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Abstract: Development of IT-systems in application 
domains is facing an ever-growing complexity resulting from 
a continuous increase in dynamics of processes, applications- 
and run-time environments and scaling. The impact of this 
trend is amplified by the lack of central control structures. As 
a consequence, controlling this complexity and dynamics is 
one of the most challenging requirements of today’s system 
engineers.  

The lack of a central control instance immediately raises 
the need for software systems which can react autonomously 
to changing environmental requirements and conditions. 
Therefore, a new paradigm is necessary how to build 
software systems changing radically the way one is used to 
think about systems and its development: self-organization, 
autonomy and emergence are the concepts that have to be 
build into future systems.  

This paper shows first steps in order to arrive at a theory of 
self-organization, autonomy and emergence and provides 
some of the fundamental principles that should be followed 
for the design of truly adaptive software systems. 
Keywords: systems theory, organization, self-organization, 
emergence, autonomy. 
 
1. Introduction 
 
This section shows the basic principles of self-organization in 
natural and artificial systems. The components identified will 
be explained in the following chapters. The aim is to show, 
how organizations are able to change their inherent structures 
respectively how to apply structural learning as a self-
organizing process. 

The ever-growing complexity of today’s IT-supported 
processes in business, government, military or entertainment, 
seriously challenges traditional approaches to IT-application 
design, implementation, deployment, and management. 
Today’s software systems are increasingly decentralized, 
distributed, and dynamic, just as the problem domains in 
which they are operating are taking on these characteristics 
too. 

To deal with this growing software and domain 
complexity and the increasing dynamics of application- and 
run-time-environments, software systems must be able to 

react and adapt autonomously to changing requirements. 
Therefore, approaches that rely on the fundamental principles 
of self-organization and autonomy are growing in acceptance.  

Following such approaches, software system functionality 
is no longer explicitly designed into its component processes 
but emerges from lower-level interactions that are 
purposefully unaware of the system-wide behavior. 
Furthermore, organization, the meaningful progression of 
local sensing, processing and action, is achieved by the 
system components themselves at runtime and in response to 
the current state of the environment and the problem that is to 
be solved, rather than being enforced from the “outside” 
through design or external control. 

While such self-organizing and emergent software systems 
are very attractive for their inherent flexibility, robustness 
and graceful degradation under component failure – to name 
just a few commonly cited attributes – the design, 
implementation, validation and evaluation of such systems 
remain major challenges for researchers and system 
developers. Typical questions and issues revolving around 
such approaches are: 

 What principles govern the self-organization of 
autonomous components and the emergence of desired 
system-level features? 

 How to break down the system into interacting 
components? 

 How to design inter-component interactions and 
component-internal reasoning to achieve the desired 
system-level functions? 

 How to define a static and dynamic environment that 
supports and nourishes the goal-driven operation of 
the system components? 

 How to design methods for human operators to 
interact and guide such systems? 

 How to define interfaces for external IT systems to 
interact with such a system for mutual benefit? 

 How to implement robust decentralized and 
distributed systems? 

 How to understand their behavior under a wide range 
of operational parameters? 

 How to formally or even empirically validate and 
evaluate the emergence of the desired system-level 



 

 

functions? 
 How to deploy, maintain, and update the components 

of such a complex system? 
 How to certify correct functioning also in malicious 

environments 
In the following, we discuss various such issues in more 

detail to provide context to the various contributions of this 
special journal edition. 

 
2. Theory of Organization, Self-Organization, 

Autonomy and Emergence 
 
One of the major challenges of the new approach to 
engineering complex software system by harnessing 
principles such as self-organization or emergence is the lack 
of a formal theory that can underpin such systems, whether 
engineered or “naturally” grown. The interdisciplinary 
science of Complex Adaptive Systems (CAS) offers some 
useful concepts and ideas that are drawn from a wide variety 
of fields, such as physics, chemistry, biology, economics, or 
social science. But, in general, our ability to formally model, 
analyze and evaluate such systems in their structure or 
dynamics is still very limited. Before presenting a formal 
definition, a more phenomenal understanding of the concept 
of an organization and its properties is essential. 
 
2.1 Organizations and Organizational Dimensions 
 
The concept ‘organization’ has different meanings. Mainly, 
four versions are distinguished:  
(i) An organization A is a set of elements, A = {a1, .., an}. 

This definition is in correspondence with the formal 
definition of a system, but is very unspecific. As it is 
with universal definitions, they do not help much in 
differentiating an organization from any other system. 
Therefore, in the following this version is disregarded. 

(ii) An organization can be understood as the process of 
organizing.  

(iii) An organization can be seen as the instrument or mean to 
achieve specific goals. In this context one talks of the 
instrumental character of an organization. The concepts 
(ii) and (iii) are essential when talking about self-
organization, since, as is later shown, self-organization is 
understood as the process of adapting an organization by 
internal forces to a specific requirement or goal. 

(iv) Finally, an organization can be identified with the result 
of organizing, i.e. an organization is seen as a social 
institution. 

Organizations and Distributed Processing have many 
common characteristics. The understanding of the 
fundamental properties of organizations helps in 
understanding basic principles of distributed processing. For 
example, the fundamental principles of work-sharing and 
specialization of different processing entities immediately 
leads to questions of coordination and control as well as 
efficiency. Goal-oriented behavior, performance, scaling etc. 
are of uppermost relevance. Questions of architectural design 
of any distributed processing system and the question 
whether a design fits the intended purpose, immediately leads 
to definition (iii) above, whereas questions of coordination at 

run-time strongly relate to definition (ii). Our focus, 
therefore, lies on the concepts (ii) and (iii) of an organization. 

In management-theory organizational settings are 
characterized more specific by the five ‘structural 
dimensions’ respectively ‘structural variables’ [9]. These 
dimensions immediately relate to architectural design-
problems during conceptual phase of systems development: 

Specialization. Depending on the kind of problems to be 
solved by the system, specific capabilities of processing units 
must be assigned. In general, having specific purpose 
processing units will result in high performance but low 
reliability. If a high degree of reliability and flexibility is 
intended the components of the system should show 
overlapping capabilities. 

Coordination. Different coordination measures relevant for 
the systems design consist of ‘coordination by algorithms’, 
‘coordination by direct communication’ and ‘self-
coordination’. ‘Coordination by algorithms’ is very efficient 
in static environments, where the problems to be solved are 
well-known in advance. In distributed processing one 
generally prefers ‘direct communication’ or ‘self-
coordination’.  

In the case of ‘direct communication’ the client, who 
requests a problem solution, must know the specific 
capabilities of the servers in question. Thus, it’s a problem of 
information availability at run-time. The well known 
contract-net-protocol is an example of ‘coordination by direct 
communication’. 

In the case of ‘self-coordination’ a group of processing 
units, respectively a subsystem is confronted with the 
problem to be solved. The processing units decide by their 
own, which part of the problem will be solved by which unit. 
The blackboard –paradigm, where a task is announced to the 
public and processing units declare readiness to solve the 
problem, is one of the most popular forms of self-
coordination. As is known of blackboard-architecture 
communication likely becomes a bottleneck and limits 
scalability. This is generally true for self-coordination 
approaches, if coordination uses a central device. As is shown 
in the following, stigmergy provides means for self-
coordination by changing environmental variables, thus 
avoiding bottlenecks of hierarchical or other centralized 
approaches. 

Configuration. Configuration relates to the organizational 
structure, i.e. the division of labor according to the tasks, 
responsibilities, obligations and accountability of members of 
the organization. Design decisions address the number of 
hierarchy levels, the span of control, definition of roles etc.  

The dimensional variables coordination and configuration 
are not independent each other. Typically, by the definition of 
roles and correspondent responsibilities the need for 
coordination can be drastically reduced. 

Decision distribution. Decision distribution is correlated to 
the delegation of decisions and the question of responsibility. 
Self-organization of a subsystem presupposes the possibility 
of the members of this subsystem to decide on its own. For 
self-organizing groups the group-manager does not decide 
about the tasks each member of the group has to do. Rather, 
the group will assign by self-coordination the tasks to its 
members. Self-organization and autonomy of members 
within a group correspond to each other. 



 

 

Formalization. Formalization relates to the degree at which 
general rules and formal behavior are implemented within an 
organization. A high degree of formalization makes sense 
mainly in static environments. In the case of complex 
dynamic environments a high degree of flexibility is 
necessary. Insofar is a high degree of formalization 
prohibitive for self-organization.  

 
2.2 Self-Organization and Stigmergy 
 
The phenomenon of purposeful self-organization is not an 
inherent property of systems that just happens by itself. 
Rather, specific requirements must be fulfilled. In social 
organizations some of these requirements have been 
mentioned above, i.e. reduced formalization, decision 
delegation, self-coordination. First, mainly self-organization 
will happen, if the team as a group of peers is responsible for 
the work to be done and not the individual within the team. 
Second, if there is some incentive for the individual to have 
success. Third, if each individual knows about the importance 
for the work to be done or in other words about the incentive 
in the case of success and punishment in the case of failure. 

Since behavior of human beings often does not obey strict 
laws, it’s easier to study primitive insects and their self-
organizing behavior in order to gain the necessary knowledge 
about how to build artificial systems that show self-
organization. 

[2] in studying self-organization in swarms of social 
insects found the following ingredients that are relevant for 
self-organization: 

 Positive and negative feedback. Positive feedback 
will be needed to recruit other insects and reinforce 
specific behavior. Negative feedback counterbalances 
the positive one and helps to stabilize the collective 
pattern, for example the exhaustion of some food-
source. 

 Amplification of fluctuations. For insects, there must 
be some random behavior in order to discover new 
solutions or to adapt to changing environments. In 
building artificial systems there must be some means 
to insure that no uniform behavior of all exemplars 
will happen. Autonomy on the level of behavior of 
individuals is one way to achieve this purpose. An 
other way would be to let behavior depend on some 
probability distribution, as is frequently done in ant-
algorithms. 

 Multiple interactions. For self-organization it is 
essential that individuals are able to make use of the 
results of their own activities as well as of other’s 
activities. Essentially, this means that there is some 
form of a communication system. This can be sub-
symbolic and quantitative as is the case for the 
pheromone markers of ants or symbolic and 
qualitative as in negotiations among humans. In either 
case, it allows collective learning and synchronized 
behavior. 

Engineered Multi-Agent Systems (MAS) are created for a 
specific purpose. Thus, in general, there is typically some 
goal determining the behavior of agents that may directly or 
indirectly providing positive or negative feedback. Clearly, in 
MAS one has a communication system that allows for 
collective learning. But autonomy of agents generally is 

understood as the autonomy to choose autonomously the 
means to achieve some goal, i.e. autonomy of an agent 
determines its behavior on a lower level. Therefore, 
amplification of fluctuations must be given specific attention 
in order to build self-organizing MAS. 

Communication can be based on direct interactions 
between individuals using communication channels. 
Communication also can happen indirectly by changing the 
environment. A soccer-playing robot that kicks the ball 
changes the environment to all the other players, causing 
different activities. Stigmergy, from the Greek words stigma 
“sign” and ergon “work”: the work performed by agents in 
the environment guides their later actions, has been coined to 
address these indirect communications by environmental 
changes that potentially lead to the system’s self-
organization. The information stored in the environment 
forms a field that supports agent coordination, leading to the 
term “co[ordination]-field” for this class of technique [10]. 
Such techniques are common in biological distributed 
decentralized systems such as insect colonies [11]. A 
common form of stigmergy is resource competition, which 
occurs when agents seek access to limited resources. For 
example, if one agent consumes part of a shared resource, 
other agents accessing that resource will observe its reduced 
availability, and may modify their behavior accordingly. 
Even less directly, if one agent increases its use of resource 
A, thereby increasing its maintenance requirements, the 
loading on maintenance resource B may increase, decreasing 
its availability to other agents who would like to access B 
directly. In the latter case, environmental processes contribute 
to the dynamics of the state variables involved. 

Different varieties of stigmergy can be distinguished. One 
distinction concerns whether the signs consist of special 
markers that agents deposit in the environment (“marker-
based stigmergy”) or whether agents base their actions on the 
current state of the solution (“sematectonic stigmergy”). 
Another distinction focuses on whether the environmental 
signals are a single scalar quantity, analogous to a potential 
field (“quantitative stigmergy”) or whether they form a set of 
discrete options (“qualitative stigmergy”). As shown in Table 
1, the two distinctions are orthogonal. 
 
Table 1. Varieties of Stigmergy 
 

 
 
2.3 A Formal View of Self-Organization and Emergence 
 
A very first step towards a theory of self-organizing systems 
with emergent functionality is to rigorously define the basic 
concepts. [14] differentiates between self-organization and 
emergence as two distinct system properties, with self-



 

 

organization being a phenomenon of interrelationships 
between components at the same level (micro-level) and 
emergence referring to an inter-level process appearing on 
the macro-level. 

As mentioned above and used in expressions such as “self-
organization,” the word “organization” has distinct, but 
related, meanings. 

Combining the views 1 and 4 of section 2.1 and observing 
that in real organizations, like enterprises, generally, one has 
not one formal organizational structure but rather a network 
of interwoven relationships, formal and informal ones, 
communication structures, decision structures etc., one has to 
state that any organizations consists of a multitude of 
organizational structures. The following formal definition 
accounts for this. 

Organization as a social institution. A System Σ is an 
ordered pair (V,S), Σ = ( V, S) , where  

 V = {v1, v2, ...}, V ≠ ∅ ,  
 S = {S1,S2, S3,.., Sm} a finite set,  

each element Si being a finite set of relations of order i: 
 Si = {R1

i, R2
i,..,, Rmi

i}, mi ≥ 0,  
 (mi = 0 corresponds to Si = ∅),  
 .,..,1,

1
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i
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i
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If V is finite, i.e. V = {v1, v2, ..vn.} Σ is called an organization.  
Relations S0 of order 0 might be interpreted as attributes of 

the elements vi. Since different attributes contribute to 
different degrees of specialization the organizational variable 
“specialization” (see 2.1 above) can be measured by S0. 

This formalization of the concept of an organization 
permits us to say that one organization respectively a set of 
elements V = {v1, v2, ..vn.} is “more organized” than another 
(or than the same set V at a different time). Different detailed 
definitions for the set S are possible and by set-inclusion 
relate immediately to the concept of the “degree of 
organization”, which might be understood as any measure of 
the number and intensity of set of relationships S. 

Also, any subset of Σ = ( V, S), i.e. a subset of V = {v1, v2, 
.., vn.} or one of S = {S1,S2, S3,.., Sm} immediately relates to 
the concept of a sub-organization.  

The term environment must be explained too. It always 
relates to a given system respectively a given organization 
and denotes the set of variables and influences that act onto 
the system but cannot be influenced directly by the system 
itself.  

Organizing, i.e. organization as a process. Organization is 
the process of building or, more generally, of changing the 
set S of relationships within the set V = {v1, v2, ...} of 
organizational members. Also, any changes that might 
happen to the set V itself, i.e. if any members are entering or 
leaving V, causes the need of adapting the set S of 
relationships, and, thus, is some kind of organization.  

Definition 1 and 2 do not allow characterizing the 
appropriateness of any organization, i.e. how good the 
organization is able to respond to any requirements or 
changes caused by the environment. Clearly, regarding the 
myriads of consultants who live in selling some 
organizational concepts, one should recognize that there is no 
general valid answer which environmental change to the best 
results in a specific mix of organizational variables. 
Nevertheless, in the large, some answers might be given. 

These answers relate to information availability, length of 
decision paths, dynamics of environment and internal variety, 
as is explained in chapter 3 in more detail. 

With this understanding of “organization” it is possible to 
define “self-organization” as a process that adapts a given 
organization by internal forces alone, i.e. without an external 
change of structures, because of an observed mismatch to 
environmental requirements: 

(i) Cause of any self-organization to take place is some 
environmental change and an information flow from 
the outside into the system/organization. 

(ii) The mismatch of organizational responsiveness to the 
external requirement is recognized. 

(iii) The system re-organizes by itself (not by external 
intervention) to increase fitness. 

Internal variety is a concept used in cybernetics to address 
the ability of a system to respond adequately to external 
requirements. With respect to the concepts introduced so far 
one can define internal variety as the ability of a system for 
self-organization  

Any organization observed from the outside of the system 
is called emergence. Emergence relates to the behavior of the 
organization on the macro level, where the relationships S 
and the specific functioning of the elements of the 
organization in question cannot be seen. To achieve greater 
precision, it is proposed distinguishing between self-
organization and emergence on the basis of the contrast 
between the horizontal concept of system boundary and the 
vertical concept of levels (Fig. 1). Self-Organization is the 
organizing process among elements within a level. This 
definition depends critically on the location of the system 
boundary. If the boundary is moved, a system’s character as 
self-organizing or not may change. 
 

Self--Organization

Em
ergence

 
 

Fig. 1. Comparing Self-Organization and Emergence. 
 
Emergence is defined as a co-notation of organization and in 
so far of self-organization as well. Emergence (as the term is 
used here) describes the appearance of structures at a higher 
level that are not explicitly represented in lower-level 
components. The reliance of swarming systems on locally 
available information makes it difficult for them to reason 
explicitly about higher-level structures, so emergence tends 
to be an important mechanism in swarming systems. 
 
2.4 Measuring Self-Organization and Emergence 
 
Since the perception of organization and thus self-
organization is highly domain and even system dependent, no 
globally applicable metric can be provided, though general 
guidelines may be offered. But, typically, self-organization 
leads to the emergence of dynamic structures in some 
topological space. For instance, ants that organize in the 



 

 

foraging for food create paths that are only visible in the 
spatial distribution of the ants in space and time. And 
measures that are based on this distribution would be able to 
detect the emergence of organized structures, but they would 
not be able to tell whether the structures emerged through 
self-organization or from external control. 

One such measure that is useful in measuring the 
emergence of structures in some topology is the Information 
(or Shannon) Entropy [5]. As demonstrated in [12], entropy 
measures may be defined over various spatio-temporal 
distributions that reflect the emerging structures. For 
instance, one could measure the spatial distribution of the 
ants across the space around the nest. Initially, before the first 
path is formed, the entropy would be high because the ants 
are exploring the space randomly. Once the food is found and 
ants are recruited to the path, the entropy will collapse. 

While such distribution measures at the system level are 
appropriate for the system architect or evaluator to determine 
the degree of organization in the system, those classes of 
measures are not directly accessible to the individual agents 
with only local access to state information. But, for various 
local and distributed learning and optimization techniques, it 
would be very useful to provide the individual agent with a 
view into the current degree of organization at the system 
level. 

In several previous research projects, we found it useful to 
apply a derivative of the Information Entropy to an agent’s 
non-deterministic decision process itself. The Option Set 
Entropy measures the degree to which the agent actually uses 
information (regardless which information) to select among 
alternative options in a decision step. If the decision is not 
using any information, it is essentially random and the 
entropy is highest. A deterministic decision, whether or not it 
is the best one for the overall system, results in the lowest 
entropy. 

Assume that in a particular decision step at time t, an agent 
has N options to choose from. Furthermore, assume that the 
decision process of the agent assigns each option a 
probability p1…N to be selected and that the actual decision 
follows these probabilities (e.g., spins a weighted roulette 
wheel). Deterministic decisions would assign a probability of 
100% to one option and zero to all the others. Then, we 
define the Option Set Entropy (OSE) as: OSE(t)=-
Σ(pi*log(pi))/log(N). Dividing the standard entropy by the 
logarithm of the number of options available in one step 
normalizes the Option Set Entropy to a range of [0,1] and 
thus provides a clean way to cope with the variation of the 
number of options over time. 

In the case of the foraging ant, the set of options would be 
a collection of bins for the various direction it could move 
towards next. In the random exploration mode (no path 
formed), all bins would be equally weighted and thus the 
OSE would approach one. Along the path, one direction 
would clearly stand out (highest pheromone gradient) and the 
OSE would be significantly lowered. In [4] we demonstrate 
how such a locally accessible metric can be used to globally 
optimize the emergent system performance of a distributed 
graph-coloring algorithm. 

 

3. Design and Modeling of Self-Organizing 
Software Systems 

 
In the following, we propose a number of application domain 
features, which may suggest the use of self-organizing 
approaches to systems design, we discuss the use of 
stigmergy as a tool for managing large-scale distributed 
applications, and we present a collection of principles that 
may guide systems engineers in their application design. 
 
3.1 Where Would One Want to Use Self-Organization 

and Emergence? 
 
Five domain features indicate the appropriateness of self-
organizing approaches: discreteness, deprivation, distribution, 
decentralization, and dynamism. 

Discrete: An organization had been introduced as 
consisting of a finite and thus discrete set of elements V = 
{v1, v2,, .., vn}. In so far, it is easiest to apply agents or any 
other organizational concept (whether self-organizing or not) 
to a domain if the domain consists of discrete elements that 
can be mapped onto the set V.  

Deprived (Resource-Constrained). We say that a system is 
“deprived” (or resource constrained) when limits on 
resources (such as processing power, communications 
bandwidth, or storage) rule out brute-force methods. For 
instance, if enough communications bandwidth is available, 
every agent can communicate directly with every other agent. 
If agents have enough processing power, they can reason 
about the massive input they will receive from other agents. 
If they have enough storage, they can maintain arbitrarily 
large sets of instructions telling them what to do in each 
circumstance. 

Under such assumptions, swarming architectures would 
seem to have little benefit. Some futurists extrapolate the 
historically exponential increases in hardware processing 
power, storage, and bandwidth, and claim that these 
constraints will quickly disappear. At the hardware level, 
Moore’s law and its analogs for bandwidth and storage give 
good reason to be optimistic. However, a computer system is 
more than hardware. It is constrained by theoretical, 
psychological, commercial, and physical issues as well. For 
example: 

 No matter how much storage is available, the 
knowledge engineering effort required to construct 
large knowledge bases remains a formidable 
psychological obstacle to completely defining the 
behavior of every agent. 

 No matter how fast processors get, the theory of NP-
completeness points out that the time required to solve 
reasonably-sized problems in many important 
categories will still be longer than the age of the 
universe. An important instance of this challenge is 
the truth maintenance problem, the challenge of 
detecting inconsistencies in a knowledge base that 
result from changes in the world, which is NP-hard for 
reasonably expressive logics. 

 No matter how much bandwidth the hardware can 
support, the market may not make it available in the 
configuration needed for a specific problem. Military 
planners, for instance, have long counted on the 



 

 

availability of commercial satellite channels, but the 
commercial market has moved toward land-based 
fiber backbones, resulting in a major shortfall in 
projected available bandwidth for military 
deployments in underdeveloped areas. 

 The growing emphasis on Pervasive Computing and 
nano-technology requires the deployment of 
computation on very small devices. The physical 
limitations of such devices will not permit them to 
support the level of processing, storage, and 
communications that can be realized on unconstrained 
devices. 

 Resource constraints tend to support high degrees of 
the organizational variable “specialization” since one 
is forced to take special purpose components. This 
trend, in turn, forces architectural designs 
(configuration) which increases the need for 
coordination. 

Several characteristics of self-organizing systems make 
them good candidates for deprived environments. For 
example: 

 Interactions among system components are typically 
local in some topology. If information needs to move 
long distances, it does so by propagation rather than 
direct transfer. Local interactions limit the number of 
neighbors about whom each agent must reason at a 
time, and in geographically distributed systems, 
enable the use of low-power transmissions that permit 
bandwidth to be reused every few kilometers. 

 Because system-level behaviors do not need to be 
specified at the level of each element, the knowledge 
engineering and storage requirements are greatly 
reduced. 

 Emergent systems commonly maintain information by 
continuously refreshing current information and 
letting obsolete information evaporate. In general, this 
is done by making use of environmental markers 
(stigmergy) allowing for very simple communication 
mechanisms. Also, this process guarantees that 
inconsistencies remove themselves within a specified 
time horizon, without the need for complex truth-
maintenance procedures. 

Distributed. The notion of “local interactions” is central to 
our definition of self-organizing systems with emergent 
features. Keeping interactions local is a powerful strategy for 
dealing with deprived systems, but requires that the entities in 
the problem domain be distributed over some topology within 
which interactions can be localized. 

The most common topology is a low-dimensional 
Euclidean manifold, or a graph that can be embedded in such 
a manifold. For example, insect stigmergy takes place on 
physical surfaces that, at least locally, are embedded in two-
dimensional manifolds. Most engineered applications of self-
organizing approaches such as path planning [13], pattern 
recognition [4], sensor network self-organization, and ant-
colony optimization [6], follow this pattern. In these 
applications, locality can be defined in terms of a distance 
metric, and enforced by physical constraints on 
communications (e.g., a node’s neighbors are all the other 
nodes with whom it has radio contact). 

More recent work (for instance, in telecommunications 
[8], or in our laboratory, on semantic structures) successfully 

mediates agent interactions via scale-free small-world graphs. 
Such graphs have long-range shortcuts and so are typically 
not embeddable in low-dimensional manifolds. These 
shortcuts pose problems for classical definitions of distance, 
but locality of interaction can still be defined in terms of 
nearest-neighbor graph connectivity, and the empirical 
success of these latter efforts shows that this form of locality 
is sufficient to achieve coordination. 

Decentralized. As a system characteristic, decentralization 
is orthogonal to distribution. In a centralized system, all 
transactions require the services of a single distinguished 
element. If the system is not distributed, the central point and 
the system are identical. If it is distributed, the central point is 
one of the elements, with which the others must 
communicate. A common extension of centralization in a 
distributed system is the hierarchy, in which the central 
element for a small group of nodes joins with other nodes at 
its level in reporting to a yet higher central element, and so on 
until the top node is reached. 

Self-organization can be a poor choice for applications that 
require centralization. Particularly, systems that need a high 
degree of control requiring an extensive set of rules 
governing systems behavior (high degree of the 
organizational variable “formalization”) are not suited for 
self-organization and its inherent fault-tolerance. 

The restriction to local interactions means that 
communications between peripheral elements and the central 
element is an emergent behavior of the system, which may 
not meet the quality of service requirements or the need for 
detailed predictability that often lead to a requirement for 
central control. However, systems designers should be 
cautious about accepting a centralized architecture. Such 
architectures have at least three weaknesses. 

(i) They are inherently resistant to increases in scale. As 
the system grows, the capacity of the central element 
must also grow. In decentralized approaches, new 
elements can be added without changing any of the 
existing elements. 

(ii) A frequent role of the central element is to mediate 
interactions among lower-level nodes (as in the 
mediator architecture [7]). This technique may 
actually lengthen the communication path between 
two nodes, leading to undesirable delays as messages 
travel up, then back down, the hierarchy. 

(iii) The central element and the communication paths 
leading to it are vulnerable to attack or failure, making 
the system less robust than a self-organizing system. 

Centralized architectures often result more from tradition 
than from absolute system requirements, and a growing body 
of cases suggests that acceptable functionality can be 
achieved, with improved scalability, timeliness, and 
robustness, in a decentralized way. In addition, centralization 
is impossible in some cases (such as achieving coordination 
among a population of entities whose members are not 
known in advance and who do not all have access to a 
common element). Techniques for self-organization and 
emergence are a natural candidate for implementing 
decentralized architectures. 

Dynamic. A system is dynamic if its requirements change 
during its lifetime. The emergent behavior that is 
characteristic of self-organization is a powerful way for 
dealing with changed requirements. The system elements do 



 

 

not need to encode the system-level behavior explicitly, and 
so do not need to be modified when those requirements 
change. Three aspects of such change affect the need for 
emergence: scope, speed, and obscurity. 
Scope characterizes the amount of change to which a 
system’s requirements are susceptible. The less the scope of 
change, the more likely it is that the system as originally 
configured will deliver acceptable performance. The greater 
the degree of change, the more value there is in the ability of 
the elements to reorganize to produce new emergent 
behaviors that were not active in the initial configuration. 
Speed characterizes the rapidity of change, and affects the 
desirability of self-organization by way of the distinction 
between centralized and decentralized architectures. If the 
system changes slowly, non-self-organizing techniques that 
rely on centralized organizations can tolerate the time delays 
imposed by hierarchical communications. As the rate of 
change begins to outpace the communications time through 
the hierarchy, centralized organizations find themselves 
perpetually providing the answers to yesterday’s problems, 
and unable to respond rapidly enough. A common response is 
to flatten the organization and empower lower-level nodes to 
act on local information, essentially moving toward an 
architecture for self-organization and emergence. 
Obscurity reflects the degree to which the original designer 
can anticipate later requirements. Even if changes are rapid 
and wide in scope, if they follow along the lines anticipated 
by the designer, simple parameter adjustments in a non-
emergent architecture may be able to cope with them. Self-
organizing systems are much better at enabling a system to 
satisfy requirements that would be surprising to its original 
designer. 
 
3.2 Stigmergy Supports the Emergence of Self-Organized 

Structures 
 
Decentralized mechanisms all involve communication among 
peers. Most negotiation research focuses on direct peer-to-
peer information flows (“conversation”). Indirect 
decentralized flows occur when peers make and sense 
changes to environmental variables.  

Stigmergic mechanisms have a number of attractive 
features, particularly for self-organizing systems. 

Simplicity. The logic for individual agents is much simpler 
than for an individually intelligent agent. This simplicity has 
three collateral benefits. 

(i) The agents are easier to program and prove correct at 
the level of individual behavior. 

(ii) They can run on extremely small platforms (such as 
microchip-based “smart dust” [15]). 

(iii) They can be trained with genetic algorithms or 
particle-swarm methods rather than requiring detailed 
knowledge engineering. 

Scalable. Stigmergic mechanisms scale well to large 
numbers of entities. In fact, unlike many intelligent agent 
approaches, stigmergy requires multiple entities to function, 
and performance typically improves as the number of entities 
increases. Stigmergy facilitates scalability because the 
environment imposes locality on agent interactions. 
Agents interact with the environment only in their immediate 
vicinity. Increases in the number of agents are typically 
associated with an extension of the environment. The density 

of agents over the environment, and thus the processing load 
on each agent, usually does not increase. 

Robustness. Because stigmergic deployments favor large 
numbers of entities that are continuously organizing 
themselves, the system’s performance is robust against the 
loss of a few individuals. Such losses can be tolerated 
economically because each individual is simple and 
inexpensive. 

Environmental integration. Explicit use of the environment 
in agent interactions means that environmental dynamics are 
directly integrated into the system’s control, and in fact can 
enhance system performance. A system’s level of 
organization is inversely related to its symmetry (Figure 2), 
and a critical function in achieving self-organization in any 
system made up of large numbers of similar elements is 
breaking the natural symmetries among them [1]. 
Environmental noise is usually a threat to conventional 
control strategies, but stigmergic systems exploit it as a 
natural way to break symmetries among the entities and 
enable them to self-organize. 

 
3.3 Design Principles for Self-Organizing Systems 
 
From the discussion of application characteristics and in 
support of stigmergic coordination processes, we derive the 
following collection of design principles. Naturally, this list 
is incomplete and the “principles” are more guidelines to be 
taken into consideration by the system’s architect. But, 
nevertheless, analysis of naturally evolved self-organizing 
systems with emergent functions (e.g., social insect colonies, 
human economies) show similar “principles” are favored by 
the natural selection process too. 
 
3.3.1 Design Principles Regarding the Agent Population(s) 
 
Use a distributed environment. Stigmergy is most beneficial 
when agents can be localized in the environment with which 
they interact by sensing and acting. A distributed 
environment enhances this localization, permitting individual 
agents to be simpler (because their attention span can be 
more local) and enhancing scalability. 

Use an active environment. If the environment supports its 
own processes, it can contribute to overall system operation. 
For example, evaporation of pheromones in the ants’ 
environment is a primitive form of truth maintenance, 
removing obsolete information without requiring attention by 
the agents who use that information. 

Keep agents small. Agents should be small in comparison 
with the overall system, to support locality of interaction. 
This criterion is not sufficient to guarantee locality of 
interaction, but it is a necessary condition. The fewer agents 
there are, the more functionality each of them has to provide, 
and the more of the problem space it has to cover. 

Map agents to Entities, not Functions. Choosing to 
represent domain entities rather than functions as agents takes 
advantage of the fact that in our universe, entities are 
bounded in space and thus have intrinsic locality. Functions 
tend to be defined globally, and making an agent responsible 
for a function is likely to lead to many non-local interactions. 
For example, in a factory, each machine (an entity) has fairly 
local interactions with other machines, parts, and workers in 



 

 

its area of the plant, but a function (such as scheduling) must 
take into account all of the machines in the entire plant. 

 
3.3.2 Design Principles Regarding the Agent Interactions 
 
Think Flows rather than Transitions. Our training as 
computer scientists leads us to conceive of processes in terms 
of discrete state transitions, but the role of autocatalysis in 
supporting self-organization urges us to pay attention to the 
flows of information among them, and to ensure that these 
flows include closed loops. This principle corresponds to the 
requirement of “multiple interactions” mentioned in section 
2.2 establishing some kind of communication system that 
provides social learning. 

Boost and Bound. Keeping flows moving requires some 
mechanism for reinforcing overall system activity. Keeping 
flows from exploding requires some mechanism for 
restricting them. These mechanisms may be traditional 
positive and negative feedback loops, in which activity at one 
epoch facilitates or restrains activity at a successive one. Or 
they may be less adaptive mechanisms such as mechanisms 
for continually generating new agents and for terminating 
those that have run for a specified period (“programmed 
agent death”). 

Diversify agents to keep flows going. Just as heat will not 
flow between two bodies of equal temperature, and water will 
not flow between two areas of equal elevation, information 
will not flow between two identical agents. They can send 
messages back and forth, but these messages carry no 
information that is new to the receiving agent, and so cannot 
change its state or its subsequent behavior. Maintaining 
autocatalytic flows requires diversity among the agent 
population. This diversity can be achieved in several ways. 
Each agent’s location in the environment may be enough to 
distinguish it from other agents and support flows, but if 
agents have the same movement rules and are launched at a 
single point, they will not spread out. If agents have different 
experiences, learning may enable them to diversify, but 
again, reuse of underlying code will often lead to stereotyped 
behavior. In general, we find it useful to incorporate a 
stochastic element in agent decision-making. In this way, the 
decisions and behaviors of agents with identical code will 
diversify over time as their decisions are taken 
probabilistically, breaking the symmetry among them and 
enabling information flows that can sustain self-organization. 

 
3.3.3 Design Principles Supporting the Emergence of 

Desired Functions 
 
Generate behavioral diversity. Structure agents to ensure that 
their collective behavior will explore the behavioral space as 
widely as possible. One formula for this objective has three 
parts. 

(i) Let each agent support multiple functions, just as for 
instance ants may participate in foraging for food, 
tending to the brood or constructing the nest. 

(ii) Let each emergent system-level function require 
multiple agents to avoid single points of failure and to 
keep individual agents simple (rather than a single 
agent being complex enough to provide the entire 
function). 

(iii) Break the symmetry among the agents with random or 
chaotic mechanisms. 

The first two points ensure that system functionality 
emerges from agent interactions, and that any given 
functionality can be composed in multiple ways. The third 
ensures a diversity of outcomes, depending on which agents 
join together to provide a given function at a particular time. 

Give agents access to a fitness measure. Agents need to 
make local decisions that foster global goals, an insight that 
is supported by formal analysis in Wolpert’s Collective 
Intelligence (COIN) research [16]. A major challenge is 
finding measures that can be evaluated by agents on the basis 
of local information, but that will correlate with overall 
system state. Determining such measures is a matter for 
experimentation, although thermodynamic concepts relating 
short-range interactions to long-term correlations have the 
potential to yield a theoretical foundation. In one application, 
we have found the entropy computed over the set of 
behavioral options open to an agent to be a useful measure of 
the degree of overall system convergence [3] that agents can 
use to make intelligent decisions about bidding in resource 
allocation problems. Following our definition of self-
organization as a process that adapts the organization of a 
system to environmental changes, one has to design a 
mechanism that favors the right kind of local changes at the 
agent level to optimally change the organization at the system 
level. 

Provide a mechanism for selecting among alternative 
behaviors. If an adequate local fitness metric can be found, it 
may suffice to guide the behavior of individual agents. 
Otherwise, agents should compare their behavior with one 
another, either to vary the composition of the overall 
population (as in synthetic evolution) or to enable individual 
agents to vary their behavior (as in particle swarm 
optimization). 

 
4. Summary 
 
This paper deals with self-organization and with concepts in 
the context of self-organization. Since self-organization is a 
particular aspect of organization an understanding of self-
organization presupposes that of organization. Following [9], 
the paper offers a more phenomenal characterization of 
organization by the organizational dimensions/variables. This 
formulation provides a more natural understanding of the 
topic and the particular values of the organizational variables 
that support self-organization and the verbal characterization 
of an organization is augmented by a rigorous formal 
definition, which helps in comparing different organizations 
and in defining the concepts self-organization, internal 
variety emergence and stigmergy. It also supports measuring 
of self-organizations and emergence. For the latter the 
concept ‘Options Set Entropy’ is proposed. It is based on 
Shannon’s information entropy and actually is a measure of 
the information used to take a decision. 

In parallel to these more theoretical concepts the concrete 
question is analyzed, which environmental properties support 
respectively hinder the deployment of self-organizing 
software systems. And the question is answered what the 
characteristic features are that self-organizing software must 
have. In doing so, specific design principles for self-



 

 

organizing software and for the emergence of desired 
functions are given. 
 
Acknowledgement 
 
We have to thank Professor Manish Parashar, Professor Hong 
Tang and Professor Xingyu Wang for their valuable 
comments and improvements. 
 
References 

 
[1] P Ball,The self-made tapestry: Pattern formation in 

nature, Princeton, NJ, Princeton University Press, 1996. 
[2] E Bonabeu, M Dorigo and G Theraulaz, Swarm 

Intelligence. From Natural to Artificial Systems, Santa 
Fe Studies in the Sciences of Complexity, New York, 
Oxford 1999. 

[3] S A Brueckner and H V D Parunak, Swarming agents for 
distributed pattern detection and classification. 
Proceedings of Workshop on Ubiquitous Computing, 
AAMAS 2002, Bologna, Italy, 2002, 
http://www.altarum.net/~vparunak/PatternDetection01.p
df (checked on 2006-08-01). 

[4] S Brueckner and H V D Parunak, Information-driven 
phase changes in multi-agent coordination. Proceedings 
of Autonomous Agents and Multi-Agent Systems 
(AAMAS 2003), Melbourne, Australia, 2003, pp. 950-
951, 
http://www.altarum.net/~vparunak/AAMAS03InfoPhase
Change.pdf (checked on 2006-08-01). 

[5] Th M Cover, J A Thomas. Elements of information 
theory, 2nd edition, New York: Wiley-Interscience, 
2006. 

[6] M Dorigo, V Maniezzo, and A Colorni, The ant system: 
Optimization by a colony of cooperating agents. IEEE 
Transactions on Systems, Man, and Cybernetics, Part B, 
Vol. 26, No. 1, 1996, pp. 1-13. 

[7] B R Gaines, Mediator research program, 
http://ksi.cpsc.ucalgary.ca/projects/Mediator/, 1995. 

[8] M Heusse, S Guérin, D Snyers, and P Kuntz, Adaptive 
agent-driven routing and load balancing in 
communication networks. Advances in Complex 
Systems, Vol. 1, 1998, pp. 234-257. 

[9] A Kieser, P Walgenbach, Organisation, 4. überarbeitete 
und erweiterte Aufl., Stuttgart 2003. 

[10] L Leonardi, M Mamei, and F Zambonelli, Co-fields: 
Towards a unifying model for swarm intelligence. 
DISMI-UNIMO-3-2002, University of Modena and 
Reggio Emilia, Modena, Italy, 2002, 
http://citeseer.ist.psu.edu/cache/papers/cs/25995/http:zSz
zSzpolaris.ing.unimo.itzSzZambonellizSzPDFzSzSwarm
.pdf/co-fields-towards-a.pdf (checked on 2006-08-01)  

[11] H V D Parunak, ’Go to the Ant’: Engineering principles 
from natural agent systems. Annals of Operations 
Research, Vol. 75, 1997, pp. 69-101. 
http://www.altarum.net/~vparunak/gotoant.pdf (checked 
on 2006-08-01). 

[12] H V D Parunak and S Brueckner, Entropy and self-
organization in multi-agent systems. Proceedings of The 
Fifth International Conference on Autonomous Agents 
(Agents 2001), Montreal, Canada, ACM, 2001, pp. 124-

130, www.altarum.net/~vparunak/agents01ent.pdf 
(checked on 2006-08-01). 

[13] H V D Parunak, M Purcell, and R O'Connell, Digital 
pheromones for autonomous coordination of swarming 
UAV's. Proceedings of First AIAA Unmanned 
Aerospace Vehicles, Systems, Technologies, and 
Operations Conference, Norfolk, VA, AIAA, 2002, 
www.altarum.net/~vparunak/AIAA02.pdf (checked on 
2006-08-01). 

[14] H V D Parunak and S A Brueckner. Engineering 
swarming systems, F Bergenti, M.-P Gleizes, and F 
Zambonelli, eds., Methodologies and Software 
Engineering for Agent Systems, Kluwer, 2004. 

[15] K Pister, Smart Dust, Autonomous sensing and 
communication in a cubic millimeter, 2001, 
http://robotics.eecs.berkeley.edu/~pister/SmartDust/ 
(checked on 2006-08-01). 

[16] D Wolpert and K Tumer, An introduction to collective 
intelligence. Technical Report NASAARC-IC-99-63, 
NASA Ames Research Center, 1999. 

 
Author Bios 
 
Sven Brueckner is a Senior Systems Engineer in the 
Emerging Markets Group at NewVectors. He has been active 
in the field of multi-agent system’s research for more than ten 
years. His doctoral thesis “Return from the Ant – Synthetic 
Ecosystems for Manufacturing Control” researches the 
theoretical foundations of agent system design and applies its 
findings to complex manufacturing control systems, for 
which he was awarded the degree Doctor rer. nat. by 
Humboldt University Berlin, Germany in Summer 2000 

After joining ERIM, a predecessor company to 
NewVectors in spring of 2000, Dr. Brueckner has been a 
technical lead, Principal Investigator or Project Manager on 
several agent-focused research and development efforts, such 
as DARPA-supported research into air-combat coordination, 
swarming control of unmanned autonomous vehicles, self-
organizing management of mobile ad-hoc networks, or 
polyagent models for adversarial reasoning. 

Currently, Dr. Brueckner leads a project in the Office of 
Naval Research (ONR) Counter-IED Basic Research 
program, and is a technical lead and project manager for a 
Disruptive Technology Office (DTO) funded project on 
intelligence analysis modeling and support. He also 
spearheads Altarum’s work package in the NIST/ATP DBDS 
project, which develops a novel decision support system for 
car body design. 

Dr. Brueckner has authored over 20 papers on agent-based 
and complex systems’ theory and application and is inventor 
on four recent patents or preliminary patent filings. 
 

Hans Czap, born in 1945, studied Mathematics at Univ. 
Wuerzburg (Germany), SUNY (Oneonta, NY, USA), Dundee 
(Scotland). 1974 he graduated with the Ph-D degree at Univ. 
of Wuerzburg. 1983 he became professor for Business 
Information Systems at University of Goettingen.  

In 1985 he accepted the chair for Business Information 
Systems at University of Trier (Germany). He is founding 
president and during 1986 – 1990 he had been president of 
Int. Assoc. for Terminology and Knowledge Transfer. 1993 – 



 

 

1998 he was member of the board of executives of 
International Society for Knowledge Organization (ISKO). 
1997 he became first CEO of Center of Health Care 
Management at Univ. of Trier (until 2003). For a two year 
period starting in 2000 he had been chair of Scientific 
Commission “Public Management” of Assoc. of Univ.-
Professors for Business Administration.  

In the period 2000 –2004 he was managing director of 
newly founded Competence Center for E-Business at 
University of Trier.  

His scientific interests cover a broad range: systems 
theory, cost accounting, information systems, neural 
networks and multi-agent systems. He is author, editor or co-
editor of 15 monographs and has published more than 100 
papers. 

 


