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ABSTRACT. We consider the construction of finite automata from theiresponding regular expressions
by a series of digraph-transformations along the exprassaétructure. Each intermediate graph represents an
extended finite automaton accepting the same language heinaater of our construction allows a fine-grained
analysis of the emerging automaton'’s size, eventuallyitepit an optimality result.

1 Introduction

Regular expressions provide a description of regular laggs in a manner convenient for the hu-
man reader. On the machine level, however, the most apptepepresentation is arguably that of
finite automata. Thus, considerable effort has been putviatgs of constructing automata describ-
ing the same language as a given expression. All algorithmosvk to the authors work by either
incorporating the expression’s syntactic structure itte state graph of the emerging automaton
[OF61, Kle65, Tho68, SSS88, 1Y03] or by looking for first-Bneccurrences of symbols in subex-
pressions [Glu6l, MY60, BS86]. The first kind of construatigenerally results in an NFA with
e-transitions éNFA, for short), the latter produces no such transitionsraagt even provide a DFA.
An exhaustive overview is given in [Wat94].

Our construction yields aaNFA. No tight bound for the size of such an automaton reptasgm@
given expression has been published yet. llie & Yu [I'Y03] egonetty close, proving a lower bound
of % times the size of a given expression while constructingMRA smaller than% times the ex-
pression length. We close this gap by raising the lower b@untigiving a construction reaching that
bound in the worst case. Note, however, that plenty of dadimstof the sizes of automata and regular
expressions are afloat, some of which are compared in [EK$WRE comparability, we stick by
the definition given in [IYO03].

The algorithm presented in this paper is basically an eidarts the one given in [OF61], which is,
together with a variation of Thompson’s algorithm in [Weli3te only top-down algorithm among a
variety of bottom-up procedures. It turns out that the topsa character is very helpful in the analy-
sis, since it allows systematic construction of an expogsgielding the worst ratio of automaton-to-
expression sizes. This construction relies on extremabauatorial arguments for inferring structural
properties of a worst-case input. To our knowledge this isvehapproach to this kind of problem.

2 Preliminaries

Enclosing braces for singleton sets will be omitted. Mebe a finite set of symbols, calledphabet
the elements afdUe will be calledliterals. The set of regular expressions ovérdenotedReg(.A),
is the closure ofAUe under produce, sum+ and Kleene-stafr. Operator precedence:ise, 4. We
will casually speak obxpression®nly. In the following,a and S will always be expressions. The
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regular language expressed dbys denotedL(«). We will call « and B equivalent denotedv=, if
L(a)=L(p). The number of products (sums, starsyiwill be denoteda|s (|a|+, |«|). Likewise,
the number of literals im, counted with multiplicity, will be denotei| 4. Thesizeof an expression
is defined asa|:=|a|o+|o|+ +]|a|+]|a| 4. We calla complexif |a| > 2. The set of subexpressions
of « will be denotedsub(«).

Both iterated products and sums will be denoted as is commarithmetic, defining

n n
Huci ‘=njenre...en, and szi =ap o+ ..o+ ay,
i=1 i=1
Eacha; as above will be called amperandto the product or sum. An iterated product (sum) which
is not operand to a product (sum) itself, will be calledximal If all operands in a maximal product
(sum) are starred, it will be callestar-maximal

An extended finite automatpshortEFA, is a 5-tupleE=(Q, A, J, g0, F), wheregqoeQ, FCQ, and
JCQxReg(A)xQ. This renders conventional FAs a special case of EFAs. AnigEAllednormal-
ized if [F|=1. Apair(q,w) € Qx.A* is calledconfigurationof E, valid changes iit’s configuration
are denoted b, writing (g, vw) F (9', w) if (g,&,4")€d andveL(«). The language accepted By
is L(E)={w|(q0,w) F* (q5,€),q5 € F}, wherel-* is the reflexive-transitive closure bf

The class of regular languages is not extended by allowigglae expressions as labels in au-
tomata, see [Woo87] for a proper introduction. The size ofE#A E is |E|:=|Q|+|é|. The
sets of transitions leaving and reaching sog@Q are given byg™:=0N(gxReg(.A)xQ) and

g :=0N(QxReg(A)xq), respectively. A set of transitions = {(g;,a;,qi41)|1<i<n—1} U
(qn, an,q1) is calledcycle

Let A be a FA generated from by some algorithnC. We call % the conversion-ratioof C with
respect tae. The maximal conversion-ratio 6fwith respect to any expression, will simply be called
conversion-ratio o€. An expression reaching this bound is said tonmest-case

3 A Lower Bound

First we improve on a lower bound fany construction of FAs from expressions, given by llie & Yu
in [IY03], by a slight variation of their argument. To thisara property of digraphs is shown, in
which we refer to both vertices and arcsedsments

PROPOSITION 1. Consider a digraphV, A). LetL, R be nonempty, disjoint subsets Wfsuch that
1. there is a path from eadte L to eachr € R,
2. there is no path connecting any two vertitgs € L or anyr,r' € R.

Then at leastmin{|L||R|, |L|4+|R|+1} elements are necessary to realize these paths.

PROOF  Two cases need to be considered:
1. There is no vertex on any path connectingith . This can only be realized witlL||R| arcs,
by pairwise connections.
2. There is at least one vert&on a path connectiny €L with r,€R, this path contains at least
3 elements. To connedj with the vertices ofR\r, at least|R|—1 further arcs are necessary.
An additional|L|—1 arcs are leaving the vertices bf/,. These numbers total {&.|+|R|+1.
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Next we show the actual lower bound. Both states and transitof an FAA will be called elements,
the number of elements is simpl\|.

THEOREM 2. Letx;; be distinct literals, consider the expression

n

& = H(xzi—l,l + X9 12) (X531 + X319 + X33)
i=1

= (¥ +x12) (021 +x0+293) - - (X211 +X20-1,2) (X201 T X202+ X2,3)
Any normalized automatoA satisfyingL(A) = L(«) has at least siZ&2n + 1.

PROOF  In A, eachx;; is read on some cyclg;; comprising at least one transition incident to
a statey; , i.e., 2 elements. Thei,j are disjoint, since literals of the same factor occur miyual
exclusive and literals of different factors are orderedxbyThus5n cycles, accounting for at least
10n elements, are required. As for the connectivity of cyclespath may lead fromy; ; to ;. if

j # k, however, there need to be paths frgf) to ;1. This carries over to the connectivity of
theg; ;, thus each two sets of statgg andg; 1 satisfy the conditions given in Prop. 1. Since one
of the sets contains 2, the other one 3 states, by Prop. lsit@ealements are needed to ensure
connectivity. As there argn—1 such pairs]2n—6 elements are needed to connect them. This totals
to 22n—6 elements, additionally, 2 states and 5 transitions aressecg to ensure a normalized FA.
For the following, note that from Thm. 2 has siz&5n — 1.

COROLLARY 3. The conversion-ratio of any algorithm converting expressito normalized FAS is
bounded from below by

Al _22n4+1_ 22 1 1
— > —— > —+ — =146+ —
T TBio1° 15 4 Tl

4 Construction

The idea is to expand an initial EFA according to the striectfrthe expression, by introducing as
few states and transitions as possible, while decomposimgition labels. Certain substructures in
the expanded automata will be replaced by smaller equitaldimis is done until aaBNFA emerges,
i.e., there are no more complex labels.

DEFINITION 4.[Expansion] LetE = (Q, A, J,qo, F) be an EFA with a complex labeled transition
t. We call an EFAE' = (Q', A, ¥, q0, F) theexpansiorof E, if it is derived fromE according to the
label oft as follows:
- if t=(p,ap,q) thenQ" = QUp', 0" =6\ tU{(p,a,p"), (p", B,q)}
- if t=(p,a+p,q) thenQ' = Q,8" =5 \tU{(p,aq),(p.B,9)}
- if t=(p,a*,q), we distinguish several cases
*0: if p = q, replacex™ with «,
letQ' =Q,8 =6\tU(q,a,9)
«1: if |p™| = |g7| =1, mergeg into p:
letQ"=Q\q,0" =36\ (g" Ug ) U{(p,7.1)l(q,7,r) €5} U(p,a p)
«2: if |p™| > 1, |g~| =1, introduce a loop im:
letQ'=Q, 0" =5\tU{(p,eq) (9,a79)}
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Figure 1: Expansions of complex labeled transitions.

«3: if |p™| =1, || > 1, introduce a loop irp:
letQ' = Q, 8" =5\ tU{(p,a,p) (peq)}
x4: if |p™| > 1, |g~| > 1, introduce a new state :
letQ" = QuUp', &' =d\tU{(p.ep) (P, p) (P €q)}

Cases are sketched in Fig. 1. Expansions will be denotetioredd, writing E <; E’ if E’ results
from expansion of in E. Occasionally we writed,, <1, <l,; to indicate which case of Def. 4 is
applied, or simplyE <1 E’, if both t and the case are irrelevant. The latter might be formalized a
< = <o U <y UUp<icq <si- Then-fold iteration of < will be denoted<t”, thus if E <" E’ there

is a series of EFAE;, 0 < i < n, such thatE = Ey, E; < E;1, E, = E’. Usually we refer to
<(g,,4) DY Mentioninga’s operator, e.g,s-expansion’. Distinct-expansions will be referred to as
"x0-expansion’ to ¥4-expansion’ according to Def. 4.

DEFINITION 5.[Primal EFA] Let A be the least alphabet satisfyinge Reg(A). The EFAAY =
({q0.97}, A, (q0, a, qf) qo0,qr}) is called theprimal EFA representinge. We denote byAi any
automaton satisfyingld <i' Al

Thus, A}, denotes any EFA derived from the primal automaton repraggntin a series of expan-
sions. Note that generallyd’ is not unique. However, a most useful property<ofs that the order
of expansion is irrelevant, or formally:

LEMMA 6. < is locally confluent, i.e., iA << A" andA <t A”, then3 A" : A’ A" andA” < A" .

PROOFE  Given in the appendix.
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Table 1: Number of elements introduced (i.e., removed, if negatiygn expansion and elimination, broken
down to states and transitions.

COROLLARY 7. < is confluent.

PROOFE  Since<« is terminating, the claim follows from Lem. 6. Detailed pfad this argument
can be found, e.g., in [Hue80].

We introduce two further conversions of different naturgerang EFAs with respect te-labeled
substructures.

DEFINITION 8.[State-Elimination] LeE=(Q, A, J,qo, F) be an EFAg € Q\F. We consider two
types of state-elimination, based g¢h andq™:
- Y-Type :q-=(p,e,q), g ={(q,21,71), ..., (q,2n,7n) }.
Then, lets’ =5\ (g7Uq ) U{(p,a1,71),..., (p,an, 1)}
- X-Type:q~ = {(pv.€,q), (P2 e )} a" ={(ger) (q.€12)}.
Then, lets’ =6\ (g7Uq~ ) U{(p1,€,1), (p1,€12), (P2, €,11), (P2,€,12) }
Theg-reductof E is defined a£’ = (Q\q, A, ', q0, F) and we writeE >, E'.

By reverting the transitions for Y-Type elimination, a tuet rule—though not structurally different
from the given Y-Type—is obtained.

DEFINITION 9.[eCycle-Elimination] Lety={(q;, €,q;)|1<i<n} be a cycle oE=(Q, A, J,qo, F).

LetQ = Q\{q1,...,qn} Ugy ands’ = 6\y U {(p, &, q,)|(p, &, q:) € 6} U{(qy, B, 7)|(q:, B, 7) €
0}. The~y-reductof E is defined a£ = (Q', A, ¢, g0, F).

Note that both state- and cycle-eliminations strictly i@lthe size of an EFA without re-introducing
complex labels. Eliminations are illustrated in Fig.2.

Exhaustive application of expansions and eliminationd {qor any EFA, for that matter) yields an
eNFA. A primitive algorithm is given below.

5 Analysis

Let A, denote areNFA constructed by our algorithm from?. We start by boundingA,| from
above. To this end, we refine the definition|ef,. Let |«|,; denote the number of starsdnthat will
be xi-expanded. Clearlyn|. = Y g<;<q |/
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Algorithm 1 RegEx— eNFA
A—AY
while A is not an NFAdo
choose a complex-labeled transitibim A
let A<, A
if < introduced some = (g, ¢,4’) then
if g can be eliminatedhen
let A" >, A"
A/ - A//
if g’ can be eliminatethen
let A’ D>y A"
Al — A/l
if e is part of somes-cycley then
let A’ >, A”
Al — A/l
A— A
end while

THEOREM 10. The size of an automaton built fromby our algorithm is bounded by
[ Al < la| +2|a)sq — ||y +2

If this bound is tight then neither state-elimination rOy x1-expansion is applied.

PrRoOF  AY is of size 3. The number of elements introduced upon exparisidetermined by
|afe, ||+, ..., weighted by the entries in Tab. 1. Usihg| 4=|a|e+|a|++1 and |a| = |ale +
|| + |&)s0 + - - - +|a]ia+|a| 4, this yields:

[Ael < 2[ale + |als — |l + |afi2z + 3[alu + 3
= o]+ [afo — [l — 2|a)i1 + 2af g — afa +3
< laf o+ fafe 4+ 2fafis — fala+3
= o] +2lafug =[]y 42
The first inequality results from state- asitycle eliminations, the second frofd- andx1-expansions,
thus equality holds in absence of these transformations.

The conversion ratio of a worst-case expression can be reactdiately from this term; since we
will refer to this quotient rather often, we restate it exitly in

COROLLARY 11. Let« be worst-case, then

Adl _ y, 2lala = lal: +2
« «
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Figure 3: Transformations respect the equivalences given in Profe-12bels are omitted).

PrRoOPOSITION 12. Both sides in each of the following equivalences will be exged to the same
(sub)automaton:

(a*)*=a* and (szi)*z(Za_i)* and (Huc,*)* = (ZIX:’)*
wherew; = B;, if a; = B} andw; otherwise.

PrROOFE  The first two equivalences are realized#f}yexpansion, the third by-cycle-elimination.
Examples are given in Fig. 3.

COROLLARY 13. Leta be worst-case, then|.o=|«|.1=0, further both a sum with starred operands
and a maximally starred product are not starred themselves.

PROOE By Prop. 12 we know that such sums and products would lea@-{e1-expansions and
eliminations. Since for worst-case expressions equaliffiim. 10 holds and thus said conversions
do not occur, the claim follows.

We proceed with a series of results, each putting additioaattraints to the structure of a worst-
case expression. Almost all proofs work by a line of argumon that is common in extremal
combinatorics: assume is worst-case, i.e., extremal with respect to conversatioy then infer
some further property by contradicting extremalitynof

PROPOSITION 14. A worst-case expression contains stars.

PROOF  Leta be worst-case withu|,=0. Cor. 11 |mpI|es|| |‘ < 1+ﬁ, the right-hand side of

which drops belowi 4, if |«| > 5. Since by Cor. 3, the conversion-ratio is bounded from bdigw
1.46, the assumptiof|. =0 is wrong, ifa is worst-case.

LEMMA 15. Let* be a proper subexpressionsofTheny* will be x4-expanded iff
- it is operand to a sum which is not starred, or
- without loss of generality it occurs rightmost in a starxinaal product.

PROOF  The first case is clear by looking at the expansion of sqinep: If a transition labeled
like this is a loop,y* will be x0-expanded, otherwise it will definitely bel-expanded.

The second case is more involvedyIfis an infix, saypx,y*a,, we distinguish 3 cases: If both are
non-starred;y™ will be x1-expanded. If only one of the; is non-starred, theny* can bex2- or *3-
expanded by introducing a loop at the state incident to tiesttion labeled with the non-starrag
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Finally, if botha; are starred, we can by confluence assume that expansiorisewitiplied from left
to right. Then, every starred factor will b2-expanded until the final one necessitatésexpansion.
This embraces all possible cases, giving both directiortkeoftatement.

LEMMA 16. Leta be worst-case, assumécsub(w) is x4-expanded. Then* is operand to a sum.

PROOF ByLem. 15" is either operand to a sum or rightmost in a star-maximalyrbdAssume
the latter, thust = 7ij e ... @ 17 | @ 4*. Construct’ from « by replacingr with o = 7+ ... +
mh 1+ Then|a|=|a’|, however2|a'|.4—|a'|+ = 2|a|.a—|a|++n—1. Since by Prop. 12r is
not starred iny, the stars i will not accidentally become0. By Cor. 11, ‘ﬁ;"' > ‘ﬁj'
worst-case. Thereforg* is necessarily operand to a sum.

The interrelation between sums and stars in a worst-cagessipn is further tightened in the fol-

lowing

, thusw is not

LEMMA 17. Letwn be worst-case. Then
1. every starred subexpressionuiis operand to a sum and
2. all operands in a maximal sum are starred.

PROOF

1. Assumey*esub(a) will not be x4-expanded. Construet’ from a by replacingy* with 1.
Since|a’|=|a|—1, yet|a'|.a=|a|.4, Cor. 11 again yieldé%‘,““ > |ﬁj|, thus« is not worst-
case. Therefore each star in a worst-case expression estij4-expansion, thus by Lem. 16
operand to a sum.

2. Let)_ o; be maximal with some; unstarred, i.e., a product. Construttfrom « by replacing
oj with o". This newly starred expressions will bé-expanded (Lem. 15). Then'| = |a|+1,
'] 4 = |a|+4+1 and by Cor. 11|A,/| = |Ax|+2. Now

Al _ 1A +2 |4

W T Jal+1 ] iff |Ay| < 2a]
We proceed similar to the proof of Thm. 10, additionally gsthat the previous item implies
|l < 2[af
[Ael < 2lale + la|y — [afa + |alioz +3lala +3
= 2faf — |a|+ = 3lafir — |ali23 + |afia +3 — 2|a| 4
= 2la| = 2faly — |afe — 3lafu — [afis + |afu +2 = [af4
< 2la| = Jaly —2(afs +1

By assumption|a| > 1, any further binary operator pushes the right-hand sidtlgtbelow
2|a’|. Indeed, the only expression containing only epeas binary operator, that reaches a
conversion-ratio of 2, is] + x5, which is of claimed structure.

LEMMA 18. A worst-case expressianhas no subexpression of the form

¢=IL7)
i

PROOF  If ¢ € sub(a), e-cycle elimination would occur upon expansion. By Cor. 1dntfa would
not be worst-case.
This allows us to provide a pretty detailed template of a woase expression:
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LEMMA 19. Leta be worst-case. Then the structurexas

n ki
— * ..
o= | 1| E 1‘71‘]‘ where o;; € A
i=1j=

PROOFE By Prop. 14, a worst-case expression contains starredkgrgssions, so fix somez."]‘.
which is by Lem. 17 operand to a sum. A maximal sum with stags fctor, since it may not be
starred itself and is already maximal. Furthgf,is necessarily a maximal product. If its operands
were maximally starred sums, this would contradict Lem.th8so;; is a product of literals. Then,
oi; influences the conversion-ratio as given in Cor. 11 only gyeingth, which has to be minimized
in order to maximize the ratio. Thus; is a symbol from the alphabet. From Lem. 18 it also follows
thatw itself may not be starred.

It remains to analyze the influence of the number of summathesc(in Lem. 19) on conversion-
ratio. This is done in the proof of our main

THEOREM 20. An expressionx is worst-case, if its structure is

n 2+(i mod 2)

=[] )Y xj; where x;; € A

PROOFE  Leta be of the general structure given in Lem. 19, the FA produged &eries of expan-
sions fromA¢ is sketched in Fig. 4. The sizes of these objects are

n n
o] = (n—=1)+)_(Bki—1)=3) k—1
=1 i=1

n n
Aol = Y dki+n—-1=4) k+n-1
i=1 i=1

thus the ratio is
| Ayl 4y ki+n—1 Yki+n
|| 3 ki—1 3Y ki—1

The fraction on the right-hand side is maximized; i maximal with respect tp_ k;, or equivalently,
if Y"k; is minimal. Two restrictions result from prohibiting staémination, namely thati : k; > 2
and ifk;=2 thenk; 1>2 andk; 1 >2 (if they exist). Thusg_k; is minimal, ifk; alternates between 2
and 3,i.e.k; =2+ (imod 2).

COROLLARY 21. The size of an automaton produced by our construction isdlmhby% la| + 1.
The construction is optimal.

PROOFE  The value is reached by the expression given in Thm. 20, wivigs proven to give the
maximal ratio of sizes. Since by Cor.%\zx\ + 1 is also a lower bound, the bound is tight, hence the
construction is optimal.

9
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Figure4: Automaton constructed from an expression as given in Lenfe-1&8bels are omitted).

6 Conclusions& Remarks

We have given a construction for converting regular expoessinto equivaleneNFAs. To our
knowledge it is the only provably optimal construction so fashould be mentioned that the gener-
ated automata differ from these constructed in [IY0O3] onhtlie effects of state-elimination. This
element is crucial however, both for raising the lower boasdvell as for upper bound analysis as
we did. On a practical detail, preprocessing the inpuethucedexpressions (as done in [IY03]) is in
part realized upon execution of our algorithm.

Treatment of2 in expressions can easily be added to our algorithm by cerisflit a literal through-

out the expansion/reduction-sequence and adding a final séenoving®-labeled transitions fol-
lowed by running some reachability algorithm. The final stélbreduce the size of the automaton,
thus the bound is maintained everiifdoes not count into the expressions’ size. Since we consider
@ as being of no practical relevance, it was omitted from fdrmeatment.

Maybe more interesting, Kleene-can be implemented by reformulatirgexpansions, where addi-
tional e-transitions need to be introduced. This yields smaller t&s by applying the equivalence
& = aa* (Which would double the number of elements introduced et it is not feasible with

the given bound.

Finally note that the construction not unique in the geneaak, since state-eliminations is not con-
fluent. This can be remedied by adding rules that take thenid-cait-degrees of the states adjacent
to the eliminated one into consideration, however this isatdhe attention of this paper. A closer
analysis will be available in a future article.
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A Appendix

LEMMA 6. < is locally confluent modulo isomorphism.
PROOFE  First, assume one of the transitions is labeled by eitheodugt or a sum:

- Lett; = (q,a e B,49"). Upon expansion a bridge-sta€ will be introduced, however the
number of arcs leaving and reachingand g’ will remain constant. The structure &f will
change insofar as that an arc will be elongated. Since<anwill at most have the effect ol
that one of its states might be renamed (updrexpansion), the order &fi;,, <, is irrelevant.

- If 1=(g,« + B,q’), informal reasoning is that an arc is merely doubled. LogkihDef. 4, the
booleans;™>1 etc. are not changed by such an operation.

Now let botht; be star-labeled. Note that the statement is trivial, if @gians take place in 'different
parts’ of the EFA, so lety, t, share at least a common state. If the transitions are platadign will

be x4-expanded anyway. Furthef)-expansion does not change the structure of the state-gitaph
all, i.e., neither of4, t, is a loop. So assumg = (p,a*,q), t» = (g, a*,7) wherep # g # r. Some

of the possible combinations are shown in Fig. 5, the remgiare a simple exercise.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.
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Figure5: Examples for confluence of expanding consecutive starestsitions. Isomorphism is denoted by

~



