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Abstract

This paper analyzes optimal risk adjustment for direct sislection (DRS). Inte-
grating insurers activities for risk selection into a deterchoice model of individuals’
health insurance choice shows that DRS has the structureaftast. For the contest
success function used in most of the contest literaturémnaptransfers for a risk ad-
justment scheme have to be determined by means of a redtgatmtile regression,
irrespective of whether insurers primarily engage in pesiDRS (attracting low risks)
or negative DRS (repelling high risks). This is at odds with tommon practice of
determining transfers by means of a least squares regnegs@mvever, this common
practice can be rationalized within a discrete choice mémted new class of contest
success functions, but only if positive and negative DRSegreally important; if not,
optimal transfers have to be calculated from a restrictgdthasetric least squares re-
gression. Using data from a German and a Swiss health insuedind considerable
differences between the three types of regressions. Olptieresfers therefore criti-
cally depend on which contest success function represesars’ incentives for DRS
and whether positive and negative DRS are equally impoaiantt. Results from the
two data sets indicate that if a regulator does not know whade applies, transfers
should rather be calculated by means of a quantile than bdgaares regression.
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1 Introduction

In many health insurance markets, insurers are not allowelifferentiate their premiums
according to individuals’ expected cost; instead, theyehtavcharge a uniform premium to
all risk types. In such a setting, insurers will make (expdprofits with some individuals,
and losses with others. This creates incentives to attraditable and repel unprofitable
individuals. If insurers act on these incentives, they aié ® be engaged in risk selecti@n.

Two forms of risk selection can be distinguished: direct antlirect risk selectiofd. With
indirect risk selection (IRS), insurers influence who wantgin them by designing their
benefit package in a way so that it is attractive for low rislas fot for high risks. This
can be achieved with, e.g., scrupulous utilization revjeavphysician network with only
a small number of specialists or by not covering certainisesvprimarily needed by the
high risks. With direct risk selection (DRS), insurers useasures unrelated to the benefit
package like selective advertising, offering discountsfitmess club memberships or by
‘losing’ applications of unprofitable individuals. SinceRB is targeted at a specific risk
type, insurers have to know whether a particular individ{oal group of individuals) is
of below or above average risk. Examples for such groups entain age brackets or
individuals living in high cost areas.

In some settings, like the U.S. Medicare Advantage progsahere insurers are allowed
to differ in their physician networks or drug formularieagéntives to distort the benefit
package can be severe and are at least of similar importanaeedncentives for DRS.
However, in the European context, where the benefit paclagsuially heavily regulated,
the scope for IRS is rather limited; here, insurers who trinfuence the risk structure of
their insured will be primarily engaged in DHS.

A regulator can reduce the incentives for both DRS and IRSrpjeémenting a risk adjust-
ment scheme, i.e., by setting transfers insurers receillav@ to pay depending on the risk
structure of their insured. There are several ways to organize these payments, but effec
tively, each insurer has to pay a uniform risk adjustmentféeesach insured equal to the
average cost of all insured in the respective health inseramarket, and in return receives
an individual specific transfer for each insured (dependinghe signals of the insured).

In most risk adjustment schemes, these transfers to irssacqgral the predicted values of a
regression of actual cost on a set of variables like age,ayearttl morbidity. However, even
sophisticated risk adjustment schemes only reduce, bubdeliminate incentives for risk
selectio

There is a huge literature on how the regression models wseisk adjustment can be im-
proved so that more accurate cost predictions (and theréfansfers) can be determined.

See van de Ven and Ellis (2000).

2See Breyer et al. (2011).

3For incentives to distort the benefit package, see Frank ¢2@00), Cao and McGuire (2003) and Ellis
and McGuire (2007); for the profitability of DRS in the U.Sttggg, see Shen and Ellis (2002).

4See, e.g., the Special Issue on ‘Risk adjustment in Eurapeealth Policy(Chernichovsky and van de
Ven 2003).

°See Zweifel et al. (2009), chapter 7.

See van Veen et al. (2014).



The criterion to choose among competing models has almesiyalbeen the??, the ex-
plained part of the variance. The larger tRé, the closer the transfers are to actual cost,
and the lower the incentives for risk selection should be.

There is a small literature that deviates from this sta@$tapproach; instead, it explicitly
analyzes insurers’ incentives to engage in risk selectiolhdetermines the optimal transfers
as a solution to such an incentive problem. This approachbees termed ‘optimal risk
adjustment’ by Glazer and McGuire (2000). They have showhdhregulator can increase
the effectiveness of a risk adjustment scheme by distottingransfers as calculated with
conventional, regression based risk adjustment: if theadsgused as explanatory variables
in the regulator’s regression are less than perfectly tigé with risk type, there has to
be overpayment for signals which indicate high risk, andeupadyment for signals which
indicate low risk.

So far, the optimal risk adjustment literature has beenusikatly concerned with IRS, i.e.,
with insurers’ incentives to distort the benefit pacl@gé’his is suitable for all settings
where insurers can influence at least some aspect of the themekage (as in the Medicare
Advantage program in the U.S.), but in the European settiitg its heavily regulated
benefit packages, DRS is the more severe problem.

This study analyzes optimal risk adjustment for DRS and shthat — as in the case of
IRS — a regulator can in general increase the effectiveniessisk adjustment scheme by
deviating from the transfers as calculated from a leastreguagression that maximizes the
R?. Integrating insurers’ activities to risk select in a deterchoice model of individuals’
health insurance choice, we first derive that DRS has thetatai of a contest. We show
that for the Tullock-contest success function — the corgiestess function employed in the
vast majority of all models in the contest literature — maxing the R? does not minimize
insurers’ incentives for DRS; rather, the correct objeciiy to minimize the mean abso-
lute deviation,MADE This is achieved by using a restricted quantile regressistead
of a least squares regression. We show that such a quargilession is optimal regard-
less of whether insurers are primarily (or exclusively) &ed in positive DRS (attracting
profitable individuals) or in negative DRS (repelling unftable individuals).

Since almost all risk adjustment schemes calculate tresigfam a least squares regression,
we proceed by asking whether this common practice can engedized within a discrete
choice model, i.e., for a different contest success functasf) than the Tullock-csf. We
find that such a csf exists (although it has not been emplaydHde contest literature so
far). However, contrary to the Tullock-csf, for this csfetleast squares regression is only
optimal for the symmetric contest where positive and negddiRS are equally important.
In the asymmetric case, where insurers focus on one of théypves of DRS, transfers have
to be determined by means of a restricted asymmetric leastas| regression.

Which of the three regression models — the least squaresstmemetric least squares or
the quantile regression — should be used by the regulatoeftre depends on which of
the two contest success functions applies and, if it is tkersk one, whether both forms

See, e.g., Glazer and McGuire (2002), Jack (2006), Bijlsnah ¢2011) and McGuire et al. (2013).
8The Tullock-contest success function has been introduge@iuiock (1980). For an overview of the
contest literature see, e.g., Konrad (2009) and Congldtah €008).
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of DRS are equally important or not. If there was data on iesirexpenditures for risk
selection, this could be easily be determined, but we arawate that such data exis.

In the empirical part of this paper, using data from a Germeakngss fund and from a

Swiss health insurer, we therefore compare the performairtbe three types of regressions
and find the following two asymmetries: When the asymmetast squares regression is
optimal, it is only somewhat more successful than the gleanggression, but when it is

not optimal, it can perform much worse than the quantileesgjon; in some settings, it

even increases incentives for risk selection. We find theesasgmmetry when comparing
the least squares and the quantile regression: the leamtesqregression never performs
substantially better, but sometimes considerably worae the quantile regression. If these
asymmetries were also found in other data sets, the quaggjfession could be considered
a valuable alternative to the least squares regressiorafoulating the transfers of a risk

adjustment scheme.

The remainder of this paper is organized as follows. In 88, we derive the contest
structure of DRS within a discrete choice model. In Sedtion8&show that for the Tullock-
csf, a regulator should not maximize t&2, but minimize theMAD by using a restricted
quantile regression. Thg? criterion is rationalized in Sectign 4. We illustrate théetience
between the least squares and the quantile regression withpde example in Sectidd 5
and show that these differences can be substantial for egalid Sectioril6. Sectidd 7
concludes.

2 Directrisk selection

2.1 Profits and losses for insurers with a risk adjustment sceme

For direct risk selection to occur, insurers have to be abtassify individuals into differ-
ent risk types according to some signals which are informaabout expected cost. Denote
the set of signals insurers observe$, and letS/ be the set of signals for an individual
i Using these signals, insurers’ expectation of individigatost is given by

cit = E[c|S]]. 6y
If the regulator was able to observe the full set of signéfé, he could infer insurers’ cost
predictionsc?, (wherec is the vector of all cost predictions for tHeindividuals in the
respective health insurance market). Setting the tramsfethe risk adjustment scheme,
¢, equal to these cost predictions, insurers’ expected pi@iitlosses) for each individual
would be equal to zero and the incentives for risk selectioniated completely.

There are two reasons why, in general, the transférwill differ from insurers’ cost pre-
dictionsc!?. First, the regulator may not be able to observe the full sigmals used by

°E.g., Newhouse (2002, p. 176) notes: “...the data suggasttist is not a bar to some selection. | have
no evidence, however, on the cost of engaging in selection.”
OFor all variables the superscrip will be used for the health insurer adifor the regulator.



the insurer&] Secondly, the regulator may not want to use the full set afagbecause
some of the signals can be influenced by the insurers. Onepdador such a signal is
prior year expenditures. Using this variable increasesxpained part of the variance by
several percentage points, but is in fact just retrospegartial cost reimbursement, which
reduces incentives for cost eﬁicielﬁa

For these two reasons, the regulator will base his cost greds (and thus his transfers)
only on a subses’® c S of the variables used by the insurers. Therefore, transfiis
be calculated as

cft = h(Sf) @)

and differ from the insurers’ cost prediction€. Denote this difference bp; = ¢ — ¢,

and the vector of all these differences by If D; > 0, insurers expect a profit, iD; < 0,
they expect a loss. Insurers will act on these incentivestianih increase the probability
of being chosen by individuals with; > 0 (positive DRS), and reduce the probability of
being chosen by those with; < 0 (negative DRS).

We now show how these activities can be integrated in a desateoice model of indi-
viduals’ health insurance choice. We integrate DRS in a mofianperfect competition
because DRS seems incompatible with perfect competitiberevindividuals are perfectly
informed about the benefit packages offered and the premihiargied, and always choose
the insurer who offers the best benefit package-premium otibn.

2.2 The discrete choice model without DRS

There areJ insurersj, each offering a benefit package-premium combination wimh
individual ¢, yields utility V. Individual i's decision of which insurer to choose, however,
not only depends on which insurer offers the highest utMﬁI, but also on some other
factors like location or which insurer was recommended byiljaand friends. In a discrete
choice model, the influence of these other factors is caghtoyean individual- and insurer-
specific utility component?. Without DRS, individual’s utility when choosing an insurer
J is therefore given by ‘ o

ul = VI +el. 3)
Assumingsg to be i.i.d. extreme value, the logit model arises. Spetifithe variance oﬁ
asVar(ef) = 02%2, the probability of individual choosing a particular insuréris given
by
vk

7

Prob(i choosesk) = Prob(VF +¢f > Vi + el W1 # k) = —

(4)

V:i
P
D e”

Jj=1

HE g., in Germany, the regulator does not know the zip codaeirtsured, a variable readily observable for
insurers who can use this information to identify high and tmst areas.

125ee van de Ven and Ellis (2000, p. 805). See also Schokkagrzande Voorde (2004); their examples
of variables insurers can and should influence (and whichldhberefore not be used for risk adjustment) are
the lifestyle of the insured or their propensity to go imnaelly to a specialist; accordingly, they denote these
variables as responsibility variables.

13See Train (2009, p. 40).



2.3 The discrete choice model with DRS

Positive DRS is an activity insurers are engaged in whicte@ses the probability of being
chosen by a particular individual (or group of individualg) course, any such activity will
also generate some c@dtWe denote the cost insurgincurs bya;, and model the increase
in the probability of being chosen to stem from an increagherutility uj (as perceived by
individual 7) by g(a;), whereg is increasing and concave. With positive DRS, individual
1's perceived utility when choosing insurgtherefore is

ul = V7 + g(aj) +€l. (5)

Because we consider a setting where the benefit packageulatejand is thus identical for
all insurers (so that the premium does not differ betweearars as well)V; is the same
for all insurers (but will be different for different indigiuals). Therefore, the probability
that individuali chooses insureék if there is positive DRS is given by

Prob(i chooses:) = Prob(VF + glay) +ef > V4 g(a)) + L VI#k)
= Prob(g(ay) +ef > gla) + &, VI # k)

g(ag)
e o

— 72 R (6)
.e o
J

Likewise, negative DRS is an activity insurers are engageahich decreases the proba-
bility of being choseftd We denote the cost of negative DRSyand the utility decrease
as perceived by individualby f(b;), wheref is increasing and concave, so that individual
i's utility when choosing insurej is

ui = V7 — f(b) + <. ()
In this case, the probability that individuathooses a particular insurktis given by
—f(bg)

e o

Prob(i chooses:) = — (8)

- €
j o

This shows that DRS has the structure of a contest (With (6)@)as the contest success
functions): There are several agents competing for a rerspleyding money to increase
the probability of receiving the rent: With positive DRSsimers compete for individuals
with D; > 0; with negative DRS, they compete for the rent of not havingdar the loss
associated with individuals for which; < 0.

The money spent in this risk selection contest is complet@lsteful, and the insured do not
want insurers to waste that money: It does not improve thhtgadthe benefit package but

¥Examples for positive DRS are selective advertising orroftediscounts for fitness club memberships.

Bactivities falling into this category are that insurers uée additional (unnecessary) paper work or involve
the high risk individuals in phone calls in which they try terpuade these individuals to choose a different
insurer. In fact, after a German sickness fund operatinghiyan high cost areas went bankrupt in 2011,
members of this fund, who then applied at other funds redgivene calls in which some of the insurers told
them that they could not continue their drug therapy or diseaanagement program should they not choose a
different insurer; see, e.g., Spiegel (2011).
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eventually has to be borne by the insured whose premiumsaresgised. It is exactly this
waste of money which constitutes the welfare loss of Bikshe objective of the regulator
therefore has to be to minimize insurers’ investments is tisk selection contest. In the
following two sections we show that the solution to this chije critically depends on
which particular csf (within the class of contest succesgtions as given by {6) andl(8))
best represents insurers’ incentives for risk selection.

3 The MAD-criterion

3.1 Derivation of the M AD-criterion for the Tullock-csf

The contest success function used in the vast majority @ioaitest models is the Tullock-
csflt] The general csf derived in the previous section encompaiseeBullock-csf, since,
with g(a) = v1n(a) and settingl = m,
~yIn(ag) ¥ m
Prob(i chooses: with positive DRS = ¢ — = (ax) - = (ax) .9
~1n(a;) @anE S (a)m
z (& o Z] (a]) 7 J J

J

Likewise, if for the case of a negative rent we assuffi® = ¢ In(b) and setg =n, we
have
(be)™"

Zj(bj)_n.
Employing the Tullock-csf as given il(9), expected profitiftsurerk in the contest for a
positive rentD; is given by

Prob(i chooses: with negative DR$ = (20)

(ag)™
Zj(aj)m
Solving the set of FOCs for all insurers yields the well knowesult that the equilibrium
level of investments

D; — ay. (11)

T =

N J—1)m
Therefore, the sum of investments of all insurers for a pasientD; equals
. J—1m
SIF = a; = %Di. (13)
J

For a negative rent, using the contest success functiorves i [10), insurek’s objective
reads as
(k)"

8In Lorenz (2014b), it has been shown that in some settingstite insurers who have to bear the cost of
DRS. Nevertheless, the cost of DRS is a welfare loss in suettiag as well.

"The Tullock-csf has been employed for the analysis of diivias diverse as rent-seeking (Lockard and
Tullock 2001), political campaigns (Skaperdas and Grofd@8b) or sports (Szymanski 2003).

183ee, e.g., Nitzan (1994).

D; — by (14)




The equilibrium level of each insurer’s investment is

=, (15)

so that the sum of investments of all insurers is given by
Z pr= L= p (16)

Comparing the sum of investments for a positive and a negyegint of equal absolute value
shows that insurers invest more for a positive rentif> n: If investments for a positive
rent are more effective (in the sense thdiz) > f/(b) Va = b), incentives for positive
DRS are higher than incentives for negative DRS. Accorgirtye regulator should focus
on reducing positive rents. In the following, we will firstsasne thatn = m, so that
positive and negative DRS are equally important. We willsider the more realistic case
thatm # n in Sectior_3.B.

If m = n, the total sum of investment8,S7, of all insurers for all rentd; is given by

TSI_ZSIJFJrZSI’ Z@\Dﬂ:@]\mn (17)
i=1

For the symmetric case af = n, we can therefore state the following proposition:

Proposition 1. In a symmetric contest with a Tullock-contest success iimcthe mean
absolute deviation is the correct measure for insurerseimoses for risk selection.

For the Tullock-csf, the total sum of investments is projpodl to theMAD. This implies
that the regulator can minimize the welfare loss caused b byRminimizing theMAD.
However, in the next section, we show that such a risk adjgistrecheme is in general not
feasible, so that th&/A D-criterion has to be qualified.

3.2 The estimation method for theM A D-criterion

Let X be anl x T-matrix, containing in each columnone of theT variables used by the
regulator (including the constant), and denoteittierow of X by z/. Then the regulator’s
objective is given by

I
. H /
min E ¢t — a:]. 18

Using the estimated coefficients, cost predictions are given by® = Xj3. However,
the regulator cannot use these cost predictions as thddrans a risk adjustment scheme
because the sum of these predictions in general does not theusum ofc. This can
most easily be seen X only consists of a constant, in which case the optimizatioilem
becomes

I
min}_lef = Bl (19)
=1



The solution to this minimization problem is the mediah: = ¢™¢%ie" _ Since health care
expenditures are usually skewed to the right, the mediahbeilbelow average cost. If
the regulator used this estimate and set transfers equiaé tmédian, he would minimize
incentives for risk selection, but insurers would make a.I1d$e solution which minimizes
the MAD is therefore not feasible for risk adjustment.

To ensure a balanced budget for the risk adjustment schenfasimsurers neither make
profits nor losses due to the transfers set by the regulamfptlowing constraint has to be

satisfied:
Z cft = Z . (20)

Therefore, the full optimization problem of the regulategiven by

mﬁmz | — 218 st Z(c{{ —z,B3) =0, (21)
% %
which is equivalent to the optimization problem of a reséicquantile regression. For esti-
mation purposes, it is convenient to reformulate it as aestricted optimization problem.
Expressing constrainf (20) as
#p=c", (22)

where the bar represents the mean, solving for the last aeleohg, i.e., 37, and plugging
into (18) yields

_H T—1 4
. g ¢ T t L7
E H _ - .. _E L) B. 23
B1,Br1 - & ET%) H(% aszZ) 4 (@3)

This is the optimization problem of an unrestricted quantdgression for the 0.5-quantile
with ¢[f — (¢ /z")z] as the dependent angl— (z'/z7)z] as the explanatory variable$.
Having estimatedf;, . .., 87—1), one can determing, using [22).

3.3 Asymmetric investments

So far we have derived the estimation method which minimiasgrers’ investments for
the symmetric case ofi = n. We now consider the more realistic case tha n. In this
case, the total sum of investments is given by

TSI = Z (@Diﬂ(DpO) - @Dﬂ(msw
O 1)§m +n) Z < n (=D)L prco) — m (—Di)]l(Di>0)> , (24)

m—+n m—+n

7

91t can be solved using the simplex algorithm, see Barrodate Roberts (1974). For large data sets,
alternatives to the simplex algorithm like the interior moinethod have to be used. Most statistical software
packages have implemented different algorithms for glearggression.



wherel ) is the indicator function. Substituting = - andD; = z{ — cH shows that

the total sum of investments can be minimized by solving
mﬁmz ((Cf{ —aiB)al p_yg0) — (¢ —iB)(1 - a)]l(cflfm;ﬁ<0)) . (25)

This is the optimization problem of a general quantile regi@n for then—quantile@

If m < n, insurers invest less for a positive rent than for a negatw of equal absolute
value. The regulator should therefore put less emphasisdurcing positive rents than on
reducing the absolute value of the negative rents. Sinds aea defined ab; = ¢t —c/ =
2/ — ¢, while residuals are defined as = ¢/ — 2/, a positive rent corresponds to
a negative residual, and vice versa. Putting more emphasisegative rents therefore
requires putting more emphasis on positive residuals imggeession. This is exactly what
is achieved by a quantile regression foraaquantile witha, > 0.5; the largera, the higher
the weight on positive residuals. With = 1, only positive residuals, i.e., only negative
rents are considered, while far= 0, negative rents are ignored.= 1 therefore captures
the case that insurers are only engaged in negative DRSqard0 that they are only
engaged in positive DRS.

The solution to[(25) will in general depend oni.e., 3 = 3(a). Therefore, to determine
the optimal transfers®(«), it seems necessary to knewandn (or ™, to be more precise).
If this was correct, the optimal transfers could not be dated because it is unlikely that
a regulator could infer these parameters (with reasonablggion). However, the solution
to (28) which satisfies the balanced budget constraint doedapend oy, so that we can

state the following proposition:

Proposition 2. For the Tullock-csf, the optimal transfers which minimiasurers’ invest-
ments in the risk selection contest are independent of whétlsurers are primarily en-
gaged in positive or negative DRS.

Proof: See Appendik’AlL.

This result can most easily be understood by noting theviatlg implication of the con-
straint: If, e.g.,a > % the regulator will want to put more emphasis on reducingtpes
residuals than on reducing the absolute value of negatigs.dn the unrestricted quantile
regression this can be achieved by reducing the sum of ypesisiduals and increasing
the sum of negative ones. In the restricted regressionghisti feasible, because the sum
of positive residuals always has to equal the sum of negegsiduals so that the balanced
budget constraint is satisfied. The optimal transfers carefore be determined without
knowing whether insurers invest more for a positive or a tiegaent of equal absolute
value.

20see Koenker (2005).
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4 The R2-criterion

4.1 Rationalization of the R? criterion

The preceding section showed that in a contest model wititifleck-csf, the MAD is

the correct measure for insurers’ incentives for risk saac However, in almost all risk
adjustment schemes transfers are determined by meansastatpiares regression, which
maximizes theR?. The R? is also the criterion that is used to choose among competing
models (e.qg. if there are different ways to employ diagnoisﬂiormation Maximizing

the R?, the explained part of the variance, is equivalent to miring the unexplained
part of the variance. Because the unexplained part of thenas is just the sum of squared
deviations, it is obvious that thg? criterion applies if insurers’ investments are proporion

to the square of the rents.

If for the general contest success functiohs (6) ddd (8) veeraeg(a) = ~+/a and
f(b) = 6v/b, and setl = m andg = n, we arrive at the csf as given in_{27) afid](28)
below. With these contest success functions, the solutioribe insurers’ objectives as

stated in[(Ill) and(14) are

2(J —1)? 2(J —1)?
ol = %Df for D; >0 and b= %Df for D; <0.  (26)
As is apparent, these investments are proportional to tharsgof the rertd Because
insurers’ investments for positive and negative rentsediffm # n, for the R2-criterion,
which puts equal weight on positive and negative deviatisreshave to haven = n. We

can therefore state the following proposition:

Proposition 3. The R?-criterion can be rationalized in a contest model for the tesn
success functions

Prob(i choosesk with positive DR v 27
rob(i chooses: with positive DRE= W (27)
and
. ) e "Vbk
Prob(i chooses: with negative DRBS= (28)
with m = n.

If these two contest success functions apply and= n, insurers’ incentives for risk se-
lection are minimized using the least squares regressiccalse for any least squares
regression the sum of the residuals equals zero by defing@mrdition [22) is always satis-
fied and does not have to be stated as an explicit constraint.

2part of the risk adjustment literature deals explicitly twidetermining the maximunk? that can be
achieved by different regression models, see van de Ven Bisd2000), Section 3.2.6.

2|n Lorenz (2014a) it has been shown that the csf as givefi i) i€the only one within the class of
contest success functions given Bl (6) for which investsienequilibrium are proportional to the square of the
rent. There it has also been shown that for the existence efjaitibrium in pure strategies with two players,
0 < m < 549D~ 2 has to be satisfied; the same inequalities holchfaiith D replaced by D|.
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4.2 The estimation method for asymmetric investments

We now consider the case that # n. If m < n, insurers’ investments for a positive rent
are smaller than for a negative rent of equal absolute vallés requires the regulator to
put less emphasis on reducing positive rents than on regltioinabsolute value of negative
rents. This is achieved by employing an asymmetric leasireguregression (also termed
expectile regressm@ Following Schnabel (2011), in the remainder of this papemiie
refer to this regression as the LAWS (least asymmetricaflighted squares) regression.

Because for the LAWS regression (as for the quantile regnesthe sum of residuals does
in general not equal zero, fon # n we have to explicitly state the balanced budget con-
straint [22). Therefore, to minimize insurers’ investnsertihe regulator has to solve

mlnz ( oz]l(C _e1pz0) T (cH —28)%(1 — o)1 (cH —$§B<0)) st. 78 =¢c",
(29)

wherea = mQ"—jrﬂ We will refer to this regression as the RLAWS (restrictedVIL8)
regression. Employing the same transformation of variahfeused i (23) for the quantile
regression,[(29) can be reformulated as an unrestrictadrasyric least squares regression
with 7 — (et /zT)z] as the dependent andl— (z'/zT)z! as the explanatory variabl

Unlike with the quantile regression, the balanced budgesitaint does not imply that the
solution to [29) is independent of Therefore, if insurers’ investments are proportional to
the square of the rent, the optimal transfers are not inabgerof whether insurers invest
more for a positive or for a negative rent of equal absoluteeraAs we show in Sectidd 6,
the effectiveness of the transfers calculated form thewdfit regression models crucially
depends on which of the two cases applies. Although (as wadyrargued in Sectidn 3.3)
it will be difficult for a regulator to infer” exactly, he may nevertheless know whether
positive or negative DRS is the more severe problem in théthe@esurance market he is
responsible for and, accordingly, choose a different ieiom model for the two cases.

5 Comparison of the LS, the RLAWS and the RQ regression

Although the difference between the LS, the quantile and_#&/S regression could be
considered straightforward, the difference for the rettd versions (RQ and RLAWS) may
not be immediately obvious. We therefore illustrate thffedence with a simple example.

There are ten individuals which can be distinguished adegrit a dummy variable, say,
gender. Five of the individuals are malg (= 0), five are femalex; = 1). Cost predictions
of insurers for these individuals are as given in Figure lenegheach dot represents an

Bsee Newey and Powell (1987).

2This regression can be estimated using, e.g., the expauasgge of the statistical software R, see Sobotka
et al. (2014). The expectreg-package does not allow estigjmatmodel without an intercept, as is necessary
with these transformed variables. | thank Jan Pablo Burfiarddapting the expectreg.ls-function so that a
model without an intercept could be estimated.
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individual. Both cost distributions have the same mean aadlkewed to the right, but the
skewness is higher for males than for females.

females

r1 =1 ¢ ° ° T/ RQ *
males . o A LS .

T = 0 H
t t t t t t t t t t t t t t t t t » C;
0 2 4 6 8 10 12 14 16 18

Figure 1: Difference between the LS and the RQ regressiodi$orete cost distributions

In the LS regression foajH = Bo + P1x1; + 14, coefficienty will be estimated as the mean
cost of males, and; as the difference of the mean cost of females compared tosmale
Since average cost is 7 for both groups, = 7 and3; = 0, so that the regulator’s cost
predictions and transfers at&(males) = c®(females) = 7, as indicated by the blue
squares in Figurig 1.

In this example, the number of individuals below (and abdiie)two cost predictions’®
from the LS regression is different for the two groups. THigves the regulator to reduce
the sum (or mean) of absolute deviations by deviating froeseltost predictions. However,
any other pair of cost predictions just as well has to satiséybalanced budget constraint.
Reducing/, by someA/ therefore requires increasinty by 2A. In this example, such
a reduction of3, accompanied by the respective increasg;ofvill indeed reduce the sum
of absolute deviations: First, the decreasé&gfeduces the absolute value of the negative
residuals for four individuals, while the increasefincreases it for only three individuals;
this reduces the sum of absolute deviationsy. Secondly, the decrease @f increases
one positive residual, while the increase &f reduces two positive residuals; this again
implies a reduction of the sum of absolute deviations\3;

Reducing5, (accompanied by the increase/) will reduce the sum of absolute deviations
as long as the number of males with cost betditmales) is larger than the number of fe-
males with cost below’( females). The RQ regression therefore sets the cost predictions
at the same quantile of the two cost distributions and cleotisequantile that satisfies the
balanced budget constraint; (in this example, it is the &Qfdntile, see the green crosses in
Flgureﬂﬁ The same applies for continuous cost distributions, anal falsa continuous
explanatory variabl

Comparing the residuals of the LS and the RQ regression éogxhmple in Figuriel 1 shows
that the RQ regression reduces the absolute value of avedjatarge number of negative

2if the number of individuals differs for the two groups, thgament has to be slightly altered to take this
into account, but the result that the same quantile is chfsdyoth distributions still holds.

%If expected cost is linear in the continuous explanatoryaide and, e.g., the skewness of the distribution
(conditional on this variable) is decreasing in this vaealthen the coefficient for this variable will be larger
for the RQ than for the LS regression (so that cost predistame reduced for small values of this variable and
increased for large values of this variable).
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residuals which are close to zero and increases a relatwedyl number of very large posi-
tive residuals. This is a general pattern of the RQ regrassie return to this in Sectidn 8.4,
where we show the residuals for real data.

7.4

Bo

7.2

6.8
30 + 31

6.6

6.4

2+ &
0 01 02 03 04 05 06 07 08 09 1

Figure 2: Coefficients for the RLAWS regression for the exkngb Figure 1

We finally consider the RLAWS regression. Results for thigression can be found in
Figure[2, where we ploty and 3y + 31, i.e., c®(males) andc( females), for different
levels ofa. Fora = 0.5, the RLAWS regression puts equal weight on positive andthega
(squared) residuals and is therefore identical to the L&gsipn (sQ%) = 7 and3; = 0).
Fora < 0.5, there is less weight on positive residuals. Because pesiisiduals (negative
rents) are relatively large (compared to the absolute gatdie¢he negative residuals), this
implies putting less weight on large residuals. This is Emio the quantile regression,
which, compared to the LS regression, also puts less weiglairge residuals (by weighting
each residual by one instead of the absolute value of thduasitself as with the LS
regression). Reducing below 0.5 in the RLAWS regression is therefore a step into the
direction of the RQ regressi

6 Empirical analysis

In this section, we show that the differences between theth& RLAWS and the RQ
regression discussed in the previous section can — in sogas eabe substantial for real
data.

6.1 Data

We present results for two different data sets: one of a Gesickness fund covering the
years 1998 to 2006, the other of a Swiss health insurer, cgyéne years 1997 to 1999.
These panel data sets contain information on age, gendsr,faspitalization, number of
months insured and whether the individual died. There isnfiorination on morbidity,

a variable now used in several risk adjustment schemes. Weheaefore not determine

2’For o = 0, the RLAWS can deviate from the LS regression to a greateesselr extent than the RQ
regression.
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by how much the three types of regressions differ for thecipset of variables currently
used for risk adjustment. Whether the results would be moyequnced with such a full
set of variables is hard to tell a priori and depends on whethe cost distributions for
the morbidity groups (defined, e.g., by DCGs) differ to a tgear lesser extent (in their
skewness) than for, e.g., gender.

For both data sets, we show the results for the most recer@B&cause we use prior year
expenditures to determine the cost prediction of the insure only use those observations
which are observable in both the last and the second to last We do not drop individuals
which are only observable for part of the year; instead,rtbes$t is annualized and in all
regressions these observations are weighted by the fnaaittbe year they are observaBfe.

Table 1: Descriptive Statistics for the Swiss and Germaa get

Variable Swiss (1999)| German (2006)
Male (in %) 45.8 50.8
Mean Age 41.3 31.6
Hospitalization in prior year (in % 104 8.0
Number of observations 147,306 ‘ 109,208

Descriptive statistics for the two data sets can be foundable[1. The Swiss data set
contains all expenditures covered by the health insureitevifthe German data set indi-
viduals’ expenditures on ambulatory care are missing watdhat time were covered by a
uniform fee per capita insurers paid to the Association of Blisicians.

6.2 Prediction measures

With these two data sets, we determine the coefficients anddst predictions for the LS,
the RLAWS and the RQ regression. We then compare by how mest ttost predictions,
when used as transfers, reduce insurers’ incentives foseikection. To do so, we employ
the appropriate (prediction) measures for the differettingss we considered: Investments
are either proportional to the square or the absolute vdltieeaent and are either equal or
different for positive and negative rents of equal absokalae. For an overview of the four
settings and the corresponding measures, see [able 2.

If insurers’ investments are proportional to the squaréefrents and equal for positive and
negative rents of equal absolute value & n), the R? is the correct measure of insurers’
incentives for risk selection. Fon # n, it is the ‘asymmetric version’ of th&?, given by

S (e = )20l oy + (el = 21— )Ly )
3 (e = 2P0l s + (el — 221 - )L oy
2Results are very similar for the other years.

2Although in all regressions all observations are weightethk fraction of the year they are observable, we
do not alter the terminology used so far, i.e., we do not reféhese regressions as WLS, WRQ or WRLAWS.

asymR*(a) =1 —
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Table 2: Insurers’ investments, optimal regression moaigkcarresponding prediction mea-
sure

Insurers’ investments Symmetry of in- Optimal | Corresponding pre-

proportional to: vestmentsiy = n) | regression| diction measure

square of the rent yes LS R?
square of the rent no RLAWS asymR?(c)
absolute value of the rent yes RQ CPM
absolute value of the rent no RQ CPM

If insurers’ investments are proportional to the absol#ki® of the rent andr = n, the
correct criterion is the\/AD. To have a measure that is comparable to fife we use
Cumming’s prediction measure, representing the explaiaetof theMADE]

H _ oR
OPM =1 — MAD (model) . Yol —c \
MAD(no model) S leH — ¢

Like with the R?, we could, as a fourth measure, introduce an asymmetrigoveds$ the
CPM, theasymC PM («). However, because of the balanced budget constraint, the su
of the positive residuals always equals the absolute ofuhed the negative residuals, so
any asymmetric weighting of positive and negative resilagmles not alter the result, i.e.,
CPM = asymCPM (a) YV a. Therefore, the” PM is the correct measure if insurers’
investments are proportional to the absolute value of thésyeandependent of whether
insurers are primarily (or only) engaged in positive or riegeDRS.

Like the R?, theasym R? and theC' P M are normalized to the unit interval. Therefore, with
ck = ¢, all three measures assume the value zero, anddfiith ¢, they all assume the

7

value one.

6.3 Choice of the dependent variable

We present results for two different dependent variabletuah cost and a cost predic-
tion of the insurer. In most risk adjustment schemes, thalaégr uses actual cost as the
explanatory variable in the regression. However, as showsectior 2, the objective of

the regulator has to be to minimize the difference betwesrirbinsfers and insurers’ cost
predictions, not actual cost.

We therefore first present the results using insurers’ castigtionsc!” as the dependent
variable. We determine” as the predicted values from a (weighted) least squaressegr
sion using as explanatory variables age,’agge, hospitalization in the prior year, prior
year expenditures and prior year expenditures squaresk #ir variables interacted with

30See Cumming et al. (2002).
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a male dummy, and the male dummy it&If This regression uses all the variables avail-
able in the two data sets. With better data, certainly moeeipe cost predictions could be
calculated?

If there are some signals used by insurers to determinedbsirpredictions which cannot
be observed by the regulator even with such a better datdhsetegulator cannot infer
these predictions. This is of no consequence for the LS ssgme because, by the Frisch-
Waugh-Lovell-theorem, the estimated coefficients fromrémression with actual cost as
the dependent variable are identical to the coefficients filoe regression with insurers’
cost prediction as the dependent varighldhe FWL-theorem, however, does not apply to
the quantile and the LAWS regression, because these ragresse not orthogonal projec-
tions. In these settings, the optimal transfers which mirénincentives for risk selection
simply cannot be calculated.

6.4 Results for insurers’ cost prediction as the dependentariable

We first compare the coefficients of the three types of regmesdor the simplest case
of only one explanatory variable (see Table 3): In Model 1,u8e gender, in Model 2,
age (as a continuous variable) and in Model 3, a dummy variablhospitalization in the
prior year. In all three cases, the coefficients for the RQasgjon differ markedly from
those of the LS regression. E.g., for hospitalization ingher year, transfers increase by
1,350€ for the LS regression, but only by 1,0€lfor the RQ regression. It can also be seen
that the RLAWS regression with < 0.5 is always a step into the direction of the quantile
regression, and away from it far > 0.5.

Table 3: Estimated coefficients for the LS, the RLAWS and terBgression; German data
set; dependent variable: cost prediction of insuférexplanatory variable: Model 1: male
dummy; Model 2: age; Model 3: hospitalization in the prioaye

Model 1 Model 2 Model 3
intercept| male intercept‘ age | intercept| hosp_1

RLAWS (a = 0.6) 606.41| -86.67 -7.21 | 18.00 430.83| 1639.74
LS 613.45| -100.53 42.02 | 16.45 454.03 | 1350.47
RLAWS (a = 0.4) 619.16 | -111.76 95.75| 14.75 473.19| 1111.58
RQ 652.58 | -177.51 203.38 | 11.35 481.26 | 1011.07

31The R? for these regressions is 19.6% for the German and 46.6% éoBwiss data set. The? for the
Swiss data set seems very high; however a similar figure has teported by Beck (2004). The high value
is mostly due to the fact that insurers only have to pay 50%npéiient bills in Switzerland, which have a
particularly high variance.

325uch a better data set may have to be collected by the regalzsome cost. Stam et al. (2010) analyze
such a setting where a regulator incurs some cost to collestadl data set with more variables than usually
observable to him.

3See Davidson and MacKinnon (2004).
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However, more important than these differences in the @ieffis are the differences in the
cost predictions derived from these coefficients as evedliay the prediction measures. We
begin by comparing th&? and theC' PM for the LS and the RQ regression (for different
models with different explanatory variables), see Table 4.

Table 4: Predictive performance of different regressiomleis; German data set; dependent
variable: cost prediction of insuref

fa fa
[} x x
] — = — =
El 3| 5|73 |s
b = B = ‘B —
2/ 6| ¢ |5 | ¢ A
oo | R oy ? g g
=) 3} = 3} = — =
©l 5 Q@ &> @ o .
o o E o z X O
k) © o © %) © a \
c | € o =1 o 2 & —~
Y @ Elw | S ° g 5 ' %’
c [ — o ) o Q o Q o 2
o | 8 S | | | ®© @ 9 @ 8 N =
S| 2|2 bl 22l | B = 7 = -
°(5|c|(8%138|3|% © @ © a S o~
S| o| €| |® || < & o o o o o @)
R? CPM | AR? | ACPM
1| v |V 0.18 0.08 1.43 1.75| 0.11 0.31
2|V Ve 5.38 4.86 8.52 | 13.24| 0.52 4,72
3|V |V |V 5.58 5.06 | 10.00 | 13.60| 0.52 3.60
4\ vV IV |V |V 5.60 5.05 9.97 | 14.62 | 0.55 4.64
5\ v |V I Vv |V |V 14.39 | 13.07| 16.84 | 24.81 | 1.33 7.97
6| v |V IV IV |V |V 1496 | 13.75| 17.92 | 25.02 | 1.21 7.11
7|\ v |V IV IV |V |V v | 19.05| 18.72 | 36.21 | 38.07| 0.33 1.86

By definition, the LS regression always performs better ti@nRQ regression for th&?
criterion, while the RQ regression always achieves a highei/. For all models, we find
that theR? is not much higher for the LS than for the RQ regression (sees¢icond to last
column of Tablé#). This is different for thé P M, which for some models is considerably
higher for the RQ than for the LS regression (see the lashwolaf Table #). The results
are similar for the Swiss data set (see the middle part ofe[&lh AppendiXA.2), but less
pronounce@ In both data sets, we therefore find that erroneously us|drtD regression
when the LS regression should be used seems less problghaatizice versa, i.e., using
the LS regression when the RQ regression should be used.

For one of the models (Model 3 with age and gender as the exfolgnvariables) we give a

more detailed picture of the difference between the LS aadri@ regression by comparing
the distributions of the residuals. In Figlde 3, we plot tlegative of these residuals, i.e.,
insurers’ rents, for all percentiles of the distribut@q.

34t seems reasonable to assume that this is due to the faastpanditures in the Swiss data set are less
skewed, since health insurers cover only half of inpatiest,csee Beck (2004).
%The curves are thus the inverse of the distribution funetion
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Figure 3: Insurers’ rents without risk adjustment and fa I8 and the RQ regression.
German data set; Model 3; dependent variable: cost prediofiinsurerc?

The thin dotted curve shows the distribution of insurergtsevithout risk adjustment (i.e.,
for c® = &H), plotted in ascending order. As is to be expected, the nummberegative
rents (about 25% of all observations) is much smaller thannlmber of positive rents,
and the absolute value of the largest negative rents is naughrl than the largest positive
rents. The blue dotted curve shows insurers’ rents (i.e.ntgative of the residuals) for
the LS regression, and the green curve for the RQ regresdiba.black line represents
an indicator function: if it is above zero, the absolute eatif the rent is smaller for the
RQ regression; if it is below zero, it is smaller for the LSnesgsion. As can be seen from
this indicator function, the LS regression yields smalles@ute values of the rents for the
largest negative rents (up to the eighth percentile) anthim28. to 42. percentile. For all
the other percentiles (9 to 28 and 43 to 100), the absolutesaif the rents are smaller for
the RQ regression. As already discussed in Se€fion 5, tliggsneral feature of the RQ
compared to the LS regression: a small number of very largéiy® residuals (negative
rents) are increased, while a large number of the remaimsiguals are reduc&.

So far we have compared the results for the symmetric comegtich insurers invest the
same amount for positive and negative rents of equal alesealtie. We now consider the
asymmetric case. Figuré 4 shows the results, again for Mdudath age and gender as the
explanatory variables. The results for theymR? for different levels ofo can be found in
Figure[4(a). (Recall that for low levels of, there is a small weight on positive residuals,
i.e., on negative rents; a low level aftherefore captures the case that insurers are primarily
engaged in positive DRS.) Of course, the RLAWS regressiciopas best for the.sym R?
criterion (except forx = 0.5, when it is identical to the LS regression). ker> 0.5, the
RLAWS and the LS regression perform somewhat better thandg@ssion, which does
not put as much weight on the few very large negative rentsth®rother hand, for low
levels ofa, the RQ performs much better than the LS regression.

6van Barneveld et al. (2000) have suggested to also consitieodified version’ of theMAD where all
deviations below a certain threshold (e.g. ¥Dare ignored. As is to be expected from what we just derived
for the residuals, for this measure, the advantage of the R@tbe LS regression is even larger than for the
‘regular’ MAD (or theC'PM), because the RQ regression results in a considerablyr lahgee of residuals
below the threshold.
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Figure 4:asymR*(a)) andC P M for the LS, the RLAWS and the RQ regression. German
data set; Model 3; dependent variable: cost prediction safrierc”

The results for thes PM are shown in Figuré€l4(b). Independent of the levehofthe
highestC' P M is of course achieved by the RQ regression; in this moded,donsiderably
higher than for the LS regression (see also the third lineaifié[4). Fora = 0.5, the
RLAWS equals the LS regression so that both achieve the sam& . Being a step into
the direction of the RQ regression for smaller levelsipfor o < 0.5 the RLAWS performs
somewhat better than the LS, but is still less successfaltti®RQ regression. Far> 0.5,

it performs considerably worse than the LS regression, and £~ 0.85, it is even worse
than setting a uniform transfer oft = ¢, With « close to one, the RLAWS regression
effectively aims to explain the few outliers with very highst, and ignores the large number
of small (negative) residuals which enter tb&? M with equal weight. Therefore, the
C'PM achieved by the RLAWS regression drops drastically for higlnes ofa.

In our data sets, we find the patterns shown in Figlire 4(a) bnhih(all the models we
estimated (i.e., for different sets of explanatory vaesll If these patterns were also found
in other data sets with more variables (especially monpidériables now used in many
risk adjustment schemes), one might draw the following kaion: Since it is not clear
whether insurers’ investments are proportional to the labswalue or the square of the
rent and whether insurers are primarily engaged in postiveegative DRS, it might be
more appropriate to calculate transfers for a risk adjustrseheme by means of a restricted
quantile instead of a least squares regression: If invedsrage proportional to the absolute
value of the rent, it performs better for all levelsafif investments are proportional to the
square of the rent, the RQ regression performs considebattigr than the LS regression for
low levels ofa and only somewhat worse for high levelsaaf However, if the regulator is
certain that insurers’ investments are proportional tostipgare of the rent and that insurers
are at least as much engaged in negative as they are in pddi8, there is no need to
change the common practice of using least squares regndssicsk adjustment: In this
case, it performs better than the RQ regression and onligtisligvorse than the RLAWS
regression.
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6.5 Results for actual cost as the dependent variable

Because in basically all risk adjustment schemes actuali€osed as the dependent vari-
able in the regression and also to evaluate the performaidiéferent models, we also
present the results for actual cost. For the German datavseinly find very small differ-
ences in thek? and theC' P M between the LS and the RQ regression (see the upper part of
Table[® in AppendiX’A.R); for the Swiss data set, we find resswlhich are comparable to
the regressions with insurers’ cost predictions as thertigp@ variable (but somewhat less
pronounced, see the middle and lower part of Table 5 in Appdha).

In Figure[® we replicate the results of Figlile 4 for actuak @ssthe dependent variable.
Again, the RQ regression performs considerably better thah.S regression according to
the asymR>-criterion for low levels ofo, and only somewhat worse for high levelsaf
while for the C PM criterion, the RLAWS regression performs much worse thanltg

or the RQ regression for high levels @f As is the case with insurers’ cost prediction as
the dependent variable, using the RQ regression is prééetatihe LS regression unless
insurers are primarily engaged in negative DRS and invasnare proportional to the

square of the rents.
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Figure 5:asymR?(a)) andC P M for the LS, the RLAWS and the RQ regression. German
data set; Model 3; dependent variable: actual cost

7 Conclusion

In this paper we have analyzed optimal risk adjustment foeadirisk selection (DRS).
Integrating insurers’ activities for risk selection in acliete choice model of individuals’
health insurance choice shows that DRS has the structurecofitast. For the Tullock-
contest success function used in most of the contest litgrabptimal transfers have to
be determined by means of a restricted quantile regres3iois: regression minimizes the
mean absolute deviation conditional on satisfying theraadd budget constraint for the risk
adjustment scheme. It is optimal regardless of whetherénsiare primarily engaged in

positive or negative DRS.
The common practice, however, is to use a least squares aradquantile regression to
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determine the transfers. We have shown that the least sueession can be rationalized
in a discrete choice model for a new class of contest successidns. However, the least
squares regression is only optimal if positive and negddiRS are equally important. If
they are not, transfers have to be determined by means otréctexs asymmetric least
squares regression.

In the empirical part of the paper, using data from a Germeknsiss fund and a Swiss

health insurer, we find considerable differences betweerctist predictions of the three

types of regressions. We also find an asymmetry in that thetidgiaegression never per-

forms much worse than the least squares and the asymmaetsicsguares regression, but
sometimes considerably better. If these results were algudfin other data sets, in partic-
ular those containing information on morbidity now used ianmyrisk adjustment schemes,
a regulator who does not know which contest success funappties and whether positive

or negative DRS is the more important problem in the heakbriance market he is respon-
sible for, might want to calculate transfers for the riskuastinent scheme by means of a
restricted quantile instead of a least squares regression.
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A Appendix

A.1 Proof of Proposition[2

Assume thaf3* is the solution to[(25) s.t. the balanced budget constr@@ for o = 1,
and # 3* is the solution fory 1. If X has full rank, thenX g* # X 3; this implies

M — XB* =e(B*) #e(B) = - XB. (30)
The vector of residuals;(8*), satisfies the constraint that the sum of positive residuals
Ze ), equals minus the sum of negative re&duEﬁ *). The same holds fos.

i

The weighted sum of residualB/SR, i.e., the value of (25), forx = % for the optimalg*
and the non-optimap are

WSR(Fla=3) = 53 ()5 e ()= e (5) @D
WSR(Gla=3) = ;B -3 B =3B @

where the last equality in both equations holds becausedth&raint is satisfied.

If o # % the weighted sum of residuals for the opti@and the non-optimab* are given
by

WSR(BV\Q#%) = aZej( (1-« Ze Ze (33)

* 1 *
WSR(S \a;éi) = aZe (1—-a) Ze Ze . (34)
Now, if >, e+(~) < Zﬁe (8*), thenﬁ* cannot have minimizet SR(B]a = 1). If, on
the other handy_,; e (5*) < 3,4 e (B), then3 cannot have minimizet’ S R(j3|« # 1).

This implies that both optmllzatlon problems must yield Hane residuals and therefore
the same cost predictions, o= 3*.

23



A.2 Regression results

Table 5: Predictive performance %different regt.%essiordelm)
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German data set; dependent variable: actual cost
1| v |V 0.04 | -0.01 | 0.16 | 0.22 | 0.04 0.06
2|V v 1.06 | 1.03 | 1.39 | 1.49 | 0.03 0.10
3|V |V |V 1.09 | 1.04 | 145 | 1.62 | 0.05 0.17
4\ V|V IV |V 1.10 | 095 | 157 | 1.83 | 0.15 0.26
5\ v |V |V I Vv |V 282 | 244 | 3.49 | 4.11 | 0.38 0.63
6| v I IV IV IV |V IV 293 | 253 | 351 | 413 | 0.41 0.62
7\ v i v I|vI|Iv |v|Vv|v | 374] 321 | 558 | 598 | 0.52 0.41
Swiss data set; dependent variable: cost prediction ofénsu
1(v |V 1.16 1.03 1.61 1.72 | 0.13 0.11
2|V v 19.73 | 18.67 | 15.95| 19.62 | 1.07 3.67
3|V |V |V 20.09| 18.99 | 16.78 | 19.96 | 1.11 3.18
4\ V|V IV |V 20.34| 19.39| 17.08 | 20.48 | 0.95 3.40
5|1 v IV I v I Vv |V 35.02 | 34.13| 24.69| 28.18| 0.89 3.48
6| v I IV IV IV |V IV 35.08 | 34.21| 24.77 | 28.20| 0.86 3.42
7\ v | Vv |V I|v |Vv |Vv | Vv | 3968|3953 3350| 33.96| 0.15 0.47
Swiss data set; dependent variable: actual cost
1(v |V 0.56 0.46 1.05 1.15| 0.10 0.11
2|V v 952| 879| 6.00| 8.63| 0.72 2.63
3|V |V |V 969 | 893| 6.36| 8.90| 0.76 2.54
4|\ V|V IV |V 981| 9.09| 6.80| 9.29| 0.71 2.49
5|\ v | Vv |V I Vv |V 16.89 | 16.21 | 10.52 | 13.17| 0.68 2.65
6| v I IV IV IV |V IV 16.92 | 16.23 | 10.57 | 13.17| 0.68 2.60
7\ v | Vv |V IV |Vv |Vv | Vv |19.14]| 18.72| 1519 15.73| 041 0.54
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