
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Series Parallel Digraphs with Loops
Graphs Encoded by Regular Expression
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Abstract In the conversion of finite automata to regular expressions, an exponential
blowup in size can generally not be avoided. This is due to graph-structural properties
of automata which cannot be directly encoded by regular expressions and cause the
blowup combinatorially. In order to identify these structures, we generalize the class of
arc-series-parallel digraphs beyond the acyclic case. The resulting digraphs are shown
to be reversibly encoded by linear-sized regular expressions. Also, a characterization
of this new class by a set of seven forbidden substructures is given. Automata that
require expression of superlinear size must contain some of these substructures.

Keywords Digraphs, Regular Expressions, Forbidden Subgraphs

1 Introduction

A fundamental result in the theory of regular languages is the equivalent descriptive
power of regular expressions and finite automata, as originally shown by Kleene [18].
While regular expressions come natural to humans as a way to describe such a language,
automata are the objects of choice on the machine level. Consequently, converting
between these two representations is of great practical importance. There are several
linear-time algorithms to transform regular expressions into automata with size linear
in that of the input; a detailed overview is given by Watson [25]. The converse
construction, however, is considerably more troubling.

In particular, Ehrenfeucht & Zeiger [6] give a class of automata over a growing
alphabet for which the size of any equivalent expression is exponential in the number
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of states. An automaton of this class contains a transition among each ordered pair
of states, i.e., its structure is that of a complete digraph with loops. The smallest
expression equivalent to such an n-state automaton contains at least 2n literals.

This led Ellul et al. [7] to ask whether a similar blowup can be shown for automata
over a fixed alphabet. The question was answered in the affirmative by Gelade &
Neven [8] and independently by Gruber & Holzer [10]; the latter authors provided
a proof for automata over a binary alphabet already. This mostly rules out alphabet
size as a factor contributing to the exponential blowup, the modifier “mostly” giving
credit to the fact that automata over a unary alphabet can be converted to expressions
of quadratic size, using Chrobak’s normal form [4,7].

Intuitively, the exponential increase of expression- over automaton-size is due to
the fact that automata are combinatorial objects, whereas expressions are terms, i.e.,
linear objects, that must resort to repeated subterms in order to reproduce language
properties that ensue from the graph structure of an automaton. This was observed
quite early by McNaughton [20], who remarks that “although every regular expression
can be transformed into a graph that has the same structure, the converse is not true”.

This motivates to investigate the interrelations between the (size of) expressions
and the graph structure of corresponding automata. For example, automata constructed
from expressions by means of a particular method admit structural properties that
“reflect” both expression structure and the conversion method. The graph structure of
automata constructed by Thompson’s method has been analyzed by Giammaeresi et
al. [9]. A structural characterization of Glushkov automata has been given by Caron &
Ziadi [3]. See [25] for details of either construction.

Conversely, structurally restricted automata might allow for small equivalent
expressions. Optimally, said restrictions might be exploited in the conversion process
already. This was proposed for arc-series parallel substructures by Gulan&Fernau [12],
and an efficient conversion to linear sized expressions was given Moreira & Reis
[21] for automata that strictly adhere to this structure. The crucial feature of arc-
series parallel graphs is their recursive definition by two composition rules that relate
naturally to products and sums in regular expressions.

A prominent feature of arc-series parallel graphs among acyclic graphs is their
characterization by a single forbidden (directed) minor [24], i.e., a structure that
captures the complement of this class—among the acyclic graphs with a single source
and sink, that is. Korenblit & Levit [19] conjecture that overlapping copies of this minor
already cause a quadratic blowup in the size of expressions from acyclic automata
with a single source and sink. Moreover, Gruber & Johannsen [11] prove that the
blowup is already quasi-exponential for acylic finite automata (without source and
sink restrictions), namely nΩ(logn).

However, the restriction to series parallel structures inherently confines formal
treatment to finite languages. In order to accept infinite languages, automata need to
contain cycles, which evades the class of arc-series-parallel digraphs.

This motivates our generalization of arc-series parallel digraphs beyond the acyclic
case in Sec. 3. We augment the recursive definition of this class by adding a rule that
produces loops; we refer to the resulting graphs as “series parallel loop graphs”. This
new class is shown to be effectively decidable within all graphs with a single source
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and sink vertex. Following that, we give two alternative characterizations of our new
class.

In Sec. 4 we show that series parallel loop graphs are reversibly encoded by
regular expressions. Moreover, we will see that every regular expression encodes a
graph of this class. In fact, we give a bijection between our new graph class and the
class expressions modulo certain (trivial) properties of expressions. Encoding and
decoding are done in an automata-theoretic framework and are immediately applicable
to convert among automata and expressions. We find linear bounds of the relative sizes
of expressions and automata with series parallel structure in either direction.

In Sec. 5 we work out a forbidden subgraph characterization of our new class. We
show that the absence of seven structures—or five modulo arc-reversal—suffices to
imply that a graph is a series parallel loop graph. The characterization extends the one
mentioned for arc-series parallel graphs.

The characterizations given in Secs. 4 and 5 can be read independently; the first
touches matters of the complexity of regular language descriptors, while the second
deals with structural graph theory. These topics are briefly discussed together in Sec. 6.

2 Preliminaries

The terms set and class are used interchangeably. Binary relations are written infixed.
If R is a binary relation, then R−1 denotes its dual, and R? denotes its reflexive transitive
closure.

We consider finite directed graphs with loops and multiple arcs. These are canoni-
cally known as directed pseudographs but will be referred to just as graphs. Formally,
a graph is a tuple (V,A, t,h) with vertices V , arcs A, tail-map t : A→V and head-map
h : A→V . If G is not given explicitly, then let G = (VG,AG, tG,hG). The (directional)
dual of G is the graph GR, defined as GR := (VG,AG,hG, tG). We say that G and GR

arise from another by arc-reversal.
Let a ∈ AG s.t. tG(a) = x and hG(a) = y; we call a an xy-arc of G and write

a = xy ∈ AG for short. We also call a an out-arc of x and an in-arc of y. If a = xy ∈ AG,
then x and y are adjacent in G, and x is a predecessor of y while y is a successor of x.
If x is a vertex of a, i.e., a = xy or a = yx, then a is incident to x.

The in-degree of x ∈VG, denoted d−G(x), is the number of in-arcs of x in G, and
out-degree d+G(x) is the number out-arcs of x. A vertex x is simple in G if d−G(x)≤ 1
and d+G(x) ≤ 1. A constriction of G is an xy-arc where d+G(x) = 1 and d−G(y) = 1.
Distinct xy-arcs of a graph are parallel to each other. An xx-arc is called x-loop or just
loop, while an arc that is no loop is a proper arc. If l is an x-loop, then x carries l.

The graph G− x is derived from G by removing x from VG, all arcs incident to
x from AG, and restricting the tail and head maps to arcs that are not incident to x.
Likewise, removing an arc a from G yields the graph G \ a. Assuming that x is no
vertex of G, adding x to G yields the graph G+ x. If x and y are vertices of G, adding
a new xy-arc to G yields the graph G∪ xy. If the removal of vertices and arcs from G
yields F , then F is a subgraph of G, and we write F ⊆ G. If F ⊆ G, we say that G
contains F .
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To merge x and y in G yields the graph G[x = y], where, informally, x and y are
replaced by a new vertex z, and each arc incident to x or y is redirected to z. Formally,
this is

G[x = y] :=((VG \{x,y})∪{z}, AG, t ′,h′), where
t ′ ={(a,v) ∈ tG | v /∈ {x,y}}∪{(a,z) | (a,v) ∈ tG,v ∈ {x,y}},
h′ ={(a,v) ∈ hG | v /∈ {x,y}}∪{(a,z) | (a,v) ∈ hG,v ∈ {x,y}}.

To split x in G yields the graph G�x�, where, informally, x is replaced by
vertices x1 and x2 and an x1x2-arc and each in-arc of x is redirected to x1, while each
out-arc of x is redirected to x2. Formally, this is

G�x�:=((VG \{x})∪{x1,x2},AG, t ′,h′)∪ x1x2, where
t ′ ={(a,v) ∈ tG | v 6= x}∪{(a,x2) | (a,x) ∈ tG},
h′ ={(a,v) ∈ hG | v 6= x}∪{(a,x1) | (a,x) ∈ hG}.

An (x,y)-walk W of length n in G is a sequence W = a1, . . . ,an, ai ∈ AG, where
t(a1) = x, h(ai) = t(ai+1) for 1≤ i < n, and h(an) = y. We also say that W is a walk
from x to y. The vertices x and y are the endpoints of W , while every h(ai), for 1≤ i< n,
is an internal vertex of W . Notice that either endpoint might also be an internal vertex.
An internal vertex of a walk lies on this walk, and a walk passes through its internal
vertices.

An (x,y)-path in G is an (x,y)-walk s.t. neither x nor y is an internal vertex and
every internal vertex occurs exactly once. An (F,F ′)-path for F,F ′ ⊆ G is any (x,y)-
path where x ∈ VF and y ∈ VF ′ . A path in G is considered to be a subgraph of G. A
subgraph of a path P that is a path itself is called a segment of P. Two paths P1,P2 ⊆G
are internally disjoint if VP1 ∩VP2 contains no internal vertex of either path. A cycle is
an (x,x)-path, any (x,y)-path with x 6= y is also called proper. Let C ⊆ G be a cycle,
then a chord of C is any a = xy ∈ AG \AC with x,y ∈VC.

The proper path of length k ≥ 1 is denoted Pk. In addition, the path of length zero,
called the empty path is denoted P0. A proper xy-arc induces a P1 from x to y. To
subdivide the arc a = xy means to replace a by a P2 from x to y. A subdivision of
G is any graph that results from G by successively subdividing arbitrary arcs. Any
subdivision of G is denoted DG.

An abstract rewriting system (ARS) A on a set U is a structure A = 〈U,→1
, . . . ,→n〉, where each →i is a binary relation on U . We call U the universe, and
each→i a rule of A. A rewriting step in A is any member of any rule. If x→i y is a
rewriting step, we say that→i applies to x, and that→i rewrites x to y. More generally,
a rewriting of x to y in A is a sequence of rewriting steps

l1→i1 r1, l2→i2 r2, . . . , ln→in rn,

where l1 = x, ri = li+1 for 1 ≤ i < n, and rn = y. We say that x is→i-normal, if→i
does not apply to x. We further say that x is A-normal, or a normal form in A, if x is
normal for every rule of A.
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3 Series-Parallel Graphs with Loops

In this section we introduce the graph class which is the main subject of interest in
this work. This class consists of graphs that are “reached” within an ARS by rewriting
a smallest, explicitly given, member. A second ARS will be introduced to decide
membership. For convenience, the universe of either ARS is restricted to a class which
is now defined.

Definition 1 A hammock is a graph G with vertices src and snk, respectively called
the source and sink of G, s.t. d−G(src) = 0, d+G(snk) = 0, and every vertex of G lies on
a (src,snk)-path. The class of hammocks is denoted H.

We write (G,src,snk) ∈ H to express that G is a hammock with source src and
sink snk. If (G,src,snk) contains vertices x and y s.t. x lies on every (src,y)-path in
G, then x dominates y, while y is dominated by x. Symmetrically, if x lies on every
(y,snk)-path in G, x co-dominates y. If x dominates and co-dominates y, we say that x
guards y, resp. that x is a guard of y. If x and y coincide, the guard is trivial.

More generally, if F ⊆ G and x ∈VG co-/dominates or guards every y ∈VF , then x
co-/dominates or guards F in G. The domination relation is easily seen to be transitive
and antisymmetric. It thus induces a partial order on the vertices of a hammock. A
characterization for incomparability of vertices is given in the following;

Proposition 1 Let H be a hammock with source src and distinct vertices x and y.
Then exactly one of the following properties holds in H:

1. x dominates y
2. y dominates x
3. Some vertex z dominates both x and y, and H contains a (src,z)-path, a (z,x)-path

and a (z,y)-path, which are pairwise internally disjoint.

We consider three operations on hammocks which are presented in a relational
fashion.

Definition 2 The relations s⇒,
p⇒ and `⇒, called series expansion, parallel expansion

and loop expansion respectively, are defined as follows. Let (G,src,snk) ∈ H with
a = xy ∈ AG, then

– G s⇒ H, if H is obtained from G by subdividing a. Formally, H = ((G\a)+ z)∪
{xz,zy}.

– G
p⇒ H, if H is obtained from G by adding a further xy-arc. Formally, H = G∪ xy.

– G `⇒ H, if a is a constriction where x 6= src and y 6= snk, and H is obtained from
G by merging x and y. Formally, H = G[x = y].

The local changes in a graph are sketched in Fig. 1 for each expansion. Observe
that each expansion is indeed defined on H, and that the sources, resp. sinks, of G and
H coincide in each case. We set

⇒ := s⇒∪ p⇒∪ `⇒,

and write just G⇒ H if the particular kind of expansion from G to H is irrelevant.
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x y s⇒ x z y

(a) series expansion

x y p⇒ x y

(b) parallel expansion

x y `⇒ x,y

(c) loop expansion, for a constriction xy

Fig. 1: Changes in a graph upon expanding an xy-arc.

p⇒ s⇒ s⇒ `⇒ s⇒

Fig. 2: Construction of an spl-graph from P1 by a sequence of expansions.

Definition 3 The class of series parallel loop graphs, denoted SPL, is generated from
P1 by s⇒,

p⇒ and `⇒. It is the smallest set satisfying

– P1 ∈ SPL, and
– if G ∈ SPL and G⇒ H, then H ∈ SPL.

For brevity we speak of spl-graphs. The graph P1 is called the axiom of SPL. An
example for the construction of an spl-graph from P1 is shown in Fig. 2.

We observe that the connectivity among two vertices of a graph is invariant under
expansion, as long as neither vertex is removed.

Proposition 2 Assume G⇒ H where x,y ∈VG∩VH . Then G contains an (x,y)-path
iff H does.

A first property that relies on this fact is the following.

Proposition 3 Every cycle in an spl-graph is guarded by exactly one of its vertices.

Proof The claim is vacuously true for P1, so suppose it is true for (G,src,snk) ∈ SPL,
and let G⇒ H. It is easy to see that the claimed property carries over if H is derived
from G by means of s- or p-expansion.

For G `⇒ H let a = xy be the constriction that is expanded in G and let z denote
the merge vertex of x and y in H. We consider the cycles of H. The cycle that was
introduced with expansion consists of z and the loop l = zz. This cycle is guarded by
its only vertex and thus satisfies the claim. Let v,z ∈VG be distinct and assume neither
vertex is incident to a in G, which implies v,z ∈ VG ∩VH . We have already noticed
that the source and the sink of G and H coincide. Thus, following Prop. 2, v guards z
in H iff v guards z in G. Applying this to vertices of any cycle in H, this carries the
inductive assumption from G to H. ut

Corollary 1 SPL ( H
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Fig. 3: A hammock that does not belong to SPL

6 `⇐

Fig. 4: Effect of “reducing” a loop on sight. Although the left-hand side is an spl-graph,
the right-hand side cannot be further reduced to P1.

Proof The expansions are defined on H, so SPL⊆H follows from P1 ∈H inductively.
The hammock shown in Fig. 3 contains a cycle that defies Prop. 3, so the inclusion is
proper. ut

To decide the membership of G in SPL, we look for a sequence of expansions
from P1 to G. This is done inside a second ARS on H, wherein we construct such a
sequence backwards.

Definition 4 The relations s⇐,
p⇐ and `⇐, called series reduction, parallel reduction

and loop reduction respectively, are defined on H as follows. Let (G,src,snk) be a
hammock, then

– G s⇐ H, if y ∈VG is simple with predecessor x and successor z, and H is obtained
from G by removing y and adding an xz-arc. Formally H = (G− y)∪ xz.

– G
p⇐H, if G contains parallel arcs a and a′ and H is obtained from G by removing

one of them. Formally H = G\a.

– G `⇐H, if G contains an x-loop l s.t. x is not a guard, no loop is parallel to l, and H
is obtained from G by removing l and then splitting x. Formally H = (G\ l)�x�.

Reductions do not destroy the defining properties of a hammock, i.e., they are
also relations on H. We abbreviate the reduction relations as s-, p- and `-reduction.
Reductions are formally investigated in the ARS

R := 〈H,
s⇐,

p⇐,
`⇐〉.

Similar to expansions, we set

⇐ := s⇐∪ p⇐∪ `⇐

and write just G⇐ H if the particular type of reduction from G to H is irrelevant.
Notice that `-reduction is restricted wrt. the vertex which carries the loop. In

particular, this ensures that a loop is not `-reduced in the presence of parallel loops,
which might lead to false negatives (see Fig. 4). In that case, the restriction enforces
that p-reduction is applied before `-reduction “becomes applicable”.

It is important to realize that the reduction relation is not the proper dual of the
expansion relation. More precisely, we find

s⇐= (
s⇒)
−1

and
p⇐= (

p⇒)
−1

, whereas `⇐( (
`⇒)
−1
.
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This is due to the restriction on `-reduction. Consider Fig. 4 again: there, the left hand
side can not be `-reduced to the right hand side. However, the hammock on the right
can be `-expanded to the one on the left. Because of this asymmetry, there is actually
something to prove for the following result.

Proposition 4 G ∈ SPL iff P1 is an R-normal form of G.

Proof As stated before, G⇐ H implies H ⇒ G. From this, we infer that G⇐? P1

implies P1⇒? G, meaning that G ∈ SPL.
The converse direction is proven by structural induction. For G = P1 the claim

holds. Assume that the claim is true for G ∈ SPL and consider H ∈ SPL, derived
via G⇒ H. For G s⇒ H and G

p⇒ H, we find H s⇐ G and H
p⇐ G immediately. For

G `⇒H, let a= xy denote the constriction that is `-expanded, i.e., assume H =G[x= y].
Further, let z denote the merge vertex of x and y, and let l = zz denote the loop that is
introduced with expansion. We need to show that `-reduction is applicable to l in H,
i.e., that no loop is parallel to l and that z is not a guard.

Since xy is a constriction in G, it follows immediately that no loop is parallel to l in
H. For the sake of contradiction, now suppose that z is a guard in H. Then some vertex
k is guarded by z and the two vertices lie on a cycle C in H. Following Prop. 3, C is
guarded by exactly one of its vertices, which must be z. Consider the respective cycle
C′ in G that contains k, x and y. Since G ∈ SPL, Prop. 3 yields that C′ that is guarded
by exactly one of its vertices. This guard must be x or y, any other guard would also
be present for C in H (by virtue of Prop. 2), contradicting Prop. 3. However, x does
not co-dominate y, while y does not dominate x in H, thus neither vertex guards the
other. Therefore, none of its vertices guards C′ at all, which contradicts Prop. 3 once
again. Therefore, z is no guard, and H `⇐ G holds.

We found that G⇒ H implies H⇐ G in each case. Since we assumed G⇐? P1,
this also yields H⇐? P1. ut

So we can test membership in SPL by finding a reduction of a graph to the axiom
of SPL. Conveniently, this requires no particular strategy, as each reduction eventually
yields the same normal form.

Theorem 1 The system R is terminating and admits unique normal forms.

Proof We first show that R is terminating. Let p(G) denote the sum of arcs and loops
in G ∈H, i.e., set

p(G) := |AG|+ |{l | l ∈ AG and tG(l) = hG(l)}|.

Observe that that each loop of G is counted twice in p(G). For G⇐ H we now find
p(H)< p(G). Since p(·) ∈ N, each reduction eventually terminates.

Next, we show that R is locally confluent. That is, for reductions G⇐ H1 and
G⇐ H2, we always find some J s.t. H1⇐? J and H2⇐? J holds. More specifically,
let G

ci⇐ Hi for i ∈ {1,2}. For c1,c2 ∈ {s, p}, this was shown by Valdes et al. [24]
for acyclic hammocks; the proof carries over to the general case without effort. We
thus fix c1 = ` and let H1 = (G \ l)�q�; recall that we denote the left and right
split-vertices of q as q1 and q2, respectively. Now we distinguish by c2.
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– c2 = s: For H2 = (G− y)∪ xz we find q 6= y, since in a hammock, a simple vertex
cannot carry a loop. If q /∈ {x,z}, we apply s-reduction to y in H1 and `-reduction
in q to H2. Either operation yields J, i.e.

(H1− y)∪ xz = J = (H2 \ l)�q� .

If q = x (or q = z, which is shown analogous), we denote this vertex q. Then
H2 actually is H2 = (G− y)∪qz and J can be derived by s-reducing H1 in y and
`-reducing H2 in l.

– c2 = p: Let a and a′ denote the parallel arcs of G that allow for reduction. Since
`-reduction applies to l in G, no arc is parallel to l, so l /∈ {a,a′}. In this case, the
order of the two operations can clearly be swapped without changing the resulting
graph J.

– c2 = `: let l′ be the q′-loop in H that allows for reduction to H2. Since `-reduction
applies to l and l′ in H these loops are not parallel, so q 6= q′ follows. Thus
`-reduction applies to l′ in H1 and to l in H2, and either reduction yields J.

From the properties that R is terminating and locally confluent, the claim follows as
an application of Newman’s Lemma [22,16]. ut

As a corollary, we get a stronger variant of Prop. 4.

Theorem 2 G ∈ SPL iff R(G) = P1.

4 Encoding by Regular Expressions

Syntax and semantics of regular expressions (REs) follow Hopcroft & Ullman’s
textbook [14] except that we do not allow for /0 in REs. As for notation, Lr denotes
the language described by the RE r and reg(Σ) denotes the set of all REs over an
alphabet Σ . An RE is simplified, if it does not contain ε as a factor. any RE r can be
converted to a simplified expression simp(r), satisfying Lsimp(r) = Lr, by replacing
every subexpression rε or εr with just r. The size of r is given by the frequency of
letters and ε in r, this value is called the alphabetic width of r and denoted alph(r).

An extended finite automaton (EFA) over Σ is a 5-tuple E = (Q,Σ ,δ , I,F), whose
elements denote the set of states, the alphabet, the transition relation, the initial
and the final states, respectively. These sets are all finite and satisfy Q∩ Σ = /0,
δ ⊆ Q× reg(Σ)×Q, I ⊆ Q, and F ⊆ Q. The relation `E is defined on Q×Σ ∗ as
(q,ww′) `E (q′,w′), if (q,r,q′) ∈ δ and w ∈ Lr. The language accepted by E is

L(E) := {w | (qi,w) `∗E (q f ,ε) for qi ∈ I, q f ∈ F}.

Two EFAs are equivalent if they accept the same language. An EFA is normalized
if |I| = |F | = 1 and the initial and final state are distinct; any EFA can normalized
by adding a new initial (final) state and ε-transitions from (to) this new initial (final)
state to (from) the original ones. The EFA E is trim, if for every state q of E there is
a word w = w1w2 ∈ L(E) s.t. (qi,w1) `∗E (q,ε) and (q,w2) `∗E (q f ,ε) hold for some
qi ∈ I and qF ∈ F . Any EFA can be converted to a trim equivalent EFA by removing
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all states that do not meet this requirement and adjusting the transition relation. A
nondeterministic finite automaton with ε-transitions (FA) is an EFA whose transition
relation is restricted to δ ⊆ Q× (Σ ∪{ε})×Q.

The graph underlying E is G(E) := (Q,δ , t,h) where t : (p,r,q) 7→ p and t :
(p,r,q) 7→ q. Whenever we speak of the structure of an EFA, we are actually referring
to its underlying graph. The following is easily verified:

Proposition 5 An EFA E is trim and normalized iff G(E) is a hammock.

An EFA displays a compromise between the complexity of its structure and the
complexity of its transition labels. REs and FAs represent the extremes in this tradeoff:
an RE can be considered as an EFA whose structure is trivial, namely P1, while an FA
is an EFA with trivial labels. Locally relaying information about a language between
the structure of an EFA and its labels is the basis of several conversions between REs
and FAs.

In this section, we consider conversions between regular expressions and trim
normalized EFAs. According to Prop. 5 the latter are exactly the EFAs with hammock
structure. Conversely, each hammock can be interpreted as an EFA by interpreting the
set of arcs as an alphabet, and labeling every arc with itself.

Definition 5 Let (G,src,snk) be a hammock. The automaton interpretation of G is
the EFA A(G) := (VG,AG,δG,src,snk), where δG := {(t(a),a,h(a)) | a ∈ AG}.

Proposition 6 Let (G,src,snk) ∈H. Then the following properties hold:

1. G(A(G)) = G
2. L(A(G)) = {w | w is a (src,snk)-walk in G}

4.1 Expressions to Automata

We consider a fragment of the ARS proposed in [13]. Let E be an EFA with transition
τ = (p,r,q) where r contains operators, then τ can be replaced depending on the root
operator of r. If r is a product or a sum, the replacement is determined, while if r is an
iteration, the out-degree of p and the in-degree of q are also considered. The rules of
this ARS, denoted /•, /+, and /∗1 to /∗4, are shown in Fig. 5.

In order to convert an RE into an FA, we identify r ∈ reg(Σ) with the EFA

A0
r := ({qi,q f },Σ ,{(qi,r,q f )},{qi},{q f }),

which trivially satisfies L(A0
r ) = Lr. The language accepted by an EFA is invariant

under each rewriting, hence exhaustive application of /•, /+ and /∗i yields a sequence
A0

r ,A
1
r , . . . of equivalent EFAs terminating in an FA which we denote Ar. We find that

each EFA in this sequence is structurally an spl-graph.

Lemma 1 For all i, G(Ai
r) ∈ SPL.
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p qst /• p qs t

(a) product

p qs+ t /+ p q
s
t

(b) sum

p qs∗ /∗1 p,q

s

(c) star, d+(p)=d−(q)=1

p qs∗ /∗2 p qε

s

(d) star, d+(p)=1,d−(q)>1

p qs∗ /∗3 p qε

s

(e) star, d+(p)>1,d−(q)=1

p qs∗ /∗4 p qε ε

s

(f) star, d+(p)>1,d−(q)>1

Fig. 5: Replacing the transition (p,r,q) depending on r, d+(p), and d−(q). Applying
the rule /∗1 merges p and q. Applying /• and /∗4 introduces a new state.

Proof The graph underlying A0
r satisfies G(A0

r ) = P1, which is the axiom of SPL.
Assume G(Ai

r) ∈ SPL and consider the possible rewritings from Ai
r to Ai+1

r , where the
transition τ = (p,r,q) is replaced.

For /•, /+, and /∗1, we find that G(Ai
r) is s-, p-, and `-expanded, respectively

(observe that for /∗1, the degree conditions on p and q state that τ is a constriction in
G(Ai

r)). In each case, G(Ai+1
r ) ∈ SPL follows.

Among the remaining cases, consider Ai
r /∗2 Ai+1

r . The difference between G(Ai
r)

and G(Ai+1
r ) consists of an additional p-loop in the latter graph. This can be achieved

with s- and `-expansion, as follows. First, apply s-expansion to τ in G(Ai
r). This

replaces (the arc) τ with a new vertex z and two arcs τ1 = pz and τ2 = zq. Since /∗2
assumes d+(p) = 1, while d−(z) = 1 by construction, we find that τ1 is a constriction.
We may apply `-expansion to τ1 in this intermediate graph to get a graph that is
isomorphic to G(Ai+1

r ). Therefore, we get G(Ai
r)

s⇒ `⇒ Q ∼= G(Ai+1
r ). Since Q was

derived from an spl-graph by expansion, Q ∈ SPL follows, thus also G(Ai+1
r ) ∈ SPL.

A symmetric argument realizes the inductive step for /∗3. For /∗4 we need to
expand G(Ai

r) twice by s-expansion, to get a constriction that allows for `-expansion.
The details are left to the reader for this case. This shows that G(Ai+1

r ) ∈ SPL holds,
too, which concludes the induction. ut

As a special case of Lem. 1, it follows that the graph underlying Ar is an spl-graph,
too. It was shown in [13] that Ar is unique. We define the map α from simplified
expressions to spl-FAs, by setting α(r) := Ar for r = simp(r).

4.2 Automata to Expressions

The spl-reductions are augmented to handle expression-labeled arcs which yields a
second rewriting-system on EFAs. We assume trim normalized EFAs, whose underly-
ing graphs are hammocks. Recall that any EFA can be converted to an equivalent trim
normalized EFA. The labeled counterparts of s⇐,

p⇐ and `⇐ are denoted .•, .+, and .∗,
respectively; they are shown in Fig. 6. Labeled reduction of an EFA requires that its
underlying graph meets the preconditions for the corresponding unlabeled reduction,
as defined in Def. 4. Observe that the language accepted by an EFA is invariant under
labeled reduction.



12 Stefan Gulan

p q rs t .• p rst

(a) labeled s-reduction, for simple
q

p q
s
t

.+ p qs+ t

(b) labeled p-reduction

q

s
.∗ q1 q2

s∗

(c) labeled `-reduction,
for non-guard q

Fig. 6: Labeled spl-reductions

Exhaustive reduction of a trim normalized EFA E terminates in an equivalent EFA
which we denote Rl(E). The next result is a straightforward extension of Thm. 1 to
labeled reductions on expression-labeled hammocks.

Proposition 7 Let E be a trim normalized EFA. Then the EFA Rl(E) is unique up to
associativity and commutativity in labels.

In particular, for G(E) ∈ SPL we find G(Rl(E)) = P1, so the only label of Rl(E)
is an RE r with Lr = L(E). By Prop. 7 this RE is unique up to trivialities, so we define
a map β from EFAs with spl-structure to REs by first computing the unique label of
Rl(E), which is then simplified. That is, we set β (E) := simp(r), where r is the label
of Rl(E). For G ∈ SPL, we call β (A(G)) the encoding of G.

Lemma 2 Let A be an spl-FA. Then L(A) is denoted by an RE r with alph(r)≤ |δA|.

Proof The sum of alphabetic widths of all labels in an EFA is invariant under labeled
reduction (cf. Fig. 6). Let r1 denote the unique label of Rl(A) for spl-FA A. Since
every transition of A is labeled by a letter or ε , we find alph(r1) = |δA|. We remove
all ε-factors from r1 to get r = simp(r1): clearly, alph(r) ≤ alph(r1) holds. Since
Lr = Lr1 = L(A), the claim follows. ut

The performance of a conversion from FAs to REs is usually measured by compar-
ing the size of an expressions relative to the number of states in an automaton. For
spl-FAs, we get the following result:

Theorem 3 Let A be an spl-FA. Then L(A) is denoted by an RE r with

alph(r)< 4|QA|(|ΣA|+1).

Proof We bound the number of transitions in A relative to the number of states. We
first assume that G(A) is p-normal and treat parallel transitions afterwards.

To bound the number of arcs in a p-normal spl-graph, we first consider how such
a graph can be constructed from P1. Obviously, P1 is p-normal. Assume that G is
p-normal, then H is p-normal for G s⇒H and G `⇒H. Now consider an “intermediate”
graph H ′, derived by G

p⇒ H ′. The only way to expand H ′ to a p-normal graph is by
series expansion of either arc of the unique pair of parallel arcs.

For c ∈ {s, p, `}, let #c denote the number of c-expansions in the construction of
a p-normal H from P1. The preceding discussion implies that #p ≤ #s. Counting the
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number of arcs and vertices introduced or removed by each expansion (cf. Fig. 1),
starting with |AP1

|= 1 and |VP1
|= 2, we arrive at

|AH |= 1+#s +#p ≤ 1+2#s and
|VH |= 2+#s−#`.

Solving the second equation for #s and substituting the result in the first inequation
gets us

|AH | ≤ 2|VH |+2#`−3 < 2(|VH |+#`).
To bound #`, consider a vertex z that carries a loop introduced by `-expansion at some
point in the rewriting P1⇒? H. On its first appearance, d−(z)≥ 2 and d+(z)≥ 2 hold.
Since no later expansion decreases either degree, z is never incident to a constriction
and thus still present in H. Each `-expansion gives rise to a unique such vertex, which
implies that #` ≤ |VH |.

We arrive at |AH |< 4|VH | for a p-normal spl-graph H. Getting back to arbitrary
H ∈ SPL, observe that it is irrelevant for H where its parallel arcs emerge in the
expansion. So we may assume wlog. that the p-normal “skeleton” of H is derived first,
followed by a sequence of p-expansions.

While for arbitrary spl-graphs, the number of arcs is unbounded, this is different
for spl-FAs. For any FA over Σ , the number of parallel transitions from p to q, for
fixed p, q, is bounded by |ΣA|+1. For an spl-FA A we correct the derived bound for
G(A), by that factor, to find

|δA|< 4|QA|(|ΣA|+1).

The claim now follows with Lem. 2. ut

4.3 Duality of the Conversions

The presented conversions between REs and εNFAs with spl-structure are duals
modulo associativity and commutativity of the regular operators. These are trivial
matters, so we write r = r′, if the REs r and r′ identical up to these two equivalences.

Theorem 4
1. Let r be a simplified RE. Then r = β (α(r))
2. Let A be an spl-FA. Then A = α(β (A))

Proof The ARSs that realize α and β are both locally confluent. To prove our claim,
it is thus sufficient to show that each rewriting step in either ARS can be reverted in
the other ARS. This is immediately clear for product and sum replacements, which are
reverted by labeled s-reduction and p-reduction, respectively, and vice versa. Labeled
`-reduction and the first star replacement, /∗1, also mutually revert another.

No /∗i is reverted by labeled reduction, for i ∈ {2,3,4}. This is due to the fact
that ε-transitions are introduced by each /∗i. However, it is irrelevant for β (A) if
simplifying the label of Rl(A) is realized as defined, or by successively simplifying its
subexpression when they appear as labels in the course of the rewriting. Therefore,
A/∗2 B, applied to τ = (p,s∗,q), is reverted by B.∗ .•A′, followed by simplifying the
label of the transition τ ′ = (p,s∗ε,q). The argument is analogous for /∗2 and /∗3. ut



14 Stefan Gulan

Thus the encoding of labeled spl-graphs by simplified expressions is unique and
reversible, and every simplified expression encodes a labeled spl-graph. Hence every
RE over a non-empty alphabet encodes an spl-graph and every spl-graph can be
encoded. Informally, we state

Corollary 2 G ∈ SPL iff G can be encoded by an RE.

5 Characterizing SPL by Forbidden Minors

We extend the concept of a topological minor, which is well-known for undirected
graphs, to the directed case. For undirected graphs, this relates to subgraphs which are
subdivisions, as opposed to the more general notion of a minor, which also incorporates
the merging of adjacent vertices (see, e.g. [5]). As this distinction is not necessary for
us, we drop the modifier “topological”.

Definition 6 An embedding of F in G is an injection e : VF →VG satisfying

1. for a = xy ∈ AF , G contains an (e(x),e(y))-path Pa, and
2. for distinct a,a′ ∈ AF , the paths Pa and Pa′ are internally disjoint.

If e is an embedding of F in G, we write e : F 4 G. We write just F 4 G if some e
with e : F 4 G exists and call F a minor of G. We say that F 4 G is realized by e, and
for x ∈VF we call e(x) the peg of x in G wrt. e.

If M is a set of graphs and M 4 G for some M ∈M we also say that G has a
minor in M. If M is no minor of G, then G is M-free, and if G is M-free for each
M ∈M, then G is M-free. An equivalent characterization of minors is given by means
of subdivisions.

Proposition 8 F 4 G iff G contains a DF

This allows us to choose the notion that fits our purposes. We observe that the in-
and out-degree of a peg is no less than the respective degree of the peg’s preimage.

Proposition 9 Let e : F 4G and x∈VF . Then d−F (x)≤ d−G(e(x)) and d+F (x)≤ d+G(e(x)).

A stricter notion of embedding models the absence of an arc in a minor.

Definition 7 Let e : F 4G and assume xy /∈AF . An (x,y)-bypass wrt. e is an (e(x),e(y))-
path in G that does not pass through any other peg of F . If G contains no bypass wrt. e,
we call e a bare embedding of F in G, and F a bare minor of G, denoted e : F 4b G.

If F is a bare minor of G, then G contains a DF whose pegs are not connected by
bypasses in G. We call this DF a bare DF .
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5.1 Effects of Expansion and Reduction on Minors

We study the effects of spl-expansion and -reduction on two sets of graphs. We will
find that these sets are, in a sense, “minor stable” under spl-operations.

Definition 8 A bulky graph contains no simple vertices, parallel arcs or loops. The
class of bulky graphs is denoted B.

Notice that a vertex x is not simple iff d−(x) ≥ 2 or d+(x) ≥ 2. Bulky graphs
are essentially defined by prohibiting the characteristic features that come with spl-
expansion. We thus find that B-minors are not introduced by expansion alone, i.e.,
coming from an otherwise B-free graph.

Lemma 3 Assume that G is B-free and let G⇒ H. Then H is B-free.

Proof Let G be B-free and assume G⇒ H. For the sake of contradiction, suppose
e : B 4 H for some B ∈ B. Since G is B-free, the DB in H is the result of expansion.
We consider each expansion separately.

1. G s⇒ H: Let z be the vertex that is introduced by expansion and notice that z is
simple. Since G is B-free, a DB in H requires that z = e(q) for some q ∈VB. But q
is not simple, i.e., d−B (q)≥ 2 or d+B (q)≥ 2, so this contradicts Prop. 9.

2. G
p⇒H: Every peg of B in H is also a vertex in G. If the mere addition of a parallel

arc yields a DB, this implies that B contains parallel arcs, which it does not.
3. G `⇒ H: Let a = xy denote the constriction in G that allows `-expansion and let

l = zz be the loop introduced by merging x and y, i.e., let z denote the merge vertex
of x and y. Again, z is a peg, so z = e(q) for some q ∈VB. Otherwise a DB would
be present in G already, as implied by Prop. 2, but contradictory to the assumption
that G is B-free.
Consider the graph H ′ := H \ l, derived from H by removal of the “new” loop. As
B is free of loops, l does not belong to the DB in H. Consequently, H ′ contains the
same DB as H, with z = e(q). The advantage of H ′ over H is that d−H ′(z) = d−G(x)
and d+H ′(z) = d+G(y) hold.
We show d−B (q)≥ 2 by rejecting the other possibilities. First, suppose d−B (q) = 0.
Then, only the out-arcs of z belong to e(B) in H ′. From d+H ′(z) = d+G(y) follows
that G contains a DB, too. This is realized by e′ : VB→VG, which is defined as e
except that e′(q) = y. This contradicts B-freeness of G. If we suppose d−B (q) = 1,
the argument is similar. In that case, the only path in e(B) that enters z in H ′ can be
realized in G (for a slightly different DB, namely, a subdivision of e(B)) by using
the constriction a. With e′ defined as before, e′ : B 4 G follows, contradicting the
assumption that G is B-free.
Thus follows d−B (q)≥ 2, and a symmetric argument shows d+B (q)≥ 2. Now let B′

denote the graph derived from B by splitting q into q1 and q2. Then d−B′(q1)≥ 2
and d+B′(q2)≥ 2, while the degrees of the other vertices in B and B′ agree in these
graphs. Therefore B′ is bulky, too. But since H contains a DB it now follows that
G contains a DB′, contradicting the assumption that G is B-free.

ut
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(a) N (b) C (c) CR (d) Q

Fig. 7: Crucial subset of bulky graphs, F = {N,C,CR,Q}.

v w x y

(a) Φ

v w

x

y

(b) Ψ (c) ΨR

Fig. 8: Set of graphs K = {Φ,Ψ,ΨR}. The vertices of Φ and Ψ will always be referred
to as shown.

Corollary 3 Every spl-graph is B-free.

Proof Since P1, the axiom of SPL, is B-free, the claim follows inductively. ut

For the purpose of characterizing SPL, it suffices to consider four bulky graphs,
which constitute the set

F := {N,C,CR,Q},

shown in Fig. 7. Observe that F is closed under arc-reversal: C and CR are mutually
dual, whereas both N and Q are self-dual.

It was shown by Valdes [23] that that the acyclic spl-graphs are characterized by
means of N alone.

Theorem 5 (Valdes) Let H ∈H be acyclic. Then H ∈ SPL iff N 64 H.

We make use of Thm. 5 whenever acylic graphs are considered. Getting back to
the general case, we observe that the absence of F-minors is not sufficient to identify a
hammock as a member of SPL. For example, the hammock shown in Fig. 3 is F-free,
yet, as was already shown, it is no spl-graph, as it violates Prop. 3.

To get an adequate obstruction set characterization of SPL, we resort to bare
embeddings of non-bulky graphs. The three additional graphs that will be part of the
sought characterization constitute the set

K := {Φ,Ψ,ΨR},

shown in Fig. 8. Observe that K is closed under arc-reversal, too. We find that spl-
graphs are free of bare minors in K.

Lemma 4 Every spl-graph is free of bare K-minors.
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(a) Φ 4 G (b) Ψ 4 G′

Fig. 9: Members of SPL with minors in K.

Proof Let (G,src,snk) ∈ SPL, and let e : K 4 G for K ∈ {Φ,Ψ}. For ΨR, the proof is
symmetric to that for Ψ. We refer to the vertices of Φ and Ψ as showin in Fig. 8.

Since w and x lie on a cycle in Φ, their pegs e(w) and e(x) lie on a cycle C in
G. Then Prop. 3 states that C is guarded by a unique g ∈ VC. Moreover, G contains
an (e(x),e(y))-path. But since g co-dominates e(x), it also co-dominates e(y): thus
G contains an (e(y),g)-path P, and since g lies on a cycle with e(w) and e(x), G
further contains (e(y),e(w))- and (e(y),e(v))-paths. But either path is a bypass, since
yw,yx /∈ AΦ. It follows that e is not bare.

For Ψ, notice that this graph has two cycles that share an xy-arc. The cycle C ⊆ G
that contains the pegs of w, x, y is guarded by a unique g ∈VC. In particular, g guards
each vertex on every (e(x),e(y))-path, as well as on every (e(y),e(x))-path. Hence g
guards the “image” of the inner cycle of Ψ which contains e(x) and e(y) but not e(w).
It follows that g is also a vertex on this inner cycle in G. Now since g dominates e(w)
it also dominates e(v), so G contains paths from e(w), e(x), and e(y), to e(v). Since v
has no in-arc in Ψ, the embedding e is not bare. ut

Informally, K consists of the prototypical graphs with cycles that do not satisfy
Prop. 3. Adding certain arcs to Φ, Ψ, and ΨR would mend this deficiency. Regarding
the bare minor relation, such arcs—resp. their subdivisions—remain absent in the
disguise of prohibited bypasses. Examples for spl-graph with (non-bare) minors in
K are given in Fig. 9. The reader might want to verify that these graphs are indeed
spl-graphs.

Next, we consider the effect of reduction on F-free hammocks. We will find that
the members of F “behave” quite differently in that respect. While the presence or
absence of a DC or DCR in a hammock is invariant under reduction, this is not the case
for N and Q. For N, we find that a DN might be removed by reduction, in which case,
however, a DC and a DCR must be present. For Q, a similar property holds, which
also involves Ψ and ΨR.

In the following lemma, these properties are stated in a contrapositive manner.
Therein, we consider a hammock H and its reduct G, and trace an F-minor of G back
to an F-minor or a bare K-minor of H.

Lemma 5 Let H⇐ G, then an F-minor of G implies an F-minor or a bare K-minor
of H, as follows:

1. if F 4 G, then F 4 H for F ∈ {C,CR}
2. if N 4 G, then (N 4 H ∨ (C 4 H ∧CR 4 H))
3. if Q 4 G, then (Q 4 H ∨C 4 H ∨CR 4 H ∨Ψ 4b H ∨ΨR 4b H)
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Proof We prove the claim separately for each reduction. For s- and p-reduction we
show a stronger property for bulky graphs. The argument is downright trivial for these
two reductions. For `-reduction, however, we need to consider several subcases that
lead to the details of the claim.

– H s⇐G: Let B∈B be arbitrary and observe that H is a DG. Therefore, if G contains
a DB, so does H. But since H is B-free by assumption, G is B-free, too.

– H
p⇐ G: Let B ∈ B be arbitrary. Removing an arc from H does certainly not

introduce any subgraph at all. This goes for a DB in particular.
– H `⇐H: Let l = xx denote the loop in H that allows for reduction, and let a = x1x2

be the constriction in G that results from splitting x. Let e : F 4 G for some F ∈ F
distinguish by which of the xi are pegs of F in G. As a visual aid we sketch the
relevant parts of H and G below:

x

H

`⇐ x1 x2a

G

If neither xi is a peg, then each peg of F occurs in both G and H. It follows from
Prop. 2 that e : F 4 H.
Next assume x1 = e(q), for some q ∈VF , while x2 is no peg (or vice versa, which
is symmetric). Let e′ : VF →VH be as e, except that q is mapped to x in H. Now
H contains an (e′(q1),e′(q2))-path for q1q2 ∈ AF , where q 6= qi, and these paths
are pairwise internally disjoint. This follows from Prop. 2 and the fact the e is an
embedding. Moreover, H contains an (e′(q1),x)-path for each q1q-arc of F , and
an (x,e′(q2))-path for each qq1-arc. Again we find that these paths are internally
disjoint. Therefore, H contains a DF and e′ : F 4 H.
Finally, let both x1 and x2 be pegs of F in G, with preimages q1 and q2, respectively.
Then Prop. 9 requires that d+F (q1)≤ 1 and d−F (q2)≤ 1 hold. We proceed by case
distinction for F as in the claim.
1. Assume that F = C: there is only one vertex q2 that satisfies d−C (q2)≤ 1 (cf.

Fig. 7b). The vertex q1 might be either vertex of the cycle of C, as each satisfies
d+C (q1)≤ 1. We fix one of these two vertices as q1 and denote the other as y.
Since C contains a q1y-arc, G must contain an (e(q1),e(y))-path. But the only
out-arc of e(q1), which is a, is an in-arc of e(q2). In other words, e(q2) lies on
every path from e(q1) to e(y). Consequently, the paths in G that represent the
arcs of C are not internally disjoint, which contradicts the assumption that e is
an embedding. This conclusion follows symmetrically for F = CR.

2. For F = Q, the degree restrictions on q1 and q2 are satisfied by two vertices
each. The choices for the qi lead to symmetric cases, due to the symmetry of Q.
We find that Q contains a q2q1-arc, therefore G contains a path from x2 to x1.
Observe that H = G[x1 = x2], with merge vertex x. Thus the arcs that constitute
the (x2,x1)-path in G form a cycle C in H, with x ∈VC. Since `-reduction is
applicable in x, C is not merely a further x-loop, i.e., C contains at least one
more vertex y. The situation in G and H is sketched below; we denote the
remaining pegs of Q in G as k1 and k2; these vertices are also present in H.
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x

k1 k2

y
`⇐

x1

k1

x2

k2

y

Since x does not guard C, there is a further vertex on C that is not guarded—i.e.,
not dominated or co-dominated—by x. We assume wlog. that this vertex is
y and that x does not dominated y (the case where x does not co-dominate
y is symmetric). Now Prop. 1 implies that either y dominates x, or some z
dominates x and y, and H contains internally disjoint (z,x)- and (z,y)-paths.
(a) Assume that y dominates x, then y also dominates k1, since H contains a

(k1,x)-path that does not pass through y. So there is also a (y,k1)-path in
H. If any such path does not pass through k2, we find a DCR in H with
pegs x, y, and k2.
On the other hand, if each (y,k1)-path passes through k2, then there is
a (k2,k1)-path in H. We may assume that this path is internally disjoint
with the (k1,k2)-path sketched above. Otherwise, we choose some k′1 that
is an intersection vertex of the two paths and argue with k′1 instead of k1.
So k1 and k2 lie on a cycle. Moreover, y then also dominates k2. Hence,
there is a path from the source of H to y that does not intersect with any of
the paths we are considering right now. Together, these paths form a DΨ
with the source of H being a peg. If this DΨ is bare, the claim follows.
Otherwise, any bypass to the DΨ implies the existence of a DC or a DCR.

(b) Assume that there is some z with internally disjoint (z,x)- and (z,y)-paths
in H. Since x and y lie on C, the paths from z enter C in distinct vertices.
Thus follows C 4 H.

3. For F = N, consider an appropriate DN in G. Since a is a constriction, it
does not represent the trivial subdivision of any arc of N, for N is free of
constrictions. By the same argument, it follows that a is not anti-parallel to an
arc of N.
Therefore, q1 and q2 are not adjacent in N, which is only satisfied by the source
and sink of N (notice that N is a hammock). The degrees of x1 and x2 and
Prop. 9 determine that q2 is the source of N and that q1 is the sink. Thus G
contains a “back arc” in its DN subgraph, as sketched below:

x2 x1 x2 x1

This yields both a DC and a DCR, i.e., C 4 G and CR 4 G. As we have shown
in the first case of the overall proof, C 4 H and CR 4 H follow.

We have shown the for reductions H s⇐ G and H
p⇐ G, F 4 G implies F 4 G for

F ∈ F. Considering the reduction H `⇐ G, a F-minor of G implies an F-minor of H or
a bare K-minor of H as broken down in the claim. Thus the claim holds and the proof
is concluded. ut
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src y x

k1

k2

snk

`⇐ src y

x1

x2

k1

k2

snk

Fig. 10: A DQ emerging with `-reduction. Either side contains a bare DΨ.

src snk

x

`⇐

src snk

x1 x2

Fig. 11: A DN emerging with `-reduction. Either side contains a DC and a DCR.

Examples for the emergence of a DQ and a DN upon `-reduction are show in
Figs. 10 and 11, respectively.

Next we consider the effects of reduction on hammocks that do have a minor in F.
We find that minors, resp. subdivisions, from F are not removed upon reduction.

Lemma 6 Let H⇐ G, then F 4 H implies F 4 G for F ∈ F.

Proof We know that a reduction allows for the complementary expansion, i.e., H⇐G
implies G⇒ H. Assume now that G is F-free and reconsider Lem. 3, resp. its proof:
therein we have shown that B 4 G implies B 4 H for bulky B and G s⇒ H or G

p⇒ H.
Since F ⊆ B, this holds for B ∈ F as well. For G `⇒ H, we have shown that B 4 G
yields B′ 4 H, for bulky B, B′, and indirectly, that d−B (v)< 2 or d+B (v)< 2 for some
v ∈ VB implies B = B′. This degree property is satisfied by each F ∈ F, so F 4 G
implies F 4 H for `-reduction, too.

Thus, if H⇐ G, the assumption that H contains a minor in F, while G is F-free,
is contradictory. Equivalently, the claim follows. ut

As for minors in F, we study the effects of spl-reductions on minors in K. We first
investigate if—or rather “how”—such minors can be the result of a reduction.

Lemma 7 Let H⇐ G, then K 4b G implies K 4b H ∨ C 4 H ∨ CR 4 H for K ∈K.

Proof Observe that each K ∈ K is free of parallel arcs. Let e : K 4b G and recall
that if all pegs of K in G also occur in H, i.e., if e(q) ∈ VH ∩VG for q ∈ VK , then
the connectivity among the pegs of K is invariant under reduction (Prop. 2). This
holds for paths representing arcs of K, as well as for bypasses. In other words, a
bypass is not removed upon reduction if its endpoints occur in VH ∩VG, so a nonbare
embedding does not “become” bare. It is thus sufficient to consider cases where pegs
are introduced with G⇐H. Notice that the removal of a peg is irrelevant to this proof.

Since VH =VG holds for H
p⇐G, nothing needs to be done for this case, following

the discussion above. Regarding H s⇐ G, a peg is removed at most, so the statement
follows for this case, too.
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It remains to consider the reduction H `⇐G, where the number of vertices increases.
To this end, let l = qq be the loop in H that allows for reduction, and let a = q1q2
denote the constriction that emerges from reduction. We need to consider the cases
where at least one of the qi is a peg of K.

Let q1 = e(k) and let q2 not be a peg. Since d+G(q1) = 1, at most one arc leaves k
in K. Then K 4 H is realized by e′, which is as e, except that e′(k) = q, the in-arcs
of k in K are mapped to in-paths of q and the sole out-arc, if it exists, is mapped to
an out-path of q. Since e is bare, no bypass possibly intersects the out-path of q1 by
assumption, in particular not in q2. Hence no bypass is accidentally “removed” by
using e′ as an embedding, and e′ : K 4b H follows.

If q1 and q2 are both pegs wrt. e, some additional effort is required. In this case,
we treat Φ and Ψ explicitly; for ΨR, the argument is symmetric to that for Ψ. In the
following, the vertices of Φ and Ψ are denoted as in the proof of Lem. 4.

1. We start with K = Φ. Since v and y are not adjacent in Φ, the case where the qi
are pegs of these two vertices immediately yields a as a bypass in G. As a bare
embedding, e maps at least one of w and x to a qi. We assume wlog. q1 = e(w)
and examine the preimage of q2.
If q2 = e(v) or q2 = e(y), it follows immediately that e is not a bare embedding,
since a constitutes a bypass.
If q2 = e(x), then G contains a nonempty (q2,q1)-path P, i.e., an (e(x),e(w))-path.
The length of this path at least two: otherwise, the arc that constitutes P would be
parallel to l in G, meaning that `-reduction is not applicable. So let z be an internal
vertex of P, then z occurs in H, too; more specifically, H contains a (q,z)- and a
(z,q)-path. Since `-reduction is applicable to l, the vertex q does not guard z in
H. This means that H contains a (src,z)-path or a (z,snk)-path that does not pass
through q. We proceed with the first possibility and let Pz denote this path. The
part of H and G that we are considering looks as follows:

q

zsrc
`⇐

q0/e(v) q1/e(w) q2/e(x)

zsrc

Let Pq0 by a (src,q0)-path in G, where q0 is the peg of v. Notice that if q0 = src
holds in G, then e′ : Φ 4b H holds for e′(w) = z, e′(x) = q and letting e′ otherwise
be identical to e. In that case, the claim follows, so assume q0 6= src, which holds
for both G and H. If Pq0 passes through neither q1 nor q2, we find C 4 G and,
following Lem. 5, also C 4 H. On the other hand, if P passes through q1 or q2,
then G contains a bypass to the uncovered DΦ. This contradicts the assumption
that e is a bare embedding. If we choose Pz as a (z,snk)-path that does not pass
through q, and Pq0 as a (q0,snk)-path, a symmetric argument yields either CR 4 H
or that e is not bare. This concludes the argument for Φ.

2. Now let K = Ψ. Since e is bare by assumption, we find q2 6= e(v) immediately,
because v has no in-arc in Ψ, yet q1 is a peg, too. If we assume q1 = e(v), we
construct an embedding e′ that realizes Φ 4b H: e′ maps the preimage of q2 to q
and v to any predecessor of q; otherwise e′ is as e. Since v has no in-arcs and e
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is bare, e′ is bare too. This covers the case that either qi is the peg of v, and we
consider the remaining cases.
Let us first assume q1 = e(x) and q2 = e(y). This case is akin to the nontrivial case
for Φ, which we discussed at length above. Similarly, we find that G contains a
(q2,q1)-path, which, due to `-reduction being applicable to H, consists of at least
two arcs. Again, let z denote a vertex on this path and notice that q does not guard
z in H. As before, assume wlog. that H contains a path from its source to z that
does not pass through q. The relevant parts of H and G are shown below:

q0q′0 q z

src

`⇐ q′0/e(v) q0/e(w)

q1/e(x)

q2/e(y)

z

src

Now let e(v) = q′0 and consider a (src,q′0)-path P in G. If none of q0, q1, or q2 lies
on P, then C 4 G follows, which further yields C 4 H. Otherwise, a segment of P
constitutes a bypass to the DΨ realized by e, contradicting the assumption that e is
bare. Again, if we consider paths to snk in G, instead of paths from src, we find
CR 4 H symmetrically.
The final case for Ψ is that one qi is the peg of w while the other is the peg of
either x or y. The argument is symmetric if x and y are swapped; we pursue the
argument for x. First, let q1 = e(w) and q2 = e(x). Since we have d−Ψ(x) = 2,
Prop. 9 implies d−G(q2)≥ 2. This, however, is infeasible with `-reduction, which
produces a constriction, i.e., d−G(q2) = 1. On the other hand, if we assume q1 = e(x)
and q2 = e(w), then the q1q2-arc already represents an (e(x),e(w))-bypass, so e is
not bare.

This concludes the proof. ut

Next, we examine the effects of reducing a hammock that has a bare K-minor. We
find that there are at least some “traces” of this minor in the emerging graph.

Lemma 8 Let H⇐ G, then K 4b H implies K 4b G or F 4 G for K ∈K, F ∈ F, as
follows:

– if Φ 4b H, then (Φ 4b G ∨ C 4 G ∨ Q 4 G)
– if Ψ 4b H, then (Ψ 4b G ∨ C 4 G ∨ N 4 G)
– if ΨR 4b H, then (ΨR 4b G ∨ CR 4 G ∨ N 4 G)

Proof As for Lem. 7, the statement follows immediately from Prop. 2 if all pegs of K
occur in VH ∩VG. In particular, nothing needs to be done for H

p⇐ G. In the following,
assume e : K 4b F for K ∈K. Again, we only consider Φ and Ψ.

For H `⇐ G let l = xx be the loop that is reduced in H and let a = x1x2 denote
the constriction introduced in G. Observe that each k ∈ VK satisfies d−K (k) ≤ 1 or
d+K (k) ≤ 1 . Thus, if x = e(k), we define e′ : VK → VG with either e′(k) = x1 or
e′(k) = x2, depending on the degrees of k. The connectivity among the pegs of K in G
then is the same as in H, so e′ : K 4b G follows.
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In the case H s⇐ G, let z denote the simple vertex of H that allows for reduction.
Assume that z is a peg of K. Since z is simple in H, Prop. 9 implies that the preimage
of z satisfies d−K (e

−1(z))≤ 1 and d+K (e
−1(z))≤ 1.

There are two vertices with this property in Φ and one in Ψ. We choose v as the
preimage of z for either graph. Observe that the in-degree of v is zero. Since z is simple,
H contains a unique predecessor z′ of z. Moreover, since e is a bare embedding, H
contains no path from any other peg to z. This implies that z′ is not also be peg of K
wrt. e, and that there is no path from any other peg of K to z′. The embedding e′ of K
into H is now defined by mapping v to z′ and being otherwise as e. If e′ is bare, the
claim follows. Otherwise, we observe that since no bypass wrt. e enters z, no bypass
wrt. e′ enters z′. So if e′ is not bare, a bypass must leave e′(v) = z′; the connectivity
among all other pegs does not differ in e and e′.

There are two possibilities for how a bypass like that in K = Φ in H, they are
sketched below:

z′ z/e(v) e(w) e(x) e(y) z′ z/e(v) e(w) e(x) e(y)

In the case on the left, we find a DC, while on the right, we find a DQ. Thus
follows the claim for K = Φ. For F = Ψ, the possibilities in H are as follows:

z′ z/e(v) e(w)

e(x)

e(y)

z′ z/e(v) e(w)

e(x)

e(y)

In either case, we find a DC, while in the case on the right, we also find a DN. This
proves the claim for Ψ, and the statement for ΨR follows by symmetry. ut

We have thus found that F∪K behaves stable wrt. being (bare) minors in ham-
mocks under spl-operations. Although such minors are exchanged for another in
certain cases, they never appear by manipulating F- and K-free graph; likewise, they
never disappear altogether. By omitting the finer details of the previous lemmas, we
arrive at a cornerstone result regarding the characterization of SPL by forbidden
minors.

Theorem 6 Let H1,H2 ∈ H s.t. H1⇒ H2 or H1⇐ H2. Then H1 is free of F-minors
and bare K-minors iff H2 is.

Most importantly, we can associate (bare) minors in an arbitrary hammock with
(bare) minors in its spl-normal form.

Corollary 4 Let H ∈H, then H is free of F-minors and bare K-minors iff R(H) is.

It remains to show that F and K sufficiently describe the structures that are absent
in spl-graphs. In other words, we need to prove that R(H) 6= P1 implies a (bare)
minor of these classes in R(H) and therefore in H. This will be done in the following
subsection.



24 Stefan Gulan

5.2 Sufficiency of F and K

Definition 9 A kebab is a graph consisting of three arc-disjoint subgraphs: a strong
component B, called the body, and two nonempty, disjoint paths S1 and S2, called the
spikes of the kebab. Exactly one endpoint of either spike is a vertex of B.

Moreover, the endpoint connecting a spike to the body is the puncture of this spike, the
other endpoint is its tip. A spike that enters the body of a kebab is an in-spike, one that
leaves the body is an out-spike. Kebabs are further differentiated wrt. the orientation
of their spikes. A kebab with two in-spikes is an in-kebab, one with two out-spikes is
an out-kebab. If one spike is an in-spike and the other an out-spike, we call this kebab
an inout-kebab. An in-kebab is sketched in Fig. 12a.

In order to prove an essential lemma about kebabs, we need two technical results.

Proposition 10 Let (H,src,snk) ∈H be spl-normal and let v ∈VH \{src,snk} with
vv /∈ AH . Then v is incident to at least three nonparallel proper arcs.

Proof Fix a (src,v)-path and a (v,snk)-path in H, and let a1 = uv and a2 = vw be the
in- and out-arcs of v on these paths. Obviously, a1 and a2 are distinct and proper. If v
does not carry a loop, it must be incident to a third arc a3, since H is s-normal. Since
H is also p-normal, the ai are pairwise nonparallel. ut

Proposition 11 Let G be a strong graph with distinct vertices x and y. Then there is
a cycle C ⊆ G with distinct vertices zx,zy ∈VC, s.t. G contains an (x,zx)-path and a
(y,zy)-path which are disjoint.

Proof Since G is strong, it contains an (x,y)-path P1 and a (y,x)-path P2. The set
of crossing vertices Z is defined as the set of internal vertices shared by the Pi,
Z := (VP1 ∩VP2)\{x,y}. Three cases need to be considered.

– If Z = /0, then P1 and P2 form a cycle already, and we choose zx = x and zy = y. In
this case, Px and Py are both empty.

– If Z = {z}, the claim follows for zx = x and zy = z, or zx = x and zy = z. In this
case, either Px or Py is empty, but not both.

– Finally if |Z| ≥ 2, let zx and zy be consecutive crossing vertices, i.e., assume that
no z ∈ Z lies between zx and zy on P1, resp. P2. These vertices satisfy the claim.

ut

We are now set to prove that a hammock that is not contained in SPL necessarily
has a minor in F or a bare minor in K. The work that is involved in the proof is divided
over the following three lemmas, and the pieces are put together in Thm. 7.

Lemma 9 Let G ∈H be spl-normal. If G contains an in-kebab or an out-kebab, then
C 4 G, CR 4 G or Q 4 G holds.

Proof We prove the claim for an in-kebab, the argument is symmetric for an out-kebab.
Let G = (G,src,snk) and choose K as an arc-maximal kebab of G, with body B and
spikes S1 and S2 with tips ti and punctures pi of Si (Fig. 12a). By Prop. 1 exactly one
of the following holds for the tips of K in G:
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a) t1 dominates t2,
b) t2 dominates t1, or
c) some x ∈ VG dominates either ti, and G contains internally disjoint (x, t1)- and

(x, t2)-paths.

The cases a) and b) are symmetric and we distinguish cases b) and c).

b) If t2 dominates t1, let P be a shortest (t2, t1)-path in G. If P is disjoint with B, then
P contains an (S2,S1)-subpath. With Prop. 11 we find C 4 G (Fig. 12b).
So let P and B intersect, then P contains a “terminal” segment P′: the (B, t1)-
subpath that is internally disjoint with B. Our choice of K implies that P′ consists
of a single arc. First, P′ is internally disjoint with S1: otherwise, we could add
arcs from P′ to K, to get a kebab with more arcs. Now if P′ contains several arcs,
we remove its initial arc and use the remainder to extend S1 to a longer in-spike.
Either assumption contradicts our choice of K, thus P′ consists of a single bt1-arc,
for some b ∈ B (Fig. 12c).
We show that t1 is incident to a third proper arc. Suppose that this claim is false.
Since G is s- and p-normal, Prop. 10 implies that t1 carries a loop. As G is also `-
normal, t1 guards some distinct vertex. Consider the strong subgraph B′, consisting
of S1, B, and the bt1-arc (cf. Fig. 12c). If t1 guards any vertex of B′, then t1 guards
all of B′; consequently, there is a (src, t1)-path which is otherwise disjoint with
B′. On the other hand, if all vertices guarded by t1 lie outside B′, then t1 reaches
such a vertex through a path that is internally disjoint with B′. In either case, t1 is
incident to a third proper arc, contradicting the assumption that it is not.
Let a′ denote this arc, i.e., let a′ = t1z or a′ = zt1. Our choice of K implies z ∈VK .
To see this, notice that B′ properly contains B. If z lies outside K, we find a kebab
K′ with body B′, in-spike S2, and a′, considered as a path, as a second in- or
out-spike. Since AK′ properly includes AK this contradicts our choice of K.
It remains to locate z in K. With help of Prop. 11, we see (from Fig. 12c) that
z ∈VS2 yields C 4 G, and that z ∈VB yields C 4 G or CR 4 G (depending on a’s
orientation).
So let z ∈ VS1 \ {p1} and consider the orientation of a′. For a′ = zt1 we find
Q 4 G, with pegs t1, p1, b, and z (Fig. 12d). On the other hand, a′ = t1z leads to a
contradiction: Since G is p-normal, at least one vertex z′ lies between t1 and z on
S1; omitting the (t1,z′)-segment of S1 yields an in-kebab with tips z′ and t2 and a
body properly containing B (Fig. 12e). Again, this contradicts our choice of K.

c) Let x dominate t1 and t2 s.t. G contains internally disjoint (x, t1)- and (x, t2)-paths
P1 and P2, respectively. If neither Pi intersects B, we find C 4 G with help of
Prop. 11; this is shown in Fig. 12f, where xi denotes the “first” vertex on Pi that is
also in Si.
If, say, P1 intersects B, let b be the last vertex on P1 that is in B and let x be the first
vertex on P1 that is in VSi \{pi}. If x 6= t1, we find a kebab whose body contains
B properly, contrary to our choice of K. For x = t1, the claim was proven in the
previous case already (cf. Fig. 12c).

Lemma 10 Let G ∈ H be spl-normal. If G contains an inout-kebab, then C 4 G,
CR 4 G, Q 4 G or Φ 4b G holds.
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t1 p1

t2 p2

S1

S2 B

(a) in-kebab (b) C 4 G

b

(c) bt1-arc a

b

z

(d) Q 4 G

b

z′ z

(e) a′ = t1z

x

x1

x2

(f) C 4 G

Fig. 12: Cases occurring in the proof of Lem. 9 for an an in-kebab. Solid arrows
represent arcs, dashed arrows represent paths.

Proof Let G = (G,src,snk) be as stated and let K be an inout-kebab in G s.t. the
body B of K is arc-maximal among all inout-kebabs contained in G. Let S1 denote
the in-spike and S2 the out-spike of K, and let ti and pi denote the tip and puncture of
spike Si.

From Prop. 11 follows e : Φ 4b K, for some e, where the tips of K are pegs of Φ
(Fig. 13a). If e also realizes Φ 4b G, the claim follows already. Otherwise G contains
a bypass P. The structure of Φ requires that at least one tip of K is an endpoint of P.
Choosing among t1 and t2 leads to symmetric cases; we proceed with t1. Then P is
either a (t1,q)-path or a (q, t1)-path, where q is a second peg of Φ wrt. e.

– First let P be a (t1,q)-path and distinguish by the preimage of q.
If q is the peg of one of Φ’s “inner” vertices, w or x, this leaves only q = e(x)
as a possibility. It follows that P is a (t1,e(x))-path that deviates at some point
from the path with segments S1 and the (p1,e(x))-path in B (as drawn in Fig. 13a).
Following Prop. 11, we find C 4 G (Fig. 13b).
For q = e(y) we find subcases that lead to different minors from F. We consider
the cycle C of the DΦ in G (cf. Fig. 13a), and ask whether P and C are disjoint.
If so, we find Q 4 G immediately (Fig. 13c), so assume P and C intersect. Since G
is a bypass of the found DΦ, at least one of e(w), e(x) does not lie on P. If P does
not pass through e(w), then an initial segment of P is a (t1,C)-path, which yields
C 4 G, similar to the case shown in Fig. 13b. If P does not pass through e(x), we
find CR 4 G by taking P’s terminal (C, t2)-segment into account (Fig. 13d).

– Next, let P be a (q, t1)-path and let k denote the predecessor of t1 on P. Our
choice of K requires k ∈VK : otherwise, S1 could be augmented to a longer spike,
a contradiction. We distinguish by the location of k in K.
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The case where k ∈VB was already dealt with in the proof of Lem. 9 (replace b
with k in Figs. 12c–e). The fact that this time S2 is an out-spike, is irrelevant for
the argument. This case yields Q 4 G.
Next, suppose k ∈ VS2 \ {p2, t2}, i.e., an inner vertex of S2. Observe that B, the
(p2,k)-segment of P, the kt1-arc, and S1 form a strong graph B′ ⊆ G that properly
contains B. Clearly, src /∈ VB′ , since d−(q) ≥ 1 for all q ∈ VB′ . Hence there is a
nonempty (src,B′)-path in G. This path and the nonempty (k, t2)-segment of S2
constitute a pair of spikes wrt. the body B′. The resulting inout-kebab contradicts
our choice of K, so k /∈VS2 \{p2, t2} follows.
Finally, if k = t2, then P consists of a mere t2t1-arc. In this case, K and the t2t1-arc
form a strong subgraph of G. Let B′ denote this subgraph and let Psrc and Psnk
denote the shortest (src,B)-path and (B,snk)-path, respectively. Since B′ is strong,
src,snk /∈VB′ follows, thus Psrc and Psnk are nonempty. We also find that Psrc and
Psnk are internally disjoint; otherwise we would find a contradiction to K being an
inout-kebab with arc-maximal body.
Let bsrc and Psnk denote the endpoint of Psrc and Psnk in B′, respectively. If bsrc and
bsnk are distinct, G contains an inout-kebab with body B′, in-spike Psrc and out-
spike Psnk. However, since B′ properly contains B, this would contradict our choice
of K. Thus bsrc = bsnk follows, and we refer to this vertex as b. We distinguish
cases by the location of b in B′.
– If b ∈VB \{p1}, then G contains an in-kebab, with body B and in-spikes Psrc

and S1. Notice that S1 and Psrc are indeed disjoint, since Psrc is a shortest
(src,B′)-path and S1 is contained in B′. The claim follows with Lem. 9.

– If b = p1, G contains an out-kebab with body B and out-spikes Psnk and S2; the
claim follows with Lem. 9 again.

– If b ∈VS1 \{p1}, let a denote the third proper arc incident to t2, as guaranteed
by Prop. 10, and let x denote the vertex adjacent to t2 by a. If x lies outside B′,
then we find a kebab with body B′, and spikes a and Psrc or Psnk, depending
on the orientation of a. The found kebab must be an in- or out-kebab—else
it would contradict our choice of K—so the claim follows with Lem. 9. This
includes the case x ∈VPsrc and (by symmetry) x ∈VPsnk .
It remains to consider the location of x in B′. First let x ∈VB \{p2}. If a = xt2,
then CR 4 G follows with help of Prop. 11 (similar to the case shown in
Fig. 13d). If a = t2x, we find an inout-kebab whose body consists of B, S2 and
a, and with the (b, p1)-segment of S1 and the t2t1-arc as the in- and out-spike,
respectively (Fig. 13e). This contradicts our choice of K.
Next, let x ∈ VS1 \ {p1}. For a = t2x, notice that x 6= t1, since G is p-normal.
Taking B, S2 and the (x, p1)-segment of S1 as body of an inout-kebab with
the t2t1-arc as out-spike and Psrc as in-spike contradicts our choice of K. For
a = xt2 we find Q 4 G (Fig. 13f).
For x ∈ VS2 the possible orientations of a yield an in-kebab or Q 4 G in a
similar manner.

– For b= p2 and b∈VS2 \{p2} the arguments are symmetric to the two preceding
cases.

This exhausts all possible cases and the proof is completed. ut
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e(v) p1

e(y) p2

e(w)

e(x)

C

(a) Φ 4b K

t1

t2

(b) C 4 G

t1

t2

(c) Q 4 G

t1 p1

t2 p2

(d) CR 4 G

t1 p1

t2 p2

b

x

(e) bigger inout-kebab

t1 p1

t2 p2

x

(f) Q 4 G

Fig. 13: Cases occurring in the proof of Lem. 10 for an inout-kebab.

Lemma 11 Let G be an spl-normal hammock with cycles. Then F 4G for some F ∈ F
or K 4b G for some K ∈K.

Proof Let (G,src,snk) be spl-normal and non-acyclic. We first show that G contains a
proper cycle, i.e., one that is not merely a loop. This is seen as follows: if G is free of
loops, it must contain a proper cycle. Otherwise, consider a loop a = xx ∈ AG. Since
G is `-normal, x guards a distinct vertex y. So G contains an (x,y)- and a (y,x)-path;
therefore, x and y lie on a proper cycle each (not necessarily the same one, though).

Let C be a smallest proper cycle in G, then src,snk /∈VC since every vertex of C
has in- and out-degree at least one. Thus G contains a shortest (src,C)-path Psrc and
a shortest (C,snk)-path Psnk. Let x and y denote the vertices of C where Psrc enters C
and where Psnk leaves C, respectively. We distinguish whether x and y coincide.

1. If x 6= y, we further distinguish whether Psrc and Psnk are disjoint; the two cases
are sketched below.

src x y snk z

src

snk

y

x

If Psrc and Psnk are disjoint, we have found an inout-kebab with body C, in-spike
Psrc, and out-spike Psnk. This can be seen above on the left. In that case, the claim
follows by virtue of Lem. 10.
If Psrc and Psnk intersect, let z denote the shared vertex lying “closest” to C, as
shown on the right above. Notice that every vertex shared by Psrc and Psnk lies
outside C, since Psrc and Psnk are shortest paths and we assume x 6= y. We have
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found a DΨ with pegs src, z, x, and y in G. If this subdivision is bare, the claim
follows. Otherwise, let P be a bypass to the DΨ and consider its endpoints.
First, we note that P does not enter src, since d−(src) = 0. If P is a (src,x)-bypass,
an inout-kebab occurs in G, and if P is a (src,y)-bypass, we find C 4 G. If P is
from x to z, or from z to y, CR 4 G follows. This exhausts all possibilities, and the
proof is complete for x 6= y.

2. If x = y, we refer to this vertex as x0 and enumerate the vertices of C as VC =
{x0, . . . ,xn}. Since C is a proper cycle, we have n > 0. We show that each xi is
adjacent to a vertex outside C.
First, xi is incident to an arc ai 6= AC, since G is s-normal. Second, ai is neither
parallel to an arc of C, since G is p-normal, nor is it a chord of C, since C is a
smallest cycle of G. This means that ai = xiki, resp. ai = kixi, for ki 6=VC or ki = xi.
In the first case, we found a vertex outside C and adjacent to xi. Otherwise, ai is a
loop, i.e., ki = xi. Since G is `-normal, this implies that xi guards a distinct vertex
z. We find z 6=VC, as every vertex of C reaches snk or is reached from src via x0,
without passing through xi. Consequently, no vertex of C is guarded by xi, so the
first internal vertex on a (xi,z)-path lies outside C. This concludes the second case.
We have thus found a kebab in G, with body C, one of Psrc or Psnk as one spike, and
the arc between xi and its successor or predecessor outside C as the other spike.
The claim now follows with Lem. 9 or Lem. 10.

Each case implies a (bare) minor of G as claimed; since the cases are exhaustive,
the claim follows. ut

We combine the results found in this section to finally get a characterization of
SPL by means of forbidden minors.

Theorem 7 Let G be a hammock. Then

G ∈ SPL iff F 64 G for each F ∈ F and K 64b G for each K ∈K.

Proof Let G ∈ SPL, then G is a hammock. From Lem. 3 follows that G is F-free,
while Lem. 4 states that G is free of bare K-minors. Therefore, minor-freeness as
claimed is necessary.

To prove sufficiency, assume G /∈ SPL for a hammock G. Then R(G) 6= P1 follows
with Thm. 2. Recall that R(G) is a hammock, too. If R(G) is acyclic, Valdes’ theorem
(Thm. 5) states N 4 R(G) which implies the claim. Otherwise R(G) contains cycles,
so Lem. 11 yields F 4 R(G) for some F ∈ F or K 4b R(G) for some K ∈K. If G is
spl-normal, i.e., G = R(G), the claim follows immediately. Otherwise, induction on
the length of the reduction from G to R(G), using Thm. 6 in each step, provides the
claim. ut

Lastly, we observe that the given characterization of SPL by forbidden minors is
minimal wrt. the minor-notions we employ. In other words, no member of F or K can
be omitted. This is shown by giving hammocks that have exactly one (bare) minor in
F or K.

Lemma 12
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src

snk

(a) GC

src snk

(b) GQ

src

snk

(c) GΨ

Fig. 14: Hammocks with exclusive (bare) minor C, Q, and Ψ.

1. For each F ∈ F there is some GF ∈H s.t. F 4 GF , while F ′ 64 GF for F ′ ∈ F\{F}
and K 64b GF for K ∈K.

2. For each K ∈K there is some GK ∈H s.t. K 4b GK , while F 64 GK for F ∈ F and
K′ 64b GK for K′ ∈K\{K}.

Proof We have GN = N and GΦ = Φ. The graphs GC, GQ and GΨ are shown in
Fig. 14. Symmetry further yields GCR = GR

C and GΨR = GR
Ψ.

6 Conclusions

The class of series parallel loop graphs, SPL, extends that of arc-series parallel graphs
beyond the acyclic case. These graphs have been characterized in three ways: by a
recursive constriction, by an encoding through expressions and—within the class of
hammocks—by a set of seven forbidden substructures.

The forbidden subgraph characterization contributes to the structural theory of
directed graphs. Few such results are known for digraph classes, as opposed to the
undirected case, where these characterizations are met rather often [2]. It is worth
mentioning that spl-graphs can further be defined as graphs of treewidth two, if this
notion is extended to digraphs with multiple arcs and loops. Among simple undirected
graphs, treewidth two captures the class of series parallel graphs—the favourable
algorithmic properties of this class [1,17]) might generalize to spl-graphs seamlessly.

The definitory and the expression characterization are tightly coupled, since the
recursive structure of an spl-graph is immediately apparent in the parse of its associated
expression (modulo associativity and commutativity). With a litte extra effort, this
correspondence can be exploited in the conversion among REs and εFAs. Let us refer
to εFAs with spl-structure as spl-FAs.

We have shown that any spl-FA can be converted to an expression that is linear
in the size of the FA. Consequently, a trim normalized FA that requires expressions
of superlinear size cannot have spl-structure. The forbidden minor characterization
of SPL further dictates that such an FA contains structures from F or K. How to
get a converse kind of result is unclear as yet. Any fixed FA with features from F
and K can be converted to a linear-sized expression, given the right factor. The same
goes for growing FAs with a fixed number of isolated occurrences of such forbidden
structures. This suggests to devise a quantitative notion of “overlapping” or “nested”
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minors (or subdivisions). Notice that the graphs used by Ehrenfeucht & Zeiger to show
exponential blowup trivially contain any smaller graph as a minor.

Let us finally compare spl-FAs with FAs that result from the constructions by
Thompson and Glushkov.

Thompson-FAs and spl-FAs are both linear in the size of their origin expressions,
owing to the presence of ε-transitions. It is easy to see that a Thompson-FA can also
be “deconstructed” in a straightforward manner to the expression it originates from.
However, spl-FAs contains considerably fewer ε-transitions: a Thompson-FA contains
one ε-transition per product, four ε-transitions per sum, and three per Kleene-star
in the original expression, while an spl-FA contains at most two for a star and none
else. This yields a smaller FA and allows for a faster computation of the ε-closure in
possible follow-up constructions.

Comparing Glushkov-FAs and spl-FAs by size is futile, as the former FAs are ε-
free. This requires an Ω(n logn) increase over expression size in the general case [15].
In the converse direction, their structural characterization, suggests that Glushkov-FAs
can be converted to linear sized expressions [3]. An encoding of unlabeled digraphs
with the appropriate structure should be applicable, by labeling each arc with its head
vertex. However, it is unclear whether these transformations are invertible.

It might be further be insightful to devise forbidden minor characterizations of the
graphs underlying Thompson-FAs and Glushkov-FAs, as these minors provide absent
structures “at a glance”.
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