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Abstract. Ambient agents react on humans on the basis of partial information 
obtained by sensoring. Appropriate types of reactions depend on in how far an 
ambient agent is able to interpret the available information (which is often incomplete, 
and hence multi-interpretable) in order to create a more complete internal image of the 
environment, including humans. This interpretation process, which often has multiple 
possible outcomes, can make use of an explicitly represented model of causal and 
dynamic relations. Given such a model representation, the agent needs a reasoning 
method to interpret the partial information available by sensoring, by generating one 
or more possible interpretations. This paper presents a generic model-based default 
reasoning method that can be exploited to this end. The method allows the use of 
software tools to determine the different default extensions that form the possible 
interpretations.  

1   Introduction 

Ambient Intelligence [1, 2, 16] applications usually involve sensor information about the 
environment, including humans. As this information is often incomplete, applications that 
require a high level of context awareness (see also [17, 18, 19]) depend on the availability 
of methods to analyse such information. One way is to  include computational models about 
environmental and human functioning in ambient agents. However, even when incomplete 
sensor information is refined on the basis of such models to create a more complete internal 
image of the environment’s and human’s state, still this may result in partial information 
that can be interpreted in different manners. Reactions of ambient agents then depend on in 
how far they are able to handle the available multi-interpretable information. To do this, the 
agent needs a reasoning method to generate one or more of the possible interpretations. 
Tools from the area of nonmonotonic logic can provide adequate analysis tools for 
reasoning processes concerning partial information. Within nonmonotonic logic approaches 
it is possible to formalise reasoning processes that deal with multiple possible outcomes, 
which can be used to model different possibilities of interpretation; see [10] for a similar 
perspective on the application of nonmonotonic logic tools.  

This paper presents a generic model-based default reasoning method that can be 
exploited to this end. The method exploits the available causal model and allows the use of 
software tools to determine the different default extensions that form the possible 
interpretations, given the sensor information and the causal model. Moreover, by formally 
specifying the default rules in an executable temporal format, according to the approach put 
forward in [8, 9], explicit default reasoning processes can be generated.  



  

Section 2 describes two case studies used to illustrate the approach. In Section 3 the 
basic concepts used are briefly introduced. Section 4 presents the approach to use default 
logic in conjunction with causal graphs to refine partial information by defining multiple 
interpretations. Finally, Section 5 is a discussion.  

2  Case Studies 

Two case studies are used throughout this paper; they are introduced below. 
 
Wristband for Elderly 
As a case study, the reasoning concerning conditions that occur amongst elderly people is 
used. Figure 1 shows a simplified causal model for such conditions. On the left hand side 
five conditions are shown: awake, asleep, syncope (fainted), myocardial infarction (heart 
attack) and cardiac arrest. The output of the model consists of symptoms that can be 
measured with a wristband, which are pulse, blood pressure and body temperature. Such a 
causal model can help in finding out the current condition of an elderly person based on 
sensory information from the wristband. 
 

 

Fig. 1. Causal model for the condition of an elderly person 

Crime Case 
In this case study, a system is used that can help the police solve a crime using ambient 
intelligence facilities. A Dutch company (Sound Intelligence) developed microphones that 
can distinguish aggressive sounds. Consider the situation in which these microphones are 
distributed at crucial points in the city, similar to surveillance cameras. Furthermore, 
suppose in this scenario that for some persons ankle bracelets are used as a form of 
punishment, which can measure the level of ethanol in the person’s perspiration, and 
indicate their position. 

In this example scenario, someone is beaten up nearby a microphone. The microphone 
picks up the sound of the fight and records this. After an investigation, the police have three 
suspects. The first suspect is known to have a high level of testosterone, which often leads 
to aggressive behaviour. The second suspect is someone who is sensitive for alcohol 
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(causing aggression) and wears an ankle bracelet that measures the level of ethanol in his 
system. He has been seen in a nearby cafe. The third suspect is diagnosed with Intermittent 
Explosive Disorder (IED), which is a disorder that can lead to a terrible outburst of rage 
after an unpleasant or stressful meeting. Witnesses saw suspect 2 in the company of 
someone else.  

Figure 2 shows a causal model that is used for this situation that can help the police 
officers to figure out what information is missing and help them to plan their strategy. For 
example, did suspect 2 have a conflict with the person he was with? Did suspect 3 drink 
alcohol? Aggressive sounds are caused by persons that are aggressive, according to the 
model. Three possible causes for this aggressiveness are considered, as can be seen in 
Figure 2: someone can have a high level of testosterone, someone can just have been in a 
situation of conflict or someone can have a high level of alcohol. 

 
Fig. 2. Causal model for the crime case 

3 Basic Concepts Used 

In this section the basic concepts used in the paper are briefly introduced. 
 

Causal models 
In this paper, this dynamic perspective on reasoning is applied in combination with facts 
that are labelled with temporal information, and models based on causal or temporal 
relationships that relate such facts. To express the information involved in an agent’s 
internal reasoning processes, the following ontology is used. 
 

leads_to_after(I:INFO_EL, J:INFO_EL, D:REAL) state property I leads to state property J after duration D  
at(I:INFO_EL, T:TIME) state property I holds at time T  

 
 

Multiple Interpretation  
Reasoning to obtain an interpretation of partial information can be formalised at an abstract 
generic level as follows. A particular interpretation for a given set of formulae considered 
as input information for the reasoning, is formalised as another set of formulae, that in one 
way or the other is derivable from the input information (output of the reasoning towards an 
interpretation). In general there are multiple possible outcomes. The collection of all 
possible interpretations derivable from a given set of formulae as input information (i.e., the 
output of the reasoning towards an interpretation) is formalised as a collection of different 
sets of formulae. A formalisation describing the relation between such input and output 
information is described at an abstract level by a multi-interpretation operator.  

The input information is described by propositional formulae in a language L1. An 
interpretation is a set of propositional formulae, based on a language  L2.  
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a) A multi-interpretation operator MI with input language L1 and output language L2 is a 
function MI : P(L1) → P(P(L2))  that assigns to each set of input facts in L1 a set of sets of 
formulae in L2. 

b) A multi-interpretation operator MI is non-inclusive  if for all X ⊆ L1 and  S, T ∈ MI(X), if 
S ⊆ T  then  S = T.  

c) If L1 ⊆ L2, then a multi-interpretation operator  MI  is conservative if for all X ⊆ L1, T ∈ 
MI(X) it holds X ⊆ T.  

 

The condition of non-inclusiveness guarantees a relative maximality of the possible 
interpretations. Note that when MI(X) has exactly one element, this means that the set X ⊆ 
L1 has a unique interpretation under MI. The notion of multi-interpretation operator is a 
generalisation of the notion of a nonmonotonic belief set operator, as introduced in [6]. The 
generalisation was introduced and applied to approximate classification in [10]. A reasoner 
may explore a number of possible interpretations, but often, at some point in time a 
reasoner will focus on one (or possibly a small subset) of the interpretations. This selection 
process is formalised as follows (see [10]). 
a) A selection  operator  s  is a function s : P(P(L)) → P(P(L))  that assigns to each 

nonempty set of interpretations a nonempty subset: for all A with φ ≠ A ⊆ P(L) it holds φ 
≠ s(A) ⊆ A. A selection operator s is single-valued if for all non-empty  A  the set  s(A) 
contains exactly one element. 

b) A selective interpretation operator for the multi-interpretation operator  MI  is a function 
C : P(L1) → P(L2)  that assigns one interpretation to each set of initial facts: for all X ⊆ L1 
it holds  C(X) ∈ MI(X). 

 

Representation in Default Logic 
The representation problem for a nonmonotonic logic is the question whether a given set of 
possible outcomes of a reasoning process can be represented by a theory in this logic. More 
specifically, representation theory indicates what are criteria for a set of possible outcomes, 
for example, given by a collection of deductively closed sets of formulae, so that this 
collection can occur as the set of outcomes for a theory in this nonmonotonic logic. In [13] 
the representation problem is solved for default logic, for the finite case. Given this context, 
in the current paper Default Logic is chosen to represent interpretation processes. For the 
empirical material analysed, default theories have been specified such that their extensions 
are the possible interpretations. 

A default theory is a pair �D, W�. Here W is a finite set of logical formulae (called the 
background theory) that formalise the facts that are known for sure, and D is a set of default 
rules. A default rule has the form: α: β / γ. Here α is the precondition, it has to be satisfied 
before considering to believe the conclusion γ, where the β, called the justification, has to 
be consistent with the derived information and W. As a result γ might be believed and more 
default rules can be applied. However, the end result (when no more default rules can be 
applied) still has to be consistent with the justifications of all applied default rules. Normal 
default theories are based on defaults of the form α: β / β. In the approach supernormal 
default rules will be used: normal default rules where α is trivial: true. Such supernormal 
rules are denoted by β / β or : β / β; they are also called prerequisite-free normal defaults. For 
more details on Default Logic, such as the notion of extension, see e.g. [12, 15].  
 

 
 
 



 

Temporal Specification of Reasoning Processes 
In this paper a dynamic perspective on reasoning is taken, following, e.g. [8, 9]. In practical 
reasoning situations usually different lines of reasoning can be generated, each leading to a 
distinct set of conclusions. In logic semantics is usually expressed in terms of models that 
represent descriptions of conclusions about the world and in terms of entailment relations 
based on a specific class of this type of models. In the (sound) classical case each line of 
reasoning leads to a set of conclusions that are true in all of these models: each line of 
reasoning fits to each model. However, for non-classical reasoning methods the picture is 
different. For example, in default reasoning or abductive reasoning methods a variety of 
mutually contradictory conclusion sets may be possible. It depends on the chosen line of 
reasoning which one of these sets fits. 

The general idea underlying the approach followed here, and inspired by [8, 9], is that a 
particular reasoning line can be formalised by a sequence of information states  M0, M1,  ...... . 
Here any  Mt  is a description of the (partial) information that has been derived up to time 
point  t. From a dynamic perspective, an inference step, performed in time duration D is 
viewed as a transition  Mt  →→→→  Mt+D  of a current information state  Mt  to a next information 
state  Mt+D. Such a transition is usually described by application of a deduction rule or proof 
rule, which in the dynamic perspective on reasoning gets a temporal aspect. A particular 
reasoning line is formalised by a sequence  (Mt) t∈∈∈∈T of subsequent information states labelled 
by elements of a flow of time T, which may be discrete, based on natural numbers, or 
continuous, based on real numbers.  

An information state can be formalised by a set of statements, or as a three-valued (false, 
true, undefined) truth assignment to ground atoms, i.e., a partial model. In the latter case, 
which is followed here (as in [8, 9]), a sequence of such information states or reasoning 
trace can be interpreted as a partial temporal model. A transition relating a next information 
state to a current one can be formalised by temporal formulae the partial temporal model 
has to satisfy.  
 

Executable Temporal Specification   
To specify models and to execute these models, the language LEADSTO, an executable 
sublanguage of Temporal Trace Language (TTL), is used. The basic building blocks of this 
language are causal relations of the format �  →→e, f, g, h 

�
, which means: 

 if state property α holds for a certain time interval with duration g, 
 then  after some delay (between e and f) state property β will hold 
 for a certain time interval of length h. 

where α and β are state properties of the form ‘conjunction of literals’  (where a literal is an 
atom or the negation of an atom), and e, f, g, h non-negative real numbers. For the sake of 
simplicity, especially when they are always the same, these subscripts may be left out of the 
notation and indicated separately. As an example, a modus ponens deduction rule in time 
duration D can be specified in temporal format as: 

derived(I) ∧ derived(implies(I, J))  →→D  derived(J) 

So, inference rules are translated into temporal rules thus obtaining a temporal theory 
describing the reasoning behaviour. Each possible line of reasoning can be described by a 
linear time model of this theory (in temporal partial logic). This representation format will 
be used to formalise this and other types of model-based reasoning methods, as is shown 
more extensively in Appendix A†. 

                                                           
† http://www.few.vu.nl/~fboth/default-refinement 



  

4 Representing Model-Based Interpretation in Default Logic 

In this section it is discussed how a model-based interpretation operator can be represented 
in default Logic.  

4.1  Default logic for model-based refinement of partial information 

The causal theory CT of the agent consists of a number of statements a → b for each causal 
relation from a to b, with a and b atoms. Sometimes included in this set are some facts to 
indicate that some atoms exclude each other (for example, ¬(has_value(temperature, high) ∧ 

has_value(temperature, low) assuming that temperature can only be high or low), or that at least 
one of a set of atoms is true, (for example: has_value(pulse, high) ∨ has_value(pulse, normal)  ∨ 

has_value(pulse, low)). A set of literals S is coherent with CT if S ∪ CT is consistent. The set S 
is called a maximal coherent set for CT if it is coherent, and for all sets T coherent  with CT 
with S ⊆ T it holds S = T. Let X be a set of formulae. The multi-interpretation operator 
MICT(X) is defined by  
 MICT(X) = { Cn(X ∪ CT ∪ S)  |  S maximal coherent with CT } 
This operator defines for the partial information the agent may have at some point in time 
(indicated by set of literals X) the set of all complete refinements of X which are coherent 
with the causal model. This operator has been defined above in an abstract manner, and 
only indicates the possible outcomes of a reasoning process, not the steps of the reasoning 
process itself. A next step is to obtain a representation of this operator in a well-known 
formalism such as default logic. Based on this default logic representation, reasoning 
processes can be defined that can be performed to obtain one or more of the interpretations. 

The following Default Theory ∆CT(X) = �W, D� can be used to represent the multi-
interpretation operator MICT (notice that this is a supernormal default theory); see also [13], 
Theorem 5.1: 

W   =   CT ∪ X   
 D    =   { (true: a / a)   | a literal for an atom occurring in CT } 

Here a literal is an atom or a negation of an atom. That this default theory represents  
MICT means that for any set X indicating partial information the set of interpretations 
defined by MICT(X) can be obtained as the set of all extensions of the default theory 
∆CT(X). This representation allows to determine the interpretations by using known 
methods and tools to determine the extensions of a default theory. One of these methods is 
worked out in a tool called Smodels, based on answer set programming; cf. [14]. The use of 
this for the two case studies will be discussed in the next two Subsections 4.2 and 4.3. 
Another method to determine the extensions of a default theory is by controlled or 
prioritised default reasoning. This method is illustrated in Appendix A. 

4.2 A Default Theory for the Wristband for Elderly Case 

In order to represent the knowledge introduced in Section 2.1, the following default theory 
has been specified. First, the causal background theory (W = CT) is defined, based on the 
causal graph shown in Figure 1. Furthermore, inconsistent values are defined for the 
various facets (i.e. pulse, temperature, blood pressure, and condition): 

inconsistent_values(pulse, normal, low) 
inconsistent_values(condition, healthy_awake, healthy_asleep) 
etc. 



 

If an attribute has a certain value and this value is inconsistent with another value, then this 
other value is not the case. 

has_value(y, x1) ∧ inconsistent_values(y, x1, x2) → ¬ has_value(y, x2) 

Besides the background theory, also the default theory ∆CT has been generated from this 
causal theory CT.  The default rules for the atoms are simply as follows: 

has_value(condition, healthy_awake) / has_value(condition, healthy_awake) 
has_value(condition, healthy_asleep) / has_value(condition, healthy_asleep) 
has_value(condition, syncope) / has_value(condition, syncope) 
has_value(condition, myocardial_infarction) / has_value(condition, myocardial_infarction) 
has_value(condition, cardiac_arrest) / has_value(condition, cardiac_arrest) 
has_value(pulse, normal) / has_value(pulse, normal) 
has_value(pulse, low) / has_value(pulse, low) 
has_value(pulse, very_low) / has_value(pulse, very_low) 
has_value(pulse, irregular) / has_value(pulse, irregular) 
has_value(pulse, none) / has_value(pulse, none) 
has_value(blood_pressure, normal) / has_value(blood_pressure, normal) 
has_value(blood_pressure, low) / has_value(blood_pressure, low) 
has_value(blood_pressure, very_low) / has_value(blood_pressure, very_low) 
has_value(temperature, normal) / has_value(temperature, normal) 
has_value(temperature, low) / has_value(temperature, low) 

Besides these default rules, similar defaults for the negations of these atoms are included. 
Using a system called Smodels [14], the extensions for the default theory specified can be 
calculated. Using the theory above, 30 extensions result. Hereby, in 19 out of 30 cases 
neither of the 5 conditions holds (i.e. awake, asleep, syncope, myocardial infarction and 
cardiac arrest). However, by adding strict rules which express that at least one of the 
conditions holds, only 11 extensions are found. The extensions that follow after adding 
these strict rules are shown in Table 1. 

Table 1. All extensions of the default theory 

# Condition Values # Condition Values 
1 healthy_awake has_value(pulse, normal) 

has_value(blood_pressure, normal) 
has_value(temperature, normal) 

7 myocardial_ 
infarction 

has_value(pulse, irregular) 
has_value(blood_pressure, normal) 
has_value(temperature, low) 

2 healthy_asleep has_value(pulse, low) 
has_value(blood_pressure, low) 
has_value(temperature, low) 

8 myocardial_ 
infarction 

has_value(pulse, irregular) 
has_value(blood_pressure, low) 
has_value(temperature, low) 

3 syncope has_value(pulse, very_low) 
has_value(blood_pressure, very_low) 
has_value(temperature, low) 

9 myocardial_ 
infarction 

has_value(pulse, irregular) 
has_value(blood_pressure, very_low) 
has_value(temperature, low) 

4 myocardial_ 
infarction 

has_value(pulse, irregular) 
has_value(blood_pressure, normal) 
has_value(temperature, normal) 

10 cardiac_arrest has_value(pulse, none) 
has_value(blood_pressure, very_low) 
has_value(temperature, normal) 

5 myocardial_ 
infarction 

has_value(pulse, irregular) 
has_value(blood_pressure, low) 
has_value(temperature, normal) 

11 cardiac_arrest has_value(pulse, none) 
has_value(blood_pressure, very_low) 
has_value(temperature, low) 

6 myocardial_ 
infarction 

has_value(pulse, irregular) 
has_value(blood_pressure, very_low) 
has_value(temperature, normal) 

   

 
Partial information X may be given that includes the information that the person has a 
normal temperature. Such a set X can be added to the background theory W. Table 2 shows 
the extensions resulting when the following facts are added to W: 

X = { has_value(temperature, normal),  has_value(pulse, irregular) } 



  

Table 2. All extensions given the changed background theory 

# Condition Values 
1 myocardial_infarction has_value(pulse, irregular) 

has_value(blood_pressure, normal) 
has_value(temperature, normal) 

2 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, low) 
has_value(temperature, normal) 

3 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, very_low) 
has_value(temperature, normal) 

 

Finally, Table 3 shows the extensions when the following set X is added to W: 
  X = { has_value(temperature, normal) , has_value(pulse, normal) , has_value(blood_pressure, normal) } 

Table 3. All extensions of the default theory 

# Condition Values 
1 healthy_awake has_value(pulse, normal) 

has_value(blood_pressure, normal) 
has_value(temperature, normal) 

4.3 Crime Case Default Theory 

Similar to the Elderly Wristband, the default theory ∆CT for the crime case has been 
generated from the causal model: 

has_value(situation, conflict) / has_value(situation, conflict) 
has_value(situation, drinks_alcohol) / has_value(situation, drinks_alcohol) 
has_value(testosterone, high) / has_value(testosterone, high) 
has_value(sounds, aggressive) / has_value(sounds, aggressive) 
has_value(ankle_ethanol_level, high) / has_value(ankle_ethanol_level, high) 
has_value(aggressiveness, high) / has_value(aggressiveness, high) 
has_value(alcohol_level, high) / has_value(alcohol_level, high) 
not(has_value(situation, conflict) / not(has_value(situation, conflict)) 
not(has_value(situation, drinks_alcohol) / not(has_value(situation, drinks_alcohol)) 
not(has_value(testosterone, high) / not(has_value(testosterone, high)) 
not(has_value(sounds, aggressive) / not(has_value(sounds, aggressive)) 
not(has_value(ankle_ethanol_level, high) / not(has_value(ankle_ethanol_level, high)) 
not(has_value(aggressiveness, high) / not(has_value(aggressiveness, high)) 
not(has_value(alcohol_level, high) / not(has_value(alcohol_level, high)) 

Furthermore, aggressive sound has been observed, therefore the following fact is added to 
W: 

X = {has_value(sound, aggressive)} 

The resulting number of extensions is 18. Hereby however, the reasoning has not been 
performed using a closed world assumption, whereby values can only occur in case they 
result from a known causal relation or in case they are input variables (i.e. the situation). In 
order to perform reasoning with such a closed world assumption, the following rules have 
been added. First, a rule expressing that in case there is only one source from which a value 
can be derived, then this source should have the appropriate value (in this case, this holds 
for all variables except for aggressiveness). 

has_value(X1, Y1) ∧ leads_to(has_value(X2, Y2), has_value(X1, Y1)) ∧ X1 ≠ aggressiveness →   
has_value(X2, Y2) 

For the aggressiveness a different set of rules is used, since only one out of three conditions 
needs to hold. An example of one instance of such a rule is the following: 

 



 

has_value(aggressivness, high) ∧ not(has_value(testosterone, high) ∧ not(has_value(situation, conflict) →  
has_value(alcohol_level, high) 

Given that these rules are added, 7 extensions result using Smodels as shown in Table 4. 
Note that the sound is not shown since that is fixed in advance already. The last column 
shows to which suspect this extension is applicable. Hereby the suspect with high 
testosterone is marked with 1, the oversensitive alcohol suspect with 2, and the IED suspect 
with 3. 

Table 4. Extensions given that aggressive sound has been observed 

# Situation Testosterone Aggressiveness Alcohol 
level 

Ankle 
Ethanol level 

Suspect 

1 ¬conflict; ¬drinks_alcohol high high ¬high ¬high 1 
2 conflict; ¬drinks_alcohol high high ¬high ¬high 1 
3 conflict; ¬drinks_alcohol ¬high high ¬high ¬high 3 
4 conflict; drinks_alcohol high high high high 1 
5 conflict; drinks_alcohol ¬high high high high 2, 3 
6 ¬conflict; drinks_alcohol ¬high high high high 2 
7 ¬conflict; drinks_alcohol high high high high 1 

5  Discussion 

This paper shows how a number of known techniques and tools developed within the area 
of nonmonotonic reasoning and AI can be applied to analyse model-based interpretation. 
The formal techniques exploited in the approach, are causal graphs and causal reasoning in 
conjunction with techniques from the nonmonotonic reasoning area such as: multi-
interpretation operators as an abstract formalisation multiple interpretation and a default 
theory to represent this multi-interpretation operator. Model-based default refinement can 
be useful to obtain (on top of sensor information) a high level of context awareness; see 
also [17, 18, 19]. The properties and default rules presented in this paper have all been 
specified in a generic fashion, such that they can easily be reused for studying other cases. 

More formalisms for handling causal or temporal reasoning within ambient intelligence 
have been proposed, see e.g. [11]. The application of nonmonotonic logic as put forward in 
this paper adds the possibility to specify human like reasoning in a natural way, possibly 
even resulting in multiple stable sets that can be the outcome of such a reasoning process. 

Currently, the approach put forward is a theoretical framework, whereby case studies 
have been conducted on paper. Future work is to see how well such a theoretical framework 
can be applied in a practical setting, for example for elderly care or crime analysis. Issues 
such as how to extract the appropriate information needed within the system from domain 
experts, how useful the system can be in supporting human decision makers, and how 
accessible the method can be made for people not familiar with formal methods will need to 
be addressed. 
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