Simplifying Regular Expressions. A Quantitative
Perspective

Hermann Grubérand Stefan Gulgh

L Institut fiir Informatik, Universitat GieRen
Arndtstrale 2, D-35392 Giel3en, Germany
email:her mann. gr uber @ nf or mat i k. uni - gi essen. de
2 Fachbereich IV—Informatik, Universitat Trier
Campus Il, D-54296 Trier, Germany
email:gul an@ini -trier. de

Abstract. We consider the efficient simplification of regular expreasiand sug-
gest a quantitative comparison of heuristics for simptifyregular expressions.
To this end, we propose a new normal form for regular expoessiwhich outper-
forms previous heuristics while still being computableimehr time. We apply
this normal form to determine an exact bound for the relabietween the two
prevalent measures for regular expression - size, namefyabétic width and re-
verse polish notation length. In addition, we show that gvegular expression
of alphabetic withn can be converted into a nondeterministic finite automaton
with e-transitions of size at moﬁ%n + 1, and prove this bound to be optimal.
This answers a question posed by llie and Yu, who had obtdoveer and up-
per bounds ofin — 1 and9n — % respectively [16]. For reverse polish notation
length as input size measure, an optimal bound was recegtyrdined by Gulan
and Fernau [14]. We prove that, under mild restrictionsy tbenstruction is also
optimal when taking alphabetic width as input size measure.

1 Introduction

It is well known that simplifying regular expressions is thasince alone deciding
whether a given regular expression describes the set dfialyjs, isPSPACE - com-
plete [19]. As witnessed by a number of recent studies, &,4013], the descriptional
complexity of regular expressions is of great interest,smeral heuristics for simplify-
ing regular expressions appear in the literature. Thesélyraesal with removing only
the most obvious redundancies, such as iterated Kleerseostamperfluous occurrences
the empty word [5, 9, 16].

In this work, we take a quantitative viewpoint to comparehsgamplifications:
Namely, we compare the total size of a regular expressianggarding parentheses)
to its alphabetic width. The intuition behind this is explad as follows: There are sim-
plifications for regular expressions that are of an ad-haareae.g. the rule +r = r
cannot simplifya* + (a + b)*. Also, there are rules that are difficult to apply, e.g. if
L(r) C L(s), thenr + s = s. But there are also simplifications that do not fall in either
category, such as the reduction rules suggested in [1716].9n this paper, we suggest
a strong star normal fornof regular expressions, which is a variation of the star nor-
mal form defined in [5]. This normal form achieves an optinala when comparing

expression size to alphabetic width, and can be computefliciertly as the original
star normal form.

For converting regular expressions into smealNFAs, an optimal construction was
found recently in [14]. Heregptimalmeans that the algorithm attains the best possible
ratio ofexpression size automaton sizdlie and Yu [16] asked for the optimal quotient
if expression size is replaced wittiphabetic width they obtained an upper bound of
roughly 9. We resolve this open problem by showing that the quotieualsqlg. In
fact, we prove that the construction from [14] attains thasihd if the input expression
is in strong star normal form. We move on to show that thig ktilds, under very
mild restrictions, also for expressions not in star norroatt. Thus our results give the
impression that this construction efNFAs from regular expressions is optimal in a
robust sense.

2 Basic Notions

Let X be a set of symbols, calléetters Regular expression over, or justexpressions
are defined as follows: Every letter is an expression anddindr, are expressions, so
are(ry+r2), (r1-72), (r1)? and(r;)*. The language denoted by an expressioaritten
L(r), is defined inductivelyL(a) = {a}, L(r1 4+ r2) = L(r1) U L(r2), L(ry - m2) =
L(r1) - L(ra), L(r]) = {e} U L(r1) andL(r}) = L(r;)*. A language is called regular
if it is definable by an expression.

We deviate from the convention by omitting symbols denatiregempty set and the
empty word, while allowing for special operator that addseéimpty word to a language.
The disadvantages of our definition are minor—we cannotridesthe degenerate lan-
guaged) and{ec}; on the plus side, our syntax prevetpriori the construction of
many kinds of unnatural and redundant expressions, suchrmasr (J*.

There are two prevalent measures for the length of expmssithealphabetic
width of r, denotedhlph(r) is defined as the total number of occurrences of letters in
The second measure is the reverse polish notation lengtiloke for comparison with
related works, e.g., [9, 16], we define the (abbreviatedgnsy polish notation length
of r asarpn(r) = |r|s + [r[+ + |7|. + |r|« + ||, and its unabbreviated rpn-length
asrpn(r) = arpn(r) + |r|. This reflects the fact that replacing each subexpression
of the forms” with s + ¢ increases the overall length dyeach time. The alphabetic
width of a regular languagg is defined as the minimum alphabetic width among all
expressions denotinf, and is denotedlph(L). The notionsapn(L) andarpn(L) are
defined correspondingly.

Some notions from term rewriting are needed:f dte a set, and let> be a relation
on S. Let —* denote the transitive closure ef. Two elementd,c € S are called
joinable, if somed € S satisfied —* d andc — d. The relation— is confluentif for
all a,b,c € S with a —* banda —* ¢, the elements andc are joinable. It idocally
confluentif for all a, b, c € S with a — b anda — ¢, the elements andc are joinable.
The relation igerminating if there is no infinite descending chaip — as — - - -.

It is easily proven that if— is confluent and terminating, then each element has
a unique normal form, see e.g. [2, Thm. 2.1.9]. Indeed foguainormal forms, we
only need to establish local confluence instead of conflueve&man’s Lemma states

that if a terminating relation is locally confluent, thendtdonfluent ([18], see also [2,
Lem. 2.7.2]).

3 Alphabetic Width Versus Reverse Polish Notation Length

We adapt thetar normal formof expressions, proposed by Brueggemann-Klein [5], to
our needs.

Definition 1. The operators ande are defined on expressions as follows: For the first
operator, leta® = a, fora € X, (r +5)° = r° + 5°,7°° = r°, 7*° = r°, and

(rs)° = {rs, if e ¢ L(rs) .

r° +s° else

The second operator is given by = a, fora € X, (r +s)® = r* + s°, (rs)® = r®s®,
r*® = r*°*, and

ro o= o . .
r*" otherwise

%e {7" ,ife e L(r)

Thestrong star normal forraf an expression is then defined as®.

Observe that, e.g., the expressi@n-a)* +¢-b+0-c- (d+e+¢) in unabbreviated
syntax is in star normal form, so the relative advantagerohststar normal form should
be obvious. The difference to star normal form merely cagsis using abbreviated
syntax and in the addition of a rule for computirtg. All the statements in the original
work [5, Thm. 3.1, Lem. 3.5, 3.6, 3.7] regardih@nd® carry over to our variation.

We compare rpn-length and alphabetic width of expressiorstrong star normal
form. To this end, for an expressierin abbreviated syntax, defingr) = |r|2 + |7,
that is,w counts the total number of occurrences of unary operatorsiihe following
property is immediate from the definition @&ando, and a similar statement concerning
rpn-length is found in [5].

Lemma 2. Letr be an expression. Ther(r®), w(r°) < w(r), andw(r*°) < w(r*)—1.

Lemma 3. Letr be an expression, then(r®) < alph(r®), if ¢ € L(s), andw(r®) <
alph(r*) — 1 otherwise.

Proof. By lexicographic induction on the pa(n, k), wheren = alphr*, andh is the
height of the parse of. The base case 4, 1), i.e.,»* € X, for which the statement
clearly holds. Assume the claim is true for expressionsiabetic width at most — 1
and for expressions of alphabetic widtland height at most — 1. The nontrivial cases
for the induction step are = s” andr = s*. In the first case, we have = s°, if

e € L(s). Applying the induction hypothesis & yields

alph(r®) = alph(s®) > w(s®) = w(r®).

If ¢ ¢ L(s), thenr® = s*, where again the induction hypothesis appliessor his
time, we obtain
alph(r®) = alph(s®) > w(s®) + 1 = w(r®).

In caser = s*, we need to distinguish by the structure-ofThe easy cases are= s
andr = s**: herey* = s** and the claim holds by induction.#f= (s+t)*, expansion
of the definition gives

7,0 — (S*.O + t*.O)*'
Since boths** andt** must have alphabetic width strictly less thah and since both
describe the empty word, we apply the inductive hypothesibtain

alph(r®) = alph(s™®) 4+ alph(t*®) > w(s™®) + w(t™*).

Now w(s**°) < w(s**)—1, and similar fort**°, we deduce that(r*) < alph(r®) — 2,
which completes the induction step for this case.

For the case where = (st)*, we haver® = (s*¢*)°* and the induction goes
through if at least one of andt does not describe the empty word. If howevee
L(s)N L(t), then it is easy to prove under this condition that= (s + ¢)**, a case we
already dealt with a few lines above in this proof. O

Theorem 4. Let L be aregular language. Theirpn(L) < 3 alph(L)—1andrpn(L) <
4alph(L) — 1.

Proof. Let » be an expression, in abbreviated syntax, of minimum alptimbadth
denotingL. Then the parse tree ef hasalph(r) many leaves. Disregarding unary
operators, this is a binary tree wittiph(r) — 1 internal vertices that correspond to
occurrences of binary operatorsinSince there are at masiph () many occurrences
of unary operators, we havepn(r®) < 3alph(L) — 1 andrpn(r®) < arpn(r®) +
w(r®*) <4alph(L) — 1. O

Thus size and alphabetic width can differ at most by a factdrio unabbreviated
syntax. Previous bounds, which were based on other singildic paradigms, by llie
and Yu [16] and by Ellul et al. [9] only achieved factors ®find 7, respectively, in
place of4. For abbreviated syntax, we will later show that the bountthefform3n — 1
is best possible. Also note that strong star normal form wues all of the previous
simplification heuristics from [5, 9, 16].

4 Constructing e-NFAs from Regular Expressions, Revisited

We show that under mild restrictions, the construction giog Gulan and Fernau [14]
subsumes the conversion of the input expression into ststexgnormal form. This
construction is essentially a replacement system on digrapat are arc-labeled by
regular expressions or the symbolSuch objects are callesktended finite automata
(EFAS), as they generalize (conventional) finite automagasult e.g. Wood [22] for a
proper introduction. The replacements in an EFA are caltat/ersionsthey come in
two flavors:

— A transition labeled by a regular expression may be replagedthe labels root.
These conversions, calledpansionsare depicted in Fig. 1.

— A substructure defined by-transitions may be replaced by a smaller equivalent.
These conversions are also caliuininations they are shown in Fig. 2.

t

O—*—-0 =.0-"+-0"—0
(a) product

s

\

s

00 =,0=——=0

t

(b) sum

s

T

~ s* — \ e el i — ‘\ e —

/

()%2: pt>1,¢ =1 (dy*3: pt=1,¢g">1

- Nl AL S,
o T L TN //OHO\ Fu, 20 =00
L ~ L ' ’

(e)*1: pt=1, g~ =1; merge (f) %4 : p*>1, ¢~ >1; introduce a new state
pandg

Fig. 1: Expanding transitiong, r, ¢) for nontrivial r. If » = s*, the out-degreg@™ of p and the
in-degreeg~ of ¢ need to be considered.

r }~<>§41>] S
e G e N
H@T}\ =Yg >~ /E,@> :>X[q]>§<: ‘E\Q'g. O\gz
€) Y-elimination, (b) X-elimination, (c) O-elimination
requiresg” =1 requiresy” = ¢ =2

Fig. 2: Eliminating substructures witltlabeled transitions. Reverting all transitions in (a)dan
demanding thag™ = 1 yields a furthe®Y-rule.

Sinces-transitions are allowed in EFAs, we treatimplicitly asr + <. We call the
lhs of i-expansion ok-elimination ani-anchor, and writeE =; E’ if E’ is derived
from replacing ani-anchor inE with its accordingrhs. If the type of conversion is
irrelevant, we simply write = E’, and denote a (possibly empty) series of conver-
sions fromFE to £’ with £ =* E’. An expression over Y is identified with the trivial
EFA AY := ({q0,q7}, 2, {(g0,7,q¢)}, 90, ¢f). On inputr, the construction is initial-
ized with A%, which is successively and exhaustively converted te-&iFA, denoted
A,.. We slightly restrict the applicability of conversions lwd rules:

(R1) Aslong as any conversion other thafny is possible X -elimination must not be
applied.

(R2) If two X-anchors share-transitions the one from which they are leaving is to be
eliminated.

Other than that, conversions may be applied in any ordee Muatt (R2) is sound:
cyclic elimination preference among-anchors would imply the existence of an O-

8 This is just another advantage of using abbreviated syntax.

anchor, which, due to (R1), would be eliminated first. Thevession process is split
into a sequence of conversions withdtteliminations, followed by one witkX - elim-
inations only. This is due to

Proposition 5. Let E = x E’ respect (R1). TheR’ contains onlyX -anchors, if any.

Proof. SinceE = x E’ respects (R1)FE contains onlyX-anchors. Neither complex
labels nor cycles, particularly n@-anchors, are introduced upadfi-elimination. As-
sumeE = xq E' =y E” is a valid conversion sequence, theandq are adjacent

in E, since theY-anchor inE’ results from the preceding -elimination. Let(p, ¢, q)

be the transition connectingandgq in E, then inE’, p™ = 2, hencep™ = 1. But the
in-degree op is not changed by thiX -elimination, sop~ = 1 in FE, too. But thenF
contains art’-anchor centered ip, contradicting the assumption that the conversion
respects (R1).

To designate the transition between the two phasesiiete the first EFA in the
sequencel! = Al = ... = A, that allows for no conversion besides possilly
elimination; we denote this automatdf).. If X -elimination does not occur at all upon
full conversion, thenX,. = A,.

We show that the conversions other th&relimination are locally confluent. To
this end, we writeF); & F,, if F; and E5 are joinable. Since no infinite conversion
sequences are possible, Newman’s Lemma impliesXhas$ unique.

Theorem 6. The replacement-system consistingef, =,, =.;, =y and=-o is lo-
cally confluent on the class of EFAs.

Proof. We needto showthd =; Ey andE =; Exfori,j € {+,e,*1,%2,%3,%4,Y, O},
implies £; = F,. This is trivial if the conversions occur in disjoint subantata, so as-
sume the relevant anchors share at least a state. We assatratldast one of j isY

or O, the remaining are cases discussed in [14, Lem. 6]. We disi8h by the type of:

— 1 = Yp|: Let (o,¢,p) be thee-transition to be removed, and assumg is an
expansion, then one of the labejsas in Fig. 2(a) is a product, a sum or a starred
expression. It is a sum or a product, it is easy to see that the ordes pnd=;
is interchangeable. We sketch the cases invol¥iggpansion in Fig. 3. The three
cases arising when both conversions¥reliminations, are illustrated in Fig. 4.

— i = O: O-elimination comes down to removing thetransitions forming a cycle,
followed by merging the cycle-states into a selected onengnilwem, call this the
merge-statelf = ; is the expansion of = (p, s, q), assumep lies on the cycle,
while ¢ does not. Choosg as the merge-state, therremains unaffected from
O-elimination, hence expansion introduces the same elentigrfore and afted-
elimination. Ifq is part of the cycle but ngt, orp = ¢, choosey as the merge-state.
If both p andq lie on the cycle angh £ ¢, the case of = x4 is detailed in Fig. 5,
the remaining cases whefés an expansion are easily dealt with in the same way.
Next consider the case that; is Y[g]-elimination, for some statg, and wherey
is part of thes-cycle relevant forO-elimination—the case whergis not on the
e-cycle in question would be again easy. By definitioreElimination, we must

*

“
S
Jovi) ,O@ =,
“ .
ORNCENC

SN

*

S
o<
¥

(a) Degenerate case where = p™ = 1; the particular type
of x-expansion is determined lay” andq™

N C)
@///'/Sl' s
@ 47«[\"\ \S,T =, %
\5; ﬁ* 8 \(\v\ Sn
=5 7
£ o pE
@ -@=*

Sn

(b) General case

Fig. 3: Local confluence of cases involviig-elimination and«-expansion. The state de-
notedn is eitherq or a newly introduced state, according ¢o. Note that reverting all
transitions in the figures yields further valid cases.

Pid e
@ Tme(q)—» r s
€ S5 \r\ € £ 4 €
O @S 7 @*-@= \@a@<
@) (b) (©

Fig. 4: Elimination-conflicts between overlappifigGanchors centered inandgq. In (a) and
(b), the resulting EFA is invariant under the order of rentola(c) only one anchor may be
eliminated, however, the resulting EFAs are isomorphic.

haveq~ = 1 (resp.q™ = 1 in the case of reversg-elimination), and there must
be exactly one-transition entering (resp. leaving) the stat&Sinceq~ = 1 (resp.
qt = 1), this transition is necessarily part of thecycle in question. Hence, if
O-elimination is applied first, it subsum@&selimination, otherwisey -elimination
may be considererd as the first merging ste@alimination, followed by merging
a smaller cycle.

Finally, if =; also denote$)-elimination, there is at least one common state
both cycles, which we chose as the merge-state. Regardibssarder, both cycles
may be merged inte, thus yielding the same EFA. a

We omit proving that the conversion frof. to A,. is also locally confluent, which
is due to restriction (R2). This implies thdt. is unique, too.

We add an almost trivial preprocessing step on the inputessgion, callednild sim-
plification: Every occurrence of’ in r, s.t.c € L(s) is replaced withs. The expression

such built fromr is denotedsimp(r) 4. Without proof, we mention that computing the
strong star normal form subsumes mild simplification:

Lemma 7. Letr be a regular expression, thegimp(r)® = simp(r®) = r*®

On inputr, we mildly simplify it first and then computﬁgimp@,). Mild simplifica-
tion is a reasonable first step in order to get smalBiFAs:

Lemma 8. For any expression, | Agimp(r)| < [Ar]|

Proof. Let £, be an EFA with transition= (p, s*, ¢), and letE, be the EFA obtained
from E; by replacingt with (p, s, ¢). Expandingt in E; yields another EFAE]; the
difference betweet’; and E» is an additional transitiofp, ¢, ¢) in E}. Now p* and
g~ are biggerinE] thaninE, — if s=t*, expandindp, s, q) in E] introduces at least
as many elements ifl;. On the other hand, removal pfor ¢ in E] may result from
X- or cycle-elimination, then howeveér’- or cycle-elimination would be applicable in
Es. In short, convertingZ; may never lead to asrNFA which is smaller than the one
reached by converting,. Since mildly simplifying a regular expression boils down t
replacing some occurrencesgfwith s (in labels), the statement follows. O

The remaining part of this section deals with invariant saskthe construction
under® and®. To this end, for a transitioh = (p,r,q) lett° := (p,r°,q) and¢® :=
(p,7*,q). Note that since the conversions are locally confluent wiespecting (R1)
and (R2) 2 is an equivalence relation on the class of EFAs.

Lemma 9. Let E; be an EFA with looping transitioh = (¢, r, ¢), and letE, be the
EFA obtained fromF; by replacingl with [°. ThenFE; = Es.

Proof. If r € X thenr = r°, satisfying the claim. Letr; and F; be as above and
assume the claim is true for loops labeledr . Let r be

— s+ t: lisreplaced by(q, s, q), (¢, ¢, ¢), while [° is replaced by(q, s°, q), (¢,t°, q).
By assumption, the pairs are interchangable, hence Joasie °

4 simp(r) can be computed in linear time on the parse of a bottom-up manner

O
€
/ q'r O%
e Oy)5
\EO
B &S T
o O . Oz 0
nd O »sg O
r* € EC)5
SO~ , s 2
s9 (o) r* =7 *
e (M S1e
pESE

Fig. 5: Conflict between cycle-elimination and expandingaasition connecting two distinct
states of the cycle.

— s”: 1 is replaced by loopég, , q), (¢, s, q), the first of which is are-cycle, hence
eliminated, while the second may by assumption be repladéd (&, s°,q) =
(Q7 5?07 q) =1°.

— s*: x4-expansion is applied, introducing arcycle{(q, ¢, ¢'), (¢, €, ¢)} and aloop
(¢', s,¢'). Eliminating the cycle identifieg and¢’, yielding (g, s, ¢) which may by
assumption be replaced with, s°, q) = [°

— st: If e ¢ L(st), then(st)° = st and nothing needs to be proven. So asseme
L(st), implyinge € L(s) ande € L(t). Let E; be the EFA after fully expanding
r, without intermediate elimination steps. The first expansstep replacess with
{(g,s,¢'),(¢',t,q)} — bothq andq’ are still present irE}, where they lie on an
e-cycle. Consider cycle-elimination in 'slow-motion’: infast step, onlyg andg’
are merged, resulting in a volatile intermediate which heaysto be isomorphic to
the EFA constructed from fully expandifg= (¢, s° +t°, ¢) in E». A second step
merges the remaining states, which is equivalent to twoeegtiminations.

O

A more general result can be established for mildly simpliB&pressions:

Lemma 10. Let AY =* E; for mildly simplifiedr. Lett = (p,r, ¢) be any transition
in £, and letF, be asF; except that is replaced witht®. ThenF; = Es.

Proof. The statement is true for letters. Assume it is true for labelnd¢, and letE;
andF» be as above. Letbe

— s”: expansion replaceswith {(p, s, q), (p, ¢, q) }, the first of which may by assump-
tion be replaced withp, s*, ¢). Sincer is mildly simplified, e ¢ L(s) therefore
r* = s’ = s*; this implies that(p, *, ¢) is expanded intdp, s*, ¢) and(p, ¢, q)
as well.

— s*: expanding yields a looping transitioh= (p’, s, p’), which may by assumption
be replaced witli* and by Lemma 9 witli*°. Clearly, expanding® = (¢, s*°*, ¢’)
results in*°, too.

The remaining cases are straightforward. O

Theorem 11. Let r be mildly simplified, then theNFA constructed fromr is isomor-
phic to the one constructed from its strong star normal faimt is, A, = A,..

Proof. Lemma 10 impliesA? = A9,. o

Together with Lemma 7, this shows that the constructionvariant under taking
strong star normal form. Differently put, strong star nokfoam is implicity computed
upon conversion of mildly simplified regular expressions.

5 Alphabetic Width and the Size ofe-NFAs

Let thesizeof ane-NFA be its number of states plus its number of transitiortee T
following question regarding the size ©NFAs was posed by llie and Yu.

Problem 12.Given a regular expression of alphabetic widthwhat is the optimal
bound on the size of an equivalenNFA in terms ofn?

llie and Yu provide a bound dfn — %; they remark that this does not appear to be
close to optimal. The construction we discussed in the pts/section was shown to
give following bound in terms ofpn-length on the size of the constructedNFA:

Theorem 13 ([14]).Letr be a regular expression of unabbreviated rpn-lengtiihen
the constructed-NFA A, has size at mo2/15(n + 1) + 1. There are infinitely many
regular languages for which this bound is tight.

The original work does not consider abbreviated syntaxdgular expressions. For-
tunately, subexpressions of the form- ¢ do not contribute to the hardness of the con-
version problem. The following bound in terms albbreviatedrpn-length is slightly
stronger.

Theorem 14. Letr be an expression of abbreviated rpn-lengtiThen the constructed
e-NFA A, has size atmog2/15(n+1)+1. There are infinitely many regular languages
for which this bound is tight.

Proof. The analysis is the same as given in [14], except for obvioodifications to
the proof of [14, Thm. 10], which is the only place where weetdlke use of abbrevi-
ated syntax into account. The fact that this bound is tighiriéinitely many regular
languages trivially carries over. O

Together with Thms. 4 and 11, we obtain the following uppeurzbin terms of
alphabetic width:

Theorem 15. Letr be a regular expression of alphabetic widthlIf is mildly simpli-
fied, then the constructedNFA A, has size at moﬂ%n + 1. Furthermore, there are
infinitely many regular languages for which this bound istig

Proof. Assumer is mildly simplified. Then Thm. 11 implies that,. is identical to
As. We know from Thm. 4 thatrpn(r®) < 3n — 1. Plugging this into the statement of
Thm. 14, it follows that the-NFA A,.. constructed from* has size at mog2/15(3n—
1+1)+1=4%n+1.

Gulan and Fernau [14] also give an infinite family of regubgrressions;,, showing
that the bound@2/15(m — 1) + 1 on the size of are-NFA equivalent to a regular
expression of rpn-length is optimal: Fork > 1, they define the regular expression

k
re = [[(a; +0]) - (c; +d; +¢])

=1

of rpn-lengthm = 15k —1 and prove that every equivaleniNFA has size at leag2k +
1=22/15(m+ 1) + 1. Since the alphabetic width of, is ¢ = 5k, this shows that the
bound of22k + 1 = 4%6 + 1 stated in the theorem is tight for infinitely many regular
languages. a

The examples from the last proof can be used to prove thatahedfrom Thm. 4
is tight in the abbreviated case:

Theorem 16. There exists an infinite familly,, of regular languages such thalph(L,,) <
n, whereasarpn(L,,) > 3n — 1.

Proof. Consider the languagk,, described by the expression

k
rE = H(a:-‘ +0)(c; +df +ef).

=1

Forn = 5k andL,, = L(rs;), we havealph(L,,) = 5k = n. But the existence of an
expression of abbreviated rpn-length less than- 1 = 15k — 1 would imply with
Theorem 14 that there exists asNFA of size less tha2k + 1 acceptingL,,, which
contradicts Thm. 13. a

6 Conclusion and Further Research

As equivalence of expressionsBESPA CE-complete [19] and not finitely axiomatiz-
able [1, 8], a normal form that is strong, in the sense thal eagular language admits
a unique normal form epxression, might be difficult to obtadeally, we would like
a normal form that realizes minimum alphabetic width andimimm rpn-length, and
that is efficiently computable, two criteria, that would apgntly contradict the above
negative theoretical results.

In this paper, we have suggested a robust notion of reduqaessions, the strong
star normal form. This notion satisfies at least the latteraviteria, in the sense that for
each regular language, there is a (i.e. at least one) regx@ession expression in star
normal form of minium rpn-length and of minimum alphabetiiclihi, and that it can
be computed in linear time. Our notion subsumes variousqueattempts at defining
such a notion [5, 9, 16]

Furthermore, we showed that the strong star normal formgeogeful in various
contexts: Apart from a prior application in the context oé tbonstruction ot-free
NFAs [7], we gave two further applications.

The first concerns the relation between different compjeriéasures for regular ex-
pressions, namely alphabetic width and (abbreviatedjepgth. With the aid of strong
star normal form, we were able to determine the optimal bousitdessing superiority
of this concept over previous attempts at defining such anati irreducibility, which
yield only loose bounds [9, 16].

The second application concerns the comparison of desargdtcomplexity mea-
sures across different representations, namely alpltabietih on the one hand, and the
minimum size of equivalert NFAs on the other hand. Here we seized the power of a fi-
nite automaton construction proposed recently by GularFamdau [14]: Under a mild
additional assumption, this construction already incaajes all simplifications offered
by strong star normal form. While this alone adds to the irsgicn of robustness of
the construction, we also proved an optimal bound on thé¢ioalbetweeen alphabetic

width and the size of finite automata, and we showed that thigd is attained by the
mentioned construction.

We believe that there are various further applicationsidethe theoretical domain.

For instance, the fastest known algorithm [4] for regulgpression matching is still
based on the classical construction due to Thompson [21jleVidetter constructions
for e-NFAs may not improve the asymptotic worst-case runningetime hope that
these can still lead to noticeably better practical peréomoe of NFA-based regular
expression engines.

References

1.

N

[oo]

10.

11.

12.

13.

14.

15.

16.
17.

L. Aceto, W. Fokkink, and A. Ingolfsdoéttir. On a questioinfo Salomaa: the equational the-
ory of regular expressions over a singleton alphabet is nib¢ly axiomatizableTheoretical
Computer Scienc09(1-2):163-178, 1998.

. F. Baader and T. Nipkow. Term Rewriting and All That. Caitpe University Press, 1998.
. G. Berry and R. Sethi. From Regular Expressions to Detestit Automata. Theoretical

Computer Sciencel8(3):117-126, 1986.

. P. Bille and M. Thorup. Faster Regular Expression Matghin: International Colloquium

on Automata, Languages, and Programming (Trackpf) 171-182, LNCS 5555, 2009.

. A. Briggemann-Klein. Regular Expressions into Finitdoknata. Theoretical Computer

Science120(2):197-213, 1993.

. P. Caron, J.-M. Champarnaud and L. Mignot. Multi-tildee@giors and Their Glushkov

Automata. In:Languages, Automata Theory and Applicatiopg. 290-301, LNCS 5457,
2009.

. J.-M. Champarnaud, F. Ouardi and D. Ziadi. NormalizedrEsgions and Finite Automata.

International Journal of Algebra and Computatid@(1): 141154, 2007.

. J. H. Conway. Regular Algebra and Finite Machines. Chapama Hall, 1971.
. K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular exgsions: New results and open

problems.Journal of Automata, Languages and Combinatqrid¥(4):407—437, 2005.

W. Gelade, W. Martens, F. Neven. Optimizing Schema Laggs for XML: Numerical
Constraints and Interleavin§!AM Journal on Computing8(5): 2021-2043, 2009.

W. Gelade and F. Neven. Succinctness of the Complemehtrgersection of Regular
Expressions. InSymposium on Theoretical Aspects of Computer Scigre325-336,
Dagstuhl Seminar Proceedings 08001, 2008.

H. Gruber and M. Holzer. Finite Automata, Digraph Cornivég, and Regular Expression
Size. In:International Colloquium on Languages, Automata and Paogming pp.39-50,
LNCS 5162, 2008.

H. Gruber and J. Johannsen. Optimal Lower Bounds on BeBupression Size Using Com-
munication Complexity. InFoundations of Software Science and Computational Stregtu
pp. 273-286, LNCS 4962, 2008.

S. Gulan and H. Fernau. An Optimal Construction of FiditeRomata from Regular Ex-
pressions. InFoundations of Software Technology and Theoretical Coergitiencepp.
211-222, Dagstuhl Seminar Proceedings 08004, 2008.

J. Hromkow, S. Seibert, T. Wilke Translating Regular Expressions 8rnalls-Free Non-
deterministic Finite AutomataJournal of Computer and System Scien62§4): 565-588
(2001).

L. llie and S. Yu. Follow automatanformation and Computatiof86(1):140-162, 2003.
J. Lee and J. Shallit. Enumerating Regular ExpressindsTaeir LanguagesConference
on Implementation and Application of AutomatdNCS 3317, pp. 2-22, 2004.

18. M. Newman. On Theories with a Combinatorial Definition"Bfjuivalence”. Annals of
Mathematics43(2): 223-243, 1942.

19. A. R. Meyer and L. J. Stockmeyer. The Equivalence ProliterRegular Expressions with
Squaring Requires Exponential Space.Sgmposium on Foundations of Computer Scignce
pp. 125-129, IEEE Computer Society, 1972.

20. G. Schnitger: Regular Expressions and NFAs Withouti@p4diransitions. In:Symposium
on Theoretical Aspects of Computer SciendeCS 3884, pp. 432-443, 2006.

21. K. Thompson. Regular expression search algoribemmunications of the ACML(6):419—

422, 1968
22. D. Wood. Theory of Computation. John Wiley & Sons, In@81

