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Abstract. We consider the efficient simplification of regular expressions and sug-
gest a quantitative comparison of heuristics for simplifying regular expressions.
To this end, we propose a new normal form for regular expressions, which outper-
forms previous heuristics while still being computable in linear time. We apply
this normal form to determine an exact bound for the relationbetween the two
prevalent measures for regular expression - size, namely alphabetic width and re-
verse polish notation length. In addition, we show that every regular expression
of alphabetic withn can be converted into a nondeterministic finite automaton
with ε-transitions of size at most4 2

5
n + 1, and prove this bound to be optimal.

This answers a question posed by Ilie and Yu, who had obtainedlower and up-
per bounds of4n − 1 and9n −

1

2
, respectively [16]. For reverse polish notation

length as input size measure, an optimal bound was recently determined by Gulan
and Fernau [14]. We prove that, under mild restrictions, their construction is also
optimal when taking alphabetic width as input size measure.

1 Introduction

It is well known that simplifying regular expressions is hard, since alone deciding
whether a given regular expression describes the set of all strings, isPSPACE - com-
plete [19]. As witnessed by a number of recent studies, e.g. [6, 10–13], the descriptional
complexity of regular expressions is of great interest, andseveral heuristics for simplify-
ing regular expressions appear in the literature. These mostly deal with removing only
the most obvious redundancies, such as iterated Kleene stars or superfluous occurrences
the empty word [5, 9, 16].

In this work, we take a quantitative viewpoint to compare such simplifications:
Namely, we compare the total size of a regular expression (disregarding parentheses)
to its alphabetic width. The intuition behind this is explained as follows: There are sim-
plifications for regular expressions that are of an ad-hoc nature, e.g. the ruler + r = r
cannot simplifya∗ + (a + b)∗. Also, there are rules that are difficult to apply, e.g. if
L(r) ⊆ L(s), thenr + s = s. But there are also simplifications that do not fall in either
category, such as the reduction rules suggested in [17, 5, 9,16]. In this paper, we suggest
a strong star normal formof regular expressions, which is a variation of the star nor-
mal form defined in [5]. This normal form achieves an optimal ratio when comparing



expression size to alphabetic width, and can be computed as efficiently as the original
star normal form.

For converting regular expressions into smallε-NFAs, an optimal construction was
found recently in [14]. Here,optimalmeans that the algorithm attains the best possible
ratio ofexpression sizeto automaton size. Ilie and Yu [16] asked for the optimal quotient
if expression size is replaced withalphabetic width; they obtained an upper bound of
roughly 9. We resolve this open problem by showing that the quotient equals4 2

5 . In
fact, we prove that the construction from [14] attains this bound if the input expression
is in strong star normal form. We move on to show that this still holds, under very
mild restrictions, also for expressions not in star normal form. Thus our results give the
impression that this construction ofε-NFAs from regular expressions is optimal in a
robust sense.

2 Basic Notions

Let Σ be a set of symbols, calledletters. Regular expression overΣ, or justexpressions,
are defined as follows: Every letter is an expression and ifr1 andr2 are expressions, so
are(r1+r2), (r1 ·r2), (r1)

? and(r1)
∗. The language denoted by an expressionr, written

L(r), is defined inductively:L(a) = {a}, L(r1 + r2) = L(r1) ∪ L(r2), L(r1 · r2) =
L(r1) · L(r2), L(r?

1) = {ε} ∪ L(r1) andL(r∗1) = L(r1)
∗. A language is called regular

if it is definable by an expression.
We deviate from the convention by omitting symbols denotingthe empty set and the

empty word, while allowing for special operator that adds the empty word to a language.
The disadvantages of our definition are minor—we cannot describe the degenerate lan-
guages∅ and{ε}; on the plus side, our syntax preventsa priori the construction of
many kinds of unnatural and redundant expressions, such asε · r or ∅∗.

There are two prevalent measures for the length of expressions: Thealphabetic
widthof r, denotedalph(r) is defined as the total number of occurrences of letters inr.
The second measure is the reverse polish notation length. Toallow for comparison with
related works, e.g., [9, 16], we define the (abbreviated) reverse polish notation length
of r asarpn(r) = |r|Σ + |r|+ + |r|· + |r|∗ + |r|?, and its unabbreviated rpn-length
asrpn(r) = arpn(r) + |r|?. This reflects the fact that replacing each subexpression
of the forms? with s + ε increases the overall length by1 each time. The alphabetic
width of a regular languageL is defined as the minimum alphabetic width among all
expressions denotingL, and is denotedalph(L). The notionsrpn(L) andarpn(L) are
defined correspondingly.

Some notions from term rewriting are needed:LetS be a set, and let→ be a relation
on S. Let →∗ denote the transitive closure of→. Two elementsb, c ∈ S are called
joinable, if somed ∈ S satisfiesb →∗ d andc → d. The relation→ is confluent, if for
all a, b, c ∈ S with a →∗ b anda →∗ c, the elementsb andc are joinable. It islocally
confluent, if for all a, b, c ∈ S with a → b anda → c, the elementsb andc are joinable.
The relation isterminating, if there is no infinite descending chaina1 → a2 → · · · .

It is easily proven that if→ is confluent and terminating, then each element has
a unique normal form, see e.g. [2, Thm. 2.1.9]. Indeed for unique normal forms, we
only need to establish local confluence instead of confluence: Newman’s Lemma states



that if a terminating relation is locally confluent, then it is confluent ([18], see also [2,
Lem. 2.7.2]).

3 Alphabetic Width Versus Reverse Polish Notation Length

We adapt thestar normal formof expressions, proposed by Brueggemann-Klein [5], to
our needs.

Definition 1. The operators◦ and• are defined on expressions as follows: For the first
operator, leta◦ = a, for a ∈ Σ, (r + s)◦ = r◦ + s◦, r?◦ = r◦, r∗◦ = r◦, and

(rs)◦ =

{

rs, if ε /∈ L(rs)

r◦ + s◦ else
.

The second operator is given by:a• = a, for a ∈ Σ, (r + s)• = r• + s•, (rs)• = r•s•,
r∗• = r•◦∗, and

r?• =

{

r• , if ε ∈ L(r)

r•? otherwise
.

Thestrong star normal formof an expressionr is then defined asr•.

Observe that, e.g., the expression(∅+a)∗+ε ·b+∅ ·c · (d+ε+ε) in unabbreviated
syntax is in star normal form, so the relative advantage of strong star normal form should
be obvious. The difference to star normal form merely consists in using abbreviated
syntax and in the addition of a rule for computingr?•. All the statements in the original
work [5, Thm. 3.1, Lem. 3.5, 3.6, 3.7] regarding◦ and• carry over to our variation.

We compare rpn-length and alphabetic width of expressions in strong star normal
form. To this end, for an expressionr in abbreviated syntax, defineω(r) = |r|? + |r|∗,
that is,ω counts the total number of occurrences of unary operators inr. The following
property is immediate from the definition of• and◦, and a similar statement concerning
rpn-length is found in [5].

Lemma 2. Letr be an expression. Thenω(r•), ω(r◦) ≤ ω(r), andω(r∗◦) ≤ ω(r∗)−1.

Lemma 3. Let r be an expression, thenω(r•) ≤ alph(r•), if ε ∈ L(s), andω(r•) ≤
alph(r•) − 1 otherwise.

Proof. By lexicographic induction on the pair(n, h), wheren = alph r•, andh is the
height of the parse ofr. The base case is(1, 1), i.e.,r• ∈ Σ, for which the statement
clearly holds. Assume the claim is true for expressions of alphabetic width at mostn−1
and for expressions of alphabetic widthn and height at mostk−1. The nontrivial cases
for the induction step arer = s? andr = s∗. In the first case, we haver• = s•, if
ε ∈ L(s). Applying the induction hypothesis tos• yields

alph(r•) = alph(s•) ≥ ω(s•) = ω(r•).

If ε /∈ L(s), thenr• = s•?, where again the induction hypothesis applies fors. This
time, we obtain

alph(r•) = alph(s•) ≥ ω(s•) + 1 = ω(r•).



In caser = s∗, we need to distinguish by the structure ofr. The easy cases arer = s?∗

andr = s∗∗: here,r• = s∗• and the claim holds by induction. Ifr = (s+t)∗, expansion
of the definition gives

r• = (s∗•◦ + t∗•◦)∗.

Since boths∗• andt∗• must have alphabetic width strictly less thann3, and since both
describe the empty word, we apply the inductive hypothesis to obtain

alph(r•) = alph(s∗•) + alph(t∗•) ≥ ω(s∗•) + ω(t∗•).

Now ω(s∗•◦) ≤ ω(s∗•)−1, and similar fort∗•◦, we deduce thatω(r•) ≤ alph(r•)−2,
which completes the induction step for this case.

For the case wherer = (st)∗, we haver• = (s•t•)◦∗ and the induction goes
through if at least one ofs and t does not describe the empty word. If howeverε ∈
L(s)∩L(t), then it is easy to prove under this condition thatr• = (s + t)∗•, a case we
already dealt with a few lines above in this proof. ⊓⊔

Theorem 4. LetL be a regular language. Thenarpn(L) ≤ 3 alph(L)−1 andrpn(L) ≤
4 alph(L) − 1.

Proof. Let r be an expression, in abbreviated syntax, of minimum alphabetic width
denotingL. Then the parse tree ofr• hasalph(r) many leaves. Disregarding unary
operators, this is a binary tree withalph(r) − 1 internal vertices that correspond to
occurrences of binary operators inr. Since there are at mostalph(r) many occurrences
of unary operators, we havearpn(r•) ≤ 3 alph(L) − 1 and rpn(r•) ≤ arpn(r•) +
ω(r•) ≤ 4 alph(L) − 1. ⊓⊔

Thus size and alphabetic width can differ at most by a factor of 4 in unabbreviated
syntax. Previous bounds, which were based on other simplification paradigms, by Ilie
and Yu [16] and by Ellul et al. [9] only achieved factors of6 and7, respectively, in
place of4. For abbreviated syntax, we will later show that the bound ofthe form3n− 1
is best possible. Also note that strong star normal form subsumes all of the previous
simplification heuristics from [5, 9, 16].

4 Constructing ε-NFAs from Regular Expressions, Revisited

We show that under mild restrictions, the construction given by Gulan and Fernau [14]
subsumes the conversion of the input expression into strongstar normal form. This
construction is essentially a replacement system on digraphs, that are arc-labeled by
regular expressions or the symbolε. Such objects are calledextended finite automata
(EFAs), as they generalize (conventional) finite automata;consult e.g. Wood [22] for a
proper introduction. The replacements in an EFA are calledconversions; they come in
two flavors:

– A transition labeled by a regular expression may be replacedwrt. the labels root.
These conversions, calledexpansions, are depicted in Fig. 1.

– A substructure defined byε-transitions may be replaced by a smaller equivalent.
These conversions are also calledeliminations, they are shown in Fig. 2.
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Fig. 1: Expanding transitions(p, r, q) for nontrivial r. If r = s∗, the out-degreep+ of p and the
in-degreeq− of q need to be considered.
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Fig. 2: Eliminating substructures withε-labeled transitions. Reverting all transitions in (a), and
demanding thatq+ = 1 yields a furtherY -rule.

Sinceε-transitions are allowed in EFAs, we treatr? implicitly asr + ε. We call the
lhs of i-expansion ori-elimination ani-anchor, and writeE ⇒i E′ if E′ is derived
from replacing ani-anchor inE with its accordingrhs. If the type of conversion is
irrelevant, we simply writeE ⇒ E′, and denote a (possibly empty) series of conver-
sions fromE to E′ with E ⇒∗ E′. An expressionr overΣ is identified with the trivial
EFA A0

r := ({q0, qf}, Σ, {(q0, r, qf )}, q0, qf ). On inputr, the construction is initial-
ized withA0

r , which is successively and exhaustively converted to anε-NFA, denoted
Ar. We slightly restrict the applicability of conversions by two rules:

(R1) As long as any conversion other than⇒X is possible,X-elimination must not be
applied.

(R2) If two X-anchors shareε-transitions the one from which they are leaving is to be
eliminated.

Other than that, conversions may be applied in any order. Note that (R2) is sound:
cyclic elimination preference amongX-anchors would imply the existence of an O-

3 This is just another advantage of using abbreviated syntax.



anchor, which, due to (R1), would be eliminated first. The conversion process is split
into a sequence of conversions withoutX-eliminations, followed by one withX- elim-
inations only. This is due to

Proposition 5. LetE ⇒X E′ respect (R1). ThenE′ contains onlyX-anchors, if any.

Proof. SinceE ⇒X E′ respects (R1),E contains onlyX-anchors. Neither complex
labels nor cycles, particularly noO-anchors, are introduced uponX-elimination. As-
sumeE ⇒X[q] E

′ ⇒Y [p] E
′′ is a valid conversion sequence, thenp andq are adjacent

in E, since theY -anchor inE′ results from the precedingX-elimination. Let(p, ε, q)
be the transition connectingp andq in E, then inE′, p+ = 2, hencep− = 1. But the
in-degree ofp is not changed by thisX-elimination, sop− = 1 in E, too. But then,E
contains anY -anchor centered inp, contradicting the assumption that the conversion
respects (R1).

To designate the transition between the two phases, letAk
r be the first EFA in the

sequenceA0
r ⇒ A1

r ⇒ · · · ⇒ Ar that allows for no conversion besides possiblyX-
elimination; we denote this automatonXr. If X-elimination does not occur at all upon
full conversion, thenXr = Ar.

We show that the conversions other thanX-elimination are locally confluent. To
this end, we writeE1

∼= E2, if E1 andE2 are joinable. Since no infinite conversion
sequences are possible, Newman’s Lemma implies thatXr is unique.

Theorem 6. The replacement-system consisting of⇒+, ⇒
•
, ⇒∗i, ⇒Y and⇒O is lo-

cally confluent on the class of EFAs.

Proof. We need to show thatE ⇒i E1 andE ⇒j E2 for i, j ∈ {+, •, ∗1, ∗2, ∗3, ∗4, Y, O},
impliesE1

∼= E2. This is trivial if the conversions occur in disjoint subautomata, so as-
sume the relevant anchors share at least a state. We assume that at least one ofi, j is Y
or O, the remaining are cases discussed in [14, Lem. 6]. We distinguish by the type ofi:

– i = Y [p]: Let (o, ε, p) be theε-transition to be removed, and assume⇒j is an
expansion, then one of the labelsrk as in Fig. 2(a) is a product, a sum or a starred
expression. Ifrk is a sum or a product, it is easy to see that the order of⇒i and⇒j

is interchangeable. We sketch the cases involving∗-expansion in Fig. 3. The three
cases arising when both conversions areY -eliminations, are illustrated in Fig. 4.

– i = O: O-elimination comes down to removing theε-transitions forming a cycle,
followed by merging the cycle-states into a selected one among them, call this the
merge-state. If ⇒j is the expansion oft = (p, s, q), assumep lies on the cycle,
while q does not. Choosep as the merge-state, thent remains unaffected from
O-elimination, hence expansion introduces the same elements before and afterO-
elimination. Ifq is part of the cycle but notp, orp = q, chooseq as the merge-state.
If both p andq lie on the cycle andp 6= q, the case ofj = ∗4 is detailed in Fig. 5,
the remaining cases wherej is an expansion are easily dealt with in the same way.
Next consider the case that⇒j is Y [q]-elimination, for some stateq, and whereq
is part of theε-cycle relevant forO-elimination—the case whereq is not on the
ε-cycle in question would be again easy. By definition ofY -elimination, we must
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Fig. 4: Elimination-conflicts between overlappingY -anchors centered inp andq. In (a) and
(b), the resulting EFA is invariant under the order of removal. In (c) only one anchor may be
eliminated, however, the resulting EFAs are isomorphic.

haveq− = 1 (resp.q+ = 1 in the case of reverseY -elimination), and there must
be exactly oneε-transition entering (resp. leaving) the stateq. Sinceq− = 1 (resp.
q+ = 1), this transition is necessarily part of theε-cycle in question. Hence, if
O-elimination is applied first, it subsumesY -elimination, otherwise,Y -elimination
may be considererd as the first merging step ofO-elimination, followed by merging
a smaller cycle.
Finally, if ⇒j also denotesO-elimination, there is at least one common statec to
both cycles, which we chose as the merge-state. Regardless of the order, both cycles
may be merged intoc, thus yielding the same EFA. ⊓⊔

We omit proving that the conversion fromXr to Ar is also locally confluent, which
is due to restriction (R2). This implies thatAr is unique, too.

We add an almost trivial preprocessing step on the input expression, calledmild sim-
plification: Every occurrence ofs? in r, s.t.ε∈L(s) is replaced withs. The expression



such built fromr is denotedsimp(r) 4. Without proof, we mention that computing the
strong star normal form subsumes mild simplification:

Lemma 7. Letr be a regular expression, thensimp(r)• = simp(r•) = r•

On inputr, we mildly simplify it first and then computeA0
simp(r). Mild simplifica-

tion is a reasonable first step in order to get smallerε-NFAs:

Lemma 8. For any expressionr, |Asimp(r)| ≤ |Ar|

Proof. Let E1 be an EFA with transitiont=(p, s?, q), and letE2 be the EFA obtained
from E1 by replacingt with (p, s, q). Expandingt in E1 yields another EFAE′

1; the
difference betweenE′

1 andE2 is an additional transition(p, ε, q) in E′

1. Now p+ and
q− are bigger inE′

1 than inE2 — if s= t∗, expanding(p, s, q) in E′

1 introduces at least
as many elements inE2. On the other hand, removal ofp or q in E′

1 may result from
X- or cycle-elimination, then however,Y - or cycle-elimination would be applicable in
E2. In short, convertingE′

1 may never lead to anε-NFA which is smaller than the one
reached by convertingE2. Since mildly simplifying a regular expression boils down to
replacing some occurrences ofs? with s (in labels), the statement follows. ⊓⊔

The remaining part of this section deals with invariant cases of the construction
under◦ and•. To this end, for a transitiont = (p, r, q) let t◦ := (p, r◦, q) andt• :=
(p, r•, q). Note that since the conversions are locally confluent when respecting (R1)
and (R2),∼= is an equivalence relation on the class of EFAs.

Lemma 9. Let E1 be an EFA with looping transitionl = (q, r, q), and letE2 be the
EFA obtained fromE1 by replacingl with l◦. ThenE1

∼=E2.

Proof. If r ∈ Σ thenr = r◦, satisfying the claim. LetE1 andE2 be as above and
assume the claim is true for loops labeleds or t. Let r be

– s + t: l is replaced by(q, s, q), (q, t, q), while l◦ is replaced by(q, s◦, q), (q, t◦, q).
By assumption, the pairs are interchangable, hence so arel andl◦

4 simp(r) can be computed in linear time on the parse ofr in a bottom-up manner
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Fig. 5: Conflict between cycle-elimination and expanding a transition connecting two distinct
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– s?: l is replaced by loops(q, ε, q), (q, s, q), the first of which is anε-cycle, hence
eliminated, while the second may by assumption be replaced with (q, s◦, q) =
(q, s?◦, q) = l◦.

– s∗: ∗4-expansion is applied, introducing anε-cycle{(q, ε, q′), (q′, ε, q)} and a loop
(q′, s, q′). Eliminating the cycle identifiesq andq′, yielding(q, s, q) which may by
assumption be replaced with(q, s◦, q) = l◦

– st: If ε /∈ L(st), then(st)◦ = st and nothing needs to be proven. So assumeε ∈
L(st), implying ε ∈ L(s) andε ∈ L(t). Let E′

1 be the EFA after fully expanding
r, without intermediate elimination steps. The first expansion-step replacestl with
{(q, s, q′), (q′, t, q)} — bothq andq′ are still present inE′

1, where they lie on an
ε-cycle. Consider cycle-elimination in ’slow-motion’: in afirst step, onlyq andq′

are merged, resulting in a volatile intermediate which happens to be isomorphic to
the EFA constructed from fully expandingl◦ = (q, s◦ + t◦, q) in E2. A second step
merges the remaining states, which is equivalent to two cycle-eliminations.

⊓⊔

A more general result can be established for mildly simplified expressions:

Lemma 10. Let A0
r ⇒∗ E1 for mildly simplifiedr. Let t = (p, r, q) be any transition

in E1, and letE2 be asE1 except thatt is replaced witht•. ThenE1
∼=E2.

Proof. The statement is true for letters. Assume it is true for labels s andt, and letE1

andE2 be as above. Letr be

– s?: expansion replacest with {(p, s, q), (p, ε, q)}, the first of which may by assump-
tion be replaced with(p, s•, q). Sincer is mildly simplified, ε /∈ L(s) therefore
r• = s?• = s•?; this implies that(p, r•, q) is expanded into(p, s•, q) and(p, ε, q)
as well.

– s∗: expandingt yields a looping transitionl=(p′, s, p′), which may by assumption
be replaced withl• and by Lemma 9 withl•◦. Clearly, expandingt• =(q, s•◦∗, q′)
results inl•◦, too.

The remaining cases are straightforward. ⊓⊔

Theorem 11. Let r be mildly simplified, then theε-NFA constructed fromr is isomor-
phic to the one constructed from its strong star normal form,that is,Ar

∼= Ar• .

Proof. Lemma 10 impliesA0
r
∼= A0

r• . ⊓⊔

Together with Lemma 7, this shows that the construction is invariant under taking
strong star normal form. Differently put, strong star normal form is implicity computed
upon conversion of mildly simplified regular expressions.

5 Alphabetic Width and the Size ofε-NFAs

Let thesizeof an ε-NFA be its number of states plus its number of transitions. The
following question regarding the size ofε-NFAs was posed by Ilie and Yu.



Problem 12.Given a regular expression of alphabetic widthn, what is the optimal
bound on the size of an equivalentε-NFA in terms ofn?

Ilie and Yu provide a bound of9n − 1
2 ; they remark that this does not appear to be

close to optimal. The construction we discussed in the previous section was shown to
give following bound in terms ofrpn-length on the size of the constructedε-NFA:

Theorem 13 ([14]).Letr be a regular expression of unabbreviated rpn-lengthn. Then
the constructedε-NFA Ar has size at most22/15(n+1)+1. There are infinitely many
regular languages for which this bound is tight.

The original work does not consider abbreviated syntax for regular expressions. For-
tunately, subexpressions of the formr + ε do not contribute to the hardness of the con-
version problem. The following bound in terms ofabbreviatedrpn-length is slightly
stronger.

Theorem 14. Letr be an expression of abbreviated rpn-lengthn. Then the constructed
ε-NFA Ar has size at most22/15(n+1)+1. There are infinitely many regular languages
for which this bound is tight.

Proof. The analysis is the same as given in [14], except for obvious modifications to
the proof of [14, Thm. 10], which is the only place where we take the use of abbrevi-
ated syntax into account. The fact that this bound is tight for infinitely many regular
languages trivially carries over. ⊓⊔

Together with Thms. 4 and 11, we obtain the following upper bound in terms of
alphabetic width:

Theorem 15. Let r be a regular expression of alphabetic widthn. If r is mildly simpli-
fied, then the constructedε-NFA Ar has size at most4 2

5n + 1. Furthermore, there are
infinitely many regular languages for which this bound is tight.

Proof. Assumer is mildly simplified. Then Thm. 11 implies thatAr is identical to
Ar• . We know from Thm. 4 thatarpn(r•) ≤ 3n−1. Plugging this into the statement of
Thm. 14, it follows that theε-NFA Ar• constructed fromr• has size at most22/15(3n−
1 + 1) + 1 = 4 2

5n + 1.
Gulan and Fernau [14] also give an infinite family of regular expressionsrn showing

that the bound22/15(m − 1) + 1 on the size of anε-NFA equivalent to a regular
expression of rpn-lengthm is optimal: Fork ≥ 1, they define the regular expression

rk =

k
∏

i=1

(a∗

i + b∗i ) · (c
∗

i + d∗i + e∗i )

of rpn-lengthm = 15k−1 and prove that every equivalentε-NFA has size at least22k+
1 = 22/15(m + 1) + 1. Since the alphabetic width ofrk is ℓ = 5k, this shows that the
bound of22k + 1 = 4 2

5ℓ + 1 stated in the theorem is tight for infinitely many regular
languages. ⊓⊔



The examples from the last proof can be used to prove that the bound from Thm. 4
is tight in the abbreviated case:

Theorem 16. There exists an infinite familyLn of regular languages such thatalph(Ln) ≤
n, whereasarpn(Ln) ≥ 3n − 1.

Proof. Consider the languageLn described by the expression

rk =

k
∏

i=1

(a∗

i + b∗i )(c
∗

i + d∗i + e∗i ).

For n = 5k andLn = L(r5k), we havealph(Ln) = 5k = n. But the existence of an
expression of abbreviated rpn-length less than3n − 1 = 15k − 1 would imply with
Theorem 14 that there exists anε-NFA of size less than22k + 1 acceptingLn, which
contradicts Thm. 13. ⊓⊔

6 Conclusion and Further Research

As equivalence of expressions isPSPACE-complete [19] and not finitely axiomatiz-
able [1, 8], a normal form that is strong, in the sense that each regular language admits
a unique normal form epxression, might be difficult to obtain. Ideally, we would like
a normal form that realizes minimum alphabetic width and minimum rpn-length, and
that is efficiently computable, two criteria, that would apparently contradict the above
negative theoretical results.

In this paper, we have suggested a robust notion of reduced expressions, the strong
star normal form. This notion satisfies at least the latter two criteria, in the sense that for
each regular language, there is a (i.e. at least one) regularexpression expression in star
normal form of minium rpn-length and of minimum alphabetic width, and that it can
be computed in linear time. Our notion subsumes various previous attempts at defining
such a notion [5, 9, 16]

Furthermore, we showed that the strong star normal form proves useful in various
contexts: Apart from a prior application in the context of the construction ofε-free
NFAs [7], we gave two further applications.

The first concerns the relation between different complexity measures for regular ex-
pressions, namely alphabetic width and (abbreviated) rpn-length. With the aid of strong
star normal form, we were able to determine the optimal bound, witnessing superiority
of this concept over previous attempts at defining such a notion of irreducibility, which
yield only loose bounds [9, 16].

The second application concerns the comparison of descriptional complexity mea-
sures across different representations, namely alphabetic width on the one hand, and the
minimum size of equivalentε-NFAs on the other hand. Here we seized the power of a fi-
nite automaton construction proposed recently by Gulan andFernau [14]: Under a mild
additional assumption, this construction already incorporates all simplifications offered
by strong star normal form. While this alone adds to the impression of robustness of
the construction, we also proved an optimal bound on the relation betweeen alphabetic



width and the size of finite automata, and we showed that this bound is attained by the
mentioned construction.

We believe that there are various further applications outside the theoretical domain.
For instance, the fastest known algorithm [4] for regular expression matching is still
based on the classical construction due to Thompson [21]. While better constructions
for ε-NFAs may not improve the asymptotic worst-case running time, we hope that
these can still lead to noticeably better practical performance of NFA-based regular
expression engines.
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