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Abstract

It is still an open question whether increasing life expectancy as such is causing higher
health care expenditures (HCE). According to the “red-herring”-hypothesis, the positive cor-
relation between age and HCE is exclusively due to the fact that mortality rises with age and
a large share of HCE is caused by proximity to death. As a consequence, rising longevity –
through falling mortality rates – may even reduce HCE. However, a weakness of previous em-
pirical studies is that they use cross-sectional evidence to make inferences on a development
over time. In this paper we try to isolate the impact of rising longevity on the trend of HCE
over time by using data for a pseudo-panel of German sickness fund members over the period
1997-2009. Using dynamic panel data models, we find that age, mortality rate and five-year
survival rates have a positive impact on per-capita HCE. Our explanation for the last finding
is that physicians treat patients more aggressively if they think the result will pay off for a
longer time span, which we call “Eubie Blake effect”. A simulation on the basis of an official
population forecast for Germany is used to isolate the effect of demographic ageing on real
per-capita HCE over the next decades.
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If I’d known I was going to live this long,
I would have taken better care of myself.

(Eubie Blake on his alleged 100th birthday)

1 Introduction

The ageing of population in most OECD countries will place an enormous burden on tax payers
over the next decades. Given this demographic change, previous fiscal policies in several of these
countries were unsustainable, and major reforms of social insurance systems have been enacted,
in particular with respect to public pension and long-term care financing systems. However, what
remains unclear is whether population ageing also jeopardizes the sustainability of social health
insurance (see, e.g. Hagist and Kotlikoff (2005) and Hagist et al. (2005)). While there is no
doubt that the revenue side of these systems will suffer from the shrinking size of future taxpayer
generations, it is not so clear if rising longevity will place an extra burden on the expenditure side.
If so, additional reforms of these systems would be necessary to guarantee the sustainability of
these systems such as introducing more funding or limiting the generosity of benefits.

The impact of population ageing on health care expenditures (henceforth: HCE) has been heavily
debated over the last decade. That a positive association of age and health expenditures in cross-
sections is primarily due to the high cost of dying and rising mortality rates with age, was first
observed by Fuchs (1984). Subsequently, Zweifel, Felder, and Meier (1999) have coined the
term “red herring” to characterize the erroneous conclusion from the cross-section correlation
that population ageing due to increasing longevity implies rising HCE over time. As counter-
evidence they showed that – when controlling for proximity to death – calendar age is not even a
significant predictor of individual health care costs.

While this early study suffered from the weakness that it concentrated on patients in their last
years of life, subsequent studies by several authors such as Stearns and Norton (2004), Seshamani
and Gray (2004), Zweifel, Felder, and Werblow (2004) and Werblow, Felder, and Zweifel (2007)
confirmed the red-herring hypothesis by demonstrating that even for persons who survived for at
least four more years, there is hardly any age gradient in HCE, whereas the costs of the last year
of life tend to decrease with the age at death (Lubitz, Beebe, and Baker 1995). The latter finding
is explained by the tendency of physicians to treat patients who have lived beyond a “normal
life-span” less aggressively than younger patients with the same diagnosis and the same survival
chances. An alternative explanation is the “compression-of-morbidity” hypothesis postulated by
Fries (1980), which states that with rising life expectancy the period of severe sickness becomes
shorter and therefore annual HCE per capita may even fall as longevity increases. In this vein,
Miller (2001) shows by simulation that, based on a negative relationship between age-at-death
and death-related costs, an increase in longevity will dampen the growth of HCE.

However, an important weakness of almost all studies in the related literature is their reliance
on cross-section expenditure data. Therefore, in drawing inferences from these studies for the
development of HCE over time, proponents of the “red-herring” hypothesis commit the same
error of which they accuse their opponents (i.e. those who believe that ageing increases health
spending because per-capita expenditures increase with age). In particular, they overlook the
fact that increasing longevity not only means that 30 years from now average age at death will
be higher, but also that people at a certain age (say, 80) will on average have more years to live
than present 80-year olds. We suggest that physicians, e.g. when implanting an artificial hip into
a patient, will make a conjecture how long the patient will benefit from this treatment, and this
depends upon his expected longevity. In that respect, the physician (and maybe the patient, too)
will behave in a way described in the famous quotation by Eubie Blake. This effect will lead to
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a similar physician behaviour as “age-based rationing” of health care services when the notion
of a “normal life span” (Callahan (1987), Daniels (1985)) shifts over time with rising longevity.
Indeed, the empirical literature shows that some physicians use age as a prioritization criterion
in allocating scarce health care resources (for an overview see Strech, Synofzik, and Marckmann
(2008)).

To test whether there is a “Eubie Blake effect”, it is desirable to study how rising life expectancy
has affected health care expenditures over time, which clearly requires a data set that comprises
this variable, or an indicator of it, and covers several years.

To our knowledge, there have been only three previous studies which have used life expectancy
as an explanatory variable in a regression equation for HCE, viz. Shang and Goldman (2008),
Zweifel, Steinmann, and Eugster (2005) and Bech et al. (2011).

Shang and Goldman (2008) used a rotating panel of more than 80,000 Medicare beneficiaries
and predicted for each individual his life expectancy, based on age, sex, race, education and
health status and then performed a nonlinear-least-squares estimation of individual HCE. In this
equation, predicted life expectancy turned out to be highly significant and negative, whereas age
became insignificant when this variable was included. The interpretation of this result is, how-
ever, very similar to other studies in the red-herring literature because predicted life expectancy,
if the value is low (say, a few years) is a proxy for time-to-death.

Zweifel, Steinmann, and Eugster (2005), in contrast, used a panel of 17 OECD countries over
a period of 30 years (1970-2000) as observations and tried to jointly explain HCE and life ex-
pectancy. As one of the determinants of HCE, they constructed an artificial variable “SISYPH”
(for Sisyphus effect) by multiplying “life expectancy at 60” (averaged over both sexes) with the
share of persons over 65 in the total population. The predicted value of this variable turned out to
be a significantly positive predictor of HCE. A problem with this result is that it does not allow
disentangling the effects of the old age dependency ratio and life expectancy itself.

Bech et al. (2011) consider per-capita HCE for a panel of 15 EU member states over the period
1980 to 2003 and find that both mortality and remaining life expectancy at age 65 have a sig-
nificant positive effect on HCE in the following year. They then calculate long-run elasticities
of HCE with respect to these variables and find a positive value only for life expectancy, so that
a linear increase in life expectancy at 65 is associated with an exponential growth in per-capita
HCE.

In this paper, we make a new attempt at estimating the effect of rising longevity on HCE by
being the first to use a measure of longevity that is especially common among physicians: 5-
year survival rates. In medical studies, in particular those concerned with specific diseases, this
measure is used rather than life expectancy as such.

The data set we employ is a pseudo panel of sickness fund members in Germany, which was
originally collected for calculating age and sex specific (average) HCE for purposes of risk ad-
justment. This data set, which covers the years 1997 to 2009, is merged with data on mortality
rates published annually by the Max Planck Institute for Demographic Research at Rostock.

To determine the impact of longevity we estimate (dynamic) panal data models; to disentangle
age, period and cohort effects, we apply the intrinsic estimator (Yang et al. (2008)). We then use
the estimated relationship to show the effect of an increase in survival rates according to official
statistics on average HCE.

The remainder of this paper is organized as follows. In Section 2 we describe the data, in Sec-
tion 3 we state the theoretical hypotheses to be tested, in Section 4 we explain the methodology of
estimating the determinants of HCE, in Section 5 we present the regression results, in Section 6
we perform a simulation of the future development of HCE, and Section 7 concludes.
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2 Data

The data used in this study come from three different sources. Data on HCE are taken from
the German Federal (Social) Insurance Office (“Bundesversicherungsamt”, BVA).1 They are
collected for purposes of calculating the risk adjustment payments between statutory sickness
funds. They comprise eight major expenditure categories including inpatient care, ambulatory
care, dental care and pharmaceuticals, and are based on a census of all sickness fund members
(except for dental care). The data set contains the variables age (in full years), sex, and year, and
– for each age-sex group in each year – the average HCE and the number of individuals in this
group.2 All persons older than 90 are classified into the age-group 90 by the Federal (Social)
Insurance Office.

Data on age and sex specific mortality rates, taken from the Human Mortality Database (2011),
were used to calculate 5-year survival rates. These data apply to the German population as a
whole and not only to sickness fund members. Since the omitted group, the privately insured,
have on average higher incomes, and life expectancy is positively associated with income in
Germany (von Gaudecker and Scholz (2007), Breyer and Hupfeld (2009)), the population-based
survival rates constitute an upward-biased estimate for the true survival rates of sickness fund
members. On the other hand, this error should be rather small given that sickness fund members
account for about 90 per cent of the German population.

As mentioned before, in the data set provided by the German Federal (Social) Insurance Office
the highest age group contains the average HCE of all individuals of age 90 and above. Since
we have no information about the age distribution for this group, we could not compute their
average mortality and survival rate. We therefore drop this group, which amounts to a loss of
0.71% person-days.3

Table 1: Descriptive Statistics of the Data Set

Man Woman

mean std.dev. min max mean std.dev. min max

Age 44.5 0 89 44.5 0 89

Cohort 1958.5 1908 2009 1958.5 1908 2009

HCE 6.2437 4.7329 1.7812 17.6005 6.1312 3.8728 1.5020 15.7070

MORT .0233 .0437 .00007 .2275 .0153 .0321 .00005 .1711

SR5 .8785 .2021 .1687 .9996 .9117 .1685 .2603 .9997

Our data set comprises the period 1997 to 2009. As there are 90 age groups (0 to 89) for men
and women separately, the total number of observations is 2340. Table 1 contains descriptive
statistics on the data set. Since we perform the estimations separately for men and women,
we present these statistics separately, too. Table 2 shows that 5-year survival rates have been

1The official risk adjustment data, which the BVA publishes on its website, are smoothed. We use the unsmoothed
data and thank Dirk Göpffarth for making this data set available to us.

2To be more precise, the variables are average HCE per day and number of person-days, i.e., the number of insured
times the average number of days per year an individual of this age-sex group is insured. In addition, the data set contains
these two variables also separately for the two regions east and west, however only until 2007. Since 2008 there is no
distinction according to region in the risk adjustment scheme any more.

3Further reasons for dropping this group are: First, this group is heterogeneous because it contains more than ten
different age groups; and secondly population mortality rates are not very representative for the persons enrolled in Social
Health Insurance because the privately insured have a higher life expectancy, and therefore their share is particularly high
at very high ages.
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Table 2: 5-year survival rates: Level in 1997 (per cent) and increase from 1997 to 2009 (percent-
age points)

Man Woman

SR5 SR5

Age 1997 ∆ 1997 ∆

60 91.1 2.4 95.9 0.8

65 86.1 4.3 93.2 1.9

70 79.1 5.9 88.3 3.4

75 67.9 6.9 79.5 4.6

80 51.2 9.0 64.6 5.6

85 31.6 8.6 43.6 4.7

90 14.0 4.0 22.1 1.1

increasing by up to 9 percentage points for men; for women the increase is smaller but still up
to 5.6 percentage points. These values refer to the population as a whole; for specific subgroups
the increase can be higher, (e.g. for certain chronic conditions, survival rates may have increased
more, so the way physicians treat patients with these particular conditions may have changed
over time even more).

The following variables will be used in the regression equations:

• HCEc,a,t (dependent variable), the average value of daily health care expenditures of all
insured persons in cohort c of age a in year t, converted to Euros of 2009 by using the
consumer price index;

• a set of A = 90 dummy variables Agea for each age a with a = 0, . . . , 89;

• a set of dummy variables Cohortc for each cohort c with c = 1908, . . . , 2009, (the year in
which the person was born);

• a set of T = 13 dummy variables Yeart for each year t with t = 1997, . . . , 2009;

• MORTc,a,t, the mortality rate, i.e. the share of persons in cohort c of age a in year t who
die within that year;

• SR5c,a,t, the 5-year survival rate of persons in cohort c of age a in year t.

3 Testable Hypotheses

The main focus of the paper will be the effect of “population ageing”, measured by an increase
of life expectancy, on average HCE of a population group. However, a complete model of the
determination of HCE must include all variables mentioned in the previous section. The fol-
lowing theoretical predictions are derived from the literature and will be tested in the empirical
estimation:
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Age: According to more “traditional” theory, HCE will be decreasing with age in the age range
0-20, approximately constant between 20 and 60 and increasing with age for age above 60. In
contrast, the red-herring hypothesis states that HCE will be independent of age for age above 20.

Mortality: HCE will be increasing in the mortality rate of the population group.

5-year survival rates: HCE will be increasing in 5-year survival rates (SR5) as physicians will
spend more resources on patients who have “more to gain” from an intervention. This effect is
especially important for older patients.4

Time: HCE will be increasing over time due to medical progress.

4 Estimation Strategy

As is well known, the age profile of HCE has a different shape for men and women; we therefore
perform both the regression and the simulation separately for men and women.

The data set is a “pseudo panel” in the sense of Deaton (1985). Verbeek and Nijman (1992) have
shown that for a sufficiently large number of individuals in each group, the group averages are
unbiased estimators of the “true” value in the population.

Following Deaton (1997), the dependent variable will not only depend upon the “health” vari-
ables mortality and 5-year survival rates, but can also be subject to age and cohort effects in
addition to the time effect, so that a full specification would require writing

HCEc,a,t = g(c, a, t) + γ1MORTc,a,t + γ2SR5c,a,t + uc,a,t, (1)

where uc,a,t denotes the error term and g(·) is some general function of cohort, age and year,
including the constant term. However, this specification suffers from the well-known problem of
perfect multicollinearity since age equals year minus cohort:

a = t− c. (2)

In our case, since we suppose the relationship between age, time and HCE to be non-linear, we
use dummy variables for the respective age groups, years and cohorts, i.e we want to estimate
model (1) with

g(c, a, t) =
∑
c

βcCohortc +
∑
a

αaAgea +
∑
t

δtYeart. (3)

Of course, the problem of perfect multicollinearity applies to the dummy variables specificiation
in (3) as well.5 There are in principle three strategies to deal with this problem:

4Using the 5-year survival rate has an important advantage over the variable “life expectancy”: In younger age groups
life expectancy falls almost linearly with age, whereas survival rates vary very little with age and start falling only later.
Here the variance with age and over time occurs almost exclusively in older age groups, and the effect of this on HCE is
exactly what we want to test.

5For a data set comprising A age-classes and T years, the full sets of dummies consists of A age-dummies, T year-
dummies and A + T − 1 cohort dummies. With an intercept included, for any set of dummy variables partitioning the
data set, one dummy variable has to be dropped, so that the number of dummy variables in (3) effectively is (A− 1) +
(T − 1) + (A+ T − 2) = 2A+2T − 4. However, because of (2), these 2A+2T − 4 dummy variables are perfectly
collinear.

6



1. to drop one of the variables age, cohort or time,

2. to impose restrictions on the coefficients of the dummy variables,6

3. to use the intrinsic estimator due to Yang et al. (2008).

Because our data set is a pseudo panel where the “individuals” are cohorts, this variable cannot be
dropped in the analysis. Obviously, neither the age effect nor the year effect (medical progress)
can be dropped, either.

The usual way then to solve the multicollinearity problem is to impose the restriction that two
(usually but not necessarily adjacent) coefficients are equal: E.g. if δ2000 = δ2001, it is assumed
that there is no time effect going from year 2000 to 2001; if α20 = α21, then it is assumed
that 20 and 21-year-olds have equal health care expenditures. If one can be confident that this
assumption is valid, this will correctly disentangle the age, period and cohort effect.

However, as shown by Yang et al. (2008), the resulting estimates can be seriously misleading, if
this assumption is not warranted.7 They propose a new estimator, which they called “Intrinsic
Estimator”. This estimator chooses of all possible combinations (α̂, β̂, δ̂), which minimize the
sum of squared residuals, the one, that does not depend on the dimension of the matrix of ex-
planatory variables, i.e., that is independent of A and T . In a Monte Carlo Study they show that
the Intrinsic Estimator is superior to assuming that two of the dummy variables are equal, even
if the true difference between them is small.

However, it is important to bear in mind, that the Intrinsic Estimator and the fixed effects panel
estimator (with any restriction) only differ in the coefficients for age, period and cohort, but not
in the coefficients for the other variables. This means that the coefficients for the variables we are
mainly interested in, i.e., MORT and SR5, do not depend upon whether the intrinsic estimator
is used or, if not, which particular restriction is imposed.

In the following, we shall first use the fixed-effects panel estimator (with an arbitrary restriction)
to derive estimates of the coefficients of MORT and SR5, i.e. we estimate the model

HCEc,a,t = γ1MORTc,a,t+γ2SR5c,a,t+
∑
c

βcCohortc+
∑
a

αaAgea+
∑
t

δtYeart+uc,a,t.

(4)

There are two possible reasons why this model may be misspecified: First, the true relationship
may be dynamic so that there is persistence in HCE. To account for this problem, we also
estimate the following dynamic panel model:

HCEc,a,t = φHCEc,a−1,t−1 + γ1MORTc,a,t + γ2SR5c,a,t

+
∑
c

βcCohortc +
∑
a

αaAgea +
∑
t

δtYeart + uc,a,t. (5)

6Of course, dropping one of the variables means imposing the restriction that all coefficients on this variable are zero.
However, since this is usually not made explicit, we mention it as a separate way to deal with the problem of perfect
multicollinearity.

7In our estimation it turns out that when we apply the usual panel estimator and omit two adjacent age dummies, the
sign of the time trend depends critically on which two age dummies are chosen. E.g. it is negative if the ages 6/7, 7/8,
13/14, 14/15, 15/16, 16/17 or 24/25 are omitted from the equation for men. This lack of robustness is a strong reason
for discarding the panel estimator in favour of the Intrinsic Estimator to determine the coefficients for age, period and
cohort.
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Secondly, the variables may be non-stationary so that there may be the problem of spurious
regression. For this reason we test for unit roots. Since these tests do not reject non-stationarity
in the explanatory variables, (although they do forHCE), we also estimate the models (4) and (5)
in first (and second) differences, i.e. we replaceHCE,MORT and SR5 by ∆HCE, ∆MORT
and ∆SR5. We estimate the dynamic panel model (4) by GMM, using both the difference-
GMM-estimator by Arellano and Bond (1991) and the system-GMM-estimator by Blundell and
Bond (1998).

For the following reason we do not use SR5 as such but its predicted values as explanatory vari-
able. We argued that a physician will take the 5-year survival rate into account when deciding
whether to perform an expensive or risky procedure or on which patients to ration (most). How-
ever, during the year t, the physician does not know the 5-year survival rate SR5c,a,t, as this is
a measure derived from the mortality rates in the same year, which are not known until the end
of the year. It is therefore an informed guess of the survival rate the physician will have in mind.
One possible proxy for this variable would be its value in the previous year (for the same age),
SR5c−1,a,t−1, but this is certainly not the best option: First, survival rates are increasing over
time, so there would be a systematic downward bias in this proxy. Secondly, as the survival rate
in a particular year t − 1 is derived from the mortality rates in t − 1, they may depend heavily
upon singular events such as a flu epidemic. Thus it is not the best alternative to base the in-
formed guess only on SR5c−1,a,t−1, but on a few more values. We therefore use as a proxy the
predicted value of SR5c,a,t from a regression of the SR5-values (of age a) in years t−5 to t−1
on a time trend.

As the data set is a pseudo panel, and the respective cohort-age cells contain different numbers
of observations, the results from the simple fixed-effects panel estimation may not be efficient
and have to be weighted by the square root of the cohort size, see Deaton (1985). Because in
our pseudo panel the cohort size is not constant over time, we could use different weights for
each cohort-age cell. However, Inkmann, Klotz, and Pohlmeier (1998) show that estimation
results can be unstable if the cohort size differs considerably and therefore propose to weight
by the average weight for each cohort. We therefore use weights that do not differ in the time
dimension.

5 Regression Results

5.1 Unit root tests

We first employ the unit root tests by Harris and Tzavalis (1999) and by Im, Pesaran, and Shin
(2003) without and with different number of lags. Table 3 shows an overview of the results;
the detailed results can be found in Tables 7 to 9 in the Appendix. For the dependent variable
HCE, non-stationarity is clearly rejected. For MORT and SR5, non-stationarity in levels is
never rejected, as all p-values are very close to 1. For first differences, the results are ambiguous
as the null hypothesis is only rejected for some of the tests. For second differences, the null is
always rejected. Therefore, we not only present the results for the estimation in levels, but by
way of a robustness check, in first and second differences as well.

5.2 Estimation results

In Table 4 we present the regression results. In column (1), results for the fixed effects model
with only MORT as an additional explanatory variable can be found. In column (2), SR5 is
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Table 3: Unit root tests: Rejection of H0: non-stationarity

Men Women

level ∆ ∆2 level ∆ ∆2

HCE yes yes yes yes yes yes

MORT no yes/no yes no yes/no yes

SR5 no yes/no yes no yes/no yes

added. Columns (3) and (4) then show the results for the dynamic panel model with bothMORT
and SR5, estimated by the difference-GMM-estimator due to Arellano and Bond (1991) and by
the system-GMM-estimator due to Blundell and Bond (1998). In all the GMM-estimations,
HCEt−1 and SR5t are regarded to be predetermined as they do not depend on the error term
in period t. However, we allow for MORTt to be endogenous by using only lagged values as
instruments. To limit instrument proliferation, the number of instruments was reduced using the
collapse-option of STATA’s xtabond2-command, see Roodman (2006).

These four models are estimated with the variables HCE, MORT and SR5 in levels – see
columns (1) to (4) – and in first differences (columns (5) to (8)). Because not all unit root tests
reject non-stationarity of the explanatory variables in first differences, we also present the four
models in second differences (columns (9) to (12)). However, for women the AR(2)-test is highly
significant (with a p-value of 0.000 for the difference GMM-estimator, and 0.002 for the system
GMM-estimator), which is a clear indicator that the model in second differences is misspecified
for women, so we only present these results for completeness.

We observe that the coefficients of mortality are positive and highly significant for men. They
suggest that expenditures for men in their last year of life are between 6 and 14 times as high as
for the average sickness fund member. These estimates confirm the ”red-herring” hypothesis and
are roughly in line with findings from previous studies. E.g., Lubitz, Beebe, and Baker (1993)
found that the 5 per cent decedents account for 25-30 per cent of total Medicare expenditures.
The Lubitz-Riley results imply that decedents spend about 6 times as much as survivors. For
women, the coefficients are positive, but usually smaller and not always significant.

Longevity, measured by the predicted value of the 5-year survival rate, has a positive and always
significant impact on HCE, although the size of the coefficient varies according to the specifica-
tion. A value of 12, which seems to be a lower bound, suggests that an increase in the 5-year
survival rate by 5 percentage points (which occurred for men over 70 and for women between 75
and 85 from 1997 to 2009) raises real daily per-capita HCE by roughly 10 per cent.
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We now turn to the results of the age, cohort and time dummies. We present the graphs for the
model without any additional variables to focus on how the intrinsic estimator disentangles the
three effects. In Figure 1 we observe that the age dummies show a familiar picture: a high value
for newborns, then a decline up to age 3, followed by a relatively flat portion up to age 45 (with
somewhat higher expenditures for women in child-bearing age), and then a steep rise until age
89.

Figure 1: Graph of the age dummy coefficients
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(a) Men
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(b) Women

The coefficients of the cohort dummies are declining except for the first and last few cohorts,
which we observe only for a smaller number of years than the other cohorts, see Figure 2. The
general pattern confirms the well-known fact that more recent cohorts are healthier at a given age
and therefore need less medical care than older cohorts.

Figure 2: Graph of the cohort dummy coefficients
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(b) Women

Figure 3 shows the positive time trend for HCE. It also shows the impact of a major health care
reform that took effect in 2004. Depending on the model specification, (model (1) to (12) in
Table 4), the year dummies indicate an annual growth rate of 1.95 to 2.32 percent for men and
1.02 to 1.62 percent for women, which can be interpreted as the “pure time trend in real per-capita
HCE”, independent of demographic effects.
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Figure 3: Graph of the year dummy coefficients
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(b) Women

We conclude that the hypotheses stated in Section 3 are supported by the results for both sexes.
Since both the mortality rate and longevity have a (mostly) significant positive effect on HCE,
the sign of the total effect of population ageing, which leads both to a decline in mortality and
an increase in longevity, is unclear. Therefore, we have to use simulation methods to deter-
mine whether the total effect will be positive, given the demographic development predicted for
Germany.

6 Estimating the Demographic Effect on Health Care Expen-
ditures

Forecasts on the size and composition of the population in Germany over the following decades
are published every three years by the German Statistical Office. The most recent forecast is the
“12th coordinated population projection” (Statistisches Bundesamt 2009). In addition, the Office
provided estimates of the development of age-specific mortality rates over the period until 2060.
From these data, we could calculate the time paths of age-specific survival rates. However, the
German Statistical Office uses two different forecasts of mortality, the “most likely one” and one
with an even stronger increase in longevity. In our simulations we shall use only the data from
the former model.

In the following, we do not attempt to forecast the development of health care expenditures in
Germany over the next decades. This would be a futile endeavour, because this depends to a
great extent on political decisions. Instead, we are trying to measure the purely demographic
impact on HCE by performing a counterfactual exercise in that we vary only the demographic
factors, holding everything else constant at the 2009 level. For ease of interpretation, we divide
the resulting values by the respective 2009 value of HCE, so that we can interpret the result as
relative increase of HCE due to demographic change.

We proceed in three steps. We first consider only the effect of the reduction of mortality rates
(without its impact on the survival rates and the age distribution). To do so, we calculate the age
profiles of HCE and per capita HCE that would result from changing only the mortality rates for
all age groups to their values in 2020, 2030, 2040, 2050 and 2060, using the regression results
of the models with only MORT as an additional explanatory variable besides age, year and
cohort. Columns (1), (5) and (9) of the upper part of Tables 5 and 6 show that the well-known
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“red-herring” effect is present in our data as well:8 When the mortality rates decline in the way
predicted for the next decades and everything else stays the same, the age profiles of HCE shift
downwards because in each age bracket, fewer people are in their last year of life, so that per
capita HCE decrease. However, the overall impact is rather modest: With the mortality rates of
2060, expenditures in 2009 for men would have been lower by at most 7.1 per cent, those for
women by 3.2 per cent. Note that the calculations in this first step (columns 1, 5 and 9 in Tables 5
and 6) serve only as a benchmark for comparison because considering the change in mortality
and ignoring the concomitant increase in survival rates of the elderly is inconsistent. Therefore
we will not comment on these results in the following.

In the second step, we take into account that with falling mortality the 5-year survival rates must
rise, which by itself would raise HCE. We therefore calculate the age profiles of HCE and per
capita HCE that would result from changing both the mortality rates and the 5-year survival rates
to their values in 2020, 2030, . . . 2060, see the upper part of Tables 5 and 6 again. For men,
the total change in HCE resulting from this variation lies between minus 2.3 per cent (column
7 of Table 5 and plus 12.6 per cent (column 2). For women, the total change is always positive
and lies between 1 and 11.7 per cent (columns 4 and 2 of Table 6, respectively). Thus we see
that, depending on the estimation method for this dynamic panel used, the decline in HCE due to
lower mortality rates is either considerably mitigated or more than compensated by considering
the concomitant increase in the 5-year survival rates of older population groups.

In the third step we also set the age distribution to their levels in 2020 through 2060. These
results must be interpreted with caution because when we make use of the age dummy coeffi-
cients, we also have to decide how to treat the coefficients of the cohort dummies. However,
there is no natural way to extrapolate the cohort effects because it is not known how healthy
or unhealthy future cohorts will be. To make matters worse, there is no monotone trend in the
cohort coefficients which could be easily extrapolated (see Figure 2). We therefore did not use
any predicted (extrapolated) values for the cohorts but left them at their 2009 values, but this is
not much more than the application of the Principle of Insufficient Reason. The results of this
exercise can be found in the lower part of Tables 5 and 6. The numbers show that with the 2060
age composition (along with the 2060 mortality and survival rates), health care expenditures in
2009 would have been between 27 and 54 per cent higher for men and between 25 and 53 per
cent higher for women, an effect that is considerably higher than the impact of mortality and
survival rates alone. The second line from the bottom in each of the Tables 5 and 6 contains the
results of converting the respective increases into annual growth rates, which can be interpreted
as ”growth in HCE due to demographic change”. Considering both the changes in mortality and
in 5-year survival rates, these numbers lie between .45 and .87 per cent for both sexes.

In the last line of Tables 5 and 6 we present the pure time trend in real per-capita HCE, indepen-
dent of demographic effects, which is probably to a great extent due to medical progress. These
annual growth rates lie roughly at or slightly above 2 per cent for men and between 1 and 1.5 per
cent for women and are thus considerably larger than the purely demographic effect estimated
above. If these two effects are added up, the resulting growth rates lie between 2.5 and 3 per
cent for men and between 1.5 and 2.5 per cent for women, which is somewhat higher than com-
mon forecasts of the growth rate of per capita income in the ageing German population. Thus
they suggest that demographic change and technical progress combined may after all present
problems for the financing of health care in Germany.

8Because we consider the model in second differences to be misspecified for women, we did not calculate the age
profiles and average HCE for these models, so columns (9) to (12) are missing for women.
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Table 6: Relative values of per capita HCE when mortality rates and survival rates (and the age
distribution) are set to their future values

Women
(1) (2) (3) (4) (5) (6) (7) (8)

level level level level ∆ ∆ ∆ ∆

GMM Dif. Sys. Dif. Sys.

MORT X X X X X X X X

SR5 X X X X X X

HCEt−1 X X X X

Age distribution not adjusted

2009 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 0.991 1.048 1.033 1.001 0.989 1.014 1.023 1.021

2030 0.986 1.084 1.059 1.003 0.983 1.026 1.040 1.037

2040 0.982 1.116 1.081 1.006 0.977 1.036 1.056 1.051

2050 0.978 1.145 1.101 1.008 0.972 1.045 1.069 1.064

2060 0.974 1.170 1.118 1.010 0.968 1.053 1.081 1.075

Age distribution adjusted to 2060

2009 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2020 1.058 1.126 1.108 1.070 1.056 1.085 1.095 1.093

2030 1.107 1.237 1.202 1.131 1.103 1.159 1.176 1.172

2040 1.160 1.375 1.317 1.200 1.154 1.246 1.276 1.269

2050 1.191 1.487 1.408 1.246 1.183 1.310 1.351 1.342

2060 1.192 1.532 1.440 1.256 1.182 1.327 1.374 1.363

%-growth rate 0.34 0.84 0.72 0.45 0.33 0.56 0.62 0.61

demographic

%-growth rate 1.02 1.62 1.46 1.14 1.01 1.26 1.34 1.32

time trend

7 Conclusions and Caveats

In this paper, we have used a pseudo-panel of HCE data for Germany to demonstrate that per-
capita health care expenditures are significantly influenced by the age composition of the popu-
lation, by mortality rates and by the development of longevity, as measured by the age-specific
5-year survival rates. We believe that this effect mirrors the medical profession’s willingness
to perform expensive treatments on elderly patients if the patients can be expected to live long
enough to enjoy the effects of the treatment.

The results of the simulations based on the regression coefficients show that if past trends con-
tinue, per-capita health care expenditures would rise by between 1.5 and 2 per cent per year even
without demographic change. Moreover, while we can confirm that simulations on the basis of
the population age structure alone are misleading, the same applies when only age-specific mor-
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tality rates are added. The effect of rising longevity can not be ignored, either. One way to take
it into account is to include a measure of age-specific survival rates. Altogether, the effect of
demographic change on health expenditures is estimated to be similar to an annual growth rate
between .5 and .9 per cent, depending on which estimator is used.

The type of data employed for this study has important advantages, but also certain drawbacks.
To our knowledge, this is the first attempt to quantify the effect of rising longevity on the de-
velopment of health care expenditures over time. However, since we had to use age and sex
group averages instead of individual expenditure data, the well-known effect of time-to-death
on HCE expenditures is accounted for only in an indirect form: by estimating the impact of the
mortality rate within a population group on average expenditures. Adding this variable to a set
of regressors which already includes age and cohort effects and a time trend may raise problems
of identification. Thus, it is desirable to collect individual expenditure data over time in order to
be better able to disentangle the respective effects.

It can further be argued that mortality and survival rates themselves are influenced by HCE and
therefore endogenous. We circumvent the problem of endogeneity for SR5 by using its predicted
value instead of SR5 as such. ForMORT , possible endogeneity is accounted for in the dynamic
panel models (estimated by GMM) by using only lagged values as instruments.

In addition, for the models not estimated by GMM, one may also argue that, unlike in individual
data, for group averages the causal effect of HCE on mortality should not be too strong. It does
not seem likely that the correlation of the variation in HCE and MORT is caused primarily by
tight rationing against a particular age-sex group as a whole in a certain year by all physicians
leading to a higher mortality rate, but rather by a higher mortality rate of an age-sex group
causing higher expenditures. For the models not estimated by GMM, our simulation exercise
is not invalidated if the effect of mortality on HCE is not causal; we rather utilize the fact that
demographic trends are better predictable than expenditures per se and rely on the assumption
that the underlying trend in medical progress will persist.

We sum up by stating the main purpose of this paper, namely to examine whether ageing –
i.e. an increase of longevity alongside a fall in mortality rates – as such will increase health
expenditures, and the answer to this question is a clear “yes”. Moreover, independent of the
specification, the 5-year survival rate always has a positive impact on health care expenditures so
that for Germany a Eubie Blake effect indeed exists.

Appendix

The following Tables 7 to 9 provide the unit root tests for the variablesHCE,MORT and SR5.
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