A Rewriting System for the Construction of Small Finite
Automata from Regular Expressions

Stefan Gulaf®

aDept. IV, Computer Science
Trier University
D-54286 Trier

Abstract

We present a linear-time construction of normalized nogheinistic finite automata
with e-transitions from regular expressions. This is realizeddwyriting digraphs that
are labeled with regular expressions. The size of the caetstl automata is shown to
be within % times the size of the input expressions. A family of expi@s#iat reaches
this value is inferred constructively, and the automataiied by our method for such
expressions are shown to be minimal. This provides a tightspmptotic upper and
lower bound for the size-ratio of corresponding regularegpions and finite automata.

Keywords: Regular Expressions, Finite Automata, Descriptional Clexity

1. Introduction

A fundamental result in formal language theory is the edaivadescriptive power
of regular expressions and finite automata, first shown beide1]. While regular
expressions, being merely terms, come naturally to humarssrmeans of denoting
regular languages, finite automata suggest themselveseggessentation of such lan-
guages on the machine level. This makes the constructiomibé fautomata from
regular expressions a highly important task in basic huo@nputer interaction; a sur-
vey of various algorithms addressing this problem is giveiatson [2]. The standard
situation requiring this conversion is pattern-searcteitt,twhere different classes of
automata are used: according to Friedl [3], most versioaswkfandegr ep construct
deterministic automata, whikrmacs, | ess, andsed employ nondeterministic ones.
In this work we consider the latter kind of automata, enrittvith -transitions.

The efficiency of an expression-to-automaton conversigererally measured by
comparing the size of the input expression to that of theutietptomaton. Several def-
initions of the sizes of expressions and automata have begoged: the number of
states and / or the number of transitions for automata andesspnable combination
of the number of products, sums, stars, letters and pargegtier regular expressions.
Linear dependencies between most such measures are knpdj fere, we settle
for the number of states and transitions as automaton-,tendumber of literals and

Email addressgul an@ni -tri er. de (Stefan Gulan)

Preprint submitted to Elsevier April 11, 2011

operators as expression size. It was shown by llie & Yu [6] tha ratio of automaton-
to-expression sizes is bounded by3 from below and byl.5 from above. These
bounds were tightened by Gulan & Fernau [7] to the commona/aflfz, or approxi-
mately1.47. Although this value is correct, the line of argumentatiofid] is flawed;
the results will be reinstated in this work using a slightiffetent construction and a
considerably different analysis.

The article is organized as follows: First we introduce aritmg system that re-
alizes the conversion from regular expression to finite mata. We slightly constrain
the rewriting rules in order to guarantee unique outputsxtNee show that our con-
struction satisfies a property already known for the corsitsa of position-automata
[8, 9]; namely, that the output is invariant under taking #tar normal form of the
input-expression [10]. The main effort of this work is to Imouthe size of a con-
structed automata relative to the size of the input. Thi®igetby constructing a class
of expressions that maximize this value; we further proe¢ tto smaller automata can
be constructed for such expressions by any algorithm. lyjnva¢ propose a modified
algorithm that improves on a naive implementation in sdwesys.

2. Preliminaries

Braces for singleton sets may be omitted. The size of a fieit& $s denoted).
Binary relations are written in infix notation, and the reflexand transitive closure of
a binary relationR is denotedR*.

A multidigraph or justgraph, is a pairD = (V, A) whereV is the set of vertices
andA is the multiset ofarcsoverV x V. Both V' and A will be referred to aglements
of D. A cycleis a path from a vertex to itself, andl@op is a cycle consisting of a
single arc. Let;—, ¢ denote the number of arcs entering, resp. leayinzplled the
in-, resp.out-degreef q.

An alphabetA is a finite set of symbols, callddtters Any alphabet is supposed
to be free of the symbolsand@. A literal is a letter,c or @. A word over A is a
juxtaposition of letters from4, and alanguageover A is a set of words oved. If
L and L’ are languages ovet and.A’, theirproduct LL’ is a language oved U A’,
defined as

LL :={wuw' |we LAw €L}

Thei-th power ofL, denoted.’ is defined ad.’ = {e} andL"*! = L"L. TheKleene
closureof L is
L =L

neN

A regular expressiormver A, or justexpressionis a term that defines a language
over A. Lowercase greek letteks, 5, i, v, k, o, m, possibly indexed, always denote
expressions. The language definedig denoted.(«). The set of regular expressions
over A is denotedreG(.A). Expressions and their associated languages are defined
inductively:

e The symbolg and are expressions ovet, with L(e) := {¢} andL(@) := {}.

e Everyz € Ais an expression ovet, with L(x) := {z}.

e If ; anday are expressions ovet, so are

— The product (a;sas), with factorsw,;. We generally omit the operater
writing just (a1 a2). L((a1ae)) := L) L(as).

— Thesum(ay + az),with addendsy;. L((ag + a2)) := L(ay) U L(az).
— Theiteration (a3), with basea;. L((af)) := L(aq)*.

It is customary to write expressions in a more concise way fojttang certain
parentheses. Above semantics suggest that products arelasenassociative, thus
parentheses will be omitted for nested sums and for nestetlpts. We also agree
on the operator precedents, +, mimicking the precedence of Kleene closure over
concatenation over union of languages. Lastly, outermaxsrgheses can be omitted.
For example, we write

(a+b+c)a* instead of (((a+b)+c)(a")).

An expressiony is nullableif £ € L(«a). Itis calledcomplexif it contains at least
one regular operator, aridvial otherwise. The set cdubexpressionsf «, denoted
sub(«), is defined as

- sub(a) := {a} if ais aliteral

sub(a1) Usub(ag), if a=ajaz Or a=aj+ as;

sub(aq), if a=aj.

- sub(a) := {a}U {

A subexpression af is properif it does not coincide withv. Every proper subex-
pressions in « is an operand to one ef +, or*, which is called itgarentand denoted
pa(B). Theroot of «, denoted:(«) is the topmost operator af; if « is trivial, we set
r(a) = a. Exploiting associativity of products and sums, we exteathtion to arbi-
trary arity by setting

n n
Hm::m-----ﬂn and Zaizzal—i—---—i—an.
i=1 i=1

A product or sum in the conventional sense is calliethry. The productr = [7;
is maximalif it is no factor of a larger product and ng is a product. Maximal sums are
defined respectively. If all arguments in a maximal producfwom are iterations, it is
calledstar-maximal Let |a|s (Ja|+, |a]«, || 4) denote the number of binary products
(binary sums, stars, literals) in

An extended finite automat¢BFA), is a 5-tupleE = (Q, A, J, I, F'), with @ being
the finite set otates.A an alphabety C Q xREG(A) xQ the finitetransitionrelation,
ICQ@andF C Q. Amember(p,«a,q) € 6 is ana-transition, or just transition, of
E, with label a. The relation-5C Qx.A* is defined via(q, wiws) Fgr (¢, ws) iff
(q,,¢')€6 AN wy € L(a). The language accepted Byis

L(E) :={w]| (g;,w) Fg (¢r,¢),q € I,qr € F}.

Let £ denote the class of EFAs. A finite automaton wdtlransitions (FA), is an EFA
whose transition relation is restricted@x (A U¢) x Q. We callE € £ normalized

if |I|=|F|=1. Thesizeof E is |E| := |Q|+|d|. An EFA is essentially an arc-labeled
graph with two predicates on its vertices. We will thus reeabout EFAs by means of
their graph theoretic properties. We use graph theoretigitelogy for EFASs, e.g., by
referring to a transitiofig, «, ¢) as a loop.

An abstract rewriting systerfARS) on a sef\/ is a tuple(M, =1, - - - ,=,,) where
each=; is a binary relation on\/. Every=; is called arewriting rule, or just rule;
an element of=; is called arewriting. A normal formof =; is anym s.t. for every
m’ we havem #; m’. A rewriting sequencés any sequence of consecutive rewrit-
ingsmy,ma, ..., wherem; =-;, m;,1 for everyj. An ARS isterminatingif every
rewriting sequence is finite. If for some, m =; m; andm =; ms, thenm; and
mo are adivergenceof m. Two objectsm; andms converge denotedn; = mo, if
somemg exists withm; =* mgz andms =* ms. An ARS islocally confluentf every
divergence converges.

3. Converting Regular Expressions to Finite Automata

The presented construction extends those given by Ott &keim[11] and Gulan
& Fernau [7]. Itis a rewriting system on the class of normediEFAS. Every rewriting
modifies an EFA locally without altering the accepted larggiaRewriting rules come
in two flavors:

e Expansionseplace single transitions according to (the root of) theel. Rules
are denoteesg, =, =, =, and sketched in Fig. 1.

e Eliminationsreplace substructures containistgransitions with smaller equiva-
lents. Rules are denotedy, =y, =0, =z, and sketched in Fig. 2.

0-2-0 =20 O 00 =, 0%0l-0
(a) g-expansion (b) product expansion
o o . ol
O*H0 = 0= =0 020 =, 05050
(c) sum expansion (d) star expansion

Figure 1: An expansion replaces a complex transiiomw, ¢) depending om(p)

The expansions are called-expansion, sum expansion and product expansion,
while the eliminations are calle@-elimination, X -elimination,Y -elimination and”-
elimination. Note thal’- and Z-elimination consist of two cases each, both of which
are sketched in Figs. 2c and 2d. These cases behave synatetvidich is why we
will always consider only one of them. An occurrence of tHelh@nd side of rule=;

S0 Bre

e

a1
—0 . = (<31 ~E &~ < ¥
o —O =
. 0)32 N O~ 7Xla) ><:
(a)e-cycle-, or O-elimination (b) X-elimination:q~ = ¢g* =2

® @(x\n$=>y[q] @%

(c) Y-elimination(s):p # ¢, ¢~ = 1resp.gT =1

Pl

® 5@%‘ ®
&\iy[q] Py

n

o, 57 e o e
= =
D@ =z @ @ @‘E,\ 210 O
(d) Z-elimination(s)p # q,a € A, q~ = 1resp.qt =1

Figure 2: An elimination replaces a substructure that doatatransitions with a
smaller equivalent. FoK -, Y- and Z-elimination, additional properties must be met.

is referred to as airanchor!. As can be seen from Fig. X -, Y- and Z-anchors
are uniquely identified by a central state; this informait®accasionally conveyed by
writing e.g. =y instead of=y, if ¢ is the central state.

This defines the AR%E, =4, =, =4, =, =0, =x, =v, =z). The rewritings
will also be calledconversionsif the particular type of a conversion froifi to E’ is
irrelevant, we write jus¥ = E’. Formally, we set

== | J = wherel = {@,+,+,%,0,X,Y, Z}.
iel
It should be clear from Figs. 1 and 2 that the language acddptan EFA is invariant
under conversions, i.e., we have

Proposition 3.1. If E = E' thenL(E) = L(E').

Every conversion reduces either the overall number of dpexgor the number of
states or transitions in an EFA. Therefore, the system isitgtting and every normal
formis an FA. On inputr € REG(A) the conversion is initialized with the trivial EFA
A% defined as

Agc = ({qu Qf}7 A, (qu «, Qf)v q0, Qf)'
An full conversion starting from soma? is given in Fig. 3. LetA® denote any EFA
that can be derived from? through a sequence éfrewritings, i.e. A% =F A¥; this
notation allows us to writel® = A+l If A% isin normal form, we denote it just,;
clearly, the FAA , is free ofO-, X -, Y- or Z-anchors.

A shortcoming of our construction is that its outpd, is generally not unique.
This is due to the fact that the ARE, =) is not confluent, i.e., some divergences are
not guaranteed to converge again. We rectify this behanitiré following subsection.

1A more common term igeducible expressigror graph-redexsince we are already dealing with expres-
sions, a different name seems to be better suited

O(a*+b)*+bc 0 =40

be

(a*+b)* (a™+b)"

O = O3e0+0 =+03u5+0

a%} .
1))

00" g Ly 0=-0% g

=0

a*+b

B QN

=0

Figure 3: Convertingd? into A, for a = (a* + b)* + be

W

- . /
w0 O o 0 O
\@/®% 7N ®/
N > T
*/r{/ o ad */»/ ~ 7
—®@_ @ .
>< Tira — ><
(a) X/Y - divergence (b) X/X - divergence
~ >
-
y@\ y@an
\@/ 22 g o1 PN To
ﬁ»@/ o 4&,@/@&\”\
o §SX/9] . ~a > a
lo)
L@><: . —a»@/a'

(c) Z/ X - divergence

(d) Z/Y - divergence

Figure 4: Divergent rewritings due t§- and Z-anchors £-labels are omitted).

3.1. Refining the Construction towards Functionality

As mentioned, different conversion sequences may leadtaswmorphic automata.
It turns out that this is due t& - and Z-eliminations — more specifically, certain in-
stances wherein ai - or Z-anchor shares states with a second anchor (possibly of a
different type). Typical examples for this kind of divergerare shown in Fig. 4.

We thus restrict applicability ok - andZ-elimination as follows:

Definition 1. An X-eliminationE =, E’ is valid, denoted? = x(, £, if

(X1) only X- or Z-elimination are possible ifv, and
(X2) there is naX [p]-anchor inE with (p, ¢, q) € 0.

A Z-elimination isE' =, E’ is valid, denoted” =z, E', if

(Z21) only Z-elimination is possible i, and

(Z2) there is naZ[p]-anchor inE with any transition fronp to ¢ in dg.

For example, in Fig. 4aX -elimination is not valid, becausg-elimination is ap-
plicable, whereas in Fig. 4bY [r]-conversion is not valid, because of &tg]-anchor
with e-transition fromg to r. Likewise, in Fig. 4c.Z-elimination is not valid, since an
X-elimination is applicable. The rulg¢X2) and(Z2) are sound: a cyclic elimination-
preference among - or Z-anchors implies the existence of atycle, which, due to
(X1) and(Z1), is eliminated first.

Lemma 3.2. If E = x E’ holds, thenE’ contains onlyX - and/or Z-anchors, if any.

Proof. SinceE = x FE’ respectgX1), E contains onlyX- and Z-anchors, so every
different anchor inE’ results from this eliminationX -elimination certainly does not
introduce expansion anchors, or cycles, particularlyaanchors. Let the considered
elimination beEl =x,) £’ and assumé&’ =+, £”. This implies(p, ¢, q) € g, SO
g~ > 2in E’, and, sincey is the center of & -anchorgt = 1in E’. Howeverg* is
not affected by theX -elimination, sog™ = 1 in E, too. But then,E also contains a
Y'[¢]-anchor, contradicting the assumption that-x E’ is valid. O

Lemma 3.3. If E =z E’ holds, thenE’ contains onlyZ-anchors, if any.

Proof. As for Lem. 3.2 with the obvious modifications. O

Any conversion besideX - or Z-elimination is always valid. Let-_(x , denote
these other conversions, i.e., set

=_ix,z} = = \{=x, =z}

It follows from Lems. 3.2 and 3.3 that a sequence of valid epsions is split into
three parts: a sequence withdat or Z-elimination, followed by a sequence with only
X-eliminations, and a final one with onfg-eliminations.

Corollary 3.4. If E =* Fis valid, then there are EFAB’ and £
E=Xn B =2xE'=25F

SettingE = A% andF = A, in Cor. 3.4, we arrive at two intermediate EFAs that
appear in the construction of an FA from an expression by sieéexhaustive valid
conversions.

Definition 2. Let X, andZ,, denote any two EFAs satisfying
AL =Lixzy Xa 2k Za 27 Ao

Note that each subsequence in Cor. 3.4 can be of length zesonse of4?, X,
Z«, A, may coincide. In the remainder of this section we show fiat Z, and A,
are unigue. To this end, define theerlapof two conversions as the elements shared
by their anchors. Non-overlapping conversions clearlydyie=As that converge, for in
that case, conversions take place in “different parts” e#RA, and their relative order
is irrelevant. We consider nontrivial overlaps only, i®ements which are shared by
distinct anchors.

SR
Liug! €
Vi SN
O</E §so T2
&,8}'
B~

Figure 5: Case in the proof of Lem. 3.5. Téwransition of theY'[¢]-anchor is also part
of ane-cycle.

Lemma 3.5. If £ = F; holds andE = E, is valid, thenE; = Es.

Proof. Let Q. andT. denote the sets of states and transitions ofthgcle eliminated
in £ =0 E;. O-elimination boils down to the following: Choose agy Q., called
therepresentativeand replacép, o, r) € dg \ T- with (p, «, q), if r € Q., resp. with
(q,a,7) if p € Q- and with(q, o, q) if p,7 € Q.. Next, remove). \ ¢ from Qg and
T. from 0 g, thus yieldingF;. AssumeFE =; E, overlaps with this cycle-elimination:
since= is valid,i ¢ {X, Z}, and we distinguish by the remaining cases.

- Ifie {s,+,%, 2}, lett = (p, p, q) be the transition replaced by;. The overlap
of =0 and =-; consists ofp or ¢ (or both); we assume thatis part of the
overlap and choose it as the representatives ¢ ., thent is unaffected by
O-elimination. Conversely, the-cycle remains unmodified & is applied. If
p € Q., too,t is replaced with’ = (g, p, ¢) by O-elimination; nevertheless;;
is still applicable ta’ in E;. As an example, this is shown for an overlap=e)
and= in Fig. 6.

- If i =Y, assumell =y, Eo with ¢~ = 1 andqt > 1; lett = (p,e,q) be
e-transition of this anchor. I§ ¢ Q., aY[¢]-anchor is also present ifi;, while
conversely, the-cycle of F is not affected by -elimination at all. This case
is straightforward. lfy € Q. we need to distinguish whetheis a part of the
e-cycle. If so,=y shrinks thes-cycle into are-cycle which can be eliminated
in F5. On the other hant -elimination is subsumed by applyirgrelimination
to E. See Fig. 5 for this case. The final case wheee@. andt is no part of the
e-cycle is left to the reader.

- If i = O, the twoe-cycles share a statewhich we choose as the representative
of either cycle. Regardless of the order of the two elimiati each transition
incident to either cycle is replaced by a transition incidery in an EFA that is
reached from botlr; and Es.

O

L
o o{@@ DY~
/8‘/ R e
a0
5By 2

Figure 6: Case in the proof of Lem. 3.5. Convergence of a damee resulting from
=, and=o.

Lemma 3.6. If £ =y FE; holds andE = E, is valid, thenE; = Es.

Proof. Assumell =y, E1 whereq™ = 1and(p,¢,q) € dg. SinceEl =; E» is valid,
againi ¢ {X, Z}. The casé = O was already dealt with in Lem. 3.5, we consider the
remaining possibilities.

- Ifie {e,+,% 0}, lett = (q, p,r) be the transition replaced by. In Ey, ¢
is replaced by’ = (p, p,r), which is ani-anchor, too. LetF; =; E3 be the
appropriate conversion, then the elements causdg; iby this conversion are
the same that are causedHhh by replacing:, except that the transitions leaving
qin £ leavep in Es. Itis easy to see thdf; =, E3 is valid, SOE; = Fs.

- If i =Y, there is &[r]-anchor inE s.t. at at least one transition connegts
andr. This gives rise to three sub-cases which are shown in Fig. ahe case
(Fig. 7(c)) we must consider = r. The truth of the claim should be obvious
from the figure.

O

5/' ﬁi\i:@*;
=7 ?\ I Zar ~81
o e et
@ (b) ()

@@~

3

Figure 7: Possible overlaps &f-anchors

Lemma 3.7. If E =; E; for somei € {+,+, %, &} holds andFE = Ej is valid, then
By = Ea.

Proof. Let E, result fromE = E,. Once morej ¢ {X,Z}, becauseél =; E;
is valid. Due to Lems. 3.5 and 3.6, onjye {.,+,*, @} needs to be considered; in

any case, the overlap consists of either one or two statesdiwansition. No state is
removed upon expansion and the in- and outdegrees of stat@sedevant to=; and
=, the order of conversions can be switched without alteffireyesulting EFA. O

Lems. 3.5, 3.6 and 3.7 constitute the cases in the proof dbttosving
Lemma 3.8. The ARSE, =4, =, =%, =, =v, =0) IS locally confluent.

This implies thatX,, is unique for any input: (cf. Thm. 3.11). We examine the
remaining parts of an exhaustive conversion, i.e., v&licand Z-eliminations. To this
end letX’ denote the class of FAs withobit- or O-anchors.

Lemma 3.9. The ARSX, = x) is locally confluent.

Proof. Anchors of distinct validX -eliminations can only overlap in a state which is
not the central state of either conversion. It is easily sbanthe FA resulting from
two such elimination does not depend on the relative ord#resfe eliminations. [

Likewise, letZ denote the class of FAs witholt, O- or X-anchors.
Lemma 3.10. The ARS Z, = 2) is locally confluent.

Proof. Suppose? =, E1 andE =4, E- are valid and overlapping. If the overlap
consists of a state and no transition, the conversions dimtasfere since the common
state is neithep norq . If the overlap consists of a transitionthen there is necessarily
a transition fronp to ¢, contradicting the assumption that both eliminations alely
i.e., both respeqz?). O

The confluence properties of each of the rewriting system sesuan exhaustive
conversion imply the main result of this section. In parteit states that, if restricted
to valid conversions, the presented construction is fonetiin the sense that the re-
sulting FA is uniquely determined.

Theorem 3.11. The automataX,,, Z, and A, are unique.

Proof. This is an application of Newman’s Lemma [12, 13], which imaplthat the
normal forms of a locally confluent ARS without infinite seqaes are unique. O

Confluence of valid conversions implies a property that coméandy later on.
Lemma 3.12. The relation= is an equivalence orf.

Proof. Reflexivity and symmetry are trivial. To prove transitivisupposet; = F,
andEy = FEs. Then there ar& andE13 with By =* E13, By =* Ei3, Ey =~ FEo3
andE3 =* FE,3. SinceFE > and E,3 are both derived fronE,, confluence of valid
conversions imply1o = FEss, SO E1o =* Fi3 and Ess =* FEj3 for some EFAE; 3.
Therefore 'y =* Fi3 andEs =* Fi3,i.e. E; = Fs. O

10

4. Star Normal Form

Thestar normal formof an expression was introduced by Briiggemann-Klein [10]
as a preprocessing step in the construction of the podifofrom an expression [8].
We use a slightly more succinct definition than in the origimark.

Definition 3. The operators and® are defined on expressions as follows

S [20 =% i= 2, a° = a, (a+f)° = 0%+ 7, (%) 1= af,

mm%{mi if & ¢ L(ap);

a’+pB°, else.

- []* @* =0, :=¢,a" i =a
(Oé—f—ﬁ). = +6., (Oéﬁ). = 04.6., a*® = q*%*

The star normal formgNF) of « is defined asy®, and an expressiof is in SNF
if a = «®*. Some elementary properties fiF, proven in [10], which will be used
without further explicit mention, are the following:

1. L(a) = L(a®)
2. a® =a*°

.a=a* iff Vyesubla):y=~°

Bruggemann-Klein further proved thatanda® yield identical position-FAs. We
claim that the same is true for the construction of FAs by estige valid conversions.

Some additional notation is helpful in proving this: givetransitiont = (p, «, q),
lett° := (p,a°,q) andt® := (p,a®,q). If E is an EFA with transitiort, let E[t°]
andE[t*] denote the EFA that results from replacingith ¢°, resp.t®. The following
lemma lies at the heart of proving our claim.

Lemma 4.1. Lett be a loop ofE. ThenE = E|t°].

Proof. Lett = (g, @, ¢) and proceed by induction an. Fora € AU {@}, we find
a = a® and thusk = Et°]. If a = ¢, the transitiont is a one-are-cycle, which
is removed througlD-elimination. Withe® = g, the transitiont® is removed by
g-expansion; therefor® =¢ E’ andE[t°] =4 E'.

Now suppose the statement is true fgrand distinguish by the structure af(the
cases are sketched in Fig. 8):

- «f: star expansion replaceswith a stateq’, ane-cycle {(q,¢,¢'), (¢, ¢,9)},
and a loop(¢’, a1,¢’). Eliminating the cycle identifieg’ with ¢, so the new
loop becomes$q, a1, q), which is justt®. HenceE =* E|[t°], which implies the
claim.

- a1+ az: sum expansion irE’ replacest with loopst; = (¢, «1,q) andty =
(¢, a2,q): if E’ denotes the resulting EFA, the inductive assumption irsplie
E' = F'[t9][t3]. Sum expansion of = (q, (a1 + @2)°,q) = (¢, a5 + a3, q) in
E[t°] yields E'[t$][t3], too, and sinces is an equivalencey = E[t°] follows.

11

O(M

5.0.g gu@F.g-
ORMEORA0) O OB OO

(a) iteration, note that; = a3 ° (b) sum, note that] + a5 = (a1 + a2)°

o (O) O e
8 =, @ Lo E‘\@"E @‘ 0
o o o e} *
agytag Q. Qy Q1L %2 7
SING 9210’0

(c) nullable product, note thétv; a2)° = af + as

(M=

Figure 8: Cases in the proof of Lem. 4.1: replacing a lowfth ¢° yields an EFA that

. L I
converges with the initial one. Dashed arrows labeleepresent-paths.= denotes
convergence by inductive assumption.

- ajag: If € ¢ L(agasg), thena = a°, soE = E[t°] holds. Otherwise leE’
be derived from¥ by exhaustive expansion of The first step in this sequence
is product expansion aof, which is replaced by a new stagé and transitions
{(g,1,q"), (¢',a2,q)}. Sinceajas is nullable, so is eithew;, henceE’ con-
tains are-cycle throughy andq’. Consider the elimination of antcycle in “slow
motion”: it consists of a sequence of successively mergaigsof states from
the cycle, preserving the accepted language in each stepa &inal removal
of e-loops that stem from the-transitions of the original cycle. I&” we may
thus mergey andq’ to get the intermediate EFE[’q:q,]: this EFA can also be
constructed fronE[t°], where

t° = (Qa (a1a2)07 Q) = (q7 O‘T + Oé%, Q)
sincea; s is nullable. ThusE and E/ admit convergent rewriting sequences
which, based on Lem. 3.8, imply = E|[t°] for this case. O
Lemma 4.2. Lett by any transition of£. ThenE = E|t°].

Proof. Givent = (p, «, ¢) we prove the claim by induction am: the statement is true
for « € AU {e, &}, so assume it is true for labels , a3. Now distinguish by the
structure of:

- a1 OF g +as: both cases are straightforward.

- «af: let E =, E'bethe expansion ¢f thenE’ is asE exceptthat is replaced by
a new state, e-transitions(p, ¢, 7), (r, €, q¢) and a loop’ = (r, a1, 7). Applying
the inductive assumption t§ we find £/ = E’'[t’*]. Sincet’, resp. t'* is a

12

loop, Lem. 4.1 yield€'[t'*] = E'[¢*°]. Now a® = «of® = a}°*, so expanding
t* in E[t*] yields E’[t'*°], too. ThereforeE[t*] = E’[t'*°] and since= is an
equivalence, we also have = E[t*].

O
Theorem 4.3. The presented construction satisfiés = A,. for arbitrary «.

Proof. Applying Lemma 4.2 to the initial EFA of a conversion yield§ = A°., so
confluence of &, :sﬁ{X,ZQ leads toX, = X,.. From there on, Lems. 3.9 and 3.10
provide the claim. O

Therefore, the presented construction is invariant uradéng) thesnF of the input;
from a different point of view, one might say that theFis implicitly computed upon
conversion. This property is fundamental for analyzing sfee of aA,, relative to
the size ofa. To this end, we also need the following alternative chaéxation of
expressions ilsNF.

Lemma 4.4.

lL.a=a" iff e¢L(a)
2.a=a* iff Vk*esub(a):e¢ L(k)

Proof.

1. By structural induction on: If o = ¢ thena is nullable andx # «°, whereas
if « € AU @, itis not nullable andv = a°. If o« = o1 + 05 is nullable, assume
without loss of generality that; is nullable: the inductive assumption # o7
thenimpliesy # o°. If otherwisea = o1 +05 is not nullable, neither; is. Then
o; = o7 holds, which impliesy = a°. An iterationa = x* is always nullable
anda # «o° follows directly from the definition of-]°. Finally leta = 7y 7s: if
a is nullable, the definition of |° again yieldsx # «° immediately, whereas if
« is not nullable themr = «° (regardless of whethera actuallyis nullable).

2. The “only if"-part is again straightforward induction @n we only prove the
“if"-part: For trivial « the claim restates the definition bf The inductive step is
easy ifa is a product or sum, so let=x* ande ¢ L(k). Then,a® = k** =
k*°*; since all bases ak are non-nullable by assumption arde sub(«), we
apply the inductive assumption toto find x*°* = k°*. Now the first item of
this lemma yields:°* = x* = «. In all casesq = o, thereforex is in SNF.

O

Informally speakingsNF formalizes the idea that no base needs to be nullable, as
an iteration already allows far. Consequently, we ask for the maximal number of
stars that can be present in amFexpression.

Lemma 4.5. Leta be inSNF, then

m|<{MML it e ¢ Lio);

|| 4 if €€ L(w).

13

Proof. Any trivial expression is ireNFand satisfies the claim. Assume the claim holds
for expressions, v5 ,andk, and distinguish cases according to the structuke. of

- a =y If e € L), it follows thate € L(v;), so we have
e = [1let [rale < Jprlat |vefa = [ala.

Otherwise, assume without loss of generait¢ L(v1). Then the right-hand
side above is decreased by at least one due to the induciphesis.

- a = v1 + 1»: This case is dual to the previous onet i# L(«), it follows that
e ¢ L(v;). Hence,

|l = [l + |p2fe < fala =14 [rala =1 <lafa—1.

If e € L(a), the right-hand side above is increased by at most two, y&ttlis
bounded from above biyy| 4.

- o = k*: Obviouslye € L(«); moreover, Lem. 4.4 states¢ L(k), SO|k|. <
|k|.4 — 1 by assumption, and therefore

|ale = [£la+ 1 < K4 = |aa

5. Conversion-Ratio and Worst-Case Expressions
We seek to bound the size of an FA relative to the size of theessjon it is derived
from. To this end, theonversion raticof an expression is defined as

_ A

ol

c(a) :

We call 8 worse thanx if ¢(8) > c(«). An expression is worst-casef no expression
is worse tharu. The conversion ratio of a worst-case expression providespper
bound on the size of a constructed FAs relative to the sizheoirtput, i.e., ifa is an
arbitrary expression andis worst case, then

[Aal < c(p) ol

As we will see, the structure of a worst-case expressioniggaenup to repetition. It will
be deduced through the stepwise exclusion of subexpressianmay occur in such an
expression, thus narrowing down the possible structucagnties it may exhibit. This
is frequently done by showing that a subexpressipwhich reflects some structural
property, can be replaced by a different subexpressigielding a worse expression.
This usually involves comparing intermediate EFAs whialstjlike the expressions
they are derived from, differ only locally. At times we wilbgo great lengths in order
to ensure that the effects of replacing a subexpressioncrgcaidentally diametrical
to our original intentions. In particular, we always needuke out the possibility that

14

elimination-anchors emerge as the result of a replacersiece these might level the
size-increase we wished to achieve.

We write i/ = u[¥/¢] to express that' is derived fromu by replacing a fixed
occurrence ofp in p with . This notation is rather informal, singemight contain
multiple instances of); however, we will always explicitly introduce the occuroen
which will be replaced. If we can show thatis worse than:, we have inferred that a
worst-case expression does not contaas a subexpression, resp. that it does not have
the structural property expresseddy

A most helpful structural property of worst-case expreassi@sults from the invari-
ance of our construction under star normal form:

Theorem 5.1. A worst-case expression is §NF.

Proof. It is easy to see from Def. 3 that®| < |a| holds, with equality iffa is in SNF.
From Thm. 4.3 we dedudel,.| = |4, |, s0a® is worse than iff o # o®. O

The size of a constructed FA is determined by the number @&dieach conversion
is applied. The number of times thaty, =., = and=- are applied upon con-
structingA,, obviously equal$a|g, |af., |a|;+ and|al., respectively. This notation is
generalized by setting|o, |o|x, |a|y and|«a|z as the numbers ab-, X-, Y- and
Z - eliminations, that occur in a conversion. Note that wiile depends only om
fori e {@,., +, %}, this is generally not true fare {O, Y}, where the values depend
on the chosen conversion sequence. We will show that fortveaise expressions no
elimination occurs at all, no matter what the chosen coieis.

Lemma 5.2. The following statements are equivalent:

1. aisinsNF
2. k* € sub(«) impliese ¢ L(k)
3. lalo=0

Proof. The equivalence of 1. and 2. has been established in LemWe4show the
equivalence of 2. and 3. Assumgé € sub(a) ande € L(x). At some point in the
construction of4,, aloop(q, , ¢) emerges; expanding this loop necessarily yields-an
path fromg to g, i.e. ans-cycle. Conversely, any cycle in the construction pressppo
a loop s.t. every (sub)word accepted by traversing the dgaéso expressible by the
loop label. Therefores;-cycles and nullable bases exactly reflect another and dira cl
follows. O

Corollary 5.3. If 11 is worst-case, thefu|o = 0.

The following proposition might be obvious. Still, it pralés a first opportunity to
reject a feature of worst-case expressions by construatingrse expression without
that feature.

Proposition 5.4. If 1 is worst-case, thefu|z = 0.

Proof. Let u be worst-case and suppose € sub(u). Letz be a letter and set
u' = plz/a] for a fixed occurrence of in . While at some point in the construc-

tion of 4, ang-transition will be removed, this is not the case for the esponding

15

|[=e === =2x|=v 22| =0
AIQNT ol Lt oO0 1] —1]-1]-1]-(n—-1)
Ao =11 [1 |2 0] -1|-1| -n

Table 1: Changes in number of states and transitions regdittm each single conver-
sion. In the case ab-elimination,n denotes the size of thecycle.

z-transition in the construction of ,. The number of times any other expansion can
be applied remains constant, and the number of times eanimation can be applied
in the construction ofl , is at most as much as fet,. We thus findA,,,| > |A4,,[+1,
and sincdy’| = |u|, the claim follows. O

A preliminary upper bound on conversion ratio follows altndigectly from the
definition of conversion.

Lemma 5.5. The conversion ratio of any expressianis bounded from above, as

follows:
8

c(a) < §+—
~— 3 3o’

Proof. Let i be worst-case. Thep|o = ||z = 0 according to Cor. 5.3 and Prop. 5.4.
Other than that, we start Widm2| = 3 and add the elements contributed or removed
by the remaining conversions according to Tab. 1. This gield

Al = 2lple + |ply + 3|ple — lulx = 2|ply —2|plz +3
= Il + |ple + 2| pls — [l — [l x — 2|ply —2|ulz +3
= Il = |l + 2|pls = lulx = 2luly —2|plz +2

where we uséa|4 = |af. + ||+ + 1 in the second step. Singeis in SNF, we know
from Lem. 4.5 thatu|, < (|u| + 1). Omitting the negative terms we arrive at

8

2 5
Al < lul 20l +2 < Jal+ S0l + D) +2 = Slul +3

Dividing the left- and right-sides bjy| yields an upper bound faf(), which in turn
bounds the conversion ratio of any expression. O

In certain cases this bound provides a criterion to decidewif two expressions
is worse if this is not obvious at a glance.

Corollary 5.6. Let u andv be expressions s.du| > 3, |v| = |u| + kand |4, | =
|A,| +1for k,1 € N. Thenv is worse thanu if

> 2.6

Eol

Proof. Let 4 andv be as stated. By definition; is worse thanu if c(p) < c(v).
Written out, this inequality is

Al A+
lul ful+k
For|u| > 3 Lem. 5.5 yields

x|~

, Which holds iff c¢(u) <

5 8 -
<-4+ -=25<26
) <3+y5
Therefore, if% is atleast 2.6, it exceeds the conversion ratip,aind the claim follows.
O

Lemma 5.7. If i is worst-case ang| > 3, then|u|. = 0.

Proof. Let i be worst-case withy|. > 0. Fix somes in i and lett be thes-transition
which is labeled with our fixed. We distinguish whether at some pointin the construc-
tiont is part of an elimination anchor.

- If t can be removed by some elimination, jét= /] for some letter:. Then
the expansions far andy’ are the same, whereas at lest one elimination less is
applied upon constructing,,,. So|A,/| < [4,|and|y'| = |u|, thereforeu’ is
worse thanu.

- If £ does not occur in an elimination anchor, we consider thenparkes in p.
Sincep is worst-case, it is irBNF, SOp.(u) # *. Also, p(u) # », ort would
be part of an Y-anchor. Only. (1) = + remains possible. We sgt := u[="/¢],
then thes-transitions introduced by expanding the correspondifiransition
are not part of any elimination-anchors, just as was the witbet. In this case,
|¢'|« = |ul« + 1, while all other conversions are applied the same number of
times. With|A4,/| = |A,| + 3 and|y/| = |x| + 1 we apply Cor. 5.6 finding that
1/ is worse thanu in this case, too.

O

We associate t@ € sub(«) the first star encountered in the parseaobn the
upwards path from the root gf to the root ofa. Let theminimal containing base
of 7 € sub(«), denotedncb, (7), be the smallest € sub(«) s.t. 7 € sub(x) and
pa(K) = *. If no suchk exists,mcb,, (1) is undefined. Formally that is

T, if po(7) = *;
mcha (7) = S meby(8), if g€ {rr, 71,7+ 7'};
undefined if 7 = a.
Lemma 5.8. In a worst-case expression every iteration is an addend.

Proof. Let i be worst-case and* € sub(u). Sinces € L(x*) andyu is in SNF, we
getp, (k*) # = from Lem. 4.4. Ifx* is a factor, we choose a smallest such iteration:
SUppose,.« (1) = « andp,.« (k) = + for all »* € sub(x). We further assume that
k* is a factor in the product*a € sub(u) (the casexx™ is symmetric). Sep’ :=
p[+"+o/x*a] and note thatu| and|y’| are equal. We distinguish whetheris in SNF.

17

- If ' is in SNF, we examine howp or ¢ can be removed in the construction of
A, (see Fig. 9). First, Lem. 5.2 yieldg’|o = 0. If either ofp or g is removed
by means ofX -, Y-, or Z-elimination, this state, possibly along with some ad-
ditional transitions, can be removed in the constructiompf too. Therefore
|A},| > |A,| while |u'| = ||, henceu' is worse than.

- If 4/ is not in sNF, then Lem. 4.4 yields € L(mcb,/(x*)). Since this is not
the case iny, i.e.,e ¢ L(mcb,(k*)), yet obviouslye € L(x*), this impliess ¢
L(c). LetT = mch,/ (k*)[2"/a] and set” := p/[7/meb,, (x*)]. Intuitively, p”
is derived fromy/ by shifting the parent ofacb,,/ (x*) ontoa.. Now || = ||
andy” is in SNF. Letop; be the root ofncb, (x*) and assume that is not an
iteration. Thenncb,,(x*)* is an operand to som®., the root ofv € sub(u).
Let Al’j be such thav is the label of a transitiom = (p,v,q). Then there
exists some4ﬁ,, which differs fromAl’j only inasmuch as thatis replaced by
t" = (p,v",q), wherev” is the replacement subexpressionuih constructed
above. This gives at least one additiopdfansition in the automaton (Fig. 10),
sou” is worse thanu.

In either case, the assumption that an iteration in a wase@xpression may be a
factor is falsified, so the statement follows. O

K K
e K" o € os @ € oa
O—=©@ = @—=0—=@ > O@—=0O0—+0—>=O =y @—=0—0
(a) Part of an FA arising from a starred factor.

K

. Q)
O @ =y 0~ @ - @E/VO\@

(b) Increase in size from exchangindor +.

Figure 9: First case in the proof of Lem. 58« is replaced with<* + «

The lemma implies that in a worst-case expression, the nuoflstars is at most
twice the number of sum-operators. This allows us to imprnebound given in
Lem. 5.5 to the value given by llie & Yu [6].

Lemma 5.9. The conversion ratio of any expressianis bounded from above, as
follows:
()< 5+
clo - —_—.
— 2 2l
Proof. Let 1, be worst-case and proceed as in the proof of Lem. 5.5, whegnived
at

[Apl < lpl = ol +2lpl +2 and [ule < S(lul +1)

Wl

18

(...(kTa)...) \ /

b’
~

K a)...)* Y
@) L o @e0—=® = @—=0—>@

Q
(o(r"4a").) o * e T Qe
® @® = ® @\O/@ @
Oa

Figure 10: Second case in the proof of Lem. 5.8: shifting the sf mcb,,(«) onto
« yields a bigger automaton; the replacement inside the gsabautomaton based in
the state: is the same as in Fig. 9.

As we have already observed, Lem. 5.8 impigls. > |u/.. Plugging this into above
inequations yields

3 3 5
A < —|pls +2 < = —
[Aul <l +5lek+2 < Flul+ 5
Dividing by |u| yields an upper bound for the conversion ratio of a worsecas
expression, which bounds the conversion ratio of any espes O

As before, this upper bound allows us to compare certainesggons that differ in
size and are converted to automata that differ in size, tbe.proof is the same as for
Cor. 5.6, except for the obvious modifications.

Corollary 5.10. Letu andv be expressions s.tu| > 16, |v| = |u| + k and|4,| =
|A,| + 1. Thenv is worse thanu if

l
% > 1.66.

This stronger version of Cor. 5.6 is necessary to show tha¢ o6 the other elimi-
nations occur in the conversion of a worst-case expresgiercan apply the same kind
of proof with smaller increments in FA size relative to exggien size. In particular,
the criterion applies if an increment of expression size ligcBeases the size of the
corresponding FA by at least 5.

An inconvenience of Cor. 5.10 is its restriction to expressiof size at least 16.
All statements building upon the corollary (and their regjwe proofs) must include
a clause similar to “...and suppose further thgt > 16...”. Since this property
holds for almost all expressions, and we seek to infer anitaffamily of worst-case
expressions, this shortcoming is not severe and will berigghin the remainder of the

analysis.

Lemma 5.11. If u is worst-case, thefu|y = 0.

19

@ © @—=©
oy +o3)(os+o) d N N e N
@lite)ostol) @ 7 G @ @ =*=x)g @ ®

O o
O /(}\

\@/
OUQ /
Q

04

@(0T+05)(6§+UZ+1*)>@ -9 @

Figure 11: Proof of Lem. 5.12. Adding' to a sum of thery-label introduces four new
elements and prevenis-elimination ofq (-labels are omitted).

Proof. If u is worst-case thefu|. = 0 by Lem. 5.7, so the-transition appearing in a
Y-anchor is introduced by... In order to get arY’-anchor from=-,, a starred factor
is required. Following Lem. 5.8, these do not occur in a woeste expression. [

Lemma 5.12. If i is worst-case, thefu|x = 0.

Proof. As noted in the proof of Lem. 5.1%;transitions result from star expansion. In
particular, anX -anchor results from a subexpressipn= (o5 + o3)(c5 + o). Let
x be a letter and derive from u by replacingy with (o5 + 03)(o% + o + 2*). The
expression size ig/| = || + 3, and for automaton size we get, | = |A,| + 5. This
latter increase results from two additional expansionsamaprevented -elimination
(see Fig. 11). Applying Cor. 5.10 yields thats worse than.. O

Lemma 5.13. If u is worst-case, thefu|z = 0.

Proof. Let Z,, contain aZ[g]-anchor where all leaving transitions ardransitions.
Lett = (p, a,q) be the one transition entering We replace’s label in i by setting
v = plebte)/o] forb,c € A. Then|A, | = |A,| +8, since disabling[q]-elimination
saves a state and a transition, and 6 new elements are eqWifith || = |u| + 5,
Cor. 5.6 yields thav is worse than.. O

Since no eliminations occur in the conversion of a worseaagression, the in-
equality derived in the proof of Lem. 5.9 becomes an equadfity is worst-case, then

[Aul = |l +20pls — el 4 + 2.

Thus, fixing the size of a worst-case expression leaves tims sund stars as the sole
parameters determining the size of the resulting FA. Weomattne structural properties

20

©
(...(o1402)...) ‘ /

(...(o1402)...)" € OE * € o\ ,6
Q-0 = O@—=0—0 =* O©—0—0

(@
J.
(.ot +a"+03)..) R e
@0 =" O - /@ - @®
£ O B
Q.
(b)

Figure 12: Second case in the proof of Lem. 5.14: the norahldladdendr; is
replaced by two nullable addendas, andz*, which yields a worse expression.

of such expressions further down by investigating the ietations between those two
operators.

Lemma 5.14. If p is worst-case then every addendiris nullable.

Proof. Let 1 be worst-case and suppogecontains an addend which is not nullable,
say,o1 + o2 € sub(u) wheree ¢ L(oy). Lety/ := u[oi+2"/5,] for some letter: and
distinguish whether/ is in SNF.

1. If 4/ isin sNF, then|A,/| = |A,| + 7, while |p/| = |u| + 4. It follows from
Cor. 5.10 thaj is worse than..

2. If i/ is notinsNF, replacingr; with o 4+2* introduced a nullable base. Sinee
is not nullable by assumption ands a letter, the base in question is necessarily
mcb,/ (0} + «*). To unclutter notation we sef = mcb, (o] + z*). The
“nullability” of every base besides is the same i andy’. We remove the star
operating ony by settingu” = 1/[v/4*]. Now no base of.” is nullable, squ”
is in SNF. Since no eliminations occur in the constructionhf and 4, the
differences betweerl, and A, are restricted to the subautomaton emerging

from expansion ofz, mcby,(01)*, y) in A, resp. (z,7,y) in A/,.., as sketched

in Fig. 12.

The sizes of the expressions are related by the equality= |u| + 3, that of
their respective automata g, | = |A,,| + 5. The statement now follows from
Cor. 5.10.

Since we find an expression which is worse thaim either case, every addend in a
worst-case expression is nullable. O

Lemma 5.15. Every maximal sum in a worst-case expression is star-madxima

21

Proof. Let ;1 be worst-case and suppogecontains maximal sums that are not star-
maximal. We choose a smallest such sum:dlet > o; be maximal but not star-
maximal and assume that all maximal sums that are propexptassions oty are
star-maximal. Let;, be an addend which is not an iteration. Siacis maximal,oy,

is not a sum. Sincey, is nullable by Lem. 5.14, it is not a letter either. Therefore
must be a product, which we suppose to be maximal. Commityati’sums allows
us to assumé = 1. We are thus looking at

n m n
U=U1+E UiZHﬂ'i-l-E ;.
i=2 i=1 i=2

As oy is nullable, so is every;, and|u|. = 0 implies that this is due to iterations
that occur in eachr;. By our choice ofs and since each iteration jmis an addend
(Lem. 5.8), it follows that everyr; contains sums which are all star-maximal. Since
o1 is assumed to be a maximal product, eagls necessarily such a sum. In greater
detail,c admits the structure

=135+ Y

i=1j=1
Depending on the numberof addends i we construct an expression which is worse
thanyu. Note thato is a proper sum, so we hawe> 2.

1. n = 2: Sincec = o1 + o0y is maximal,os is not a sum itself, and sines, is
nullable (Lem. 5.14) it is not a literal. This leaves two pbgiies:

(a) If o5 is aniterationgy = x*, we construct’ from o as

o' = (ze01)" + 09 = (w(HZ%*J))

and lety’ := pu[o'/s]. Every elimination in the construction of/, has

a counterpart in the construction df,, so we only need to compare the
difference in positive contributions to FA size: looking Tigb. 1 we find
|A,/| =|Au| + 5. Since we havéy/'| = |p| + 3, Cor. 5.10 applies to yield
the statement.

(b) If o5 is a (maximal) product, again Lem. 5.14 implies that its dastare
star-maximal sums, i.e.,

m 1 mam! 1
* H A
=[ID_«; .whichwewriteas oo = J] D <.
i=1j=1 i=m+1j5=1

We construct the produet’ from o by exchanging its main operator for
a concatenation-symbol and introducing a new starred atiohethe first
factor of o5:

lm41 m+m’ I;
- e F2 s 1L s
i=1j=1 i=m+2 j=1

22

With this, we sety’ := plo’/s]; exchanging the sum for a product intro-
duces an additional state No new eliminations become possible from
this replacement; in particular, the extra addetidn o’ ensureg™ > 3,
so noX[g]-anchor emerges. We fing’| = [u| + 3 and[A4,, | = [A,[+ 5,
soy’ is worse thanu according to Cor. 5.10.

2. n > 3: Again we exchange a sum for a product by setting

As before, the product introduces a new state while the extdendc* prevents
the eventuality ofX -elimination. Thisyield$A,, | = |A,|+5and|u’| = |u|+3,
so Cor. 5.10 yields the claim.

O
Lemma 5.16. In a worst-case expression every letter is starred.

Proof. Let i be worst-case and fix an occurrence of the lettém ;. If x is a base,
we are done. Since all sums jnare star-maximal (Lem. 5.15), is not an addend.
Assumer is a factorr;, in @ maximal product = [] 7;, then there is at least one other
factorm,_1 or w41 nexttoz. Suppose wlog. that this is;11. Sincer is maximal,
Tr+1 IS not a product itself, and since all iterations are addeinds not an iteration
either. Sory, 1 is either a (maximal) sum or a letter.

- If 741 is @ sum, it is star-maximal, i.erp1 = >, <. The subexpression
x), < would lead toZ-anchors, contradicting Lem. 5.13.

- If mx41 is a lettery, our usual argument shows that.= u[z+v"/zy] is worse
than.

O

Theorem 5.17. The structure of a worst-case expression is

n 24imod?2

.
H E : Lij
=1 =1

wheren € N is arbitrary and thez;; are letters.

Proof. Let i, be a worst case expression. As Lem. 5.16 states, everyiktdrase in

i, and sinceu is in SNF, no more bases occur by virtue of Lem. 4.5. Every maximal
sum iny is star-maximal according to Lem. 5.15, so the structurdefth maximal
sumo; in p is

ki
o; = Zx; for Tij € A
J=1

Everyo; is maximal, so some of those sums are factors of the same rabgioduct
m. Sincer is maximal, it is not a factor itself, since all addends ageations inu, = is

23

not an addend either, and as we argued befoig not a base. Therefore, all maximal
sums ofyu are factors of this product, which implies thatitself is 7. So the basic

structure ofu is
n ki
13
i=1j=1
In this general case, and subject to the condition thakreliminations occur upon
conversion, we compare the sizesodnd A4, which are

n n

ul =(n—1)+> (ki —1)=3> k; — 1, and

=1 =1
A =) dki+n—1=4> ki+n-1,
1=1 =1

leading to the following conversion ratio:

|l 33 ki —1 3 ki —1
The term on the right shows tha() is maximal iffn is maximal with respect t_ &;,
or equivalently, ify " k; is minimal for fixedn. All sums iny are proper, i.e., not unary,
sok; > 2 for all i. Simply settingk; = 2 for all ¢ introduces anX -anchor inX, for
every pair of adjacent factors. We get rid&fanchors ifk; alternates between 2 an 3,
i.e.,k; =imod2-+1 (cf. Fig. 11). Itis easily seen using the pigeonhole-pplethat
any smallery_ k; leads toX -anchors. O

Corollary 5.18. Any expression can be converted to a unique normalized £54.t.
22 —
|A] < 1—5|a| +2=1.46|a| +2

Proof. Let u be a smallest worst-case expression according Thm. 5.13endipe is at
least that of a given expressian Letn denote the number of factors jn We then
have|u| = 15n — 1 and|A,,| = 22n + 1. Thus the conversion ratio faris
22n+1 22 37
‘W =151~ 15
With |a| < |p| ande(a) < c(p) we find

22 37 22 37
4] = elalal < clnfo] = T3lal + prirlal < ol + 33
<Zjal+3
15
Thereford A, | < 22|a| + 2, and settingd = A, yields the claim. a

This finishes our analysis conversion ratio, i.e., the sfznd-A relative to the size
of the expression it is derived from. Let us stress againttfetonversion ratio of an
expression reaches the bound given in Cor. 5.18 iff the asgpya admits the structure
givenin Thm. 5.17.

24

Figure 13: Automaton constructed fram (c-labels are omitted).

6. Optimality of the Construction

We provide a lower bound on conversion ratio, i.e., one tb&d$foranyconstruc-
tion. Our argument is again based on the digraph underlyirigfa

Proposition 6.1. Let L and R be disjoint sets of vertices in a digragh, s.t. the
following path-conditions are satisfied

1. There is a path from eache L to everyr € Rin G.
2. There is no path between any two verticed.pfhor any two vertices oR.
3. There is no path from any € Rto anyl € L.

ThenG contains at leastmin{|L||R|, |L| + |R| 4+ 1} additional elements

Proof. Supposé’ contains a path from eadhe L to everyr € R. Note that these
paths need not be disjoint. We distinguish whether therevési@x on some path from
LtoR

1. If there is no such vertex on any path, the members ahd R are pairwise
adjacent — thus, at leagt|| R| additional arcs are present@h

2. If a vertexz occurs on a patl® from! € Ltor € R, thenz ¢ L U R, or the
third path-condition would be violated. No#® contains at least three elements,
2 and two arcs. Consider the remaining verticed.&ndR: everyr’ € R\ r
is the endpoint of a path froy so every such’ is the endpoint of an are,..
Likewise, everyi’ € L\ [is the tail of an ara,;.. By above path-properties, no
paira,, a; coincides. Hencé& contains3+ (|L|— 1)+ (|R|—1) = |L|+|R|+1
additional elements.

O

We investigate the FAs built from a family of expressiondwiiorst-case structure
according to Thm. 5.17. These expressions are defined ovalphabet of size 5,
which is the least size for which the proof of the followingrhma works.

n
pn = [[(@1 + 3) (@3 + 23 + 23)
=1
The FA constructed from,, by our construction is sketched in Fig. 13. In the proof
of the following, we consider maximal repetitions of a leftea word. Given a word
w = wix"ws, S.t.wy # wizr andws # xwh, we callz™ anzx-block or justblock of
w. For example, the blocks afzabba areaaa, bb anda.

25

Lemma 6.2. The size of a normalized FA acceptifi@u,,) is at least22n + 1.

Proof. Let A be a normalized FA accepting(u,,). In particular,A accepts all words
of L(u,,) that contain the maximal number of blocks, whicl2is Every such word
admits the structure

w =b1by - bap,

whereb; is anxq- or xo-block if 7 is odd, and ams-, x4- or z5-block if 7 is even. A
block can be arbitrarily long, so it must be read in a cyclet ;6 denote the cyclic
part of A reading a block; which is anx;-block and lefy; ; be a state ofj; ;.

First we show that ify; ; reads a blocl; of w € L(u,) and~;4x ;- reads a block
appearing afterwards im, then A contains a path fromg; ; to ¢;+ ; but no path back:
Since both cycles are involved in an accepting rurdobn w, there is a path from
Vi,j 10 Yiyr,j, hence also frong; ; to gi+x, ;. Now assume thatl also contains a
path fromg;;«,; back tog; ;. If j # j/, meaning thaty; ; and~;; ; read blocks
consisting of distinct letters, then the numberef andz ;. -blocks in a word accepted
by A is unbounded, since an accepting path can go back and fartreée the two
cycles, possibly reading some interspersed subwords dl@ngay. In case = j/,
i.e., both blocks are ;-blocks, somer ;- -block b;; occurs betweeh; andb; in w,
s.t.j # j” andl <[< k. Again, this would imply that the number of blocks in a word
accepted byA is unbounded. In either case the existence of such a patatesothe
property that the number of blocks in a wordiofu.,) is bounded, hence no backward
path exists.

Next we show that there is no path between a pair of cyglesind~; ; that allow for
thei-th block to be anc;- resp. anc;-block. AssumeA contains a path from; ; to
gi,j7, then aword could be accepted as follows: firsiocks are read on a run from the
initial state tog; ;, then the path ta; ;. is taken, then an; -block is read and finally
2n — i more blocks fromy; ;- to the unique final state. This adds uRto+ 1 blocks,
contradicting the bound on the number of blocksure L(u,,). Therefore, no such
path exists.

The properties above imply that each distinct paiy, i/ ;- is disjoint. Considering
7,5, there are 2 values possible fpiif i is even and 3 values ifis odd. Therefore,
there are at lea$tn distinct cyclic structures imd. Every such structure consists of at
least a state and a transition, henteontains no less thatOn elements to read the
single blocks. We have further shown ttontains a path from; ; to -y, ;. iff ¢ < ¢/;
transitive reduction shows that this requires at leastla fain g; ; to ¢;11, ;. Assume

i is even (the case thatis odd is symmetric), then the sets of stafes= {q; 1, ¢ 2}
andR = {¢i+1.3,¢i+1.4, ¢i+1,5 Satisfy the conditions of Prop. 6.1. Sbcontains at
least 6 additional elements for eath< i < n — 1 to realize reachability among the
7i,;- Moreover there is a separate initial stggavith paths fromgg to v, 1 andy; 2, as
well as a separate final staje with paths fromyy,, 3, v, 4 and~, s to gs; every such
path has at least one transition. Thigontains at least2n + 1 elements. O

Corollary 6.3. Let A be any normalized FA accepting,. Then the size ofl is
bounded from below as
A > 1.45|1n | +2

26

Proof. If Aisanormalized FA accepting(u,,) Lem. 6.2 yield§A| > 22n + 1 which
relates tdu,| = 15n — 1 as follows

22 22 _
Al > 220+ 1 = T lun| + T2 +1 > 14B|n| +2

7. Implementation Details

We propose three preprocessing-steps on an input, all ahndan be realized in
a bottom-up fashion on the parse of an expression in linew.tiThese steps consid-
erably reduce the effort necessary to implement EFA-cames, as will be discussed
below.

Remove all occurrences ofz: It is well-known that any expression either de-
scribes the empty language or can be made freg ofe., eitherL(«) = {} or
|ale = 0. This is realized by rewriting an expression according &ftilowing rules:

- replacea@ and ga with @
- replacea + @ and @ + a with «
- replace@* with ¢

Remove redundant occurrences of: Everye that does not occur as an addend
in an otherwise non-nullable sum can be removed. ApplyiedaHowing rewritings in
a bottom-up fashion to an expression removes all instarfcea®mentioned, without
altering the denoted language.

- replaceas and ea with «
- replacea + ¢ ande + a with «, if «is nullable
- replaces* with e

Let reduce(p) denote the expression yielded from applying above pregeicgs
in their given order tg, the resulting expression is callezbtluced The removal of in
a sum is not reflected by the EFA-conversions; still, it reduthe size of the final FA
by at lest one and possibly allows for additiodakeliminations. Notice that this step
does not influence worst-case analysis.

Compute the star normal form: sincesNF is implicitly realized by the given
conversions, it can as well be computed directly frem

Let p be thesNF of a reduced expression, i.e.= (reduce(p’))®. Thenp comes
with several properties that can be exploited in order taiceccode complexity and
absolute running time of an implementation (asymptotiaiing time is not affected).

27

1. If |plgz > 0, eitherp = @, in which case a trivial FA is returned, whereas
otherwise,@ may occur as an addend. This is due to the fact thatan be
introduced again by computing tiseiF, as seen with the example

(z+e))* =(z+2)"

In a reduced expressionponly occurs as an addend; this carries oveptafter
computing thesNF. Thus@-elimination can be anticipated by immediately dis-
cardingg-transitions that emerge from sum expansion. Moreoveryestate of
the resulting FA lies on some accepting path, so cleaningefess states needs
not be implemented.

2. As we argued in Lem. 5.2, an expressionsmr does not lead t@)-anchors
upon conversion. Hence, the detection and eliminationr@fcles needs not be
implemented. Still, note thatcycles can be detected in linear time, as discussed
by llie & Yu [6].

3. We eliminateY-anchors as soon as they appear. This saves the effort of book
keeping or later searches. Arranchor emerges with the introduction of an
e-transitiont = (p, e, q) wherep™ = 1 orq~ = 1. For preprocessed inputs,
e-transitions only arise from sum- or star expansion; howerehe case of sum
expansion the degree constraints are certainly not satisftleerefore, it suffices
to check right after star expansion whether one of the ireistates is central
to anY-anchor, and if so, apply -elimination.

Starting fromAY, for preprocessed, the algorithm proceeds in three phases ac-
cording to Cor. 3.4. First, exhaustive expansion with endleeld” -elimination com-
putesX,. Then an elimination order that satisfig€?) is computed on th&'-anchors,
resp. their central states. The subgraphXof consisting of these states and the
transitions among them is acyclic, therefore it is suffitiencompute a topological
sort on this subgraph (see e.g. [14]). Eliminating eanchors in descending topo-
logical order yieldsZ,,. Finally, Z-elimination is carried out respectif@?2); this is
realized analogous t& -elimination.

In Alg. 1, Qx denotes the states that are centrakteanchors and< x denotes a
topological order ord) x . Note that a singl& -elimination can remove several adjacent
X-anchors (see Fig. 4b), so when choosirgxaminimal stateq, we need to test
whetherX[g]-elimination is still applicable. Since no nel-anchors are introduced
by X-elimination, these actions suffice to compdigethrough valid conversions. This
process is repeated far-elimination which has the same properties in that regard.

Each step of the algorithm can be implement in time lineahédize of the input
expression. Thud , can be constructed i@(|«|).

8. Conclusions

We presented a construction of finite automata from regudaressions by means
of EFA-rewritings. This system is a refinement of a very earthod proposed by Ott
& Feinstein in 1961. Our version comes with a set of rules teatrease the size of
intermediates in the construction by replacing substrestthat are rich ig-transition
with smaller equivalents.

28

Algorithm 1: Proposed implementation with preprocessing.

Input: Regular expressiopover A, s.t. L(p) # 0
Output: Finite automatorA acceptingL(p)

p < reduce(p)

p<pt

A+ ({90, 4}, A, (0, p,ar): 0, ar)

while A has complex labeldo

choose and remove complex transitios (p, 7, ¢)
switch 7 do
caseqafs
add stater
add transitiongp, a,), (r, 5, q)
end
casea + 3
if a # & thenadd transitionp, o, q)
if 8 # @ thenadd transition(p, 3, q)
end
casea”
add stater
add transitiongp, e, 7), (r,a,), (r,€,q)
if p* = 1 then apply Y [p]-elimination
if ¢~ = 1 then applyY [g]-elimination
end
end
end
computeQx € Q4 and<x
while Qx # 0 do

QRx + Qx \ g for <x-minimalgq
‘ if ¢~ =q* =2 then apply X [q]-elimination
end
computeQz C Qa4 and<z
while Qz # (0 do
Qz + Qz \ gfor <z-minimalg € Qz
‘ if Z[q]-elimination is applicablehen apply Z[g]-elimination
end

29

We showed that the resulting automata are unique if a pantitr is enforced on
the applicability of conversions. A further feature of oonstruction is that the output
is invariant under taking the star-normal-form of the in@ibth properties are crucial
in providing a minute comparison of input- to output size.

The size of automata constructed by our method was analygeafdrring the
structure of expressions that maximize the ratio of inpubutput size. These expres-
sions are enumerated by repeating an atomic subexpretiséngonversion ratio, for
all practical purposes, i%g, or 1.46. For every expression our construction therefore
provides an automaton whose size is at mo$6 times the size of the expression. It
was shown that this value is tight for expressions over dptsof size at least five,
which makes the construction optimal. It remains an opestiprewhether this bound
is tight for smaller alphabets, too.

We finally proposed some modifications of the formal rewgtsystem with re-
spect to an actual implementation. These consist of a sefrfgeprocessing steps and
several shortcuts in the construction. In effect, theseifications reduce the effort to
detect or keep track of certain elimination anchors, whichsiderably reduces code
complexity.

[1] S. C. Kleene, Representation of events in nerve nets aitd Automata, Annals
of Mathematics Studies, 3—41, 1956.

[2] B. W. Watson, A taxonomy of finite automata constructidgoaithms, Tech.
Rep. Computing Science Note 93/43, Eindhoven Universifiechnology, URL
citeseer.ist.psu. edu/ wat son94t axonony. ht m ,1994.

[3] J. E. Friedl, Mastering Regular Expressions, O'Reigdn., 2006.

[4] K. Ellul, B. Krawetz, J. Shallit, M.-W. Wang, Regular engssions: new results
and open problems, Journal of Automata, Languages and @auobics 10 (4)
(2005) 407-437.

[5] M. Holzer, M. Kutrib, Descriptional Complexity — An Intductory Survey, in:
C. Martin-Vide (Ed.), Scientific Applications of Languagetods, 1-58, 2010.

[6] L. llie, S. Yu, Follow automata, Information and Comptita (186) (2003) 140—
162.

[7] S. Gulan, H. Fernau, An Optimal Construction of Finitetdmonata from Regular
Expressions, in: R. Hariharan, M. Mukund, V. Vinay (Eds8ti2International
Conference on Foundations of Software Technology and Etieat Computer
Science, 211-222, 2008.

[8] V. M. Glushkov, The abstract theory of automata, Russfthematical Surveys
16 (1961) 1-53.

[9] R. McNaughton, H. Yamada, Regular Expressions and Statphs for Au-
tomata, IRE Transactions on Electronic Computers 9 (1)@196-47.

[10] A. Briggemann-Klein, Regular expressions into finitgcenata, Theoretical
Computer Science 120 (1993) 197-312.

30

[11] G. Ott, N. H. Feinstein, Design of Sequential Machinesf Their Regular Ex-
pressions, Journal of the ACM 8 (4) (1961) 585-600.

[12] M. Newman, On theories with a combinatorial definitioh"equivalence”, An-
nals of Mathematics 43 (2) (1942) 223-243.

[13] G. Huet, Confluent Reductions: Abstract Properties Apglications to Term
Rewriting Systems, Journal of the ACM 27 (4) (1980) 797-821.

[14] T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Steintddtiction to Algorithms,
The MIT Press, 3 edn., 2009.

31

