
A Rewriting System for the Construction of Small Finite
Automata from Regular Expressions

Stefan Gulana,1,

aDept. IV, Computer Science
Trier University
D-54286 Trier

Abstract

We present a linear-time construction of normalized nondeterministic finite automata
with ε-transitions from regular expressions. This is realized byrewriting digraphs that
are labeled with regular expressions. The size of the constructed automata is shown to
be within 22

15 times the size of the input expressions. A family of expression that reaches
this value is inferred constructively, and the automata provided by our method for such
expressions are shown to be minimal. This provides a tight nonasymptotic upper and
lower bound for the size-ratio of corresponding regular expressions and finite automata.

Keywords: Regular Expressions, Finite Automata, Descriptional Complexity

1. Introduction
A fundamental result in formal language theory is the equivalent descriptive power

of regular expressions and finite automata, first shown by Kleene [1]. While regular
expressions, being merely terms, come naturally to humans as a means of denoting
regular languages, finite automata suggest themselves as a representation of such lan-
guages on the machine level. This makes the construction of finite automata from
regular expressions a highly important task in basic human-computer interaction; a sur-
vey of various algorithms addressing this problem is given by Watson [2]. The standard
situation requiring this conversion is pattern-search in text, where different classes of
automata are used: according to Friedl [3], most versions ofawk andegrep construct
deterministic automata, whileemacs, less, andsed employ nondeterministic ones.
In this work we consider the latter kind of automata, enriched with ε-transitions.

The efficiency of an expression-to-automaton conversion isgenerally measured by
comparing the size of the input expression to that of the output automaton. Several def-
initions of the sizes of expressions and automata have been proposed: the number of
states and / or the number of transitions for automata and anyreasonable combination
of the number of products, sums, stars, letters and parentheses for regular expressions.
Linear dependencies between most such measures are known [4, 5]; here, we settle
for the number of states and transitions as automaton-, and the number of literals and

Email address:gulan@uni-trier.de (Stefan Gulan)

Preprint submitted to Elsevier April 11, 2011

operators as expression size. It was shown by Ilie & Yu [6] that the ratio of automaton-
to-expression sizes is bounded by1.33 from below and by1.5 from above. These
bounds were tightened by Gulan & Fernau [7] to the common value of 22

15 , or approxi-
mately1.47. Although this value is correct, the line of argumentation in [7] is flawed;
the results will be reinstated in this work using a slightly different construction and a
considerably different analysis.

The article is organized as follows: First we introduce a rewriting system that re-
alizes the conversion from regular expression to finite automata. We slightly constrain
the rewriting rules in order to guarantee unique outputs. Next, we show that our con-
struction satisfies a property already known for the construction of position-automata
[8, 9]; namely, that the output is invariant under taking thestar normal form of the
input-expression [10]. The main effort of this work is to bound the size of a con-
structed automata relative to the size of the input. This is done by constructing a class
of expressions that maximize this value; we further prove that no smaller automata can
be constructed for such expressions by any algorithm. Finally, we propose a modified
algorithm that improves on a naive implementation in several ways.

2. Preliminaries
Braces for singleton sets may be omitted. The size of a finite setS is denoted|S|.

Binary relations are written in infix notation, and the reflexive and transitive closure of
a binary relationR is denotedR⋆.

A multidigraph, or justgraph, is a pairD= (V,A) whereV is the set of vertices
andA is the multiset ofarcsoverV ×V . BothV andA will be referred to aselements
of D. A cycle is a path from a vertex to itself, and aloop is a cycle consisting of a
single arc. Letq−, q+ denote the number of arcs entering, resp. leavingq, called the
in-, resp.out-degreeof q.

An alphabetA is a finite set of symbols, calledletters. Any alphabet is supposed
to be free of the symbolsε and∅. A literal is a letter,ε or ∅. A word overA is a
juxtaposition of letters fromA, and alanguageoverA is a set of words overA. If
L andL′ are languages overA andA′, their productLL′ is a language overA ∪ A′,
defined as

LL′ := {ww′ | w ∈ L ∧ w′ ∈ L′}.

Thei-th power ofL, denotedLi is defined asL0 = {ε} andLn+1 = LnL. TheKleene
closureof L is

L∗ :=
⋃

n∈N

Ln

A regular expressionoverA, or justexpression, is a term that defines a language
overA. Lowercase greek lettersα, β, µ, ν, κ, σ, π, possibly indexed, always denote
expressions. The language defined byα is denotedL(α). The set of regular expressions
overA is denotedREG(A). Expressions and their associated languages are defined
inductively:

• The symbolsε and∅ are expressions overA, withL(ε) := {ε} andL(∅) := {}.

• Everyx ∈ A is an expression overA, with L(x) := {x}.

2

• If α1 andα2 are expressions overA, so are

– The product(α1•α2), with factorsαi. We generally omit the operator•,
writing just (α1α2). L((α1α2)) := L(α1)L(α2).

– Thesum(α1 + α2),with addendsαi. L((α1 + α2)) := L(α1) ∪ L(α2).

– The iteration (α∗
1), with baseα1. L((α∗

1)) := L(α1)
∗.

It is customary to write expressions in a more concise way by omitting certain
parentheses. Above semantics suggest that products and sums are associative, thus
parentheses will be omitted for nested sums and for nested products. We also agree
on the operator precedence∗, •,+, mimicking the precedence of Kleene closure over
concatenation over union of languages. Lastly, outermost parentheses can be omitted.
For example, we write

(a+ b+ c)a∗ instead of (((a+ b) + c)(a∗)).

An expressionα is nullable if ε ∈ L(α). It is calledcomplex, if it contains at least
one regular operator, andtrivial otherwise. The set ofsubexpressionsof α, denoted
sub(α), is defined as

- sub(α) := {α} if α is a literal

- sub(α) := {α}∪

{

sub(α1) ∪ sub(α2), if α = α1α2 or α = α1 + α2;

sub(α1), if α = α∗
1.

A subexpression ofα is proper if it does not coincide withα. Every proper subex-
pressionβ in α is an operand to one of•, +, or ∗, which is called itsparentand denoted
pα(β). Theroot of α, denotedr(α) is the topmost operator ofα; if α is trivial, we set
r(α) = α. Exploiting associativity of products and sums, we extend notation to arbi-
trary arity by setting

n
∏

i=1

πi := π1• · · · •πn and
n
∑

i=1

σi := σ1 + · · ·+ σn.

A product or sum in the conventional sense is calledbinary. The productπ =
∏

πi
is maximalif it is no factor of a larger product and noπi is a product. Maximal sums are
defined respectively. If all arguments in a maximal product or sum are iterations, it is
calledstar-maximal. Let |α|• (|α|+, |α|∗, |α|A) denote the number of binary products
(binary sums, stars, literals) inα.

An extended finite automaton(EFA), is a 5-tupleE=(Q,A, δ, I, F), withQ being
the finite set ofstates, A an alphabet,δ ⊆ Q×REG(A)×Q the finitetransitionrelation,
I ⊆ Q andF ⊆ Q. A member(p, α, q) ∈ δ is anα-transition, or just transition, of
E, with label α. The relation⊢E⊆ Q×A∗ is defined via(q, w1w2) ⊢E (q′, w2) iff
(q, α, q′)∈δ ∧ w1∈L(α). The language accepted byE is

L(E) := {w | (qi, w) ⊢
⋆
E (qf , ε), qi ∈ I, qf ∈ F}.

3

Let E denote the class of EFAs. A finite automaton withε-transitions (FA), is an EFA
whose transition relation is restricted toQ × (A ∪ ε) ×Q. We callE ∈E normalized
if |I|=|F |=1. Thesizeof E is |E| := |Q|+|δ|. An EFA is essentially an arc-labeled
graph with two predicates on its vertices. We will thus reason about EFAs by means of
their graph theoretic properties. We use graph theoretic terminology for EFAs, e.g., by
referring to a transition(q, α, q) as a loop.

An abstract rewriting system(ARS) on a setM is a tuple〈M,⇒1, · · · ,⇒n〉 where
each⇒i is a binary relation onM . Every⇒i is called arewriting rule, or just rule;
an element of⇒i is called arewriting. A normal formof ⇒i is anym s.t. for every
m′ we havem 6⇒i m

′. A rewriting sequenceis any sequence of consecutive rewrit-
ingsm1,m2, . . ., wheremj ⇒ij mj+1 for everyj. An ARS is terminatingif every
rewriting sequence is finite. If for somem, m ⇒i m1 andm ⇒j m2, thenm1 and
m2 are adivergenceof m. Two objectsm1 andm2 converge, denotedm1 ≡ m2, if
somem3 exists withm1 ⇒⋆ m3 andm2 ⇒⋆ m3. An ARS islocally confluentif every
divergence converges.

3. Converting Regular Expressions to Finite Automata
The presented construction extends those given by Ott & Feinstein [11] and Gulan

& Fernau [7]. It is a rewriting system on the class of normalized EFAs. Every rewriting
modifies an EFA locally without altering the accepted language. Rewriting rules come
in two flavors:

• Expansionsreplace single transitions according to (the root of) theirlabel. Rules
are denoted⇒∅, ⇒•, ⇒+, ⇒∗, and sketched in Fig. 1.

• Eliminationsreplace substructures containingε-transitions with smaller equiva-
lents. Rules are denoted⇒X , ⇒Y , ⇒O, ⇒Z , and sketched in Fig. 2.

∅ ⇒∅

(a)∅-expansion

ααβ β⇒
•

(b) product expansion

αα+β

β
⇒+

(c) sum expansion

εε

α

α∗

⇒
∗

(d) star expansion

Figure 1: An expansion replaces a complex transition(p, ̺, q) depending onr(̺)

The expansions are called∅-expansion, sum expansion and product expansion,
while the eliminations are calledO-elimination,X-elimination,Y -elimination andZ-
elimination. Note thatY - andZ-elimination consist of two cases each, both of which
are sketched in Figs. 2c and 2d. These cases behave symmetrically, which is why we
will always consider only one of them. An occurrence of the left-hand side of rule⇒i

4

ε

ε

ε

α1
α1

β1
β1

β2 β2

⇒O

(a)ε-cycle-, or O-elimination

ε

ε

ε

ε

ε

ε

ε

εq ⇒X[q]

(b) X-elimination:q− = q+ = 2

ε ε
qq ppp p

α1α1α1 α1

αnαnαn αn

⇒Y [q] ⇒Y [q]

(c) Y-elimination(s):p 6= q, q−= 1 resp.q+= 1

ε

ε

ε

ε
a

a

a

a

a
a qq ppp p ⇒Z[q]⇒Z[q]

(d) Z-elimination(s):p 6= q, a ∈ A, q−= 1 resp.q+= 1

Figure 2: An elimination replaces a substructure that contains ε-transitions with a
smaller equivalent. ForX-, Y - andZ-elimination, additional properties must be met.

is referred to as ani-anchor 1. As can be seen from Fig. 2,X-, Y - andZ-anchors
are uniquely identified by a central state; this informationis occasionally conveyed by
writing e.g.⇒Y [q] instead of⇒Y , if q is the central state.

This defines the ARS〈E ,⇒∅, ⇒•, ⇒+, ⇒∗, ⇒O,⇒X , ⇒Y , ⇒Z〉. The rewritings
will also be calledconversions; if the particular type of a conversion fromE to E′ is
irrelevant, we write justE ⇒ E′. Formally, we set

⇒ :=
⋃

i∈I

⇒i whereI = {∅, •,+, ∗, O,X, Y, Z}.

It should be clear from Figs. 1 and 2 that the language accepted by an EFA is invariant
under conversions, i.e., we have

Proposition 3.1. If E ⇒ E′ thenL(E) = L(E′).

Every conversion reduces either the overall number of operators, or the number of
states or transitions in an EFA. Therefore, the system is terminating and every normal
form is an FA. On inputα ∈ REG(A) the conversion is initialized with the trivial EFA
A0
α, defined as

A0
α := ({q0, qf},A, (q0, α, qf), q0, qf).

An full conversion starting from someA0
α is given in Fig. 3. LetAkα denote any EFA

that can be derived fromA0
α through a sequence ofk rewritings, i.e.A0

α ⇒k Akα; this
notation allows us to writeAkα ⇒ Ak+1

α . If Akα is in normal form, we denote it justAα;
clearly, the FAAα is free ofO-,X-, Y - orZ-anchors.

A shortcoming of our construction is that its outputAα is generally not unique.
This is due to the fact that the ARS〈E ,⇒〉 is not confluent, i.e., some divergences are
not guaranteed to converge again. We rectify this behavior in the following subsection.

1A more common term isreducible expression, or graph-redex; since we are already dealing with expres-
sions, a different name seems to be better suited

5

(a∗+b)∗+bc
(a∗+b)∗(a∗+b)∗

a∗+b

a∗

bc

a
a

b bb

bb b

bb

cc c

cc

ε

εεεε εε

ε

εε
⇒•

⇒∗

⇒∗

⇒+

⇒+

⇒O

Figure 3: ConvertingA0
α intoAα for α = (a∗ + b)∗ + bc

⇒
X[q]

⇒Y
[r]

q

q

r

r

α1

α1

α1

αn

αn

αn

(a)X/Y - divergence

⇒X
[q]

⇒
X[r]

q

q

r

r

(b) X/X - divergence

p

p

q

q
a

a

a

a

⇒Z[p]

⇒
X[q]

(c)Z/X - divergence

p

p

q

q

a

a

a

a

α1

α1

α1

αn

αn

αn

⇒Z[p]

⇒
Y [q]

(d) Z/Y - divergence

Figure 4: Divergent rewritings due toX- andZ-anchors (ε-labels are omitted).

3.1. Refining the Construction towards Functionality

As mentioned, different conversion sequences may lead to non-isomorphicautomata.
It turns out that this is due toX- andZ-eliminations — more specifically, certain in-
stances wherein anX- or Z-anchor shares states with a second anchor (possibly of a
different type). Typical examples for this kind of divergence are shown in Fig. 4.

We thus restrict applicability ofX- andZ-elimination as follows:

Definition 1. An X-eliminationE ⇒X[q] E
′ is valid, denotedE ⇛X[q] E

′, if

(X1) onlyX- orZ-elimination are possible inE, and
(X2) there is noX [p]-anchor inE with (p, ε, q) ∈ δE .

A Z-elimination isE ⇒Z[q] E
′ is valid, denotedE ⇛Z[q] E

′, if

(Z1) onlyZ-elimination is possible inE, and

6

(Z2) there is noZ[p]-anchor inE with any transition fromp to q in δE .

For example, in Fig. 4a,X-elimination is not valid, becauseY -elimination is ap-
plicable, whereas in Fig. 4b,X [r]-conversion is not valid, because of anX [q]-anchor
with ε-transition fromq to r. Likewise, in Fig. 4c,Z-elimination is not valid, since an
X-elimination is applicable. The rules(X2) and(Z2) are sound: a cyclic elimination-
preference amongX- or Z-anchors implies the existence of anε-cycle, which, due to
(X1) and(Z1), is eliminated first.

Lemma 3.2. If E ⇛X E′ holds, thenE′ contains onlyX- and/orZ-anchors, if any.

Proof. SinceE ⇛X E′ respects(X1), E contains onlyX- andZ-anchors, so every
different anchor inE′ results from this elimination.X-elimination certainly does not
introduce expansion anchors, or cycles, particularly noO-anchors. Let the considered
elimination beE ⇒X[p] E

′ and assumeE′ ⇒Y [q] E
′′. This implies(p, ε, q) ∈ δE , so

q− ≥ 2 in E′, and, sinceq is the center of aY -anchor,q+ = 1 in E′. However,q+ is
not affected by theX-elimination, soq+ = 1 in E, too. But then,E also contains a
Y [q]-anchor, contradicting the assumption thatE ⇒X E′ is valid.

Lemma 3.3. If E ⇛Z E
′ holds, thenE′ contains onlyZ-anchors, if any.

Proof. As for Lem. 3.2 with the obvious modifications.

Any conversion besidesX- orZ-elimination is always valid. Let⇒¬{X,Z} denote
these other conversions, i.e., set

⇒¬{X,Z} := ⇒\{⇒X ,⇒Z}.

It follows from Lems. 3.2 and 3.3 that a sequence of valid conversions is split into
three parts: a sequence withoutX- orZ-elimination, followed by a sequence with only
X-eliminations, and a final one with onlyZ-eliminations.

Corollary 3.4. If E ⇒⋆ F is valid, then there are EFAsE′ andE′′

E ⇒⋆
¬{X,Z} E

′
⇛
⋆
X E′′

⇛
⋆
Z F

SettingE = A0
α andF = Aα in Cor. 3.4, we arrive at two intermediate EFAs that

appear in the construction of an FA from an expression by means of exhaustive valid
conversions.

Definition 2. LetXα andZα denote any two EFAs satisfying

A0
α ⇒⋆

¬{X,Z} Xα ⇛
⋆
X Zα ⇛

⋆
Z Aα.

Note that each subsequence in Cor. 3.4 can be of length zero, so some ofA0
α, Xα,

Zα, Aα may coincide. In the remainder of this section we show thatXα, Zα andAα
are unique. To this end, define theoverlapof two conversions as the elements shared
by their anchors. Non-overlapping conversions clearly yield EFAs that converge, for in
that case, conversions take place in “different parts” of the EFA, and their relative order
is irrelevant. We consider nontrivial overlaps only, i.e.,elements which are shared by
distinct anchors.

7

q

ε

ε

ε

ε ε

ε

ε

α

α

α

β

β

β

τ1

τ1

τ1

τ2

τ2

τ2

⇒
O

⇒
O

⇒Y [q]

Figure 5: Case in the proof of Lem. 3.5. Theε-transition of theY [q]-anchor is also part
of anε-cycle.

Lemma 3.5. If E ⇒O E1 holds andE ⇒ E2 is valid, thenE1 ≡ E2.

Proof. LetQε andTε denote the sets of states and transitions of theε-cycle eliminated
in E ⇒O E1. O-elimination boils down to the following: Choose anyq ∈ Qε, called
therepresentative, and replace(p, α, r) ∈ δE \ Tε with (p, α, q), if r ∈ Qε, resp. with
(q, α, r) if p ∈ Qε and with(q, α, q) if p, r ∈ Qε. Next, removeQε \ q fromQE and
Tε from δE , thus yieldingE1. AssumeE ⇒i E2 overlaps with this cycle-elimination:
since⇒i is valid, i /∈ {X,Z}, and we distinguish by the remaining cases.

- If i ∈ {•,+, ∗,∅}, let t = (p, ρ, q) be the transition replaced by⇒i. The overlap
of ⇒O and⇒i consists ofp or q (or both); we assume thatq is part of the
overlap and choose it as the representative. Ifp /∈ Qε, thent is unaffected by
O-elimination. Conversely, theε-cycle remains unmodified if⇒i is applied. If
p ∈ Qε, too,t is replaced witht′ = (q, ρ, q) byO-elimination; nevertheless,⇒i

is still applicable tot′ in E1. As an example, this is shown for an overlap of⇒O

and⇒∗ in Fig. 6.

- If i = Y , assumeE ⇒Y [q] E2 with q− = 1 andq+ ≥ 1; let t = (p, ε, q) be
ε-transition of this anchor. Ifq /∈ Qε, aY [q]-anchor is also present inE1, while
conversely, theε-cycle ofE is not affected byY -elimination at all. This case
is straightforward. Ifq ∈ Qε we need to distinguish whethert is a part of the
ε-cycle. If so,⇒Y [q] shrinks theε-cycle into anε-cycle which can be eliminated
in E2. On the other handY -elimination is subsumed by applyingO-elimination
toE. See Fig. 5 for this case. The final case whereq ∈ Qε andt is no part of the
ε-cycle is left to the reader.

- If i = O, the twoε-cycles share a stateq which we choose as the representative
of either cycle. Regardless of the order of the two eliminations, each transition
incident to either cycle is replaced by a transition incident to q in an EFA that is
reached from bothE1 andE2.

8

ε

ε

εε

ε

ε
ε

ε

ε

ε

ε

ε
ε

ε

κ∗

κ∗

κ

κ

α1

α1

α1

α1

α2

α2

α2

α2

β1

β1

β1

β1

β2

β2

β2

β2 ⇒∗

⇒∗

⇒
O

⇒
O

Figure 6: Case in the proof of Lem. 3.5. Convergence of a divergence resulting from
⇒∗ and⇒O.

Lemma 3.6. If E ⇒Y E1 holds andE ⇒ E2 is valid, thenE1 ≡ E2.

Proof. AssumeE ⇒Y [q] E1 whereq− = 1 and(p, ε, q) ∈ δE . SinceE ⇒i E2 is valid,
againi /∈ {X,Z}. The casei = O was already dealt with in Lem. 3.5, we consider the
remaining possibilities.

- If i ∈ {•,+, ∗,∅}, let t = (q, ρ, r) be the transition replaced by⇒i. In E1, t
is replaced byt′ = (p, ρ, r), which is ani-anchor, too. LetE2 ⇒i E3 be the
appropriate conversion, then the elements caused inE3 by this conversion are
the same that are caused inE1 by replacingt, except that the transitions leaving
q in E1 leavep in E3. It is easy to see thatE1 ⇒Y [q] E3 is valid, soE1 ≡ E2.

- If i = Y , there is aY [r]-anchor inE s.t. at at least one transition connectsq
andr. This gives rise to three sub-cases which are shown in Fig. 7;in one case
(Fig. 7(c)) we must considerp = r. The truth of the claim should be obvious
from the figure.

ε
ε

p q

r

α1

αn

β1

βm

(a)

ε

ε
p q

r

α1

αn

β1

βm

τ

(b)

ε
p q

α1

αn

β1

βm

(c)

Figure 7: Possible overlaps ofY -anchors

Lemma 3.7. If E ⇒i E1 for somei ∈ {•,+, ∗,∅} holds andE ⇒ E2 is valid, then
E1 ≡ E2.

Proof. Let E2 result fromE ⇒j E2. Once more,j /∈ {X,Z}, becauseE ⇒j E1

is valid. Due to Lems. 3.5 and 3.6, onlyj ∈ {•,+, ∗,∅} needs to be considered; in

9

any case, the overlap consists of either one or two states butno transition. No state is
removed upon expansion and the in- and outdegrees of states are irrelevant to⇒i and
⇒j, the order of conversions can be switched without altering the resulting EFA.

Lems. 3.5, 3.6 and 3.7 constitute the cases in the proof of thefollowing

Lemma 3.8. The ARS〈E ,⇒∅,⇒+,⇒•,⇒∗,⇒Y ,⇒O〉 is locally confluent.

This implies thatXα is unique for any inputα (cf. Thm. 3.11). We examine the
remaining parts of an exhaustive conversion, i.e., validX- andZ-eliminations. To this
end letX denote the class of FAs withoutY - orO-anchors.

Lemma 3.9. The ARS〈X ,⇛X〉 is locally confluent.

Proof. Anchors of distinct validX-eliminations can only overlap in a state which is
not the central state of either conversion. It is easily seenthat the FA resulting from
two such elimination does not depend on the relative order ofthese eliminations.

Likewise, letZ denote the class of FAs withoutY -,O- orX-anchors.

Lemma 3.10. The ARS〈Z,⇛Z〉 is locally confluent.

Proof. SupposeE ⇒Z[p] E1 andE ⇒Z[q] E2 are valid and overlapping. If the overlap
consists of a state and no transition, the conversions do notinterfere since the common
state is neitherp norq . If the overlap consists of a transitiont, then there is necessarily
a transition fromp to q, contradicting the assumption that both eliminations are valid,
i.e., both respect(Z2).

The confluence properties of each of the rewriting system we use in an exhaustive
conversion imply the main result of this section. In particular it states that, if restricted
to valid conversions, the presented construction is functional in the sense that the re-
sulting FA is uniquely determined.

Theorem 3.11. The automataXα, Zα andAα are unique.

Proof. This is an application of Newman’s Lemma [12, 13], which implies that the
normal forms of a locally confluent ARS without infinite sequences are unique.

Confluence of valid conversions implies a property that comes in handy later on.

Lemma 3.12. The relation≡ is an equivalence onE .

Proof. Reflexivity and symmetry are trivial. To prove transitivity, supposeE1 ≡ E2

andE2 ≡ E3. Then there areE12 andE13 with E1 ⇒⋆ E12,E2 ⇒⋆ E12,E2 ⇒⋆ E23

andE3 ⇒⋆ E23. SinceE12 andE23 are both derived fromE2, confluence of valid
conversions implyE12 ≡ E23, soE12 ⇒⋆ E13 andE23 ⇒⋆ E13 for some EFAE13.
Therefore,E1 ⇒⋆ E13 andE3 ⇒⋆ E13, i.e.E1 ≡ E3.

10

4. Star Normal Form
Thestar normal formof an expression was introduced by Brüggemann-Klein [10]

as a preprocessing step in the construction of the position-FA from an expression [8].
We use a slightly more succinct definition than in the original work.

Definition 3. The operators◦ and• are defined on expressions as follows

- [·]◦: ∅
◦ = ε◦ := ∅, a◦ := a, (α+β)◦ := α◦+β◦, (α∗)◦ := α◦,

(αβ)◦ :=

{

αβ, if ε /∈ L(αβ);

α◦+β◦, else.

- [·]•: ∅
• := ∅, ε• := ε, a• := a

(α+ β)• := α• + β•, (αβ)• := α•β•, α∗• := α•◦∗

The star normal form (SNF) of α is defined asα•, and an expressionα is in SNF

if α = α•. Some elementary properties ofSNF, proven in [10], which will be used
without further explicit mention, are the following:

1. L(α) = L(α•)

2. α• = α••

3. α = α• iff ∀γ ∈ sub(α) : γ = γ•

Brüggemann-Klein further proved thatα andα• yield identical position-FAs. We
claim that the same is true for the construction of FAs by exhaustive valid conversions.

Some additional notation is helpful in proving this: given atransitiont = (p, α, q),
let t◦ := (p, α◦, q) andt• := (p, α•, q). If E is an EFA with transitiont, let E[t◦]
andE[t•] denote the EFA that results from replacingt with t◦, resp.t•. The following
lemma lies at the heart of proving our claim.

Lemma 4.1. Let t be a loop ofE. ThenE ≡ E[t◦].

Proof. Let t = (q, α, q) and proceed by induction onα. Forα ∈ A ∪ {∅}, we find
α = α◦ and thusE = E[t◦]. If α = ε, the transitiont is a one-arcε-cycle, which
is removed throughO-elimination. Withε◦ = ∅, the transitiont◦ is removed by
∅-expansion; thereforeE ⇒O E′ andE[t◦] ⇒∅ E′.

Now suppose the statement is true forαi and distinguish by the structure ofα (the
cases are sketched in Fig. 8):

- α∗
1: star expansion replacest with a stateq′, an ε-cycle {(q, ε, q′), (q′, ε, q)},

and a loop(q′, α1, q
′). Eliminating the cycle identifiesq′ with q, so the new

loop becomes(q, α1, q), which is justt◦. HenceE ⇒⋆ E[t◦], which implies the
claim.

- α1+α2: sum expansion inE replacest with loops t1 = (q, α1, q) and t2 =
(q, α2, q): if E′ denotes the resulting EFA, the inductive assumption implies
E′ ≡ E′[t◦1][t

◦
2]. Sum expansion oft◦=(q, (α1 + α2)

◦, q) = (q, α◦
1 + α◦

2, q) in
E[t◦] yieldsE′[t◦1][t

◦
2], too, and since≡ is an equivalence,E ≡ E[t◦] follows.

11

qq q

q′
α∗

1

α1

α1

⇒∗ ⇒O

(a) iteration, note thatα1 = α∗

1
◦

q qqq

α1+α2 α1

α2
α◦

1

α◦

2
α◦

1+α
◦

2

⇒+ +⇐
IA
≡

(b) sum, note thatα◦

1 + α◦

2 = (α1 + α2)
◦

qq q

q qq q,q′

α1α2

α1

α1

α2

α2

εε

ε ε

α◦

1 α◦

2α◦

1+α
◦

2

= ⇒O

⇒+
IA
≡

⇒•

⇒
⋆

⇒⋆

(c) nullable product, note that(α1α2)
◦ = α◦

1 + α◦

2

Figure 8: Cases in the proof of Lem. 4.1: replacing a loopt with t◦ yields an EFA that

converges with the initial one. Dashed arrows labeledε representε-paths.
IA
≡ denotes

convergence by inductive assumption.

- α1α2: If ε /∈ L(α1α2), thenα = α◦, soE ≡ E[t◦] holds. Otherwise letE′

be derived fromE by exhaustive expansion oft. The first step in this sequence
is product expansion oft, which is replaced by a new stateq′ and transitions
{(q, α1, q

′), (q′, α2, q)}. Sinceα1α2 is nullable, so is eitherαi, henceE′ con-
tains anε-cycle throughq andq′. Consider the elimination of anε-cycle in “slow
motion”: it consists of a sequence of successively merging pairs of states from
the cycle, preserving the accepted language in each step, and a final removal
of ε-loops that stem from theε-transitions of the original cycle. InE′ we may
thus mergeq andq′ to get the intermediate EFAE′

[q=q′]: this EFA can also be
constructed fromE[t◦], where

t◦ = (q, (α1α2)
◦, q) = (q, α◦

1 + α◦
2, q)

sinceα1α2 is nullable. ThusE andE′ admit convergent rewriting sequences
which, based on Lem. 3.8, implyE ≡ E[t◦] for this case.

Lemma 4.2. Let t by any transition ofE. ThenE ≡ E[t•].

Proof. Givent = (p, α, q) we prove the claim by induction onα: the statement is true
for α ∈ A ∪ {ε,∅}, so assume it is true for labelsα1, α2. Now distinguish by the
structure ofα:

- α1α2 orα1+α2: both cases are straightforward.

- α∗
1: letE ⇒∗ E

′ be the expansion oft, thenE′ is asE except thatt is replaced by
a new stater, ε-transitions(p, ε, r), (r, ε, q) and a loopt′ = (r, α1, r). Applying
the inductive assumption tot′ we findE′ ≡ E′[t′•]. Sincet′, resp. t′• is a

12

loop, Lem. 4.1 yieldsE′[t′•] ≡ E′[t′•◦]. Nowα• = α∗•
1 = α•◦∗

1 , so expanding
t• in E[t•] yieldsE′[t′•◦], too. ThereforeE[t•] ≡ E′[t′•◦] and since≡ is an
equivalence, we also haveE ≡ E[t•].

Theorem 4.3. The presented construction satisfiesAα = Aα• for arbitrary α.

Proof. Applying Lemma 4.2 to the initial EFA of a conversion yieldsA0
α ≡ A0

α• , so
confluence of〈E ,⇒¬{X,Z}〉 leads toXα = Xα• . From there on, Lems. 3.9 and 3.10
provide the claim.

Therefore, the presented construction is invariant under taking theSNFof the input;
from a different point of view, one might say that theSNF is implicitly computed upon
conversion. This property is fundamental for analyzing thesize of aAα relative to
the size ofα. To this end, we also need the following alternative characterization of
expressions inSNF.

Lemma 4.4.

1. α = α◦ iff ε /∈ L(α)

2. α = α• iff ∀κ∗∈sub(α) : ε /∈ L(κ)

Proof.

1. By structural induction onα: If α = ε thenα is nullable andα 6= α◦, whereas
if α ∈ A ∪∅, it is not nullable andα = α◦. If α = σ1 + σ2 is nullable, assume
without loss of generality thatσ1 is nullable: the inductive assumptionσ1 6= σ◦

1

then impliesα 6= α◦. If otherwiseα = σ1+σ2 is not nullable, neitherσi is. Then
σi = σ◦

i holds, which impliesα = α◦. An iterationα = κ∗ is always nullable
andα 6= α◦ follows directly from the definition of[·]◦. Finally letα = π1π2: if
α is nullable, the definition of[·]◦ again yieldsα 6= α◦ immediately, whereas if
α is not nullable thenα = α◦ (regardless of whether aπi actuallyis nullable).

2. The “only if”-part is again straightforward induction onα, we only prove the
“if”-part: For trivial α the claim restates the definition of•. The inductive step is
easy ifα is a product or sum, so letα= κ∗ andε /∈ L(κ). Then,α• = κ∗• =
κ•◦∗; since all bases ofα are non-nullable by assumption andκ ∈ sub(α), we
apply the inductive assumption toκ to find κ•◦∗ = κ◦∗. Now the first item of
this lemma yieldsκ◦∗ = κ∗ = α. In all cases,α = α•, thereforeα is in SNF.

Informally speaking,SNF formalizes the idea that no base needs to be nullable, as
an iteration already allows forε. Consequently, we ask for the maximal number of
stars that can be present in anSNF-expression.

Lemma 4.5. Letα be inSNF, then

|α|∗ ≤

{

|α|A − 1, if ε /∈ L(α);

|α|A, if ε ∈ L(α).

13

Proof. Any trivial expression is inSNFand satisfies the claim. Assume the claim holds
for expressionsν1, ν2 ,andκ, and distinguish cases according to the structure ofα.

- α = ν1ν2: If ε ∈ L(α), it follows thatε ∈ L(νi), so we have

|α|∗ = |ν1|∗+ |ν2|∗ ≤ |ν1|A+ |ν2|A = |α|A.

Otherwise, assume without loss of generalityε /∈ L(ν1). Then the right-hand
side above is decreased by at least one due to the inductive hypothesis.

- α = ν1 + ν2: This case is dual to the previous one: ifε /∈ L(α), it follows that
ε /∈ L(νi). Hence,

|α|∗ = |ν1|∗ + |ν2|∗ ≤ |ν1|A − 1 + |ν2|A − 1 < |α|A − 1.

If ε ∈ L(α), the right-hand side above is increased by at most two, yet isstill
bounded from above by|α|A.

- α = κ∗: Obviouslyε ∈ L(α); moreover, Lem. 4.4 statesε /∈ L(κ), so |κ|∗ ≤
|κ|A − 1 by assumption, and therefore

|α|∗ = |κ|∗+ 1 ≤ |κ|A = |α|A.

5. Conversion-Ratio and Worst-Case Expressions
We seek to bound the size of an FA relative to the size of the expression it is derived

from. To this end, theconversion ratioof an expressionα is defined as

c(α) :=
|Aα|

|α|
.

We callβ worse thanα if c(β) > c(α). An expressionµ is worst-caseif no expression
is worse thanµ. The conversion ratio of a worst-case expression provides an upper
bound on the size of a constructed FAs relative to the size of the input, i.e., ifα is an
arbitrary expression andµ is worst case, then

|Aα| ≤ c(µ) |α|.

As we will see, the structure of a worst-case expression is unique up to repetition. It will
be deduced through the stepwise exclusion of subexpressions that may occur in such an
expression, thus narrowing down the possible structural properties it may exhibit. This
is frequently done by showing that a subexpressionφ, which reflects some structural
property, can be replaced by a different subexpressionψ yielding a worse expression.
This usually involves comparing intermediate EFAs which, just like the expressions
they are derived from, differ only locally. At times we will go to great lengths in order
to ensure that the effects of replacing a subexpression are not accidentally diametrical
to our original intentions. In particular, we always need torule out the possibility that

14

elimination-anchors emerge as the result of a replacement,since these might level the
size-increase we wished to achieve.

We write µ′ = µ[ψ/φ] to express thatµ′ is derived fromµ by replacing a fixed
occurrence ofφ in µ with ψ. This notation is rather informal, sinceµ might contain
multiple instances ofφ; however, we will always explicitly introduce the occurrence
which will be replaced. If we can show thatµ′ is worse thanµ, we have inferred that a
worst-case expression does not containφ as a subexpression, resp. that it does not have
the structural property expressed byφ.

A most helpful structural property of worst-case expressions results from the invari-
ance of our construction under star normal form:

Theorem 5.1. A worst-case expression is inSNF.

Proof. It is easy to see from Def. 3 that|α•| ≤ |α| holds, with equality iffα is in SNF.
From Thm. 4.3 we deduce|Aα• | = |Aα|, soα• is worse thanα iff α 6= α•.

The size of a constructed FA is determined by the number of times each conversion
is applied. The number of times that⇒∅, ⇒•, ⇒+ and⇒∗ are applied upon con-
structingAα obviously equals|α|∅, |α|•, |α|+ and|α|∗, respectively. This notation is
generalized by setting|α|O, |α|X , |α|Y and |α|Z as the numbers ofO-, X-, Y - and
Z - eliminations, that occur in a conversion. Note that while|α|i depends only onα
for i ∈ {∅, •,+, ∗}, this is generally not true fori ∈ {O, Y }, where the values depend
on the chosen conversion sequence. We will show that for worst-case expressions no
elimination occurs at all, no matter what the chosen conversion is.

Lemma 5.2. The following statements are equivalent:

1. α is in SNF

2. κ∗ ∈ sub(α) impliesε /∈ L(κ)

3. |α|O = 0

Proof. The equivalence of 1. and 2. has been established in Lem. 4.4.We show the
equivalence of 2. and 3. Assumeκ∗ ∈ sub(α) andε ∈ L(κ). At some point in the
construction ofAα a loop(q, κ, q) emerges; expanding this loop necessarily yields anε-
path fromq to q, i.e. anε-cycle. Conversely, any cycle in the construction presupposes
a loop s.t. every (sub)word accepted by traversing the cycleis also expressible by the
loop label. Therefore,ε-cycles and nullable bases exactly reflect another and the claim
follows.

Corollary 5.3. If µ is worst-case, then|µ|O = 0.

The following proposition might be obvious. Still, it provides a first opportunity to
reject a feature of worst-case expressions by constructinga worse expression without
that feature.

Proposition 5.4. If µ is worst-case, then|µ|∅ = 0.

Proof. Let µ be worst-case and suppose∅ ∈ sub(µ). Let x be a letter and set
µ′ := µ[x/∅] for a fixed occurrence of∅ in µ. While at some point in the construc-
tion ofAµ an∅-transition will be removed, this is not the case for the corresponding

15

⇒∅ ⇒• ⇒+ ⇒∗ ⇒X ⇒Y ⇒Z ⇒O

∆(|Q|) 0 1 0 1 −1 −1 −1 −(n− 1)
∆(|δ|) −1 1 1 2 0 −1 −1 −n

Table 1: Changes in number of states and transitions resulting from each single conver-
sion. In the case ofO-elimination,n denotes the size of theε-cycle.

x-transition in the construction ofAµ′ . The number of times any other expansion can
be applied remains constant, and the number of times each elimination can be applied
in the construction ofAµ′ is at most as much as forAµ. We thus find|Aµ′ | ≥ |Aµ|+1,
and since|µ′| = |µ|, the claim follows.

A preliminary upper bound on conversion ratio follows almost directly from the
definition of conversion.

Lemma 5.5. The conversion ratio of any expressionα is bounded from above, as
follows:

c(α) ≤
5

3
+

8

3|α|
.

Proof. Letµ be worst-case. Then|µ|O = |µ|∅ = 0 according to Cor. 5.3 and Prop. 5.4.
Other than that, we start with|A0

µ| = 3 and add the elements contributed or removed
by the remaining conversions according to Tab. 1. This yields

|Aµ| = 2|µ|• + |µ|+ + 3|µ|∗ − |µ|X − 2|µ|Y − 2|µ|Z + 3

= |µ| + |µ|• + 2|µ|∗ − |µ|A − |µ|X − 2|µ|Y − 2|µ|Z + 3

= |µ| − |µ|+ + 2|µ|∗ − |µ|X − 2|µ|Y − 2|µ|Z + 2

where we use|α|A = |α|• + |α|+ + 1 in the second step. Sinceµ is in SNF, we know
from Lem. 4.5 that|µ|∗ ≤ 1

3 (|µ| + 1). Omitting the negative terms we arrive at

|Aµ| ≤ |µ| + 2|µ|∗ + 2 ≤ |µ| +
2

3
(|µ| + 1) + 2 =

5

3
|µ| +

8

3

Dividing the left- and right-sides by|µ| yields an upper bound forc(µ), which in turn
bounds the conversion ratio of any expression.

In certain cases this bound provides a criterion to decide which of two expressions
is worse if this is not obvious at a glance.

Corollary 5.6. Let µ andν be expressions s.t.|µ| ≥ 3, |ν| = |µ| + k and |Aν | =
|Aµ| + l for k, l ∈ N. Thenν is worse thanµ if

l

k
≥ 2.6

16

Proof. Let µ andν be as stated. By definition,ν is worse thanµ if c(µ) < c(ν).
Written out, this inequality is

|Aµ|

|µ|
<

|Aµ|+ l

|µ| + k
, which holds iff c(µ) <

l

k

For |µ| ≥ 3 Lem. 5.5 yields

c(µ) ≤
5

3
+

8

9
= 2.5 < 2.6

Therefore, if l
k

is at least 2.6, it exceeds the conversion ratio ofµ, and the claim follows.

Lemma 5.7. If µ is worst-case and|µ| ≥ 3, then|µ|ε = 0.

Proof. Let µ be worst-case with|µ|ε > 0. Fix someε in µ and lett be theε-transition
which is labeled with our fixedε. We distinguish whether at some point in the construc-
tion t is part of an elimination anchor.

- If t can be removed by some elimination, letµ′ := µ[x/ε] for some letterx. Then
the expansions forµ andµ′ are the same, whereas at lest one elimination less is
applied upon constructingAµ′ . So |Aµ′ | < |Aµ| and|µ′| = |µ|, thereforeµ′ is
worse thanµ.

- If t does not occur in an elimination anchor, we consider the parent of ε in µ.
Sinceµ is worst-case, it is inSNF, sopε(µ) 6= ∗. Also, pε(µ) 6= •, or t would
be part of an Y-anchor. Onlypε(µ) = + remains possible. We setµ′ := µ[x

∗

/ε],
then theε-transitions introduced by expanding the correspondingx∗-transition
are not part of any elimination-anchors, just as was the casewith t. In this case,
|µ′|∗ = |µ|∗ + 1, while all other conversions are applied the same number of
times. With|Aµ′ | = |Aµ| + 3 and|µ′| = |µ|+ 1 we apply Cor. 5.6 finding that
µ′ is worse thanµ in this case, too.

We associate toβ ∈ sub(α) the first star encountered in the parse ofα on the
upwards path from the root ofβ to the root ofα. Let theminimal containing base
of τ ∈ sub(α), denotedmcbα(τ), be the smallestκ ∈ sub(α) s.t. τ ∈ sub(κ) and
pα(κ) = ∗. If no suchκ exists,mcbα(τ) is undefined. Formally that is

mcbα(τ) =











τ, if pα(τ) = ∗;

mcbα(β), if β ∈ {ττ ′, τ ′τ, τ + τ ′};

undefined, if τ = α.

Lemma 5.8. In a worst-case expression every iteration is an addend.

Proof. Let µ be worst-case andκ∗ ∈ sub(µ). Sinceε ∈ L(κ∗) andµ is in SNF, we
getpµ(κ∗) 6= ∗ from Lem. 4.4. Ifκ∗ is a factor, we choose a smallest such iteration:
supposepκ∗(µ) = • andpκ∗(κ) = + for all κ∗ ∈ sub(κ). We further assume that
κ∗ is a factor in the productκ∗α ∈ sub(µ) (the caseακ∗ is symmetric). Setµ′ :=
µ[κ

∗+α/κ∗α] and note that|µ| and|µ′| are equal. We distinguish whetherµ′ is in SNF.

17

- If µ′ is in SNF, we examine howp or q can be removed in the construction of
Aµ′ (see Fig. 9). First, Lem. 5.2 yields|µ′|O = 0. If either ofp or q is removed
by means ofX-, Y -, or Z-elimination, this state, possibly along with some ad-
ditional transitions, can be removed in the construction ofAµ, too. Therefore
|A′
µ| > |Aµ| while |µ′| = |µ|, henceµ′ is worse thanµ.

- If µ′ is not in SNF, then Lem. 4.4 yieldsε ∈ L(mcbµ′(κ∗)). Since this is not
the case inµ, i.e.,ε /∈ L(mcbµ(κ

∗)), yet obviouslyε ∈ L(κ∗), this impliesε /∈
L(α). Let τ = mcbµ′(κ∗)[α

∗

/α] and setµ′′ := µ′[τ/mcbµ′ (κ∗)]. Intuitively, µ′′

is derived fromµ′ by shifting the parent ofmcbµ′(κ∗) ontoα. Now |µ′′| = |µ|
andµ′′ is in SNF. Let op1 be the root ofmcbµ(κ

∗) and assume thatµ is not an
iteration. Thenmcbµ(κ

∗)∗ is an operand to someop2, the root ofν ∈ sub(µ).
Let Akµ be such thatν is the label of a transitiont = (p, ν, q). Then there
exists someAkµ′′ which differs fromAkµ only inasmuch as thatt is replaced by
t′′ = (p, ν′′, q), whereν′′ is the replacement subexpression inµ′′ constructed
above. This gives at least one additionalε-transition in the automaton (Fig. 10),
soµ′′ is worse thanµ.

In either case, the assumption that an iteration in a worst-case expression may be a
factor is falsified, so the statement follows.

pp pp qq qq⇒•

ε εε
⇒∗ ⇒Y

κ∗α κ∗

κ κ

ααα

(a) Part of an FA arising from a starred factor.

p pp qqq ⇒+

εε
⇒∗

κ∗+α
κ∗

κ

αα

(b) Increase in size from exchanging• for +.

Figure 9: First case in the proof of Lem. 5.8:κ∗α is replaced withκ∗ + α

The lemma implies that in a worst-case expression, the number of stars is at most
twice the number of sum-operators. This allows us to improvethe bound given in
Lem. 5.5 to the value given by Ilie & Yu [6].

Lemma 5.9. The conversion ratio of any expressionα is bounded from above, as
follows:

c(α) ≤
3

2
+

5

2|α|
.

Proof. Let µ be worst-case and proceed as in the proof of Lem. 5.5, where wearrived
at

|Aµ| ≤ |µ| − |µ|+ + 2|µ|∗ + 2 and |µ|∗ ≤
1

3
(|µ| + 1)

18

p

p

q

qxx

x xx

yy

yyy

ε

⇒∗

⇒⋆

⇒⋆(...(κ∗α)...)∗

(...(κ∗α)...)

(...(κ∗+α∗)...)

κ

κ

α

α

Figure 10: Second case in the proof of Lem. 5.8: shifting the star of mcbµ(α) onto
α yields a bigger automaton; the replacement inside the strong subautomaton based in
the statez is the same as in Fig. 9.

As we have already observed, Lem. 5.8 implies|µ|+ ≥ 1
2 |µ|∗. Plugging this into above

inequations yields

|Aµ| ≤ |µ| +
3

2
|µ|∗ + 2 ≤

3

2
|µ|+

5

2

Dividing by |µ| yields an upper bound for the conversion ratio of a worst-case
expression, which bounds the conversion ratio of any expression.

As before, this upper bound allows us to compare certain expressions that differ in
size and are converted to automata that differ in size, too. The proof is the same as for
Cor. 5.6, except for the obvious modifications.

Corollary 5.10. Letµ andν be expressions s.t.|µ| ≥ 16, |ν| = |µ| + k and |Aν | =
|Aµ| + l. Thenν is worse thanµ if

l

k
> 1.66.

This stronger version of Cor. 5.6 is necessary to show that none of the other elimi-
nations occur in the conversion of a worst-case expression.We can apply the same kind
of proof with smaller increments in FA size relative to expression size. In particular,
the criterion applies if an increment of expression size by 3increases the size of the
corresponding FA by at least 5.

An inconvenience of Cor. 5.10 is its restriction to expressions of size at least 16.
All statements building upon the corollary (and their respective proofs) must include
a clause similar to “. . . and suppose further that|µ| ≥ 16. . . ”. Since this property
holds for almost all expressions, and we seek to infer an infinite family of worst-case
expressions, this shortcoming is not severe and will be ignored in the remainder of the
analysis.

Lemma 5.11. If µ is worst-case, then|µ|Y = 0.

19

(σ∗

1+σ
∗

2)(σ
∗

3+σ
∗

4)

(σ∗

1+σ
∗

2)(σ
∗

3+σ
∗

4+x
∗)

σ1

σ1

σ2

σ2

σ3

σ3

σ4

σ4

⇒7

⇒9

⇒⋆⇒X[q]

x

xx

x x

x yy

y y

y q

q

a

a

a

b

b

b

c

c

c

dd

d

e

Figure 11: Proof of Lem. 5.12. Addingx∗ to a sum of thexy-label introduces four new
elements and preventsX-elimination ofq (ε-labels are omitted).

Proof. If µ is worst-case then|µ|ε = 0 by Lem. 5.7, so theε-transition appearing in a
Y -anchor is introduced by⇒∗. In order to get anY -anchor from⇒∗, a starred factor
is required. Following Lem. 5.8, these do not occur in a worst-case expression.

Lemma 5.12. If µ is worst-case, then|µ|X = 0.

Proof. As noted in the proof of Lem. 5.11,ε-transitions result from star expansion. In
particular, anX-anchor results from a subexpressionχ = (σ∗

1 + σ∗
2)(σ

∗
3 + σ∗

4). Let
x be a letter and deriveν from µ by replacingχ with (σ∗

1 + σ∗
2)(σ

∗
3 + σ∗

4 + x∗). The
expression size is|ν| = |µ|+ 3, and for automaton size we get|Aν | = |Aµ|+ 5. This
latter increase results from two additional expansions andone preventedX-elimination
(see Fig. 11). Applying Cor. 5.10 yields thatν is worse thanµ.

Lemma 5.13. If µ is worst-case, then|µ|Z = 0.

Proof. Let Zµ contain aZ[q]-anchor where all leaving transitions areε-transitions.
Let t = (p, a, q) be the one transition enteringq. We replacet’s label inµ by setting
ν := µ[a(b+c

∗)/a] for b, c ∈ A. Then|Aν | = |Aµ|+8, since disablingZ[q]-elimination
saves a state and a transition, and 6 new elements are required. With |ν| = |µ| + 5,
Cor. 5.6 yields thatν is worse thanµ.

Since no eliminations occur in the conversion of a worst-case expression, the in-
equality derived in the proof of Lem. 5.9 becomes an equality: if µ is worst-case, then

|Aµ| = |µ| + 2|µ|∗ − |µ|+ + 2.

Thus, fixing the size of a worst-case expression leaves the sums and stars as the sole
parameters determining the size of the resulting FA. We narrow the structural properties

20

qp

⇒∗ ⇒⋆ xx x yy y ε εεε(...(σ1+σ2)...)
∗

(...(σ1+σ2)...)

σ1

σ2

(a)

qp⇒⋆

x

xx yy

ε ε

εε

σ1

σ2(...(σ∗

1+x
∗+σ2)...)

(b)

Figure 12: Second case in the proof of Lem. 5.14: the non-nullable addendσ1 is
replaced by two nullable addends,σ∗

1 andx∗, which yields a worse expression.

of such expressions further down by investigating the interrelations between those two
operators.

Lemma 5.14. If µ is worst-case then every addend inµ is nullable.

Proof. Let µ be worst-case and supposeµ contains an addend which is not nullable,
say,σ1 + σ2 ∈ sub(µ) whereε /∈ L(σ1). Letµ′ := µ[σ

∗

1+x
∗

/σ1] for some letterx and
distinguish whetherµ′ is in SNF.

1. If µ′ is in SNF, then|Aµ′ | = |Aµ| + 7, while |µ′| = |µ| + 4. It follows from
Cor. 5.10 thatµ′ is worse thanµ.

2. If µ′ is not inSNF, replacingσ1 with σ∗
1+x

∗ introduced a nullable base. Sinceσ1
is not nullable by assumption andx is a letter, the base in question is necessarily
mcbµ′(σ∗

1 + x∗). To unclutter notation we setγ = mcbµ′(σ∗
1 + x∗). The

“nullability” of every base besidesγ is the same inµ andµ′. We remove the star
operating onγ by settingµ′′ = µ′[γ/γ∗]. Now no base ofµ′′ is nullable, soµ′′

is in SNF. Since no eliminations occur in the construction ofAµ andAµ′′ , the
differences betweenAµ andAµ′′ are restricted to the subautomaton emerging
from expansion of(x,mcbµ(σ1)

∗, y) in Aiµ resp. (x, γ, y) in Aiµ′′ , as sketched
in Fig. 12.
The sizes of the expressions are related by the equality|µ′′| = |µ| + 3, that of
their respective automata by|Aµ′′ | = |Aµ|+5. The statement now follows from
Cor. 5.10.

Since we find an expression which is worse thanµ in either case, every addend in a
worst-case expression is nullable.

Lemma 5.15. Every maximal sum in a worst-case expression is star-maximal.

21

Proof. Let µ be worst-case and supposeµ contains maximal sums that are not star-
maximal. We choose a smallest such sum: letσ =

∑

σi be maximal but not star-
maximal and assume that all maximal sums that are proper subexpressions ofσ are
star-maximal. Letσk be an addend which is not an iteration. Sinceσ is maximal,σk
is not a sum. Sinceσk is nullable by Lem. 5.14, it is not a letter either. Thereforeσk
must be a product, which we suppose to be maximal. Commutativity of sums allows
us to assumek = 1. We are thus looking at

σ = σ1 +

n
∑

i=2

σi =

m
∏

i=1

πi +

n
∑

i=2

σi.

As σ1 is nullable, so is everyπi, and|µ|ε = 0 implies that this is due to iterations
that occur in eachπi. By our choice ofσ and since each iteration inµ is an addend
(Lem. 5.8), it follows that everyπi contains sums which are all star-maximal. Since
σ1 is assumed to be a maximal product, eachπi is necessarily such a sum. In greater
detail,σ admits the structure

σ =

m
∏

i=1

li
∑

j=1

ς∗ij +

n
∑

i=2

σi.

Depending on the numbern of addends inσ we construct an expression which is worse
thanµ. Note thatσ is a proper sum, so we haven ≥ 2.

1. n = 2: Sinceσ = σ1 + σ2 is maximal,σ2 is not a sum itself, and sinceσ2 is
nullable (Lem. 5.14) it is not a literal. This leaves two possibilities:

(a) If σ2 is an iteration,σ2 = κ∗, we constructσ′ from σ as

σ′ := (x•σ1)
∗ + σ2 = (x(

∏∑

ς∗ij))
∗ + κ∗,

and letµ′ := µ[σ
′

/σ]. Every elimination in the construction ofA′
µ has

a counterpart in the construction ofAµ, so we only need to compare the
difference in positive contributions to FA size: looking upTab. 1 we find
|Aµ′ | = |Aµ|+ 5. Since we have|µ′| = |µ|+ 3, Cor. 5.10 applies to yield
the statement.

(b) If σ2 is a (maximal) product, again Lem. 5.14 implies that its factors are
star-maximal sums, i.e.,

σ2 =

m′

∏

i=1

l′i
∑

j=1

ς∗ij , which we write as σ2 =

m+m′

∏

i=m+1

li
∑

j=1

ς∗ij .

We construct the productσ′ from σ by exchanging its main operator for
a concatenation-symbol and introducing a new starred addend in the first
factor ofσ2:

σ′ = (

m
∏

i=1

li
∑

j=1

ς∗ij)(x
∗ +

lm+1
∑

j=1

ς∗1j)(

m+m′

∏

i=m+2

li
∑

j=1

ς∗ij)

22

With this, we setµ′ := µ[σ
′

/σ]; exchanging the sum for a product intro-
duces an additional stateq. No new eliminations become possible from
this replacement; in particular, the extra addendx∗ in σ′ ensuresq+ ≥ 3,
so noX [q]-anchor emerges. We find|µ′| = |µ| + 3 and|Aµ′ | = |Aµ|+ 5,
soµ′ is worse thanµ according to Cor. 5.10.

2. n ≥ 3: Again we exchange a sum for a product by setting

σ′ = σ1•(x∗ +

n
∑

i=2

σi).

As before, the product introduces a new state while the extraaddendx∗ prevents
the eventuality ofX-elimination. This yields|Aµ′ | = |Aµ|+5 and|µ′| = |µ|+3,
so Cor. 5.10 yields the claim.

Lemma 5.16. In a worst-case expression every letter is starred.

Proof. Let µ be worst-case and fix an occurrence of the letterx in µ. If x is a base,
we are done. Since all sums inµ are star-maximal (Lem. 5.15),x is not an addend.
Assumex is a factorπk in a maximal productπ =

∏

πi, then there is at least one other
factorπk−1 or πk+1 next tox. Suppose wlog. that this isπk+1. Sinceπ is maximal,
πk+1 is not a product itself, and since all iterations are addends, it is not an iteration
either. Soπk+1 is either a (maximal) sum or a letter.

- If πk+1 is a sum, it is star-maximal, i.e.,πk+1 =
∑

i ς
∗
i . The subexpression

x
∑

i ς
∗
i would lead toZ-anchors, contradicting Lem. 5.13.

- If πk+1 is a lettery, our usual argument shows thatν := µ[x+y
∗

/xy] is worse
thanµ.

Theorem 5.17. The structure of a worst-case expression is

n
∏

i=1

2+imod2
∑

j=1

x∗ij

wheren ∈ N is arbitrary and thexij are letters.

Proof. Let µ be a worst case expression. As Lem. 5.16 states, every letteris a base in
µ, and sinceµ is in SNF, no more bases occur by virtue of Lem. 4.5. Every maximal
sum inµ is star-maximal according to Lem. 5.15, so the structure of thei-th maximal
sumσi in µ is

σi =

ki
∑

j=1

x∗ij for xij ∈ A

Everyσi is maximal, so some of those sums are factors of the same maximal product
π. Sinceπ is maximal, it is not a factor itself, since all addends are iterations inµ, π is

23

not an addend either, and as we argued before,π is not a base. Therefore, all maximal
sums ofµ are factors of this product, which implies thatµ itself is π. So the basic
structure ofµ is

µ =

n
∏

i=1

ki
∑

j=1

x∗ij .

In this general case, and subject to the condition that noX-eliminations occur upon
conversion, we compare the sizes ofµ andAµ, which are

|µ| =(n− 1) +

n
∑

i=1

(3ki − 1) = 3

n
∑

i=1

ki − 1, and

|Aµ| =

n
∑

i=1

4ki + n− 1 = 4

n
∑

i=1

ki + n− 1,

leading to the following conversion ratio:

c(µ) =
|Aµ|

|µ|
=

4
∑

ki + n− 1

3
∑

ki − 1
= 1 +

∑

ki + n

3
∑

ki − 1
.

The term on the right shows thatc(µ) is maximal iffn is maximal with respect to
∑

ki,
or equivalently, if

∑

ki is minimal for fixedn. All sums inµ are proper, i.e., not unary,
soki ≥ 2 for all i. Simply settingki = 2 for all i introduces anX-anchor inXµ for
every pair of adjacent factors. We get rid ofX-anchors ifki alternates between 2 an 3,
i.e.,ki = imod 2+1 (cf. Fig. 11). It is easily seen using the pigeonhole-principle that
any smaller

∑

ki leads toX-anchors.

Corollary 5.18. Any expressionα can be converted to a unique normalized FAA s.t.

|A| ≤
22

15
|α|+ 2 = 1.46|α|+ 2

Proof. Let µ be a smallest worst-case expression according Thm. 5.17 whose size is at
least that of a given expressionα. Let n denote the number of factors inµ. We then
have|µ| = 15n− 1 and|Aµ| = 22n+ 1. Thus the conversion ratio forµ is

c(µ) =
22n+ 1

15n− 1
=

22

15
+

37

15|µ|

With |α| ≤ |µ| andc(α) ≤ c(µ) we find

|Aα| = c(α)|α| ≤ c(µ)|α| =
22

15
|α| +

37

15|µ|
|α| ≤

22

15
|α| +

37

15

<
22

15
|α| + 3

Therefore|Aα| ≤
22
15 |α| + 2, and settingA = Aα yields the claim.

This finishes our analysis conversion ratio, i.e., the size of an FA relative to the size
of the expression it is derived from. Let us stress again thatthe conversion ratio of an
expression reaches the bound given in Cor. 5.18 iff the expression admits the structure
given in Thm. 5.17.

24

n−1

x1x1

x2x2

x3x3

x4x4

x5x5

Figure 13: Automaton constructed fromµn (ε-labels are omitted).

6. Optimality of the Construction
We provide a lower bound on conversion ratio, i.e., one that holds foranyconstruc-

tion. Our argument is again based on the digraph underlying an FA.

Proposition 6.1. Let L andR be disjoint sets of vertices in a digraphG, s.t. the
following path-conditions are satisfied

1. There is a path from eachl ∈ L to everyr ∈ R in G.
2. There is no path between any two vertices ofL, nor any two vertices ofR.
3. There is no path from anyr ∈ R to anyl ∈ L.

ThenG contains at leastmin{|L||R|, |L|+ |R|+ 1} additional elements

Proof. SupposeG contains a path from eachl ∈ L to everyr ∈ R. Note that these
paths need not be disjoint. We distinguish whether there is avertex on some path from
L toR

1. If there is no such vertex on any path, the members ofL andR are pairwise
adjacent — thus, at least|L||R| additional arcs are present inG.

2. If a vertexx occurs on a pathP from l ∈ L to r ∈ R, thenx /∈ L ∪ R, or the
third path-condition would be violated. NowP contains at least three elements,
x and two arcs. Consider the remaining vertices ofL andR: everyr′ ∈ R \ r
is the endpoint of a path froml, so every suchr′ is the endpoint of an arcar′ .
Likewise, everyl′ ∈ L \ l is the tail of an arcal′ . By above path-properties, no
pairar′ , al′ coincides. HenceG contains3+(|L|−1)+(|R|−1) = |L|+ |R|+1
additional elements.

We investigate the FAs built from a family of expressions with worst-case structure
according to Thm. 5.17. These expressions are defined over analphabet of size 5,
which is the least size for which the proof of the following Lemma works.

µn :=

n
∏

i=1

(x∗1 + x∗2)(x
∗
3 + x∗4 + x∗5)

The FA constructed fromµn by our construction is sketched in Fig. 13. In the proof
of the following, we consider maximal repetitions of a letter in a word. Given a word
w = w1x

nw2, s.t.w1 6= w′
1x andw2 6= xw′

2, we callxn anx-block, or justblock, of
w. For example, the blocks ofaaabba areaaa, bb anda.

25

Lemma 6.2. The size of a normalized FA acceptingL(µn) is at least22n+ 1.

Proof. LetA be a normalized FA acceptingL(µn). In particular,A accepts all words
of L(µn) that contain the maximal number of blocks, which is2n. Every such word
admits the structure

w = b1b2 · · · b2n,

wherebi is anx1- or x2-block if i is odd, and anx3-, x4- or x5-block if i is even. A
block can be arbitrarily long, so it must be read in a cycle. Let γi,j denote the cyclic
part ofA reading a blockbi which is anxj-block and letqi,j be a state ofγi,j .
First we show that ifγi,j reads a blockbi of w ∈ L(µn) andγi+k,j′ reads a block
appearing afterwards inw, thenA contains a path fromqi,j to qi+k,j but no path back:
Since both cycles are involved in an accepting run ofA on w, there is a path from
γi,j to γi+k,j′ , hence also fromqi,j to qi+k,j′ . Now assume thatA also contains a
path fromqi+k,j back toqi,j′ . If j 6= j′, meaning thatγi,j andγi+k,j′ read blocks
consisting of distinct letters, then the number ofxj - andxj′ -blocks in a word accepted
by A is unbounded, since an accepting path can go back and forth between the two
cycles, possibly reading some interspersed subwords alongthe way. In casej = j′,
i.e., both blocks arexj-blocks, somexj′′ -block bi+l occurs betweenbi andbi+k in w,
s.t. j 6= j′′ and1 ≤ l < k. Again, this would imply that the number of blocks in a word
accepted byA is unbounded. In either case the existence of such a path violates the
property that the number of blocks in a word ofL(µn) is bounded, hence no backward
path exists.
Next we show that there is no path between a pair of cyclesγi,j andγi,j′ that allow for
the i-th block to be anxj- resp. anxj′ -block. AssumeA contains a path fromqi,j to
qi,j′ , then a word could be accepted as follows: first,i blocks are read on a run from the
initial state toqi,j , then the path toqi,j′ is taken, then anxj′ -block is read and finally
2n− i more blocks fromqi,j′ to the unique final state. This adds up to2n+ 1 blocks,
contradicting the bound on the number of blocks inw ∈ L(µn). Therefore, no such
path exists.
The properties above imply that each distinct pairγi,j , γi′,j′ is disjoint. Considering
γi,j , there are 2 values possible forj if i is even and 3 values ifi is odd. Therefore,
there are at least5n distinct cyclic structures inA. Every such structure consists of at
least a state and a transition, henceA contains no less than10n elements to read the
single blocks. We have further shown thatA contains a path fromγi,j toγi′,j′ iff i < i′;
transitive reduction shows that this requires at least a path fromqi,j to qi+1,j′ . Assume
i is even (the case thati is odd is symmetric), then the sets of statesL = {qi,1, qi,2}
andR = {qi+1,3, qi+1,4, qi+1,5} satisfy the conditions of Prop. 6.1. SoA contains at
least 6 additional elements for each1 ≤ i ≤ n − 1 to realize reachability among the
γi,j . Moreover there is a separate initial stateq0 with paths fromq0 to γ1,1 andγ1,2, as
well as a separate final stateqf with paths fromγn,3, γn,4 andγn,5 to qf ; every such
path has at least one transition. ThusA contains at least22n+ 1 elements.

Corollary 6.3. Let A be any normalized FA acceptingµn. Then the size ofA is
bounded from below as

|A| ≥ 1.46|µn|+ 2

26

Proof. If A is a normalized FA acceptingL(µn) Lem. 6.2 yields|A| ≥ 22n+1 which
relates to|µn| = 15n− 1 as follows

|A| ≥ 22n+ 1 =
22

15
|µn| +

22

15
+ 1 ≥ 1.46|µn| + 2

7. Implementation Details
We propose three preprocessing-steps on an input, all of which can be realized in

a bottom-up fashion on the parse of an expression in linear time. These steps consid-
erably reduce the effort necessary to implement EFA-conversions, as will be discussed
below.

Remove all occurrences of∅: It is well-known that any expression either de-
scribes the empty language or can be made free of∅, i.e., eitherL(α) = {} or
|α|∅ = 0. This is realized by rewriting an expression according to the following rules:

- replaceα∅ and∅α with ∅

- replaceα+∅ and∅+ α with α

- replace∅∗ with ε

Remove redundant occurrences ofε: Everyε that does not occur as an addend
in an otherwise non-nullable sum can be removed. Applying the following rewritings in
a bottom-up fashion to an expression removes all instances of ε as mentioned, without
altering the denoted language.

- replaceαε and εα with α

- replaceα+ ε and ε+ α with α, if α is nullable

- replaceε∗ with ε

Let reduce(ρ) denote the expression yielded from applying above preprocessings
in their given order toρ, the resulting expression is calledreduced. The removal ofε in
a sum is not reflected by the EFA-conversions; still, it reduces the size of the final FA
by at lest one and possibly allows for additionalY -eliminations. Notice that this step
does not influence worst-case analysis.

Compute the star normal form: sinceSNF is implicitly realized by the given
conversions, it can as well be computed directly fromα.

Let ρ be theSNF of a reduced expression, i.e.,ρ = (reduce(ρ′))•. Thenρ comes
with several properties that can be exploited in order to reduce code complexity and
absolute running time of an implementation (asymptotic running time is not affected).

27

1. If |ρ|∅ > 0, eitherρ = ∅, in which case a trivial FA is returned, whereas
otherwise,∅ may occur as an addend. This is due to the fact that∅ can be
introduced again by computing theSNF, as seen with the example

((x+ ε)∗)• = (x +∅)∗

In a reduced expression,ε only occurs as an addend; this carries over to∅ after
computing theSNF. Thus∅-elimination can be anticipated by immediately dis-
carding∅-transitions that emerge from sum expansion. Moreover, every state of
the resulting FA lies on some accepting path, so cleaning up useless states needs
not be implemented.

2. As we argued in Lem. 5.2, an expression inSNF does not lead toO-anchors
upon conversion. Hence, the detection and elimination ofε-cycles needs not be
implemented. Still, note thatε-cycles can be detected in linear time, as discussed
by Ilie & Yu [6].

3. We eliminateY -anchors as soon as they appear. This saves the effort of book-
keeping or later searches. AnY -anchor emerges with the introduction of an
ε-transitiont = (p, ε, q) wherep+ = 1 or q− = 1. For preprocessed inputs,
ε-transitions only arise from sum- or star expansion; however, in the case of sum
expansion the degree constraints are certainly not satisfied. Therefore, it suffices
to check right after star expansion whether one of the involved states is central
to anY -anchor, and if so, applyY -elimination.

Starting fromA0
α, for preprocessedα, the algorithm proceeds in three phases ac-

cording to Cor. 3.4. First, exhaustive expansion with embeddedY -elimination com-
putesXα. Then an elimination order that satisfies(X2) is computed on theX-anchors,
resp. their central states. The subgraph ofXα consisting of these states and theε-
transitions among them is acyclic, therefore it is sufficient to compute a topological
sort on this subgraph (see e.g. [14]). Eliminating theX-anchors in descending topo-
logical order yieldsZα. Finally, Z-elimination is carried out respecting(Z2); this is
realized analogous toX-elimination.

In Alg. 1, QX denotes the states that are central toX-anchors and≺X denotes a
topological order onQX . Note that a singleX-elimination can remove several adjacent
X-anchors (see Fig. 4b), so when choosing a≺X -minimal stateq, we need to test
whetherX [q]-elimination is still applicable. Since no newX-anchors are introduced
byX-elimination, these actions suffice to computeZα through valid conversions. This
process is repeated forZ-elimination which has the same properties in that regard.

Each step of the algorithm can be implement in time linear in the size of the input
expression. ThusAα can be constructed inO(|α|).

8. Conclusions
We presented a construction of finite automata from regular expressions by means

of EFA-rewritings. This system is a refinement of a very earlymethod proposed by Ott
& Feinstein in 1961. Our version comes with a set of rules thatdecrease the size of
intermediates in the construction by replacing substructures that are rich inε-transition
with smaller equivalents.

28

Algorithm 1 : Proposed implementation with preprocessing.
Input : Regular expressionρ overA, s.t.L(ρ) 6= ∅
Output : Finite automatonA acceptingL(ρ)
ρ← reduce(ρ)
ρ← ρ•

A← ({q0, qf},A, (q0, ρ, qf), q0, qf)
while A has complex labelsdo

choose and remove complex transitiont = (p, τ, q)
switch τ do

caseαβ
add stater
add transitions(p, α, r), (r, β, q)

end
caseα+ β

if α 6= ∅ then add transition(p, α, q)
if β 6= ∅ then add transition(p, β, q)

end
caseα∗

add stater
add transitions(p, ε, r), (r, α, r), (r, ε, q)
if p+ = 1 then applyY [p]-elimination
if q− = 1 then applyY [q]-elimination

end
end

end
computeQX ⊆ QA and≺X

while QX 6= ∅ do
QX ← QX \ q for ≺X -minimal q
if q−=q+=2 then applyX[q]-elimination

end
computeQZ ⊆ QA and≺Z

while QZ 6= ∅ do
QZ ← QZ \ q for ≺Z-minimal q ∈ QZ

if Z[q]-elimination is applicablethen applyZ[q]-elimination
end

29

We showed that the resulting automata are unique if a partialorder is enforced on
the applicability of conversions. A further feature of our construction is that the output
is invariant under taking the star-normal-form of the input. Both properties are crucial
in providing a minute comparison of input- to output size.

The size of automata constructed by our method was analyzed by inferring the
structure of expressions that maximize the ratio of input- to output size. These expres-
sions are enumerated by repeating an atomic subexpression;their conversion ratio, for
all practical purposes, is2215 , or 1.46. For every expression our construction therefore
provides an automaton whose size is at most1.46 times the size of the expression. It
was shown that this value is tight for expressions over alphabets of size at least five,
which makes the construction optimal. It remains an open question whether this bound
is tight for smaller alphabets, too.

We finally proposed some modifications of the formal rewriting system with re-
spect to an actual implementation. These consist of a seriesof preprocessing steps and
several shortcuts in the construction. In effect, these modifications reduce the effort to
detect or keep track of certain elimination anchors, which considerably reduces code
complexity.

[1] S. C. Kleene, Representation of events in nerve nets and finite automata, Annals
of Mathematics Studies, 3–41, 1956.

[2] B. W. Watson, A taxonomy of finite automata construction algorithms, Tech.
Rep. Computing Science Note 93/43, Eindhoven University ofTechnology, URL
citeseer.ist.psu.edu/watson94taxonomy.html, 1994.

[3] J. E. Friedl, Mastering Regular Expressions, O’Reilly,3 edn., 2006.

[4] K. Ellul, B. Krawetz, J. Shallit, M.-W. Wang, Regular expressions: new results
and open problems, Journal of Automata, Languages and Combinatorics 10 (4)
(2005) 407–437.

[5] M. Holzer, M. Kutrib, Descriptional Complexity — An Introductory Survey, in:
C. Martín-Vide (Ed.), Scientific Applications of Language Methods, 1–58, 2010.

[6] L. Ilie, S. Yu, Follow automata, Information and Computation (186) (2003) 140–
162.

[7] S. Gulan, H. Fernau, An Optimal Construction of Finite Automata from Regular
Expressions, in: R. Hariharan, M. Mukund, V. Vinay (Eds.), 28th International
Conference on Foundations of Software Technology and Theoretical Computer
Science, 211–222, 2008.

[8] V. M. Glushkov, The abstract theory of automata, RussianMathematical Surveys
16 (1961) 1–53.

[9] R. McNaughton, H. Yamada, Regular Expressions and StateGraphs for Au-
tomata, IRE Transactions on Electronic Computers 9 (1) (1960) 39–47.

[10] A. Brüggemann-Klein, Regular expressions into finite automata, Theoretical
Computer Science 120 (1993) 197–312.

30

[11] G. Ott, N. H. Feinstein, Design of Sequential Machines from Their Regular Ex-
pressions, Journal of the ACM 8 (4) (1961) 585–600.

[12] M. Newman, On theories with a combinatorial definition of ”equivalence”, An-
nals of Mathematics 43 (2) (1942) 223–243.

[13] G. Huet, Confluent Reductions: Abstract Properties andApplications to Term
Rewriting Systems, Journal of the ACM 27 (4) (1980) 797–821.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms,
The MIT Press, 3 edn., 2009.

31

