Searching for Temporal Patterns in Aml Sensor Data

Romain Tavenard'?, Albert A. Salah?, Eric J. Pauwels’

1 Centrum voor Wiskunde en Informatica, CWI
Amsterdam, The Netherlands
2 IRISA/ENS de Cachan, France




Overview

« Learning and Mining Temporal Patterns

» Different Approaches
— Markov Models
— Eigenbehaviours
— Compression-based Approaches
« Lempel-Ziv
» Active Lempel-Ziv
* Lempel-Ziv-Welch
« T-Patterns
— Basic Algorithm
— Proposed Approach




Learning and Mining Temporal Patterns

« Sensors in a dense network will typically exhibit

— Baseline activity interspersed with bursts of activity (spikes);
e.g. interruption sensors,

— IUJI | |||I | Illl | 1 ||H|I
el ] |
et UL U

-- Switching between different states

Ghsoanudsoo
|




Learning and Mining Temporal Patterns

Temporal Patterns: Informative correlations between the
activities (both across time and sensors!) due to underlying
unobserved physical causes:

Why interesting?
— Layout discovery and self-calibration for plug-and-play devices:

Correlations used to define proximity (context) in appropriate
space (e.g. spatial or connectivity);

— Increases robustness: Confidence in weak or ambiguous sensor
signal will be bolstered when supported by expected activity in
related sensors;

— Anticipation and attention for resource management: Once
temporal patterns have been detected they may be used to
predict future events: expectation failure sparks increase in
attention (temporal pop-out);

— Personalisation and adaptivity: Aml system will have to adapt
factory-settings to user preferences, based on the recurrence of
stable usage patterns.




Temporal Patterns: A Prototypical Example

Movement patterns detected by low-level, low-resolution
sensors (interruption sensors)

Advantages:
— Cheap, dense network possible,
— Minimally intrusive

Aims:

« Lay-out discovery: Compute correlation peaks in activation
to infer distance, then use MDS to reconstruct
(approximately) geographical layout

* Find similar sensor sequences and combine them to
estimate HMMs characterizing various activities




@ Layout Discovery and Self-Calibration

 MERL office layout (C.R. Wren et.al., 2000)
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Layout Discovery and Self-Calibration
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HMM-based Clustering

Basic Idea: Define similarity of temporal sequences in
terms of the similarity of the underlying Markov models that
generate them. Sequences can have different lengths!

Juang and Rabiner (1985)
Smyth (1996)
Wren et al. (2006)

Extensions to Hierarchical HMMs




@ HMM-based Clustering

» lllustrative Example: 20 temporal sequences (possibly of
different length) generated by one of 2 HMMs

Slow dynamics: 2-state transition matrix: A = ( 04 06

Fast dynamics: 2-state transition matrix: A = ( 06 0.4

Gaussian Emissions:

state1: 1 =0 o, =1
state 2: 1 =3 o1 =1
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HMM-based Clustering

Assume K (known!) underlying HMMs each with m states
emitting a Gaussian signal

INPUT: N sequences S, ....Snv,and parameter K and m, each
sequence consists of observations Si= (xi1,Xiz, ..., Xit)

1. Fitan HMM to each sequence Si (iI=1..N),
initialize using uniform transition matrix and Gaussian
parameters derived from m groups obtained by
applying k-means to sequence data x;j

2. Call Mi the HMM model fitted to sequence Si, compute the
likelihood of every other sequence S; wrt Mi and define the
similarity between Si and S;

Sim(9;, 5;) = log P(S; | M;) 4 log P(S; | M;)




HMM-based Clustering

3. Use the log-likelihood distance matrix to cluster sequences
in K groups (e.g. using hierarchical clustering)

Symmetric Log-Likelihood Distance Matrix
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HMM-based Clustering

4. Finally, for each of the K clusters, fit a separate HMM
model, this time trained on all the sequences assigned to

this cluster.
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It is then possible to use these parameter values to
initialize and train a composite HMM using all available

sequences.
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Eigenbehaviours (Eagle & Pentland)

Eagle & Pentland: Eigenbehaviors: Identifying Structure in
Routine (Ubicomp, Proc. Royal Soc 07)

Starting point: Markov models are ill suited to incorporate
temporal patterns across different timescales.

Reality Mining Dataset: Uncovering temporal patterns in
cellphone logs of 100 MIT subjects:

— 75 techies: faculty and students (both freshmen and seniors)
— 25 MBA-students

— Each subject equipped with Nokia smart phone logging:
« Call logs, Bluetooth devices in proximity, cell-tower IDs,
application usage, phone status (e.g. charging or idle)
— Total of 450,000 hours of data on users’ location, proximity,
communication and device usage.




Eigenbehaviours (Eagle & Pentland)

Daily location logging for one individual

L = Multi-label location data B = binary location data
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@ Eigenbehaviours (Eagle & Pentland)

B = binary behaviour matrix for individual: size = D x H where H = 24n

1 _ )
D (B—b)"(B-b)

Covariance matrix;. C =

Eigenbehaviours defined as eigenvectors: C'uy, = \uy




Eigenbehaviours (Eagle & Pentland)

Principal eigenvectors(behaviours) for 1 individual (long-term
correlation!)
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@ Eigenbehaviours (Eagle & Pentland)

Reconstruction of individual behaviour as function of eigen vectors
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Eigenbehaviours (Eagle & Pentland)

Behaviour

Reconstruction Accuracy

reconstruction accuracy versus number of eigenbehaviours

Reconstruction Accuracy vs # of Eigenbehaviors
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Eigenbehaviours (Eagle & Pentland)

Murnber of Subjects

Euclidian Distance between each Subject and Business School Student 14
Based on Reconstruction YWeights
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Compression Based Approaches

Lempel-Ziv (LZ78)

— Find a dictionary of patterns

— Seek the dictionary that allows the best compression
Lempel-Ziv-Welch (LZW)

— Use basic events to bootstrap dictionary
Active Lempel-Ziv (Active LeZi)

— Use a sliding window to extract all possible sequences of a
given length




LZ78

Algorithm 1 L/Z78

dictionary «— o

W — 0
while v = next symbol = @ do
if w.v in dictionary then
W < W.V
else

add w.v to the dictionary
emit (w.v)'s index (for compression purpose only)
W — 0

end if
end while




@ LZW

Algorithm 3 LZW

dictionary «— pre-defined set of symbols

W — 0
while v = next symbol |= o do
if w.v in dictionary then
W — W.V
else

add w.v to the dictionary
emit (w.v)'s index (for compression purpose only)
W — Vv
end if
end while




Active Le/Zi

Algorithm 2 Active LeZi

dictionary «— o
patterns «— o

Wo— o

window «— o
Max_LZ _length — 0

while v = next symbol = ¢ do
if w.v in dictionary then
W W.V
else

add w.v to the dictionary
if length(w.v) > Max_LZ length then
Max_LZ length < length(w.v)
end if
W o— @
end if
window «— window.v
if length(window) > Max_LZ_length then
delete window[0]
end if
patterns « patterns L all possible subsequences of window
end while




Compression Based Algorithms - Example

Sample sequence : aaababbbbaabeeddcebaaa
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T-Patterns for Symbolic Time Series

Data stream = time series of symbols (e.g. labeled events)

wakb wckdwkw w kw k w wakbwckdw
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Explicit modeling of inter-event time intervals:

Critical Interval [t1,t2] for (A,B) event: if A occurs at tO then there are

significantly more B occurrences in [tO+t1, tO+t2]:
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T-Patterns

Magnusson proposed T-patterns for mostly social sciences
applications
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Figure 5. This figure shows a behavior record of the type described in the text. It consists of 81 series of occur-
rence times (1 for each coded event type) arbitrarily ordered according to their first occurrence time. The behav-
ior was coded from a digitized video recording of approximately 13:52 min of continuous object play between two
5-year-old children (see the text). Time is in 1/15 sec (i.e., in digital video frames).




@ T-Patterns

« Software package THEME
— Systematically search for critical intervals for all AB pairs

— Hierarchical search: Assign new label to most significant pair
and resume search

h n fm
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T-Patterns

LR SRS o S
(01)Y,BHAVEVIEWER
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T-Patterns

Confidence testing for critical interval (Cl) for A>B event:
« Find all A-events and search for first B-event and record its lagtime t
« Assume number of B-events in interval [t1,t2] trailing A equals N,z

+ Is this significantly different from expected value (if we assume
independence)? Compute p-value:

p= P(Nap B-events or more| A, B are independent)
= 1 — P(strictly less than Nap B-events| A, B are independent)

=1- Z P(exactly k& B-events| A, B are independent)
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T-Patterns

Criticisms:
1- repeated significance testing generates many spurious
intervals (false positives!)

2- too slow for real-time operation in an Aml environment

Proposed Modifications:

1- Start by testing independence between A and B process
(as a whole);

2- If they are dependent, model B-lag times as 2-
component GMM:

— Peaked component: identifying typical lag-time (Cl)

— Broad component: collecting all unrelated B-occurrences




T-Patterns: Independence Testing

* Point processes A and B are independent if knowledge
about A hasn’t any prediction value for B and vice versa:
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« To test this: Find for each A-event the two flanking B-events and
compute A’s relative position (between 0 and 1) in this B-interval:

T'ap(k) = By — A, where k™ =argmin{j|B; > Ay}

1 Bp- — Ap
oy = Lanh) __Bie — A
Tp(k)  Br — B




T-Patterns: Independence Testing

All Avinterval times
160 T T T T

TAB: AB-interarrival times
80 T T T T

All B-interarrival times
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B-interarrival times conditional on A-occurrence
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T-Patterns: Independence Testing

If A and B are independent, then the ratio U(k) is uniformly
distributed between 0 and 1:

T B — A,
U k) = ~AB(k) _ 'k. K
TB(k) Bkt* — Bk’,*—l

Distribution of Ratio of TAB and corresponding TB

35

Uniformity test for TAB based on empirical CDF
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T-Patterns: Gaussian Mixture Modeling

The critical interval is given by the mean and standard
deviation of a Gaussian component.

The remaining events are modeled with a second, broader
and flatter Gaussian.




Simple Setup
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Difficult Setup
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T-Patterns: Independence Testing

Experiment: persons walking through home activating
interruption sensors

Layout 1 Layout 2
1 person|2 persons|l person|2 persons
LZ 29.8 17.7 56.5 13.2
ALZ 21.1 18.8 66.4 19.6
LZW 28.9 22.0 60.5 15.1
T-patterns 28.8 17.1 61.5 24.2
GMM T-patterns| 34.8 29.3 61.9 48.3

Table 1. Percentage correct predictions at the 20% confidence level.




Conclusions

We adopt the T-pattern method to fast discovery of
behaviour patterns in simple sensor data

Temporal information is not discarded as in “next event”
prediction approaches

Dictionary-based simulation allows performance
measurement
Many possible applications

— Behaviour analysis in sensing-endowed environments (e.g.
smart homes, offices)

— Automatic layout discovery
— Anomaly detection
— Process control and management




Thank you!




