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We apply an infinite horizon intertemporal optimization model to a simple spec-

ulative attack framework. Thereby, the central bank faces a one control two-state

variables optimization problem with endogenuous exit. By setting the interest rate

the central bank can stimulate the economy or fend off speculators. We show that

two focal points emerge. Depending on the time preference and the state, cycles can

improve utility. A regime change is associated with costs and can be forced by the

state of the economy or induced by choice. In the latter case the costs for defending

outweigh the costs of an immediate opt-out. During the existence of the regime the

highest growth is reached through convergence to a no stress steady state, but is only

optimal for a central bank with low time preference. Therefore, we propose to take

measures assuring a lower time preference like independence, long-term mandates,

and long-term policy goals.
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1 Introduction

Previous literature modelling financial crises and speculative attacks highlighted particularly

the aspects of speculators attacking a currency. However, it did not incorporate the main role

of the central bank adequately. In fact, setting the interest rate influences the fundamentals

and the costs of speculators. Thus, the behavior of the central bank is neither a passive reaction

due to speculative pressure nor sole signalling—it changes the state of the economy.

If the central bank chooses to defend a fixed exchange rate regime by raising the interest rate,

it accepts that fundamentals decline and furthermore accepts that the declining fundamentals

reinforce the future attack and thus worsen its future position. Hence, the behavior of the

central bank is crucial for both, the evolution of the economy and for its own future position.

On the other hand, the speculators know that attacking weakens the position of the central

bank and that the attack is successful if the central bank is weak enough. Though, they also

have to consider their costs if the central bank decides to defend as a reaction on the attack.

The trade-off for the central bank is that one control influences the possibility to benefit from

the regime as well as the probability to bear the costs of a regime change, which occurs if the

attack strength exceeds the defensive measure of the central bank.

To incorporate the trade-off, induced by the impact of the interest rate, we apply an infinite

horizon intertemporal optimization framework. The time, when the central bank is forced

or chooses to abandon the peg, is endogenously determined. Thus, the time horizon exceeds

the duration of the regime. After briefly summarizing the literature, we first describe the

general framework where we introduce the objective function and two state processes for the

fundamentals and the attack. Second, we offer a solution for a simple case of the model where

states are just linearly dependent on the interest rate. Third, we describe an extended linear

model with fundamental feedback and herding effects.

We find that two focal points emerge, which attract the state space trajectories. A low time

preference central bank will bear current costs, caused through defending, to steer the economy

to the good focal point. However, a high time preference central bank avoids current losses and

steers the economy to the bad focal point. Moreover, in good fundamental states with high

pressure it can be optimal for the central bank to abandon the regime immediately, thereby

preventing a long-term costly defense.

2 Literature

In the early models of currency crises, termed “first generation”, monetizing a fiscal deficit

leads to a steady decline in the reserve stock. Rational speculators anticipating the imminent

exhaustion of reserves instantly withdraw their money, causing the actual crisis (cf. Krugman

1979). Flood and Garber (1984) gave an analytical solution of a Krugman type model, where

arbitrary speculation can lead to a crisis. The “second generation” models speculation as a

coordination problem between investors and implicitly assumes that the underlying fundamental
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state of the economy is common knowledge. The central bank strategically weighs the costs

and benefits of a potential defense of the fixed exchange rate. Thereby, the fundamental state

as well as the private expectations about a depreciation play the main role. Since private

expectations alter the costs of the central bank, expectations can become self-fulfilling (cf.

Obstfeld 1994 and 1996). Speculators face strategic complementarities, so that their payoffs

depend on the action of others. High degrees of coordination, e.g. complete information, may

result in multiple equilibria. Morris and Shin (1998) showed that if every speculator gets

sufficiently precise private information, a unique equilibrium can be determined. Bauer and

Herz (2013) explicitly model the strategic options of a central bank in a two stage global

game. The central bank chooses its defensive measure after it observes a noisy signal about the

attack strength. Thereby, it has to acknowledge the costs of defense as well as the costs for a

possible devaluation. Angeletos et al. (2006) investigate the informational effects of central bank

actions. Policy decisions convey information regarding the central bank’s knowledge about the

underlying state. This additional information allows a better coordination of speculators and

produces multiple equilibria. Heinemann et al. (2004) find in experiments that global games give

a good description of actual behavior. The effects of the information structure and the signals

show signs in accordance with theory, but are mostly insignificant in size. This suggests that the

main focus on modelling information might not be the most constructive way in approaching a

better understanding of currency crises.

Morris and Shin (1999) take an approach to analyze the evolution of beliefs in a dynamic

context. They investigate the changes of sentiment based on changes in the underlying funda-

mentals, which are assumed to follow a stochastic process. Basically, they model a sequence

of repeated one shot global games, where the previous realization of the fundamentals is com-

mon knowledge. Chamley (2003) examines a dynamic global game, in which speculators utilize

the movement of the exchange rate in a band as a proxy for the mass of attackers, so that it

suffices as a coordination device. Predictable interventions that reduce the fluctuation in the

exchange rate reduce speculator’s risk and thus foster the attack. However, raising the inter-

est rate, widening the fluctuation band, and conducting random interventions in the currency

can prevent an attack. The random intervention reduces the informativeness of the exchange

rate and aggravates coordination. Ceteris paribus this policy allows a smaller stock of reserves

than deterministic intervention. Angeletos et al. (2007) introduce dynamics through a repeated

global game, where speculators learn about the underlying fundamentals. Then, they examine

equilibrium properties of different exogenous changes. Information as well as fundamentals can

be the trigger for a shift from tranquility to distress. They state, without explicitly modelling,

that defense is possible through higher interest rates, where the required increase depends on

the quality of information of speculators about the fundamentals. Hence, defense is more costly

when information improves. Guimarães (2006) introduces a Poisson process that admits a

random fraction of speculators to adapt their positions. This allows to model the evolution

of a crisis, where the currency can be overvalued for a long time until an attack is triggered.

Admitting less speculators to change their position, raising the interest rate, or reducing the

overvaluation each lower the probability of a crisis.
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Nearly all approaches focus on modelling information, neglecting—particularly in dynamic

setups—the crucial influence of the central bank’s choice of the interest rate on the underlying

fundamentals. Therefore, we present an approach that models currency crises as an intertem-

poral optimization problem that accounts for the reflexive nature of policy decisions. Each

decision has different consequences for the future path of the economy and the future position

of the central bank.

3 Model

There are two actors: the central bank and speculators. The central bank maximizes utility

U0 (θS , AS) =

∫ T

0
e−ρtu (θ (t)) dt+ e−ρT

1

ρ
υ (θ (T )− c) , (1)

where instantaneous utility u is derived from the state of the fundamentals θ (t) and is discounted

by factor ρ. The initial values of the fundamentals and the attack are θS = θ (0) and AS = A (0).

The overall utility U is the sum of the aggregated discounted instantaneous utility up to terminal

time T plus the discounted terminal value.1 The terminal time denotes the time when the central

bank is forced to devalue and is endogenously determined by the state processes. The terminal

value υ is a function of the fundamentals at terminal time less an amount c representing the

costs of the regime change. For the remainder of the paper, we assume that the proceeding

regime is in a steady state, so that the terminal value υ is constant.

The central bank maximizes the objective function (1) by setting the interest rate r (t), which

is always nonnegative r (t) ≥ 0. The optimization problem is subject to the state of the system

which is summarized by the state vector x that evolves according to

ẋ =

(
θ̇ (t)

Ȧ (t)

)
=

(
f (r (t) , θ (t))

g (r (t) , θ (t) , A (t))

)
. (2)

There are two state variables, the fundamentals θ (t) and the strength of the attack A (t). The

first state variable θ (t) enters utility directly, while the second A (t) determines the terminal

time T = inf {t : A (t) > D}. This is, the first time when the strength of the attack exceeds

the defensive measure D, e.g. the amount of reserves held by the central bank.2 Hence, the

central bank’s control has two effects: firstly, it influences the fundamentals and thereby directly

the utility. Secondly, it influences the terminal time in which utility can be accumulated and

simultaneously the effect of the terminal value.3

The change of the fundamentals depends on their own current state and the interest rate.

The central bank influences the fundamentals by setting the interest rate in relation to the

1For the given setup limT→∞ e
−ρTυ (θ (T ) − c) = 0, i.e. without devaluation the second term of equation 1

vanishes.
2Naturally, we restrict the initial state vector to be feasible, i.e. A (0) ≤ D.
3As we describe later, utility might also decrease, independent of the policy chosen, so that an early opt-out

is favorable.
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natural rate r̄. For interest rates below the natural rate, the cost of credit is below the possible

return on investment. As a consequence investment increases and the economic fundamentals

improve and vice versa (cf. Wicksell 1898). The motion of fundamentals is often represented

by a Brownian motion (cf. Morris and Shin 1999 or Guimarães 2006), where deviations of the

fundamentals from the natural rate θ̄ tend to be reversed over time. Therefore, we define the

evolution of the fundamentals by

θ̇ = f (r (t) , θ (t)) = −f1 (r (t))− f2 (θ (t)) . (3)

Where ∂f1(.)
∂r(t) > 0 is the interest rate elasticity of the fundamentals and ∂f2(.)

∂θ(t) ≥ 0 is the mean

reversion elasticity of the fundamentals. The mean reversion works as a stabilizing mecha-

nism that improves bad fundamentals (below the natural level) and reduces good fundamentals

(higher than the natural level). Obviously, such a fundamentals process possesses a steady state

(θ, r) =
(
θ̄, r̄
)

if f1 (r̄) = f2

(
θ̄
)

= 0.

The motion of the attack depends on the costs r (t), the fundamentals θ (t), and on strategic

complementarities, i.e. a herding effect A (t). When speculators expect a currency to devalue,

they borrow the currency and sell it against foreign money. If the devaluation takes place, the

position is closed. The profit equals the amount of the devaluation minus the costs for the

loan. Increasing the interest rate raises the costs for speculators causing them to refrain from

attacking (cf. e.g. Angeletos et al. 2007, Chamley 2003 and Daniëls et al. 2011). Here, the

interest rate has only a defensive effect if it is higher than the natural rate r̄. Below, the attack

rises due to low costs of speculation. The success of an attack depends on the fundamentals

of the economy: the expected payoff of the speculators decreases when fundamentals improve

(cf. Obstfeld 1996 and Morris and Shin 1998). Hence, speculators refrain from attacking if

the fundamentals are above their natural rate and vice versa. However, speculators also tend

to imitate the behavior of other speculators without considering their own information (cf.

Banerjee 1992 and Bikhchandani et al. 1992). Due to this herding effect an increase of the

attack is ceteris paribus higher if more speculators already hold positions against the currency.

We treat the attack strength as a reduced form equation of the aforementioned effects. Its

evolution is given by

Ȧ = g (r (t) , θ (t) , A (t)) = −g1 (r (t))− g2 (θ (t)) + g3 (A (t)) , (4)

where ∂g1(.)
∂r(t) > 0 is the interest rate elasticity of the attack, ∂g2(.)

∂θ(t) ≥ 0 is the fundamentals

elasticity, and ∂g3(.)
∂A(t) ≥ 0 is the herding elasticity. If we assume, as above, that g1 (r̄) = g2

(
θ̄
)

= 0

and additionally that g3 (0) = 0 the attack is in steady state at
(
θ̄, r̄, 0

)
. This equals the

fundamental’s steady state without speculative pressure and determines a steady state of the

economy.4

Let V (θ,A) be the value function of this optimization problem, i.e. the total utility of the

4For every state x∗ = (r∗, θ∗, A∗), with θ̇ (x∗) = 0 and Ȧ (x∗) = 0, the economy is in a steady state. We will
show in section 3.2.2 that the economy possesses a steady state in addition to no pressure A = 0 at maximum
pressure A = D. We call this steady states convergence or focal points.
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central bank given it chooses an optimal control r∗

V (θS , AS) = sup
r:[0;∞[→[0;∞[

{U0 (θS , AS)}

= U0 (θS , AS) with

(
θ̇ (t)

Ȧ (t)

)
=

(
f (r∗ (t) , θ (t))

g (r∗ (t) , θ (t) , A (t))

)
and

(
θ (0)

A (0)

)
=

(
θS
AS

)
.

From the value V we obtain the following Bellman equation (cf. Waelde 2008)

ρV (θ,A) = sup
r

{
u (θ) +

dV (θ,A)

dt

}
. (5)

Since V is not continuously differentiable at any feasible point,5 a more general interpretation of

this partial differential equation is necessary. As we will show, the concept of viscosity solutions

applies.

3.1 Linear Version

For a first illustration of the model behavior, we set the mean reversion elasticity ∂f2(.)
∂θ(t) , the

fundamentals elasticity ∂g2(.)
∂θ(t) , and the elasticity of herding ∂g3(.)

∂A(t) equal to zero. The interest rate

elasticities are assumed to be constant, where ∂f1(.)
∂r(t) = α and ∂g1(.)

∂r(t) = γ. With this modification,

the motion of the state vector is(
θ̇

Ȧ

)
=

(
−α (r (t)− r̄)
−γ (r (t)− r̄)

)
,

with α, γ > 0. α is the interest rate elasticity of the fundamentals and γ the interest rate elastic-

ity of the attack. In this simple model the central bank is confronted with a perfect correlation

of fundamentals and attack. When it chooses a low interest rate to improve fundamentals,

speculative pressure rises as well, and vice versa.

As a first step, we take an “educated guess” on the optimal control r∗, then show that the

corresponding value function indeed satisfies the Bellman equation, and finally take a closer

look at the Bellman equation at the border of the state space.

The optimal control r∗ depends on the state, and two cases have to be analyzed separately:

the interior A < D and the border case A = D, where any further increase in the attack would

lead to a breakdown of the regime.

1. The interior case A < D:

The Bellman equation is given by (cf. Waelde (2008), ch. 6; Fleming and Soner (2006),

5If the reserves are exhausted and a regime switch is forced, the utility jumps.
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ch. 1.7)

ρV (θ,A) = sup
r

{
u (θ) +

dV (θ,A)

dt

}
(6)

= sup
r

{
u (θ) +DV ·

(
θ̇

Ȧ

)}
= sup

r
{u (θ)− (Vθα+ VAγ) (r − r̄)} ,

with ρ as the discount factor and DV as the total derivative. The argument in the

supremum is linear in r and the optimization problem (6) has a border solution r = 0, if

and only if

Vθα+ VAγ > 0. (7)

As we show later and proof in appendix 5.2.1, this condition is valid.

2. The border case A = D:

The value of abandoning the regime υ (θ − c) is strictly lower than the value of defending

the regime V (θ,A = D) for all possible values of θ (see appendix 5.2.2). Any further

increase in A would lead to an infinitely negative slope of V and is therefore avoided.

Thus, the optimization problem is to maximize θ subject to dA
dt ≤ 0. Since dA

dr < 0 and
dθ
dr < 0, i.e. any control increasing θ also increases A, the optimal solution is to not let A

decrease. Hence,

r∗ = r̄;
dA

dt
= 0;

dθ

dt
= 0. (8)

Summarizing, the optimal control is

r∗ (θ,A) =

{
0 if A < D

r̄ else
.

Starting at an arbitrary point (θS , AS), where the strength of the attack is less than the

reserves AS < D, the central bank maximizes the fundamentals to improve utility (1). There-

fore, the central bank conducts expansion policy, i.e. sets the interest rate to zero.6 Hence,

the fundamentals increase depending on their initial value θS , the interest rate elasticity α, the

natural interest rate r̄, and obviously the elapsed time t. Thus, we get as time path of the

fundamentals:

θ (t) = θS +

∫ t

0
αr̄dτ = θS + αr̄t. (9)

Expansion policy (r (t) = 0) reduces the costs of attacking, implying that stress increases

with improving fundamentals. The attack state is a function of the initial attack level AS , the

interest rate elasticity γ, the natural interest rate r̄, and the elapsed time t. Hence, the time

6As noted earlier, we require the interest rate to be nonnegative. Obviously, without this condition the
optimal interest rate would be minus infinity.
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path of the attack is given by:

A (t) = AS +

∫ t

0
γr̄dτ = AS + γr̄t. (10)

The optimal policy of the central bank, to set the interest rate to zero, is accompanied by

increasing stress, i.e. an increasing attack. To keep the exchange rate peg, the central bank

has to intervene in the currency market, i.e. to sell foreign currency. Thereby, it reduces the

reserves D. Since a devaluation involves costs c that decrease the central bank’s utility, it

starts to defend the peg additionally through raising the interest rate in the instant before

the reserves are exhausted. The time when the central bank raises the interest rate to stop

speculation, but does not yet devalue, is thus denoted by TA=D and is called defense time,

with TA=D = min {t : A (t) = D}. TA=D is reached, when the strength of the attack equals the

reserves A
(
TA=D

)
= D. Inserting in (10) gives the defense time

TA=D =
D −AS
γr̄

. (11)

The central bank has to defend earlier the lower the reserves D, the higher the initial attack

level AS , the interest rate elasticity of the attack γ, and the natural interest rate r̄ are.

When the central bank applies a restrictive monetary policy, both, stress and fundamentals

stop growing and the economy is in a steady state. Therefore, we get the following time paths

given the optimal control r∗

A (t) =

{
AS + γr̄t if t < TA=D

D else

θ (t) =

{
θS + αr̄t if t < TA=D

θS + αr̄TA=D else
.

Assuming exponential utility u (θ) = − exp (−χθ), where χ is the risk aversion parameter,

the value function is:7

V = U0 (r∗) =

= −
∫ TA=D

0
exp (−ρt) exp (−χ (θS + αr̄t)) dt

−
∫ ∞
TA=D

exp (−ρt) exp
(
−χ
(
θS + αr̄TA=D

))
dt

= −exp (−χθ)
ρ+ χαr̄

(
χαr̄

ρ
exp

(
− (ρ+ χαr̄)TA=D

)
+ 1

)
.

Now, we can show that this value function indeed solves the Bellman equation (6).8 Rear-

ranging and deriving with respect to the state variables θ and A delivers the costate variables

7A derivation of the value function and the costate variables is given in appendix 5.2.1.
8Inserting in the Bellman equation shows that the solution is feasible.
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Vθ and VA

Vθ = −χV, VA =
1

γr̄
((ρ+ χαr̄)V + exp (−χθ)) .

The costate variables show how much a marginal increase in the respective state changes the

overall value. Inserting into (7) and using the value function gives

ρ

(
−exp (−χθ)

ρ+ χαr̄

(
χαr̄

ρ
exp

(
− (ρ+ χαr̄)TA=D

)
+ 1

))
+ exp (−χθ) > 0

which is true.9 Hence, for the interior case A < D, the Bellman equation

ρV (θ,A) = sup
r
{u (θ)− (Vθα+ VAγ) (r − r̄)} (12)

has an argument which is linear in r (t) with a negative slope. Therefore, the solution to the

optimization problem (6) is the minimum value of r, i.e. r (t) = 0.

For the border case A = D we utilize the Hamiltonian notation of the problem as used in

(Fleming and Soner 2006, ch. 2, lemma 8.1) and define the subsolutions D−V and supersolu-

tions D+V . A value function belonging to both D−V and D+V is called a viscosity solution.

For infinite horizon time-homogeneous optimization problems with discounted utility the value

function takes the form V (t, x) = exp (−ρt)V (x), where ρ is the discount factor and x the

state vector (cf. Fleming and Soner 2006, ch. 1.7).

Proposition 1 For infinite horizon time-homogeneous optimization problems with discounted

utility each feasible value function is continuously differentiable with respect to the time variable

t. Thus, ∂
∂tV (t, x) enters each element in D−V and D+V and it is sufficient to define D−V

and D+V without the time differential.

We now define the subsolutions D−V and supersolutions D+V

D+V (θ,A) =(p, q) ∈ R2 : lim sup
(y,a)→(θ,A)

a≤D

V (y, a)− V (θ,A)− p (y − θ)− q (a−A)

‖(y, a)− (θ,A)‖
≤ 0

 , (13)

D−V (θ,A) =(p, q) ∈ R2 : lim inf
(y,a)→(θ,A)

a≤D

V (y, a)− V (θ,A)− p (y − θ)− q (a−A)

‖(y, a)− (θ,A)‖
≥ 0

 . (14)

Since V (θ,A) is continuously differentiable in all feasible states, we have D+V (θ,A) =

D−V (θ,A) = (Vθ (θ,A) , VA (θ,A)), which solve the Bellman equation. In addition to this

standard definition we also define the sub- and supersolutions from beyond the feasible state,

i.e. the region of states in which the regime ends. We will apply this to the Bellman equation

9See appendix 5.2.1.
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to include controls which might end the regime:

D+
outV (θ,D) =(p, q) ∈ R2 : lim sup

(y,a)→(θ,D)
a>D

V (y, a)− V (θ,D)− p (y − θ)− q (a−D)

‖(y, a)− (θ,D)‖
≤ 0

 , (15)

D−outV (θ,D) =(p, q) ∈ R2 : lim inf
(y,a)→(θ,D)

a>D

V (y, a)− V (θ,D)− p (y − θ)− q (a−D)

‖(y, a)− (θ,D)‖
≥ 0

 . (16)

Since the value after the regime change ν (θ − c) = V (y, a) is strictly smaller than the value of

remaining in the regime V (θ,D) , we have D+
outV (θ,D) =

{
(p, q) ∈ R2 : lim supR2

}
= (∞,∞)

and D−outV (θ,D) =
{

(p, q) ∈ R2 : lim inf ∅
}

= (−∞,−∞) . We know that for all (p, q) ∈
D+
outV (θ,D) we have ρV (θ,A) ≥ supr<r̄ {u (θ)− (pα+ qγ) (r − r̄)} and for all (p, q) ∈ D−outV (θ,D)

we have ρV (θ,A) ≤ supr<r̄ {u (θ)− (pα+ qγ) (r − r̄)} . The optimal control at the border, i.e.

A = D, must satisfy the following viscosity formalization of the Bellman equation:

ρV (θ,A) ≥ u (θ)− sup
r<r̄
{(poutα+ qoutγ) (r − r̄)} I (r < r̄)

− sup
r≥r̄
{(pα+ qγ) (r − r̄)} I (r ≥ r̄) ,

for (pout, qout) ∈ D+
outV (θ,D) and (p, q) ∈ D+V (θ,D) ,

ρV (θ,A) ≤ u (θ)− sup
r<r̄
{(poutα+ qoutγ) (r − r̄)} I (r < r̄)

− sup
r≥r̄
{(pα+ qγ) (r − r̄)} I (r ≥ r̄) ,

for (pout, qout) ∈ D−outV (θ,D) and (p, q) ∈ D−V (θ,D) ,

where I (.) is the indicator function. The only control r that fulfills both conditions is r (t) ≡ r̄.
Any r (t) < r̄ would violate at least one condition. Thus, the optimal behavior is to conduct

expansion policy, r (t) = 0, to maximize θ and immediately defend, r (t) = r̄, when the regime

is at stake.

This solution is a viscosity solution, i.e. the natural extension of the solution concept for the

Bellman equation (6). It is well known that value functions in general are not continuously

differentiable for some feasible states10 and thus for these points the classical solutions do not

apply. Viscosity solutions do apply also in many cases, where the value function is not contin-

uously differentiable but necessarily coincides with the standard solution otherwise. Therefore,

we could have restricted our analysis to the approach used for the border case A = D. However,

for reasons of clarity and intuition, we first showed the classical approach and then the viscosity

approach.

10In fact, the value function is differentiable only at regular points.
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The viscosity solution implies that the optimal policy is to maximize the instantaneous utility

and to not care about its fragility, i.e. rising stress. The fragility is recognized but not accounted

for in the decision about the optimal interest rate until the immediate danger of a crisis emerges.

Since an opt-out induces costs, the decision maker raises the interest rate to fend off the attack.

Thereby, it is only necessary that costs exist no matter how big they are. Thus, it could also

be private costs, which would arise with a breakdown of the regime, that prompt the decision

maker to raise the interest rates. In the next section we discuss a linear model of the original

differential equations (3) and (4).
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3.2 Extended Linear Version

3.2.1 Differential Equations and Time Paths

Now, we consider the case where f2 (.), g2 (.), and g3 (.) are also linear functions. We will

continue to use the coefficients α and γ and define ∂f2(.)
∂θ(t) = β ,∂g2(.)

∂θ(t) = δ, and ∂g3(.)
∂A(t) = ε.

The difference to the simple model is that the attack not only increases due to a low interest

rate but also due to herding (ε) and bad fundamentals (δ). This creates a far richer set of

policy options, trade-offs, and realistic settings. E.g. expansion policy, r (t) = 0, not necessarily

leads to an attack. It might be possible that the herding effect and the interest rate effect are

outweighed through the effect of good fundamentals, implying that speculators refrain from

attacking, Ȧ ≤ 0.

The state vector now evolves according to:(
θ̇

Ȧ

)
=

(
−α (r (t)− r̄)− β

(
θ (t)− θ̄

)
−γ (r (t)− r̄)− δ

(
θ (t)− θ̄

)
+ εA (t)

)
. (17)

Analogously to (6), the Bellman equation is given by

ρV (θ,A) = sup
r

{
u (θ) +

dV (θ,A)

dt

}
(18)

= sup
r
{u (θ)− (Vθα+ VAγ) (r − r̄)

− Vθβθ (t)− VA (δθ (t)− εA (t))}.

Since the Bellman equation (18) is again linear in the control variable, a bang-bang solution is

optimal. This solution describes immediate shifts in the policy, i.e. jumps from one endpoint to

the other in the control interval. To assure that the control is bounded (cf. chapter 3, Feichtinger

and Hartl 1986), we restrict the interest rate to:

0 ≤ r (t) ≤ R. (19)

Hence, the central bank policy switches between expansion, r (t) = 0, and defense, r (t) = R.

In addition we restrict the attack to be nonnegative and less or equal the amount of reserves,

i.e.

0 ≤ A ≤ D. (20)

Solving the differential equations (17) gives the paths of the fundamentals for expansion policy

θ (t)r=0 and for defense policy θ (t)r=R:11

θ (t)r=0 = θS exp (−βt) + θθ̇=0,0 (1− exp (−βt)) , (21)

θ (t)r=R = θS exp (−βt) + θθ̇=0,R (1− exp (−βt)) . (22)

11Derivations of all time paths are given in appendix 5.3.1.
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The fundamentals process is driven by the policy decision and the mean reversion. Without

policy intervention, i.e. the interest rate equals its natural rate, fundamentals converge to their

natural level θ̄.

If the interest rate is set to r (t) = 0, an expansionary effect on the fundamentals is induced,

that allows to boost the steady state of the fundamentals above their natural level to: θθ̇=0,0 =

θ̄+ α
β r̄. For defense policy, i.e. r (t) = R, the fundamentals steady state is lower than the natural

level: θθ̇=0,R = θ̄ + α
β (r̄ −R), since R > r̄.12

The paths (21) and (22) describe the evolution of θ in time t for an arbitrary starting point

θS . If t = 0, then θ (0) = θS . When time passes the value of θ (t) moves from its starting point

θS to its steady state θθ̇=0,i under the respective policy i.

Accordingly the paths of the attack for expansion policy A (t)r=0 and for defense policy

A (t)r=R are given by:13

A (t)r=0 = AS exp (εt) +
1

ε

(
αδ

β
− γ
)
r̄ (1− exp (εt))

+
δ

ε+ β

(
θS − θθ̇=0,0

)
(exp (−βt)− exp (εt)) , (23)

A (t)r=R = AS exp (εt) +
1

ε

(
αδ

β
− γ
)

(r̄ −R) (1− exp (εt))

+
δ

ε+ β

(
θS − θθ̇=0,R

)
(exp (−βt)− exp (εt)) . (24)

The first term shows the herding effect of the attack. For positive initial values AS , this effect

increases the attack over time. The second term describes the interest rate elasticity of the

attack. Reducing the interest rate is equal to reducing the financing costs of speculators, which

increases the attack. For defense policy R > r̄ the costs of speculation are high and the second

term decreases the attack level. The third term links the attack to the fundamental state. For

good fundamentals, i.e. θS > θ̄ + α
β r̄, a successful attack is unlikely. The good fundamentals

lead to a reduced expected payoff and the attack decreases over time. For states worse than the

respective steady state the expected payoff is high and the attack increases.

An overview of the used variables describing the different fundamental states is given in

appendix 5.1.

3.2.2 Model Dynamics

For a better understanding, we briefly summarize the policy options of the central bank that

will be discussed in greater detail afterwards. The bang-bang solution only allows expansion

12To clarify the notation we introduce labels for several important fundamental states. The indices show
whether the motion in a state variable is zero, the policy chosen, and, if necessary, the state of the attack. E.g.
the label θθ̇=0,R gives the location, where the motion of the fundamentals stops (θ̇ = 0) for defense policy (r = R).
An overview of the labels is given in appendix 5.1 on page 31.

13Obviously, the paths are only valid as long as the state restriction 0 ≤ A ≤ D admits to maintain a respective
interest rate policy.
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or defense policy. Expansion policy boosts the fundamentals but also increases stress. At some

time the attack will exhaust the reserves (A = D) and the central bank remains with three

options: it can opt out, stop the attack (Ȧ = 0), or conduct defense policy to completely fend

off the attack (Ȧ < 0). Option one requires no action, the regime would simply collapse. When

choosing option two, the central bank has to choose the interest rate that stops the motion of

the attack. Option three is to set the maximum interest rate, which allows to fend of the attack

completely over time.14 Necessarily, at some time the attack will cease (A = 0), giving the

central bank the option to start again with expansion policy or to preserve the no stress state.

Figure 13 on page 42 in the appendix shows vector fields of expansion and defense policy with

sample trajectories of the central bank’s options.

These options of the central bank and the resulting dynamics of the system are now discussed

in detail. Thereby, we follow the order just presented and start with expansion policy, i.e.

r (t) = 0. For a first orientation we draw a phase diagram in the state space (θ,A) (cf. figure

1).

Figure 1: Dynamics of expansion policy: The arrows indicate the direction of the movement of the
attack (dashed) and the fundamentals (solid). Fundamentals are drawn to their ZML (θ̇ = 0),
while the attack is pushed away of its ZML (Ȧ = 0).

The θ,A space is crossed by zero motion lines (ZMLs), on which a differential equation equals

zero, i.e. the motion in the respective state stops, i.e. θ̇ = Ȧ = 0.15

Proposition 2 The expansion policy ZMLs do not intersect in the feasible attack state 0 <

A < D, whereas the attack ZML is to the right of the fundamental ZML θθ̇=0,0 ≤ θȦ=0,0.

Solving the differential equations (17) for r (t) = 0 according to some initial value θ (0) = θS

respectively and equating, gives a negative attack level.16

The vertical line in figure (1) is the ZML of the fundamentals, 0 = αr̄ − β
(
θ (t)− θ̄

)
, which

is independent of the attack state. The diagonal line is the ZML of the attack, 0 = γr̄ −
δ
(
θ (t)− θ̄

)
+ εA (t). It states, that to offset a change in the attack at a higher attack level the

fundamentals have to increase. Through the herding effect more speculators attack when the

14Due to the restrictions on the control not every option is possible in every state (cf. proposition 3).
15Derivations of the ZMLs are given in section 5.3.2 of the appendix.
16Detailed proofs of propositions (2) - (5) are given in section 5.3.2 of the appendix.
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overall attack level increases. For a given interest rate, only a reduction in the expected payoff,

i.e. higher fundamentals, can offset the motion in the attack, causing the positive slope of the

attack ZML.

If the central bank sets the natural interest rate, r (t) = r̄, the mean reversion pushes the

fundamentals to their natural level θ̄. When choosing expansion policy, r (t) = 0, an economic

growth effect of α
β r̄ is realized in addition to the natural level. Thus, the steady state for

expansion policy equals θ̄+ α
β r̄, which is also the location of the fundamental ZML. Fundamental

states worse than this steady state exhibit a positive mean reversion, where better states exhibit

a negative mean reversion. To the right of the attack ZML, the good fundamentals reduce the

expected payoff of attacking so much, that, even if an attack is free of cost (r (t) = 0), stress

declines. Thus, the fundamentals converge to their ZML whereas the attack diverges from its

ZML. Depending on the starting point it is possible that a state trajectory crosses the attack

ZML from right to left (cf. figure 13).

Left to the attack ZML, expansion policy leads to increasing stress. Hence, after some time the

attack will exhaust the reserves of the central bank. This attack state, where A (t) = D, we term

high stress. In this case, the central bank’s options—expansion and defense policy—widen by

the possibility to stop the attack without fending it off completely. Therefore, the central bank

chooses the smallest interest rate that offsets the motion of the attack, i.e. r = min
{
r : Ȧ = 0

}
.

This stops the attack immediately, but causes an adaption of the fundamentals. To obtain a

time path of the fundamentals during high stress, we solve the differential equations (17) for

θ (t) with the additional restriction Ȧ = 0 and get:17

θ (t)A=D = θS exp

((
αδ

γ
− β

)
t

)
+ θ̂A=D

(
1− exp

((
αδ

γ
− β

)
t

))
. (25)

Where θS is the fundamental value, in which the attack exhausts the reserves. If αδγ −β > 0, the

fundamentals would converge to ±∞, depending on the initial position of θS . For fundamental

states better than θ̂A=D, fundamentals would infinitely grow. For states worse, fundamentals

would infinitely decline. Therefore, we imply the following condition on the parameters:

αδ

γ
− β < 0. (26)

Proposition 3 Defense in high stress leads to a convergence point
(
θ̂A=D, D

)
, with θ̂A=D =

θ̄ +
αε
γ
D

αδ
γ
−β . For R > r̄ − εD(

αδ
β
−γ

) (cf. 45) the point is accessible. Its fundamental state θ̂A=D ∈[
θA=D
Ȧ=0,R

; θ̄
[
, i.e. its location, is between the attack ZML of defense policy and the no stress steady

state.

Defense in high stress stops the attack and leads to a convergence of the fundamentals.

This is achieved by setting the interest rate to r (t) = r̄ − δ
γ

(
θS − θ̄

)
+ ε

γD, which is given

17The derivation is given in appendix 5.3.1.
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by the differential equation of the attack (17). Note that the interest rate has to rise when

fundamentals deteriorate. Bad fundamentals increase the chance of a successful attack and

hence raise the expected payoff, which induces more speculators to attack. This can only be

offset, if the central bank raises the costs of speculation through raising the interest rate. The

worse the fundamentals, the higher the interest rate has to be to fend off additional speculators.

The control restriction (19) on the interest rate implies a fundamental state θ, where R =

max
{
r : Ȧ = 0

}
. This fundamental state coincides with the attack ZML of defense policy at

A = D , which precisely defines the point where the growth of the attack stops. In every state

worse, defense would require interest rates higher than R. Thus, defense is not possible and

the central bank is forced to abandon the regime. On the other hand, better fundamental

states reduce the expected payoff of an attack and thus induce more speculators to refrain

from attacking. Hence, the control restriction implies another fundamental state θ, where

0 = min
{
r : Ȧ = 0

}
. This fundamental state coincides with the attack ZML of expansion policy.

For better states the attack decreases without an intervention of the central bank. Therefore, the

path of the fundamentals in high stress is only valid in the interval [θA=D
Ȧ=0,R

, θA=D
Ȧ=0,0

], i.e. between

the attack ZMLs. Figure (2) shows the evolution of the interest rate (red line) depending on

the underlying fundamental state.

Figure 2: Convergence in high stress: The figure shows the evolution of the interest rate (red line)
depending on the fundamental state. Deteriorating fundamentals induce more speculators to
attack and require higher interest rates to stop the attack. Convergence in high stress A = D
is only possible between the attack ZMLs [θA=D

Ȧ=0,R
, θA=D

Ȧ=0,0
]. See also figure 3.

Proposition 4 The defense policy ZMLs do not intersect in the feasible attack state 0 < A <

D, whereas the attack ZML is to the left of the fundamental ZML θȦ=0,R ≤ θθ̇=0,R.

Solving the differential equations (17) for r (t) = R according to θ (0) = θS , leads to an attack

level higher than the stock of reserves.

When the central bank decides to defend, i.e. r (t) = R, the ZMLs shift and the dynamics

change. The high interest rate increases the cost of credit and dampens the fundamentals by

the amount α
βR, compared to expansion policy. Hence, the steady state for defense policy is

θ̄ + α
β (r̄ −R), which equals the location of the ZML of the fundamentals. The high interest

rate increases the costs for speculators and thereby reduces stress by γ
δR. Figure 3 shows the

phase diagram from above extended by defense policy.
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Figure 3: Dynamics of expansion and defense policy: The red arrows indicate the direction of the
movement of the attack (dashed) and the fundamentals (solid) under defense policy. Again
fundamentals are drawn to their ZML (θ̇ = 0), while the attack is pushed away of its ZML
(Ȧ = 0).

Again fundamentals converge to their ZML, whereas the attack diverges from its ZML. De-

pending on the starting point it is possible that a state trajectory crosses the attack ZML from

left to right.18

Defense policy leads to decreasing stress, so that the attack ceases after some time and the

no stress region is reached: A (t) = 0. At this lower boundary the central bank has the choice

to start again with expansion policy or to preserve the no stress state (Ȧ = 0).

With deteriorating fundamentals the expected payoff of attacking rises, inducing more spec-

ulators to attack. To preserve the no stress state, the central bank has to raise the interest

rate appropriately (cf. figure 4). This increases the costs of speculation and induces more spec-

ulators to refrain from the attack. For fundamentals worse than the attack ZML of defense

policy interest rates higher than the upper limit, R, would be required to successfully keep the

no stress state. In this region the attack increases independent of the central bank policy.19

For fundamentals better than the attack ZML of expansion policy, expected payoffs decrease so

much, that even for an interest rate of zero the attack declines. Since the attack is restricted to

nonnegative values it is assumed to equal zero in this region. Therefore, the time path of the

fundamentals in no stress is

θ (t)A=0 = θS exp

((
αδ

γ
− β

)
t

)
+ θ̂A=0

(
1− exp

((
αδ

γ
− β

)
t

))
. (27)

The path is valid for θS ≥ θ̄ + γ
δ (r̄ −R). Note that this implies that the path is valid beyond

the attack ZML of expansion policy in no stress. The red line in figure 4 shows the evolution

of the interest rate in no stress.

Proposition 5 The convergence point in no stress
(
θ̂A=0, 0

)
equals the natural rate of the

fundamentals θ̄ ∈
]
θ̂A=D; θθ̇=0,0

[
, i.e. its location is between the convergence point in high stress

and the fundamental ZML of expansion policy.

18A vector field with sample trajectories is given in appendix 5.3.2.
19Obviously, the speed of change is still influenced through the policy decision.
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Due to the herding effect more speculators attack for a given fundamental state with increasing

stress. To stop the attack the interest rate has to increase according to the level of stress.

Consequently, the fundamentals in high stress are affected more than in no stress and converge

to a lower fundamental state. Thus, the convergence point in no stress is in a better fundamental

state than the convergence point in high stress θ̂A=0 > θ̂A=D. Therefore, we term θ̂A=0 good

focal point and θ̂A=D bad focal point.

Figure 4: Convergence in no stress: Deteriorating fundamentals require higher interest rates to stop
speculators from attacking. Convergence in no stress A = 0 is possible to the right of the attack
ZML of defense policy, [θA=0

Ȧ=0,R
,∞[. The red line shows the interest rate that is necessary to

stop the attack in no stress.

3.2.3 Optimal Behavior

Numerical Example Due to the imposed control restriction, state restriction, and terminal

condition we could not obtain a closed solution of the Bellman and the Hamiltonian approach.

Therefore, we present numerical solutions of optimal policies in specified areas of the state space.

The following parameters resemble a heuristic calibration of a developed country:

α = 0.1, β = 0.2, γ = 0.2, δ = 0.3, ε = 0.05, R = 14, r̄ = 3, θ̄ = 2, D = 8.

Starting in the no stress steady state (θS , AS) =
(
θ̄, 0
)

the periodic natural growth rate

θ̄ is equal to 2%, the according natural interest rate r̄ is 3%. If the central bank conducts

expansion policy, r (t) = 0, this improves fundamentals’ growth by −α (0− r̄) = 0.3% inducing

a mean reversion effect of −β
(
2.3− θ̄

)
= −0.015%. Note that this example should only give an

intuition about the impact of the effects and does not represent the continuous effects exactly.

In the long run, expansion policy can improve the growth rate from 2% to θ̄ + α
β r̄ = 3.5%.

However, expansion policy allows to speculate at zero costs. Hence, the motion of the attack,

initially at zero, increases by −γ (R− r̄) = 0.6%. The increase is amplified through the herding

effect: ε · 0.6 = 0.03%. However, both effects are offset through the improving fundamentals

and the accompanied decrease in the expected payoff to attacking. This reduces the growth of

the attack by: −δ
(
2.3− θ̄

)
= −0.69%. In this example the initial point was in the no stress

steady state. Expansion policy increased the fundamentals at the cost of increased stress. Here,
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it would take 16.7 periods until the ongoing attack exhausts the reserves. In initial states worse,

the terminal time is significantly smaller, e.g. for θS = −8 it takes only 2.6 periods from an

environment with initially no stress to reach high stress, with the regime being at stake.

Identity Line When comparing the value of expansion policy and defense policy a crucial

question determining the overall outcome is: where is the locus20 of the fundamental path and

how long does it take, till one of the state constraints of the attack is reached? Since the

terminal time T has no closed solution, we can only argue that e.g. the state at termination

for expansion policy is smaller than for defense policy, θTr=0 < θTr=R . This is the case if the

slope of the trajectory in the state space
(
∂A
∂θ

)
is always higher under expansion policy than

under defense policy. Therefore, we look for a curve on which the slopes of the trajectories of

expansion and defense are equal. We call this curve identity line.

Proposition 6 On an identity line the slope of the state space trajectory under expansion policy

equals the slope of the state space trajectory under defense policy, i.e. ∂Ar=0
∂θr=0

= ∂Ar=R
∂θr=R

. Since

the direction of the motion changes depending on the location, it is necessary to also compute:
∂Ar=0
∂θr=0

= −∂Ar=R
∂θr=R

. Consequently, we get two equations that define the identity lines.

AS =
(
θS − θ̄

) αδ
γ − β
αε
γ

and AS = −1

ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR
(
αr̄ − β

(
θS − θ̄

))
αR− 2

(
αr̄ − β

(
θS − θ̄

))) (28)

The focal points θ̂A=0 and θ̂A=D lie on the identity line.21

The identity lines separate the θ,A space into four areas (cf. figure 5). Since the motion of the

fundamentals stops at the fundamental ZML, the slope of the trajectory rises infinitely. Hence,

around the fundamental ZML of expansion policy, the slope of the trajectory under expansion

is higher than under defense. Since the motion in the attack stops at the attack ZML, the slope

of the trajectory converges to zero. Consequently, around the attack ZML of expansion policy,

defense policy leads to a higher slope of the trajectory. Figure 5 shows the identity lines as well

as the four areas and marks which policy alternative leads to a higher slope of a state space

trajectory.22

Value of Convergence Points

Proposition 7 For sufficiently high time preference the bad focal point θ̂A=D is stable, while

the good focal point θ̂A=0 is unstable. Choosing defense in the bad focal point leads to an

immediate loss in the fundamentals, while choosing expansion in the good focal point increases

the fundamentals further.

20Locus refers to the location of a path in the state space.
21The proof and the derivation of the identity lines are in appendix 5.3.3.
22A formal proof is given in appendix 5.3.3.
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Figure 5: Identity lines: On the identity lines (dashed) the slope of the state space trajectories are equal
for expansion and defense. The shaded areas show, whether the trajectory under expansion
policy (r = 0) has a higher slope or the trajectory under defense policy (r = R).

Starting from the bad focal point θ̂A=D, the central bank can produce a closed loop (cf. figure

6). Therefore, it defends for some time, then expands till the reserves are again exhausted23 and

finally stops the attack to converge back to the bad focal point. During defense the slope of the

trajectory exceeds the slope during expansion. After passing the identity line, the slope under

expansion exceeds the slope under defense. This track leads to a fundamental state at the time

the reserves are exhausted again that is better than the bad focal point. For a sufficiently high

time preference, the central bank will avoid current losses and will not deviate from the bad

focal point. Panel (a) of figure 7 shows the evolution of the instantaneous utility (red line) for

a one period deviation from the bad focal point (dashed red line).

Figure 6: Closed loops: The figure shows the paths of short-term deviations from the focal points.

The central bank can also produce a closed loop starting from the good focal point θ̂A=0 (cf.

figure 6). Therefore, it expands for some time, then defends till the attack ceases and converges

back to the good focal point. During expansion the slope of the trajectory exceeds the slope

during defense. After passing the identity line, the slope under defense exceeds the slope under

expansion. Thus, the fundamental state in which no stress is reached is lower than the good

focal point. Hence, a current profit in instantaneous utility can be exchanged with a future loss

in instantaneous utility. A sufficiently high time preference induces the central bank to deviate

23When speculators refrain from attacking, they buy back the currency to settle their accounts, thereby
restoring the reserves of the central bank.
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from the good focal point. But, having a high time preference, the central bank has no reason

to defend after some time, since defense would cause lower fundamentals than expansion. When

the central bank sticks to the expansion policy, it will reach high stress after some time and

consequently end up in the bad focal point, which is stable if time preference is high. However,

having a low time preference, the central bank will bear the current loss, induced by a deviation

from the bad focal point, and defend to reach the good focal point, which is stable for a low

time preference. Panel (b) of figure 7 shows the evolution of the instantaneous utilities for a

transition from the good to the bad focal point, in case of high time preference, as well as the

transition from the bad to the good focal point, in case of low time preference.

(a) short-term (b) long-term

Figure 7: Focal points: The panels show the evolution of the instantaneous utility for short-term de-
viations and long-term convergence from the good (θ̂A=0 = 2) and bad (θ̂A=D = −2) focal
points. The plots are based on the aforementioned parameter values.

Comparison of Values In section 3.2.2 we showed that stopping the attack (Ȧ = 0) in no

stress is only possible to the right of the attack ZML of defense policy. In high stress the attack

can only be stopped between the attack ZMLs. The options of the central bank depend on the

fundamental state at the time when the attack meets the state restriction (20). Therefore, we

define sets of starting points that lead to the same state restrictions. Thereby, we identify three

areas (cf. figures 8 and 13). From area one all paths lead to a forced opt-out. From area three

all paths lead to a temporary convergence in no stress.24,25 Note that an evolution into area one

and three is not possible if the starting point is outside these areas. In area two, defense leads

to convergence in no stress, while expansion leads to high stress and the choice to converge or

to opt out.26

In the remainder of the section, we compare the values of expansion and defense policy for

starting points from the three areas.

24With expansion policy leading to the higher slope in area one, the state trajectory of defense policy with

starting point
(
θA=D
Ȧ=0,R

, D
)

and time running in reverse gives the area of starting points that finally lead to an

opt-out.
In area three we look for all paths that lead to a no stress state. Here, defense policy leads to the higher slope,

implying that the state trajectory of expansion policy with starting point
(
θA=0
Ȧ=0,r

, 0
)

and time running in reverse

gives the area of starting points leading to no stress.
25Obviously, convergence in no stress leads to area two, but for reasons of clarity, area three is analyzed

separately.
26In section 5.3.2 of the appendix we plot vector fields of the differential system for expansion and defense

policy (figure 13 on page 42). As illustration, we highlighted some sample trajectories that show the evolution
from starting points of the different areas. The trajectories are marked with the according area.
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Figure 8: Separation of paths: The shaded areas contain the sets of initial values (θS , AS) from which
both policies lead to the same state restriction. For sample trajectories see also figure 13.

Proposition 8 Area 1: for a sufficiently high time preference, the value of expansion policy

and opt-out is higher than the value of defense policy and opt-out:∫ Tr=0

0
exp (−ρt) (θ (t)r=0) dt+ exp (−ρTr)

1

ρ
(θTr=0 − c)

>

∫ Tr=R

0
exp (−ρt) (θ (t)r=R) dt+ exp (−ρTR)

1

ρ
(θTr=R − c) . (29)

Where θ (t)r=0 is the path of the fundamentals for expansion policy and θ (t)r=R the path

for defense policy. The starting point (θS , AS) is in area one. The moment the level of the

attack reaches the defensive measure is indicated by the terminal time Ti. Where Tr=0 =

inf {t : Ar=0 (t) > D} and Tr=R = inf {t : Ar=R (t) > D}. The corresponding value of the fun-

damentals is θTi . Expansion policy increases the fundamentals θ̇r=0 > θ̇r=R > 0 but does not

restrain the attack Ȧr=0 > Ȧr=R > 0. However, the regime under expansion is terminated

earlier: Tr=0 < Tr=R. In area one the slope of the state trajectory is higher under expansion

than under defense. Hence, the fundamental state in which reserves are exhausted is lower for

expansion policy: θTr=0 < θTr=R .

From the perspective of expansion policy, the trade-off is: there is a faster increase in funda-

mentals with early costs of opt-out, opposite to a slower, but higher, increase in fundamentals

with postponed costs of opt-out. Figure 9 shows a numerical sample plot of the instantaneous

utilities of both policies with starting points in area one (defense policy is red, expansion policy

is black).27

The lower the initial attack level, the longer expansion policy can accumulate a higher utility

compared to defense policy. However, the postponed regime switch allows defense policy to

achieve a higher instantaneous utility in the long run. What policy is better, is calculated by

discounting the instantaneous utilities and adding them up to the current value of the respective

path. Thus, the discount factor ρ is crucial for the overall outcome. Even if defense policy leads

to a higher instantaneous utility in the long run, a high discount factor, i.e. a high preference

for the present, can lead to a higher current value of expansion and thus make it optimal.

27Since utility is the identity function it is necessary that θ = u (θ).
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Figure 9: Instantaneous utility of expansion (black) and defense (red) with inevitable opt-out.

Proposition 9 Area 2: for a sufficiently high time preference, the value of expansion policy

and converging in high stress is higher than the value of defense policy and converging in no

stress: ∫ TA=D
r=0

0
exp (−ρt) (θ (t)r=0) dt+

∫ ∞
TA=D
r=0

exp (−ρt) (θ (t)A=D) dt

>

∫ TA=0
r=R

0
exp (−ρt) (θ (t)r=R) dt+

∫ ∞
TA=0
r=R

exp (−ρt) (θ (t)A=0) dt (30)

Where θ (t)A=D is the path of the fundamentals for convergence in high stress A = D and

θ (t)A=0 is the path of fundamentals for convergence in no stress A = 0. The starting point

(θS , AS) is in area two. The moment the level of the attack reaches no stress is indicated by

time TA=0
r=R = min {t : AR (t) = 0}.

For an arbitrary starting point (θS , AS) the instantaneous utility through expansion policy

grows faster in bad fundamental states and falls slower in good fundamental states, i.e. θ̇r=0 >

θ̇r=R. Defense policy reduces the level of stress in good states and slows down the increase in

stress in bad states: Ȧr=0 > Ȧr=R. Hence, expansion policy generates a higher instantaneous

utility, but also admits higher stress that has to be dealt with. The bigger the attack in the

initial starting point, the earlier expansion policy has to opt out or defend and there is less time

to accumulate gains in instantaneous utility over defense policy.

The trade-off from the perspective of expansion policy is: initially higher fundamentals are

followed by a long-term convergence to the bad focal point θ̂A=D opposite to initially lower

fundamentals with a long-term convergence to the good focal point θ̂A=0. However, for a

sufficiently high time preference, the central bank values current more than future profits and

losses, giving expansion policy a higher value than defense policy. Again a numerical example

is plotted in figure 10.

Proposition 10 Area 2: for sufficiently high time preference, the value of expansion policy and
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Figure 10: Instantaneous utility of expansion policy and convergence in high stress (black) versus defense
policy and convergence in no stress (red).

opt-out is higher than the value of defense policy and converging in no stress:∫ Tr=0

0
exp (−ρt) (θ (t)r=0) dt+ exp (−ρTr=0)

1

ρ
(θTr=0 − c)

>

∫ TA=0
r=R

0
exp (−ρt) (θ (t)r=R) dt+

∫ ∞
TA=0
r=R

exp (−ρt) (θ (t)A=0) dt (31)

The dynamics are unchanged compared to the previous example except for the immediate

opt-out of the central bank, when the reserves are exhausted. The trade-off is: the more

favorable evolution of the fundamentals through expansion is now followed by an instant drop

in value imposed through the costs of the regime change opposite to a less favorable evolution

of fundamentals and convergence to the good focal point. Despite the costs of opt-out, a regime

switch can be optimal since it allows the proceeding of a regime being in a no stress steady state

at θ (Tr=0)−c. If θ (Tr=0)−c is smaller than θ̂A=0, defense policy reaches a higher instantaneous

utility over time and again the outcome of the value comparison depends on the time preference.

If, however, θ (Tr=0)− c is greater or equal θ̂A=0, expansion and opt-out is optimal independent

of the time preference (cf. figure 11).

Figure 11: Instantaneous utility of expansion and opt-out (black) versus defense and convergence in no
stress (red).

But, why should the central bank bear the costs of a change immediately, when it could also
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converge in high stress?

Proposition 11 In high stress to abandon the regime instantly is the optimal decision for

fundamental states θ > θ̂A=D + c
αδ
γ
−β−ρ
αδ
γ
−β .28

When the reserves are exhausted in a very good fundamental state, it is better to abandon the

regime immediately, bearing the costs, and prevent the fundamentals from further deterioration

till the convergence point. The better the fundamentals the higher is the mean reversion effect

and hence the loss through convergence. With higher costs of opt-out the immediate loss grows

and therefore the fundamental state θc, above which an opt-out is optimal, increases too. Note

that for high costs, i.e. c > r̄(αδ−βγ)−βεD
δ
(
αδ
γ
−β−ρ

) , θc is to the right of the attack ZML of expansion

policy and cannot be reached. If the time preference increases, the costs have a higher influence

on the decision of the central bank. Hence, an opt-out must permit a higher fundamental state

if the time preference increases.

Proposition 12 Area 3: for good fundamentals, independent of the time preference, expansion

policy and converging in no stress is better than defense policy and converging in no stress:∫ TA=0
r=0

0
exp (−ρt) (θ (t)r=0) dt+

∫ ∞
TA=0
r=0

exp (−ρt) (θ (t)A=0) dt

>

∫ TA=0
r=R

0
exp (−ρt) (θ (t)r=R) dt+

∫ ∞
TA=0
r=R

exp (−ρt) (θ (t)A=0) dt (32)

For starting points in area three of figure 8 we have θ̇r=R < θ̇r=0 < 0. Again, expansion policy

leads to more favorable fundamentals than defense, but defense has a major effect on the attack

Ȧr=R < Ȧr=0 < 0. Therefore, the attack ceases earlier under defense policy TA=0
r=0 > TA=0

r=R . To

keep the no stress state, it is sufficient to set the interest rate to zero (cf. proposition 5). Hence,

both policy alternatives converge to the good focal point. Since expansion started with a zero

interest rate the fundamental state during expansion is greater or equal than the fundamental

state during defense, so that the realized value during expansion is greater. Consequently,

expansion policy is optimal independent of the time preference. Figure 12 shows a numerical

example of both policy alternatives.

28The proof is given in appendix 5.3.3.
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Figure 12: Instantaneous utility of defense and convergence in no stress (red) versus expansion and
convergence in no stress (black).
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4 Discussion

We applied an infinite horizon intertemporal optimization model with endogenous exit to a

simple speculative attack framework. The central bank sets the interest rate which influences

both fundamentals and attack strength. Hence, with one variable the central bank improves

fundamentals but also increases stress. The central bank’s role is beyond solely responding to

speculative pressure or signaling. Depending on the current state the decision of the central

bank has different implications for its own future position. Consequently, the central bank has

to weigh the different outcomes against each other. If there is no dominant path, the optimal

policy depends on the time preference of the central bank.

In the reduced linear model the interest rate is the only variable that influences and controls

the state variables. Since there are no feedback effects, the motion in the attack can be stopped

in no stress as well as in high stress without causing an adaption in the fundamentals. The

central bank expands till the reserves are exhausted and the decision is between: stop the attack

or allow a costly regime switch. Then the central bank raises the interest rate and remains in

high stress.

We extend the model through allowing for fundamental feedback effects and a herding effect.

In this extended linear model two focal points emerge. For a given policy and the necessary

adaption at the state restriction the state trajectory ends up in one of the focal points.

The good focal point is characterized by a better fundamental state and lower interest rate.

In high stress, through the herding effect, more speculators have to be fend off, which is done

by raising the interest rate. However, the higher interest rate reduces the fundamentals which

also induces higher speculative pressure that has to be fend off through an even higher interest

rate.

Through a temporary deviation, expansion from the good focal point improves the fundamen-

tal state. With a subsequent defense and convergence back to the good focal point the central

bank can produce a closed loop. In our numeric example the accumulated utility through the

loop, after an expansion for 1 period, is for the first 3.7 periods higher than remaining at the

good focal point. Thus, there is a huge incentive problem, if favorable short-term results give an

advantage to the policy maker, who is subject to short mandates or reelections. Independency

and low time preference, through long mandates and intermediate to long-term policy goals,

are necessary to not put too much weight on the present. With a high time preference and the

resulting high value of the present the central bank deviates from the good focal point. But,

there is no reason to stop the expansion after a short time because further expansion further in-

creases the fundamentals. With this reasoning going on, the reserves will be exhausted through

an increasing attack. Then, the high time preference will only allow one decision: to fend off

additional speculators, since this avoids both, the immediate costs an of an opt-out as well as

the high costs of reducing the attack. Hence, the high time preference central bank will end up

in the bad focal point.
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From the bad focal point a deviation is only possible through defense. A closed loop is then

produced if the central bank expands and finally converges back to the bad focal point. Hence,

current costs have to be weighed against future profits. In our numerical example it takes only

1.5 periods till the cumulated utility turns positive compared to remaining in the bad focal

point. For a sufficiently high time preference, the bad focal point is stable, since current losses

are weighed more. However, a low time preference central bank will deviate to achieve a higher

future utility and higher overall profits. But, this argument is also valid after a short defense,

hence for sufficiently low time preference the central bank will defend till the attack ceases and

converge to the good focal point to achieve the maximum utility in the long run.

For some initial values the state and control restrictions prevent the convergence to the focal

points. Therefore, we categorized the state space into three areas that lead to different policy

options at the state restrictions (cf. figure 8).

All areas have in common that expansion policy leads to more favorable fundamental states

compared to defense policy. This holds as long as the policy is not changed or a state restriction

is met that requires an adaption. On the contrary, defense policy leads to lower attack levels

compared to expansion policy.

In area one, which is characterized through bad fundamentals and medium to high stress,

expansion as wells as defense, both, lead to further increasing stress and improving fundamen-

tals. The trajectories reach high stress at fundamental states where defense is not possible and

a regime switch is forced. Expansion gives the advantage of a currently superior fundamental

state at the cost of a lower steady state after the opt-out. Consequently, defense policy will

have the higher cumulated utility over time, but time preference determines which policy is

valued more. A high time preference central bank values current profits more than future losses

and thus chooses expansion. Since an opt-out is inevitable, the outcome is analogous to the

first generation models and the ‘hell’ of the second generation models.29 The main difference

is, that, with the option to defend, the central bank can influence the terminal time as well as

the terminal value.

In area two, better fundamentals allow defense policy to succeed in reducing stress.30 This

gives the central bank the opportunity to reach no stress and converge to the good focal point.

Alternatively the central bank can conduct expansion policy and decide in high stress to either

converge to the bad focal point or to opt out by choice. This regime switch induces a proceeding

regime that—through conducting sound policy—persists in a steady state at a fundamental

value of the terminal value minus the costs for the regime switch. Such an opt-out can only

be optimal, if the costs of a regime switch are negligible and the time preference is not too

high. Hence, an immediate opt-out is better than convergence to a lower fundamental state,

if the costs and the time preference are low. For very good initial fundamental states the

terminal value of the regime after costs might be better than the good focal point. In this case,

expansion and opt-out is the dominant strategy independent of the time preference. This area

29For a categorization of the states in the second generation see Jeanne (1999).
30Starting with bad fundamentals it takes some time till stress decreases under defense, since the trajectory

must first cross the attack ZML of defense policy.
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can be compared to the ‘purgatory’ from the second generation and also to global games. While

in second generation models the outcome—crisis or no crisis—depends on the expectations of

investors, here, the time preference of the central bank sets the direction and yields a unique

equilibrium. Moreover, loops as described in the global game literature are possible (cf. e.g.

Angeletos et al. 2007). However, for a constant time preference the outcome is unique.

For higher costs, a high time preference central bank will avoid the detriments in funda-

mentals through defense. In fact, it will conduct expansion policy and converge in high stress.

Conversely, a low time preference central bank will accept the preliminary lower fundamentals,

through defense, to achieve a higher long run growth in the good focal point.

In area three, which is characterized through good fundamentals and medium to no stress,

both policies lead to decreasing stress and deteriorating fundamentals. The trajectories reach no

stress in an area where the attack can be stopped through a zero interest rate. Expansion profits

from the good fundamental state that allows to continue expansion policy without having to bear

increasing stress as in other states. When converging to the good focal point, the trajectories

move into area two. Henceforward, the decision which policy is optimal is ambiguous and again

depends on the time preference and the costs of an opt-out. Area three can be compared to the

‘heaven’ in the second generation models. Though, here area three is only a temporary stage

before area two is reached and the central bank policy determines whether the economy evolves

into the high stress region or stays in no stress.

This temporary nature of ‘heaven’ and ‘hell’ explains why there is no empirical confirmation

for these states. They only exist temporarily after big shocks.

In contrast to the second generation, where—ex post—the realization of the expectations is

used to justify whether the regime is abandoned or not, here, the state of the economy justifies

the outcome and the economy evolves according to the initial position and the policy chosen.

In summary, a high time preference central bank will end up in the bad focal point or, if bad

fundamentals do not allow high stress defense and the opt-out is forced, a proceeding regime

with lower steady state. Conversely, a low time preference central bank will end up in the good

focal point or a proceeding regime with comparatively high steady state. For low costs of a

regime change, not too high time preference, and good fundamentals an immediate opt-out is

optimal compared to convergence in high stress as well as convergence in low stress. Therefore,

the proceeding regime must have a steady state, i.e. terminal value minus costs, that is higher

than the good focal point.

If one follows the principle that more is better, it is suggested that measures should be taken

that reduce the time preference of the central bank. This assures that the central bank is

willing to bear currently lower fundamentals to profit from a higher long-term growth, although

naturally present consumption is preferred to future consumption. Hence, a central bank should

be independent, have a long-term mandate, and pursue long-term goals like price stability.

Also this model is too rudimentary to provide a realistic setting of the emergence of currency

crisis it offers useful insights in the various complications associated with policy choices and the

paths that emerge.
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Therefore, I apply our model to the Swedish currency crisis 1992. For a detailed description

of the events during the Swedish crisis see Hörngren and Lindberg (1993). In 1991 the Riks-

bank decided to switch the peg from a trade weighted currency basket to a unilateral ECU

peg. In September 1992 Sweden experienced a recession while its currency remained stable

with overnight interest rates of 12%. However, on September 8th Finland abandoned its fixed

exchange rate and simultaneously the confidence in the Swedish peg vanished with capital out-

flows increasing. To prevent this outflow the Riksbank raised the overnight interest rate to 75%

which successfully fend off speculators. On September 15th speculation rose again, so that the

central bank raised the overnight interest rate to 75% and to 500% the next day. After four days

the situation relaxed and interest rates were lowered. However, in November pressure and—as

a reply—interest rates rose again. Due to high costs the Riksbank decided to abandon the fixed

exchange rate. In the context of our model Sweden was in area two to the right of the bad focal

point. There, expansion policy improves fundamentals but also allows increasing stress. With

the speculative attack increasing, defense becomes necessary, which results in decreasing fun-

damentals that become an increasing burden for the economy. Thereby, every expansion that

is followed by a defense, in sum, reduces the fundamentals (area above the identity line). With

the fundamentals decreasing, the required interest rate for a successful defense increases. The

implied damaging effects for the economy—facing a convergence to the bad focal point—induced

the Riksbank to finally opt-out.

For future research it would be useful to study different terminal regimes, not only a pressure

free state. This would allow to analyze recurring attacks so that an initial avoidance of an

attack is rewarded more. Including stress in the utility function might also give useful insights

in that only the relative gain of fundamentals over stress is then pursued. Moreover, the linearity

assumptions could be relaxed to allow for nonlinearities in the herding effect, the fundamental

feedback effects, and the interest rate effects.
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5 Appendix

5.1 List of Fundamental States

Label Description Expression

θ fundamental state

θ̄ natural growth rate of fundamentals, convergence point in

no stress, no stress steady state

θθ̇=0,0 steady state for expansion policy, locus of the fundamental

ZML

θ̄ + α
β r̄

θθ̇=0,R steady state for defense policy, locus of the fundamental

ZML

θ̄ + α
β (r̄ −R)

θȦ=0,0 locus of the attack ZML for expansion policy in no stress θ̄ + γ
δ r̄

θA=D
Ȧ=0,0

locus of the attack ZML for expansion policy in high stress θ̄ + γ
δ r̄ + ε

δD

θȦ=0,R locus of the attack ZML for defense policy in no stress θ̄ + γ
δ (r̄ −R)

θA=D
Ȧ=0,R

locus of the attack ZML for defense policy in high stress θ̄+ γ
δ (r̄ −R)+ ε

δD

θ̂A=0 convergence point in no stress, natural growth rate θ̄

θ̂A=D convergence point in high stress θ̄ +
αε
γ
D

αδ
γ
−β

θc point of indifference between opt-out and convergence in

high stress

θ̂A=D + c
αδ
γ
−β−ρ
αδ
γ
−β
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5.2 Linear Version

5.2.1 Value Function

Assuming exponential utility u (θ) = −exp (−χθ), where χ is the risk aversion parameter we

derive the value function for expansion policy and defense at A = D:

V = sup
r

(U0)

= −
∫ TA=D

0
exp (−ρt) exp (−χ (θ + αr̄t)) dt−

∫ ∞
TA=D

exp (−ρt) exp
(
−χ
(
θ + αr̄TA=D

))
dt

= −
∫ TA=D

0
exp (−ρt− χ (θ + ar̄t)) dt− exp

(
−χ
(
θ + αr̄TA=D

)) ∫ ∞
TA=D

exp (−ρt) dt

=

[
exp (−ρt− χ (θ + αr̄t))

ρ+ χαr̄

]TA=D

0

− exp
(
−χ
(
θ + αr̄TA=D

)) [
−exp (−ρt)

ρ

]∞
TA=D

=
exp

(
−ρTA=D − χ

(
θ + αr̄TA=D

))
ρ+ χαr̄

− exp (−χθ)
ρ+ χαr̄

− 1

ρ
exp

(
−ρTA=D − χ

(
θ + αr̄TA=D

))
=

exp
(
−ρTA=D − χ

(
θ + αr̄TA=D

))
ρ+ χαr̄

− exp (−χθ)
ρ+ χαr̄

−
exp

(
−ρTA=D − χ

(
θ + αr̄TA=D

)) (
1 + 1

ρχαr̄
)

ρ
(

1 + 1
ρχαr̄

)
=
− exp

(
−ρTA=D − χ

(
θ + αr̄TA=D

))
1
ρχαr̄ − exp (−χθ)

ρ+ χar̄

= −exp (−χθ)
ρ+ χαr̄

(
χαr̄

ρ
exp

(
− (ρ+ χαr̄)TA=D

)
+ 1

)
< 0, (33)

which is always negative.

The partial derivative of V with respect to θ is

d

dθ

(
−exp (−χθ)

ρ+ χαr̄

(
χαr̄

ρ
exp

(
− (ρ+ χαr̄)TA=D

)
+ 1

))
= −χV ,

which is always positive.

The partial derivative of V with respect to A is31

d

dA

(
−exp (−χθ)

ρ+ χαr̄

(
χαr̄

ρ
exp

(
− (ρ+ χαr̄)TA=D

)
+ 1

))
= −exp (−χθ)

ρ+ χαr̄

(
χαr̄

ρ
exp

(
−TA=D (ρ+ χαr̄)

)) (ρ+ χαr̄)

γr̄
,

31From (11) we know that TA=D = D−AS
γr̄

and therefore dTA=D

dA
= − 1

γr̄
.
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which is always negative. Using the expression for the value function (33), the partial derivative

can also be written as

=
ρ+ χαr̄

γr̄

(
V +

exp (−χθ)
ρ+ χαr̄

)
=

1

γr̄

(
(ρ+ χαr̄)V + exp (−χθ)

)
.

Using (7) we proof that an exterior solution exists. Therefore, it is necessary that:

Vθα+ VAγ > 0

Vθα+ VAγ = −χV α+
1

γr̄

(
(ρ+ χαr̄)V + exp (−χθ)

)
γ

= −χV α+
1

r̄
ρV + χαV +

1

r̄
exp (−χθ)

=
1

r̄
(ρV + exp (−χθ)) ,

for the proof, it is necessary that:

ρV + exp (−χθ) > 0.

Inserting for V gives

ρ

(
−exp (−χθ)

ρ+ χαr̄

(
χαr̄

ρ
exp

(
− (ρ+ χαr̄)TA=D

)
+ 1

))
+ exp (−χθ) > 0

− 1

ρ+ χαr̄

(
χαr̄ exp

(
− (ρ+ χαr̄)TA=D

)
+ ρ
)

+ 1 > 0

1

ρ+ χαr̄

(
χαr̄ exp

(
− (ρ+ χαr̄)TA=D

)
+ ρ
)
< 1

χαr̄ exp
(
− (ρ+ χαr̄)TA=D

)
+ ρ < ρ+ χαr̄

exp
(
− (ρ+ χαr̄)TA=D

)
< 1

− (ρ+ χαr̄)TA=D < 0,

which is true, since TA=D ≥ 0.
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5.2.2 Comparison of Values

For t > TA=D the central bank sets r = r̄, which implies that θ (t) is constant, i.e. θ̇ = 0 and

thus θ (t) = θT . For υ (θT − c) we write:

V (θT − c, A = D) =

∫ ∞
0

exp (−ρτ) υ (θT − c) dt

= υ (θT − c)
1

ρ

= −1

ρ
exp (−χ (θT − c)) . (34)

In comparison, V at point A = D equals:

V (θT , A = D) =

∫ ∞
0

exp (−ρt)u (θ) dt

= u (θT )
1

ρ

= −1

ρ
exp (−χθT ) . (35)

If we compare equations (34) and (35), we see that indeed V (θT , A = D) is higher and thus,

defending the regime at the corner is optimal.
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5.3 Extended Linear Version

5.3.1 Differential Equations and Time Paths

Time Path of the Fundamentals The central bank sets the control r (t) and chooses between

expansion policy r (t) = 0 and defense policy r (t) = R (cf. condition (19)). The differential

equation of the fundamentals (17) for defense policy thus is:

θ̇ = −α (R− r̄)− β
(
θ (t)− θ̄

)
. (17)

Solving the differential equation for θ gives:

βθ (t) +
dθ

dt
= α (r̄ −R) + βθ̄(

βθ (t) +
dθ

dt

)
exp (βt) =

(
α (r̄ −R) + βθ̄

)
exp (βt)

d

dt
(θ (t) exp (βt)) =

(
α (r̄ −R) + βθ̄

)
exp (βt)∫

d

dt
(θ (t) exp (βt)) dt =

∫ (
α (r̄ −R) + βθ̄

)
exp (βt) dt

θ (t) exp (βt) = Cθ +
1

β

(
α (r̄ −R) + βθ̄

)
exp (βt)

θ (t) = Cθ exp (−βt) + θ̄ +
α

β
(r̄ −R) ,

for t = 0

θS − θ̄ −
α

β
(r̄ −R) = Cθ

and thus

θ (t) =

(
θS − θ̄ −

α

β
(r̄ −R)

)
exp (−βt) + θ̄ +

α

β
(r̄ −R)

which we write as

θ (t) = θS exp (−βt) +
(
θ̄ + α

β (r̄ −R)
)

(1− exp (−βt)). (22)

If the central bank conducts expansion policy, we get

θ (t) = θS exp (−βt) +
(
θ̄ + α

β r̄
)

(1− exp (−βt)). (21)

Time Path of the Attack The differential equation of the attack is

Ȧ = −γ (R− r̄)− δ
(
θ (t)− θ̄

)
+ εA (t) (17)

Ȧ− εA (t) = γ (r̄ −R)− δθ (t) + δθ̄.
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Inserting for θ (t) gives

Ȧ− εA (t) = γ (r̄ −R)− δ
(
θS − θ̄ −

α

β
(r̄ −R)

)
exp (−βt)− δθ̄ − αδ

β
(r̄ −R) + δθ̄

Ȧ− εA (t) = −δ
(
θS − θ̄ −

α

β
(r̄ −R)

)
exp (−βt)−

(
αδ

β
− γ
)

(r̄ −R) .

Solving for A gives:∫
d

dt
A (t) exp (−εt) dt = −

∫
δ

(
θS − θ̄ −

α

β
(r̄ −R)

)
exp ((−ε− β) t) dt

−
∫ (

αδ

β
− γ
)

(r̄ −R) exp (−εt) dt

A (t) exp (−εt) =
δ

ε+ β

(
θS − θ̄ −

α

β
(r̄ −R)

)
exp ((−ε− β) t)

+
1

ε

(
αδ

β
− γ
)

(r̄ −R) exp (−εt) + CA

A (t) =
δ

ε+ β

(
θS − θ̄ −

α

β
(r̄ −R)

)
exp (−βt) +

1

ε

(
αδ

β
− γ
)

(r̄ −R) + CA exp (εt) .

For t = 0

AS −
1

ε

(
αδ

β
− γ
)

(r̄ −R)− δ

ε+ β

(
θS − θ̄ −

α

β
(r̄ −R)

)
= CA

and thus

A (t) =
1

ε

(
αδ

β
− γ
)

(r̄ −R) +
δ

ε+ β

(
θS − θ̄ −

α

β
(r̄ −R)

)
exp (−βt)

+

(
AS −

1

ε

(
αδ

β
− γ
)

(r̄ −R)− δ

ε+ β

(
θS − θ̄ −

α

β
(r̄ −R)

))
exp (εt) .

The time path of the attack for defense policy is

A (t) = AS exp (εt) + 1
ε

(
αδ
β − γ

)
(r̄ −R) (1− exp (εt))

+ δ
ε+β

(
θS − θ̄ − α

β (r̄ −R)
)

(exp (−βt)− exp (εt)) ,
(24)

for expansion policy we get

A (t) = AS exp (εt) + 1
ε

(
αδ
β − γ

)
r̄ (1− exp (εt))

+ δ
ε+β

(
θS − θ̄ − α

β r̄
)

(exp (−βt)− exp (εt)) .
(23)

Time Path of the Fundamentals During High Stress Convergence At the upper boundary

of the attack, A = D, the interest rate is chosen from the control interval [0, R], to offset the

motion of the attack, i.e. Ȧ = 0. We apply these conditions to the differential equation of the
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attack (17) and get:

0 = −γ (r (t)− r̄)− δ
(
θ (t)− θ̄

)
+ εD

Solving for the interest rate gives

r (t) = r̄ − δ

γ

(
θ (t)− θ̄

)
+
ε

γ
D. (36)

Equation (36) shows that the interest rate r (t) required to offset the attack increases when

the fundamentals deteriorate and decreases when the fundamentals rise. Therefore, there are

fundamental states where the attack cannot be offset since the required interest rate would

exceed R. In this case, the central bank is forced to opt out. But there are also states in which

the attack decreases, due to good fundamentals, even though the interest rate equals zero. The

fundamental states corresponding to the control boundary are

r (t) = R↔ θ = θ̄ +
ε

δ
D +

γ

δ
(r̄ −R)

r (t) = 0↔ θ = θ̄ +
ε

δ
D +

γ

δ
r̄. (37)

Inserting r (t) (eq. 36) in the differential equation of the fundamentals (17) gives

θ̇ = −α
((

r̄ − δ

γ

(
θ (t)− θ̄

)
+
ε

γ
D

)
− r̄
)
− β

(
θ (t)− θ̄

)
=

(
αδ

γ
− β

)(
θ (t)− θ̄

)
− αε

γ
D.

The path of the fundamentals at A = D is thus

dθ

dt
−
(
αδ

γ
− β

)
θ (t) = −

(
αδ

γ
− β

)
θ̄ − αε

γ
D∫

d

dt

(
θ (t) exp

(
−
(
αδ

γ
− β

)
t

))
dt =

∫ (
−
(
αδ

γ
− β

)
θ̄ − αε

γ
D

)
exp

(
−
(
αδ

γ
− β

)
t

)
dt

θ (t) exp

(
−
(
αδ

γ
− β

)
t

)
= C +

1

−
(
αδ
γ − β

) (−(αδ
γ
− β

)
θ̄ − αε

γ
D

)
exp

(
−
(
αδ

γ
− β

)
t

)

θ (t) = C exp

((
αδ

γ
− β

)
t

)
+ θ̄ +

αε
γ D

αδ
γ − β

.

For t = 0

θS − θ̄ −
αε
γ D

αδ
γ − β

= C

and thus

θ (t) =

(
θS − θ̄ −

αε
γ D

αδ
γ − β

)
exp

((
αδ

γ
− β

)
t

)
+ θ̄ +

αε
γ D

αδ
γ − β

.
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Hence, the path of the fundamentals in high stress for θ ∈
[
θ̄ + ε

δD + γ
δ (r̄ −R) , θ̄ + ε

δD + γ
δ r̄
]
32

is

θ (t) = θS exp
((

αδ
γ − β

)
t
)

+
(
θ̂A=D

)(
1− exp

((
αδ
γ − β

)
t
))

. (25)

where θ̂A=D = θ̄ +
αε
γ
D

αδ
γ
−β is the upper convergence point.

Time Path of the Fundamentals During No Stress Convergence At the lower boundary of

the attack, A = 0, the interest rate is chosen from the control interval [0, R], to offset the motion

of the attack, i.e. Ȧ = 0. Using these conditions with the differential equation of the attack (17)

gives:

0 = −γ (r (t)− r̄)− δ
(
θ (t)− θ̄

)
and solving for the interest rate gives

r (t) = r̄ − δ

γ

(
θ (t)− θ̄

)
. (38)

As in high stress, the control restriction imposes a restriction on the fundamental state space

in which the motion of the attack can be offset. For bad fundamentals, the attack grows even

though the interest rate is set to R. The fundamental states corresponding to the control

boundary is

r (t) = R↔ θ = θ̄ +
γ

δ
(r̄ −R) . (39)

Inserting r (t) (eq. 38) in the differential equation of the fundamentals (17) gives

θ̇ = −α
((

r̄ − δ

γ

(
θ (t)− θ̄

))
− r̄
)
− β

(
θ (t)− θ̄

)
=

(
αδ

γ
− β

)(
θ (t)− θ̄

)
.

The path of the fundamentals at A = 0, is

dθ

dt
−
(
αδ

γ
− β

)
θ (t) = −

(
αδ

γ
− β

)
θ̄

∫
d

dt

(
θ (t) exp

(
−
(
αδ

γ
− β

)
t

))
dt = −

∫ (
αδ

γ
− β

)
θ̄ exp

(
−
(
αδ

γ
− β

)
t

)
dt

θ (t) = C exp

((
αδ

γ
− β

)
t

)
+ θ̄.

For t = 0

θS − θ̄ = C

32Defense in high stress is only possible between the attack ZMLs.
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and thus

θ (t) =
(
θS − θ̄

)
exp

((
αδ

γ
− β

)
t

)
+ θ̄.

or

θ (t) = θS exp

((
αδ

γ
− β

)
t

)
+ θ̄

(
1− exp

((
αδ

γ
− β

)
t

))
.

For good states, there is an expected loss on attacking that actually allows to fend off ad-

ditional speculators, even for negative interest rates. Since we restricted the interest rate to

be nonnegative (19), we set A = 0 for states better than the attack ZML of expansion policy

and neglect the theoretical negativity of A. The path of the fundamentals in no stress for

θ ∈
[
θ̄ + γ

δ (r̄ −R) ,∞
[

is:

θ (t) = θS exp
((

αδ
γ − β

)
t
)

+ θ̂A=0

(
1− exp

((
αδ
γ − β

)
t
))

, (27)

where θ̂A=0 = θ̄.
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5.3.2 Model Dynamics

Zero-Motion-Lines To describe the direction of the movement of the state variable we calcu-

late zero-motion-lines (ZMLs). The differential equation of the fundamentals (17) for r (t) = R

is: θ̇r=R = −α (R− r̄)− β(θθ̇=0,R − θ̄). Equating with zero and solving for θ gives:

θθ̇=0,R = θ̄ − α

β
(R− r̄) (40)

accordingly for r (t) = 0

θθ̇=0,0 = θ̄ +
α

β
r̄ (41)

Since the ZMLs of the fundamentals are independent of A they are vertical lines in the θ,A

space.

Equating the differential equation of the attack (17 ) for r (t) = R with zero Ȧ = −γ (R− r̄)−
δ(θȦ=0,R − θ̄) + εA = 0 and solving for θ gives:

θȦ=0,R = θ̄ − γ

δ
(R− r̄) +

ε

δ
A (42)

accordingly for r (t) = 0

θȦ=0,0 = θ̄ +
γ

δ
r̄ +

ε

δ
A (43)

The ZMLs of the attack have a positive slope of ε
δ in the θ,A space.

Proof of proposition 2: we proof by contradiction and show that the intersection of the

expansion policy ZMLs (41) and (43) violates the state restriction (20). That is θ̄ + α
β r̄ 6=

θ̄ + γ
δ r̄ + ε

δA, for A ∈ [0, D]. Reorganizing gives: 1
ε

(
αδ
β − γ

)
r̄ 6= A. With restriction (26),

αδ
β − γ < 0, we get: A < 0 for an intersection of the expansion policy ZMLs.

Since expansion policy ZMLs only intersect for a negative attack value and the attack ZML

has a positive slope, the fundamental ZML lies on the left side of the attack ZML in the feasible

state.

Proof of proposition 3: when the central bank stops the attack (Ȧ = 0) in high stress

(A = D) the evolution of fundamentals is given by

θ (t)A=D = θS exp

((
αδ

γ
− β

)
t

)
+

(
θ̄ +

αε
γ D

αδ
γ − β

)(
1− exp

((
αδ

γ
− β

)
t

))
. (25)

It is obvious that for
αδ
γ − β < 0 (26)

the path converges to

θ̂A=D = θ̄ +

αε
γ D

αδ
γ − β

. (44)

If condition (26) would not apply, fundamentals would grow or decrease infinitely depending
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on the initial fundamental state at A = D. Since an infinite expansion is economically not

reasonable we apply the parameter restriction.

The convergence point is only accessible, if it’s in the interval defined by the control restric-

tion (cf. 37), i.e.
[
θ̄ + ε

δD + γ
δ (r̄ −R) , θ̄ + ε

δD + γ
δ r̄
]
. In other words, the convergence point

is between the attack ZMLs
[
θA=D
Ȧ=0,R

, θA=D
Ȧ=0,0

]
. Therefore, it is necessary that θ̄ +

αε
γ
D

αδ
γ
−β >

θ̄ + ε
δD + γ

δ (r̄ −R). Hence, the convergence point is feasible, if

R > r̄ − εD(
αδ
β − γ

) . (45)

On the other side of the interval it is necessary that θ̄+
αε
γ
D

αδ
γ
−β < θ̄+ ε

δD+ γ
δ r̄ ↔

βδεD

γ
(
αδ
γ
−β

) < r̄,

which is true (cf. condition 26). From (44) it is obvious that the maximum of θ̂A=D is θ̄ for

D = 0. Therefore θ̂A=D is between the attack ZML of defense policy θA=D
Ȧ=0,R

and the no stress

steady state θ̄.

Proof of proposition 4: we proof by contradiction and show that the intersection of the

defense policy ZMLs (40) and (42 ) violates the state restriction (20). That is θ̄ + α
β (r̄ −R) 6=

θ̄ + γ
δ (r̄ −R) + ε

δA, for A ∈ [0, D]. Reorganizing gives: 1
ε

(
αδ
β − γ

)
(r̄ −R) 6= A. The left hand

side is positive (R > r̄). With the restriction to feasible convergence points (cf. proposition 3),

i.e. R > r̄ − εD
αδ
β
−γ it follows that A > D. Therefore, the defense policy ZMLs intersect above

the defensive measure.

Proof of proposition 5: when the central bank chooses to preserve the attack in no stress

(Ȧ = 0 and A = 0), the fundamentals evolve according to

θ (t) = θS exp

((
αδ

γ
− β

)
t

)
+ θ̄

(
1− exp

((
αδ

γ
− β

)
t

))
. (27)

For αδ
γ − β (condition 26) it is obvious that the path converges to

θ̂A=0 = θ̄.

The position of the no stress convergence point θ̂A=0 is between the fundamental ZMLs

of expansion policy and defense policy. It is obvious that θθ̇=0,R < θ̂A=0 < θθ̇=0,0, i.e. θ̄ −
α
β (R− r̄) < θ̄ < θ̄ + α

β r̄.
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(a) expansion policy

(b) defense policy

Figure 13: Vector fields: The figures show vectors that represent the directional motion of the system
under expansion (black, panel a) and defense (red, panel b). The black lines are sample
trajectories, with initial values corresponding to areas 1 to 3 of figure 8. Also shown are the
ZMLs (expansion: solid black; defense: solid red), focal points, and the identity lines (dahed
black).
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5.3.3 Optimal Behavior

Proof of proposition 6: the identity line is derived from equating the slopes of the paths of

expansion and defense policy. For positive slopes of the trajectories we have dAr=0
dθr=0

= dAr=R
dθr=R

,

while for slopes of differing sign we have dAr=0
dθr=0

= −dAr=R
dθr=R

. These equalities are equal to

Ȧr=0

θ̇r=0
= Ȧr=R

θ̇r=R
and Ȧr=0

θ̇r=0
= − Ȧr=R

θ̇r=R
. Inserting the differential equations (17) in the positive slopes,

we get:
γr̄ − δ

(
θS − θ̄

)
+ εAS

αr̄ − β
(
θS − θ̄

) =
−γ (R− r̄)− δ

(
θS − θ̄

)
+ εAS

−α (R− r̄)− β
(
θS − θ̄

) .

Reorganizing
αr̄ − β

(
θS − θ̄

)
− αR

αr̄ − β
(
θS − θ̄

) =
γr̄ − δ

(
θS − θ̄

)
+ εAS − γR

γr̄ − δ
(
θS − θ̄

)
+ εAS

cancelling down
α

γ
=

αr̄ − β
(
θS − θ̄

)
γr̄ − δ

(
θS − θ̄

)
+ εAS

and solving for AS gives the identity line:

AS =
(
θS − θ̄

) αδ−βγ
αε =

(
θS − θ̄

) αδ
γ
−β
αε
γ

. (28)

The function describes a straight line with negative slope in the θ,A space. The line crosses

certain prominent points that are relevant for the characterization of the dynamics. The identity

lines are plotted in figure 5 on page 20.

If AS = 0, then θS = θ̄ = θ̂A=0; if AS = D then θS = θ̄ +
αε
γ
D

αδ
γ
−β = θ̂A=D. Inserting in the

attack ZML (43) for expansion policy gives: θS = θ̄ + γ
δ r̄ + ε

δ

(
θS − θ̄

) αδ
γ
−β
αε
γ

and solving for θS

gives: θ̄ + α
β r̄. Using (42) for defense policy we get: θS = θ̄ − γ

δ (R− r̄) + ε
δ

(
θS − θ̄

) αδ
γ
−β
αε
γ

and

solving for θS gives: θ̄+ α
β (r̄ −R). Thus, the identity line crosses the intersection of the defense

ZMLs, the upper and lower convergence points and the intersection of the expansion ZMLs.

To proof, which policy has a higher slope above the identity line we add a small ξ > 0 to the

attack value, AS + ξ =
(
θS − θ̄

) αδ
γ
−β
αε
γ

+ ξ. We then proof that expansion policy has a higher

slope than defense policy above the identity line. Therefore, it is necessary that:

Ȧr=0

θ̇r=0

(θS , AS + ξ) >
Ȧr=R

θ̇r=R
(θS , AS + ξ)

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
αr̄ − β

(
θS − θ̄

) >
−γ (R− r̄)− δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
−α (R− r̄)− β

(
θS − θ̄

) .

Depending on the location in the state space the directional movement of the fundamentals

and the attack differs. The identity line derived is valid in areas where the slopes of the

trajectories have positive signs. That is to the left of the attack ZML of defense policy, between

the fundamental ZMLs and to the right of the attack ZML of expansion policy. Since the

directions of the differential equations differ across these areas, we proof the inequality by
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cases.

1. To the left of the attack ZML of defense policy both trajectories have the same direction,

with θ̇r=0, Ȧr=0, θ̇r=R, Ȧr=R > 0. Therefore, we rearrange the inequality as follows:

−α (R− r̄)− β
(
θS − θ̄

)
αr̄ − β

(
θS − θ̄

) >
−γ (R− r̄)− δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
γr̄ − δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
1− αR

αr̄ − β
(
θS − θ̄

) > 1− γR

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
α

αr̄ − β
(
θS − θ̄

) <
γ

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
α

γ
<

αr̄ − β
(
θS − θ̄

)
γr̄ − δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

) ,
which is false, since α

γ =
αr̄−β(θS−θ̄)

γr̄−δ(θS−θ̄)+εAS
(cf. equation 28). Consequently, the expansion

policy trajectory has the higher slope to the left of the attack ZML for 0 ≤ A ≤ D.

2. Between the fundamental ZMLs both trajectories move in opposite directions, with θ̇r=0,

Ȧr=0 > 0 and θ̇r=R, Ȧr=R < 0. Hence,

−α (R− r̄)− β
(
θS − θ̄

)
αr̄ − β

(
θS − θ̄

) <
−γ (R− r̄)− δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
γr̄ − δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
1− αR

αr̄ − β
(
θS − θ̄

) < 1− γR

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
α

αr̄ − β
(
θS − θ̄

) >
γ

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
α

γ
>

αr̄ − β
(
θS − θ̄

)
γr̄ − δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

) ,
which is true, confirming that above the identity line and between the fundamental ZMLs

expansion policy leads to a higher slope, while below defense policy leads to a higher slope.
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3. To the right of the attack ZML of expansion policy both trajectories again have the same

direction, with θ̇r=0, Ȧr=0, θ̇r=R, Ȧr=R < 0. Hence,

−α (R− r̄)− β
(
θS − θ̄

)
αr̄ − β

(
θS − θ̄

) >
−γ (R− r̄)− δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
γr̄ − δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
1− αR

αr̄ − β
(
θS − θ̄

) > 1− γR

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
α

αr̄ − β
(
θS − θ̄

) <
γ

γr̄ − δ
(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

)
α

γ
>

αr̄ − β
(
θS − θ̄

)
γr̄ − δ

(
θS − θ̄

)
+ ε

((
θS − θ̄

) αδ−βγ
αε + ξ

) ,
which is false, since θ̇r=0 = αr̄−β

(
θS − θ̄

)
< 0 and Ȧr=0 = γr̄−δ

(
θS − θ̄

)
+ε
((
θS − θ̄

) αδ−βγ
αε

)
< 0. This confirms that the trajectory of defense policy has the higher slope to the right of the

attack ZML of expansion policy for 0 ≤ A ≤ D.

To find the identity line, we compared the slopes of the directional movement in the θ,A space.

The identity line considered resulted from a positive slope of the trajectories of expansion and

defense policy. In the state space between the expansion policy ZMLs and the defense policy

ZMLs the slopes of the trajectories have a different sign (cf. figure 3). Therefore, there are two

more identity lines given by
Ȧr=0

θ̇r=0

= −Ȧr=R
θ̇r=R

.

Inserting the differential equations (17)

γr̄ − δ
(
θS − θ̄

)
+ εAS

αr̄ − β
(
θS − θ̄

) = −
−γ (R− r̄)− δ

(
θS − θ̄

)
+ εAS

−α (R− r̄)− β
(
θS − θ̄

)
and rearranging

αr̄ − β
(
θS − θ̄

)
− αR

αr̄ − β
(
θS − θ̄

) =
−γr̄ + δ

(
θS − θ̄

)
− εAS + γR

γr̄ − δ
(
θS − θ̄

)
+ εAS

gives

1− αR

αr̄ − β
(
θS − θ̄

) = −1 +
γR

γr̄ − δ
(
θS − θ̄

)
+ εAS

or

2 =
γR

γr̄ − δ
(
θS − θ̄

)
+ εAS

+
αR

αr̄ − β
(
θS − θ̄

) .

Which can be solved for AS

AS = −1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
. (28)
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Which is a function that defines two curves with positive slopes in the feasible attack space.

The curves cross the intersection of the defense policy ZMLs and the expansion policy ZMLs.

Again, we are interested, whether expansion policy has a higher slope above the identity line

(AS + ξ). To compare the absolute value of the slope we consider only positive slopes. Since

the direction of the motion changes, depending on the state, we have to proof by cases.

1. Between the defense policy ZMLs the differential equations have the following signs:

θ̇r=0, Ȧr=0 > 0 and θ̇r=R > 0, Ȧr=R < 0. Therefore, we get:

Ȧr=0

θ̇r=0

(AS + ξ) > −Ȧr=R
θ̇r=R

(AS + ξ)

after inserting, we get

γr̄ − δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
αr̄ − β

(
θS − θ̄

) >

−
−γ (R− r̄)− δ

(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
−α (R− r̄)− β

(
θS − θ̄

) .

−α (R− r̄)− β
(
θS − θ̄

)
αr̄ − β

(
θS − θ̄

) >

−
−γ (R− r̄)− δ

(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
γr̄ − δ

(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)

1− αR

αr̄ − β
(
θS − θ̄

) >
− 1 +

γR

γr̄ − δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)

2 >
γR

γr̄ − δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)+
αR

αr̄ − β
(
θS − θ̄

) ,

which is true, since 2 = γR

γr̄−δ(θS−θ̄)+εAS
+ αR

αr̄−β(θS−θ̄)
(cf. equation 28). Hence, above the

identity line expansion policy leads to the higher slope of the state trajectory.

2. Between the expansion policy ZMLs the differential equations have the following signs:

θ̇r=0 < 0, Ȧr=0 > 0 and θ̇r=R, Ȧr=R < 0. To compare positive slopes of the trajectories
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in this area we write

−Ȧr=0

θ̇r=0

(AS + ξ) >
Ȧr=R

θ̇r=R
(AS + ξ) .

after inserting, we get

−
γr̄ − δ

(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
αr̄ − β

(
θS − θ̄

) >

−γ (R− r̄)− δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
−α (R− r̄)− β

(
θS − θ̄

) .

−
−α (R− r̄)− β

(
θS − θ̄

)
αr̄ − β

(
θS − θ̄

) <

−γ (R− r̄)− δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
γr̄ − δ

(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)

−1 +
αR

αr̄ − β
(
θS − θ̄

) <
1− γR

γr̄ − δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)
γR

γr̄ − δ
(
θS − θ̄

)
+ ε

(
−1
ε

(
γr̄ − δ

(
θS − θ̄

)
+

γR(αr̄−β(θS−θ̄))
αR−2(αr̄−β(θS−θ̄))

)
+ ξ

)+
αR

αr̄ − β
(
θS − θ̄

) < 2,

which is true, since 2 = γR

γr̄−δ(θS−θ̄)+εAS
+ αR

αr̄−β(θS−θ̄)
(cf. equation 28). Therefore, above the

identity line expansion policy leads to the higher slope, whereas below defense policy has the

higher slope.

The identity lines and the areas with the respective higher slope are plotted in figure 5 on

page 20.

Proof of proposition 11: we give a condition for which the value of an immediate opt-out

is better than the value of converging in high stress:

θS − c
ρ

>

∫ ∞
0

exp (−ρt)
((

θS − θ̂A=D

)
exp

((
αδ

γ
− β

)
t

)
+ θ̂A=D

)
dt

θS − c
ρ

> −θS − θ̂A=D

αδ
γ − β − ρ

+
θ̂A=D

ρ
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Rearranging and solving for θS gives:

θS > θ̂A=D + c

αδ
γ − β − ρ
αδ
γ − β

θc ≡ θ̂A=D + c
αδ
γ
−β−ρ
αδ
γ
−β .
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