≡ (r∗ + s∗)∗. (3.1)

2. Any pair of nullable expressions r, s, satisfies

(rs)∗ ≡ (r + s)∗. (3.2)

Proof. Either statement is proven by mutual inclusion of the languages denoted
by the left and right hand sides.

1. Let w ∈ L((r+s)∗), then w = w1 . . . wn, s.t. wi ∈ L(r) or wi ∈ L(s). Then
wi ∈ L(r∗) or wi ∈ L(s∗), which yields w ∈ L((r∗ + s∗)∗).

For w ∈ L((r∗+s∗)∗), we have w = w1 . . . wn s.t. wi ∈ L(r∗) or wi ∈ L(s∗).
Thus, for each i, wi = vi,1 . . . vi,ki with vi,j ∈ L(r) or vi,j ∈ L(s). Therefore
w ∈ L((r + s)∗).

2. Let w ∈ L((rs)∗), then w = w1 . . . wn s.t. wi ∈ L(r) for odd i and wi ∈ L(s)
for even i. In particular, wi ∈ L(r + s), thus w ∈ L((r + s)∗).

Since r and s are both nullable, r ≡ r + ε and s ≡ s+ ε hold. Thus rs is
equivalent to (r+ε)(s+ε), and we use distributivity to find (r+ε)(s+ε) ≡
rs+rε+εs+ε, which simplifies to rs+r+s. Now L(r+s) ⊆ L(rs+r+s)
obviously holds, thus also L((r + s)∗) ⊆ L((rs+ r + s)∗) = L((rs)∗).

In a sense, the second equivalence stated in Prop. 3.2.2 is “hard-coded” into
the definition of ssnf, which sets (st)◦ = s◦ + t◦ for nullable st. With this, we
are set to investigate further properties of the operator ◦.

Proposition 3.2.3. For any expression r we find

32

3.2 Strong Star Normal Form

1. ε /∈ L(r◦)

2. r◦◦ = r◦

3. r◦∗ ≡ r∗

Proof.

1. For trivial expressions, r ∈ A ∪ {ε,∅}, the claim holds due to a◦ = a,
ε◦ = ∅ and ∅◦ = ∅. Assume the claim holds for any expression smaller

than r. For r = s+ t the inductive step is straightforward since (s+ t)◦
def
=

s◦ + t◦ where both summands are non-nullable by assumption. For r = st
with ε /∈ L(st), the claim is trivial. Otherwise, if ε ∈ L(st), we have

(st)◦
def
= s◦ + t◦, and the inductive assumption applies to both s and t.

Thus, either case yields ε /∈ L(st◦). For r = s∗ we have s∗◦
def
= s◦. The

inductive assumption applies to s, so r◦ = s◦ implies ε /∈ L(r◦). An
analogous argument provides the claim for r = s?.

2. Again, the claim holds for r ∈ A ∪ {ε,∅}, so assume it holds for any
expression smaller than r. For a sum r = s+ t we get

(s+ t)◦◦
def
= (s◦ + t◦)◦

def
= s◦◦ + t◦◦

IA= s◦ + t◦
def
= (s+ t)◦.

For a non-nullable product r = st, we get (st)◦◦ = (st)◦ = st immediately
from the definition. A nullable product on the other hand yields

(st)◦◦
def
= (s◦ + t◦)◦

def
= s◦◦ + t◦◦

IA= s◦ + t◦
def
= (st)◦,

where the first and the last step make use of nullability. For r = s∗, and,
by analogy, for r = s?, we get

s∗◦◦
def
= s◦◦

IA= s◦
def
= s∗◦.

3. The claim is true if r is a letter, ε, or ∅. Assume it is true for expressions
smaller than r. In case r = s+ t we use the equivalence (3.1) to proceed
with

(s+ t)◦∗
def
= (s◦ + t◦)∗

(3.1)
≡ (s◦∗ + t◦∗)∗

IA≡ (s+ t)∗,

where the last step uses |s◦| ≤ |s|, proven in Prop. 3.2.1, to the effect
that the inductive assumption applies. For the product r = st we need to
distinguish again whether st is nullable. If it is not, the claim follows as a

33

3 Simplifying Regular Expressions

trivial consequence of (st)◦
def
= st. If st is nullable, we use the equivalences

stated in Prop. 3.2.2 once again:

(st)◦∗
def
= (s◦ + t◦)∗

(3.1)
≡ (s◦∗ + t◦∗)∗

IA≡ (s∗ + t∗)∗
(3.1)
≡ (s+ t)∗

(3.2)
≡ (st)∗

In the case of an iteration, r = s∗, the idempotency of iteration yields:

s∗◦∗
def
= s◦∗

IA≡ s∗ ≡ s∗∗.

For the final step, consider the option r = s?. We use absorption by star
in the last step of proving the claim for this case, as follows:

s?◦∗
def
= s◦∗

IA≡ s∗ ≡ s?∗.

With the third item of Prop. 3.2.3 we can now show that the language denoted
by an expression is invariant under taking the strong star normal form.

Lemma 3.2.4 (Invariance). For any expression r we find r• ≡ r.

Proof. The claim trivially holds for expressions of size 1, so assume it holds for
any expression smaller than r. For r = st we find

(st)•
def
= s•t•

IA≡ st,

and similarly for r = s+ t:

(s+ t)•
def
= s• + t•

IA≡ s+ t.

For r = s∗, we use Prop. 3.2.3, which yields

s∗•
def
= s◦•∗ ≡ s∗•

IA≡ s∗.

Finally for r = s? assume first that s is nullable. Then the option is redundant,
i.e., the equivalence s? ≡ s holds, hence

s?• ≡ s•
IA≡ s ≡ s?.

If otherwise s is not nullable, the inductive step is

s?•
def
= s•?

IA≡ s?,

which completes the proof.

34

3.2 Strong Star Normal Form

We need the auxiliary fact that the operators ◦ and • commute, i.e., that they
can be applied to an expression in either order, leading to the same result.

Proposition 3.2.5. For any expression r we find r◦• = r•◦.

Proof. For r ∈ {ε,∅}, the definition of ssnf yields r◦• = r•◦ = ∅. Likewise,
for a letter a we find a◦• = a•◦ = a immediately. Assume that the claim is true
for expressions smaller than r, and observe that Lem. 3.2.4 implies that r• is
nullable iff r is nullable.

If r is a product, r = st, distinguish whether st is nullable. If it is, we find

(st)◦•
def
= (s◦ + t◦)•

def
= s◦• + t◦•

IA= s•◦ + t•◦
def
= (s•t•)◦

def
= (st)•◦.

Otherwise, if st is not nullable, then neither is (st)•. By definition of the
operator ◦, we have (st)◦ = st and (st)•◦ = (st)• in that case. This yields

(st)◦•
def
= (st)•

def
= (st)•◦.

The case r = s+ t is straightforward, and thus slightly abridged:

(s+ t)◦•
def
= s◦• + t◦•

IA= s•◦ + t•◦
def
= (s+ t)•◦.

For an iteration, r = s∗, we use that the operator ◦ is idempotent, as shown in
Prop. 3.2.3. With this we find

s∗◦•
def
= s◦•

IA= s•◦ = s•◦◦
def
= s•◦∗◦

def
= s∗•◦

The option r = s? again has two subcases. If s is nullable, we find

s?◦•
def
= s◦•

IA= s•◦
def
= s?•◦,

whereas otherwise, the inductive step is as follows:

s?◦•
def
= s◦•

IA= s•◦
def
= s•?◦

def
= s?•◦.

Thus the claim holds for any expression, and the statement follows.

With the aid of Prop. 3.2.5 we show that • is idempotent, too.

Lemma 3.2.6 (Idempotency). For any expression r we find r•• = r•.

35

3 Simplifying Regular Expressions

Proof. The claim is certainly true for r being ∅, ε, or a letter, so assume it is
true for expressions smaller than r. For r being a product, r = st, the inductive
step is straightforward:

(st)•• = (s•t•)• = s••t••
IA= s•t• = (st)•.

The inductive steps for sums is completely analogous to that for products. For
an iteration r = s∗ we use Props. 3.2.3 and 3.2.5:

s∗•• = s◦•∗• = s◦•◦•∗ = s◦◦••∗ = s◦••∗
IA= s◦•∗ = s∗•.

For r = s?, the inductive step is straightforward if s is not nullable:

s?•• = s•?• = s••?
IA= s•? = s?•.

On the other hand, if s is nullable, we have

s?•• = s••
IA= s• = s?•,

and the proof is complete.

Since the operator • is idempotent, realizes a map on expressions, and does not
alter the language denoted by an expression, it is justified to call r• a “normal
form” of r. We say that r is in strong star normal form, resp., that r is in ssnf,
if r = r•.

It is not immediately obvious from the recursive definition of ssnf by ◦ and •

which properties are satisfied by an expression in ssnf. It should be clear that
some redundancies must be removed if the ssnf of an expression is shorter than
the expressions itself, since the denoted languages are equal. We will show that
these redundancies are options and iterations whose main operand is nullable,
i.e., any subexpression s? and s∗ where ε ∈ L(s).

To prove this claimed characterization of expressions in ssnf, we first need to
show a preliminary result concerning the operator ◦.

Proposition 3.2.7. For any expression r we find r◦ = r iff ε /∈ L(r).

Proof. In Prop. 3.2.3 we have shown that ε /∈ L(r◦) holds for arbitrary r.
Therefore, r◦ = r implies ε /∈ L(r).

The converse direction is proven by induction on the length of non-nullable
expressions. The base cases are r = ∅ and r = a ∈ A, where r◦ = r holds by

36

3.2 Strong Star Normal Form

definition. Let r be non-nullable and assume that the claim holds for expressions
smaller than r.

If r = st, then

r◦ = (st)◦
def
= st = r,

since we assumed that r is not nullable. For r = s+ t, the assumption that r is
not nullable implies that neither s nor t is nullable, so the inductive assumption
applies to both. We find

r◦ = (s+ t)◦
def
= s◦ + t◦

IA= s+ t = r.

For r being an option or an iteration, the claim follows trivially since r is
nullable in either case.

Theorem 3.2.8. The following statements are equivalent:

1. r = r•, i.e., r is in ssnf

2. ∀s∗, s? ∈ sub(r) : ε /∈ L(s)

Proof.

- 1.⇒ 2.
We show by induction over the size of r that s∗, s? ∈ sub(r•) implies ε /∈ L(s).
For expressions ∅, ε, and a ∈ A, the claim is trivial, since the ssnf of such
an expression is free of unary operators. Assume that the claim is true for
any expression smaller than r. Recall that we showed monotonicity of ◦ and
• in Prop. 3.2.1, thus if the inductive assumption applies to s, it also applies
to s◦ and s•.

For r = st, where r• is either s•t• or s•+t•, we have sub(r•) = sub(s•)∪sub(t•).
Since s and t, resp. s• and t•, are smaller than r, the claim follows from the
inductive assumption. For r = s+ t, where r• = s• + t•, the same argument
applies.

For r = s?, we examine two cases. If ε ∈ L(s), then r• = s• by definition, and
the claim follows since s is smaller than r. If ε /∈ L(s), then r• = s•?, thus
sub(r•) = sub(s•) ∪ s?. For sub(s•) the inductive assumption applies again,
whereas for s? the case assumes ε /∈ L(s) already.

Finally, for r = s∗ we have r• = s◦•∗, and thus sub(r•) = sub(s◦•) ∪ s◦•∗.
Since s is smaller than r, so is s◦•, and the claim follows for this subset of
sub(r•). For the one remaining subexpression, we need to show ε /∈ L(s◦•).

37

3 Simplifying Regular Expressions

We know from Prop. 3.2.3 that ε /∈ L(s◦), and since s◦• ≡ s◦, by Lem. 3.2.4,
this last bit follows, too.

Now if we assume r = r• in the first place, we have that sub(r) = sub(r•),
and the claim follows for this direction.

- 1.⇐ 2.
This direction is proven by induction over the size of expressions wherein
unary operands are not nullable. The expressions ∅, ε, and a ∈ A are of
this kind, and each of them satisfies r = r• by definition. Assume that
the claim holds for all expressions smaller than r, which includes all proper
subexpressions of r.

For r = st and r = s+ t we find, respectively,

r• = (st)• = s•t•
IA= st = r and r• = (s+ t)• = s• + t•

IA= s+ t = r.

For r = s? the claim assumes ε /∈ L(s), which implies s 6= ε, s 6= t?, and
s 6= t∗. Consequently, s is one of ∅, a letter, product, or sum, for each of
which s = s• was proven in already. So we find

r• = s?• = s•? = s? = r.

For r = s∗ the structure of s is restricted to ∅, a letter, a product, or a sum,
as in the previous case. Moreover, since ε /∈ L(s) by assumption, Prop. 3.2.7
yields that s◦ = s. This gets us

r• = s∗•
def
= s◦•∗ = s•∗

IA= s∗ = r.

Based on Thm. 3.2.8, we are able to define expressions in ssnf in a strictly
syntactical fashion. For convenience, we do this in form of a Backus-Naur
system again, where RE• denotes the class of regular expressions in ssnf, and
where RE•ε and RE•6ε denote the classes of nullable and non-nullable expressions
in ssnf, respectively.

RE•ε ::= ε | RE•ε RE•ε | RE•ε + RE•6ε | RE•6ε + RE•ε | RE• ∗6ε | RE• ?6ε

RE•6ε ::= ∅ | a | RE•6ε RE•ε | RE•ε RE•6ε | RE•6ε + RE•6ε

RE• ::= RE•ε | RE•6ε

38

3.2 Strong Star Normal Form

The strong star normal form formalizes the intuition that the argument of
a unary operator needs not be nullable, since ∗ and ? allow for ε by their
“own” semantics. On the other hand, it is these two operators, together with
instances of ε, that do allow for nullability of (sub)expressions, or operands.
We consequently ask for the maximal number of unary operators an expression
in ssnf might contain.

Theorem 3.2.9. Let r be an expression in strong star normal form. Then

|r|ω ≤

{
|r|A if ε ∈ L(r)

|r|A − 1 else

Proof. The expressions ∅, ε, and a ∈ A are in ssnf and satisfy the claim. Let
r be in ssnf and assume that the claim holds for every subexpression of r.
Observe that with r each s ∈ sub(r) is in ssnf, too, so the inductive assumption
applies to subexpressions of r.

If r = st and r is nullable, both s and t are nullable, too. Thus

|st|ω = |s|ω + |t|ω
IA
≤ |s|A + |t|A = |st|A,

as the statement claims for this case. On the other hand, if st is not nullable,
then at least one out of s and t is not nullable. We assume wlog. that s is not
nullable, to find

|st|ω = |s|ω + |t|ω
IA
≤ |s|A − 1 + |t|A = |st|A − 1.

For r = s+ t, we distinguish once more whether r is nullable. If so, at least one
out of s and t is nullable; again we assume wlog. that this is s. In this case we
get

|s+ t|ω = |s|ω + |t|ω
IA
≤ |s|A − 1 + |t|A = |s+ t|A − 1.

Now if s+ t is not nullable, neither s nor t is, and the claim follows due to

|s+ t|ω = |s|ω + |t|ω
IA
≤ |s|A + |t|A = |s+ t|A.

If r = s∗ or r = s?, then r is certainly nullable. Since r is in ssnf, Thm. 3.2.8
implies that s is not nullable in either case. Let op ∈ {∗, ?}, then the inductive
step is

|sop|A = |s|A
IA
≤ |s|ω − 1 < |sop|ω,

and the proof is complete.

39

3 Simplifying Regular Expressions

Getting back to the simplification of regular expressions by reducing the number
of unary operators, we combine Thm. 3.2.9 and the fundamental property of
ssnf, to be a normal form. For any language we find an expression s.t. the size
of this expression is bounded in the alphabetic width by a factor of three.

Theorem 3.2.10. For any expression r there is an equivalent expression r′

which satisfies |r′| < 3|r′|A.

Proof. Let r be any expression, then r• is equivalent to r, and, following
Thm. 3.2.9, satisfies |r•|ω ≤ |r•|A. We thus find

|r•| = |r•|A + |r•|· + |r•|+ + |r•|ω
≤ |r•|A + |r•|A − 1 + |r•|A
< 3|r•|A.

This improves over the bound given by Ellul et al. [16], who bounded expression
size within seven times the alphabetic width. As a further consequence of
Thm. 3.2.9, we can also improve on the bound that we established for relative
unary complexity in Prop. 3.1.1.

Theorem 3.2.11. The relative unary complexity of any regular language L is
bounded from above as follows:

ω(L) ≤ 1.

Proof. Let L be regular and let r be an expression s.t. L(r) = L and |r|A =
α(L). Then L(r•) = L, too, and Thm. 3.2.9 yields that |r•|ω ≤ |r•|A. Since
|r|A = |r•|A, the assumption about r yields |r•|A = α(L); using the bound
established in Thm. 3.2.9, we find

ω(L) ≤ |r
•|ω

α(L)
≤ |r

•|A
|r•|A

= 1

This bound cannot be improved further for expressions over an unbounded
alphabet. To see this, we consider expressions over a growing subset of integers.
Let An := {k̂ | k ∈ N, k ≤ n}, and set

n :=
∏

0≤k≤n
k̂? and n :=

∑
0≤k≤n

k̂∗.

40

3.2 Strong Star Normal Form

Lemma 3.2.12. ω(L(n)) = 1.

Proof. Any expression denoting L(n) contains each letter of An at least once.
Hence, the alphabetic complexity of L(n) is n, as witnessed by n. Let r be
any expression attaining this width, i.e., assume that each letter of An occurs
exactly once in r.

We observe that since L(n) is finite, r is free of iterations. Moreover, r is free of
sums: suppose r contains a sum s+ t, then the letters in s and t can not appear
in the same word. This is seen as follows: since every letter of An appears
exactly once in r, no letter appears both in s and in t. But since s+ t does not
appear in the scope of an iteration, it is “evaluated” at most once, either in s
or in t. Therefore, if r contains a sum, the word 0̂1̂ · · · n̂, which contains every
letter from An, is not contained in L(r).

So the binary operators in r are all concatenations. Now suppose that r contains
less than n option symbols. Then either there is a letter î in r that is not in the
scope of an option at all, or there are two letters ĵ and k̂ that are in the scope
of an option together. In the first case, î is present in each w ∈ L(r), whereas
in the second, ĵ and k̂ are either both present or both absent in each w ∈ L(r).
Since this does not reflect L(n) adequately, r must contain at least n option
symbols.

For the relative unary complexity of L(n) we thus find ω(L(n)) ≥ 1, which,
together with Thm. 3.2.11, yields the statement.

The statement is proven similarly for L(n), essentially by showing that each
letter in an expression that reaches the alphabetic complexity of the language
is the exclusive argument of at least one iteration. Later, in Ch. 5, we will
consider an infinite family of expressions which demonstrates the lower bound
on unary complexity for languages over a finite alphabet.

41

4 Converting Expressions to Automata

In this chapter we investigate the conversion of regular expressions into finite
automata, which is arguably the more important one among the translation
between expressions and automata. This is due to the fact that regular languages

— search patterns, in particular — are usually specified as regular expressions,
which come natural to humans. On the machine level, however, the data
structure that efficiently represents such a language, is a finite automaton. A
plenitude of constructions of finite automata from regular expressions have been
proposed over the last half century, starting with Kleene’s 1956 work wherein the
expressive equivalence of expressions and automata is shown constructively [31],
i.e., by giving mutual conversions.

The various methods to construct automata from regular expression can be
coarsely separated into the “algebraic” and the “recursive” approach. The
first type of construction is based on the Myhill-Nerode equivalence and yields
deterministic automata. As we remarked in Ch. 3, these automata might be of
exponential size relative to the size of the input expression, thus the running
time of these constructions is bounded exponentially from below. The second
type of construction produces an automaton by traversing the parse of the input
expression in a top-down or bottom-up manner either combining subautomata or
introducing new automaton components along the process. Automata that are
constructed recursively from expressions are usually not deterministic. These
constructions can be subcategorized further by whether the resulting automata
contain ε-transitions. If ε-transitions are allowed, the construction is usually
linear in expression size, whereas if not, the construction may require quadratic
time. Various constructions of either type are compiled and categorized in
Watson’s excellent survey [55].

The construction given in this chapter is of the recursive type. It works
by processing an expression in a top-down fashion, introducing states and
transitions to an intermediate EFA with each advance down the parse of the
input expression. These steps constitute the core of the construction; they are
borrowed from an earlier conversion algorithm that was proposed by Ott &
Feinstein [41]. The presented construction applies further steps that hold the

43

4 Converting Expressions to Automata

number of ε-transitions down to a minimum, as far as can be inferred from
the input without sacrificing running time. The results presented in this and
the following chapter are based on [22, 21]. However the present work heavily
extends — and sometimes corrects — these former results.

4.1 Expansions and Eliminations

We introduce a set of relations on EFAs, which, after some technical modifica-
tions, will become the rules of a rewriting system. These relations are roughly
divided into expansions and eliminations. Expansions are defined relative to the
root of transition labels in an EFA, and they are independent of graph structure
of the considered EFA. Eliminations are defined for certain substructures that
contain ε-transitions; in contrast to expansions, they do depend on the graph
structure.

Definition 3 (Expansion). Let E = (Q,A, δ, I, F) be an EFA. The relations
⇒∅, ⇒·, ⇒+ and ⇒∗, called zero expansion, product expansion, sum expansion,
and star expansion, respectively, are defined on EFA as follows:

- Zero expansion:
Let E contain a transition t = (p,∅, q) ∈ δ. Then E ⇒∅ E

′ holds for

E′ = (Q,A, δ \ t, I, F).

We say that E is zero expanded to E′ in t.

- Product expansion:
Let E contain a transition t = (p, st, q) ∈ δ. Then E ⇒· E

′ holds for

E′ = (Q ·∪ p′,A, δ \ t ∪ {(p, r, p′), (p′, s, q)}, I, F).

We say that E is product expanded to E′ in t.

- Sum expansion:
Let E contain a transition t = (p, s+ t, q) ∈ δ. Then E ⇒+ E′ holds for

E′ = (Q,A, δ \ t ∪ {(p, s, q), (p, t, q)}, I, F).

We say that E is sum expanded to E′ in t.

44

4.1 Expansions and Eliminations

p q∅ ⇒∅ p q

(a) zero expansion

p qst ⇒· p qs t

(b) product expansion

p qs+ t ⇒+ p q
s

t
(c) sum expansion

p qs∗ ⇒∗ p qε
s
ε

(d) star expansion

Figure 4.1: Expanding a transition (p, r, q) depending on r.

- Star expansion:
Let E contain a transition t = (p, s∗, q) ∈ δ. Then E ⇒∗ E′ holds for

E′ = (Q ·∪ p′,A, δ \ t ∪ {(p, ε, p′), (p′, s, p′), (p′, ε, q)}, I, F).

We say that E is star expanded to E′ in t.

The local changes in E are sketched in Fig. 4.1 for each type of expansion. The
transition which allows for an expansion, is also referred to as the anchor of this
expansion. Notice that we did not include a rule to handle transitions that are
labeled with an option. The expression r? shall be implicitly treated as r + ε,
i.e., “option expansion” is considered to be a special case of sum expansion. We
set

⇒ex :=⇒∅ ∪ ⇒· ∪ ⇒+ ∪ ⇒∗
and write just E ⇒ex E

′ if we do not care for the details of the expansion from
E to E′. We do, however, introduce an alternative notation for expansions.
Notice that the effects of any expansion are restricted to a local part of an
EFA. In particular, an expansion is fully specified by its anchor: the states
incident to this transition determine the location of the replacement, and its
label determines the elements that are introduced or removed. We convey this
information by writing E ⇒[t] E

′ if E is expanded to E′ in t.

Definition 4 (Elimination). Let E = (Q,A, δ, I, F) be an EFA. The relations
⇒	,⇒^,⇒X , and⇒Y are called cycle elimination, fan elimination, X elimination,
and Y elimination, respectively. They are defined as follows:

- cycle elimination:
Let E contain an ε-cycle γ, with states Qγ = {q1, . . . , qn} and transitions
δγ = {(qi, ε, qi+1) | 1 ≤ i < n} ∪ (qn, ε, q1). Then E ⇒	 E′ holds for

E′ = ((Q \Qγ) ·∪ qγ ,A, δ′, I ′, F ′),

45

4 Converting Expressions to Automata

where

δ′ = (δ \ δγ) ∪ {(p, r, qγ) | (p, r, q) ∈ δ \ δγ , q ∈ Qγ}
∪ {(qγ , r, p) | (q, r, p) ∈ δ \ δγ , q ∈ Qγ}

I ′ =

{
(I \Qγ) ∪ qγ , if Qγ ∩ I 6= ∅
I, otherwise

F ′ =

{
(F \Qγ) ∪ qγ , if Qγ ∩ F 6= ∅
F, otherwise

- fan elimination:
Let E contain a state q with d−(q) = 1 and (p, ε, q) ∈ δ for some p 6= q. Then
the relation E ⇒^ E′ holds for

E′ = (Q \ q,A, δ′, I ′, F ′),

where

δ′ = δ \ ((p, ε, q) ∪ {(q, r, q′) | (q, r, q′) ∈ δ}) ∪ {(p, r, q′) | (q, r, q′) ∈ δ},

I ′ =

{
(I \ q) ∪ p, if q ∈ I
I, otherwise

F ′ =

{
(F \ q) ∪ p, if q ∈ F
F, otherwise

- X-elimination:
Let E contain a state q with d−(q) = d+(q) = 2, incident to states p1, p2,
p3, and p4 via transitions t1 = (p1, ε, q), t2 = (p2, ε, q), t3 = (q, ε, p3), and
t4 = (q, ε, p4). Then the relation E ⇒X E′ holds for

E′ = (Q \ q,A, δ, I ′, F ′),

where

δ′ = δ \ {t1, t2, t3, t4} ∪ {(p1, ε, p3), (p1, ε, p4), (p2, ε, p3), (p2, ε, p4)}

I ′ =

{
I \ q ∪ {p3, p4}, if q ∈ I
I, otherwise

F ′ =

{
F \ q ∪ {p1, p2}, if q ∈ F
F, otherwise

46

4.1 Expansions and Eliminations

r s1

s2
⇒	

r
s1

s2

(a) cycle elimination

p qε
r1

rn

⇒^ p

r1

rn

(b) fan elimination

q

ε

ε

ε

ε

⇒X

ε

ε
ε

ε

(c) X-elimination

p qa
ε

ε

⇒Y p

a

a

(d) Y -elimination

Figure 4.2: Elimination of substructures with ε-transitions.

- Y-elimination:
Let q ∈ QE s.t. d−(q) = 1 for a single transition t = (p, a, q) with a ∈ A.
Suppose further that all transitions leaving q are ε-transitions. The relation
E ⇒Y E′ holds for

E′ = (Q \ q,A, δ, I ′, F ′),

where

δ′ = δ \ (t ∪ δq) ∪ {(p, a, qi) | (q, ε, qi) ∈ δE},

I ′ =

{
I \ q ∪ p, if q ∈ I
I, otherwise

F ′ =

{
F \ q ∪ p, if q ∈ F
F, otherwise

The local changes in an EFA upon elimination are sketched in Fig. 4.2. As
for expansions, we refer to the part of an EFA that is replaced by a particular
elimination, i.e., any left hand side in Fig. 4.2, as the anchor of this elimination.

Observe that for fan elimination, X-elimination, and Y-elimination, an anchor
consists of a single state and all its incident transitions. We call this state the
center of the anchor1. When convenient, the center q of an elimination will be

1In fact, these three rewritings are particular cases of state elimination, a method originally
proposed by Brzozowski & McCluskey for the dual construction: the conversion of automata
to expressions [10].

47

4 Converting Expressions to Automata

conveyed in formal notation by writing ⇒^[q], ⇒X[q], or ⇒Y [q]. In analogy to
⇒ex for expansions, we set

⇒el :=⇒	 ∪ ⇒^ ∪ ⇒X ∪ ⇒Y ,

and write E ⇒el E
′, to denote an arbitrary elimination from E to E′. So far,

we have arrived at the ARS

C := 〈EFA,⇒∅,⇒·,⇒+,⇒∗,⇒	,⇒^,⇒X ,⇒Y 〉,

or just C = 〈EFA,⇒ex,⇒el〉. It should be clear from Figs. 4.1 and 4.2 that the
language accepted by an EFA is invariant under rewritings in C. We thus omit
proving

Proposition 4.1.1. If E ⇒ex E
′ or E ⇒el E

′, then L(E) = L(E′).

We employ C for the conversion of expressions into automata. To this end, we
first identify an expression with a structurally trivial EFA that accepts the
language denoted by that expression.

Definition 5. Let r ∈ REA. The primal EFA associated to r is

A0
r := ({q0, qf},A, (q0, r, qf), q0, qf).

Further let Anr denote any EFA that can be derived from A0
r by a rewriting of

length n in C. Each step of a rewriting initiated in A0
r is thus of the form

Anr ⇒C A
n+1
r

for some n. Any C-normal form of A0
r will be denoted simply Ar. Notice that

Anr is generally not unique for n ≥ 1, neither is Ar. Since Ar is normal wrt.
every expansion, all transitions of Ar are labeled by ε or a letter. Therefore C
realizes the conversion of expressions into automata:

Proposition 4.1.2. r ≡ Ar for every r ∈ RE.

Proof. The equivalence r ≡ A0
r holds trivially. Now Prop. 4.1.1 yields r ≡ Anr ,

in particular r ≡ Ar.

Every transition of each EFA derived from A0
r in C is labeled with a subexpression

of r. Conversely, in a full rewriting A0
r ⇒? Ar, every subexpression of r will at

some point become a label of a transition. Moreover, replacing subexpressions
of r leads to corresponding replacements of labels in Anr . We formalize this by
first assuming that a subexpression is unique.

48

4.1 Expansions and Eliminations

((ab)∗+c)∗+de ⇒+
((ab)∗+c)∗

de
⇒·

((ab)∗+c)∗

d e

⇒∗
ε ε

(ab)∗+c

d e
⇒+

ε ε

c
(ab)∗

d e
⇒∗

ε ε

cε ε

ab

d e

⇒	
ε ε

c
ab

d e
⇒·

ε ε

ca b

d e

Figure 4.3: Example of a full conversion from A0
r to Ar.

Proposition 4.1.3. Let r = c[s] with just one occurrence of s and suppose
t = (p, s, q) is a transition of Anr . For r′ = c[s′] there is a rewriting A0

r′ ⇒? Anr′
s.t. Anr′ is as Anr except that t is replaced with t′ = (p, s′, q).

Proof. Straightforward induction over the length of the rewriting from A0
r to

Anr , which is n.

In the case that is formulated in Prop. 4.1.3, the subexpression that provides
the considered label is uniquely determined. More generally, we could label
transitions with the position of a subexpression, instead of the subexpression
itself. Recall that positions allow to distinguish different occurrences of a
subexpression; this carries over to transitions with the same label in some Anr .
With positions as labels we could rephrase Prop. 4.1.3 to apply to arbitrary
subexpressions. However, the notational overhead in doing so is considerable
and this approach will not be pursued formally.

Still, we implicitly use the more general variant of Prop. 4.1.3 in this chapter
and Ch. 5 to some extent, by comparing automata that are constructed from
expressions that differ in a replaced subexpression that is not necessarily unique.
It is possible to enforce the preconditions of Prop. 4.1.3, e.g. by tagging a letter
in the subexpression of interest, thereby switching to a different expression
(over a bigger alphabet) with the same structure.

49

4 Converting Expressions to Automata

p
q

r1

rn

⇒Y [q]

⇒
X[p]

q

r1

rn

p

r1

rn

(a) X/fan - divergence

p
q

⇒X[q]

⇒
X[p]

q

p

(b) X/X - divergence

po

q
a

⇒X[q]

⇒
Y [p]

o

qa

a

po a

(c) X/Y - divergence

po a
q
r1

r2

⇒Y [p]

⇒̂
[q]

o

qa

a

r1

r2

po a
r1

r2

(d) Y/fan - divergence

Figure 4.4: Divergences from X- and Y-eliminations. Unlabeled arrows depict
ε-transitions, and a is a letter.

4.2 Refining the ARS to Functionality

As noticed, the FA constructed from r by rewriting A0
r in C is generally not

unique, i.e., Ar might depend on the particular rewriting sequence. Thus the
ARS C is not functional in the sense of realizing a map from expressions to
automata. While this is irrelevant if one is merely interested in a linear-time
construction of automata from expressions, it hinders further analysis of the
obtained automata.

It is obvious that C is terminating. Hence, following Newman’s Lemma, the
reason why Ar is not unique is that C is not locally confluent. As it turns out,
every divergence that does not converge in C, involves an X- or an Y -elimination.
Characteristic examples leading to non-convergent divergences are shown in
Fig. 4.4.

In the following, we separate X- and Y-elimination from the other rewritings in

50

4.2 Refining the ARS to Functionality

order to guarantee unique normal forms. For one thing, the rewritings besides
⇒X and ⇒Y are treated in a common ARS. This sub-ARS of C is called the
basic rewriting system, it is defined as

B := 〈EFA,⇒∅,⇒·,⇒+,⇒∗,⇒	,⇒^〉.

For each of X- and Y-elimination we consider a separate sub-ARS of C. These
systems will be defined over a restricted universe and use restricted “variations”
of ⇒X and ⇒Y as rules. To define these variations, we say that an X[p]-anchor
dominates an X[q]-anchor in E, if E contains a transition (p, ε, q). Likewise, a
Y [p]-anchor dominates a Y [q]-anchor if there is an ε-transition from p to q.

Definition 6. An X-elimination E ⇒X[q] E
′ is valid , if the following conditions

are met:

(X1) E is B-normal.

(X2) The X[q]-anchor in E is not dominated by some other X-anchor.

Likewise, a Y-elimination E ⇒Y [q] E
′ is valid , if the following conditions are

met:

(Y1) E is B-normal and X-normal.

(Y2) The Y[q]-anchor in E is not dominated by some other Y-anchor.

Observe that (X2) restricts the relation⇒X based on the simultaneous presence
of various X-anchors. Still, every sequence of (valid) X-eliminations eventually
terminates in an X-normal FA. This is because a cyclic domination among
X-anchors, i.e., an “elimination deadlock”, implies the existence of an ε-cycle,
which, due to (X1), is eliminated before valid X-elimination is applicable. The
respective property holds for (valid) Y-eliminations.

Lemma 4.2.1.

1. If E ⇒X E′ is valid, then E′ is B-normal.

2. If E ⇒Y E′ is valid, then E′ is B-normal and X-normal.

Proof. We prove the first claim, the second is shown analogous. If E ⇒X[q] E
′

is valid, then E is B-normal, so E contains no expansion-anchors, ε-cycles or
fans. If any such anchor appears in E′, it must be a result of the preceding
X-elimination. However, neither ∅ nor any compound label, i.e., no expansion

51

4 Converting Expressions to Automata

anchor, can be introduced by X-elimination alone. Moreover, if E′ contains an
ε-cycle with n transitions, E necessarily contains an ε-cycle on n+ 1 transitions,
contradicting the assumption that E is B-normal. Suppose finally that E′

contains a fan centered in some state q′ with d−E′(q
′) = 1 and an ε-transition

(p, ε, q′) (the case d+
E′(q

′) = 1 is symmetric). As this fan emerged from local
changes in E upon elimination, q′ must be incident to q in E. Now, X-elimination
increases either the in- or the out-degree of a state incident to the center ot this
elimination, thus the incidence of q′ and q in E is due to an ε-transition leaving
q. This yields us d−E(q′) = 1, too. Consequently, E contains a fan in q′ and is
hence not B-normal. This contradicts the initial assumption that E ⇒X E′ is
valid.

We have shown that only X- and Y-anchors are present in E′, if any. It follows
that E′ is B-normal, as claimed.

Corollary 4.2.2. Let E ⇒? F be a valid rewriting in C. Then there are EFAs
E′ and E′′ s.t.

E ⇒?
B E′ ⇒?

X E′′ ⇒?
Y F.

Proof. The first X-elimination of E ⇒? F is applied to a normal form of E in
B, as demanded by (X1). Following Lem. 4.2.1, applying X-elimination to a
B-normal EFA yields a further B-normal EFA. Likewise, since E ⇒? F also
respects (Y1), the first Y-elimination is applied to an EFA that is both B-
normal and X-normal. Again, Lem. 4.2.1 shows that no other type of rewriting
can possibly follow the first Y-elimination.

Thus, restricting X- and Y-eliminations to valid instances separates the rewrit-
ings in the basic ARS B from those eliminations. However, Lem. 4.2.1 does
not imply that E′ is B-normal or that E′′ is B- and X-normal; notice that the
proof refers to the first application of X- resp. Y-elimination.

Let E VX E′ denote the valid X-elimination E ⇒X E′. It follows from
Lem. 4.2.1 that VX is a relation on the class of FAs that are free of fans and
ε-cycles. Let FAX denote this class. We formalize valid X-eliminations in the
ARS

X := 〈FAX,VX〉.

Likewise, Y-elimination is a relation on the class we denote FAY, which contains
exactly the FAs without fans, ε-cycles, and X-anchors. The valid Y-eliminations

52

4.2 Refining the ARS to Functionality

give rise to the rewriting system

Y := 〈FAY,VY 〉.

Notice that VX and VY are still just relations on EFA. Instead of replacing
⇒X withVX and⇒Y withVY in C, we proceed with the “modular” approach
by splitting this potential ARS into B, X, and Y. This provides us with a better
overview of the rewriting process as its independent parts — the rewritings due
to B, X, and Y— are treated independently.

In the following, we prove that each of B, X, and Y is locally confluent. This
requires to investigate elements that are part of several anchors and can thus be
modified in different ways. Formally, the overlap of two anchors consists of the
elements shared by these anchors, i.e., the states and transitions that belong to
both anchors. An overlap is trivial , if the involved anchors are identical or do
not share any elements at all. Trivial overlaps are irrelevant in the analysis of
confluence properties, as the following proposition states for the ARS B.

Proposition 4.2.3. Let E ⇒i E1 and E ⇒j E2 for i, j ∈ {∅, ·,+, ∗,	,^}. If
the overlap of the corresponding i- and j-anchor is trivial, then E1 ∼B E2.

Proof. If the two anchors are identical, then E1 = E2 and the statements follows.
If the anchors share neither states nor transitions, the rewritings happen in
different “regions” of E and do not interfere with each other. Thus E1 contains
the same j-anchor as E while E2 contains the same j-anchor as E. So for some
E3 we find

E1 ⇒j E3 and E2 ⇒i E3.

The convergence of EFAs derived from non-overlapping rewritings thus holds in
each of B, X, and Y. Henceforth we thus assume that overlaps are nontrivial.
Other than that, two anchors of a fixed type might allow for structurally different
kinds of overlaps that need to be treated on a case by case basis. This will
become relevant for eliminations; in the case that two expansions are considered,
the argument is fairly simple.

Lemma 4.2.4. For E ⇒ex E1 and E ⇒ex E2 we find E1 ∼B E2.

53

4 Converting Expressions to Automata

Proof. The effects of expanding E in a given transition are independent of any
property of E. Moreover, expansion does not alter any state of E nor any
transition besides that which is expanded. Thus the order of two successive
expansions is irrelevant. Formally, t is a transition of E2 and t′ is a transition
of E1, and there is a unique EFA E3 s.t.

E ⇒[t] E1 ⇒[t′] E3 and E ⇒[t′] E2 ⇒[t] E3

are rewritings in B.

Therefore, exhaustive expansion of A0
r yields a unique FA. This method to

construct FAs from expressions was proposed as early as 1961 by Ott & Fe-
instein [41]. It provides FAs that are considerably smaller than those yielded
by Thompson’s algorithm [51], which introduces an abundance of ε-transitions.
Although Ott & Feinstein’s algorithm precedes Thompson’s by seven years, the
latter is usually cited as the canonical construction of FAs based on expression
structure [49, 55, 43].

We extend Lem. 4.2.4 to rewritings with cycle and fan eliminations, covering all
rules of B. The proofs are considerably more involved — although not harder

— than for Lem. 4.2.4. Because of this we establish the local confluence of B
piecewise.

Lemma 4.2.5. If E ⇒	 E1 and E ⇒B E2, then E1 ∼B E2.

Proof. Let γ denote the ε-cycle which is eliminated upon E ⇒	 E1 and let Qγ
and Tγ denote the states and transitions of γ. In this proof we take a different
view on cycle elimination compared to its definition; it is easily seen that the two
notions are equivalent. Cycle elimination can be described as follows: choose a
state qr ∈ Qγ , called the representative, and redirect all transitions in δE \ Tγ
from or to states in Qγ \ qr to leave or enter qr, respectively. Then remove Tγ
and Qγ \ qr, adjusting IE and FE accordingly. This yields E1.

The main distinction of this proof is by the type of the rewriting E ⇒B E2.

- If E2 is obtained from E by expansion, let E ⇒[t] E2 for t = (p, r, q). A
nontrivial overlap of ⇒	 and ⇒[t] may consist only of p or q (or both), since
the label of t is a compound label by assumption. We assume p ∈ Qγ wlog.
and choose p as the representative of γ for cycle elimination. Then E1 contains
the transition t′ = (p, r, q′), where q′ = q, and thus t′ = t, if q /∈ Qγ , or q′ = p
otherwise. In either case, E1 can be expanded via E1 ⇒[t′] E3, where {p, q′}
is still a (possibly singleton) set of states of E3.

54

4.2 Refining the ARS to Functionality

On the other hand, E ⇒[t] E2 does not alter the ε-cycle γ in any way
whatsoever. Hence γ is an ε-cycle in E2, and moreover, p and q are states
of E2, with p ∈ Qγ . Again we may choose p as the representative for cycle
elimination E2 ⇒γ E

′
3. Then E′3 contains p, as well as q′ which is distinct

from p iff q was no part of γ in E, resp. E2.

- If E2 results from eliminating a further cycle γ′ in E, assume that the two
cycles overlap and let q be a state of either cycle. We argue that there is an
EFA E3, reached from E1 as well as E2 by a sequence of cycle eliminations.
E3 can be constructed from E removing the states except q and transitions
of γ and γ′, and redirecting transitions connected to the cycles appropriately.
If the overlap of γ with γ′ consists of q alone, this follows easily, since γ′ is
present in E1 while γ is present in E2. We then find

E ⇒γ E1 ⇒γ′ E3 and E ⇒γ′ E2 ⇒γ E3.

Next, consider the case that γ and γ′ share more than one state. As γ and γ′

are distinct by assumption, there are transitions t′1, . . . , t
′
n ∈ Tγ′ \ Tγ which

form a path from p to q for arbitrary p, q ∈ Qγ ∩Qγ′ . These transitions are
also present in E1, which is obtained from E by eliminating γ, except that
the head of t′1 and the tail of t′n are relabeled q, the representative of γ. In
other words, the t′i form an ε-cycle in E1. A cycle arises for every sequence
as described, and we may choose q as the representative state for every such
cycle. If there are k sequences of this type, forming cycles γ′1, . . . , γ

′
k in E1,

let E3 be the EFA satisfying

E ⇒γ E1 ⇒γ′1
· · · ⇒γ′k

E3.

Thus all states of Qγ∪Qγ′ are merged into q in E3 while the transitions Tγ∪Tγ′
are removed. The same happens if γ′ is removed first and the remaining
transitions of γ are sequentially eliminated in E2, i.e.,

E ⇒γ′ E2 ⇒γ1 · · · ⇒γl E3.

- If E2 results from eliminating a fan with center q, assume that this fan is
given by the in-transition t = (p, ε, q) and out-transitions ti = (q, ri, qi) for
1 ≤ i ≤ n. We distinguish whether the center of the fan lies on the ε-cycle.

If q /∈ Qγ , then neither t nor any ti is contained in Tγ . We choose p as the
representative of γ for cycle elimination, then t = (p, ε, q) is also a transition
of E1. Also, for every ti in E, E1 contains transition t′i = (q, ri, q

′
i), where

q′i = p if qi ∈ Qγ in E and q′i = qi otherwise. The in-degree of q certainly

55

4 Converting Expressions to Automata

does not increase with cycle elimination, so q is the center of a fan in E1, too.
Eliminating this fan yields E3, which can also be obtained by first applying
fan elimination, which leaves γ intact, followed by cycle elimination. In other
words, the order of eliminations can be swapped without altering the resulting
EFA. This case is sketched in Fig. 4.5a.

For q ∈ Qγ , we show that cycle elimination subsumes fan elimination, whereas
conversely, fan elimination can be considered as a “step” in the elimination
of γ. As for further overlapping elements of the two anchors, notice that the
condition d−(q) = 1 implies t ∈ Tγ . Moreover, the transition leaving q in γ is
also part of the fan in consideration. Notice that fan elimination requires p 6= q,
so γ contains at least two transitions. The EFA E2, yielded by E ⇒^q E2,
thus contains an ε-cycle γ′ where Qγ′ = Qγ \ q and Tγ′ = Tγ \{t, t′}∪ (p, ε, q′),
where q′ is the state following q in γ, and t′ = (q, ε, q′) is the corresponding
transition. For γ′ we choose p as the representative, so elimination of γ merges
all states of Qγ′ into p, which already happened for q in the preceding fan
elimination. So in this case we have

E ⇒	 E1, and E ⇒^ E2 ⇒	 E1.

This case is shown in Fig. 4.5b.

All possibilities for an ε-cycle overlapping with some further anchor have been
considered; in each case, we have found that the divergent EFAs rewrite to a
common follow-up EFA. Thus the claim follows.

Lemma 4.2.6. If E ⇒^ E1 and E ⇒B E2, then E1 ∼B E2.

Proof. Suppose the fan elimination is E ⇒^[p] E1, for an in-fan with center p,
which is incident to transitions tε = (p′, ε, p) and ti = (p, ri, qi) for 1 ≤ i ≤ n
(the argument is symmetric for an out-fan). As for the rewriting E ⇒B E2,
the case E ⇒	 E2 was dealt with in Lem. 4.2.5 already. It remains to consider
E ⇒i E2 for i ∈ {∅, ·,+, ∗,^}.

Whether p is the center of a fan is determined by the property that p has only
one incoming transition, which needs to be an ε-transition. If this p-fan and
the anchor of E ⇒i E2 overlap only in states adjacent to p but not p itself, p
“remains” the center of a fan in E2, although some of its adjacent states may be
merged. This holds regardless of the exact nature of E ⇒i E2. On the other

56

4.2 Refining the ARS to Functionality

pr

q
s2

s1

⇒^[q]

pr
s2

s1

⇒
	

pr

q

s2

s1

⇒
	

⇒^

pr s1

s2

(a) the center of the fan lies outside the cycle

qpr
s1

s2

⇒^[q]

pr
s1

s2

⇒
	

⇒
	

pr
s1

s2

(b) the center of the fan lies on the cycle

Figure 4.5: Showcase examples for the convergence of cycle and fan elimination,
accompanying Lem. 4.2.5 (ε-labels are omitted).

57

4 Converting Expressions to Automata

hand, for this kind of overlap neither an expansion anchor nor a second fan are
affected by E ⇒^ E1 . We find

E ⇒^[p] E1 ⇒i E3 and E ⇒i E2 ⇒^[p] E3

for this case easily.

So assume that the overlap of the fan and the i-anchor contains at least one
transition. Since p is incident to each transition of the fan, the overlap includes
p as well. We distinguish by the rewriting from E to E2.

- Suppose E ⇒ E2 is the expansion E ⇒[t] E2. Since t is incident to p by
assumption, and t carries a compound label, t is one of the transitions leaving
p, say, t = t1 = (p, r1, p1). After fan elimination, E1 contains the transition
t′1 = (p′, r1, q1), which allows for the same type of expansion as t does in E.
Let E3 be the EFA that satisfies E1 ⇒[t′1]

E3.

On the other hand, expanding t1 in E removes t1 and possibly replaces it
with elements that connect p to q1. As the in-degree of p is not increased,
E2 contains a fan with center p, too. Eliminating this fan in E2 removes p
and tε, and replaces the ti = (p, ri, qi) with t′i = (p′, ri, qi) for i 6= 1. Of the
transitions introduced by expanding t1 in E, those which leave p in E2 are
reconnected to leave p′. This yields the EFA which is otherwise obtained by
expanding t′1 in E1, namely E3. We have

E ⇒^[p] E1 ⇒[t′1]
E3 and E ⇒[t1] E2 ⇒^[p] E3,

which completes this case. An example where ⇒[t1] is a star expansion is
shown in Fig. 4.6.

- If the rewriting from E to E2 is a fan elimination, too, let E ⇒^[q] E2 for some
q 6= p. Since we assume that the two fans share a transition, their centers are
adjacent. This gives rise to three structurally distinct overlaps of two fans, as
sketched in Fig. 4.7. We address them separately in the following:

- Both fans are in-fans and the ε-transition into q leaves p (Fig. 4.7a). The
transitions leaving q will be denoted t′i = (q, si, qi), which also gives the
denotation of further states adjacent to q. Observe that E ⇒^[p] E1 leaves
a fan with center q in E1, while E ⇒^[q] E1 leaves one with center p in E2.
Eliminating the remaining fan in either EFA yields an EFA with transitions
among p′, the pi, and the qj as follows: for each pi, i ≥ 2, there is a transition
(p′, ri, qi) and for each qj there is a transition (p′, sj , qj). So the relative
order of eliminations is irrelevant, i.e., we find

E ⇒^[p] E1 ⇒^[q] E3 and E ⇒^[q] E2 ⇒^[p] E3.

58

4.2 Refining the ARS to Functionality

pp′ ε

q1s∗ ⇒^[p]
p′

q1s∗

⇒∗
pp′ ε

q1

s

⇒∗

⇒^[p]
p′

q1

s

Figure 4.6: Divergence resulting from expansion and fan elimination, and its
convergence (cf. first case of Lem 4.2.6)

pε

q
ε

(a)

pε

q
r

ε

(b)

pq ε

(c)

Figure 4.7: Overlaps of fans with adjacent centers p and q (cf. second case of
Lem. 4.2.6)

- The fan with center q is an out-fan and there are transitions from p to q
(Fig. 4.7b). Let q′ denote the state dominated by q, i.e., let (q, ε, q′) be
the sole transition leaving q. Eliminating both fans in succession, in any
order, makes transitions (p, rj , q) of the overlap into transitions (p′, rj , q

′).
As these are the only transitions relevant for convergence, the claim follows
for this case.

- The fan with center q is an out-fan and the ε-transition into p leaves from
q (Fig. 4.7c). In this case, E1 and E2 differ only in the name of one state:
q in E2 resp. p in E1. We thus find E1

∼= E2, i.e., structurally there is no
actual divergence. This becomes obvious from the figure and is not treated
formally.

Any further overlap of fans, resp. a possibly resulting divergence, is symmetric
to one of above cases. Thus this case is complete.

This completes the proof.

Theorem 4.2.7. The ARS B is locally confluent, and the normal form of any
EFA in B is unique.

59

4 Converting Expressions to Automata

Proof. Given any EFA E, suppose E ⇒B E1 and E ⇒B E2. Any combination of
rewritings from E to E1 and E2 is within the domain of one of Lems. 4.2.4, 4.2.5,
and 4.2.6. Thus follows E1 ∼B E2, so B is locally confluent. Since B is
terminating, it follows from Newman’s Lemma that the normal forms in B are
unique.

We will get back to the normal form of A0
r in B at several times. Notice that

such a normal form is a finite automaton already, i.e., B converts an expression
r — in the form of A0

r — to a unique FA. In the following, we denote this FA
as AB

r .

The local confluence of ⇒B implies that ∼B is an equivalence relation. This
property will prove particularly useful when establishing further results of our
construction.

Proposition 4.2.8. The relation ∼B is an equivalence on EFA.

Proof. Reflexivity and symmetry of ∼B follow immediately. To show transitivity,
assume E1 ∼B E2 and E2 ∼B E3. This means that there are EFAs E12 and E23

with rewriting sequences E1 ⇒?
B E12 and E2 ⇒?

B E12, as well as E2 ⇒?
B E23

and E3 ⇒?
B E23. So the pair (E12, E23) is a divergence of E2 in B; but since⇒B

is locally confluent, there is some E13 satisfying E12 ⇒?
B E13 and E23 ⇒?

B E13.
Thus follows E1 ∼B E3, so ∼B is transitive, too.

We proceed with showing local confluence X and Y, which is straightforward
in comparison. As a matter of fact, the restrictions (X1), (X2), (Y1), and
(Y2), were devised for the very purpose of enforcing confluence, resp. unique
outputs, of the full construction.

Lemma 4.2.9. The ARS X is locally confluent.

Proof. We show that A VX[p] A1 and A VX[q] A2 implies A1 VX[q] A3 and
A2 VX[p] A3 for some FA A3. If the X[p]- and the X[q]-anchor share a state
that is neither p nor q, then A1 contains an X[q]-anchor and A2 contains an
X[q]-anchor, so X-elimination rewrites either FA to A3 as stated. On the other
hand, if one of p or q is part of the overlap, A contains a transition either from
p to q or vice versa. But then one of the eliminations violates (X2), contrary
to the assumption that both eliminations are valid.

Lemma 4.2.10. The ARS Y is locally confluent.

60

4.3 Invariance under Strong Star Normal Form

Proof. Assuming A VY [p] A1 and A VY [q] A2, the proof proceeds similarly
to that of Lem. 4.2.9, and is not given in detail. Again, it follows that the
overlap of the two anchors is either trivial, which yields the claim following
Prop. 4.2.3, or that one elimination does not respect (Y2), contrary to the
initial assumption.

We have arrived at the main result of this section, namely, that the ARS C,
while respecting the meta rules (X1), (X2), (Y1), and (Y2) admits normal
forms. In other words, this modified ARS manages the conversion of regular
expressions to uniquely determined finite automata.

Theorem 4.2.11. Let A0
r ⇒? Ar, where Ar is a normal form of C. If all steps

of this rewriting are valid, then Ar is unique.

Proof. It follows from Cor. 4.2.2 and the notation introduced in this section,
that the rewriting of A0

r to Ar can be written as

A0
r ⇒?

B A1 V
?
X A2 V

?
Y Ar.

We have shown that each of the involved ARSs B, X, and Y admits unique
normal forms. Therefore the intermediate FAs A1 and A2, as well as the
resulting FA Ar, are unique.

4.3 Invariance under Strong Star Normal Form

As mentioned in Ch. 3, the conventional star normal form was originally devised
as a preprocessing step in the construction of position automata. An expression
and its star normal form provide the same position automaton; however, for
arbitrary expressions the construction might require cubic time in the input size,
while quadratic running time is guaranteed for expressions in normal form [8].
From a different perspective, one might argue that the star normal form is
implicitly computed upon constructing the position automaton.

We claim that in analogy to the above, our construction is invariant with respect
to ssnf, i.e., that Ar = Ar• holds for every expression r. In the following we
show that this equality is already realized in the basic ARS B, i.e., we show
AB
r = AB

r• .

61

4 Converting Expressions to Automata

To this end, we introduce some additional notation: Given a transition t =
(p, r, q) we set t◦ := (p, r◦, q) and t• := (p, r•, q). Moreover, the EFA derived
from E by replacing t with t◦, resp. t•, will be denoted E[t◦/t], resp. E[t•/t].

The following lemma lies at the heart of proving our claim.

Lemma 4.3.1. Let t be a loop transition of E. Then E ∼B E[t◦/t].

Proof. Let E ∈ EFA be arbitrary and let t = (p, r, p) be a loop of E. We prove
the statement by induction on the size of r. For r ∈ A ∪ {∅} we have r◦ = r
by definition, thus also t◦ = t, and the claim follows trivially. For r = ε, we
observe that t forms an ε-cycle already: eliminating this cycle coincides with
removing the transition. On the other hand, since ε◦ = ∅, the EFA E[t◦/t] can
be zero expanded in t◦. Either conversion removes the loop t, resp. t◦, so E
and E[t◦/t] converge in B.

Assume that the claim holds for expressions strictly smaller than r and distin-
guish by the structure of r.

- r = st: If st is not nullable, the inductive step is trivial due to (st)◦ = st; this
yields E[t◦/t] = E immediately. Otherwise, we consider the full expansion of
t. Denote this rewriting as

E ⇒· E
′ ⇒?

ex E
′′,

where the first step — product expansion — replaces t = (p, st, p) with a new
state q and transitions (p, s, q) and (q, t, p). Since E′′ is derived from E′ by
expansions only, E′′ still contains p and q as states. Moreover, since with st
both s and t are nullable, E′′ contains ε-paths from p to q and from q to p,
so p and q lie on a common ε-cycle. We consider the corresponding cycle
elimination,

E′′ ⇒	 E′′′,

as a two-step process, as follows: the first step merges p and q, yielding an
intermediate “volatile” EFA E′′[p=q]. The second step merges the remaining
states of the original cycle with the merge state of p and q and removes the
ε-transitions of the original cycle. Observe, however, that E′′[p=q] rewrites to

E′′′ via two successive cycle eliminations: merging p and q in E′′ transforms
the ε-path from p to q and that from q to p into a separate ε-cycle each; this
is shown in upper part of Fig. 4.8.

Now consider the EFA E[t◦/t] where the label st of t is replaced with (st)◦ =
s◦ + t◦. Sum expanding E[t◦/t] in t◦ yields an EFA F with two loops,

62

4.3 Invariance under Strong Star Normal Form

p

st
⇒· p

q

s t

⇒?
ex

p

q

ε ε

p=q
 p/q

ε ε

⇒2
	 E′′′

p

s◦+t◦

⇒+ p

s◦ t◦ IA∼B p

s t
⇒
?
ex

Figure 4.8: First case in the proof of Lem. 4.3.1: the loop-label st, which is
nullable, is replaced with (st)◦ = s◦+ t◦.

t1
◦ = (p, s◦, p) and t2

◦ = (p, t◦, p). The inductive hypothesis applies to loops
labeled s and t, it can be applied “backwards” to the ti. This gets us the EFA
F ∼B F [t1/t1

◦][t2/t2
◦]. Full expansion of both t1 and t2 in F [t1/t1

◦][t2/t2
◦]

yields F ′, which contains two ε-cycles, since s and t are nullable. This is the
EFA we considered as an intermediate step of E′′ ⇒	 E′′′ before. Eliminating
the two ε-cycles that emerged from expanding t1 and t2 yields E′′′, too (shown
in the lower part of Fig. 4.8).

Altogether we have shown

E ⇒? E′′′, E[t◦/t] ∼B F [t1/t1
◦][t2/t2

◦], and F [t1/t1
◦][t2/t2

◦]⇒? E′′′,

so E ∼B E[t◦/t] follows.

- r = s+ t: Sum expansion replaces t with loops t1 = (p, s, p) and t2 = (p, t, p),
yielding the EFA E′. The inductive assumption applies to both t1 and t2
in E′, i.e., E′ ∼B E′[t1

◦/t1][t2
◦/t2]. However, the parallel loops s◦ and t◦

also emerge from expanding t◦ = (p, (s + t)◦, p) = (p, s◦ + t◦, p) in E[t◦/t]
(Fig. 4.9a). Thus E ∼B E[t◦/t] follows for this case, too.

- r = s∗: Star expansion E ⇒[t] E
′ removes t and adds a new state q along

with transitions (p, ε, q), (q, s, q), and (q, ε, p). Here, the first and third
transition form an ε-cycle. Eliminating this cycle in E′ yields an EFA which
is identical (up to the name of a single state) to E[t◦/t] (Fig. 4.9b). Notice
that E ∼B E[t◦/t] holds because E[t◦/t] is directly constructed from E, i.e.,
the inductive assumption is not used in this case.

Theorem 4.3.2. Let t be any transition of E. Then E ∼B E[t•/t].

63

4 Converting Expressions to Automata

p

s+t
⇒+ p

s
t

∼B p

s◦ t
◦

⇒−1+
p

s◦+t◦

(a) sum, where (s + t)◦ = s◦ + t◦

p

s∗

⇒∗ p

q

ε

s

ε

⇒	 p

s

(b) iteration, where s∗◦ = s

Figure 4.9: Second and third case in the proof of Lem. 4.3.1

Proof. For t = (p, r, q) we prove the claim by induction on |r|. The base case,
r ∈ A ∪ {ε,∅} holds trivially by definition of •. Suppose the claim is true for
labels smaller than r and distinguish by the structure of r:

- r = st: Product expansion E ⇒[t] E
′ replaces t with a new state x and

transitions t1 = (p, s, x) and t2 = (x, t, q). The inductive assumption applies
to t1 and t2, thus E′ ∼B E′[t1

•/t1][t2
•/t2]. On the other hand we find

E[t•/t]⇒[t•] E
′[t1
•/t1][t2

•/t2], so E and E[t•/t] converge in B.

- r = s+ t: As in the previous case except for the obvious modifications.

- r = s∗: Upon star expansion E ⇒[t] E
′, the transition t is removed while

a new state x and transitions t1 = (p, ε, x), t2 = (x, s, x), and t3 = (x, ε, q)
are added. As t2 is a loop, Lem. 4.3.1 implies E′ ∼B E′[t2

◦/t2]. Recall that
Prop. 3.2.1 states |s◦| ≤ |s|; so the inductive assumption applies to t2

◦, and
yields E′ ∼B E′[t2

◦•/t2]. We thus also have E ∼B E′[t2
◦•/t2]. Now consider

E[t•/t], where t• = (p, s∗•, q) = (p, s◦•∗, q). The expansion E[t•/t]⇒[t•] E
′′,

star expansion, replaces t• with a state x′ and transitions t′1 = (p, ε, x′),
t′2 = (x, s◦•, x′), and t′3 = (x′, ε, q). A simple renaming shows that E′′ equals
E′[t◦•/t], so in conclusion, we find E ∼B E[t•/t].

In each case, replacing t with t•, i.e., putting the label of any transition in ssnf,
yields convergent EFAs in B. This completes the proof.

The initial claim of this section — invariance of the FA yielded by our construc-
tion under taking the ssnf of the input expression — now follows by applying
Thm. 4.3.2 to the primal EFA A0

r .

Corollary 4.3.3. For any expression r we find Ar = Ar•.

Proof. By virtue of Thm. 4.3.2 we find A0
r ∼B A0

r• , since A0
r• = A0

r [t
•/t] for the

sole arc t in A0
r. This implies AB

r = AB
r• , and this B-normal FA is converted

64

4.4 Implementation Details and Running Time

in X to a unique X-normal FA, which in turn is converted in Y to a unique
Y-normal FA.

4.4 Implementation Details and Running Time

The canonical implementation simply puts the ARSs B, X, and Y, which
constitute our construction, “straight into code”. That is, each ARS is realized
by a main loop wherein some data structure that represents the intermediate
EFAs Akr , is repeatedly modified by valid reductions until no rule applies
anymore.

In the case of B, we may repeatedly choose any transition labeled ∅or by some
compound expression. These transitions can be kept, e.g. in a list which is
updated with each rewriting step. Whenever a new ε-transition is introduced,
we test whether this transition is part of an ε-cycle or a fan, and apply the
according elimination. As the first appearance of an elimination anchor is right
after an expansion, this captures all eliminations that may possibly occur in a
rewriting. Since B is confluent, this strategy certainly yields AB

r . For X and Y,
a similar approach may be used, while additionally respecting the meta-rules
(X1), (X2) and (Y1), (Y2). This method invariably terminates in Ar, solely
due to local confluence of the three rewriting systems.

We present a more subtle approach which produces FA with useful states only,
runs faster — not asymptotically, though — and is less complex. For compound
expressions that contain ∅, the proposed modifications yield FAs that are
smaller than those obtained with original rewriting system.

The key to an improved implementation is to avoid certain rewritings altogether,
of course without jeopardizing the output. This will be realized by adding
preprocessing steps that manipulate the input expressions in a way that makes
most eliminations superfluous and keeps the intermediate EFAs small. In effect,
some workload is transferred from rewriting EFAs to rewriting expressions,
which, arguably, is easier to implement.

We observe that the FA Ar is not necessarily trim. This is ultimately a
consequence of the syntax we allow for expressions, namely, occurrences of
symbol ∅. Consider for instance the expression r = a + ∅b, which denotes
L(r) = {a}. Our construction converts r into the non-trim FA that is shown in
Fig. 4.10a, instead of the smaller and trim FA shown in Fig. 4.10b.

65

4 Converting Expressions to Automata

a
b

(a)

a

(b)

Figure 4.10: FAs constructed from a+ ∅b and with the useless state removed.

Of course, we could enrich our construction with rules that remove useless states.
This can be done on a local level by deleting any non-initial state with in-degree
zero, resp. any non-final states with out-degree zero. However, showing that
the enriched ARS produces unique outputs and is invariant under ssnf, as we
did for our construction in the previous sections, requires to consider ever more
(sub)cases than those which were necessary in the respective proofs already.
Instead, we realize this additional feature on the expression level, by preventing
zero expansion altogether, i.e., by removing all instances of ∅. Being at that,
we also remove all occurrences of ε; this reduces the number of fan eliminations
that happen in the conversion.

Definition 7. An expression is ∅-reduced if it satisfies either r = ∅ or |r|∅ = 0.
Likewise, an expression is ε-reduced if either r = ε or |r|ε = 0 holds. An
expression that is both ∅-reduced and ε-reduced is reduced .

Any expression can be converted into an equivalent reduced expression in
linear time. This is realized by applying the following two-step procedure in a
bottom-up fashion to the parse tree of r.

1. Remove all occurrences of ∅ as proper subexpressions: replace ∅s and
s∅ with ∅. Replace ∅ + s and s+ ∅ with s. Replace ∅∗ and ∅? with ε.

2. Remove all occurrences of ε as proper subexpressions: replace εs and sε
with s. Replace ε+ s and s+ ε with s?. Replace ε∗ and ε? with ε.

It should be fairly obvious that these rules convert an expression into an
equivalent reduced expression. Notice that ∅-reduction needs to be carried
out first, since ∅-reduction might introduce instances of ε, while ε-reduction
does not introduce ∅. Let us further mention without proof that the resulting
expression is uniquely determined. Given the expression r, we denote its reduced
equivalent that results from above conversions with red(r).

If an expression is reduced, there is clearly no need to implement ∅-expansion.
More importantly, each Akred(r) is trim, as follows by straightforward induction on

k. The rewriting rules of C ensure that each Akr is normalized for arbitrary r; so
for reduced expressions, our construction produces trim normalized automata.

66

4.4 Implementation Details and Running Time

Proposition 4.4.1. For any expression r we find Ared(r) = trim(Ar).

Proof. It is sufficient to prove AB
red(r) = trim(AB

r), the claim then follows from
confluence of X and Y. We first show how, resp. which, steps in the process of
reducing an expression are realized by the rules in B.

First, let ∅∗ ∈ sub(r), then, at some point, a transition (p,∅∗, q) is present in
some Akr . Zero-elimination replaces this transition with (p, ε, z), (z,∅, z), and
(z, ε, q), where z is new state. Now null-expansion removes the loop transition,
and fan elimination replaces the two ε-transitions with one, namely (p, ε, q).
In effect, the transition (p,∅∗, q) was replaced by (p, ε, q), which is the same
replacement, label-wise, as with ∅-reducing the expression.

Second, let s+∅ ∈ sub(r): the corresponding transition (p, s+∅, q) is replaced
with (p, s, q) and (p,∅, q) by sum expansion, and the ∅-transition is removed
by zero expansion. So (p, s+ ∅, q) is replaced by (p, s, q), as in the process of
reducing r by first reducing its subexpressions. Recall that we treat an option
as a special case of a sum. Hence the transition (p,∅?, q), which is treated as
(p,∅ + ε, q), is replaced with (p, ε, q), as in the step of the reduction of r.

In the same fashion, it is straightforward to see that the removal of ε as a factor
is realized by fan-elimination, and that replacing ε∗ with ε is realized by cycle
elimination. Replacing s+ ε with s? makes no difference in B, since we already
treat options as sums.

It remains to consider ∅ as a factor; for any other occurrence of ∅ (or ε) as a
subexpression, B implicitly realizes the steps in reducing the input expressions.
So let r be an expression that is free of ε and where every instance of ∅ is a base.
Consider a transition (p,∅s, q), which is replaced with (p,∅, z) and (z, s, q) by
product expansion. Next, null expansion removes (p,∅, z), to the effect that z
is unreachable in Ar, if z is a state of Ar in the first place. The same follows
for any state that is introduced by further expanding (z, s, q). These states,
including z, are removed by “trimming” Ar. The same is achieved by reducing
r, where ∅s is replaced with ∅, and the transition (p,∅, q) is removed through
null expansion. The argument is symmetric for s∅, where reasoning is done
wrt. co-reachability.

Conversely, any state that is unreachable (co-unreachable) in Ar must have
emerged by expanding a transition labeled with a subexpression of ∅s (s∅).
The only rule that affects connectivity appears in B, and we agreed that all
occurrences of n in r are factors.

67

4 Converting Expressions to Automata

As we have shown in (the proof of) Prop. 4.4.1, several features of a reduced
expression are realized in B on the FA level. This is similar to the result given
in Cor. 4.3.3, where we showed that B is invariant under ssnf, or equivalently,
that the ssnf of the input expression is implicitly computed upon rewriting.
We use this fact by feeding r• to the rewriting system; our findings imply that
this does not change the resulting FA. In fact, the overall number of rewritings
might decrease with this preprocessing, since • is monotonic, i.e., r• might
contain fewer unary operators than r, but certainly not more (Prop. 3.2.1).

However, there is a much more important reason for this preprocessing step: if
an expression is in ssnf, no ε-cycles emerge in the course of the construction.
To see this, we first prove a more general property. Recall that LE(p, q) denotes
the set of words that carry the state p to the state q in an EFA E.

Lemma 4.4.2. If r is in ssnf and q is a state of Anr , then ε /∈ LAnr (q, q).

Proof. We prove the claim by induction on n.

Clearly, the claim holds for A0
r. Assume the claim holds for Air and consider

any Ai+1
r . Formally, we need to distinguish by the rewriting from Air to Ai+1

r .
However, for every state q of Ai+1

r that is also a state of Air, the statement
follows immediately, since in that case LAi+1

r
(q, q) = LAir(q, q) follows from

soundness of the conversions. The two conversions that introduce new states
are product expansion and star expansion; we consider only these rewritings in
detail.

Assume Air ⇒· A
i+1
r , where q is introduced by expanding (p, st, p′). If st is not

nullable, then at least one out of s and t is not nullable, either. This implies ε /∈
LAi+1

r
(q′, q), or ε /∈ LAi+1

r
(q, q′) for arbitrary q′, thus in particular ε /∈ LAi+1

r
(q, q).

If st is nullable, then ε ∈ LAir(p, p
′); in that case, the inductive assumption

implies ε /∈ LAir(p
′, p). As product expansion is sound, ε /∈ LAi+1

r
(p′, p) follows,

too. Since q is only reached through p and q only reaches other states through
p′, ε ∈ LAi+1

r
(q, q) requires ε ∈ LAi+1

r
(p′, p), which was just disproved. Thus

follows ε /∈ LAi+1
r

(q, q) for this case.

Now assume Air ⇒∗ Ai+1
r , where q is introduced by expanding (p, s∗, p′). That

is, Ai+1
r contains transitions (p, ε, q), (q, s, q), and (q, ε, p′). Since the claim

assumes that r is in ssnf, Thm. 3.2.8 implies ε /∈ L(s), so, given the transitions
in Ai+1

r , ε ∈ L(q, q) requires ε ∈ LAi+1
r

(p′, p). As p′ and p are also states in Air,
this further implies ε ∈ LAir(p

′, p). However, we certainly have ε ∈ LAir(p, p
′),

because of the transition (p, s∗, p′), so this last implications contradicts the
inductive assumption.

68

4.4 Implementation Details and Running Time

Corollary 4.4.3. If r is in ssnf, then Anr is free of ε-cycles for n ∈ N.

Proof. The property ε ∈ LE(q, q), holds for every state q on an ε-cycle in
E. According to Lem. 4.4.2, no such state is present in Anr if r is in ssnf.
Consequently, Anr is free of ε-cycles.

Therefore, if we replace an input expression with its ssnf, there is no need to
implement ε-cycle elimination. Manipulating (the parse of) an expression is
arguably easier to realize than eliminating ε-cycles in an EFA. Nevertheless,
the latter is still possible in linear time, as is discussed by Ilie & Yu [30]. We
finally show that putting an expression in ssnf does not accidentally nullify the
advantages we obtained by reducing the expression in the first preprocessing
step.

Proposition 4.4.4. If r is reduced, then r• is also reduced.

Proof. Let r be reduced, then r = ∅, r = ε, or |r|∅ = |r|ε = 0. In the first and
second case, the definition of • yields r• = ∅• = ∅, resp. r• = ε• = ε, so r•

is reduced in either case. In the third case, we find that whenever ∅ or ε is
produced upon computing r•, an instance of either symbol is required in the
first place (cf. Def. 2). Thus follows the claim.

These preprocessing steps allow to tweak an implementation of B even more, by
simplifying fan elimination. Consider a step in the conversion of an expression
that is reduced an in ssnf, i.e., some r with r = red(r)•. Since r is reduced,
it contains no instances of ε. Assume now that Akr does not contain any fan,
and that a fan appears with the rewriting Akr ⇒ Ak+1

r in Ak+1
r . This implies

that an ε-transition is introduced by this rewriting. The only conversions that
produce ε-transitions are sum expansion, for a transition (p, s?, q)2, and star
expansion, for a transition (p, s∗, q). For sum expansion, however, the produced
ε-transition is parallel to a second transition, so it yields neither an out-fan
with center p, nor an in-fan with center q. It follows that the only rewriting
that might introduce a fan is a star expansion.

More precisely, we find that the ε-transition of a fan is one of the two ε-
transitions that are produced with star expansion. To guarantee that an FA is
⇒^-normal, it is sufficient to eliminate any fan right after its creation. Here, we
apply fan elimination right after star expansion, if a fan arises. The advantage

2recall that we treat an option as a particular kind of sum

69

4 Converting Expressions to Automata

of this approach is that we identify a fan locally, i.e., we avoid searching the
whole EFA. We employ this strategy in Alg. 1.

A variation of this approach is to use several variants of star expansion which
“include” follow-up fan elimination(s). This requires five clones of the expansion
we use, each managing a different possibility where a fan may appear upon
expansion. Expanding the transition t = (p, s∗, q) might produce no fan at all,
or exactly one, centered in either incident state, or two fans. A further rule
replaces the label s∗ with s, if p = q. An ARS using these rules was investigated
in [22]; except for the effects of Y -elimination, it produces the same FAs as the
ARS we consider.

Next, we consider implementation aspects concerning X- and Y -eliminations.
The details are by and far identical for the two conversions, so we elaborate on
X-elimination and argue by analogy for Y .

As we have shown in Lem. 4.2.1, once we have constructed AB
r , we can apply

valid X-elimination until the normal form AX
r is reached. This is done in a

second loop in Alg. 1. In this loop we first gather all X-anchors of AB
r . Recall

that q is the center of an X-anchor if d−(q) = d+(q) = 2, and all in- and
out-transitions of q are ε-transitions. These states are found by scanning the set
of states. We find that it is sufficient to do this once, since no new X-anchors,
resp. centers, are introduced with valid X-elimination. In other words, any
X-anchor present in an FA after X-elimination is also present in the FA before
elimination.

Proposition 4.4.5. Let E VX E′ and let q be the center of an X-anchor in
E′. Then q is the center of an X-anchor in E.

Proof. By the nature of X-elimination, every state in E′ is also a state in E. If
p and q are not adjacent in E, the claim follows, since X[p]-elimination does
not alter the transitions incident to q, i.e., these agree in E and E′.

Suppose otherwise, then E contains the transition (p, ε, q) (or (q, ε, p), which is
symmetric), since p is incident to ε-transitions only. With X-elimination in p,
the in-degree of q increases by one, i.e., d−E′(q) = d−E(q) + 1. But E′ contains an
X[q]-anchor by assumption, which implies that d−E′(q) = 2, so we find d−E(q) = 1.
Thus the only transition entering q in E is an ε-transition, meaning that q is
the center of a fan. This contradicts the assumption that X[p]-elimination is
valid, so p and q are not adjacent.

70

4.4 Implementation Details and Running Time

Notice, however, that X-elimination can “destroy” adjacent X-anchors, i.e., the
center of an X in E is not necessarily the center of an X in E′, if E ⇒X E′ is
assumed. Thus, if we create a list of all X-anchors of AB

r , resp. their central
states, and choose states from this list throughout the rewriting to locate
elimination anchors, we need to check in each case whether the chosen state is
“still” the center of an anchor in the current automaton.

In the following, let QX denote the states in AB
r that are the center of an

X-anchor each. Consider the meta-rules that lead to valid X-elimination, given
in Def. 6. The rule (X2) introduces elimination priorities among X-anchors. As
we have already argued, there are no cyclic preferences wrt. (X2). Interpreted
differently, the set of center states and the ε-transitions among theses states
form an acyclic subgraph of AB

r . Therefore, the domination relation induces
a topological order ≺X on QX , and an X[q]-anchor can be eliminated iff it is
≺X -minimal in QX . The set QX can be ordered in linear time by standard
algorithms (e.g. , as given in [12]). In a loop, we then choose the minimal
element of this order and, if the state is still the center of an X-anchor, apply
elimination.

Each step discussed for (valid) X-elimination above holds for Y -elimination
with the obvious changes. Similar to the denotation for X-elimination, QY
contains the center states of Y -anchors in AX

r , and ≺Y is a topological order
that is consistent with (Y2).

Theorem 4.4.6. The FA trim(Ar) is constructed by Alg. 1 in time O(|r|).

Proof. Either preprocessing step — reducing the input expression and computing
the ssnf— can be realized in linear time by a bottom-up term rewriting system.
So let r be reduced and in ssnf. We assume that A in Alg. 1 is represented by
a dynamic graph with labeled arcs3. We separately consider the three loops in
Alg. 1, which realize B, X, and Y.

To test for the existence of transitions with compound labels, we assume that
Alg. 1 keeps a set T with (pointers to) the corresponding arcs of A. This set
is initialized with the sole transition (p, r, q), if r is a compound expression,
otherwise it remains empty. In each iteration of the loop B, an arc/transition
is removed from T , and A is modified according to the label of this item. If
a compound transition is produced, the set T is updated accordingly. This is

3This data structure is provided by libraries such as LEDA [35]. Therein, the operations of
adding or removing a vertex or an arc to a graph take constant time.

71

4 Converting Expressions to Automata

Algorithm 1: Construction of a trim FA from an expression.

Input: Regular expression r
Output: Finite automaton A with L(A) = L(r)
r ← red(r)•

A← ({q0, qf},Ar, (q0, r, qf), q0, qf)

B while A contains transitions with compound label do
remove (p, ρ, q), with compound ρ, from A
switch ρ do

case st
add state z and transitions (p, s, z), (z, t, q), to A

case s+ t
add transitions (p, s, q), (p, t, q), to A

case s∗

add state z and transitions (p, ε, z), (z, s, z), (z, ε, q), to A
if d+(p) = 1 then apply ^[p]-elimination
if d−(q) = 1 then apply ^[q]-elimination

X find QX ⊆ QA and compute ≺X on QX

while QX 6= ∅ do
QX ← QX \ q for ≺X -minimal q
if q is the center of X-anchor then apply X[q]-elimination

Y find QY ⊆ QA and compute ≺Y on QY

while QY 6= ∅ do
QY ← QY \ q for ≺Y -minimal q ∈ QY

if q is the center of Y -anchor then apply Y [q]-elimination

72

4.4 Implementation Details and Running Time

done until T is empty. Therefore, no transitions are actually searched in A and
the overhead due to T is negligible.

Every compound subexpression of r becomes the label of a transition, which is
expanded at some point. Since expansions may not arise otherwise, the number
of expansions is |r|· + |r|+ + |r|∗ (recall that options are treated as sums). It
is obvious that each expansion takes O(1) time, thus the overall time spent
with expansions in B is in O(|r|). This does not include the time required for
follow-up fan eliminations, which are considered next.

The number of operations necessary for the fan eliminations that might follow
immediately after expanding (p, s∗, q), is O(d−(p) + d+(q)). If this expansion
introduces a fan in the first place, we find that s∗ is a factor in r: since r is in
ssnf, s∗ is not a base, and if s∗ is an addend, d+(p) > 1 and d−(q) > 1 follow.
Let t be the factor to the left of s∗, i.e., let ts∗ ∈ sub(r), and interpret t as a
maximal sum of arity k. Then d−(p) = k follows, so k transitions need to be
“reconnected” for fan elimination in p. After elimination, these transitions are
incident to a state that carries a loop and will thus never become the center of a
fan itself. The arity of t thus determines the complexity of eliminating an in-fan
at most once. Likewise, d+(q) = k′ if s∗ appears in the product s∗t′, where
t′ is a sum of arity k′; again, this value determines the number of operations
necessary for eliminating an out-fan with center q. It follows that the number
of operations necessary in all fan eliminations together is bounded by arity of
all maximal sums in r combined, which is in O(|r|).

As discussed above, the centers of X-elimination are found by scanning QA.
Since a state is only introduced with product and star expansion, we find
|QA| ≤ |r|· + |r|∗. So QX is found in linear time and is obviously of linear size.
Computing a topological order on QX that is consistent with domination among
anchors takes linear time, too. One iteration of the loop X takes constant time,
so the time spent for making A X-normal is in O(|r|), too.

The analysis for Y -elimination parallels that for X-elimination, with the obvious
changes. Considering all steps, Alg. 1 constructs trim(Ar) in time O(|r|), as
claimed.

73

5 Conversion Ratio

We continue to investigate the construction presented in Ch. 4: the ARS C and
its restriction to valid conversions. We have shown two important qualitative
properties of FAs that are obtained by this method, namely that these FAs
are unique and invariant under taking the ssnf of the input expression. These
properties are fundamental for the quantitative analysis we are set about to do
in this chapter.

It is natural to ask how the sizes of the involved objects compare. Besides the
theoretical main concern of this work — descriptional complexity — this aspect
is of practical relevance, as it relates to memory efficiency in applications that
employ automata. Considering nowadays availability of cheap main memory,
this is not exactly critical for applications on single user machines. The story
is different, however, in scenarios where data streams need to be scanned at
extremely high rates. This is usually done by dedicated devices, such as routers,
which run on specialised hardware and use a more sophisticated, expensive, and
hence generally less available type of memory.

The conversion of regular expressions to small finite automata recently gained
new attention in the context of network intrusion detection and deep packet
inspection. These security measures evaluate the integrity of network connec-
tions by scanning the transmitted data. Originally, data streams were scanned
for matches from a fixed list of keyword, i.e., an explicitly given set of strings.
The flexibility gained from specifying keywords by regular expressions was first
pointed out by Sommer & Paxson [50], who proposed a conversion to determin-
istic finite automata. As we have mentioned in the introductory section of Ch. 3,
an exponential blowup cannot be avoided for such automata. On the other hand,
once the automaton is present, deterministic automata beat nondeterministic
ones wrt. processing time, as the latter kind requires backtracking to guarantee
that all branching runs of an input are taken into account.

This led to the suggestion of a hybrid type of automaton, which consists
of a deterministic and a nondeterministic “part”. A transmission packet is
initially processed — i.e., scanned — by the deterministic part of the inspecting

75

5 Conversion Ratio

automaton. It is expected that the majority of packets is uncompromised.
Thus a random packet is typically rejected almost immediately, as it does not
match the filter expression within its first few bytes. The minority of packets is
passed to the nondeterministic part of the automaton and processed further.
Intuitively, this second part encodes the finer details of the filter, which would
consume too much memory in deterministic form. Since the workload is much
smaller for this second part, the overhead incurred by backtracking remains
manageable. Hybrid automaton apporaches are described, e.g. in [2, 32, 56].

Besides the practical relevance of small automata, we are interested in analyzing
the size relationship for its own sake. It is well known that any expression
can be converted to such a nondeterministic automaton whose size is linear in
that of the expression. This is apparent in the earliest constructions of that
type, e.g. those by Ott & Feinstein [41], Kleene [31], and Thompson [51]. These
constructions, just like the one presented in Ch. 4, build an automaton based
on the structure of an expression: the expression is deconstructed according to
its parse tree, and a finite number of states and transitions is introdeuced with
each step. The linear “blowup” therein is evident.

In this chapter we bound the ratio of automaton to expression sizes for automata
obtained by our construction. This is done by constructing expressions that
maximize this ratio. We will arrive at an infinite family of expressions that is
structurally restricted up to repetition of a smallest such expression. We will
further show that the automata produced by our constrution are minimal, i.e.,
that the derived bound is tight.

5.1 Worst Case Expressions

Definition 8. Let r be an expression. The conversion ratio of r, denoted c(r),
is defined as

c(r) :=
|Ar|
|r|

.

An expression r is worse than an expression s, if c(r) > c(s). If no expression is
worse than r, then r is a worst case expression.

A worst case expression maximizes the size an FA can attain relative to the size
of the expression it was constructed from. If µ is worst case (given that such

76

5.1 Worst Case Expressions

⇒∅ ⇒· ⇒+ ⇒∗ ⇒X ⇒^ ⇒Y ⇒	
∆i(|Q|) 0 1 0 1 −1 −1 −1 −(n− 1)

∆i(|δ|) −1 1 1 2 0 −1 −1 −n

Table 5.1: Changes in state- and transition-complexity upon conversion in C.
In the last column, n denotes the number of transition of an ε-cycle.

expressions exist in the first place) and r is arbitrary, the size of the output of
our construction is bounded relative to that of its input as

|Ar| ≤ c(µ)|r|.

Given a rewriting A0
r ⇒? Ar, we obtain the size of Ar by counting the elements

contributed to Ar by each rewriting step. These values are given in Tab. 5.1 for
each rule: therein, ∆c(|Q|) denotes the number of states introduced or removed
upon Akr ⇒c A

k+1
r , and ∆c(|δ|) denotes the change in the number of transitions.

Notice that these changes are constant for every rule except cycle elimination.
We will shortly see that this rule does not pose a problem for analyzing sizes.

Let |r|i denote the number of times each rule of C is applied in a fixed construc-
tion of Ar by rewriting A0

r , for i ∈ {·,+, ∗,	, . . .}. The size of Ar is given by a
weighted sum, as follows:

|Ar| = |A0
r | +

∑
i∈{·,+,∗,	,...}

|r|i (∆i(|Q|) + ∆i(|δ|)).

Obviously, the frequency of expansions: ⇒∅, ⇒·, ⇒+, and ⇒∗, in the construc-
tion of Ar, equals |r|∅, |r|·, |r|+, and |r|∗, respectively. On the other hand, the
frequency of eliminations depends on the chosen rewriting. For example, two
transitions of an ε-cycle might be removed by fan elimination, followed by the
elimination of a smaller cycle (cf. Fig. 4.5b). However, since Ar is unique, the
weighted sum corresponding to any exhaustive conversion of some fixed Akr is
constant.

To get an idea about the expected magnitude of the conversion ratio, we provide
a first upper bound. This bound is determined using only the fact that the ssnf
of an input is implicitly computed by our conversion. Elimination steps — the
parts in our constructions that decrease that size of (intermediate) automata —
are neglected.

77

5 Conversion Ratio

Lemma 5.1.1. For any expression r we find

c(r) <
5

3
+

8

3|r|
.

Proof. We start from |A0
r | = 3 and take only expansions into account, i.e.,

rewritings that increase the size of intermediate EFAs. This yields

|Ar| ≤ 2|r|· + |r|+ + 3|r|∗ + 3

= |r| − |r|+ + 2|r|∗ + 2.

Since r and r• are converted to the same FA, we may assume that r is in
ssnf already. Following Thm. 3.2.9 we then have |r|ω ≤ |r|A, which implies
|r|∗ ≤ |r|A and thus |r|∗ ≤ 1

3(|r| + 1). Plugging this bound on |r|∗ into the
above right hand side yields

|Ar| = |r| + 2

3
(|r| + 1) + 2 =

5

3
|r| + 8

3
.

Dividing the left and right hand sides by |r| yields the claim.

If we want to bound conversion ratio independently of the converted expression,
we need to use the maximum value reached be the right hand side in Lem. 5.1.1.
Since |r| ≥ 1 for any r, this gives

c(r) <
5

3
+

8

3
, resp. c(r) < 4

1

3
.

As the second fractional term in Lem. 5.1.1 gets arbitrarily close to zero with
growing expression size, it is better to assume that r is at least of a certain size.
This excludes only a finite number of expressions, so we still get a statement
about almost all expressions. A corollary to Lem. 5.1.1 in this spirit is

Corollary 5.1.2. For almost every expression r we find

c(r) < 2.

Proof. Let |r| ≥ 8 in Lem. 5.1.1.

78

5.1 Worst Case Expressions

The bounds on conversion ratio given in Lem. 5.1.1 and Cor. 5.1.2 will be
improved in this chapter to a tight value, i.e., one that is reached by certain
expressions. These are the worst case expressions, whose conversion ratio bounds
that of any expression by definition. We infer the structure of these expressions
by increasingly restricting the properties they may expose. In particular, we
show that the structure of such an expression is unique up to repetition of a
worst-case “atom”. In other words, we infer an infinite family of structurally
similar expressions whose conversion ration bounds that of any expression from
above. Moreover, it will be shown that no structurally different expression
reaches this bound.

From Lem. 5.1.1 we derive a criterion which sometimes allows us to decide
among two expressions which is worse, when this is not obvious at a glance.
This situation arises when expressions that are not explicitly given differ in size
and yield automata which differ in size, too.

Corollary 5.1.3. Let r and s be expressions where |r| ≥ 3, |s| = |r| + k, and
|As| ≥ |Ar| + l. Then s is worse than r if

l

k
≥ 2.6.

Proof. By definition, s is worse than r if c(r) < c(s). Using the fractional terms
for conversion ratio, this inequality reads as

|Ar|
|r|

<
|As|
|s|

, or equivalently
|Ar|
|r|

<
|Ar| + l

|r| + k
,

where r, s, Ar, and As are as in the claim. Rearranging the fractions shows that
the latter inequality holds iff c(r) < l

k . Since we assumed |r| ≥ 3, Lem. 5.1.1
yields

c(r) ≤ 5

3
+

8

9
= 2.5 < 2.6.

Therefore, if l
k is at least 2.6, it exceeds the conversion ratio of r, and the claim

follows.

To prove that a structural property ϕ — realized by a particular subexpression
s — is absent from a worst case expression, we often argue indirectly. To this
end we take an expression with this property, say, r = c[s], replace the fixed
occurrence of s with s′, where s′ does not satisfy ϕ. We then show that r′ = c[s′]
is worse than r.

79

5 Conversion Ratio

Recall from Prop. 4.1.3 that replacing a unique subexpressions s with s′ as
above implies rewritings

A0
r ⇒k

B Akr and A0
r ⇒k

B Akr′ ,

s.t. Akr and Akr′ differ exactly by the label of one transition, which is s in the
former EFA and s′ in the latter. Due to these labels, the two EFAs may admit
different follow-up rewritings. Informally, these differences are restricted to a
local level, so any difference in size among the EFAs obtained by these further
rewritings becomes evident from local inspection, too. We can thus apply
Cor. 5.1.3 (and similar results which are yet to be shown) to compare r and r′

based on local replacements, i.e., without knowing the full expressions. A first
opportunity for this kind of argumentation is the following lemma.

Lemma 5.1.4. If r is worst case, then |r|∅ = 0.

Proof. Suppose that r is worst case and that r = c[∅] for some context c.
Replace this occurrence of ∅ with any letter a ∈ A to get r′ := c[a]. Now let E
and E′ be EFAs satisfying

A0
r ⇒n E and A0

r′ ⇒n E′,

where E′ can be derived from E by replacing the transition (p,∅, q) with (p, a, q).
While the ∅-transition of E is removed at some future point in the conversion
to Ar, its counterpart remains in E′ resp. Ar′ . Other than that, the number of
operators is identical in r and r′, so the number of expansions is identical in
the construction of Ar and Ar.

We further find that no elimination step in the construction of Ar depends on
the presence of the transition (p,∅, q), as opposed to (p, a, q). However, an
elimination might well depend on the absence of a transition from p to q, so, if
anything, the number of eliminations might be reduced by replacing ∅ with a.

Therefore, while |r′| = |r|, the FA Ar′ contains at least one element more than
Ar. It follows that c(r) < c(r′), i.e., r is not worst case. Consequently, a worst
case expression does not contain ∅, as claimed.

Lemma 5.1.5. If r is worst case with |r| ≥ 3, then |r|ε = 0.

Proof. Suppose that r is worst case, |r| ≥ 3, and that r contains ε. Fix an
occurrence of ε within the context c, i.e., let r = c[ε]. Further let t = (p, ε, q)
denote any ε-transition with this fixed ε as its label in the construction of Ar.
We distinguish whether any elimination depends on t in the construction of Ar,
i.e., that the particular elimination would not be possibly without t.

80

5.1 Worst Case Expressions

- Assume that some elimination Akr ⇒i A
n+1
r does depend on t. Let r′ := c[a]

for some a ∈ A and let Akr′ be the FA that is as Akr except that t is relabeled
with a. Then the corresponding i-elimination is “blocked” in Akr′ . Conversely,
every elimination that is possible in Akr′ or a subsequent Ak+dr′ has an analogue
in Akr or Ak+d−1r , respectively. The number of expansions is identical for r
and r′. Thus follows |Ar| ≤ |Ar′ | − 1. Since |r| = |r′|, we find c(r) < c(r′),
which contradicts the assumption that r is worst case.

- If no elimination ever depends on t in the construction of Ar, we consider the
parent of our fixed ε in r. Observe that since |r| ≥ 3, we have r 6= ε, i.e., the
parent of each ε is defined. First off, since r is supposedly worst case, it is
also in ssnf, hence ε is not the operand of an iteration.

So assume that ε is a factor, wlog. in the product sε. Any construction of Ar
comes invariably to the point where the according sε-transition is expanded,
yielding a fan. This conflicts with the initial assumption of this case.

Finally let ε be an addend, say, in s+ε. Here, we set r′ := c[a∗] for some a ∈ A,
and compare the constructions of Ar and Ar′ . Let Akr and Akr′ denote k-step
rewritings from Ar resp. Ar′ that are identical except that the former EFA
contains an ε-transition from p to q, where the latter contains an a∗-transition.
As sketched below, we locally compare Akr (left) to the EFA derived from Akr′
by expanding this transition (right).

p q
ε

s
p q

a∗

s
⇒∗ p q

ε ε

a

s

It becomes clear from the sketch that since t is no part of an elimination
anchor in Akr or any derived EFA, neither are the “new” ε-transitions in
Ak+1
r′ or any derived EFA. Moreover, as Akr and Ak+1

r′ are identical up to the
discussed part, the rewriting of either EFA allows for an analogous one in the
other EFA. We ultimately find |Ar′ | = |Ar| + 3, while we have |r′| = |r| + 1.
Since we assumed |r| ≥ 3 we can apply Cor. 5.1.3 to find that r′ is worse than
r, contrary to the initial assumption.

As either case leads to a contradiction, the assumption |r|ε > 0 does not hold
for worst case r, as claimed.

Recall that we have shown in Prop. 3.2.1 that the ssnf of an expression is not
bigger than the expression itself. If an expressions is in ssnf already, the sizes
are obviously equal. For reduced expressions, we find a stronger property.

81

5 Conversion Ratio

Proposition 5.1.6. Let r be a reduced compound expression. Then r = r• iff
|r| = |r•|.

Proof. The implication from left to right is trivial. To prove the converse
direction, assume that the r is a reduced compound expression and that r 6= r•.
Then Thm. 3.2.8 implies s∗ ∈ sub(r) with ε ∈ L(s) for some s. Since r is
reduced, we also have that ε /∈ sub(s), and s 6= ε in particular, since s is
a proper subexpression of r. So the fact that s is nullable is due to some
subexpressions t∗ or t? in s. For the ssnf of s∗ we have s∗• = s◦•∗, where the
inner operator ◦ traverses down s (cf. Def. 2) recursively, eventually “reaches”
t∗, resp. t?, and replaces either subexpression with t.

That is, at least one operator is removed upon computing r•. This decrease in
size is not compensated by a part of the computation in another subexpression
since |s′•| ≤ |s′| for any s′ ∈ sub(r). This concludes the proof.

This allows us to restrict the structure of a worst case expression significantly.

Theorem 5.1.7. A worst case expression is reduced and in ssnf.

Proof. Let µ be worst case, then µ is reduced, following Lems. 5.1.4 and 5.1.5.
Suppose that µ is not in ssnf, then Prop. 5.1.6 yields |µ•| < |µ|, since µ is
reduced. Since Cor. 4.3.3 assures that Aµ• = Aµ, we find

c(µ•) =
|Aµ• |
|µ•|

≥
|Aµ|
|µ|

= c(µ).

This contradicts the assumption that µ is worst case, so µ must be in ssnf.

Corollary 5.1.8. If r is worst case, then |r|	 = 0.

Proof. The claim follows from Thm. 5.1.7 and Cor. 4.4.3 immediately.

In the following, our arguments heavily depend on the fact that a worst case
expression is in ssnf. According to Thm. 5.1.7, any candidate r for a worst
case expression can be assumed to be in ssnf. If we find that r is not worst
case by constructing a worse expression r′, we need to take care to ensure that
r′ is still in ssnf.

Knowing that worst case expressions are in ssnf, we start by investigating
stars, i.e., iterations, in such expressions. The characterization we found for

82

5.1 Worst Case Expressions

ssnf in Thm. 3.2.8 implies structural restrictions of worst case expressions wrt.
iterations. More precisely, we find that each iteration in a worst case expression
is an addend.

Lemma 5.1.9. If µ is worst case and s∗ is a proper subexpression of µ, then
pµ(s∗) = +.

Proof. Let µ be worst case and s∗ ∈ sub6=(µ). We show that s∗ is neither a base
nor a factor. The first claim follows immediately: since µ is in ssnf according
to Thm. 5.1.7, and s∗ is certainly nullable, the fact that pµ(s∗) 6= ∗ is implied
by Thm. 3.2.8.

Suppose for the sake of contradiction that µ contains iterations that are factors.
Among these iterations we choose a fixed “topmost” instance s∗. That is to
say that while s∗ is a factor, every iteration that properly contains the one we
chose, i.e., every iteration that is a superexpression of s∗ in µ, is an addend.

Formally, let pµ(s∗) = · and assume that s∗ ∈ sub(σ∗) and s∗ 6= σ∗ implies
ps(σ

∗) = +. Further assume that s∗ occurs in the product s∗t; the case ts∗

is symmetric. We replace this product with a sum by setting µ′ := µ[s∗+t/s∗t].
Observe that |µ| = |µ′|. Again, we let Akµ and Akµ′ denote intermediate EFAs

that differ only in that Akµ has a transition (p, s∗t, q) whereas Akµ′ contains a
transition (p, s∗ + t, q).

In the following, we distinguish whether µ′ is in ssnf.

- If µ′ is in ssnf, we consider EFAs obtained from rewriting Akµ and Akµ′ . In each
case the rewriting starts in the “characteristic” transition which distinguishes
Akµ and Akµ′ . Compare the number of elements from p to q in some particular

Ak+3
µ , shown in Fig. 5.1a, to that which connect p to q in some Ak+2

µ′ , shown

in Fig. 5.1b. We find an size increase of Ak+2
µ′ over Ak+3

µ by one transition.

If neither p nor q is removed in the remaining conversion, this difference in
size carries over to Aµ and Aµ′ . So assume that one of p or q is removed in

the construction of Aµ′ from Ak+2
µ . Since this case assumes that µ′ is in ssnf,

we know that the removal does not result from cycle elimination. Other than
that, cases for p and q are symmetric, so we consider removal of p only.

First assume that at some point p becomes the center of a fan which is
eliminated, i.e., Ak+i+2

µ′ ⇒^[p] Ak+i+3
µ′ . Since r is assumed to be worst case,

µ is ∅-free by Lem. 5.1.4 — thus µ′ is ∅-free, too. So the outdegree of p,
which is two in Ak+2

µ′ , does not decrease with subsequent conversions that

83

5 Conversion Ratio

p qs∗t ⇒· p qs∗ t ⇒∗ p qε

s

ε t ⇒^ p qε

s

t

(a) Elements due to a starred factor

p qs∗+t ⇒+ p q
s∗

t
⇒∗ p q

t

ε

s

ε

(b) Elements due to a starred addend

Figure 5.1: First case in the proof of Lem. 5.1.9, where we assume that either
expression is in ssnf.

leave the state p intact. Consequently, p being the center of a fan in some
Ak+i+2
µ′ implies that p in entered by a single ε-transition in that EFA. We

thus find an analogue EFA Ak+3+i
µ where the same elimination is possible.

If p is removed by X-elimination in some subsequent EFA Ak+2+i
µ′ , two ε-

transitions are the only transitions that leave p in this EFA. One of these
transitions results from expanding the transition labeled t, which is not
incident to p in any Ak+3+i

µ . Since the in-transitions of p evolve the same
way in either rewriting, this leads to a fan elimination with center p in some
Ak+3+i
µ . With this the size of Aµ increases even more over that of Aµ′ .

Finally assume that p is removed by means of Y -elimination, in some Ak+2+i
µ .

We then find again that at some point p is entered by a single, arbitrarily
labeled transition, which also happens in some Ak+3k+i

µ′ . This allows for
fan elimination in this EFA for µ, so the size increase for Aµ′ over Aµ is
maintained.

On the other hand, the removal of p in some Ak+3+i
µ does not necessarily have

an analogue in some Ak+2+i
µ′ . If it does, however, the number of elements

removed in the construction of Aµ′ is equal to or less than the respective

number removed from Ak+3+i
µ .

In any case, we find |Aµ| < |Aµ′ |, which, since |µ| = |µ′|, implies that µ′ is
worse than µ.

- If µ′ is not in ssnf, then Thm. 3.2.8 states that µ′ contains a nullable base.
This is a direct result of the change we made to µ, and the base that “violates”
ssnf is the smallest base containing s∗ + t∗ in µ′. Denote this base u′ and
let u denote the corresponding base in µ, i.e., let u′ = u[s∗+t/s∗t]; now we can
express µ′ also as µ′ = µ[u′/u]. Observe that our choice of s∗ implies either

84

5.1 Worst Case Expressions

u∗ = µ or that u∗ is an addend in µ. The respective property holds for u′ in
µ′.

Moreover we find that t is not nullable: otherwise, s∗t would be nullable in u,
just as s∗+ t is nullable in u′. Since u and u′ differ only in that subexpression,
the fact that u′ is nullable is a result of our replacement, which allows to
“propagate” the nullability of s∗ upwards.

To reinstate ssnf, we modify the expression a second time, by “shifting” the
star operating on u′ in µ′ from there to t. Formally, we set

u′′ := u′[s∗+t∗/s∗+t] and µ′′ := µ′[u′′/u′∗].

Since t is non-nullable and — being a subexpression of µ — is also in ssnf, we
find that t∗ is in ssnf, too. Since u′ is the smallest base containing s∗ + t in
µ′, and u′∗ is certainly nullable, the nullability of u′′ does not lead to further
nullable bases in µ′′. No other base, resp. its nullability,is influenced by going
from µ via µ′ to µ′′, so so according to Thm. 3.2.8 we have that µ′′ is in ssnf.
Observe that |µ′′| = |µ| holds, as we merely exchanged one instance of · for +
and repositioned a star.

To show that Aµ′′ is bigger than Aµ let Akµ and Akµ′′ denote EFAs where Akµ′′

can be derived from Akµ by replacing a transition (x, u∗, y) with (x, u′′, y),
where, to stress the relevant differences,

u∗ = (. . . (s∗t) . . .)∗ and u′′ = (. . . (s∗ + t∗) . . .).

We compare two EFAs Ak+iµ and Ak+jµ′′ , constructed from Akµ and Akµ′′ through

conversions of elements that emerge from the transition that tells Akµ from

Akµ′′ . Either rewriting first fully expands the context of s∗t and s∗ + t∗, and
then further applies expansions to EFAs with a s- and a t-transition each, as
shown in Fig. 5.2. We find that Ak+jµ′′ contains one transition more than Ak+iµ .
Locally, the s- and t-transitions in either EFA allow for the same sequences
of conversions, and every elimination that removes one of p, q, x, or y in
Ak+jµ′′ has an equivalent in Ak+iµ that removes at least the same number of
elements. It is crucial to note that, following our choice of s∗ in µ, either x
is the initial and y the final state in each of the considered EFAs, or there
is an additional transition from x to y in each EFA. This reflects the cases
u∗ = µ and pµ(u∗) = +. These properties prevent the eventuality of a fan

85

5 Conversion Ratio

x y
(...(s∗t)...)∗ ⇒∗ x yε

(...(s∗t)...)

ε ⇒? x y

p q

ε ε

ε

s

t

(a) Converting Akµ to Ak+iµ

x y
(...(s∗+t∗)...) ⇒? x p q y

ε

ε

s

t

ε

ε

(b) Converting Akµ′′ to Ak+jµ′′

Figure 5.2: Second case in the proof of Lem. 5.1.9. Notice that either is x the
initial and y the final state in each depicted EFAs, or there is a
further transition from x to y, which is not shown.

elimination with center x or y in Ak+iµ , s.t. no counterpart is possible in Ak+jµ′′

due to the lack of an appropriate ε-transition.

In either case, the assumption that a worst-case µ contains a topmost starred
factor, is falsified. It follows that µ contains no starred factor at all. Therefore
every iteration in a worst case expression is an addend, as stated.

The preceding lemma implies that in a worst-case expression, the number of
stars is at most twice the number of sum-operators. This allows us to improve
the bound on conversion ratio which is given in Lem. 5.1.1, essentially to the
value found by Ilie & Yu for a different construction [30].

Lemma 5.1.10. For any expression r we find

c(r) <
3

2
+

5

2|r|
.

Proof. Let µ be worst-case and proceed as in the proof of Lem. 5.1.1, where we
arrived at

|Aµ| ≤ |µ| − |µ|+ + 2|µ|∗ + 2 and |µ|∗ ≤
1

3
(|µ| + 1)

As we just mentioned, Lem. 5.1.9 implies |µ|+ ≥ 1
2 |µ|∗. Plugging this into above

inequations yields

86

5.1 Worst Case Expressions

|Aµ| ≤ |µ| + 3

2
|µ|∗ + 2 ≤ 3

2
|µ|+ 5

2
.

We divide the left- and right-hand sides by |µ|. This yields an upper bound for
the conversion ratio of µ. Since µ is worst-case by assumption, its conversion
ratio is an upper bound to that of any expression.

As before, this upper bound allows us to compare certain expressions that differ
in size and are converted to automata that differ in size, too.

Corollary 5.1.11. Let r and s be expressions s.t. |r| ≥ 16, |s| = |r| + k and
|As| = |Ar| + l. Then s is worse than r if

l

k
≥ 5

3
.

Proof. The proof is the same as for Cor. 5.1.3, except that we use |r| ≥ 16 and
apply Lem. 5.1.10. This yields

c(r) ≤ 3

2
+

5

32
= 1.65625.

Since 3
2 exceeds this value, the claim follows.

This stronger version of Cor. 5.1.3 is necessary to show that the remaining
eliminations — fan, X- and Y-elimination — are also absent from the conversion
of a worst case expression. We can apply the same kind of proof with smaller
increments in FA size relative to expression size. In particular, this criterion
applies if an increment of expression size by three increases the size of the
corresponding FA by at least five.

An inconvenience of Cor. 5.1.11 is its restriction to expressions of size at least
16. All statements building upon the corollary must include a clause similar
to “. . . and suppose further that |µ| ≥ 16. . . ”. Since this excludes only a finite
number of expressions, and we seek to infer an infinite family of worst-case
expressions, the shortcoming is not severe and will be ignored in the remainder
of the analysis.

Lemma 5.1.12. If µ is worst-case, then |µ|^ = 0.

87

5 Conversion Ratio

p q
(s∗1+s

∗
2)(s

∗
3+s

∗
4) ⇒5 p

a

s1

b

s2

x

c

s3

d

s4

q ⇒? ⇒X p

a

b

c

d

q

p q
(s∗1+s

∗
2)(s

∗
3+s

∗
4+a

∗)
⇒6 p

a

s1

b

s2

x

c

s3

e

a

d

s4

q

Figure 5.3: Proof of Lem. 5.1.13. Augmenting the sum s∗3 + s∗4 by a further
addend a∗ yields four new elements and prevents X-elimination of
the state x.

Proof. If µ is worst-case then |µ|ε = 0 by Lem. 5.1.5, so the ε-transition
appearing in a fan must be the result of a preceding star expansion. If a fan
emerges from ⇒∗, a starred factor is required. Following Lem. 5.1.9, these do
not occur in a worst-case expression.

Lemma 5.1.13. If µ is worst-case, then |µ|X = 0.

Proof. As noted in the proof of Lem. 5.1.12, an ε-transition in any Akµ results
from star expansion. In particular, an X-anchor can only result from expanding
a subexpression with structure χ = (s∗1 + s∗2)(s

∗
3 + s∗4). So suppose χ ∈ sub(r),

let χ′ = (s∗1 + s∗2)(s
∗
3 + s∗4 + a∗) for some a ∈ A, and set

µ′ := µ[χ′/χ].

For the relative sizes of expressions and automata, we find |µ′| = |µ|+ 3, and
|Aµ′ | = |Aµ| + 5. The increase in automaton size is due to two additional
expansions and blocking the X-elimination (cf. Fig. 5.3). Applying Cor. 5.1.11
yields that µ′ is worse than µ.

Lemma 5.1.14. If µ is worst-case, then |µ|Y = 0.

88

5.1 Worst Case Expressions

Proof. Let µ be worst case, and observe that Lem. 5.1.13 implies that AB
µ is

X-normal. Suppose that AB
µ contains a Y [q]-anchor. We assume wlog. that the

out-transitions of q are all ε-transitions and the sole in-transition is t = (p, a, q).
We replace a uniquely determined occurrence of a in µ, the one which becomes
the label of t in AB

µ , by setting ν := µ[a+b∗/a] for b ∈ A.

Then |Aν | = |Aµ|+6, since “disabling” Y -elimination leaves q and the transition
(p, a, q) untouched, while four additional elements are introduced. For relative
sizes we have |ν| = |µ| + 3, so we apply Cor. 5.1.11 to conclude that ν is
worse than µ. This contradicts our assumption that µ is worst case, so AB

µ is
Y-normal, which implies the claim.

We have shown that in the construction of Ar for any worst case r, no elimination
occurs at all. With this, the inequality derived in the proof of Lem. 5.1.10
becomes an equality.

Corollary 5.1.15. If µ is worst-case, then

|Aµ| = |µ| + 2|µ|∗ − |µ|+ + 2.

This shows that fixing the size of a worst-case expression leaves the number of
sums and stars as the sole parameters that determine the size of the resulting
FA. We proceed by investigating the interrelations between those two operators.
Our findings will narrow the structural properties of worst case expressions
further down, to the effect that a unique structure emerges.

Lemma 5.1.16. In a worst case expression, every addend is nullable.

Proof. Let µ be worst-case and suppose that µ contains an addend that is not
nullable, say, s1 + s2 ∈ sub(µ) where ε /∈ L(s1). We replace s1 with s∗1 and
introduce a further nullable addend into the sum we consider. To this end, let
a be a letter and set µ′ := µ[s∗1+a∗/s1]. Now distinguish whether µ′ is in ssnf.

1. If µ′ is in ssnf, then |Aµ′ | = |Aµ|+ 7, while |µ′| = |µ| + 4. The difference
in the sizes of intermediate EFAs is clear from Fig. 5.4. Based on the
in- and out-degrees of states incident to the transition that is replaced
according to the replacement that yields µ′ from µ, we also find that no
eliminations are possible in the construction of Aµ′ that have no analogue
in the construction of Aµ. In particular, the extra addend a∗ prevents
that the new ε-transitions, which result from replacing s1 with s∗1, are
removed by a subsequent X-elimination.

It follows from Cor. 5.1.11 that µ′ is worse than µ.

89

5 Conversion Ratio

p qs1+s2 ⇒+ p q
s1
s2

(a)

p q
s∗1+a

∗+s2 ⇒2
+⇒2

∗ p q

s1

a

s2

(b)

Figure 5.4: First case in the proof of Lem. 5.1.16.

2. If µ′ is not in ssnf, replacing s1 with s∗1 + a∗ introduced a nullable base.
Since s1 is not nullable by assumption and a is a letter, the base in
question is the smallest base that contains s∗1 + a∗ in µ′. Let u′ denote
this base and let u be the corresponding (non-nullable) base in µ, so
we have u′ = u[s∗1+a∗+s2/s1+s2]. The nullability of every base besides u
is the same in µ and µ′. We remove the star operating on u′ in µ′ by
setting µ′′ = µ′[u′/u′∗]. With this, the property that no base is nullable, is
reinstated and µ′′ is in ssnf by Thm. 3.2.8.

Our standard argument — an increase in size for intermediate EFAs
which is maintained throughout the remaining conversions — applies to
the construction of Aµ and Aµ′′ . In this case, we find |Aµ′′ | = |Aµ| + 5
for automaton size (cf. Fig. 5.5); since the sizes of expressions relate to
another as |µ′′| = |µ| + 3, Cor. 5.1.11 yields that µ′′ is worse than µ.

In either case, we have construced an expression that is worse than µ. Therefore,
the assumption that a worst case expression contains non-nullable addend is
false, which is equivalent to the claim.

Having found that each addend is nullable in a worst case expression, we ask
for the full structure of an addend. Recall know from Lem. 5.1.5 that a worst
case expression is ε-free. Therefore, the fact that an addend is nullable implies
that it contains at least one iteration as a subexpression; this is the only way
to denote ε in a worst case expression.

To proceed, we introduce generalized notions of sums and products in an
expression. An expression of the form s = s1 + s2 + · · ·+ sk is called a sum of
arity k and written concisely as

s =
∑

1≤i≤k
si.

90

5.1 Worst Case Expressions

x y
(...(s1+s2)...)∗ ⇒∗ x yε

(...(s1+s2)...)

ε ⇒? x

p q

yε

s1
s2

ε

(a)

x y
(...(s∗1+a

∗+s2)...) ⇒? x p q y

ε

ε

s2
ε

ε

s1

a

(b)

Figure 5.5: Second case in the proof of Lem. 5.1.16.

Likewise, an expression as s = s1s2 · · · sk is called a product of arity k and
written

s =
∏

1≤i≤k
si.

We introduce some further notions for generalized sums; these notions carry
over to generalized products by applying the obvious changes. A generalized
sum s that is a subexpression of r is called maximal in r, if s is not an addend
itself and no si is a sum. We call s star-maximal if s is maximal and each si is
an iteration. Clearly, every sum in an expression is either maximal or part of a
maximal sum; it is at times more convenient to argue with maximal sums. For
a maximal sum in a worst case expression, we get the following result.

Lemma 5.1.17. In a worst case expression, each maximal sum is star-maximal.

Proof. Let µ be worst-case and suppose µ contains maximal sums that are
not star-maximal. We choose a smallest sum of that kind: let σ =

∑
σi be

maximal but not star-maximal and assume that all maximal sums that are
proper subexpressions of σ are star-maximal. Furthermore, let σk be an addend
which is not an iteration. Since σ is maximal, σk is not a sum. Since σk is
nullable by Lem. 5.1.16, it is not a letter either. Therefore σk must be a product,
which we suppose to be maximal. Commutativity of sums allows us to assume
k = 1. We are thus looking at

σ = σ1 +

n∑
i=2

σi =
m∏
i=1

πi +
n∑
i=2

σi.

91

5 Conversion Ratio

Since σ1 is nullable, every factor πi of σ1 is nullable, too. Moreover, |µ|ε = 0
implies that this is due to iterations that occur in each πi. Our choice of σ and
the fact that each iteration in µ is an addend (Lem. 5.1.9) imply that each πi
contains sums which are all star-maximal. Since σ1 is assumed to be a maximal
product, each πi is necessarily such a sum. In greater detail, σ admits the
structure

σ =
m∏
i=1

li∑
j=1

ς∗ij +
n∑
i=2

σi.

Depending on the number n of addends in σ we construct an expression which
is worse than µ. Notice that σ is of arity at least two, i.e., we have n ≥ 2.

1. n = 2: Since σ = σ1 + σ2 is maximal, σ2 is not a sum itself, and since σ2 is
nullable (Lem. 5.1.16) it is not a literal. This leaves two possibilities:

a) If σ2 is an iteration, σ2 = κ∗, we construct σ′ from σ as

σ′ := (x · σ1)∗ + σ2 = (x(
∏∑

ς∗ij))
∗ + κ∗,

and let µ′ := µ[σ′/σ]. Every elimination in the construction of Aµ′ has a
counterpart in the construction of Aµ, so we only need to compare the
difference in positive contributions to FA size: looking up Tab. 5.1 we
find |Aµ′ | = |Aµ|+ 5. Since we have |µ′| = |µ|+ 3, Cor. 5.1.11 applies to
yield the statement.

b) If σ2 is a (maximal) product, again Lem. 5.1.16 implies that its factors
are star-maximal sums, i.e.,

σ2 =

m′∏
i=1

l′i∑
j=1

ς∗ij , which we write as σ2 =

m+m′∏
i=m+1

li∑
j=1

ς∗ij .

We construct the product σ′ from σ by exchanging its main operator for
a concatenation-symbol and introducing a new starred addend in the first
factor of σ2:

σ′ = (

m∏
i=1

li∑
j=1

ς∗ij)(x
∗ +

lm+1∑
j=1

ς∗1j)(

m+m′∏
i=m+2

li∑
j=1

ς∗ij)

With this, we set µ′ := µ[σ′/σ]; exchanging the sum for a product in-
troduces an additional state q. No new eliminations become possible

92

5.1 Worst Case Expressions

from this replacement; in particular, the extra addend x∗ in σ′ ensures
d+(q) ≥ 3, so no X[q]-anchor emerges. We find |µ′| = |µ| + 3 and
|Aµ′ | = |Aµ|+ 5, so µ′ is worse than µ according to Cor. 5.1.11.

2. n ≥ 3: Again we exchange a sum for a product by setting

σ′ = σ1 · (x∗ +
n∑
i=2

σi).

As before, the product introduces a new state while the extra addend x∗

prevents the eventuality of X-elimination. This yields |Aµ′ | = |Aµ|+ 5 and
|µ′| = |µ|+ 3, so Cor. 5.1.11 yields the claim.

Lemma 5.1.18. In a worst case expression, every letter is a base.

Proof. Let µ be worst-case and fix an occurrence of the letter a in µ. If a is
not a base, it is either an addend or a factor. However, since all sums in µ are
star-maximal according to Lem. 5.1.17, a is not an addend.

So suppose that a is a factor in a maximal product π =
∏
πi, i.e., a = πk for

some appropriate k. Then there is at least one factor πk−1 or πk+1 “next” to
a. Let wlog. πk+1 be this factor. Since we consider a maximal product π, the
factor πk+1 is not a product itself. Moreover, since each iteration in µ is an
addend, by Lem. 5.1.9, πk+1 is not an iteration either. Therefore, πk+1 must be
a (maximal) sum or a letter. However, either possibility leads to a contradiction:

- If πk+1 is a sum, it is star-maximal, i.e., πk+1 =
∑

i ς
∗
i . The subexpression

x
∑

i ς
∗
i would lead to Y -anchors, thus contradicting Lem. 5.1.14.

- If πk+1 is a letter y, we find that ν := µ[x+y∗/xy] is worse than µ. This follows
from Cor. 5.1.11 due to |ν| = |µ| + 1 and Aν = Aµ + 2.

At this point, the properties a worst case expression may exhibit are restricted
to an extent where a characteristic structure emerges.

93

5 Conversion Ratio

Lemma 5.1.19. If r is worst case, then the structure of r is

r =

n∏
i=1

ki∑
j=1

a∗ij

for n, kj ≥ 2, and aij ∈ A.

Proof. Let µ be worst case. As stated in Lem. 5.1.18, every letter occurs as a
base in µ, thus |µ|∗ ≥ |µ|A. Following Thm. 5.1.7, µ is ssnf, so by virtue of
Thm. 3.2.9, µ does not contain any further base, resp. iteration. Put differently,
every base in µ is a letter, i.e., there is a one-to-one correspondence of letters
and iterations in µ.

So µ contains iterations, each of which, following Lem. 5.1.9, is an addend.
Consequently, µ contains sums, resp. maximal sums. Let the maximal sums
of µ be enumerated in any fashion, and let σi denote the i-th maximal sum in
that enumeration. According to Lem. 5.1.17, every σi is star-maximal; and as
we discussed above, every addend of σi is simply a starred letter. Thus the
structure of σi, for each i, is as follows:

σi =

ki∑
j=1

a∗ij for aij ∈ A.

Since the σi are maximal, no σi is a proper subexpression of some σj . If µ
contains more than just one such sum, some of the σi occur as factors in a
common product. Let π be such a product and assume wlog. that π is maximal.
Consider the parent of π in µ. Since π is maximal, it is not a factor itself, and
since all letters are bases already, π is not a base either. Consequently, π is not
an addend, since every addend is an iteration in µ. It follows that no operator
can be the parent of π in µ, which is only possible if µ = π. This provides the
basic structure

µ = π =
n∏
i=1

ki∑
j=1

a∗ij ,

as claimed.

Observe that the expression in Lem. 5.1.19, leaves the number of factors and
the number of addends in each sum unspecified. It turns out that the number of
addends needs to alternate between two and three to ensure that an expression
with that structure is worst-case. The number of factors, on the other hand,
may be arbitrary. This fully specifies the structure of a worst-case expression.

94

5.1 Worst Case Expressions

Theorem 5.1.20. An expression r is worst-case iff

r =
n∏
i=0

2+i mod 2∑
j=1

a∗ij or r =
n∏
i=1

2+i mod 2∑
j=1

a∗ij

for any n ∈ N and aij ∈ A.

Proof. In this general case, and subject to the condition that no X-eliminations
occur in the construction, we compare the sizes of µ and Aµ, which are

|µ| =(n− 1) +

n∑
i=1

(3ki − 1) = 3

n∑
i=1

ki − 1, and

|Aµ| =

n∑
i=1

4ki + n− 1 = 4

n∑
i=1

ki + n− 1.

This leads to the following conversion ratio:

c(µ) =
|Aµ|
|µ|

=
4
∑
ki + n− 1

3
∑
ki − 1

= 1 +

∑
ki + n

3
∑
ki − 1

.

The term on the right shows that c(µ) is maximal iff n is maximal relative to∑
ki, or equivalently, iff

∑
ki is minimal for fixed n. All sums in µ are proper,

i.e., not unary, so ki ≥ 2 follows for all i. However, simply setting ki = 2 for
all i introduces an X-anchor in Xµ for every pair of adjacent factors. The
problem disappears if ki alternates between 2 an 3, i.e., for ki = 2 + i mod 2 or
ki = 2 + (i+ 1) mod 2. The particular term determines whether this alternation
starts with 2 or with 3. It is easily seen using the pigeonhole principle that any
smaller

∑
ki leads to X-anchors.

The structure of a worst case expression is thus highly repetitive: a succession of
sums that alternate between two and three starred letters as addends. Clearly,
the choice of these letters does not influence the size of an automaton constructed
from such an expression. The fact whether the expression starts with sum of
two or of three addends is irrelevant for automaton size, too.

According to Cor. 5.1.15, the only parameter that controls the size of the FA
constructed for such an expression is the overall number of repetitions, i.e., the
number of factors in it. For ease of analysis we assume that sums of alternating
length appear in pairs and start with a binary sum. Moreover, we fix an
alphabet of size five, say, A := {a1, a2, a3, a4, a5}.

95

5 Conversion Ratio

n−1

a1

a2

a3

a4

a5

a1

a2

a3

a4

a5

Figure 5.6: Automaton constructed from µn (ε-labels are omitted). The brack-
eted subautomaton is repeated according to the parameter n.

With above conventions we a define a parametrized “showcase” expression
µn ∈ REA as

µn :=
2n∏
i=1

2+i mod 2∑
j=1

a∗ij ,

which is equivalently conveyed by the less formal but better readable notation

µn = [(a∗1 + a∗1)(a
∗
3 + a∗4 + a∗5)]

n.

The corresponding parametrized automaton Aµn , as derived by our construction,
is shown in Fig. 5.6.

As a corollary, this allows us to give an upper bound for the size of an automaton
constructed for any expression in the size of this expression.

Theorem 5.1.21. Any expression r can be converted to a unique normalized
FA A s.t.

|A| < 22

15
|r| + 2.5, or equivalently |A| < 1.46|r| + 2.5.

Proof. Given an expression r, choose n s.t. µn is the smallest worst case
expression, as defined above, that is not smaller than r. For the size of µn and
the FA constructed from it, we find |µn| = 15n− 1 and |Aµn | = 22n+ 1. The
conversion ratio of µn is therefore

c(µn) =
22n+ 1

15n− 1
=

22

15
+

37

15|µn|
.

96

5.2 A Lower Bound on Conversion Ratio

By choice, we have |r| ≤ |µn|, and since µn is worst case, we also have c(r) ≤
c(µn). For the size of Ar we thus find

|Ar| = c(r)|r| ≤ c(µn)|r| =
22

15
|r| + 37

15|µn|
|r|

≤ 22

15
|r| + 37

15
=

22

15
|r| + 2

7

15
.

As we have established in Sec. 4.2, the normalized FA Ar is unique. In conclusion,
setting A := Ar satisfies the claim.

5.2 A Lower Bound on Conversion Ratio

In this section we show that our construction is worst-case optimal, which is to
say that the automaton constructed for a worst case expression is of minimal
size. Hence there is no construction that can attain a better conversion ratio in
general.

As a preliminary, we prove a lower bound for the combined number of arcs
and vertices necessary to assert certain paths among two sets of vertices in a
graph.

Proposition 5.2.1. Let L and R be disjoint sets of vertices in a graph G, and
assume that the following conditions are satisfied

1. There is an (l, r)-path for arbitrary l ∈ L, r ∈ R in G.

2. There is no (L,L)-path and no (R,R)-path in G.

3. There is no (R,L)-path in G.

Then G contains at least min{|L||R|, |L|+ |R|+ 1} additional elements.

Proof. Let G be as in the claim and observe observe that the (L,R)-paths need
not be disjoint. We distinguish whether a vertex lies on some (L,R)-path.

- If there is no such vertex on any (L,R)-path, each l ∈ L is adjacent to every
r ∈ R. Thus, G contains at least |L||R| arcs.

97

5 Conversion Ratio

- If x lies on the (l, r)-path P then x /∈ L∪R, due to the second precondition of
the claim. Now P contains at least three elements, x and two arcs. Consider
the remaining vertices of L and R: every r′ ∈ R \ r is the endpoint of a path
from l, so every such r′ is the endpoint of an arc ar′ . Likewise, every l′ ∈ L \ l
is the tail of an arc al′ . By above path-properties, no pair ar′ , al′ coincides.
Hence G contains 3 + (|L| − 1) + (|R| − 1) = |L|+ |R|+ 1 additional elements.

In either case, G contains at least min{|L||R|, |L|+ |R|+ 1} additional elements,
as claimed.

In the following, we refer to a maximal nonempty repetition of a letter in a
word as a block. Formally, a block of w is any subword v = aki , for k ≥ 1, s.t.
w = uvy, u 6= u′ai, and y 6= aiy

′. A block aki is also called an ai-block. For
example, the word a1a1a1a2a1a3a3 contains four blocks: a31, a2, a1, a

2
3; these

are two a1-blocks, an a2-block, and an a3-block. However, the word does not
contain the block a21.

We reconsider the parametrized worst case expression µn which we defined as

µn = [(a∗1 + a∗2)(a
∗
3 + a∗4 + a∗5)]

n.

Observe that the number of blocks in any w ∈ L(µn) is at most 2n. We call a
word that reaches that bound block-maximal . The structure of a block-maximal
word w is

w = b1,j1b2,j2 . . . b2n,j2n ,

where ji ∈ {1, 2} if i is odd and ji ∈ {3, 4, 5} if i is even. Conversely, any word
that satisfies these properties is a block maximal word of L(µn). The restricted
indexing of blocks in a block-maximal word is the key for proving the following
lower bound.

Theorem 5.2.2. A normalized FA that accepts L(µn) is at least of size 22n+1.

Proof. Let A be any normalized FA accepting L(µn), and consider how a
block-maximal word wmax is accepted by A. According to the structure of µn,
each block of wmax can be of arbitrary length and is therefore read in a cyclic
substructure of A. Let Ci,j denote the substructure of A that accepts a block
bi,j or at least an arbitrarily long part of it.

The proof consists of two parts. First, we bound the number of cyclic structures
Ci,j in A from below. More precisely, we show that the number of such structures
is bounded by the number of ways a block can be indexed in wmax. In the

98

5.2 A Lower Bound on Conversion Ratio

second part, the number of elements that are required to connect these cycles
in A, without distorting the accepted language, is bounded from below.

1. Let bi,j and bn,m denote two distinct blocks in some wmax, i.e., let i 6= n or
j 6= m. We distinguish two main cases that cover all possibilities for this.

First assume i 6= n, where wlog. i < n. This means that bi,j may precede
bn,m is some wmax. For the sake of contradiction suppose that the associated
cycles Ci,j and Cn,m of A share a state q.

- If the parity of i and n differs, then j 6= m follows according to above
observation about the block-structure of wmax. The number of blocks
in w ∈ L(A) is unbound then: any sequence of alternating xj- and xm-
blocks is accepted by alternating between Ci,j and Cn,m in A, changing
the accepting cycle by means of the common state q.

- If i and n are of the same parity, yet i < n, there is an “intermediate”
block bk,l in w, s.t. i < k < n and the parity of k differs from that of i,
resp. n. Therefore xj 6= xk and xk 6= xn, even though xi = xn is possible.

Second, we consider two blocks that may both occur as the i-th block in
wmax, say, bi,j and bi,m, where j 6= m. Then, as in either subcase of the
previous case, a state shared by Ci,j and Ci,m allows for words with an
unbound number of alternating xj- and xm-blocks.

Either case contradicts the fact that the number of blocks in w ∈ L(µn) is
bounded from above. Therefore the structures Ci,j and Cn,m are disjoint for
each distinct pair of indexings bi,j and bn,m.

2. To bound the number of elements that connect the cycles Ci,j in A, we first
show that A contains a path from Ci,j to a distinct Cn,m iff i < n.

- If i < n, there is a block-maximal w ∈ L(µn) with blocks bi,j and bn,m. To
accept w, A must contain a path from Ci,j to Cn,m.

- If i ≥ n, suppose for the sake of contradiction that A contains a path from
a state p of Ci,j to a state q of Ci,m. Let x denote the (possibly empty)
word that is read by traversing this path. We treat the cases i = n and
i > n separately.

Let i = n and refer to the common value by just i. Since A is normalized,
there are block-maximal words w,w′ ∈ L(µn) s.t. the i-th block of w and
w′ is an aj-block, resp. an am-block, which is read by A in Ci,j , resp. Ci,m.

99

5 Conversion Ratio

These two words can be written as w = uvy and w′ = u′v′y′, where v and
v′ denote the aj- and am-blocks we are keeping track of. Now a word

z = uvakjxa
l
mv
′y′

is accepted by A for some k, l ∈ N, as follows: First, the prefix uv is read
as a prefix of w. Thus A is reaches some state of Ci,j , from where it reads
a sequence akj to reach the state p of Ci,j . Next, A reads the subword x on

the path from p to q. Now A is in Ci,m, wherein it reads alm until reaching
the state of Ci,m from where the suffix u′y′ of w′ leads to the final state
A. However, we find z /∈ L(µn), as z consists of at least 2n + 1 blocks.
Therefore, no path from Ci,j to Ci,m, resp. to Cn,m, exists in A for this
case.

Now let i > n, then, as we know from the previous case, A contains a
path from Cn,m to Ci,j . In the presence of a path from Ci,j to Cn,m, A
accepts words with an unbounded number of bn,m- and bi,j-blocks, since
either cycle is reached from the initial state and reaches the final state.
This again contradicts the property that the number of blocks in words
from L(µn) is bounded.

We integrate these findings into an overall lower bound on |A|. As we have
seen, there is a distinct cycle Ci,j in A for each possible indexing of a block in
a block-maximal word of L(µn). For such a block bi,j , following the structure
of µn, we find j ∈ {1, 2} if i is odd and j ∈ {1, 2, 3} if i is even. Thus there
are 5n possible indexings of a block in a block maximal word. Consequently,
A contains at least 5n cycles. Since a cycle consists of at least a state and a
transition (possibly a loop), there are at least 10n elements in A to realize these
cycles.

Next we analyze the number of elements required to connect these cycles among
each other. To this end we arrange the cycles according to the block structure of
block-maximal words in L(µn). For fixed 1 ≤ i ≤ 2n we refer to the Ci,j as the
i-th layer of A. The structure of µn is transferred to A in that A contains 2n
layers alternating between two and three cycles. As we have shown, A contains
a path from each cycle of layer i to every cycle of layer k iff i < k. Transitive
reduction shows that this at least requires a path from every cycle of layer n
to every cycle of layer n+ 1, the conditions that no path exists among cycles
within the same layer or from the n + 1-th to the n-th layer, remains. For a
pair of adjacent layers we choose a state from each cycle in either layer which
gives us two sets of states that satisfy the preconditions of Prop. 5.2.1. As these

100

5.2 A Lower Bound on Conversion Ratio

sets of states always contain two and three elements, Prop. 5.2.1 yields that
they are connected by at least 6 additional elements in A. This holds for every
pair of consecutive layers, of which there are 2n − 1 many, so A contains at
least 12n− 6 additional elements to connect the 5n cycles we found.

A final contribution to the size of A are the initial state q0 and final state qf ,
and the transitions connecting these states to the layers we just investigated.
Obviously, q0 is no part of any layer, as each layer contains at least two cycles
that are not connected by paths, while each cycle can be reached from q0. In
particular, the first layer of A can be reached from q0. Thus there is a path
from q0 to either cycle of the first layer; since neither such path is a segment of
the other, there are at least two extra transitions for reaching the structures
of the first layer of A from its initial state. A symmetric argument shows that
qf is a further state of A, and that three additional transitions are at least
required to guarantee that qf is reached from cycles in the 2n-th layer of A. So
there are at least 7 more elements in A.

In total, this yields that for any normalized FA A with L(A) = L(µn), we find

|A| ≤ 10n+ (12n− 6) + 7 = 22n+ 1,

as claimed in the statement.

Therefore, there is no algorithm that constructs automata from expressions
with a better ratio of input to output size than the one we are considering. This
allows us to proclaim

Corollary 5.2.3. The construction given in Ch. 4 is worst case optimal.

We show a further property of the language each worst-case expression denotes.
Recall that we have shown the relative unary complexity of a regular language
is bounded by unity (Thm. 3.2.11). Moreover, this bound tight, at least for
languages over a growing alphabet (Lem. 3.2.12). We show that this also holds
for each L(µn), which is defined over a fixed alphabet. We argue similar as in
the proof of Thm. 5.2.2, by considering a block-maximal word in w ∈ L(µn).

Lemma 5.2.4. ω(L(µn)) = 1.

Proof. First we show that the alphabetic complexity of L(µn) is 5n. Recall that
the structure of a block-maximal word wmax ∈ L(µn) is

wmax = b1,j1b2,j2 . . . b2n,j2n ,

101

5 Conversion Ratio

where ji ∈ {1, 2} if i is odd and ji ∈ {3, 4, 5} if i is even. This allows for 5n
combinations for the indexing bi,ji of a block in any wmax.

Let ν be any expression that denotes L(µn), and let bi,j and bn,m be distinct
blocks that are allowed in block maximal words of L(µn). In the case that
j 6= m, the blocks consist of different letters xj 6= xm, which certainly originate
from distinct letter positions in ν. For j = m follows i 6= n, and since the blocks
are distinct, at least one other block lies between them in a block maximal word.
Let w be such a word in L(µn), i.e., let

w := w1 x
k
j w2 x

k′
j w3,

where k and k′ are positive and w2 is nonempty. We decompose w differently
to write it as

w := w′1 xj w
′
2 xj w3,

with w′1 = w1x
k−1
j and w′2 = w2x

k′−1
j . If we assume that the two xj that stick

out in w originate from the same position, we can apply a “pumping argument”.
We then find

w′1xj(w
′
2xj)

lw3 ∈ L(µ′n)

for arbitrary l ∈ N. Since w2 contains more letters than just xj , the number
of blocks in words from L(ν) is unbounded. Then L(µn) 6= L(ν) follows, which
proves that any expression that any expression that denotes L(µn) has at least
one letter position for every possible indexing of a block allowed in a block
maximal word. Since there are 5n such indexings, and the alphabetic width
of an expression is bounded by the number of letter positions from below, we
arrive at α(L(µn)) ≥ 5n. Since α(L(µn)) ≤ |µn|A = 5n we arrive at the sought
intermediate result, that α(L(µn)) = 5n.

Again, let ν be any expression that denotes L(µn) and reaches the alphabetic
complexity, i.e., |ν|A = 5n. This has several consequences for the structure
of ν. First, all the literals in ν are then letters, i.e., ∅, ε /∈ sub(ν). Moreover,
since ε ∈ L(µn), every position is the scope of a unary operator in ν. As every
position can be repeated arbitrarily often in w ∈ L(µn) every position is in the
scope of a star. Since the number of blocks is bounded in w ∈ L(µn), no sum is
in the scope of a star. By the same reason, no base contains distinct letters, so
all positions that occur in a fixed base are xi-positions, for fixed i.

Suppose now that |ν|ω < 5n. It then follows that there are two letter positions
that are in scope of the same iterations. As we have argued, these are both
xi-positions, possibly within in a bigger product xli. Removing one of these
positions, i.e., replacing xli with xl−1i , does not alter the denoted language.

102

5.2 A Lower Bound on Conversion Ratio

However, this yields an expression of alphabetic width 5n−1, which contradicts
α(L(µn)) = 5n. Therefore, |nu|ω ≥ 5n follows.

Since |µn|ω = 5n and α(L(µn)) = 5n, the statement follows.

103

6 Series Parallel Loop Graphs

In this chapter the class of series-parallel-loop graphs is defined and investigated.
This class generalizes that of arc-series-parallel graphs beyond the acyclic
case. The arc-series-parallel graphs are well-known from the work of Valdes
et al. [52, 53, 54]. Two important results from their work are the efficient
decidability of arc-series-parallel graphs and a characterization of its members
by forbidden subgraphs. These properties will be generalized to our new class.

Additional Terminology and Notation A hammock is a graph G with vertices
src and snk, respectively called the source and the sink of G, s.t. G satisfies
the following properties:

1. d−G(src) = 0 and d+
G(snk) = 0,

2. for every x ∈ VG there is a (src, x)-path in G, and

3. for every x ∈ VG there is an (x, snk)-path in G.

We refer to a hammock G with source src and sink snk as (G, src, snk). The
class of hammocks is denoted H . The smallest member of H is the graph
consisting of one vertex and no arcs. Observe that the converse of a hammock
(G, src, snk) is the hammock (GR, snk, src), which means H is closed under
arc-reversal. Thus we may — and usually will — resort to the principle of
directional duality for proving properties of H.

If (G, src, snk) contains vertices x and y s.t. x lies on every (src, y)-path in G,
then x dominates y, while y is dominated by x. Symmetrically, if x lies on every
(y, snk)-path in G, then x co-dominates y. If x dominates and co-dominates y,
we say that x guards y, resp. that x is a guard of y. More generally, if F is
a subgraph of G and x dominates, co-dominates, or guards each vertex of G,
then x dominates, co-dominates, or guards G, respectively.

The domination and the co-domination relations each induce a partial order
on the vertices of a hammock. In the following, this is stated only for the
domination relation, but follows symmetrically for co-domination.

105

6 Series Parallel Loop Graphs

Proposition 6.0.5. Let H be a hammock and let x, y, and z be vertices of H.
Then the following properties hold in H:

1. Reflexivity: Each vertex dominates itself.

2. Transitivity: If x dominates y and y dominates z, then x dominates z.

3. Antisymmetry: If x dominates y and y dominates x, then x = y.

Proof. Let src denote the source vertex of H. Showing reflexivity is trivial, as
each x ∈ VH lies on every (src, x)-path. For transitivity, assume that x lies on
every (src, y)-path, and that y lies on every (src, z)-path. Then x lies on the
(src, y)-segment of every (src, z)-path and thus on every (src, z)-path. To show
antisymmetry, assume that x lies on every (src, y)-path and that y lies on every
(src, x)-path. For x 6= y, this implies that each (src, x)-path passes through x
before reaching x, which is absurd. Thus follows x = y.

Proposition 6.0.6. Let H be a hammock with source src and distinct vertices
x and y. Then exactly one of the following properties hold in H:

1. x dominates y

2. y dominates x

3. Some vertex z dominates both x and y, and H contains a (src, z)-path, a
(z, x)-path and a (z, y)-path, which are pairwise internally disjoint.

Proof. Assume that x dominates y. Since we assumed x 6= y, and the domination
relation is antisymmetric, it follows that y does not dominate x. Next, let z
be any vertex dominating both x and y. This implies that no (src, z)-path
passes through x. But since x dominates y by assumption, x must lie on every
(z, y)-path. Thus no pair of (z, x)- and (z, y)-paths is internally disjoint.

If y dominates x, the two other properties are excluded by analogous reasoning.

If neither vertex dominates the other, let z0, z1, . . . , zn denote the vertices that
dominate both x and y in H. Such vertices exist, since at least src dominates
both x and y. The vertices zi are linearly ordered by the domination relation:
either zi dominates zj or vice versa. We may thus assume that the zi are
indexed with increasing distance from src, i.e., z0 = src, and any (zi, x)- or
(zi, y)-path contains no zj for j < i. Let Px denote a (zn, x)-path which does not
pass through y; since y does not dominate x by assumption, a path with that
property exists. If H contains a (zn, y)-path that is internally disjoint with Px,
the claim follows for z = zn. Otherwise, every (zn, y)-path shares an internal

106

6.1 Definition and Decidability

src/z0 z1 zn

v0

vk

x

y

Figure 6.1: Construction in the proof of Prop. 6.0.6.

vertex with Px. Let v0, . . . , vk denote the vertices on Px that intersect with the
(zn, y)-paths, and assume that the vi are indexed s.t. Px contains a segment
from vi to vi+1 for each i. If there is only one intersection vertex, namely v0,
this contradicts our choice of zn, since in that case, v0 dominates x and y, but
is farther from src than zn. So assume that there are several such vertices
and consider those with minimal and maximal index, v0 and vk. By a similar
contradiction argument as before, we find that there is at least one (zn, y)-path
Py that passes through v0, but not vk. Likewise, some (zn, y)-path P ′y passes
through vk but not v0. We construct a (zn, x)-path Qx and a (zn, y)-path Qy
from Px, Py, and P ′y, in a way s.t. Qx and Qy are internally disjoint. The
path Qx consists of the (zn, vk)-segment of P ′y followed by the (vk, x)-segment
of Px. The path Qy consists of the (zn, v0)-segment of Px, followed by the
(v0, y)-segment of Py.

6.1 Definition and Decidability

Definition 9 (Expansion). The relations
s⇒,

p⇒ and
`⇒, called series expansion,

parallel expansion and loop expansion respectively, are defined on H as follows.
Let (G, src, snk) be a hammock with arc a = xy, then

- G
s⇒ H, if H is obtained from G by replacing a with an (x, y)-path of length

two. This is equivalent to removing a, adding a new vertex z and arcs xz and
zy. Formally, H = ((G \ a) + z) ∪ {xz, zy}.

- G
p⇒ H, if H is obtained from G by adding a further xy-arc to AG. Formally,

H = G ∪ xy.

- G
`⇒ H, if a is a constriction s.t. x 6= src and y 6= snk, and H is obtained

from G by merging x and y. Formally, H = G[x = y].

These relations are abbreviated as s-, p- and `-expansion, for series-, parallel-
and loop-expansion, respectively. If G

c⇒ H for c ∈ {s, p, `} then we say that G

107

6 Series Parallel Loop Graphs

x y s⇒ x z y

(a) series expansion

x y p⇒ x y

(b) parallel expansion

x y `⇒ x/y

(c) loop expansion, for a constriction xy

Figure 6.2: Changes in a graph upon expanding an xy-arc.

is c-expanded to H and that H is an c-expansion of G. The local changes in a
hammock upon expansion are sketched in Fig. 6.2. We may omit the particular
type of expansion and write just G⇒ H; to this end, we set

⇒ :=
s⇒ ∪ p⇒ ∪ `⇒ .

Observe that
s⇒,

p⇒, and
`⇒, are indeed relations on H, i.e., if G⇒ H for some

hammock G, then H is a hammock with the same source and sink as G. For
`-expansion, this property is “enforced” by requiring that the expanded arc is
not incident to the source or sink.

Definition 10. The class of series parallel loop graphs, denoted SPL , is

generated by
s⇒,

p⇒ and
`⇒ from P1. It is the smallest class of graphs that

satisfies

- P1 ∈ SPL

- If G ∈ SPL and G
s⇒ H, G

p⇒ H, or G
`⇒ H, then also H ∈ SPL.

For brevity we speak of spl-graphs only. The graph P1 is called the axiom of
SPL. An example for the construction of an spl-graph from the axiom is shown
in Fig. 6.3.

The set of acyclic spl-graphs, which consists of those spl-graphs that are
generated from P1 by

s⇒ and
p⇒ is called the class of series parallel graphs and

denoted SP. This class is well-known by now; it was investigated by Valdes et
al. [52, 53, 54]. In this and the subsequent chapters, we will come back to the
results by these authors at several times. Their results about sp-graphs will be
generalized to spl-graphs, while at the same time, we omit any proof for the
acyclic case and refer to these previous works.

108

6.1 Definition and Decidability

p⇒ s⇒ s⇒ `⇒ s⇒

Figure 6.3: Construction of an spl-graph from P1 by a sequence of expansions.

It should be noted that the recursive definition of SP given by Valdes et al.
differs from the one we use: instead of replacing arcs — as we do for s- and
p-expansions — in the constructive step, they combine two sp-graphs by merging
the sources and sinks in different ways. The two definitions can be shown to
be equivalent by a straightforward inductive argument, which is omitted here.
Let us further mention that the class we refer to as “series parallel graphs” is
termed “arc series parallel” in the original works. There is, in fact, a second
class of acyclic graphs defined by some means of series and parallel operations,
namely, that of “vertex series parallel graphs”. These classes are closely related,
which is investigated in [52]. Nevertheless, their distinction is irrelevant for us,
so we drop the modifier.

Quite obviously, the class of sp-graphs is a properly contained in that of spl-
graphs, since the latter contains graphs with cycles, such as the one shown in
Fig. 6.2. According to the discussion preceding Def. 10, we find further that
every spl-graph is a hammock. This leads to the inclusions

SP (SPL ⊆ H.

We are first going to show that the latter inclusion is proper. An important
property for proving this, as well as many further properties of spl-graphs, is
the fact that the connectivity of two vertices is invariant under expansion, as
long as the considered vertices are not removed.

Proposition 6.1.1. Let G and H be graphs s.t. G ⇒ H and x, y ∈ VG ∩ VH .
Then G contains an (x, y)-path iff H does.

A first property that relies on this fact is the following:

Proposition 6.1.2. Every cycle in an spl-graph is guarded by exactly one of
its vertices.

Proof. The claim is vacuously true for P1, so suppose it is true for G ∈ SPL
and let G⇒ H. It is easy to see that the claimed property carries over if H is
derived from G by means of s- or p-expansion.

109

6 Series Parallel Loop Graphs

Figure 6.4: Hammock which does not belong to SPL

For the case G
`⇒ H let a = xy be the arc that is expanded in G and let z

denote the merge vertex of x and y in H. Now consider the cycles in H. The
cycle that was introduced by expansion consists of z and the loop l = zz. This
cycle is certainly guarded by its only vertex and thus satisfies the claim. For
each other cycle in H we find a corresponding cycle in G. Let v and w be two
vertices that are not incident to a in G, which implies that v, w ∈ VG ∩ VG.
Notice that the source and the sink of G are unaffected by expansion, i.e., the
source, resp. the sinks, of G and H coincide. Following Prop. 6.1.1, v guards
w in H iff v guards w in G. Applied to cycles of H this carries the inductive
assumption from G over to H.

Corollary 6.1.3. SPL (H

Proof. We already mentioned that SPL ⊆ H, which is formally shown by
straightforward induction but omitted here. To see that the inclusion is strict,
consider the hammock shown in Fig. 6.4 which contains a cycle where neither
vertex guards the other. Thus, that hammock defies Prop. 6.1.2 and is therefore
no member of SPL.

Deciding whether G is an spl-graph can be done by finding a sequence of
expansions from P1 to G. This will be done by means of a second rewriting
system on hammocks, within which we construct such a sequence backwards. In
the following definition, recall that a vertex x is simple if d−(x) = d+(x) = 1.

Definition 11. The relations
s⇐,

p⇐ and
`⇐, called series reduction, parallel

reduction and loop reduction respectively, are defined on H as follows. Let
(G, s, t) be a hammock, then

- G
s⇐ H, if y ∈ VG is simple, with predecessor x and successor z, and H is

obtained from G by removing y and adding an arc from x to z. Formally,
H = (G− y) ∪ xz.

- G
p⇐ H, if G contains parallel arcs a and a′ and H is obtained by removing

one of them. Formally, H = G \ a.

110

6.1 Definition and Decidability

6 `⇐

Figure 6.5: Effect of “reducing” a loop on sight. Although the left-hand side is
an spl-graph, the right-hand side cannot be reduced to P1.

- G
`⇐ H, if G contains an x-loop l s.t. x does not guard any vertex besides

itself, no arc is parallel to l, and H is obtained from G by removing l and
then splitting x. Formally, H = (G \ l)�x�.

As with expansions, we find that the reductions do not destroy the defining
properties of a hammock, i.e., these rules are also relations on H. In accordance
with the spl-expansions we abbreviate the reduction relations as s-, p- and
`-reduction. These relation constitute the rules of the reduction ARS

R := 〈H,
s⇐, p⇐, `⇐〉.

We further set
⇐ :=

s⇐ ∪ p⇐ ∪ `⇐
and write just G ⇐ H if the particular type of reduction from G to H is
irrelevant.

Observe that `-reduction is defined for loops on vertices that are slightly
restricted. In particular, the restriction ensures that a loop is not `-reduced in
the presence of parallel loops. The latter might lead to false negatives, as is
shown in Fig. 6.5 by example. In a case like this, the restriction enforces that
parallel reduction is applied before loop reduction.

It is important to realize that the relations ⇐ and ⇒ are not proper duals.
This is due to the restrictions we set for `-reduction. To stay with the previous
example, consider Fig. 6.5 again. As we remarked just before, the left hand
side can not be `-reduced to the right hand side. However, the hammock on
the right can be `-expanded to the one on the left.

On the other hand, it follows easily from the respective definitions that s- and
p-reduction are the duals of s- and p-expansion. Altogether, the immediate
relationship between the single expansions and reductions is as follows:

s⇐ = (
s⇒)
−1

and
p⇐ = (

p⇒)
−1

, whereas
`⇐ ((

`⇒)
−1
.

Because of this asymmetry wrt. “loop-operations”, there is actually something
to prove in order to get the following result.

111

6 Series Parallel Loop Graphs

Proposition 6.1.4. G ∈ SPL iff P1 is an R-normal form of G.

Proof. According to the above, the relationship between expansion and reduc-
tions is ⇐(⇒−1. Thus, if G can be reduced to the axiom, G ⇐? P1, it also
can be constructed from the axiom by expansion, P1 ⇒? G. It follows that
G ∈ SPL.

The converse direction is proven by induction on the structure of G. For G = P1

the claim certainly holds. Assume that the claim holds for G ∈ SPL and
consider H ∈ SPL, derived via G ⇒ H. For G

s⇒ H and G
p⇒ H, we find

H
s⇐ G and H

p⇐ G immediately. Since we assumed G⇐? P1, this also yields

H ⇐? P1 in either case. For G
`⇒ H, let a = xy denote the constriction that is

`-expanded, i.e., assume H = G[x = y]. Further let z denote the merge vertex
of x and y. We need to show that `-reduction is applicable to the z-loop in H,
resp. that z does not guard any arc besides that loop or any other vertex in H.

For the sake of contradiction, first suppose that z guards some other vertex.
Then, in particular, some vertex k that is guarded by z and the two vertices
lie on a common cycle in H. Following Prop. 7.2.8, this cycle is guarded by
exactly one of its vertices, since H ∈ SPL. Since z already guards k, it further
guards the whole cycle. But then, it follows that the respective cycle in G is
guarded by x and y, which both lie on the cycle. This contradicts Prop. 7.2.8.

Therefore, z does not guard any vertex but itself, so G
`⇐ H holds.

We have found that G ⇒ H implies H ⇐ G in each case. Since we assumed
G⇐? P1, this further yields H ⇐? P1, and the inductive step is complete.

So we can test membership in SPL by finding a reduction sequence of a graph to
the axiom of SPL. In the remainder of this section we show that no particular
strategy is necessary in order to do so, due to unique normal forms of the ARS
R. This property is crucial for the efficient decidability of SPL. The first step
of this argument is to show that an R-normal form is always reached by a finite
number of arbitrary rewriting steps.

Proposition 6.1.5. The system R is terminating.

Proof. Let p(H) denote the number of arcs and loops in H ∈ H, i.e., set

p(H) := |AH |+ |{l | l ∈ AH and tH(l) = hH(l)}|.

Let H ⇐ H ′ and compare p(H ′) with p(H), depending on the applied reduction.
For s-reduction we find p(H ′) = p(H)− 1, as two arcs are traded for one. For

112

6.1 Definition and Decidability

p-reduction we find p(H ′) = p(H) − 1 or p(H ′) = p(H) − 2, depending on
whether a proper arc or a loop is removed. This distinction comes with the
property that loops are counted twice in p(H), resp. p(H ′). We therefore also
find p(H ′) = p(H) − 1 for `-reduction, as the loop that is removed from H ′

weighs heavier than the arc that is introduced in H ′.

Thus for a rewriting H = H0 ⇐ H1 ⇐ H2 ⇐ · · · , the value of p(Hi) is strictly
decreasing. Since p(Hi) ∈ N, no infinite rewritings are possible.

Lemma 6.1.6. The system R is locally confluent.

Proof. We take the common approach by showing that G
c1⇐ H1 and G

c2⇐ H2

imply the existence of a hammock J with H1 ⇐? J and H2 ⇐? J for every
combination c1, c2 ∈ {s, p, `}. For each case, such a hammock is explicitly given.

The spl-reductions are expressed according to Def. 11, in terms of elementary
operations on graphs and splits of vertices. Recall the properties of elementary
operation compiled in Props. 2.3.1, 2.3.2, and 2.3.3, which basically state that
the order of elementary operations can be swapped if the added / removed
elements are not adjacent or incident. We do not explicitly refer the particular
proposition in each case; it will always be clear from the context which property
is used.

We first consider the cases where c1 = c2. If both reductions are p-reductions,
G

p⇐ Hi, then Hi = G \ ai, and either Hi reduces to J = G \ {a1, a2}. Next,
assume that both reduction are s-reductions, G

s⇐ Hi, hence Hi = (G−yi)∪xizi.
If y1 and y2 are not adjacent in G, then y1 /∈ {x2, z2} and y2 /∈ {x1, z1}. In this
case, we set J = (G− {y1, y2}) ∪ {x1z1, x2z2} to find H1

s⇐ J , due to

(H1 − y2) ∪ x2z2 = (((G− y1) ∪ x1z1)− y2) ∪ x2z2
= (((G− y1)− y2) ∪ x1z1) ∪ x2z2
= (G− {y1, y2}) ∪ {x1z1, x2z2} = J,

and symmetrically H2
s⇐ J . If, on the other hand, y1 and y2 are adjacent,

assume that G contains an y1y2-arc (the converse case is symmetric). Since
either yi is simple, this implies y1 = x2 and y2 = z1, as sketched below:

x1 y1 y2 z2=x2 =z1

113

6 Series Parallel Loop Graphs

Thus in particular H1 = (G− y1)∪ x1y2. We set J = (G− {y1, y2})∪ x1z2 and
find H1

s⇐ J for some s-reduction in y2. Taking the renaming of vertices into
account, this formally is:

(H1 − y2) ∪ x1z2 = (((G− y1) ∪ x1y2)− y2) ∪ x1z2
= ((G− y1)− y2) ∪ x1z2 = (G− {y1, y2}) ∪ x1z2 = J,

and a symmetric argument shows H2
s⇐ J .

If both reductions are `-reductions, let li = xixi denote the loop that allows

for G
`⇐ Hi. If x1 = x2, these loops are identical, since parallel loops do not

admit l-reduction. In this case, we find H1 = H2 = J , which satisfies the claim
trivially. Otherwise, we consider the exposition of Hi in terms of elementary
operations, which is

H1 = (G \ l1)�x1�= G \Out(x1) + x′1 ∪ x1x′1 ∪ {x′1y | xy ∈ AG \ l}

Now we consider the mixed combinations, c1 6= c2. First let G
s⇐ H1 and

G
p⇐ H2, say, H1 = (G− x) ∪ yz and H2 = G \ a. Then, each vertex incident

to a has in- or outdegree at least two, while x is simple. Therefore, a and x are
not incident, hence the two reductions can be applied in either order. Formally,
this reads as

H1 \ a = ((G− x) ∪ yz) \ a
= ((G− x) \ a) ∪ yz
= ((G \ a)− x) ∪ yz = (H2 − x) ∪ yz.

Next, assume G
s⇐ H1 and G

`⇐ H2, so H1 = (G − x) ∪ yz again, and
H2 = (G \ l) �p�. Observe that x 6= p holds in G, since G is a hammock
and does not allow loops at simple vertices. We show that s-reduction of x in
H2 and l-reduction of l in H1 yield the same graph. Assume that x and p are
adjacent, where p = y, as sketched below:

p x z
=y

114

6.2 Implementation Details

We include this renaming in the following formal treatment.

(H1 \ l)�p� = ((G− x ∪ yz) \ l)�p�
= ((G− x ∪ yz) \ l)�y�
= ((G \ l)− x ∪ xy)�y�
= ((G \ l)�y� −x ∪ y′z) = (H2 − x) ∪ y′z

If finally G
p⇐ H1 and G

`⇐ H2, assume the two reductions are specified by
H1 = G \ a and H2 = (G \ l)�x�. Observe that a is not an x-loop, since the
x-loop l can be reduced. So if a = yz, y and z can not both be x. Assume wlog.
that y 6= x, then we find that either Hi reduces to J , which satisfies

(G \ l)�x�) \ a = J = ((G \ a) \ l)�x� .

This completes the proof.

Corollary 6.1.7. The system R admits unique normal forms.

Proof. From Prop. 6.1.5 and Lem. 6.1.6 by application of Newman’s Lemma.

Given G ∈ H, Cor. 6.1.7 allows us to define R(G), called the spl-reduct of G,
as the normal form of G in R. A hammock is called spl-normal , or reduced ,
if it coincides with its spl-reduct. The fact that R(G) is unique strengthens
Prop. 6.1.4 considerably.

Theorem 6.1.8. G ∈ SPL iff R(G) = P1.

6.2 Implementation Details

We would like to realize deciding SPL based on Thm. 6.1.8, i.e., by implementing
spl-reductions on graphs. Recall, however, that the theoretical treatment in
Sec. 6.1 is restricted to hammocks. Technically, this is due to `-reduction, which
is based on the concept of a guard, which, in turn, is based on the existence
of a unique source resp. sink vertex in a graph. Deciding membership of an
arbitrary graph G in SPL by reductions thus requires knowing whether G is a
hammock in the first place, and, if so, what its source and sink are.

To restate the definition, G is a hammock iff there are distinct vertices, src
and snk, in G s.t. d−(src) = 0, d+(snk) = 0, and every vertex of G lies on

115

6 Series Parallel Loop Graphs

a (src, snk)-path. Observe that these conditions imply that src and snk are
unique; moreover, they are either distinct, or the hammock consists of a single
vertex and no arcs. This leads to Alg. 2, which accepts a hammock by returning
its source and sink, and rejects any other graph.

Algorithm 2: Test whether a graph is a hammock and return the source
and sink vertex in the positive case.

Input: Graph G
Output: (src, snk) if G ∈ H, false otherwise
src← NULL
snk ← NULL
foreach v ∈ VG do

if d−(v) = 0 then
if src = NULL then src← v else return false

if d+(v) = 0 then
if snk = NULL then snk ← v else return false

if src = NULL or snk = NULL then return false
R1 ← reach(src,G)
R2 ← reach(snk,GR)
if |R1| 6= |VG| or |R2| 6= |VG| then return false else return (src, snk)

Proposition 6.2.1. Membership in H can be decided linear time.

Proof. We analyze the behavior of Alg. 2 on input G. First, G is scanned for
a possible source and sink by checking the in- and out-degree of each vertex.
Since the source and sink of a hammock are unique, G is rejected if several
vertices with the degree characteristic of either the source or the sink are found.

If no candidate for the sink or the source is found upon scanning G, the algorithm
rejects, too.

Next, if unique distinct candidates for the source and the sink were found, the
algorithm checks whether each vertex of G lies on a path between those vertices.
This is the obviously case iff every vertex of G can be reached from src, and
snk can be reached from every vertex. The vertices reached from src are found
by a depth-first search starting in src. Symmetrically, the vertices that reach
snk in G are the ones which are reached from snk in GR; they are computed
accordingly. If every vertex is reached from src and reaches snk, the input G
is accepted as a hammock by returning its source and sink; otherwise, G is
rejected. The algorithm certainly terminates and thus decides H.

116

6.2 Implementation Details

The loop scanning VG for possible source and sink vertices obviously runs in
time O(|VG|). The sets R1 and R2 can be found by depth-first searches on
G, which require O(|VG|+ |AG|) steps each. The overall running time of the
algorithm is thus O(|VG|+ |AG|), which is linear in the size of G, as stated.

According to Prop. 6.2.1, a single test whether a given graph is a hammock
adds no asymptotically relevant computational overhead1. In the following, we
thus assume to operate on hammocks.

A straightforward approach to decide membership in SPL would be to simply
apply reductions as long as possible. Following Cor. 6.1.7, this procedure
terminates in the unique normal form of the input. According Thm. 6.1.8, this
normal form equals the axiom iff the input hammock is in SPL.

We will follow a more structured approach, mainly for the sake of easening
the run-time analysis. Let us mention once more that spl-reduction is locally
confluent. This allows us to pursue any reduction sequence we see fit, as long as
it is exhaustive, since the resulting normal form is independent of the particular
rewriting that lead to it. We start with stating some observations about spl-
reductions, which motivate the reduction strategy pursued in the presented
algorithm.

In the following propositions we consider how p-reduction might follow after s-
or `-reduction of a p-normal graph.

Proposition 6.2.2. Let G be p-normal and let v ∈ VG be simple with prede-
cessor x and successor y. Assume G

s⇐ H due to s-reduction of G in v. Then
H is p-normal iff xy /∈ AG.

Proof. Reducing G to H removes some elements from H and introduces an
xy-arc. Now if H contains parallel arcs, whereas G does not, these must be
xy-arcs. Thus follows the claim.

Proposition 6.2.3. If G is p-normal and G
`⇐ H, then H is p-normal.

Proof. Let G ∈ H be p-normal, and let G contain an x-loop that allows for loop
reduction to H. Let x1 and x2 denote the split-vertices of x and let a = x1x2
be the arc introduced by reduction. By definition, a is the only x1x2-arc in H,
i.e., no arc is parallel to a. Every other arc of H is either also in G, or derived

1To be precise, this is true only if the computations to follow are not all sublinear.

117

6 Series Parallel Loop Graphs

from an arc of G by replacing the tail or head x with x1 resp. x2. Since G is
free of parallel arcs, thus H is free of parallel arcs, too.

As far as `-reduction is concerned, we need to decide for each loop if `-reduction
is applicable. Recall that an x-loop can be reduced in (G, s, t) iff there is no
parallel x-loop and x does not guard any other vertex. Checking for the presence
of a parallel loop is straightforward. Testing if a vertex is a guard can be done
in linear time by testing for the properties that define a guard.

Proposition 6.2.4. Let x be a vertex of the hammock G. Testing if x is a
nontrivial guard takes time O(|AG|).

Proof. Let src and snk denote the source and sink of G, respectively. Recall
that x guards a vertex y if x lies on every (src, y)-path and every (y, snk)-path.
This is the case iff the graph G− x contains no (src, y)- and (y, snk)-paths at
all. Since we check for a nontrivial guard, we implicitly assume x 6= y.

As before, let reach(v,K) denote the set of vertices reached from v in the graph
K. For our purpose, it is sufficient to test if y is contained in reach(src,G− x)
or reach(snk, (G− x)R). If y is contained in neither set, then x guards y in G.

The sets reach(src,G−x) or reach(snk, (G−x)R) are again found by depth-first
searches in the corresponding graphs. The time required for each search is
O(|VG−x|+ |AG−x|), which is bounded by O(|VG|+ |AG|). Since G is assumed
to be a hammock, it is connected, thus the latter term is bounded by O(|AG|)
in turn. Thus follows the statement.

Our method to decide membership of a hammock in SPL is based on that
described by Valdes et al. [54] for SP. A significant difference — other than
we obviously have to provide the means for `-reduction — is that we rearrange
the interplay of s- and p-reductions. In a first step, we convert the input to
its p-normal form; the pseudocode for this part is given in Alg. 3. Following
that, we convert this p-normal graph to its spl-normal form, which is also
the spl-normal form of the initial graph. The latter reduction makes use of
Props. 6.2.3 and 6.2.2, i.e., p-reduction only takes place after a certain case
of s-reduction. This “trick” was applied before, by Schoenmakers [46], for the
recognition of SP. The pseudocode for this second step is provided in Alg. 4.

Proposition 6.2.5. The p-normal form of G ∈ H is computed by Alg. 3 in
time O(|AG|2).

118

6.2 Implementation Details

Algorithm 3: Construct the p-normal form of a hammock

Input: hammock (G, src, snk)
Output: p-normal form of G

foreach v ∈ AG \ snk do
aList← v.out arcs()
while aList 6= ∅ do

a← aList.pop()
foreach a′ ∈ aList do

if h(a) = h(a′) then
aList← aList \ a′
G← G \ a′

Proof. Every arc of G leaves some vertex, except for the sink of G, so it suffices
to consider all out-arcs. We show that after one iteration of the main loop,
G is free of parallel arcs that are out-adjacent to v, the vertex chosen at the
beginning of this iteration.

Initially, aList contains all out-arcs of v. The while-loop of the procedure
removes an arc from aList, say a = vx. Any other out-arc of v and with head
x is then removed from aList and G, thus at the end of the innermost loop, G
contains only one vx-arc. This is repeated for all out-neighbors of v and, in the
main loop, for every v. Thus the procedure terminates in a p-normal graph.

For a fixed v, reducing all parallel out-arcs requires at most∑
1≤i≤d+(v)

i = O(d+(v)2)

operations, as the first out-arc is compared to all other out-arcs, the second
out-arcs is compared to all except the first one, etc. For all vertices, the overall
number of operations is bounded from above by∑

v∈VG

O(d+(v)2) = O(
∑
v∈VG

d+(v)2) = O(|AG|2).

We separately prove that algorithm 4 is correct and that its running time is
cubic in the number of vertices of the input graph.

119

6 Series Parallel Loop Graphs

Algorithm 4: Construct the spl-normal form of a p-normal hammock

Input: p-normal (G, src, snk)
Output: spl-normal form of G

C ← VG \ {src, snk}
while C 6= ∅ do

v ← C.choose()
C.remove(v)

if d−(v) = d+(v) = 1 then
x← first predecessor(v)
y ← first successor(v)
if xy ∈ AG then

G← (G− v)
if x 6= src then C.insert(x)
if y 6= snk then C.insert(y)

else
G← (G− v) ∪ xy

if l = vv ∈ AG then
R1 ← reach(src,G− v)
R2 ← reach(snk,GR − v)
if R1 ∪R2 = VG then

G← (G \ l)�v�
C.insert(v)
C.insert(v′)

120

6.2 Implementation Details

Proposition 6.2.6. Let G be a p-normal hammock. Then Alg. 4 computes the
spl-normal form of G.

Proof. First, we show that the algorithm is correct, i.e., that it terminates in
the spl-normal form of its input. To this end we track the set C of vertices that
are candidates for reduction. We find that at all times, C contains all vertices
that allow for s-reduction or that carry a loop which allows for l-reduction in
the current G. In addition we show that G remains p-normal. Formally, we
prove by induction that these two properties are a loop invariant, i.e., that they
hold before entering and after leaving the body of the loop.

This is certainly true when the body is entered the first time. First, G is
p-normal by specification of Alg. 4. Second, C initially contains all vertices of
G except the source and the sink, therefor it certainly contains every vertex
that can possibly be reduced.

Assume the claim is true when the loop is entered, and let v be the vertex that
is removed from C. Notice that v may not be simple and carry a loop at the
same time. Thus, exactly one of the following cases applies:

1. If v is neither susceptible to s- or `-reduction, then G is unaltered, i.e., it
stays p-normal. Moreover, every vertex that does allow for reduction is
already in C by assumption.

2. If v is simple, it is removed in either subcase and needs not be minded
anymore. Consider any vertex z /∈ C ∪ {x, y}, i.e., one that is not adjacent
to v. Clearly, s-reduction in v does not change the in- or out-degree of z, so
we do not miss a vertex that becomes susceptible to s-reduction due to the
changes just applied. Following Prop. 6.1.1, reachability of or from z relative
to any other vertex in G is invariant under reduction, thus we neither miss
a vertex that carries a loop and becomes a non-guard, i.e., susceptible to
l-reduction.

We know from Prop. 6.2.2 that s-reduction of a p-normal graph introduces a
parallel pair of arcs iff one of these arcs is present before reduction. In that
case, this is the only parallel pair, so a single p-reduction reinstates that
the graph we work on is p-normal. Formally, this sequence of reductions
is ((G − v) ∪ a) \ a′, where both a and a′ are xy-arcs. Observe that the
resulting graph is isomorphic to G− v. We thus “simulate” the follow-up
p-reduction by just removing v. On the other hand, if x and y are not
adjacent, s-reduction is carried out properly. These actions realize — or

121

6 Series Parallel Loop Graphs

rather, simulate — sound s-reduction, possibly followed by sound p-reduction.
Moreover, the graph remains p-normal.

3. If v carries a loop that can be reduced, the properties for any z /∈ C ∪ {v, v′}
follow as in the previous case. On the other hand, since the out-degree of v
is altered and v′ has not been considered yet, they are added to C. Thus
the claimed property of C carries over to the next iteration of the main loop.
The fact that G stays p-normal was observed before, in Prop. 6.2.3.

The algorithm eventually terminates, since every vertex that appears at some
point of the reduction is only added a finite number of times to C, from which
some element is removed with each iteration. Upon termination, G is p-normal,
and since C is then empty, G does not contain vertices that can be s- or
l-reduced, i.e., G is s- and l-normal, too.

Therefore, the algorithm terminates in the spl-normal form of its input.

Proposition 6.2.7. Algorithm 4 runs in time O(|VG|3) on G.

Proof. We first bound the time required for a single execution of the main loop.
Afterwards we bound the overall number of calls of this loop.

As the body of the main loop is free of inner loops, the latter value is the
maximum running time among all operations. We find two computations that
“compete” as the factor determining asymptotic running time, depending on
the structure of G. On the one hand, the time required to compute either
Ri by depth-first search is O(|AG|), since G is connected. On the other hand,
computing the union of R1 and R2 runs in O(min{|R1|, |R2|} log(|R1|+ |R2|)).
Since Ri ⊆ VG, this can be relaxed to O(|VG| log |VG|), and by the same
argument, testing R1 ∪R2 and VG for equality runs in O(|VG| log |VG|), too.

Thus if G is dense, O(|AG|) determines the time spent at the most in the body,
whereas if G is sparse, O(|VG| log |VG|) does. However, since G is p-normal,
|AG| ∈ O(|VG|2) follows. Thus, either case is covered by O(|VG|2) as an upper
bound to the time spent in one iteration of the main loop.

The number of times that the main loop is executed equals the cumulative
number of times each vertex that appears at some point in G is chosen from
C. For each vertex, this number is obviously equal to the number of times it is
added to C throughout the execution of the algorithm.

As a corollary we get the main result of this section, stating that the class SPL
is efficiently decidable.

122

6.2 Implementation Details

Theorem 6.2.8. Membership of G in SPL can be decided in time

O(max{|VG|3, |AG|2}).

This result concludes the constructive treatment of SPL for now. We will get
back to Alg. 4 in Ch. 7 where we consider finite automata that are structurally
spl-graphs.

123

7 Forbidden Minor Characterization

In this chapter we present an alternative characterization of the class SPL.
The recursive definition given in chapter 6 specifies how to obtain spl-graph
constructively; it tells us how a “follow-up” spl-graph may look, starting from an
spl-graph that is already known. The second characterization specifies exactly
how an spl-graph must not look, by excluding a set of structural properties.

An “obstruction set” characterization of a graph class C consists of two parts:
First, there is the obstruction set, which is a set of graphs itself, say, O ⊆ G.
Second, a relation R on G, that models the presence of a substructure in a
graph. A characterization of that type reads as follows:

∀G ∈ G∀O ∈ O : G ∈ C iff (O,G) /∈ R.

The usual choices for R are the subgraph or the minor relation. Accordingly, the
characterization is called a “forbidden subgraph” characterization or a “forbid-
den minor” characterization. Either relation might be modified; in particular,
the “induced” variant of either relation is often considered. This allows to model
the absence of (possibly undirected) arcs in forbidden graphs. Put differently,
the induced variant requires that if a forbidden graph is present in some way as
a substructure, then this substructure appears inside a larger structure that
translates back to a supergraph of the forbidden graph.

There is a great number of classes of undirected graphs that admit an obstruction
set characterization while being defined by other means. The best known
example is probably the class of planar graphs, characterized by Kuratowski as
the set of all graphs that do not admit either of two particular minors [33]. A
compilation of further examples is presented in the survey by Brandstädt et
al. [7].

Informally, an obstruction set characterization for a class of undirected graphs
trivially carries over to directed graphs by considering all orientations of each
forbidden graph. This is merely a way of restating the same characterization in a
different fashion. As far as directed graphs that do not merely reflect undirected
graphs are concerned, there is only a handful of results for classes that admit

125

7 Forbidden Minor Characterization

characterization of this kind along with a second, unrelated characterization;
examples are given in [24, 52, 42, 20, 36] 1.

The obstruction set characterization of SPL which we present in this chapter is of
the forbidden minor type. More precisely it is defined by two relations resembling
the notion of topological minors, which is well established for undirected graphs
(cf. [13, 3]). It is worth noting that there is no general agreement on the concept
of a minor on graphs as we consider them, i.e., on directed graphs. Still, all
approaches to provide such a notion include the topological variant by definition.
This justifies the convention we use in this chapter’s treatment, namely to drop
the “topological” modifier from the terminology and speak only of “minors”.

Additional Terminology and Notation In the following, let 2G denote the set
of subgraphs of G.

Definition 12. An embedding e of F in G is a pair of injections eV : VF → VG,
eA : AF → 2G, satisfying

1. if a ∈ AF , then eA(a) is an (eV (t(a)), eV (h(a)))-path in G, and

2. if a, a′ ∈ AF are distinct, then eA(a) and eA(a′) are internally disjoint.

If an embedding of F in G exists, we call F a minor of G and write F 4 G. If
F is no minor of G, we say that G is F -free. More generally, if M is a set of
graphs s.t. G is F -free for every F ∈M , we say that G is M -free.

We also say that F 4 G is realized by e, and for x ∈ VF we refer to eV (x)
as the peg of x in G wrt. e. The notation for the two maps constituting an
embedding is simplified by writing e(x) for eV (x) and e(a) for eA(a). It shall
always be clear from the context whether an argument is a vertex or an arc, so
no confusion will arise.

An embedding e of F defines the graph

e(F) := (eV (VF) ∪
⋃
a∈AF

Ve(a),
⋃
a∈AF

Ae(a),
⋃
a∈AF

te(a),
⋃
a∈AF

he(a)).

Recall that a DF is any graph that is derived from F by successively subdividing
arcs. Equivalently, a DF is obtained by replacing arbitrary arcs ai = xiyi with
(xi, yi)-paths. We find the following:

1As a matter of fact, these references constitute all the (nontrivial) examples the author was
able to track down in the literature.

126

Proposition 7.0.9. Let e be an embedding of F in G. Then e(F) ⊆ G holds,
and e(F) is a DF .

Proof. The fact that e(F) is a subgraph of G follows due to Ve(F) ⊆ VG and
Ae(F) ⊆ AG. Moreover, e(F) contains a unique (e(x), e(y))-path for every xy-arc
of F , and these paths are internally disjoint by definition.

This implies an equivalent characterization of embeddings, resp. minors, by
means of subdivisions and subgraphs. We make frequent use of this fact by
switching back and forth between the two characterizations, choosing the notion
that better fits our purpose.

Proposition 7.0.10. The following statements are equivalent:

1. F is a minor of G.

2. G contains a DF .

Proof. If F is a minor of G, then F 4 G is realized by some embedding e. Then
G contains a DF , as shown in Prop. 7.0.9. Conversely, let G contain a fixed DF .
Let be eV : VF → VG the injection that maps x ∈ VF to the vertex x′ ∈ VG that
reflects x in this DF . Likewise, let eA : AF → 2G be the injection that maps
a ∈ AF to the (eV (t(a)), eV (h(a)))-path in the DF . Then eV and eA constitute
an embedding of F in G, so F 4 G follows.

A simple property of embeddings is that the in- and out-degree of a peg does
not exceed the respective degree of the peg’s preimage.

Proposition 7.0.11. Let e realize F 4 G. Then for x ∈ VF we find d−F (x) ≤
d−G(e(x)) and d+

F (x) ≤ d+
G(e(x)).

Proof. For d−F (x) = k the definition of an embedding implies that G contains k
internally disjoint paths that terminate in e(x). Since the predecessors of e(x)
on any two such paths are distinct, G contains at least k predecessors of e(x),
i.e., k ≤ d−G(e(x)). The symmetric argument shows d+

F (x) ≤ d+
G(e(x)).

A stricter variant of embeddings, resp. minors, and subdivisions, allows to
model the absence of arcs in a minor.

127

7 Forbidden Minor Characterization

Definition 13. Let e be an embedding of F into G and assume xy /∈ AF . A
bypass wrt. e is an (e(x), e(y))-path in G that does not pass through a further
peg of F . Such a path is also called an (x, y)-bypass of F in G wrt. e. If G
contains no bypass of F wrt. e, we call e a bare embedding of F in G, and e(F)
a bare DF in G. If a bare embedding of F in G exists, we call F a bare minor
of G and write F 4b G.

Let us stress that a bypass is a path that connects pegs in a way that does
not reflect connectivity of the preimages of these pegs in the embedded graph.
Even if xy /∈ AF , F might well contain an (x, y)-path, passing through other
vertices of F . A bypass connects the pegs of x and y in G without respecting
their connectivity in F .

7.1 Effects of Expansion

We start our search for an obstruction set by investigating the effects of spl-
expansion on the presence, resp. absence, on certain subdivisions that may
occur as subgraphs. First, we give an infinite family of excluded minors for
spl-graphs. Informally, the members of this class are defined by explicitly
prohibiting features that result from an expansion step.

Definition 14. A graph B is called bulky if it contains neither parallel arcs
nor loops, and every vertex x ∈ VB satisfies d−B(x) ≥ 2 or d+

B(x) ≥ 2. The class
of bulky graphs is denoted B .

Notice that a bulky graph does not contain simple vertices. We find that bulky
minors, resp. subdivisions, are not introduced by expansion alone, i.e., coming
from an otherwise B-free graph.

Lemma 7.1.1. Assume that G is B-free and let G⇒ H. Then H is B-free.

Proof. Let G be B-free and assume G ⇒ H. For the sake of contradiction,
suppose further that B 4 H holds for some B ∈ B. We consider the three
expansions from G to H separately.

1. G
s⇒ H: If B 4 H, a DB must have emerged from s-expansion. At the most,

the effect of s-expansion on a subdivision is to subdivide it further. But since
G contains no DB by assumption, the vertex z, which was introduced upon
expansion, must be a peg of some z′ ∈ VB wrt. an embedding e. However, as

128

7.1 Effects of Expansion

z is simple in G while B, being bulky, is free of such vertices, this contradicts
Prop. 7.0.11.

2. G
p⇒ H: As in the previous case, assuming B 4 H implies that an DB

emerges in the process of expanding G to H. Let a = xy denote the expanded
arc, which is present in G and H, and let a′ = xy be the arc that is introduced
with expansion. The only pair of vertices s.t. G and H contain a different
number of internally disjoint paths from one vertex to the other, is the pair
x, y. Thus B 4 H implies that x and y are both pegs of some vertices of
B, and that a and a′ each represent a (trivial) subdivision of arcs from the
preimage of x to the preimage of y. This requires parallel arcs in B, which
contradicts that B is bulky.

3. G
`⇒ H: Again, B 4 H implies that some DB was introduced with the

expansion. Let a = xy denote the constriction in G that allows `-expansion
in the first place and let l = zz be the loop introduced by merging x and y,
i.e., let z denote the merge vertex x and y. If e realizes B 4 H, then z = e(q)
for some q ∈ VF , i.e., z is a peg of B. Otherwise a DB would be present in
G already, as implied by Prop. 6.1.1, but contradicting the assumption that
G is B-free.

The case continues with a slightly more involved argument than for the
previous cases. Consider the graph H ′ := H \ l, derived from H by removal
of the “new” loop. As the bulky graph B is free of loops, l is no part of the
DB in H. Consequently, H ′ contains the same DB as H does, with z = e(q)
(since VH = VH′). The advantage of H ′ over H is that d−H′(z) = d−G(x) and
d+
H′(z) = d+

G(y) hold.

We show that the in-degree of q in B is at least two by rejecting the remaining
values. First, suppose d−B(q) = 0. Then, only the out-arcs of z belong to e(B)
in H ′. From d+

H′(z) = d+
y (G) now follows that G contains a DB already,

realized by the embedding e′ which is defined as e except that e′V (q) = y and
the images for out-arcs of q under e′A are (y, k)-paths instead of (z, k)-paths.
This contradicts the assumption that G is B-free. We find d−B(q) 6= 1 by a
similar argument. If we suppose d−B(q) = 1, then the sole path of the DB
that enters z in H ′ can be realized in G (for a slightly different DB, namely,
a subdivision of e(B)) by using the constriction a. Then B 4 G would be
realized by e′, defined as before, thereby contradicting B-freeness of G.

Thus follows d−B(q) ≥ 2, and a symmetric argument shows d+
B(q) ≥ 2. Now

let B′ denote the graph derived from B by splitting q into q1 and q2. Then
d−B′(q1) ≥ 2 and d+

B′(q2) ≥ 2, while all other vertices and their degrees are

129

7 Forbidden Minor Characterization

(a) N (b) C (c) CR (d) Q

Figure 7.1: Crucial subset of bulky graphs, F = {N,C,CR,Q}.

identical in B and B′. Thus B′ is bulky, too. But since H contains a DB it
now follows that G contains a DB′, contradicting the assumption that G is
B-free.

Corollary 7.1.2. Every spl-graph is B-free.

Proof. Clearly, P1, the axiom of SPL, is B-free. Assume that G ∈ SPL is
B-free and let G⇒ H. Then H ∈ SPL is B-free according to Lem. 7.1.1.

For the purpose of characterizing SPL, it suffices to consider a finite subset of
B. The four bulky graphs that are relevant for the sought characterization are
gathered in the set

F := {N,C,CR,Q},

which is shown in Fig. 7.1. Observe that membership in B is invariant under
arc-reversal and that F is closed under arc-reversal: C and CR are mutually
converse, whereas both N and Q are self-converse.

We have shown in Lem. 7.1.1 that bulky subdivisions are not introduced by
expanding an B-free graph. In contrast, we find that bulky subdivisions can be
removed by expansion. This is possible with `-expansion, and happens for F.

Proposition 7.1.3.

1. Let B 4 G for some B ∈ B. If G
s⇒ H or G

p⇒ H holds, then B 4 H.

2. There are graphs G, H, s.t. G
`⇒ H, and G has a minor in B while H is

B-free.

Proof.

130

7.1 Effects of Expansion

`⇒

Figure 7.2: The subgraph Q is removed upon loop expansion.

(a) Φ (b) Ψ (c) ΨR

Figure 7.3: Set of graphs K = {Φ,Ψ,ΨR}.

1. Let B ∈ B be a minor of G, then G contains an DB as a subgraph. At
the most, this subdivision is further subdivided by s-expansion. Clearly,
p-expansion does not remove any subgraph at all. Therefore, H contains
a DB if G

s⇒ H or G
p⇒ H holds.

2. Subdivisions of the bulky graph Q (cf. Fig. 7.1d), can be removed with `-
expansion. This is shown exemplarily in Fig. 7.2 for the trivial subdivision,
i.e., the graph Q itself as a subgraph.

The graph N is already known in connection with SPL, or rather with its
acyclic members. Recall that this subclass is denoted SP. It was shown by
Valdes [52] that SP admits a forbidden minor characterization within the class
of hammocks by means of N alone.

Theorem 7.1.4 (Valdes). Let H ∈ H be acyclic. Then H ∈ SP iff N 64 H.

Proof. In Valdes [52, Sec. 4.5]

We make use of Thm. 7.1.4 whenever acylic graphs are considered. Getting
back to the general case, we observe that F-freeness — just as B-freeness, for
that matter — does not suffice to identify a hammock as a member of SPL. For
example, the hammock shown in Fig. 6.4 is B-free. As we have shown in Sec. 6.1,
this graph is not contained in SPL, since it does not satisfy Prop. 6.1.2.

131

7 Forbidden Minor Characterization

To get an adequate obstruction set characterization of SPL, we resort to bare
embeddings of non-bulky graphs. The three additional graphs that will be part
of the sought characterization constitute the set

K := {Φ,Ψ,ΨR},

which is shown in Fig. 7.3. Observe that K is closed under arc-reversal. We
find that spl-graphs are free of bare minors in K.

Lemma 7.1.5. If G ∈ SPL, then K 64b G for K ∈ K.

Proof. We prove the claim for Φ first. To this end we name the vertices of Φ
from v to y, as shown:

v w x y

Let (G, src, snk) ∈ SPL, and let e realize Φ 4 G. Since w and x lie on a cycle
in Φ, their pegs e(w) and e(x) lie on a cycle C in G. Then Prop. 7.2.8 states that
C is guarded by a unique g ∈ VC . Because G contains a DΦ, it also contains
an (e(x), e(y))-path. But since g co-dominates e(x), it also co-dominates e(y):
thus G contains an (e(y), g)-path P , and since g lies on a cycle with e(w) and
e(x), G further contains (e(y), e(w))- and (e(y), e(v))-paths. However, either
path is a bypass, since yw, yx /∈ AΦ. Therefore, e is not bare.

The proof is similar for Ψ: again we refer to the vertices of the considered graph
individually, as in the sketch below:

v w

x

y

As before, let (G, src, snk) ∈ SPL, and let e realize Ψ 4 G. Then e(w), e(x)
and e(y), lie on a cycle C in G and a unique g ∈ VC guards C. Since e(Ψ) is
a DΨ, the graph G contains paths from e(v) to e(w), e(x), and e(y). Since
g dominates the latter three pegs, it also dominates e(v), i.e., x lies on every
(src, e(v))-path in G. Thus, G contains a (C, e(v))-path, and further, a path
from at least one of e(w), e(x), or e(y), to e(v), s.t. this path does not pass
through any of the other pegs. Since Ψ contains no in-arc of v, the embedding
e is not bare.

For ΨR, the claim follows immediately from above proof for Ψ and the principle
of directional duality.

132

7.2 Effects of Reduction

(a) Φ 4 G (b) Ψ 4 G′

Figure 7.4: Members of SPL with minors in K.

Informally, K consists of the prototypical graphs with cycles that do not satisfy
Prop. 7.2.8. Adding certain arcs to Φ, Ψ, and ΨR mends this deficiency.
Regarding the bare minor relation, such arcs are are forbidden in the disguise
of prohibited bypasses. Examples for spl-graph with minors in K, obviously
not bare ones, are given in Fig. 7.4.

7.2 Effects of Reduction

In contrast to the expansion relations, we do not study the effects of spl-
reductions on the presence, resp. absence, of bulky minors. Instead, we restrict
treatment of bulky minors to F, which is sufficient for our intentions. The
reason for this is, bluntly put, that analyzing reductions is considerably more
tedious than analyzing expansions. The main effort comes with loop reduction;
this will become apparent in proof of virtually every statement that involves
the operation.

First, we consider the (restricted) analogue to Lem. 7.1.1, i.e., the effects of
reduction on F-free hammocks. We will find that the members of F “behave”
quite differently in that respect. While the presence or absence of a DC or DCR

in a hammock is invariant under reduction, this is not the case for N and Q. For
N, we find that a DN might be removed by reduction, in which case, however, a
DC and and DCR have to be present. For Q, a similar property holds, which,
however, also involves Ψ and ΨR.

In the following lemma, we state these properties in a contrapositive manner.
Therein, we consider a hammock H and its reduct G, and trace the fact that G
has a minor in F back to the fact that H has a minor in F or a bare minor in
K.

Lemma 7.2.1. Let H ⇐ G, then an F-minor of G implies an F-minor or a
bare K-minor of H, as follows:

1. if F 4 G, then F 4 H for F ∈ {C,CR}

133

7 Forbidden Minor Characterization

2. if N 4 G, then (N 4 H ∨ (C 4 H ∧ CR 4 H))

3. if Q 4 G, then (Q 4 H ∨ C 4 H ∨ CR 4 H ∨Ψ 4b H ∨ΨR 4 H)

Proof. We prove the claim separately for each reduction. For s- and p-reduction
we show a stronger property for bulky graphs. The argument is downright
trivial for these two reductions. For `-reduction, however, we need to consider
several subcases that lead to the details of the statement.

- H
s⇐ G: Let B ∈ B be arbitrary and observe that H is a DG. Therefore,

if G contains a DB, so does H. But since H is B-free by assumption, G is
B-free, too.

- H
p⇐ G: Let B ∈ B be arbitrary. Removing an arc from H does certainly

not introduce any subgraph at all. This goes for a DB in particular.

- H
`⇐ H: Let l = xx denote the loop in H that allows for reduction, and let

a = x1x2 be the constriction in G that results from splitting x. As a visual
aid we sketch the relevant parts of H and G below:

x

H

`⇐ x1 x2a

G

Suppose that G contains a minor F in F. Let e realize F 4 G for F = C
and suppose for the sake of contradiction that H is F -free. We distinguish by
which of the xi are pegs of F in G.

If neither xi is a peg, then each peg of F occurs in both G and H. It then
follows from Prop. 6.1.1 that H contains a DF , too. Thus the assumption
that H is F -free, is false.

Next assume that exactly one of the xi is a peg, say, x1 (the argument is
symmetric for x2). We construct a map e′ from VF to VG. This map is defined
as e, except that the preimage q of x1 is mapped to x in H. Now H contains
an (e′(q1), e

′(q2))-path for every q1q2-arc in F , where q 6= qi, and these paths
are pairwise internally disjoint. This follows from Prop. 6.1.1 and the fact the
e is an embedding. Moreover, H contains an (e′(q1), x)-path for each q1q-arc
of F , and an (x, e′(q2)-path for each qq1-arc. Again we find that these paths
are internally disjoint. Therefore, e′ is an embedding, i.e., H contains a DF .
This contradicts F -freeness of H.

134

7.2 Effects of Reduction

Finally, let both x1 and x2 be pegs of F in G, with preimages q1 and q2,
respectively. Then Prop. 7.0.11 requires that d+

F (q1) ≤ 1 and d−F (q2) ≤ 1 hold.
We proceed by case distinction for F as in the claim.

1. Assume that F = C: there is only one vertex q2 that satisfies d−C (q2) ≤ 1
(cf. Fig. 7.1b). The vertex q1 might be either vertex of the cycle of C, as
each satisfies d+

C (q1) ≤ 1. We fix one of these two vertices as q1 and denote
the other as y. Since C contains a q1y-arc, G must contain an (e(q1), e(y))-
path. But the only out-arc of e(q1), which is a, is an in-arc of e(q2). In
other words, e(q2) lies on every path from e(q1) to e(y). Consequently, the
paths in G that represent the arcs of C are not internally disjoint, which
contradicts the assumption that e is an embedding. The same conclusion
follows symmetrically for F = CR.

2. For F = Q, the degree restrictions on q1 and q2 are satisfied by two vertices
each. The choices for the qi lead to symmetric cases, due to the symmetry
of Q. We find that Q contains a q2q1-arc, therefore G contains a path from
x2 to x1. Observe that H = G[x1 = x2], with merge vertex x. Thus the
arcs that constitute the (x2, x1)-path in G form a cycle C in H, with x
lying on C. Since `-reduction is applicable in x, C is not guarded by x. In
particular, this implies that C is not merely another x-loop, so C contains
at least one more vertex y. The situation in G and H is sketched below;
we denote a remaining pegs of Q in G, k1 and k2, these vertices are also
present in H.

x

k1 k2

y

`⇐
x1

k1

x2

k2

y

Since x does not guard C, there is at least one vertex on C that is not
guarded by x either, i.e., not dominated or not co-dominated by x. We
may wlog. assume that this vertex is y and that x does not dominate y;
the case that x does not co-dominate y is symmetric. We apply Prop. 6.0.6
to x and y. Since x does not dominate y by assumption, this proposition
implies that exactly on of the following holds in H: a) y dominates x, or
b) some z dominates x and y, and H contains internally disjoint (z, x)-
and (z, y)-paths.

a) Assume y dominates x, then y also dominates k1, since H contains a
(k1, x)-path that does not pass through y. So there is also a (y, k1)-path

135

7 Forbidden Minor Characterization

in H. Assume that at least one such path does not pass through k2. In
this case we find that CR is a minor of H. The pegs of any corresponding
DCR are x, y, and k2.

If, on the other hand, each (y, k1)-path passes through k2, then there
is a (k2, k1)-path in H. We may assume that this path is internally
disjoint with the (k1, k2)-path sketched above. Otherwise, we choose
some k′1 that is an intersection vertex of the two paths and argue with
k′1 instead of k1. So k1 and k2 lie on a cycle. Moreover, y then also
dominates k2. Hence, there is a path from the source of H to y that
does not intersect with any of the paths we are considering right now.
Together, these paths form a DΨ with the source of H being a peg. If
this subdivision is bare, the claim follows. Otherwise, any bypass to
the DΨ implies the existence of a DC or a DCR. An example showing
the emergence of a DΨ, which also demonstrates that a bypass to that
subdivision implies a DC or a DCR, is given in Fig. 7.5.

b) Assume that there is some z with internally disjoint (z, x)- and (z, y)-
paths in H. Since x and y lie on C, the paths from z enter C in distinct
vertices. Thus follows C 4 H.

3. For F = N, consider an appropriate DN in G. Since a is a constriction,
this arc does not represent the trivial subdivision of any arc of N, as N
is free of constrictions. By the same argument, it follows that a is not
anti-parallel to an arc of N.

Therefore, the preimages of x1 and x2 in N are non-adjacent, which is only
satisfied by one pair of vertices of N, namely its source and sink (notice that
N is a hammock). Moreover, the association of these vertices to x1 and x2
is uniquely determined by the in- and out-degrees following Prop. 7.0.11:
the source of N maps to x2, and the sink of N maps to x1. Consequently,
G contains a DN, together with a “back arc” from the sink to source of
this DN. Such a graph contains both a DC and a DCR, which becomes
clear from the sketch below, where the subdivision of C (left), resp. CR

(right), is drawn bold. An example showing the emergence of a DN upon
`-reduction is given in Fig. 7.6.

x2 x1 x2 x1

136

7.2 Effects of Reduction

src y x

k1

k2

snk

`⇐ src y

x1

x2

k1

k2

snk

Figure 7.5: Example for `-reduction producing a DQ. Observe that either side
contains a bare DΨ.

src snk

x

`⇐

src snk

x1 x2

Figure 7.6: Example for `-reduction producing a DN. Observe that either side
contains both a DC and a DCR.

So we have found C 4 G and CR 4 G in this last case. As we have already
shown, C 4 H and CR 4 H hold as well in that case.

For the reductions H
s⇐ G and H

p⇐ G we have shown that F 4 G implies

F 4 G for F ∈ F. Considering the reduction H
`⇐ G, a F-minor of G implies

an F-minor of H or a bare K-minor of H as broken down in the claim. Thus
the claim holds and the proof is concluded.

Next we consider the effects of reduction on hammocks that do have a minor in
F. In this case, for a change, we can make use of properties that were already
established. We find that minors, resp. subdivisions, from F are not removed
upon reduction.

Lemma 7.2.2. Let H ⇐ G, then F 4 H implies F 4 G for F ∈ F.

Proof. We know that a reduction allows for the complementary expansion, i.e.,
H ⇐ G implies G⇒ H. Assume now that G is F-free and reconsider Lem. 7.1.1,
resp. its proof: therein we have shown that B 4 G implies B 4 H for bulky B

and G
s⇒ H or G

p⇒ H. Since F ⊆ B, this holds for B ∈ F as well. For G
`⇒ H,

we have shown that B 4 G yields B′ 4 H, for bulky B, B′, and indirectly, that
d−B(v) < 2 or d+

B(v) < 2 for some v ∈ VB implies B = B′. This degree property
is satisfied by each F ∈ F, so F 4 G implies F 4 H for `-reduction, too.

137

7 Forbidden Minor Characterization

Thus, if H ⇐ G, the assumption that H contains a minor in F, while G is
F-free, is contradictory. Equivalently, the claim follows.

As for minors, resp. their subdivisions, in F before, we study the effects of
spl-reductions on minors in K. Again, we first investigate if, or rather “how”,
such minors can be the result of a reduction.

Lemma 7.2.3. Assume H ⇐ G and let K ∈ K be fixed. Then K 4b G implies
K 4b H ∨ C 4 H ∨ CR 4 H.

Proof. Observe that each K ∈ K is free of parallel arcs. If all pegs of K in
G also occur in H, i.e., if eV (VK) ⊆ VH ∩ VG holds, then Prop. 6.1.1 states
that the connectivity among these pegs is invariant under reduction. This is
true for paths representing arcs of K, as well as for bypasses. In other words,
bypasses are not removed upon reduction if all pegs occur in both H and G, i.e.,
a nonbare embedding does not “become” bare in this case. It is thus sufficient
to consider cases where pegs are introduced with G ⇐ H. Notice that the
removal of a peg is irrelevant to this proof.

Since VH = VG holds for H
p⇐ G, nothing needs to be done for this case,

following the discussion above. Regarding H
s⇐ G, a peg is removed at most,

so the statement follows for this case, too.

It remains to consider the reduction H
`⇐ G, whereupon the number of vertices

increases. Let l = qq be the loop in H that allows for reduction, and let a = q1q2
denote the constriction that emerges from reduction. Assume that K 4b G is
realized by e. We consider the cases where at least one of the qi is a peg of K;
otherwise, the claim follows immediately.

Let q1, be the peg of k ∈ VK and let q2 be no peg. Since d+
G(q1) = 1, Prop. 7.0.11

implies that at most one arc leaves k in K. Then K 4 H is realized by e′, which
is as e, except that e′(k) = q, the in-arcs of k in K are mapped to in-paths of q
and the sole out-arc, if it exists, is mapped to an out-path of q. Since e is a bare
embedding, no bypass possibly intersects the out-path of q1 by assumption, in
particular not in q2. Hence no bypass is accidentally “removed” by using e′ as
an embedding, so e′ realizes K 4b H, which satisfies the claim.

If q1 and q2 are both pegs wrt. e, some additional effort is required. In this
case, we treat Φ and Ψ explicitly; for ΨR, the claim follows from that for Ψ by
directional duality. As in the proof of Lem. 7.1.5, the vertices of Φ and Ψ are
denoted as shown below:

138

7.2 Effects of Reduction

v w x y v w

x

y

1. We start with K = Φ. Since v and y are not adjacent in Φ, the case where
the qi are pegs of these two vertices immediately yields a as a bypass in G.
As a bare embedding, e maps at least one of w and x to a qi. We assume
wlog. q1 = e(w) and examine the preimage of q2.

If q2 is the peg of v or y, it follows immediately that e is not a bare embedding,
since a constitutes a bypass.

So suppose q2 = e(x), then G contains an (q2, q1)-path, or equivalently, an
(e(x), e(w))-pat P . We find that P contains more than one arc: otherwise,
`-reduction is not applicable to l in H, since q guards an arc that is parallel
to l. So let z be an internal vertex of P , then z is also present in H; more
specifically, H then contains a (q, z)- and a (z, q)-path. Since `-reduction
is applicable to l, the vertex q does not guard z in H. This means that H
contains a (src, z)-path or a (z, snk)-path that does not pass through q. We
proceed with the first possibility and let Pz this path. The part of H and G
that we are considering looks as follows:

q

zsrc
`⇐

q0/e(v) q1/e(w) q2/e(x)

zsrc

Consider any path Pq0 from the source of G to q0, the peg of v. Notice that
if q0 = src holds in G, then a bare embedding e′ that realizes Φ 4b H is
given by e′(w) = z and e′(x) = q and letting e′ otherwise be identical to e.
In that case, the claim follows, so assume q0 6= src, which holds for both G
and H. If Pq0 passes through neither q1 nor q2, we find C 4 G and, following
Lem. 7.2.1, also C 4 H. On the other hand, if P passes through q1 or q2, then
G contains a bypass to the uncovered DΦ. This contradicts the assumption
that e is a bare embedding. If we choose Pz as a (z, snk)-path that does not
pass through q, and Pq0 as a (q0, snk)-path, a symmetric argument yields
either CR 4 H or that e is not bare. This concludes the argument for Φ.

2. Now let K = Ψ. Since e is bare by assumption, we find q2 6= e(v) immediately,
because v has no in-arc in Ψ, yet q1 is a peg, too. If we assume q1 = e(v),
we construct an embedding e′ that realizes Φ 4b H: e′ maps the preimage
of q2 to q and v to any predecessor of q; otherwise e′ is as e. Since v has no

139

7 Forbidden Minor Characterization

in-arcs and e is bare, e′ is bare too. This covers the case that either qi is the
peg of v, and we consider the remaining cases.

Let us first assume q1 = e(x) and q2 = e(y). This case is akin to the
nontrivial case for Φ, which we discussed at length above. Similarly, we find
that G contains a (q2, q1)-path, which, due to `-reduction being applicable
to H, consists of at least two arcs. Again, let z denote a vertex on this path
and notice that q does not guard z in H. As before, assume wlog. that
H contains a path from its source to z that does not pass through q. The
relevant parts of H and G are shown below:

q0q′0 q z

src

`⇐
q′0/e(v) q0/e(w)

q1/e(x)

q2/e(y)

z

src

Now let e(v) = q′0 and consider a (src, q′0)-path P in G. If none of q0, q1, or
q2 lies on P , then C 4 G follows, which further yields C 4 H. Otherwise, a
segment of P constitutes a bypass to e(Ψ), contrary to the assumption that
e is bare. Again, if we consider paths to snk in G, instead of paths from src,
we find CR 4 H symmetrically.

The final case for Ψ is that one qi is the peg of w while the other is the peg
of either x or y. The arguments are symmetric if x and y are interchanged;
we pursue the argument for x. First, let q1 = e(w) and q2 = e(x). Since we
have d−Ψ(x) = 2, Prop. 7.0.11 implies d−G(q2) ≥ 2. This, however, is infeasible
with `-reduction, which produces a constriction, i.e., d−G(q2) = 1. On the
other hand, if we assume q1 = e(x) and q2 = e(w), then the q1q2-arc already
represents an (e(x), e(w))-bypass, so e is not bare.

This concludes the proof.

Lemma 7.2.4. Let H ⇐ G, then K 4b H implies K 4b G or F 4 G for
K ∈ K, F ∈ F, as follows:

- if Φ 4b H, then (Φ 4b G ∨ C 4 G ∨ Q 4 G)

- if Ψ 4b H, then (Φ 4b G ∨ C 4 G ∨ N 4 G)

Proof. As in Lem. 7.2.3, the statement follows immediately from Prop. 6.1.1
if all pegs of K occur in VH ∩ VG. In particular, nothing needs to be done for

140

7.2 Effects of Reduction

H
p⇐ G. In the following, assume that K 4b F is realized by e for K ∈ K. As

usual, we only consider Φ and Ψ.

For H
`⇐ G let l = xx be the loop that is reduced in H and let a = x1x2 denote

the constriction introduced in G. Observe that each k ∈ VK satisfies d−K(k) ≤ 1
or d+

K(k) ≤ 1 . Thus, if x = e(k), we can always define an embedding e′ of K
in G that maps k to x1 or x2 depending on the degrees of k. The connectivity
among the pegs of K in G then is the same as in H, thus e′ realizes K 4b G.

In the case H
s⇐ G, let z denote the simple vertex of H that allows for reduction.

Assume that z is a peg of K. Since z is simple in H, Prop. 7.0.11 implies that
in K, the preimage of z satisfies d−K(e−1(z)) ≤ 1 and d+

K(e−1(z)) ≤ 1.

There are two vertices with this property in Φ and one in Ψ. We choose v
as the preimage of z for either graph. Observe that the in-degree of v is zero.
Since z is simple, H contains a unique predecessor z′ of z. Moreover, since e is
a bare embedding, H contains no path from any other peg to z. This implies
that z′ is not also a peg of K wrt. e, and that there is no path from any other
peg of K to z′. The embedding e′ of K into H is now defined by mapping v
to z′ and being otherwise as e. If e′ is bare, the claim follows. Otherwise, we
observe that no bypass wrt. e enters z, hence no bypass wrt. e′ enters z′. So if
e′ is not bare, a bypass must leave e′(v) = z′; the connectivity among all other
pegs does not differ in e and e′.

There are two possibilities for a bypass like that for K = Φ in H, they are
sketched below:

z′ z/e(v) e(w) e(x) e(y) z′ z/e(v) e(w) e(x) e(y)

In the case on the left, we find a DC, while on the right, we find a DQ. Thus
follows the claim for K = Φ. For F = Ψ, the possibilities in H are as follows:

z′ z/e(v) e(w)

e(x)

e(y)

z′ z/e(v) e(w)

e(x)

e(y)

In either case, we find a DC, while in the case on the right, we also find a DN.
These proves the claim for Ψ, and the statement for ΨR follows by symmetry.

141

7 Forbidden Minor Characterization

We have thus found that F ∪K behaves stable wrt. being (bare) minors in
hammocks under spl-operations. Although such minors are exchanged for
another in certain cases, they never appear by manipulating F- and K-free
minors; likewise, they never disappear altogether. By omitting the finer details
of Lems. 7.2.1, 7.2.2, 7.2.3 and 7.2.4, we arrive at a cornerstone result regarding
the characterization of SPL by forbidden minors.

Theorem 7.2.5. Let H1, H2 ∈ H s.t. H1 ⇒ H2 or H1 ⇐ H2. Then H1 is free
of F-minors and bare K-minors iff H2 is.

Most importantly, we can associate (bare) minors in an arbitrary hammock
with (bare) minors in its unique normal form under spl-reductions.

Corollary 7.2.6. Let H ∈ H, then H is free of F-minors and bare K-minors
iff R(H) is.

It remains to show that F and K are sufficient to characterize SPL. Since we
can restrict further investigation to spl-normal hammocks, this comes down to
showing that an spl-normal hammock that is not the axiom graph P1 has a
(bare) minor in F or K. To this end we introduce an auxiliary class of graphs.

Definition 15. A kebab is a graph consisting of three arc-disjoint subgraphs:
a strong component B, called the body , and two nonempty, disjoint paths S1
and S2, called the spikes of the kebab. Exactly one endpoint of either spike is a
vertex of B.

Some additional terminology proves useful for dealing with kebabs. The endpoint
of a spike that connects the spike to the body is the puncture of this spike,
the opposite endpoint is its tip. A spike that enters the body of a kebab is an
in-spike, one that leaves the body is an out-spike.

Kebabs are further differentiated wrt. the orientation of their spikes. Let K
be a kebab with spikes S1 and S2. If both Si are in-spikes, K will be called an
in-kebab; if both Si are out-spikes, we call K an out-kebab. If, say, S1 is an
in-spike while S2 is an out-spike, K is referred to as an inout-kebab. The three
types are sketched in Fig. 7.7.

In order to prove two essential lemmas about kebabs, we need some technical
preliminaries concerning hammocks and strong graphs.

Proposition 7.2.7. Let (H, src, snk), H 6= P1, be spl-normal and let v be a
vertex of H that does not carry a loop. Then v is incident to at least three
nonparallel proper arcs.

142

7.2 Effects of Reduction

t1 p1

t2 p2

S1

S2 B

(a) in-kebab

t1 p1

t2 p2

S1

S2

(b) out-kebab

t1 p1

t2 p2

S1

S2

(c) inout-kebab

Figure 7.7: Possible structures of a kebab with body B, spikes Si, and respective
tips ti and punctures pi for i ∈ {1, 2}

Proof. Let H and v be as in the claim. First we observe that since H is p-
normal, any pair of arcs in H is nonparallel. Since H is a hammock, it contains
a shortest (src, v)-path and a shortest (v, snk)-path. Let a1 = uv and a2 = vw
be the in- and the out-arc of v on these paths. Obviously, a1 and a2 are distinct
and proper. If v does not carry a loop, then v must be incident to a third arc
a3, since otherwise H could be s-reduced.

Proposition 7.2.8. Let G be a strong graph with distinct vertices x and y.
Then there is a cycle C ⊆ G with distinct vertices zx, zy ∈ VC , s.t. G contains
an (x, zx)-path and a (y, zy)-path which are disjoint.

Proof. Since G is strong, it contains paths among x and y in either direction.
Let P1 denote a shortest xy-path and P2 a shortest yx-path in G. The set of
crossing vertices Z is defined as the set of internal vertices shared by the Pi,
formally Z := (VP1 ∩ VP2) \ {x, y}.

- If Z = ∅, then P1 and P2 form a cycle already, and we choose zx = x and
zy = y; in this case, Px and Py are both empty.

- If Z = {z}, the claim follows for zx = x and zy = z, or zx = x and zy = z;
here, either Px or Py is empty, but not both (Fig. 7.8a).

- Finally if |Z| ≥ 2, let zx and zy be consecutive crossing vertices, i.e., assume
that no z ∈ Z lies between zx and zy on P1, resp. P2 (Fig. 7.8b). These
vertices then satisfy the claim.

With these preparations we are set to prove that a hammock that is not
contained in SPL necessarily has a minor in F, or a bare minor in K. The

143

7 Forbidden Minor Characterization

x z y

(a) |Z| = 1

x
z1

z2
y

(b) |Z| ≥ 2

Figure 7.8: Crossing vertices of an (x, y)-path and a (y, x)-path; cases in the
proof of Prop. 7.2.8.

work that is involved in the proof is divided over the following two lemmas, and
the pieces are put together in Thm. 7.2.11. First, we show that the existence of
a kebab is sufficient to imply the existence of a forbidden minor in a reduced
hammock.

Lemma 7.2.9. Let G ∈ H be spl-normal and assume that G contains a kebab.
Then F 4 G for some F ∈ F or Φ 4b G.

Proof. Let (G, src, snk) be an spl-normal hammock s.t. G contains at least one
kebab. Among the kebabs in G, we choose K of maximal size, i.e., no kebab
K ′ ⊆ G contains more arcs than K. Let S1 and S2 denote the spikes, and B the
body of K. The cases for K being an in-kebab or an out-kebab are symmetric,
so the two main cases of this proof distinguish whether K is an in-kebab or an
inout-kebab. Therefore, one spike of K is definitely an in-spike, say, S1.

Other than that, let ti denote the tip and pi the puncture of the spike Si
throughout the proof.

Let K be an in-kebab,

and apply Prop. 6.0.6 to the tips of K. According to that proposition, exactly
one of the following holds in G:

a) t1 dominates t2,

b) t2 dominates t1, or

c) some x ∈ VG dominates either ti, and G contains internally disjoint (x, t1)-
and (x, t2)-paths.

We proceed with case distinction according to theses properties. As the cases
a) and b) are symmetric, we elaborate on b) and c).

144

7.2 Effects of Reduction

b) Assume that t2 dominates t1 and let P be a shortest (t2, t1)-path in G. If P
and B are disjoint, then P contains an (S2, S1)-segment. Using Prop. 7.2.8
we find C 4 G (Fig. 7.9a).

So let P and B intersect, then P contains a unique “terminal” segment P ′:
the (B, t1)-subpath that is internally disjoint with B. We show that our
choice of K implies that P ′ consists of a single arc. First, P ′ is also internally
disjoint with S1: otherwise we could add arcs from P ′ and S1 to B to find a
kebab whose body is bigger than B. Second, if P ′ consists of several arcs,
we can remove its arc that leads out of B and “use” the remaining segment
to extend S1 to a longer spike. Either assumption leads to a contradiction
with our choice of K. It follows that P ′ consists of a single arc a = bt1 for
some b ∈ VB (Fig. 7.9b).

We infer by contradiction that t1 is incident to a third proper arc. Suppose
this claim to be false. Then, since G is s-reduced, t1 carries a loop. Since G
also is `-reduced, t1 guards vertex x. Now t1 is part of a strong subgraph
B′, which consists of S1, B, and P ′, where VB′ = VS1 ∪ VB (cf. Fig. 7.9b).
Hence if x ∈ VB′ , then t1 guard all of B′ and must be incident to an arc of
a (src, t1)- or (t1, snk)-path. If x /∈ VB′ , then t1 is incident to an arc of the
(t1, x)-path. In either case, we find a third incident proper arc, as claimed.

Let this arc be a′ = t1z or a′ = zt1. Our choice of K implies z ∈ VK :
notice that B′, the strong subgraph we just found, properly contains B. If
z lies outside K, we find a kebab with body B′, in-spike S2, and the arc
a′, interpreted as a path, as a second in- or out-spike. This contradicts the
property that the body of K is arc-maximal among all kebabs in G.

It remains to consider the location of z in K for this case. With the help
of Prop. 7.2.8, we see (from Fig. 7.9b) that z ∈ VS2 yields C 4 G, and that
z ∈ VB yields C 4 G or CR 4 G (depending on a’s orientation).

So assume z ∈ VS1 \ {p1} and consider the orientation of a′. If a′ = zt1
we find Q 4 G, with pegs t1, p1, b, and z (Fig. 7.9c). On the other hand,
a′ = t1z leads to a contradiction: Since G is p-normal, at least one vertex z′

lies between t1 and z on S1; omitting the t1z
′-segment of S1 produces an

in-kebab with tips z′ and t2 and a body properly containing B (Fig. 7.9d).
Since the body K is arc-maximal among all kebabs in G this can not be the
case.

b) Let x ∈ VG be such that G contains a (x, t1)-path P1 and a (x, t2)-path P2,
which are internally disjoint. If neither Pi intersects B, we find C 4 G with

145

7 Forbidden Minor Characterization

(a) C 4 G

b

(b) bt1-arc a

b

z

(c) Q 4 G

b

z′ z

(d) a′ = t1z

x

x1

x2

(e) C 4 G

Figure 7.9: Cases occurring in the proof of Lem. 7.2.9 if G contains an in-kebab.
Solid arrows represent arcs, dashed arrows represent paths.

help of Prop. 7.2.8; this is shown in Fig. 7.9e, where xi denotes the “first”
vertex on Pi that is also in Si.

If, say, P1 intersects B, let b be the last vertex on P1 that is in B and let x
be the first vertex on P1 that is in VSi \ {pi}. If x 6= t1, we find a kebab in
G with a body containing B, contradicting our choice of K. For x = t1, the
claim was proven in the previous case already (cf. Fig. 7.9b).

Let K be an inout-kebab,

where, wlog., S1 is the in-spike and S2 the out-spike. From Prop. 7.2.8 follows
Φ 4b K, where the tips of K are pegs of Φ wrt. some embedding e. This is
shown in Fig. 7.10a. If e also realizes Φ 4b G, i.e., if G contains no bypass to
e(Φ), the claim follows already.

Assume that e is not bare, then G contains a bypass P . It follows from the
structure of Φ that one of the tips of K is an endpoint of this bypass. Choosing
between t1 and t2 leads to symmetric cases; we proceed with t1. Then P is
either a (t1, q)-path or a (q, t1)-path, where q is a further peg of Φ wrt. e.

- We first consider the case where P is a (t1, q)-path and distinguish by the
preimage of q in Φ under e. Considering the structure of Φ, this requires to

146

7.2 Effects of Reduction

investigate the cases q = e(x) and q = e(y) (cf. Fig. 7.10a).

In the first case, q = e(x), it follows that P is a (t1, e(x))-path that deviates
at some point from the path with segments S1 and the (p1, e(x))-path in B
(as drawn in Fig. 7.10a). Following Prop. 7.2.8, we find C 4 G (Fig. 7.10b).

For q = e(y) we find further subcases that lead to different minors in F. We
consider the cycle C of the DΦ in G (cf. Fig. 7.10a), and ask whether P and
C are disjoint.

If so, we find Q 4 G immediately (Fig. 7.10c), so assume P and C intersect.
Since P is a bypass of the found DΦ, at least one of e(w), e(x) does not lie
on P . If P does not pass through e(w), then an initial segment of P is a
(t1, C)-path, which yields C 4 G, similar to the case shown in Fig. 7.10b.
If P does not pass through e(x), we find CR 4 G by taking the terminal
(C, t2)-segment of P into account (Fig. 7.10d).

- Next, let P be a (q, t1)-path and let k denote the predecessor of t1 on P . Our
choice of K requires k ∈ VK : otherwise, S1 could be augmented to a longer
spike, which contradicts our choice of K. We distinguish by the location of k
in K.

For k ∈ VB, the argument is identical to a case we already considered for K
being an in-kebab (replace b with k in Figs. 7.9b to 7.9d). The difference is
that this time, S2 is an out-spike, which, however, is irrelevant. From this
previous part of our proof follows Q 4 G.

Next, suppose that k is an internal vertex of S2, i.e., k ∈ VS2 \ {p2, t2}.
Observe that B, the (p2, k)-segment of P , the kt1-arc, and S1 form a strong
graph B′ ⊆ G that properly contains B. Moreover, we find that the source
src of G is no vertex of K: this follows because d−(src) = 0 by definition,
yet d−(q) ≥ 1 for all q ∈ VK . But then, there is a nonempty (s,B′)-path in
G. This path and the nonempty (k, t2)-segment of S2 form a pair of spikes to
the body B′. The resulting kebab contradicts our choice of K, hence k can
not be an internal vertex of S2.

Now if k = t2, then the bypass consists merely of a t2t1-arc. In that case
we invoke Prop. 7.2.7 to find that either ti is incident to a third arc ai. Let
zi denote the vertex adjacent to ti via ai. Since K and the bypass P form
a strong graph that properly contains B, at least one zi is a vertex of K:
otherwise, once more we find a kebab with bigger body than K. Using
symmetry again, it is sufficient to treat z1 ∈ VK . We need to distinguish by
the orientation of a1.

147

7 Forbidden Minor Characterization

– First, we assume that z1 is a predecessor of t1, meaning that a1 = z1t1.
We further distinguish by the location of z1 in K, i.e., whether z1 is a
vertex of either spike or the body.

If z1 ∈ VS1 , the fact that a1 is a proper arc implies z1 6= t1. Now if
z1 is the puncture of S1, z1 = p1, we find C 4 G, since B contains a
(p2, p1)-path (Fig. 7.10e). On the other hand, if z1 is an internal vertex
of S1, we find Q 4 G with pegs t1, z1, p1, and p2 (Fig. 7.10f).

Next, suppose z1 ∈ VS2 ; this time, z1 6= t2 follows, sinceG is p-normal and
the bypass P constitutes of a t2t1-arc already. For any other z1 ∈ VS2 \t2,
we observe that S1, B, and the (p2, z1)-segment of S2 form a strong
graph B′ that properly contains B. Certainly, the source src of G is not
contained in B′ since d−(src) = 0, so G contains a shortest nonempty
(src,B′)-path P ′. Consider whether z1 lies on P ′. If z1 does not lie
on P ′, G contains an inout-kebab with body B′, in-spike P ′ and the
(z1, t2)-segment of S2 as the out-spike. If otherwise z1 lies on P ′, we
find an in-kebab with body B′, and in-spikes P ′ and P . Either case
contradicts our choice of K, hence z1 /∈ VS2 follows.

Let finally z1 ∈ VB. We may actually assume z1 ∈ VB \ {p1, p2} as the
cases for z1 being a puncture have been dealt with already. Following
Prop. 7.2.8, we find CR 4 G, once again with help of Prop. 7.2.8
(Fig. 7.10g).

– Now let z1 be a successor of t1, adjacent by a1 = t1z1. As in the previous
case, we consider the possible locations of z1 in K separately.

For z1 ∈ VS1 , again we first notice that since a1 is a proper arc, z1 6= t1
holds. Since G is p-normal, some vertex k1 lies between t1 and z1 on S1
(Fig. 7.10h). We have to proceed with considering the arc a2, which is
incident to t2. As for a1, we distinguish by the orientation of a2 and the
location of z2 in K. We skim over most of the cases rather quickly, the
claimed minors or bigger kebabs are found by adding the particular a2
to Fig. 7.10h.

If z2 lies outside K, we delete either the (t1, k1)-segment of S1 to find a
kebab with a2 and the (k1, z1)-segment of S1 as spikes and a body that
properly contains B. If z2 is a puncture of K, we either find a kebab
with bigger body than K or one of Q, C, or CR as a minor, depending on
the orientation of a2 and the pi. If z1 lies in B, we find a bigger kebab
or Q as a minor. For z2 ∈ VS2 \ p2 where a2 = t2z2, we get Q 4 G (cf.
Fig. 7.10f, which shows the symmetric case for a1). If a2 = z2t2, we know

148

7.2 Effects of Reduction

that some k2 lies between z2 and t2 on S2, for G is p-normal. This yields
a bigger kebab by removing a segment from each Si (Fig. 7.10i). For
z2 ∈ VS1 \ p1 where a2 = z2t2 we find Q 4 G. Finally, for z2 ∈ VS1 \ p1
where a2 = t2z2 we find a bigger kebab if z2 lies between z1 and p1, and
N 4 G is z2 lies between t1 and k2.

Next, for z1 ∈ VS2 two possibilities arise: for z1 = p2 we use Prop. 7.2.8
once more to find C 4 G. If otherwise z1 ∈ VS2 \ p2, we find Q 4 G.

Finally, for z1 ∈ VB, we may again assume z1 ∈ VB \ {p1, p2} as the pi
were already considered in the cases where z1 ∈ VSi . With z1 6= p1 we
find C 4 G with help of Prop. 7.2.8. This case is largely identical to the
previous one where z1 = p2.

This exhausts all possible cases and the proof is complete.

Lemma 7.2.10. Let G be an spl-normal hammock with cycles. Then F 4 G
for some F ∈ F or F 4b G for some F ∈ K.

Proof. Let G be as in the claim, thus, in particular, assume that G is not acyclic.
Let src and snk denote the source and the sink of G, respectively.

We first show that G contains a proper cycle, i.e., one that is not merely a loop.
This is seen as follows: if G is free of loops, it necessarily contains at least one
proper cycle since G is not acyclic by assumption. Otherwise, let a = xx be any
loop of G. Since G is `-normal by assumption, x guards a further arc a′ = yz.
Now if a′ is a loop, too, we find x = y = z. Then, however, a and a′ are both
x-loops, which can not be, as G is p-normal. So G contains an (x, y)- and a
(z, x)-path, which form a proper cycle.

We choose a smallest proper cycle C ⊆ G. Since C is proper, it contains at
least two distinct vertices. Consider the source and sink of G. Neither of these
vertices lies on C, since every vertex of C has in- and out-degree at least one.
So G contains a shortest (src, C)-path Psrc and a shortest (C, snk)-path Psnk.
Let x denotes the vertex of C where Psrc enters C, and let y denote the vertex
where Psnk leaves C. We distinguish whether x and y coincide.

1. If x 6= y, we further distinguish whether Psrc and Psnk are disjoint; the two
cases are sketched below.

149

7 Forbidden Minor Characterization

e(v) p1

e(y) p2

e(w)

e(x)

C

(a) Φ 4b K

t1

t2

(b) C 4 G

t1

t2

(c) Q 4 G

t1 p1

t2 p2

(d) CR 4 G

t1 p1/z1

t2 p2

(e) C 4 G

t1 p1

t2 p2

z1

(f) Q 4 G

t1 p1

t2 p2

z1

(g) CR 4 G

t1 k1 z1 p1

t2 p2

(h)

t1 k1 z1 p1

t2 k2 z2 p2

(i) bigger kebab

Figure 7.10: Cases occurring in the proof of Lem. 7.2.9, where it is assumed
that G contains an inout-kebab.

150

7.2 Effects of Reduction

src x y snk z

src

snk

y

x

If Psrc and Psnk are disjoint, we have found an inout-kebab with body C,
in-spike Psrc, and out-spike Psnk. This can be seen above on the left. In that
case, the claim follows by virtue of Lem. 7.2.9.

If Psrc and Psnk intersect, let z denote their common vertex which lies
“closest” to C, as shown on the right above. Notice that every vertex shared
by Psrc and Psnk lies outside C, since Psrc and Psnk are shortest paths and
we assumed x 6= y. In that case, we have found both a DΨ and a DΨR. If
either of these subdivisions is bare in G, the claim follows, so assume that G
contains bypasses for either subdivision. In particular, G contains a bypass
of the DΨ. The pegs of Ψ in G are src, z, x, and y. First, we observe that
G contains no bypass from any peg of Ψ to src, since d−(src) = 0. If the
bypass we assume to exist is a (src, x)-bypass, we find Q 4 G, and if it is a
(src, y)-bypass, we find C 4 G. If the bypass is from x to z, we find CR 4 G,
and if we assume a (z, y)-bypass, CR 4 G follows, too. This exhaust all cases
for Ψ. The argument is symmetric for ΨR, so the claim follows for these
cases.

2. If x = y, we denote this vertex simply x. Recall that C is a proper cycle,
hence it contains further vertices. Let z ∈ VC \ x be incident to an out-arc
a = zk /∈ AC ; the argument is symmetric for an in-arc. Since G is p-normal,
a is not parallel to the out-arc of z that belongs to C. Moreover, since we
chose C as a minimal proper cycle, a is no chord of C, hence k lies outside
C. Certainly, k 6= src holds, since d−(src) = 0. If k lies on Psrc, G contains
a DΨ. The claim then follows just as in the previous case. If k lies on Psnk,
then CR 4 G follows. However, if k lies anywhere else in G, G contains an
out-kebab, as well as an inout-kebab. Then the claim follows again from
Lem. 7.2.9.

Finally assume that every zi ∈ VC \ x is incident to only two proper arcs.
These must be its in-arc and out-arc in C. Now Prop. 7.2.7 implies that each
zi carries a loop. Since G is `-normal, this also means that every zi is a guard.
However, the only vertices zi might possibly guard, are the zj ∈ VC \ {x, zi}.
But since x already guards C by construction, and no zi has a predecessor
or successor outside C, this contradicts Prop. 6.1.2.

Each case implies a (bare) minor of G as claimed, or leads to a contradiction.
Since the cases are exhaustive, the claim follows.

151

7 Forbidden Minor Characterization

src

snk

(a) GC

src snk

(b) GQ

src

snk

(c) GΨ

Figure 7.11: Hammocks witnessing the indispensability of C, Q, and Ψ in the
minor-characterization of SPL.

We combine the results found in this section to finally get an alternative
characterization of SPL by means of forbidden subgraphs.

Theorem 7.2.11. Let G be a hammock. Then

G ∈ SPL iff F 64 G for F ∈ F and K 64b G for K ∈ K.

Proof. Let G ∈ SPL, then G is a hammock. According to Lem. 7.1.1 G is
F-free, while Lem. 7.1.5 states that G is free of bare K-minors.

Conversely, let G /∈ SPL for a hammock G. Then Thm. 6.1.8 yields R(G) 6= P1.
If R(G) is acyclic, Valdes’ theorem (Thm. 7.1.4) states N 4 R(G). If R(G)
contains cycles, then Lem. 7.2.10 states F 4 R(G) for some F ∈ F or F 4b R(G)
for some F ∈ K. If G is in normal form already, G = R(G), the claim follows
immediately. Otherwise, we use that the existence of a (bare) DF is invariant
under reduction, as stated in Lem. 7.2.2 for F ∈ F and in Lem. 7.2.4 for F ∈ K.
With these properties, induction on the length of the reduction from G to R(G)
yields the claim.

To conclude this chapter, we observe that the characterization of SPL by
forbidden minors is not redundant: For each F ∈ F ∪K we find a hammock
GF /∈ SPL that witnesses F ’s indispensability from F ∪K. Each GF satisfies
F 4b GF and F ′ 64 GF for F ′ ∈ (F ∪K) \ F . Since N is a hammock by itself
and F 64 N for F ∈ F ∪K, we find GN = N. The analogous argument shows
that GΦ = Φ holds. For the remaining graphs the witnessing graphs are shown
in Fig. 7.11; notice that the witnesses for CR and ΨR are the duals of the
witnesses for C resp. Ψ.

This concludes our treatment of the obstruction set characterization of SPL.
Let us state once more that the characterization we found is consistent with

152

7.2 Effects of Reduction

the respective one for SP. As a matter of fact, a result of the same type is
known for a nontrivial superset of SPL. The class in question is investigated
in the context of structured programming, otherwise known as GOTO-free
programming. On a graph theoretic level, it can be defined (in our terms) as
the class generated from P1 by the spl-expansion, together with an operation
which replaces a constriction with the graph Φ.

The resulting class obviously allows Φ as a bare minor. Moreover, within the
class of hammocks this larger class admits a forbidden minor characterization,
too, given by the set F alone [23, 42]. Intuitively, this implies that the “part”
of our characterization which consists of K necessitates from the absence of
Φ as a bare minor. Nevertheless, as we just discussed, the characterization is
minimal, in the sense that no member of K can be left out. However, this fact
follows relative to the notion of a “bare” minor; in the light of the superclass of
SPL and its characterization, it might be well possible to obtain an obstruction
set characterization of SPL that consists of fewer graphs wrt. a different minor
notion on directed graphs.

153

8 SPL-Graphs and Regular Expressions

In this chapter we investigate how spl-graphs can be reversibly encoded. An
“encoding” of an spl-graph is meant to be a term, i.e., a linear entity, that can
be efficiently translated to a unique member of SPL. It is not particularly
surprising that this is possible in the first place, since SPL is a recursively
constructed class of graphs. Any member of such a class is implicitly char-
acterized by a decomposition tree, which carries the information on how to
construct the considered member by using the recursive rules of the definition.
A decomposition tree, in turn, can be written in term form quite naturally.
The characterization by decomposition trees often allows efficient solutions of
problems that are hard on arbitrary graphs [5, 47, 6].

We choose regular expressions to encode spl-graphs. More precisely, we interpret
the decomposition tree of an spl-graph as the parse tree of an expression, which
yields the encoding immediately. This choice provides us with several results that
go beyond the mere property of conveying the graph structure. In particular, we
will find an efficient conversion of EFAs with spl-structure to expressions that
are linear in EFA size. Notice, however, that decomposition trees are generally
not unique. This is also the case for spl-graphs, resp. for the expressions
encoding these graph. However, the ambiguity is restricted to associativity and
commutativity of regular operators, which is not critical.

Considering the dual operation of encoding an spl-graph, we further show
that any reduced expression encodes a unique spl-graph. This graph can be
reconstructed from the expression by an adapted fragment of the ARS we gave
in Ch. 4 for the construction of FAs from expression. In fact, we treat EFAs
and spl-graphs in a unified framework; in particular, we will identify hammocks
with trim normalized automata.

Definition 16. A labeled graph is a triple (G,A, l), where G is a graph, A is
an alphabet and l is a map l : AG → REA, called the labeling . The image of an
arc under l is the label of the arc. A labeling is p-injective, if distinct parallel
arcs of G are mapped to distinct labels.

155

8 SPL-Graphs and Regular Expressions

When referring to the structural properties of a labeled graph G = (G′,A, l),
we are actually considering G′. A graph as it was considered in the previous
chapters is also called an unlabeled graph. For the unified treatment of unlabeled
and labeled graphs, the unlabeled graph G is associated with the labeled graph
(G,AG,∆AG). The labeling ∆AG is the identity on AG, i.e., each arc is considered
as a letter, resp. a trivial expression. In other words, each arc in this graph is
labeled with “itself”, which is clearly a p-injective labeling.

Recall that the graph underlying an EFA E = (Q,A, δ, I, F), is defined as
G(E) = (Q, δ, π31, π

3
3) with tail map π31 : (p, r, q) 7→ p and head map π33 :

(p, r, q) 7→ q. We extend this notion to labeled graphs by also taking the label
of each transition into account.

Definition 17. Let E be an EFA over A, then the graph interpretation of E is
the labeled graph Gl(E), defined as

Gl(E) := (G(E),A, π32).

Observe that by switching to the graph interpretation of an EFA, we discard
information about the initial and final states of the automaton. Any other
feature, however, is preserved and can be restored from the graph interpretation.
Still, this implies that we generally cannot reconstruct the language accepted
by an EFA from its graph interpretation. We will see that this does not pose
a problem if trim normalized EFAs are considered. To this end, we define a
counterpart notion of graph interpretation.

Definition 18. Let G = (G′,A, l) be a labeled graph and let I = {x ∈ VG′ |
d−G′(x) = 0} and F = {x ∈ VG′ | d+

G′(x) = 0}. The automaton interpretation of
G is the EFA FA(G), defined as

FA(G) := (VG′ ,A, δ, I, F), where

δ := {(tG′(a), l(a), hG′(a)) | a ∈ AG′}.

The language accepted by the graph G is now defined as L(G) := L(FA(G)).

Observe the sets of initial and final states of an EFA are allowed to be empty,
so the automaton interpretation of a labeled graph is well defined. This also
holds for the language accepted by a labeled graph.

In the following, we consider the homomorphic extension of a labeling to
sequences of arcs. For w = a1 . . . an, ai ∈ A, we set

l(w) = l(a1 . . . an) := l(a1) . . . l(an),

wherein each label becomes a factor in a product.

156

Proposition 8.0.12. Let G = (G′,A, l) be a labeled graph. If w is an (x, y)-
walk in G, then each word in L(l(w)) carries x to y in FA(G).

Proof. Straightforward induction over the length of the walk, using the homo-
morphic extension of the labeling.

If we consider an unlabeled graph, i.e., if we label each arc with itself, a stronger
— although unsurprising — result holds.

Proposition 8.0.13. Let G be an unlabeled graph, then w is an (x, y)-walk in
G iff w carries x to y in FA(G).

Proof. The homomorphic extension of the identity on arcs equals the identity
on walks.

The motivation behind choosing the vertices with in-degree (out-degree) as
initial (final) states in the automaton interpretation becomes clear from the
following properties.

Proposition 8.0.14.

1. If H is a labeled hammock, then FA(H) is a trim normalized EFA.

2. If E is a trim and normalized EFA, then G(E) is a labeled hammock.

3. If G is a labeled graph with a p-injective labeling, then G(FA(G)) = G.

4. If E is a trim and normalized EFA, then FA(G(E)) = E.

Proof.

1. Let H = (H ′,A, l) with (H ′, src, snk) ∈ H, then the initial and final
states of FA(H) are the singleton sets {src} and {snk}, respectively.
Moreover, for x ∈ VH there is a (src, snk)-path P and an (x, snk)-path
P ′ in H. As each path is a special kind of walk, Prop. 8.0.12 applies,
yielding that x is accessible and co-accessible in FA(H). Therefore FA(H)
is trim and normalized.

2. Let E be trim and normalized, with initial state qi and final state qf . Since
every state is accessible and co-accessible in E, it lies on a (qi, qf)-path
in G(E). With d−G(E)(qi) = 0 and d+

G(E)(qf) = 0 we find that G(E) is a
hammock with source qi and sink qf .

157

8 SPL-Graphs and Regular Expressions

3. The claim follows immediately from the definitions of a graph interpreta-
tion and an automaton interpretation. The requirement that the labeling
is p-injective is necessary, since otherwise, parallel arcs with coinciding
labels are mapped to the same transition in FA(G).

4. Let E be trim and normalized with initial state qi and final state qf .
Then G(E) is a hammock with source q0 and sink qf . According to its
definition, the automaton interpretation of G(E) again has q0 as an initial
and qf as a final state.

Supported by Prop. 8.0.14, we do sometimes not clearly distinguish trim nor-
malized EFAs and labeled hammocks with p-injective labelings. In particular,
we formulate the results in this chapter in the framework of labeled hammocks,
yet apply them to trim normalized FAs.

8.1 Encoding Graphs by Expressions

In order to encode members of SPL, we augment the spl-reductions to labeled
hammocks. Recall from Sec. 6.1 that reducing an spl-graph G to P1 is equivalent
to finding a sequence of expansions from P1 to G backwards. By using labels in
the reduction process, information about this sequence is stored in the labels.
More specifically, a label stores the recursive structure of the subgraph that
emerges from the arc carrying the label. We associate series reductions with
products, parallel reductions with sums and loop reductions with iterations.
The universe of the resulting ARS is the class of labeled hammocks over A,
defined as

HA := {(H,A, l) | H ∈ H}.

The path of length one, P1, can hold only a single label, which we convey in
formal notation. Recall that P1 is the axiom of SPL, so we define a labeled
axiom to be any labeled graph

P1[r] := (P1,Ar, l),

where Ar is the least alphabet for which r is defined, and l(a) = r for the sole
arc a of P1.

158

8.1 Encoding Graphs by Expressions

Definition 19. The relations J·, J+, and J∗, called product encoding , sum
encoding , and star encoding , are defined on HA as described below. In the
following let G1 = (G′1,A, l1) and G2 = (G′2,A, l2) be members of HA.

- The relation G1 J· G2 holds if the following is satisfied:

1. The vertex y is simple in G′1, and G′1
s⇐ G2 holds due to G2 = (G′1 −

y) ∪ xz.

2. The arcs incident to y in G′1 are a1 = xy and a2 = yz, with labels
l1(a1) = s and l1(a2) = t.

3. The labeling in G2 is l2(a) = st and l2(a
′) = l1(a

′) for a 6= a′.

- The relation G1 J+ G2 holds if the following is satisfied:

1. The arcs a, a′ are parallel in G′1, and G′1
p⇐ G′2 holds due to G′2 = G′1 \ a.

2. The labels of a and a′ in G1 are l1(a) = s and l1(a
′) = t.

3. The labeling in G2 is l2(a
′) = s+ t and l2(a

′′) = l1(a
′′) for a′′ /∈ {a, a′}.

- The relation G1 J∗ G2 holds if the following is satisfied:

1. G′1 contains a loop a = xx, and G′1
`⇐ G′2 holds due to G′2 = G′1\a�x�.

2. The label of a in G1 is l1(a) = s.

3. The labeling in G2 is l2(x1x2) = s∗ and l2(a
′) = l1(a

′) for a 6= x1x2.

More generally, the encoding relation is defined as J:=J· ∪ J+ ∪ J∗.

The local differences for labeled hammocks are shown in Fig. 8.1 for each
encoding. Encodings are the rules of the ARS E, which is defined as

E := 〈HA,J·,J+,J∗〉.

It becomes clear from their definition that the encoding relations merely augment
the spl-reductions by handling arc labels. Consequently, for labeled graphs
Gi = (G′i,A, li), we find

G1 J G2 J · · ·Gn iff G′1 ⇐ G′2 ⇐ · · ·G′n.

Recall from Sec. 6.1 that the ARS R of spl-reductions is terminating and locally
confluent. Therefore, E is certainly terminating, too, and admits normal forms
that are at least structurally unique. However, the labeling of a normal form

159

8 SPL-Graphs and Regular Expressions

x y zs t J· x zst

(a) product encoding q

x y
s

t
J+ x ys+ t

(b) sum encoding

x

s

J∗ x1 x2s∗

(c) star encoding

Figure 8.1: Labeled reductions, or encodings, on HA.

in E is not necessarily unique. More precisely, it is unique up to algebraic
identities on regular expressions. These are associativity of products and sums,
i.e., (rs)t ≡ r(st), resp. (r + s) + t ≡ r + (s+ t), and commutativity of sums,
r+s ≡ s+r. In the following, we refer to these properties loosely as associativity
and commutativity of (operators in) expressions, while keeping in mind that
commutativity refers to sums only. We write

r1 =AC r2

if r1 and r2 are identical modulo associativity and commutativity1. To prove
the claim above, we take a step back and establish local confluence for encodings
modulo =AC separately.

Lemma 8.1.1. The ARS E is locally confluent modulo =AC in labels.

Proof. Let G = (G′,A, l) and Gi = (G′i,A, li), for i ∈ N, be labeled hammocks.
We need to show the following: given a pair of encodings G Ji G1 and G Jj G2,
for i, j ∈ {·,+, ∗}, there are G3, G4 s.t. encodings G1 J? G3 and G2 J? G4 exist,
with G′3 = G′4 and l3(a) =AC l4(a) for each arc a.

A thorough proof of this requires to consider every combination i, j ∈ {·,+, ∗}.
All cases are straightforward: most of the work is identical to that in the proof
of Lem. 6.1.6, although plenty of cases arise when considering commutative and
associative combinations. Therefore, we only prove a first case in full rigor and
argue rather superficially in the remaining ones.

Assume G J· G1 and G J· G2, meaning that for i ∈ {1, 2} the following holds:

1. yi is simple in G′, for i ∈ {1, 2} with predecessor xi and successor zi,

1We omit a formal definition of this relation, which is easily given inductively.

160

8.1 Encoding Graphs by Expressions

2. Gi = (G− yi) ∪ ai for a new xiyi-arc ai, and

3. li(ai) = l(xiyi)l(yizi).

If y1 /∈ {x2, z2}, then either y1 = y2, which yields the claim trivially, or the
arcs incident to y1 and y2 are disjoint. In the latter case, either Gi is further
encoded to H = (H ′,A, lH), where

H ′ = (G′ − {y1, y2}) ∪ {a1, a2},

and lH(ai) = l(xiyi)l(yizi). In that case, setting G3 = G4 := H satisfies the
claim.

If we assume y1 = x2 (the case y1 = z2 is symmetric), then z1 = y2 follows,
i.e., the y1z1-arc and the x2y2-arc of G are identical. Let l(x1y1) = r, l(y1z1) =
l(x2z2) = s and l(y2z2) = t, as shown below:

x1 y1/x2 z1/y2 z2r s t

In the following, we drop the vertex “names” x2 and z1. If expressions are written
according to their strict definition, i.e., fully parenthesized, the label of a1 in
G1 is l1(a1) = l(x1y2) = (rs), while that of a2 in G2 is L2(a2) = l2(y1z2) = (rs).
The following sketch shows this part in G1 on the left and that in G2 on the
right.

x1 y2 z2
(rs) t x1 y1 z2r (st)

Since y2 is simple in G1 and y1 is simple in G2, so either Gi admits for a further
product encoding: G1 J· G3 due to G′3 = (G′1−y2)∪x1z2 with l3(x1z2) = ((rs)t),
and G2 J· G4 due to G′4 = (G′2 − y1) ∪ x1z2 with l4(x1z2) = (r(st)). These
graphs satisfy G′3 = G′4, while for the labels, we find l3(x1z2) =AC l4(x1z2) and
l3(a) = l4(a) for a 6= x1z2, as claimed. This completes the first case.

Now let G J· G1 and G J+ G2. Let G′1 = (G′ − y) ∪ xz and G′2 = G′ \ a.
Assume that a is parallel to a′ in G and that l(a) = s and l(a′) = s′. As x is
certainly not incident to a, the two encodings do not interfere with each other,
i.e., x is simple in G2, and a is parallel to some further arc in G1. This allows for
encodings G1 J+ G3 and G2 J· G4, due to G′3 = G′1 \a and G′4 = (G′1−y)∪xz.
We know from Lem. 6.1.6 that G′3 = G′4. The label of a coincides in G3 and G4,
or it is s+ s′ in G3 and s′+ s in G4, or vice versa. In each case, l3(a) =AC l4(a)
is satisfied.

161

8 SPL-Graphs and Regular Expressions

Assume that the encodings are G J· G1 and G J∗ G2. There is no way to
introduce distinct labels if the two encodings are successively applied in either
order. In this case, the claim follows immediately from Lem. 6.1.6.

For two sum encodings, G J+ G1 and G J+ G2, let G′i = G \ ai for i ∈ 1, 2,
and let ai be parallel to a′i in G. If a1 and a2 are not parallel to another, then
a1 is (still) parallel to a′1 in G2 and a2 is parallel to a′2 in G1. The sum obvious
sum encodings G1 J+ G3 and G2 J+ G4 yield labeled graph with G′3 = G′4
and l3(a

′
1) =AC l4(a

′
2).

If the ai are parallel to another for a pair of sum encodings, assume that the ai
are xy-arcs and let H denote the labeled graph derived from G by replacing
all xy-arcs with a single arc a, labeled with the sum of all labels of xy-arcs in
G. Let G3 and G4 denote the labeled graphs derived from G1 and G2 by sum
encoding all the remaining xy-arcs, so G1 J?+ G3 and G2 J?+ G4. G

′
3 = G′4 is

clear in this case. Moreover, we find l3(xy) =AC lH(xy) =AC l4(xy), thus also
l3(xy) =AC l4(xy).

The encodings G J+ G1 and G J∗ G2 again do not interfere with another,
and their order can be swapped. In other words, there are always follow-up
encodings G1 J∗ G3 and G2 J+ G4 s.t. G3 = G4.

Let finally G J∗ Gi due to G′i = (G′ \ ai) �xi�. If x1 = x2, then a1 = a2
follows, since loop reduction is not allowed for parallel loops. In that case, the
statement follows trivially from G1 = G2. Otherwise, the order of the encodings
is irrelevant, since either Gi allows for the “other” encoding, and G3 = G4

follows.

This covers all cases and the discussion is complete.

Corollary 8.1.2. Let G = (G′,A, l) with G′ ∈ SPL and l p-injective. Then
G J? P1[r] follows, where r is unique modulo =AC.

Proof. For G ∈ SPL we have established G⇐? P1 in Ch. 6. If we consider the
unlabeled graph G as a labeled graph where each arc is labeled with itself, we
get G J? P1[r] for some expression r. Following Lem. 8.1.1, P1[r] is unique
modulo =AC in labels. Since r is such a label, the claim follows.

This brings us to the actual description of graphs with spl-structure by means
of regular expressions. Recall that red(r) denotes the reduced equivalent of r,
and that ⇐ r either equals one of ∅ and ε, or is free of both.

162

8.1 Encoding Graphs by Expressions

Definition 20. Let G = (G′,A, l) with G′ ∈ SPL and l p-injective. An
encoding expression ofG, denoted RE(G), is any expression red(r) s.t. G J? P1[r].
Likewise, an encoding expression of an spl-EFA E, denoted RE(E), is any
expression r s.t. r = RE(G(E)).

We usually call an encoding expression just an “encoding”. It will always be
clear from the context whether we refer to a rule of E or an expression derived
through rewritings in E.

Notice that for fixed r, the expression red(r) is unique. Therefore, the encoding
of an spl-graph is unique modulo =AC. This is no severe drawback. It is easy
to define a normal form on expressions where all products and sums are written
in left associative form and the operands of sums are recursively ordered in a
lexicographic fashion. Any expression can be put into this normal form in time
O(n log n) where n is the alphabetic width of the expression.

An algorithm for computing an encoding is derived by generalizing Alg. 4 to
graphs with labeled arcs. Notice that common implementations of dynamic
graphs support labels already [48, 34]. Moreover, the encoding rules can
be implemented without a significant overhead. This required that labels,
expressions, are not treated as strings but — by their recursive nature — as
trees. This avoids costly operations on strings, which would incur at least a
logarithmic overhead.

We briefly outline one way to deal with expressions as labels in an implementa-
tion. Therein an arc is associated with a pointer to the parse of an expression,
which is supposed to be the label of this arc. This tree is stored separately. With
each encoding step either two trees are merged, in the case of product and sum
encoding, or a new root with label ∗ is added, for star encoding. Generally, the
label of an arc that is manipulated becomes a subtree in a bigger tree. If these
trees are implemented adequately, these operations take constant time each.
Reducing an expression is easily implemented on the parse of the expression in
linear time.

For all practical purposes, E can also be considered as an ARS on trim normalized
EFAs. The only difference between a graph with p-injective labeling and an
EFA is the way how initial and final states are determined. The equivalence of
hammocks and trim normalized EFAs was shown in Prop. 8.0.14. We continue
by treating labeled hammocks as language acceptors in the following

Proposition 8.1.3. If G J H, then L(G) = L(H).

163

8 SPL-Graphs and Regular Expressions

Proof. The source or sink of G is not removed upon encoding, thus the sources
of G and H coincide, as do the sinks. Hence, the trim normalized EFAs FA(G)
and FA(H) have the same initial and final states. Showing that w carries the
initial to the final state in FA(G) iff w carries the initial to the final state in
FA(H) is straightforward.

For unlabeled spl-graphs, we find that the set of walks from the source to the
sink is denoted by a regular expression, namely, any encoding of the graph.

Corollary 8.1.4. Let (G, src, snk) ∈ SPL. Then w is a (src, snk)-walk in G
iff w ∈ L(RE(G)).

Proof. According to Prop. 8.0.13, w is a (src, snk)-walk in G iff w ∈ L(G).
Since we assume G ∈ SPL, G can be reduced to P1. This implies G J? P1[r],
for some expression r. From Prop. 8.1.3 follows L(G) = L(P1[r]) = L(r), which
yields the claim.

The Cor. 8.1.4 is a first justification to interpret the decomposition tree of an
spl-graph as an expressions, and to associate series, parallel, and loop properties
with the regular operators as we did. As an important “byproduct”, we obtain
an efficient method to convert EFAs with spl-structure to regular expression.

Theorem 8.1.5. Let E be an spl-EFA and let r = RE(E). Then L(r) = L(E),
and r can be constructed in time O(|QE |3).

Proof. For an spl-EFA E we find G(E) J? P1[r′] with L(r′) = L(G(E)) = G(E).
Managing labels does not cause an overhead of encodings over reductions, so
the running time of this computation equals that of constructing P1 from G(E).
Following Prop. 6.2.7, this can be done in time O(|VG(E)|3), or equivalently
O(|QE |3).

For the reduction of r′ to r we only need to consider ε-reduction, since r′ is
naturally ∅-free. The number of subsequent rewritings of r′ equal the number
of ε-positions in r′. Since every ε-position stems from an ε-transition in E, the
number of operations necessary for reduction is in O(|QE |). This second step
does not change the asymptotic running time, so the claim follows.

A case of particular importance for Thm. 8.1.5 is that of spl-FAs. The theorem
implies the efficient conversion of such FAs into expressions. This generalizes a
recent result by Moreira & Reis [38], who gave an efficient conversion of FAs

164

8.1 Encoding Graphs by Expressions

with series parallel structure to expressions that are linear in the size of the FA.
In the following, we show that the same is true for FAs with series parallel loop
structure; our findings are brought together in Thm. 8.1.8.

Proposition 8.1.6. Let A be an spl-FA. Then |RE(A)|A ≤ |δA|.

Proof. It is evident from Fig. 8.1 that the sum of alphabetic widths of all
transitions in an EFA / labeled hammock remains constant upon encoding.
In an FA, this number equals the number of transitions, which implies the
claim.

According to our definition of the size of an automaton, we also need to take
the number of states into account. To this end we bound the alphabetic width
of an encoding once more.

Lemma 8.1.7. Let A be an spl-FA over A. Then |RE(A)|A < 2|QA|(|AA|+1).

Proof. First, we bound the number of transition in an spl-FA relative to the
number of states. We first assume that the FA is free of parallel transitions,
i.e., normal wrt. sum-encoding, and treat parallel transitions later.

On the graph level, we examine how a p-normal spl-graph is derived from
P1. Obviously, P1 is p-normal. Assume that G is p-normal and let G ⇒ H.

For G
s⇒ H and G

`⇒ H, we find that H is p-normal, too. To enclose all
p-normal spl-graphs, we also need to consider intermediate p-expansions in the
construction. So for p-normal G let G

p⇒ H, which is clearly not p-normal. Let
a and a′ denote the unique pair of parallel arcs in H. To get a p-normal graph
from H, further p-expansion is obviously useless. Also, `-expansion can not be
applied to a, a′, neither arc is a constriction. However, applying s-expansion
to either arc yields a p-normal spl-graph again. So we assume a combination
of p- and s-expansion, i.e., the replacement of an arc by a so-called “transitive
triple”, as sketched below:

x y p⇒ s⇒ x y

It is easy to see that this actually yields all p-normal spl-graphs, basically
by reverting the constructive process described above. We only sketch this
direction. Let G ∈ SPL be p-normal, then either G = P1 holds, or s- or
`-reduction applies to G. In the first case, at most one pair of parallel arcs

165

8 SPL-Graphs and Regular Expressions

may emerge; a follow-up p-reduction makes the graph p-normal again. This
is exactly the reversal of the combined expansion shown above. In the second
case, parallel arcs do not emerge from reduction.

For c ∈ {s, p, `}, let #c denote the number of c-expansions in the construction
of a p-normal spl-graph G from P1. The preceding discussion implies that
every p-expansion is followed by s-expansion, so we have #p ≤ #s. If we count
the number of arcs and vertices introduced with each decoding/expansion (cf.
Fig. 8.2), starting with |AP1 | = 1 and |VP1 | = 2, we find

|AG| = 1 + #s + #p ≤ 1 + 2#s, and

|VG| = 2 + #s −#`.

We solve the lower equation for #s and substitute the result for #s in upper
inequation to find that the number of arcs in a p-normal spl-graph is bounded
as

|AG| ≤ 2|VG| − 2#` − 3 < 2|VG|.

Considering arbitrary G ∈ SPL, observe that is irrelevant at which point in
the rewriting P1 ⇒? G the parallel arcs of G are introduced. That is, we may
assume that G is derived by

P1 ⇒? G′
p⇒
?
G,

where G′ is p-normal.

While the number of parallel arcs in spl-graphs is unbounded, this is different
for spl-FAs. For states p and q, there may be at most |A|+ 1 transitions from
p to q, since we allow for ε-transitions. Let A be such an automaton, then the
bound derived for p-normal spl-graphs, is reinterpreted for spl-FA and corrected
by parallel transitions, to yield

|δA| ≤ (|AA|+ 1)(2|QA| − 5) < 2|QA|(|AA|+ 1).

The claim now follows with Prop. 8.1.6.

The bound in Lem. 8.1.7 is interesting in itself, since the number of states and
the alphabetic width are among the more common measures of automata and
expression complexity/size (cf. introductory section of Ch. 3). Nevertheless, we
further bound the size of an expression relative to the size of an spl-FA wrt.
the notions that were used in Chs. 3 and 5 to refer to the size of an FA or
expression.

166

8.2 Decoding Expressions to Graphs

Theorem 8.1.8. For an spl-FA A an equivalent expression r can be computed
in O(max{|QA|3, |δA|2}). The size of r is bounded in the size of A as

|r| < 6|QA|(|AA|+ 1).

Proof. We set

r := RE(A)•,

then |r|A = |RE(A)|A holds trivially. As shown in Lem. 8.1.7, the expression
interpretation of A satisfies |RE(A)|A ≤ 2|QA|(|AA|+1). Following Thm. 3.2.10,
the overall size of r is bounded within three times its alphabetic width, so we
get

|r| ≤ 3|r|A = 3|RE(A)|A < 6|QA|(|AA|+ 1),

as claimed.

The time needed to compute r from A is the time for labeled reduction and
computation of the ssnf. The latter computation is linear in |RE(A)|, so the
overall running time is dominated by computing the expression interpretation.
The complexity of the latter equals that of reducing G(A) to P1, which can
be done in O(max{|VG(A)|3, |AG(A)|2}), as was demonstrated in Prop. 6.2.7 for
Alg. 4.

8.2 Decoding Expressions to Graphs

We have previously claimed that the encoding expression of an spl-graph contains
the recursive structure of the graph. In this section we give the construction to
recover this structure, i.e., we consider the construction of an spl-graph from its
encoding. This construction will be defined for arbitrary reduced expressions; we
will show that any reduced expression encodes an spl-graph. Recall from Sec. 4.4
that every expression can be converted to a smaller equivalent expression that
is reduced; recall further that ε-freeness of reduced expression is partially due
to the syntactic convention that r + ε is written as r?.

We consider this second construction in form of a further ARS on labeled
hammocks. Unlike for the encoding relation, it does not suffice to augment the
graph-theoretic relations — the spl-expansions, in this case — with labels. This
would not guarantee that the system produces graphs for all inputs in a unified
manner. While we do consider labeled spl-expansions, we need a further rule to
remove ε-transitions that appear from labeled loop-expansions.

167

8 SPL-Graphs and Regular Expressions

x yst I· x ys t

(a) product decoding

p qs+ t I+ p qs

t
(b) sum decoding

p qs∗ I∗ p q

s
ε ε

(c) star decoding

x y
z1

zn

ε
r1

rn
I^ x

z1

zn

r1

rn

(d) fan elimination

Figure 8.2: Decodings and fan elimination on HA

As it turns out, we can use a fragment of the ARS which we considered in
Ch. 4 for the construction of FAs from arbitrary expressions. More specifically,
we restrict ourselves to product-, sum-, and star-expansion, as well as fan-
elimination. However, these rules are defined on EFAs; still, as we have seen
in Prop. 8.0.14, we can at least identify trim normalized EFAs with labeled
hammocks.

For a sound formal treatment, we introduce new relations on labeled hammocks,
which indicate that a certain relation holds for the automaton interpretations
of these graphs. To this end, for labeled hammocks G and H, we write

- G I· H if FA(G)⇒· FA(H)

- G I+ H if FA(G)⇒+ FA(H)

- G I∗ H if FA(G)⇒∗ FA(H)

- G I^ H if FA(G)⇒^ FA(H)

This yields the decoding ARS

D := 〈HA,I·,I+,I∗,I^〉.

The decoding rules are shown in Fig. 8.2. We set I:=I· ∪ I+ ∪ I∗ ∪ I^.

Lemma 8.2.1. The ARS D is locally confluent.

Proof. The proof is standard by showing that F I G1 and F I G2 implies
Gi I? H for some labeled graph H and i ∈ {1, 2}. We have shown the
corresponding property for ⇒·, ⇒+, ⇒∗, and ⇒^ on EFAs in Prop. 4.2.3,
Lems. 4.2.4 and 4.2.6. This result carries over to labeled graphs and decodings,
since the decoding ruled are defined by the EFA relations.

168

8.2 Decoding Expressions to Graphs

Proposition 8.2.2. Every intermediate graph in the process of decoding a
reduced expression is a labeled spl-graph.

Proof. A decoding step inflicts product, sum, or star expansion, or fan elimina-
tion on the graph structure, so we prove that these rewritings yield spl-graphs
from P1. The labeled axiom, resp. the primal EFA of an expression, is a labeled
spl-graph. Assume that G = (G′,A, lG) for G ∈ SPL and let G ⇒ H for
H = (H ′,A, lH). It is obvious from Figs. 8.2 and 4.1 that G ⇒· H implies

G′
s⇒ H ′ and that G⇒+ H implies G′

p⇒ H ′. In either case H ′ ∈ SPL follows.

The effects of star decoding on the structure of an EFA can be brought forward
by spl-expansions, too. If G ⇒∗ H holds, then H ′ is derived from G′ by
replacing an arc a = xy with a new vertex z, and arcs a1 = xz, a2 = zz, and
a3 = zy. This can be alternatively achieved by a sequence of two s-expansions
followed by an `-expansion. The two s-expansions subdivide a “twice”, i.e., a is
replaced by two vertices z1 and z2, and arcs a1 = xz1, a2 = z1z2, and a3 = z2y.
Clearly, a′2 is a constriction, so `-expansion applies to a′2. This is equivalent to
merging z1 and z2 into z, thereby making a2 a loop.

It remains to show that for G ⇒^ H, H ′ ∈ SPL follows, too. Let y be the
center vertex of an in-fan in G, i.e., assume that the sole in-arc of y is a = xy,
and that lG(a) = ε. Since the initial expression of the decoding is reduced, arcs
with label ε either stem from sum decoding an arc with label s? or from star
decoding. In the former case, however, there are at least two in-arcs of y, thus
a is derived from star-decoding and x carries a loop. We can therefore assume
F ⇒∗ G⇒^ H, for an appropriate graph F = (F ′,A, lF) with a vy-arc labeled
s∗, as sketched below:

v ys∗ ⇒∗ v x yε
s
ε ⇒^ v xε

s

In total, this rewriting renames y to x an introduces a loop at x; also observe
that all information about the labels of H are present in F already. The same
effect can be achieved by s- and `-expansion. First, s-expansion subdivides
the vy-arc, replacing it with a new vertex x′, and a vx′- and an x′y-arc. Since
d−F ′(y) = 1, the x′y-arc is a constriction, `-expansion applies next. We let x
denote the merge vertex of x′ and y to get exactly H ′. This is shown below:

169

8 SPL-Graphs and Regular Expressions

v y s⇒ v x′ y `⇒ v x

The argument is symmetric if an out-fan is considered. From F ′ ∈ SPL, as
implied by the inductive assumption, now follows H ′ ∈ SPL. All decoding
cases are hereby taken care of and the proof is complete.

The fact that we get (labeled) spl-graphs from decoding an expression also applies
to the structure of FAs constructed by B the base ARS of the construction
presented in Ch. 4.

Lemma 8.2.3. Let r be an ∅-free expression. Then the graph structure of AB
r

is in SPL.

Proof. Let r be ∅-free. As in the proof of Cor. 4.3.3 we find AB
r = AB

r• , so we
can assume that r is in ssnf. Following Cor. 4.4.3, no ε-cycles appear in the
construction of AB

r , therefore, the only rules that are used in this construction
are product, sum, and star expansion, together with fan elimination. The graph
structure of the intermediate Akr is rewritten according to the decoding rules
I·, I+, I∗, and I^, so the claim follows from Prop. 8.2.2.

The graph structure of constructed FAs has been investigated for other conver-
sions, too. Caron & Ziadi [11] characterize the graph structure of Glushkov
automata. Likewise, Giammarresi et al. [18] characterize the structure of FAs
obtained by Thompson’s construction.

8.3 Duality of Encoding and Decoding

Lemma 8.3.1.

1. G J? P1[r] implies P1[r] I? G.

2. Let r be a reduced expression. Then P1[r] I? G implies G J? P1[r′] with
r =AC red(r′).

Proof.

170

8.3 Duality of Encoding and Decoding

1. Let G = (G′,A, lG) and H = (H ′,A, lH). To prove the claim, it is sufficient
to show that any encoding step can be reverted by decodings, i.e., that
G J H implies H I? G. The claim then follows from local confluence of the
decoding relation (Lem. 8.2.1). We have seen in Ch. 6 that the dual relations
of series, parallel and loop reductions are series, parallel, and loop expansions.
Generalizing this to labeled graphs is straightforward, thus G J· H implies
H I· H, G J+ H implies H I+ H, and G J∗ H implies H I∗ H.

2. We show that if P1[r] I? G and G I H, for reduced r, then G and H are
encoded as G J? P1[r′] and H J? P1[r′′] s.t. red(r′) =AC red(r′′) =AC r.

For product and sum related rewritings the decoding and encoding relations
are duals, as observed in the proof of the previous item. There, G I· H
implies H J· G and G I+ H implies H J· G, and the claim follows
immediately.

For G = (G′,A, lG) and H = (H ′,A, lH), consider the decoding step G I∗ H
and let a = xy be the arc with lG(a) = s∗ in G. The decoding replaces a with
a vertex z and arcs a1 = xz, a2 = zz, and a3 = zy, with labels lH = (a1) = ε,
lH(a2) = s, and l(a3) = ε. The loop a2 allows for `-reduction in H ′, so H
allows for the corresponding star encoding. The resulting split vertices of z
are both simple and thus allow for follow up product encodings. Therefore,
the structure of G, is reinstated by a rewriting H J∗ G1 J· G2 J· G3, where
G3 = (G′,A, lG3), and lG3 is identical to lG, except that for the xy-arc we
started with, we have lG3 = εs∗ε. The rewritings that lead from G to G3 are
sketched below:

x ys∗ I∗ x z yε
s
ε J∗ x z1 z2 yε s∗ ε J2

· x yεs∗ε

Any expression that is the label of an arc in a labeled hammock occurs
as a subexpression in the label of some arc in the E-normal form of that
hammock. Since we assume G′ ∈ SPL, exhaustive encoding of G leads to
P1[r′] with εs∗ε ∈ sub(r′). Reducing r′ replaces εs∗ε with red(s∗); and since
s∗ ∈ sub(r) for reduced r by assumption, s∗ is reduced already. Since we
obtain red(r′) as the encoding of G, the difference in the labeling of a in G
and G3 is irrelevant.

For G I^ H we assume that an in-fan is eliminated/decoded, the other
case is symmetric. This case is similar to the last case of Prop. 8.2.2. The
exact same argument as therein shows that the ε-arc in a fan results from

171

8 SPL-Graphs and Regular Expressions

star expansion. Again, we may assume that if a = xy with lG(a) = ε and
d−(y) = 1, then x carries a loop a′ with label s.

We apply star encoding to a′ in G to get an x1x2-arc a′′; the arc a with
label ε now becomes an x2y-arc. With x2 being simple, we apply product
encoding to get an x1y-arc with label s∗ε. Let F1 denote the resulting graph,
i.e., let G J∗J· F1. In H, star encoding a′ yields an x1x2-arc labeled s∗, in
the resulting graph F2. Now F1 and F2 are identical up to the vertex name
y, resp. x2, and the label of the x1y-arc, resp. the x1x2-arc. This label is s∗,
resp. s∗ε, and by the same argument as in the previous case, we find the
encodings F1 J? P1[r′] and F2 J? P1[r′′] with red(r′) =AC red(r′′) =AC r.

Of course, the first item in Lem. 8.3.1 is a statement about (labeled) spl-graphs,
which are exactly the graphs that can be rewritten to the (labeled) axiom by
(labeled) spl-reductions. In effect, the first item of the lemma thus states that
any spl-graph can be reversibly encoded by an expression. The second item
states that any reduced expression can be converted to a graph, from which
the expression can be obtained again by reduction, modulo =AC, that is. We
also know from Lem. 8.2.1 and Prop. 8.2.2 that any such graph is a uniquely
determined (labeled) spl-graph.

Therefore, the encoding and decoding relations provide bijections between the
class of spl-graphs, labeled or unlabeled, and that of reduced regular expression.
As a corollary, we get the main result of this chapter, namely, that reduced
expressions constitute a third characterization of spl-graph. The core of this
statement is the preceding lemma, we give the following is a more “catchy” —
and rather informal — rephrasing of these properties.

Theorem 8.3.2. A graph G is an spl-graph iff G can be reversibly encoded by
a reduced regular expression.

As we have shown in Ch. 7, the class SPL admits a characterization by a finite
set of forbidden (bare) minors. Moreover, we know that none of these minors can
be omitted from the characterization. Since we know that that spl-graphs and
FAs with spl-structure can be converted to linear sized expressions, our findings
suggest that the forbidden minors of SPL constitute exactly the structural
properties of general FAs that cannot be encoded efficiently by expressions.
In other words, these are the structures that cause the exponential blowup
generally observed with the conversion of FAs to expressions.

172

8.3 Duality of Encoding and Decoding

It is worth mentioning that the FAs which were used by Ehrenfeucht & Zeiger
in the proof of this exponential lower bound have complete underlying graphs.
In other words, there is a transition among each pair of states in either direction.
For a fixed FA with n states of this type, it follows that every p-normal graph of
order up to n contained in some way in this automaton. It should be interesting
to investigate if the lower bound can be reinstated with less dense automata,
that are built by members of F and K exclusively.

173

Bibliography

[1] Bang-Jensen, J., and Gutin, G. Digraphs. Theory, Algorithms and
Applications, 2 ed. Springer Monographs in Mathematics. Springer, 2008.

[2] Becchi, M., and Crowley, P. A hybrid finite automaton for practi-
cal deep packet inspection. In 3rd Conference on emerging Networking
EXperiments and Technologies (2007).

[3] Bondy, J., and Murty, U. Graph Theory, 2 ed. No. 244 in Graduate
Texts in Mathematics. Springer, 2008.

[4] Book, R. V., Even, S., Greibach, S., and Ott, G. Ambiguity in
graphs and expressions. IEEE Transactions on Computers 20, 2 (1971),
149–153.

[5] Borie, R. B., Parker, R. G., and Tovey, C. A. Recursively con-
structed graphs. In Handbook of Graph Theory. CRC Press, 2004.

[6] Borie, R. B., Parker, R. G., and Tovey, C. A. Solving problems on
recursively constructed graphs. ACM Computing Surveys 41, 1 (2008).

[7] Brandstädt, A., Le, V. B., and Spinrad, J. P. Graph Classes:
A Survey. No. 3 in SIAM Monographs on Discrete Mathematics and
Applications. 1999.

[8] Brüggemann-Klein, A. Regular expressions into finite automata. Theo-
retical Computer Science 120 (1993), 197–312.

[9] Brüggemann-Klein, A., and Wood, D. One-unambiguous regular
languages. Information and Computation 142 (1998), 182–206.

[10] Brzozowski, J. A., and McCluskey Jr., E. J. Signal flow graph
techniques for sequential circuit state diagrams. IEEE Transactions on
Electronic Computers 2 (1963), 67–76.

[11] Caron, P., and Ziadi, D. Characterization of Glushkov automata.
Theoretical Computer Science 233 (2000), 75–90.

175

Bibliography

[12] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to Algorithms, 3 ed. The MIT Press, 2009.

[13] Diestel, R. Graph Theory, 3 ed. No. 173 in Graduate Texts in Mathe-
matics. Springer, 2006.

[14] Ehrenfeucht, A., and Zeiger, P. Complexity measures for regular
expressions. In STOC ’74: Proceedings of the sixth annual ACM symposium
on Theory of computing (New York, NY, USA, 1974), ACM Press, pp. 75–
79.

[15] Ehrenfeucht, A., and Zeiger, P. Complexity measures for regular
expressions. Journal of Computer and System Sciences 12 (1976), 134–146.

[16] Ellul, K., Krawetz, B., Shallit, J., and Wang, M.-W. Regular ex-
pressions: new results and open problems. Journal of Automata, Languages
and Combinatorics 10, 4 (2005), 407–437.

[17] Friedl, J. E. Mastering Regular Expressions, 3 ed. O’Reilly, 2006.

[18] Giammarresi, D., Ponty, J.-L., Wood, D., and Ziadi, D. A char-
acterization of Thompson digraphs. Discrete Applied Mathematics 134
(2004), 317–337.

[19] Ginzburg, A. A procedure for checking equality of regular expressions.
Journal of the ACM 14, 2 (1967), 355–326.

[20] Granot, D., Granot, F., and Zhu, W. Naturally submodular digraphs
and forbidden digraph configurations. Discrete Applies Mathematics 100
(2000), 67–84.

[21] Gruber, H., and Gulan, S. Simplifying regular expressions. A quanti-
tative perspective. In LATA 2010 (2010), no. 6031 in LNCS, Springer.

[22] Gulan, S., and Fernau, H. An optimal construction of finite automata
from regular expressions. In 28th International Conference on Foundations
of Software Technology and Theoretical Computer Science (2008), pp. 211–
222.

[23] Hecht, M. S., and Ullman, J. D. Characterizations of reducible flow
graphs. Journal of the ACM 21, 3 (1974), 367–375.

[24] Hemminger, R. L., and Klerlein, J. B. Line pseudographs. Journal
of Graph Theory 1 (1977), 365–377.

176

Bibliography

[25] Holzer, M., and Kutrib, M. Nondeterministic descriptional complexity
of regular languages. International Journal of Foundation of Computer
Science 14, 6 (2003), 1087–1102.

[26] Holzer, M., and Kutrib, M. Descriptional complexity — an introduc-
tory survey. In Scientific Applications of Language Methods, C. Mart́ın-Vide,
Ed. 2011.

[27] Hopcroft, J. E., and Ullman, J. D. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[28] Hovland, D. The inclusion problem for regular expressions. In LATA
2010 (2010), no. 6031 in LNCS, Springer, pp. 309–320.

[29] Huet, G. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM 27, 4 (1980), 797–821.

[30] Ilie, L., and Yu, S. Follow automata. Information and Computation,
186 (2003), 140–162.

[31] Kleene, S. C. Representation of Events in Nerve Nets and Finite Au-
tomata. Annals of Mathematics Studies. 1956, pp. 3–41.

[32] Kumar, S., Chandrasekaran, B., Turner, J., and Varghese, G.
Curing regular expression matching algorithms from insomnia, amnesia
and acalculia. In ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (2007), pp. 155–164.

[33] Kuratowski, C. Sur le problème des courbes gauches en topologie.
Fundamenta Mathematicae 15 (1930), 271–283.

[34] Mehlhorn, K., and Näher, S. The LEDA Platform of Combinatorial
and Geometric Computing. Cambridge University Press, 1999.

[35] Mehlhorn, K., Näher, S., and Uhrig, C. The LEDA platform for
combinatorial and geometric computing. In ICALP (1997), no. 1256 in
LNCS, Springer, pp. 7–16.

[36] Meister, D., and Teller, J. A. Chordal digraphs. In WG 2009 (2010),
no. 5911 in LNCS, Springer, pp. 273–284.

[37] Meyer, A., and Stockmeyer, L. The equivalence problem for regular
expressions with squaring requires exponential space. In Proc. 13th Ann.
IEEE Symp. on Switching and Automata Theory (1972), pp. 125–129.

177

Bibliography

[38] Moreira, N., and Reis, R. Series-parallel automata and short regular
expressions. Fundamenta Informaticae 91, 3-4 (2009), 611–629.

[39] Newman, M. On theories with a combinatorial definition of ”equivalence”.
Annals of Mathematics 43, 2 (1942).

[40] Ohlebusch, E. Advanced Topics in Term Rewriting. Springer, 2002.

[41] Ott, G., and Feinstein, N. H. Design of sequential machines from
their regular expressions. Journal of the ACM 8, 4 (1961), 585–600.

[42] Oulsnam, G. Unravelling unstructured programs. The Computer Journal
25, 3 (1982), 379–387.

[43] Sakarovitch, J. The language, the expression, and the (small) automaton.
In CIAA 2005 (2006), no. 3845 in LNCS, Springer, pp. 15–30.

[44] Sakarovitch, J. Elements of Automata Theory. Cambridge University
Press, 2009.

[45] Salomaa, A. Two complete axiom systems for the algebra of regular
events. Journal of the ACM 13, 1 (1966), 158–169.

[46] Schoenmakers, B. A new algorithm for the recognition of series parallel
graphs. Tech. Rep. CS-R9504, Centrum voor Wiskunde en Informatica,
1995.

[47] Shcherbina, O. A. Tree decomposition and discrete optimization prob-
lems: A survey. Cybernetics and Systems Analysis 43, 4 (2007), 549–562.

[48] Siek, J., Lee, L.-Q., and Lumsdaine, A. The Boost Graph Library:
User Guide and Reference Manual. Pearson Education, 2002.

[49] Sippu, S., and Soisalin-Soininen, E. Parsing Theory. EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1988.

[50] Sommer, R., and Paxson, V. Enhancing byte-level network intrusion
detection signatures with context. In Proc. 10th ACM Conference on
Computer and Communications Security (2003), pp. 262–271.

[51] Thompson, K. Regular expression search algorithm. Communications of
the ACM 11, 6 (1968), 419–422.

[52] Valdes, J. Parsing Flowcharts and Series-Parallel Graphs. PhD thesis,
Stanford University, 1978. STAN-CS-78-682.

178

Bibliography

[53] Valdes, J., Tarjan, R. E., and Lawler, E. L. The recognition of
series parallel digraphs. In Eleventh annual ACM symposium on Theory of
computing (1979), pp. 1–12.

[54] Valdes, J., Tarjan, R. E., and Lawler, E. L. The recognition of series
parallel digraphs. SIAM Journal on Computing 11, 2 (1981), 298–313.

[55] Watson, B. W. A taxonomy of finite automata construction algorithms.
Tech. Rep. Computing Science Note 93/43, Eindhoven University of Tech-
nology, May 1994.

[56] Yang, Y.-H. E., and Prasanna, V. K. Space-time tradeoff in regular
expression matching with semi-deterministic finite automata. In IEEE
INFOCOM (2011), pp. 1853 – 1861.

[57] Yu, S. Regular languages. In Handbook of Formal Languages, G. Rozenberg
and A. Salomaa, Eds. 1997, ch. 2.

179

Index

B, 128
H, 105
SPL, 108
F, 130

abstract rewriting system, 12
addend, 17
alphabet, 16
alphabetic width, 19
anchor, 45
arc, 13

proper, 13
ARS, see abstract rewriting system
axiom

labeled, 158

base, 17
bulky graph, 128
bypass, 128

chord, 16
co-domination, 105
concatenation, 17
constriction, 13
convergence, 12
converse, 16

domination, 105

EFA, see extended finite automaton
elementary operations, 13
elimination

valid, 51
embedding, 126

bare, 128
empty word, 17
encoding expression, 163
expression, see regular expression
extended finite automaton, 20

graph interpretation, 156
graph structure, 21
normalized, 21
primal, 48
trim, 20
underlying graph, 156

FA, see finite automaton
factor, 17
finite automaton, 21

deterministic, 21

graph, 13
guard, 105

hammock, 105
head, 13

in-arc, 13
in-degree, 13
internally disjoint, 16
iteration, 17

kebab, 142

labeled graph, 155

181

Index

labeling, 155
p-injective, 155

language, 17
letter, 16
literal, 18
local confluence, 12
loop, 13

map, 11
merge, 15
minor, 126

bare, 128

Newman’s lemma, 13
normal form, 12
nullable, 18

option, 17
orientation, 13
out-arc, 13
out-degree, 13

path, 16
peg, 126
position, 19
predecessor, 13
product, 17

(star-)maximal, 91
generalized, 90

product encoding, 159

regular expression, 17
compound, 18
reduced, 66
size, 19
trivial, 18

regular language, 18
relation, 11

dual, 11
product, 11

restriction, 11

rewriting, 12

series parallel graphs, 108
series parallel loop graph, 108
spl expansions, 107
spl graph, see series parallel loop

graph
spl reductions, 110
split, 15
split vertex, 15
star encoding, 159
state, 20

accessible, 20
co-accessible, 20
final, 20
initial, 20
useful, 20

strong star normal form, 30
subexpression, 18

proper, 19
subgraph, 16
successor, 13
sum, 17

(star-)maximal, 91
generalized, 90

sum encoding, 159

tail, 13
termination, 12

vertex
internal, 16
simple, 13

walk, 16
word, 16

182

	Introduction
	Overview

	Preliminaries
	Sets, Relations, and Maps
	Abstract Rewriting Systems
	Graphs
	Expressions and Automata

	Simplifying Regular Expressions
	Measures for Expressions and Languages
	Strong Star Normal Form

	Converting Expressions to Automata
	Expansions and Eliminations
	Refining the ARS to Functionality
	Invariance under Strong Star Normal Form
	Implementation Details and Running Time

	Conversion Ratio
	Worst Case Expressions
	A Lower Bound on Conversion Ratio

	Series Parallel Loop Graphs
	Definition and Decidability
	Implementation Details

	Forbidden Minor Characterization
	Effects of Expansion
	Effects of Reduction

	SPL-Graphs and Regular Expressions
	Encoding Graphs by Expressions
	Decoding Expressions to Graphs
	Duality of Encoding and Decoding

	Bibliography

