

Organization, Self-Organization, Autonomy and Emergence: Status and Challenges

Sven Brueckner 1 Hans Czap 2

1 New Vectors LLC
3520 Green Court, Suite 250, Ann Arbor, MI 48105-1579, USA

Email: sven.brueckner@newvectors.net
http://www.altarum.net/~sbrueckner

2 University of Trier, FB IV Business Information Systems I
D-54286 Trier, Germany

Email: Hans.Czap@uni-trier.de
http://www.wi.uni-trier.de/

Abstract: Development of IT-systems in application
domains is facing an ever-growing complexity resulting from
a continuous increase in dynamics of processes, applications-
and run-time environments and scaling. The impact of this
trend is amplified by the lack of central control structures. As
a consequence, controlling this complexity and dynamics is
one of the most challenging requirements of today’s system
engineers.

The lack of a central control instance immediately raises
the need for software systems which can react autonomously
to changing environmental requirements and conditions.
Therefore, a new paradigm is necessary how to build
software systems changing radically the way one is used to
think about systems and its development: self-organization,
autonomy and emergence are the concepts that have to be
build into future systems.

This paper shows first steps in order to arrive at a theory of
self-organization, autonomy and emergence and provides
some of the fundamental principles that should be followed
for the design of truly adaptive software systems.
Keywords: systems theory, organization, self-organization,
emergence, autonomy.

1. Introduction

This section shows the basic principles of self-organization in
natural and artificial systems. The components identified will
be explained in the following chapters. The aim is to show,
how organizations are able to change their inherent structures
respectively how to apply structural learning as a self-
organizing process.

The ever-growing complexity of today’s IT-supported
processes in business, government, military or entertainment,
seriously challenges traditional approaches to IT-application
design, implementation, deployment, and management.
Today’s software systems are increasingly decentralized,
distributed, and dynamic, just as the problem domains in
which they are operating are taking on these characteristics
too.

To deal with this growing software and domain
complexity and the increasing dynamics of application- and
run-time-environments, software systems must be able to

react and adapt autonomously to changing requirements.
Therefore, approaches that rely on the fundamental principles
of self-organization and autonomy are growing in acceptance.

Following such approaches, software system functionality
is no longer explicitly designed into its component processes
but emerges from lower-level interactions that are
purposefully unaware of the system-wide behavior.
Furthermore, organization, the meaningful progression of
local sensing, processing and action, is achieved by the
system components themselves at runtime and in response to
the current state of the environment and the problem that is to
be solved, rather than being enforced from the “outside”
through design or external control.

While such self-organizing and emergent software systems
are very attractive for their inherent flexibility, robustness
and graceful degradation under component failure – to name
just a few commonly cited attributes – the design,
implementation, validation and evaluation of such systems
remain major challenges for researchers and system
developers. Typical questions and issues revolving around
such approaches are:

 What principles govern the self-organization of
autonomous components and the emergence of desired
system-level features?

 How to break down the system into interacting
components?

 How to design inter-component interactions and
component-internal reasoning to achieve the desired
system-level functions?

 How to define a static and dynamic environment that
supports and nourishes the goal-driven operation of
the system components?

 How to design methods for human operators to
interact and guide such systems?

 How to define interfaces for external IT systems to
interact with such a system for mutual benefit?

 How to implement robust decentralized and
distributed systems?

 How to understand their behavior under a wide range
of operational parameters?

 How to formally or even empirically validate and
evaluate the emergence of the desired system-level

functions?
 How to deploy, maintain, and update the components

of such a complex system?
 How to certify correct functioning also in malicious

environments
In the following, we discuss various such issues in more

detail to provide context to the various contributions of this
special journal edition.

2. Theory of Organization, Self-Organization,

Autonomy and Emergence

One of the major challenges of the new approach to
engineering complex software system by harnessing
principles such as self-organization or emergence is the lack
of a formal theory that can underpin such systems, whether
engineered or “naturally” grown. The interdisciplinary
science of Complex Adaptive Systems (CAS) offers some
useful concepts and ideas that are drawn from a wide variety
of fields, such as physics, chemistry, biology, economics, or
social science. But, in general, our ability to formally model,
analyze and evaluate such systems in their structure or
dynamics is still very limited. Before presenting a formal
definition, a more phenomenal understanding of the concept
of an organization and its properties is essential.

2.1 Organizations and Organizational Dimensions

The concept ‘organization’ has different meanings. Mainly,
four versions are distinguished:
(i) An organization A is a set of elements, A = {a1, .., an}.

This definition is in correspondence with the formal
definition of a system, but is very unspecific. As it is
with universal definitions, they do not help much in
differentiating an organization from any other system.
Therefore, in the following this version is disregarded.

(ii) An organization can be understood as the process of
organizing.

(iii) An organization can be seen as the instrument or mean to
achieve specific goals. In this context one talks of the
instrumental character of an organization. The concepts
(ii) and (iii) are essential when talking about self-
organization, since, as is later shown, self-organization is
understood as the process of adapting an organization by
internal forces to a specific requirement or goal.

(iv) Finally, an organization can be identified with the result
of organizing, i.e. an organization is seen as a social
institution.

Organizations and Distributed Processing have many
common characteristics. The understanding of the
fundamental properties of organizations helps in
understanding basic principles of distributed processing. For
example, the fundamental principles of work-sharing and
specialization of different processing entities immediately
leads to questions of coordination and control as well as
efficiency. Goal-oriented behavior, performance, scaling etc.
are of uppermost relevance. Questions of architectural design
of any distributed processing system and the question
whether a design fits the intended purpose, immediately leads
to definition (iii) above, whereas questions of coordination at

run-time strongly relate to definition (ii). Our focus,
therefore, lies on the concepts (ii) and (iii) of an organization.

In management-theory organizational settings are
characterized more specific by the five ‘structural
dimensions’ respectively ‘structural variables’ [9]. These
dimensions immediately relate to architectural design-
problems during conceptual phase of systems development:

Specialization. Depending on the kind of problems to be
solved by the system, specific capabilities of processing units
must be assigned. In general, having specific purpose
processing units will result in high performance but low
reliability. If a high degree of reliability and flexibility is
intended the components of the system should show
overlapping capabilities.

Coordination. Different coordination measures relevant for
the systems design consist of ‘coordination by algorithms’,
‘coordination by direct communication’ and ‘self-
coordination’. ‘Coordination by algorithms’ is very efficient
in static environments, where the problems to be solved are
well-known in advance. In distributed processing one
generally prefers ‘direct communication’ or ‘self-
coordination’.

In the case of ‘direct communication’ the client, who
requests a problem solution, must know the specific
capabilities of the servers in question. Thus, it’s a problem of
information availability at run-time. The well known
contract-net-protocol is an example of ‘coordination by direct
communication’.

In the case of ‘self-coordination’ a group of processing
units, respectively a subsystem is confronted with the
problem to be solved. The processing units decide by their
own, which part of the problem will be solved by which unit.
The blackboard –paradigm, where a task is announced to the
public and processing units declare readiness to solve the
problem, is one of the most popular forms of self-
coordination. As is known of blackboard-architecture
communication likely becomes a bottleneck and limits
scalability. This is generally true for self-coordination
approaches, if coordination uses a central device. As is shown
in the following, stigmergy provides means for self-
coordination by changing environmental variables, thus
avoiding bottlenecks of hierarchical or other centralized
approaches.

Configuration. Configuration relates to the organizational
structure, i.e. the division of labor according to the tasks,
responsibilities, obligations and accountability of members of
the organization. Design decisions address the number of
hierarchy levels, the span of control, definition of roles etc.

The dimensional variables coordination and configuration
are not independent each other. Typically, by the definition of
roles and correspondent responsibilities the need for
coordination can be drastically reduced.

Decision distribution. Decision distribution is correlated to
the delegation of decisions and the question of responsibility.
Self-organization of a subsystem presupposes the possibility
of the members of this subsystem to decide on its own. For
self-organizing groups the group-manager does not decide
about the tasks each member of the group has to do. Rather,
the group will assign by self-coordination the tasks to its
members. Self-organization and autonomy of members
within a group correspond to each other.

Formalization. Formalization relates to the degree at which
general rules and formal behavior are implemented within an
organization. A high degree of formalization makes sense
mainly in static environments. In the case of complex
dynamic environments a high degree of flexibility is
necessary. Insofar is a high degree of formalization
prohibitive for self-organization.

2.2 Self-Organization and Stigmergy

The phenomenon of purposeful self-organization is not an
inherent property of systems that just happens by itself.
Rather, specific requirements must be fulfilled. In social
organizations some of these requirements have been
mentioned above, i.e. reduced formalization, decision
delegation, self-coordination. First, mainly self-organization
will happen, if the team as a group of peers is responsible for
the work to be done and not the individual within the team.
Second, if there is some incentive for the individual to have
success. Third, if each individual knows about the importance
for the work to be done or in other words about the incentive
in the case of success and punishment in the case of failure.

Since behavior of human beings often does not obey strict
laws, it’s easier to study primitive insects and their self-
organizing behavior in order to gain the necessary knowledge
about how to build artificial systems that show self-
organization.

[2] in studying self-organization in swarms of social
insects found the following ingredients that are relevant for
self-organization:

 Positive and negative feedback. Positive feedback
will be needed to recruit other insects and reinforce
specific behavior. Negative feedback counterbalances
the positive one and helps to stabilize the collective
pattern, for example the exhaustion of some food-
source.

 Amplification of fluctuations. For insects, there must
be some random behavior in order to discover new
solutions or to adapt to changing environments. In
building artificial systems there must be some means
to insure that no uniform behavior of all exemplars
will happen. Autonomy on the level of behavior of
individuals is one way to achieve this purpose. An
other way would be to let behavior depend on some
probability distribution, as is frequently done in ant-
algorithms.

 Multiple interactions. For self-organization it is
essential that individuals are able to make use of the
results of their own activities as well as of other’s
activities. Essentially, this means that there is some
form of a communication system. This can be sub-
symbolic and quantitative as is the case for the
pheromone markers of ants or symbolic and
qualitative as in negotiations among humans. In either
case, it allows collective learning and synchronized
behavior.

Engineered Multi-Agent Systems (MAS) are created for a
specific purpose. Thus, in general, there is typically some
goal determining the behavior of agents that may directly or
indirectly providing positive or negative feedback. Clearly, in
MAS one has a communication system that allows for
collective learning. But autonomy of agents generally is

understood as the autonomy to choose autonomously the
means to achieve some goal, i.e. autonomy of an agent
determines its behavior on a lower level. Therefore,
amplification of fluctuations must be given specific attention
in order to build self-organizing MAS.

Communication can be based on direct interactions
between individuals using communication channels.
Communication also can happen indirectly by changing the
environment. A soccer-playing robot that kicks the ball
changes the environment to all the other players, causing
different activities. Stigmergy, from the Greek words stigma
“sign” and ergon “work”: the work performed by agents in
the environment guides their later actions, has been coined to
address these indirect communications by environmental
changes that potentially lead to the system’s self-
organization. The information stored in the environment
forms a field that supports agent coordination, leading to the
term “co[ordination]-field” for this class of technique [10].
Such techniques are common in biological distributed
decentralized systems such as insect colonies [11]. A
common form of stigmergy is resource competition, which
occurs when agents seek access to limited resources. For
example, if one agent consumes part of a shared resource,
other agents accessing that resource will observe its reduced
availability, and may modify their behavior accordingly.
Even less directly, if one agent increases its use of resource
A, thereby increasing its maintenance requirements, the
loading on maintenance resource B may increase, decreasing
its availability to other agents who would like to access B
directly. In the latter case, environmental processes contribute
to the dynamics of the state variables involved.

Different varieties of stigmergy can be distinguished. One
distinction concerns whether the signs consist of special
markers that agents deposit in the environment (“marker-
based stigmergy”) or whether agents base their actions on the
current state of the solution (“sematectonic stigmergy”).
Another distinction focuses on whether the environmental
signals are a single scalar quantity, analogous to a potential
field (“quantitative stigmergy”) or whether they form a set of
discrete options (“qualitative stigmergy”). As shown in Table
1, the two distinctions are orthogonal.

Table 1. Varieties of Stigmergy

2.3 A Formal View of Self-Organization and Emergence

A very first step towards a theory of self-organizing systems
with emergent functionality is to rigorously define the basic
concepts. [14] differentiates between self-organization and
emergence as two distinct system properties, with self-

organization being a phenomenon of interrelationships
between components at the same level (micro-level) and
emergence referring to an inter-level process appearing on
the macro-level.

As mentioned above and used in expressions such as “self-
organization,” the word “organization” has distinct, but
related, meanings.

Combining the views 1 and 4 of section 2.1 and observing
that in real organizations, like enterprises, generally, one has
not one formal organizational structure but rather a network
of interwoven relationships, formal and informal ones,
communication structures, decision structures etc., one has to
state that any organizations consists of a multitude of
organizational structures. The following formal definition
accounts for this.

Organization as a social institution. A System Σ is an
ordered pair (V,S), Σ = (V, S) , where

 V = {v1, v2, ...}, V ≠ ∅ ,
 S = {S1,S2, S3,.., Sm} a finite set,

each element Si being a finite set of relations of order i:
 Si = {R1

i, R2
i,..,, Rmi

i}, mi ≥ 0,
 (mi = 0 corresponds to Si = ∅),
 .,..,1,

1
i

i

j

i
k mkVR =⊆∏

=

If V is finite, i.e. V = {v1, v2, ..vn.} Σ is called an organization.
Relations S0 of order 0 might be interpreted as attributes of

the elements vi. Since different attributes contribute to
different degrees of specialization the organizational variable
“specialization” (see 2.1 above) can be measured by S0.

This formalization of the concept of an organization
permits us to say that one organization respectively a set of
elements V = {v1, v2, ..vn.} is “more organized” than another
(or than the same set V at a different time). Different detailed
definitions for the set S are possible and by set-inclusion
relate immediately to the concept of the “degree of
organization”, which might be understood as any measure of
the number and intensity of set of relationships S.

Also, any subset of Σ = (V, S), i.e. a subset of V = {v1, v2,
.., vn.} or one of S = {S1,S2, S3,.., Sm} immediately relates to
the concept of a sub-organization.

The term environment must be explained too. It always
relates to a given system respectively a given organization
and denotes the set of variables and influences that act onto
the system but cannot be influenced directly by the system
itself.

Organizing, i.e. organization as a process. Organization is
the process of building or, more generally, of changing the
set S of relationships within the set V = {v1, v2, ...} of
organizational members. Also, any changes that might
happen to the set V itself, i.e. if any members are entering or
leaving V, causes the need of adapting the set S of
relationships, and, thus, is some kind of organization.

Definition 1 and 2 do not allow characterizing the
appropriateness of any organization, i.e. how good the
organization is able to respond to any requirements or
changes caused by the environment. Clearly, regarding the
myriads of consultants who live in selling some
organizational concepts, one should recognize that there is no
general valid answer which environmental change to the best
results in a specific mix of organizational variables.
Nevertheless, in the large, some answers might be given.

These answers relate to information availability, length of
decision paths, dynamics of environment and internal variety,
as is explained in chapter 3 in more detail.

With this understanding of “organization” it is possible to
define “self-organization” as a process that adapts a given
organization by internal forces alone, i.e. without an external
change of structures, because of an observed mismatch to
environmental requirements:

(i) Cause of any self-organization to take place is some
environmental change and an information flow from
the outside into the system/organization.

(ii) The mismatch of organizational responsiveness to the
external requirement is recognized.

(iii) The system re-organizes by itself (not by external
intervention) to increase fitness.

Internal variety is a concept used in cybernetics to address
the ability of a system to respond adequately to external
requirements. With respect to the concepts introduced so far
one can define internal variety as the ability of a system for
self-organization

Any organization observed from the outside of the system
is called emergence. Emergence relates to the behavior of the
organization on the macro level, where the relationships S
and the specific functioning of the elements of the
organization in question cannot be seen. To achieve greater
precision, it is proposed distinguishing between self-
organization and emergence on the basis of the contrast
between the horizontal concept of system boundary and the
vertical concept of levels (Fig. 1). Self-Organization is the
organizing process among elements within a level. This
definition depends critically on the location of the system
boundary. If the boundary is moved, a system’s character as
self-organizing or not may change.

Self--Organization

Em
ergence

Fig. 1. Comparing Self-Organization and Emergence.

Emergence is defined as a co-notation of organization and in
so far of self-organization as well. Emergence (as the term is
used here) describes the appearance of structures at a higher
level that are not explicitly represented in lower-level
components. The reliance of swarming systems on locally
available information makes it difficult for them to reason
explicitly about higher-level structures, so emergence tends
to be an important mechanism in swarming systems.

2.4 Measuring Self-Organization and Emergence

Since the perception of organization and thus self-
organization is highly domain and even system dependent, no
globally applicable metric can be provided, though general
guidelines may be offered. But, typically, self-organization
leads to the emergence of dynamic structures in some
topological space. For instance, ants that organize in the

foraging for food create paths that are only visible in the
spatial distribution of the ants in space and time. And
measures that are based on this distribution would be able to
detect the emergence of organized structures, but they would
not be able to tell whether the structures emerged through
self-organization or from external control.

One such measure that is useful in measuring the
emergence of structures in some topology is the Information
(or Shannon) Entropy [5]. As demonstrated in [12], entropy
measures may be defined over various spatio-temporal
distributions that reflect the emerging structures. For
instance, one could measure the spatial distribution of the
ants across the space around the nest. Initially, before the first
path is formed, the entropy would be high because the ants
are exploring the space randomly. Once the food is found and
ants are recruited to the path, the entropy will collapse.

While such distribution measures at the system level are
appropriate for the system architect or evaluator to determine
the degree of organization in the system, those classes of
measures are not directly accessible to the individual agents
with only local access to state information. But, for various
local and distributed learning and optimization techniques, it
would be very useful to provide the individual agent with a
view into the current degree of organization at the system
level.

In several previous research projects, we found it useful to
apply a derivative of the Information Entropy to an agent’s
non-deterministic decision process itself. The Option Set
Entropy measures the degree to which the agent actually uses
information (regardless which information) to select among
alternative options in a decision step. If the decision is not
using any information, it is essentially random and the
entropy is highest. A deterministic decision, whether or not it
is the best one for the overall system, results in the lowest
entropy.

Assume that in a particular decision step at time t, an agent
has N options to choose from. Furthermore, assume that the
decision process of the agent assigns each option a
probability p1…N to be selected and that the actual decision
follows these probabilities (e.g., spins a weighted roulette
wheel). Deterministic decisions would assign a probability of
100% to one option and zero to all the others. Then, we
define the Option Set Entropy (OSE) as: OSE(t)=-
Σ(pi*log(pi))/log(N). Dividing the standard entropy by the
logarithm of the number of options available in one step
normalizes the Option Set Entropy to a range of [0,1] and
thus provides a clean way to cope with the variation of the
number of options over time.

In the case of the foraging ant, the set of options would be
a collection of bins for the various direction it could move
towards next. In the random exploration mode (no path
formed), all bins would be equally weighted and thus the
OSE would approach one. Along the path, one direction
would clearly stand out (highest pheromone gradient) and the
OSE would be significantly lowered. In [4] we demonstrate
how such a locally accessible metric can be used to globally
optimize the emergent system performance of a distributed
graph-coloring algorithm.

3. Design and Modeling of Self-Organizing
Software Systems

In the following, we propose a number of application domain
features, which may suggest the use of self-organizing
approaches to systems design, we discuss the use of
stigmergy as a tool for managing large-scale distributed
applications, and we present a collection of principles that
may guide systems engineers in their application design.

3.1 Where Would One Want to Use Self-Organization

and Emergence?

Five domain features indicate the appropriateness of self-
organizing approaches: discreteness, deprivation, distribution,
decentralization, and dynamism.

Discrete: An organization had been introduced as
consisting of a finite and thus discrete set of elements V =
{v1, v2,, .., vn}. In so far, it is easiest to apply agents or any
other organizational concept (whether self-organizing or not)
to a domain if the domain consists of discrete elements that
can be mapped onto the set V.

Deprived (Resource-Constrained). We say that a system is
“deprived” (or resource constrained) when limits on
resources (such as processing power, communications
bandwidth, or storage) rule out brute-force methods. For
instance, if enough communications bandwidth is available,
every agent can communicate directly with every other agent.
If agents have enough processing power, they can reason
about the massive input they will receive from other agents.
If they have enough storage, they can maintain arbitrarily
large sets of instructions telling them what to do in each
circumstance.

Under such assumptions, swarming architectures would
seem to have little benefit. Some futurists extrapolate the
historically exponential increases in hardware processing
power, storage, and bandwidth, and claim that these
constraints will quickly disappear. At the hardware level,
Moore’s law and its analogs for bandwidth and storage give
good reason to be optimistic. However, a computer system is
more than hardware. It is constrained by theoretical,
psychological, commercial, and physical issues as well. For
example:

 No matter how much storage is available, the
knowledge engineering effort required to construct
large knowledge bases remains a formidable
psychological obstacle to completely defining the
behavior of every agent.

 No matter how fast processors get, the theory of NP-
completeness points out that the time required to solve
reasonably-sized problems in many important
categories will still be longer than the age of the
universe. An important instance of this challenge is
the truth maintenance problem, the challenge of
detecting inconsistencies in a knowledge base that
result from changes in the world, which is NP-hard for
reasonably expressive logics.

 No matter how much bandwidth the hardware can
support, the market may not make it available in the
configuration needed for a specific problem. Military
planners, for instance, have long counted on the

availability of commercial satellite channels, but the
commercial market has moved toward land-based
fiber backbones, resulting in a major shortfall in
projected available bandwidth for military
deployments in underdeveloped areas.

 The growing emphasis on Pervasive Computing and
nano-technology requires the deployment of
computation on very small devices. The physical
limitations of such devices will not permit them to
support the level of processing, storage, and
communications that can be realized on unconstrained
devices.

 Resource constraints tend to support high degrees of
the organizational variable “specialization” since one
is forced to take special purpose components. This
trend, in turn, forces architectural designs
(configuration) which increases the need for
coordination.

Several characteristics of self-organizing systems make
them good candidates for deprived environments. For
example:

 Interactions among system components are typically
local in some topology. If information needs to move
long distances, it does so by propagation rather than
direct transfer. Local interactions limit the number of
neighbors about whom each agent must reason at a
time, and in geographically distributed systems,
enable the use of low-power transmissions that permit
bandwidth to be reused every few kilometers.

 Because system-level behaviors do not need to be
specified at the level of each element, the knowledge
engineering and storage requirements are greatly
reduced.

 Emergent systems commonly maintain information by
continuously refreshing current information and
letting obsolete information evaporate. In general, this
is done by making use of environmental markers
(stigmergy) allowing for very simple communication
mechanisms. Also, this process guarantees that
inconsistencies remove themselves within a specified
time horizon, without the need for complex truth-
maintenance procedures.

Distributed. The notion of “local interactions” is central to
our definition of self-organizing systems with emergent
features. Keeping interactions local is a powerful strategy for
dealing with deprived systems, but requires that the entities in
the problem domain be distributed over some topology within
which interactions can be localized.

The most common topology is a low-dimensional
Euclidean manifold, or a graph that can be embedded in such
a manifold. For example, insect stigmergy takes place on
physical surfaces that, at least locally, are embedded in two-
dimensional manifolds. Most engineered applications of self-
organizing approaches such as path planning [13], pattern
recognition [4], sensor network self-organization, and ant-
colony optimization [6], follow this pattern. In these
applications, locality can be defined in terms of a distance
metric, and enforced by physical constraints on
communications (e.g., a node’s neighbors are all the other
nodes with whom it has radio contact).

More recent work (for instance, in telecommunications
[8], or in our laboratory, on semantic structures) successfully

mediates agent interactions via scale-free small-world graphs.
Such graphs have long-range shortcuts and so are typically
not embeddable in low-dimensional manifolds. These
shortcuts pose problems for classical definitions of distance,
but locality of interaction can still be defined in terms of
nearest-neighbor graph connectivity, and the empirical
success of these latter efforts shows that this form of locality
is sufficient to achieve coordination.

Decentralized. As a system characteristic, decentralization
is orthogonal to distribution. In a centralized system, all
transactions require the services of a single distinguished
element. If the system is not distributed, the central point and
the system are identical. If it is distributed, the central point is
one of the elements, with which the others must
communicate. A common extension of centralization in a
distributed system is the hierarchy, in which the central
element for a small group of nodes joins with other nodes at
its level in reporting to a yet higher central element, and so on
until the top node is reached.

Self-organization can be a poor choice for applications that
require centralization. Particularly, systems that need a high
degree of control requiring an extensive set of rules
governing systems behavior (high degree of the
organizational variable “formalization”) are not suited for
self-organization and its inherent fault-tolerance.

The restriction to local interactions means that
communications between peripheral elements and the central
element is an emergent behavior of the system, which may
not meet the quality of service requirements or the need for
detailed predictability that often lead to a requirement for
central control. However, systems designers should be
cautious about accepting a centralized architecture. Such
architectures have at least three weaknesses.

(i) They are inherently resistant to increases in scale. As
the system grows, the capacity of the central element
must also grow. In decentralized approaches, new
elements can be added without changing any of the
existing elements.

(ii) A frequent role of the central element is to mediate
interactions among lower-level nodes (as in the
mediator architecture [7]). This technique may
actually lengthen the communication path between
two nodes, leading to undesirable delays as messages
travel up, then back down, the hierarchy.

(iii) The central element and the communication paths
leading to it are vulnerable to attack or failure, making
the system less robust than a self-organizing system.

Centralized architectures often result more from tradition
than from absolute system requirements, and a growing body
of cases suggests that acceptable functionality can be
achieved, with improved scalability, timeliness, and
robustness, in a decentralized way. In addition, centralization
is impossible in some cases (such as achieving coordination
among a population of entities whose members are not
known in advance and who do not all have access to a
common element). Techniques for self-organization and
emergence are a natural candidate for implementing
decentralized architectures.

Dynamic. A system is dynamic if its requirements change
during its lifetime. The emergent behavior that is
characteristic of self-organization is a powerful way for
dealing with changed requirements. The system elements do

not need to encode the system-level behavior explicitly, and
so do not need to be modified when those requirements
change. Three aspects of such change affect the need for
emergence: scope, speed, and obscurity.
Scope characterizes the amount of change to which a
system’s requirements are susceptible. The less the scope of
change, the more likely it is that the system as originally
configured will deliver acceptable performance. The greater
the degree of change, the more value there is in the ability of
the elements to reorganize to produce new emergent
behaviors that were not active in the initial configuration.
Speed characterizes the rapidity of change, and affects the
desirability of self-organization by way of the distinction
between centralized and decentralized architectures. If the
system changes slowly, non-self-organizing techniques that
rely on centralized organizations can tolerate the time delays
imposed by hierarchical communications. As the rate of
change begins to outpace the communications time through
the hierarchy, centralized organizations find themselves
perpetually providing the answers to yesterday’s problems,
and unable to respond rapidly enough. A common response is
to flatten the organization and empower lower-level nodes to
act on local information, essentially moving toward an
architecture for self-organization and emergence.
Obscurity reflects the degree to which the original designer
can anticipate later requirements. Even if changes are rapid
and wide in scope, if they follow along the lines anticipated
by the designer, simple parameter adjustments in a non-
emergent architecture may be able to cope with them. Self-
organizing systems are much better at enabling a system to
satisfy requirements that would be surprising to its original
designer.

3.2 Stigmergy Supports the Emergence of Self-Organized

Structures

Decentralized mechanisms all involve communication among
peers. Most negotiation research focuses on direct peer-to-
peer information flows (“conversation”). Indirect
decentralized flows occur when peers make and sense
changes to environmental variables.

Stigmergic mechanisms have a number of attractive
features, particularly for self-organizing systems.

Simplicity. The logic for individual agents is much simpler
than for an individually intelligent agent. This simplicity has
three collateral benefits.

(i) The agents are easier to program and prove correct at
the level of individual behavior.

(ii) They can run on extremely small platforms (such as
microchip-based “smart dust” [15]).

(iii) They can be trained with genetic algorithms or
particle-swarm methods rather than requiring detailed
knowledge engineering.

Scalable. Stigmergic mechanisms scale well to large
numbers of entities. In fact, unlike many intelligent agent
approaches, stigmergy requires multiple entities to function,
and performance typically improves as the number of entities
increases. Stigmergy facilitates scalability because the
environment imposes locality on agent interactions.
Agents interact with the environment only in their immediate
vicinity. Increases in the number of agents are typically
associated with an extension of the environment. The density

of agents over the environment, and thus the processing load
on each agent, usually does not increase.

Robustness. Because stigmergic deployments favor large
numbers of entities that are continuously organizing
themselves, the system’s performance is robust against the
loss of a few individuals. Such losses can be tolerated
economically because each individual is simple and
inexpensive.

Environmental integration. Explicit use of the environment
in agent interactions means that environmental dynamics are
directly integrated into the system’s control, and in fact can
enhance system performance. A system’s level of
organization is inversely related to its symmetry (Figure 2),
and a critical function in achieving self-organization in any
system made up of large numbers of similar elements is
breaking the natural symmetries among them [1].
Environmental noise is usually a threat to conventional
control strategies, but stigmergic systems exploit it as a
natural way to break symmetries among the entities and
enable them to self-organize.

3.3 Design Principles for Self-Organizing Systems

From the discussion of application characteristics and in
support of stigmergic coordination processes, we derive the
following collection of design principles. Naturally, this list
is incomplete and the “principles” are more guidelines to be
taken into consideration by the system’s architect. But,
nevertheless, analysis of naturally evolved self-organizing
systems with emergent functions (e.g., social insect colonies,
human economies) show similar “principles” are favored by
the natural selection process too.

3.3.1 Design Principles Regarding the Agent Population(s)

Use a distributed environment. Stigmergy is most beneficial
when agents can be localized in the environment with which
they interact by sensing and acting. A distributed
environment enhances this localization, permitting individual
agents to be simpler (because their attention span can be
more local) and enhancing scalability.

Use an active environment. If the environment supports its
own processes, it can contribute to overall system operation.
For example, evaporation of pheromones in the ants’
environment is a primitive form of truth maintenance,
removing obsolete information without requiring attention by
the agents who use that information.

Keep agents small. Agents should be small in comparison
with the overall system, to support locality of interaction.
This criterion is not sufficient to guarantee locality of
interaction, but it is a necessary condition. The fewer agents
there are, the more functionality each of them has to provide,
and the more of the problem space it has to cover.

Map agents to Entities, not Functions. Choosing to
represent domain entities rather than functions as agents takes
advantage of the fact that in our universe, entities are
bounded in space and thus have intrinsic locality. Functions
tend to be defined globally, and making an agent responsible
for a function is likely to lead to many non-local interactions.
For example, in a factory, each machine (an entity) has fairly
local interactions with other machines, parts, and workers in

its area of the plant, but a function (such as scheduling) must
take into account all of the machines in the entire plant.

3.3.2 Design Principles Regarding the Agent Interactions

Think Flows rather than Transitions. Our training as
computer scientists leads us to conceive of processes in terms
of discrete state transitions, but the role of autocatalysis in
supporting self-organization urges us to pay attention to the
flows of information among them, and to ensure that these
flows include closed loops. This principle corresponds to the
requirement of “multiple interactions” mentioned in section
2.2 establishing some kind of communication system that
provides social learning.

Boost and Bound. Keeping flows moving requires some
mechanism for reinforcing overall system activity. Keeping
flows from exploding requires some mechanism for
restricting them. These mechanisms may be traditional
positive and negative feedback loops, in which activity at one
epoch facilitates or restrains activity at a successive one. Or
they may be less adaptive mechanisms such as mechanisms
for continually generating new agents and for terminating
those that have run for a specified period (“programmed
agent death”).

Diversify agents to keep flows going. Just as heat will not
flow between two bodies of equal temperature, and water will
not flow between two areas of equal elevation, information
will not flow between two identical agents. They can send
messages back and forth, but these messages carry no
information that is new to the receiving agent, and so cannot
change its state or its subsequent behavior. Maintaining
autocatalytic flows requires diversity among the agent
population. This diversity can be achieved in several ways.
Each agent’s location in the environment may be enough to
distinguish it from other agents and support flows, but if
agents have the same movement rules and are launched at a
single point, they will not spread out. If agents have different
experiences, learning may enable them to diversify, but
again, reuse of underlying code will often lead to stereotyped
behavior. In general, we find it useful to incorporate a
stochastic element in agent decision-making. In this way, the
decisions and behaviors of agents with identical code will
diversify over time as their decisions are taken
probabilistically, breaking the symmetry among them and
enabling information flows that can sustain self-organization.

3.3.3 Design Principles Supporting the Emergence of

Desired Functions

Generate behavioral diversity. Structure agents to ensure that
their collective behavior will explore the behavioral space as
widely as possible. One formula for this objective has three
parts.

(i) Let each agent support multiple functions, just as for
instance ants may participate in foraging for food,
tending to the brood or constructing the nest.

(ii) Let each emergent system-level function require
multiple agents to avoid single points of failure and to
keep individual agents simple (rather than a single
agent being complex enough to provide the entire
function).

(iii) Break the symmetry among the agents with random or
chaotic mechanisms.

The first two points ensure that system functionality
emerges from agent interactions, and that any given
functionality can be composed in multiple ways. The third
ensures a diversity of outcomes, depending on which agents
join together to provide a given function at a particular time.

Give agents access to a fitness measure. Agents need to
make local decisions that foster global goals, an insight that
is supported by formal analysis in Wolpert’s Collective
Intelligence (COIN) research [16]. A major challenge is
finding measures that can be evaluated by agents on the basis
of local information, but that will correlate with overall
system state. Determining such measures is a matter for
experimentation, although thermodynamic concepts relating
short-range interactions to long-term correlations have the
potential to yield a theoretical foundation. In one application,
we have found the entropy computed over the set of
behavioral options open to an agent to be a useful measure of
the degree of overall system convergence [3] that agents can
use to make intelligent decisions about bidding in resource
allocation problems. Following our definition of self-
organization as a process that adapts the organization of a
system to environmental changes, one has to design a
mechanism that favors the right kind of local changes at the
agent level to optimally change the organization at the system
level.

Provide a mechanism for selecting among alternative
behaviors. If an adequate local fitness metric can be found, it
may suffice to guide the behavior of individual agents.
Otherwise, agents should compare their behavior with one
another, either to vary the composition of the overall
population (as in synthetic evolution) or to enable individual
agents to vary their behavior (as in particle swarm
optimization).

4. Summary

This paper deals with self-organization and with concepts in
the context of self-organization. Since self-organization is a
particular aspect of organization an understanding of self-
organization presupposes that of organization. Following [9],
the paper offers a more phenomenal characterization of
organization by the organizational dimensions/variables. This
formulation provides a more natural understanding of the
topic and the particular values of the organizational variables
that support self-organization and the verbal characterization
of an organization is augmented by a rigorous formal
definition, which helps in comparing different organizations
and in defining the concepts self-organization, internal
variety emergence and stigmergy. It also supports measuring
of self-organizations and emergence. For the latter the
concept ‘Options Set Entropy’ is proposed. It is based on
Shannon’s information entropy and actually is a measure of
the information used to take a decision.

In parallel to these more theoretical concepts the concrete
question is analyzed, which environmental properties support
respectively hinder the deployment of self-organizing
software systems. And the question is answered what the
characteristic features are that self-organizing software must
have. In doing so, specific design principles for self-

organizing software and for the emergence of desired
functions are given.

Acknowledgement

We have to thank Professor Manish Parashar, Professor Hong
Tang and Professor Xingyu Wang for their valuable
comments and improvements.

References

[1] P Ball,The self-made tapestry: Pattern formation in

nature, Princeton, NJ, Princeton University Press, 1996.
[2] E Bonabeu, M Dorigo and G Theraulaz, Swarm

Intelligence. From Natural to Artificial Systems, Santa
Fe Studies in the Sciences of Complexity, New York,
Oxford 1999.

[3] S A Brueckner and H V D Parunak, Swarming agents for
distributed pattern detection and classification.
Proceedings of Workshop on Ubiquitous Computing,
AAMAS 2002, Bologna, Italy, 2002,
http://www.altarum.net/~vparunak/PatternDetection01.p
df (checked on 2006-08-01).

[4] S Brueckner and H V D Parunak, Information-driven
phase changes in multi-agent coordination. Proceedings
of Autonomous Agents and Multi-Agent Systems
(AAMAS 2003), Melbourne, Australia, 2003, pp. 950-
951,
http://www.altarum.net/~vparunak/AAMAS03InfoPhase
Change.pdf (checked on 2006-08-01).

[5] Th M Cover, J A Thomas. Elements of information
theory, 2nd edition, New York: Wiley-Interscience,
2006.

[6] M Dorigo, V Maniezzo, and A Colorni, The ant system:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics, Part B,
Vol. 26, No. 1, 1996, pp. 1-13.

[7] B R Gaines, Mediator research program,
http://ksi.cpsc.ucalgary.ca/projects/Mediator/, 1995.

[8] M Heusse, S Guérin, D Snyers, and P Kuntz, Adaptive
agent-driven routing and load balancing in
communication networks. Advances in Complex
Systems, Vol. 1, 1998, pp. 234-257.

[9] A Kieser, P Walgenbach, Organisation, 4. überarbeitete
und erweiterte Aufl., Stuttgart 2003.

[10] L Leonardi, M Mamei, and F Zambonelli, Co-fields:
Towards a unifying model for swarm intelligence.
DISMI-UNIMO-3-2002, University of Modena and
Reggio Emilia, Modena, Italy, 2002,
http://citeseer.ist.psu.edu/cache/papers/cs/25995/http:zSz
zSzpolaris.ing.unimo.itzSzZambonellizSzPDFzSzSwarm
.pdf/co-fields-towards-a.pdf (checked on 2006-08-01)

[11] H V D Parunak, ’Go to the Ant’: Engineering principles
from natural agent systems. Annals of Operations
Research, Vol. 75, 1997, pp. 69-101.
http://www.altarum.net/~vparunak/gotoant.pdf (checked
on 2006-08-01).

[12] H V D Parunak and S Brueckner, Entropy and self-
organization in multi-agent systems. Proceedings of The
Fifth International Conference on Autonomous Agents
(Agents 2001), Montreal, Canada, ACM, 2001, pp. 124-

130, www.altarum.net/~vparunak/agents01ent.pdf
(checked on 2006-08-01).

[13] H V D Parunak, M Purcell, and R O'Connell, Digital
pheromones for autonomous coordination of swarming
UAV's. Proceedings of First AIAA Unmanned
Aerospace Vehicles, Systems, Technologies, and
Operations Conference, Norfolk, VA, AIAA, 2002,
www.altarum.net/~vparunak/AIAA02.pdf (checked on
2006-08-01).

[14] H V D Parunak and S A Brueckner. Engineering
swarming systems, F Bergenti, M.-P Gleizes, and F
Zambonelli, eds., Methodologies and Software
Engineering for Agent Systems, Kluwer, 2004.

[15] K Pister, Smart Dust, Autonomous sensing and
communication in a cubic millimeter, 2001,
http://robotics.eecs.berkeley.edu/~pister/SmartDust/
(checked on 2006-08-01).

[16] D Wolpert and K Tumer, An introduction to collective
intelligence. Technical Report NASAARC-IC-99-63,
NASA Ames Research Center, 1999.

Author Bios

Sven Brueckner is a Senior Systems Engineer in the
Emerging Markets Group at NewVectors. He has been active
in the field of multi-agent system’s research for more than ten
years. His doctoral thesis “Return from the Ant – Synthetic
Ecosystems for Manufacturing Control” researches the
theoretical foundations of agent system design and applies its
findings to complex manufacturing control systems, for
which he was awarded the degree Doctor rer. nat. by
Humboldt University Berlin, Germany in Summer 2000

After joining ERIM, a predecessor company to
NewVectors in spring of 2000, Dr. Brueckner has been a
technical lead, Principal Investigator or Project Manager on
several agent-focused research and development efforts, such
as DARPA-supported research into air-combat coordination,
swarming control of unmanned autonomous vehicles, self-
organizing management of mobile ad-hoc networks, or
polyagent models for adversarial reasoning.

Currently, Dr. Brueckner leads a project in the Office of
Naval Research (ONR) Counter-IED Basic Research
program, and is a technical lead and project manager for a
Disruptive Technology Office (DTO) funded project on
intelligence analysis modeling and support. He also
spearheads Altarum’s work package in the NIST/ATP DBDS
project, which develops a novel decision support system for
car body design.

Dr. Brueckner has authored over 20 papers on agent-based
and complex systems’ theory and application and is inventor
on four recent patents or preliminary patent filings.

Hans Czap, born in 1945, studied Mathematics at Univ.
Wuerzburg (Germany), SUNY (Oneonta, NY, USA), Dundee
(Scotland). 1974 he graduated with the Ph-D degree at Univ.
of Wuerzburg. 1983 he became professor for Business
Information Systems at University of Goettingen.

In 1985 he accepted the chair for Business Information
Systems at University of Trier (Germany). He is founding
president and during 1986 – 1990 he had been president of
Int. Assoc. for Terminology and Knowledge Transfer. 1993 –

1998 he was member of the board of executives of
International Society for Knowledge Organization (ISKO).
1997 he became first CEO of Center of Health Care
Management at Univ. of Trier (until 2003). For a two year
period starting in 2000 he had been chair of Scientific
Commission “Public Management” of Assoc. of Univ.-
Professors for Business Administration.

In the period 2000 –2004 he was managing director of
newly founded Competence Center for E-Business at
University of Trier.

His scientific interests cover a broad range: systems
theory, cost accounting, information systems, neural
networks and multi-agent systems. He is author, editor or co-
editor of 15 monographs and has published more than 100
papers.

