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Abstract

In model-based small area estimation an explicit statistical model is used to
enhance efficiency of estimation in case of small subsamples. This model assumes
a fixed relationship between the statistic of interest and a set of covariates, which
is valid for all areas under consideration and can, thus, be used to stabilize es-
timation. In some applications, there might, however, be different subgroups of
areas with specific data-generating processes, i.e. specific relationships between
response variable and auxiliary information. In this case, estimation of a distinct
model for each subgroup would be more appropriate than one model for all obser-
vations. If so, the definition of subgroups becomes a crucial task in the estimation
process.

We propose a Finite Mixture Fay Herriot-type model to account for unob-
served heterogeneity in the data. More specifically, we assume that the statistic
of interest stems from a mixture distribution with K components. The estima-
tion of mixing proportions, area-specific probabilities of subgroup identity and the
K sets of model parameters is then performed simultaneously. Eventually, the
Finite Mixture Fay Herriot-type estimator is formulated as a weighted mean of
predicts from model 1 to K, with weights given by the area-specific probabilities
of subgroup identity.

The suggested method is tested in a model-based simulation study. It is then
applied to the problem of estimating regional rental prices on district level in
Germany.
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prices used in this study.
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1 Introduction

When analysing survey data in order to gain insight into social or economic
phenomena, the aim might not only be to make statistical inferences about the
entire target population but also to obtain reliable information for certain suben-
tities. These can for example be smaller areas within a region under study or
certain demographic subgroups in a population. Researchers are, however, usu-
ally confronted with the problem that the spatial or thematic disaggregation of
the available sample results in small subsamples for the subentities of interest,
which causes a lack of accuracy of conventional direct estimators.

Model-based Small Area Estimation (SAE) techniques, that are designed to pro-
duce reliable information even for small subsamples, might be a solution. These
methods aim at improving efficiency of estimation in the case of small subsamples
by means of an explicit statistical model. This model assumes a fixed relation-
ship between a set of covariates and the statistic of interest, which is valid for
all subentities under consideration. It can, thus, be estimated from the sampled
information from all areas and then be used to stabilize estimation.

In many applications it might, however, be plausible to assume that the effects
of given auxiliary information in some areas are different to those in others.
Hence, it seems sensible to consider different subgroups of areas with specific
data-generating processes and the estimation of subgroup-specific models might
be more appropriate. This leads, however, to the open question of how to define
suitable subgroups. In some cases, there might be a natural clustering variable. If
this is not the case, finite mixture regression models might be a solution. In this
framework, a set of two or more different models is specified and the estimation
of model parameters is performed simultaneously to estimating subgroup identity
or a probability of subgroup identity for each area.

We, therefore, propose a Finite Mixture Fay Herriot-type (FMFH) model to ac-
count for unobserved heterogeneity in the data. Our suggestion is inspired by an
application of estimating regional rental prices in Germany. It might, however,
be an appropriate method in any application where small area estimates for het-
erogeneous subentities are of interest. Furthermore, the suggested estimator can
also be interpreted as a flexible approach when the distribution of the statistic of
interest is unknown and the usual normality assumption of the basic small area
models seems inappropriate.

SAE has gained much attention in the last decades and standard methods are
nowadays well established. An extensive overview is provided with the standard
work of Rao (2003). An account of newer developments is given by Jiang and
Lahiri (2006) and Pfeffermann (2013). A study thematically related to the appli-
cation at hand has been published by Pereira and Coelho (2013), who estimate
average house prices in Portugal applying several different small area estimators.

Concerning the use of mixtures in SAE, some suggestions with different motiva-
tions have been made. Mixtures have been employed in order to relax restricting
distributional assumptions (see Elbers & van der Weide, 2014; Maiti, 2003) as
well as in robust SAE (see Datta & Lahiri, 1995; Gershunskaya, 2010). Recently,
Datta and Mandal (n.d.) porposed a mixture of a degenerate distribution lo-
calized at zero and the usual normal distribution for the random effects in an
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area-level mixed model. They, therewith, suggest a flexible strategy to small area
modelling. Random effects are only included for those areas for which the statis-
tic of interest is not sufficiently well explained by the covariates included in the
fixed part of the model. All these approaches do not only differ from our proposal
with respect to their motivation and underlying intuition but also in the form in
which mixtures are included into the framework. None of these works considers
a mixture of mixed-effects regression models employed for the prediction of the
statistic of interest in model-based SAE.

To our knowledge, only Maiti, Ren, Dass, Lim, and Maier (in press) (see also the
dissertation by Ren, 2011) have so far considered the integration of specific meth-
ods to account for the existence of different subgroups of areas into model-based
SAE. They use a model-based clustering algorithm proposed by Booth, Casella,
and Hobert (2008) to partition areas into subgroups. Small area estimates are
then obtained employing cluster-specific Fay Herriot-models. In contrast to that,
with suggesting a mixture model-based approach, we opted for a probabilistic
assignment to subgroups instead of hard clustering.

Most notably since the introduction of the EM-algorithm by Dempster, Laird,
and Rubin (1977), finite mixture model theory has received growing interest. See
McLachlan and Peel (2000) for an extensive overview of theoretical and practical
aspects of finite mixture modelling. Related to our approach, there are some
applications – mainly in the field of biology and the health sciences – where mix-
tures of mixed-effects models have been utilized. See Yau, Lee, and Ng (2003),
Celeux, Martin, and Lavergne (2005), Ng, McLachlan, Wang, Ben-Tovim Jones,
and Ng (2006), McLachlan, Ng, and Wang (2008), Martinez, Lavergne, and Trot-
tier (2009) as well as Martella et al. (2011). Verbeke and Lesaffre (1996) anal-
ysed linear mixed models where the random effects are distributed according to
a mixture of normal distributions. Scharl, Grün, and Leisch (2010) compared
the performance of mixtures of linear regression models with and without ran-
dom effects in a simulation study. In a recent paper, Du, Kahili, Neslehova, and
Steele (2013) proposed an approach for model selection for finite mixtures of linear
mixed models. Note that in these applications and theoretical discussions of finite
mixture models the interest usually either lies in clustering or, less frequently, in
the interpretation of component-specific model coefficients, whereas the approach
presented here focusses on predicting a statistic out of the estimated model.

The remainder of this paper is organized as follows: We start by introducing the
two fields of basic theory which we are relying on in developing our proposal.
More specifically we give a brief overview on model-based SAE and the specific
model applied and extended in our approach. We then introduce the basic the-
ory of finite mixture (regression) models. In section 3 we bring these two fields
together in presenting the FMFH-model. The suggested estimator is evaluated
in a simulation study. It is then applied to the problem of estimating regional
rental prices for German districts. We conclude with a summarizing judgement
of the proposed method and an outlook on remaining tasks.
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2 Basic Theory

2.1 Model-based Small Area Estimation

When a survey is conducted, besides an interest in making statistical inferences
about the entire population under study, there might also be the aim of obtaining
reliable information for specified subentities. These subpopulations are called
areas or domains depending on whether the disaggregation of the population is
by region or by content. To specify the problem we consider the following setting
(see Münnich, Burgard, & Vogt, 2013): A population U of size N is divided into
m pairwise disjoint subpopulations Ui, i = 1, . . . ,m. A sample S of size n is
drawn, with Si = S ∩Ui designating the sample realized in Ui. Now the aim is to
simultaneously estimate a vector of m area-specific parameters θ = (θ1, . . . , θm),
e.g. means µ.

The disaggregation of the available sample often results in small sample sizes for
the subentities. Under these circumstances, conventional direct estimators (which
by definition only use the information from the area under consideration) lead to
an unacceptably large standard error. Note, however, that such direct estima-
tors are generally design-unbiased. Methods of model-based SAE are designed
to produce reliable estimates even for very small subsamples. The strategy is to
apply indirect techniques that make use of additional information as, for exam-
ple, sampled information from other areas. This additional information is often
included through a model. The intuition is, that part of the (inter-area) variation
of the statistic of interest can be explained by a relationship between this variable
and a certain set of covariates that is valid for all areas under consideration. A
respective model can, thus, be estimated using the data points from all subsam-
ples. The specified relationship can then be employed to stabilize estimation. In
the literature this strategy is often referred to as ”borrowing strength” (Ghosh &
Rao, 1994).

A basic approach in SAE is to estimate a linear mixed model, either on level of
the observation units or on aggregated level of the areas. The standard area level
model as defined by Fay and Herriot (1979), which is the relevant model for the
study at hand, is given by

µ̂Dir
i = xT

i β + vi + ei for i = 1, . . . ,m (1)

vi
i.i.d∼ N(0, σ2v)

ei
ind∼ N(0, σ2e,i).

µ̂Dir
i is the direct estimate, obtained as a weighted mean from the sample realized

in area i . ei is the error term, which in this case is the sampling error of the direct
estimate with known variance σ2e,i. x

T
i denotes the vector of auxiliary information

for area i with corresponding regression coefficients β. The area-specific random
effect is denoted by vi. It is assumed that vi and ei are independently distributed.

When estimating this model, the interest is not as much in the model coefficients
themselves as in the prediction of the target variable out of the model. The
Empirical Best Linear Unbiased Predictor (EBLUP) for the parameter of interest
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µ under this model (see Rao, 2003, p. 107-108, 116-118) is given by

µ̂FH
i = xT

i β̂ + v̂i (2)

= xT
i β̂ + γ̂i(µ̂

Dir
i − xT

i β̂)

= γ̂iµ̂
Dir
i + (1− γ̂i)xT

i β̂

with

γ̂i =
σ̂2v

σ2e,i + σ̂2v
. (3)

This estimator is called the Fay Herriot (FH) estimator µ̂FH
i for the parameter

of interest. β̂ and v̂i denote the BLUE for β and the BLUP for vi, respectively
(see Henderson, Kempthorne, Searle, and von Krosigk (1959) and Searle, Casella,
and McCulloch (1992) for estimation and prediction of parameters for a mixed
model). Note that µ̂FH

i can be expressed as a composite estimator of the synthetic
estimator xT

i β̂, obtained from the fixed part of the model, and the direct estimator
µ̂Dir
i . Weights are given by the area-specific shrinkage factor γ̂i, that sets the

model variance σ̂2v in relation to the total variance σ2e,i+ σ̂
2
v . If the model-variance

is small compared to the design variance, γ̂ is close to zero and the synthetic
estimator dominates. Intuitively, γ̂ can be understood as a relative measure of
confidence in the model- and the design-based estimator (see Rao, 2003, p. 116-
117).

The aim, of course, is to stabilize the estimation, that is to yield estimates with
a far smaller variance in the context of small sample sizes. Note, however, that
this comes with the price of loosing the property of design-unbiasedness. There,
hence, is a trade-off between bias and variance. The relevant measure to judge
the quality of model-based small area estimates, therefore, is the mean square
error (MSE), that is MSE(µ̂FH

i ) = E(µ̂FH
i − µi)2.

2.2 Finite Mixture Models

Finite mixture models offer an intuitively appealing approach when it is plausible
to assume that there is a certain number of – actually existing – subgroups in
the population yet subgroup identity is unobserved for all observations. The aim
then is to estimate a model for each subgroup as well as unconditional subgroup
probabilities. Depending of the purpose of the application, there might also be
an interest in attributing subgroup-identity or a probability of subgroup identity
to specific observations. With this intuitive background, the framework of finite
mixture modelling is sometimes conceptualized as a missing data problem, where
the realizations of a multinomial variable indicating class membership is missing
for all observations. Correspondingly, there are some parallels in the estimation
of finite mixture models and the fitting of models in the case of missing values
(see McLachlan & Peel, 2000, p. 7, 19-20).

Yet, the assumed components of the mixture distribution do not necessarily cor-
respond with actually existing subgroups. Alternatively, finite mixture modelling
can be interpreted as a flexible semi-parametric way to model unknown distribu-
tional shapes (see McLachlan & Peel, 2000, p. 7-8).
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Consider m observations yi, i = 1, . . . ,m of an outcome variable y and a set
of covariates x. For a K-component finite mixture of regression models, the
conditional probability density function of y given x can be written as

f (y|x,Ψ) =

K∑
k=1

πkfk(y|x,θk). (4)

Here, fk are the K component densities, πk are the mixing proportions with∑K
k=1 πk = 1 and πk > 0 ∀ k = 1, . . . ,K and θ1, . . . ,θK are the K vectors

of component-specific model parameters. Ψ = (π1, . . . , πK−1,θ
T
1 , . . . ,θ

T
K) is a

vector containing all the unknown parameters in the mixture distribution. The
aim of mixture modelling is to specify K appropriate models and to estimate
the corresponding model parameters θk as well as the set of (unknown) mixing
proportions or model probabilities πk for each model.

As stated above, this framework is often conceptualized as a missing data problem
(see McLachlan & Peel, 2000, p. 7, 19-20): It is assumed that each observation
belongs to one of K (actually existing) classes with a specific data-generating
process yi|xi, zi ∼ fzi(yi|xi,θzi). Here, zi ∈ [1, . . . ,K] is an unobserved variable
identifying the class, yi belongs to, i.e. the data-generating process of yi. The
mixing proportions πk are then interpreted as the unconditional probability that
an observation belongs to class k, that is πk = Pr(zi = k).

Additionally to the consideration of model probabilities, i.e. the unconditional
probabilities for zi = k, there might also be an interest in class-membership for
a specific observations yi. The conditional probability that observation i belongs
to class k and is, thus, generated by the class-specific process is given by

ξi,k = (Pr(zi = k)|yi,xi,Ψ) =
πkfk(yi|xi,θk)∑
j∈K πjfj(yi|xi,θj)

. (5)

ξi,k is, hence, an observation-specific measure of class-membership, which can
also be interpreted as the degree to which observation i is consistent with the
relationship between y and x implied by model k. argmaxk(ξ̂i,k) can be used to
segment the observations into k clusters, i.e. to construct a list of observations
that are best explained by model k (see McLachlan & Peel, 2000, p. 29).

A possible problem of finite mixture models is identifiability (see Titterington,
Smith, & Makov, 1985). A finite mixture of regression models as specified above
is said to be identifiable if, for a given set of covariates x, for any two vectors of
parameters Ψ the equality

K∑
k=1

πkfk(y|x,θk) =

K∗∑
k=1

π∗kfk(y|x,θ∗k) (6)

implies that K = K∗ and that Ψ∗ can be permuted1 such that Ψ = Ψ∗. The
identifiability of mixtures of linear regression models depends on the number of
components K, the component-specific densities and the design matrices. See
Hennig (2000) for details. In what follows, we assume that the mixture model
under consideration is identifiable.

1To see the necessity of this amendment in the definition, note that the mixture density is invariant
to the change of component labels in (θ1, . . . ,θK) and (π1, . . . , πK) if the component densities belong
to the same parametric family.
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3 The Finite Mixture FH-type Model

As stated above, model based small area estimators use an explicit statistical
model to improve estimation by exploiting the relationship between a set of co-
variates and the statistic of interest. In some applications, it may, however, be
plausible to assume that the effects of given covariates in some areas are different
to those in others. It might also be possible, that specific covariates that are
important in some areas, do not play a role at all elsewhere.

Given a large enough number of areas, it may, then, be plausible to estimate
different models for different types of areas. If so, next the questions arises of
how to compose sensible subgroups. There might be a natural clustering variable,
which can be used to segment areas into two or more subgroups. If this is not
the case, finite mixture modelling might be a suitable framework to ”let the
data decide” on how to group the areas into K subgroups with specific data-
generating processes. In the following sections we propose, analyse and apply
an corresponding estimator for SAE in the presence of unobserved subgroups of
areas.

3.1 Model and Estimator

Consider m areas divided into K unobserved classes. We assume that there
is a specific data-generating process in each class. Thus, the statistic of in-
terest for a given area i belonging to class k is appropriately modelled by a
normal distribution with component-specific mean xTβk and covariance matrix
diagi∈m(σ2e,i + σ2v,k), that is

µi|(zi = k) ∼ N (xT
i βk, σ

2
e,i + σ2v,k). (7)

As above, σ2e,i denotes the variance of the direct estimate and is assumed to be
known for all areas.

Alternatively, we can loosen the assumption of exclusive subgroup membership
of areas to one single subgroup and instead draw on the more flexible notion that
each area belongs to the different subgroups with a certain probability. This might
be understood as an approach of fuzzy or soft clustering via mixture models,
where instead of a hard assignment to clusters only a probabilistic statement
about cluster membership is made (see Everitt, Landau, Leese, & Stahl, 2011,
chap. 6 and p. 244-245). An intuitive interpretation is that there are different
data-generating processes, i.e. different possible relationships between x and y,
and each of them is valid in every area with a certain area-specific probability.
Under this assumption, the statistic of interest for a given area is appropriately
modelled by a weighted mean of the K component densities

µi ∼
K∑
k=1

ξi,kN (xT
i βk, σ

2
e,i + σ2v,k) (8)

where weights are given by ξi,k, i.e. the area-specific measures of consistency with
model k.
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Either way, we specify K appropriate models and estimate a finite mixture of
K FH-models with component-specific fixed coefficients βk and model variances
σ2v,k:

µDir
i =

K∑
k=1

πk
(
xT
i βk + vi,k + ei

)
, i = 1, . . . ,m (9)

vi,k
i.i.d∼ N(0, σ2v,k)

ei
ind∼ N(0, σ2e,i).

As described above, simultaneously estimates for the K mixing proportions πk
and the m ·K area-specific conditional probabilities ξi,k are obtained.

Let µ̂FH,k
i denote the predict for µi derived from model k. Then – in accordance to

the two possible interpretations we suggested above – we have two possibilities to
define an estimator for µi that accounts for the existence of unobserved subgroups
of areas. We can either use

µ̂FH,mix
i = µ̂FH,k∗

i where k∗ = argmaxk(ξ̂i,k), (10)

i.e. use the predict for the statistic of interest obtained from the model with the
largest area-specific conditional probability that area i belongs to model k, or

µ̂FH,mix
i =

K∑
k=1

ξ̂i,k · µ̂FH,k
i . (11)

Here, we estimate the statistic of interest as a weighted mean of predicts from
the K models, where the area-specific weights are given by the conditional prob-
abilities that area i belongs to model k.

In the application presented below, we employed the more flexible notion of the
second interpretation and opted for (11) for the following reasons:

If subgroups are not clearly separated such that two or more models are almost
equally consistent with the observed information for a given area, the variance of
k∗ might be quite large. In this case the respective switching of prediction mod-
els in (10) might cause a considerable variance in the estimator. This variance is
somehow unjustified in the sense that it is not due to the instability of estimated
parameters. Furthermore, considering the basic notion of borrowing strength in
SAE, it seems inappropriate not to exploit the explanatory power of all models
that are, to some estimated degree, consistent with a given observation. This ar-
gument again is particularly valid if subgroups are overlapping and the conditional
probabilities are similar for different components of the mixture. Eventually, the
second estimator also is the appropriate choice when we drop the assumption of
a true number of physically existent subgroups and interpret the finite mixture
of FH-models as a semiparametric way to model unknown distributional shapes.

For these reasons, in the following, we draw on the estimator suggested in (11).
We call it the Finite Mixture Fay Herriot-type (FMFH) estimator.
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Note however, that the choice of one of these two estimators may depend on the
specific application at hand. Given a clear separation of a small number of sub-
groups, each containing a large enough number of areas, it might be appealing to
use the intuitively more straightforward estimator suggested in (10). It simplifies
the interpretation and presentation of results. Besides, it yields clearly identi-
fied clusters which in itself might be a desired result and immediately justifies
employing a mixture-based estimator.

3.2 Parameter Estimation

Parameter estimation is performed using the the frequentist approach of maxi-
mum likelihood estimation via the EM-algorithm. Alternatively, a Bayesian ap-
proach can be adopted. See McLachlan and Peel (2000, chap. 4) for an overview
of Bayesian inference for finite mixture models.

The log-likelihood function for a mixture of K normal components is given by

logL(Ψ) = l(Ψ) =
m∑
i=1

log

(
K∑
k=1

πkfk(yi|xi,θk)

)
(12)

Maximum likelihood estimates for the parameters θk = (βT
k , σ

2
v,k) as well as the

model probabilities πk are obtained by maximizing this log-likelihood given the
observed realizations for y and x. However, optimization of (12) can not be done
directly because the log of a sum in the function makes its derivative computation-
ally intractable. Following a standard approach in fitting mixture models, max-
imum likelihood estimates are, therefore, obtained using the EM-algorithm, an
iterative numerical optimization algorithm introduced by Dempster et al. (1977)
as a method for maximum likelihood estimation in the case of incomplete data.
See McLachlan and Peel (2000) for an overview of parameter estimation via the
EM-algorithm for mixture models.

In this estimation context, the finite mixture model framework is, accordingly,
usually interpreted as a missing data problem (see McLachlan & Peel, 2000, p.
48). As described above, this implies the notion that each observation yi belongs
to one of theK classes with zi indicating the true class membership for observation
yi. The complete data set would, thus, contain m realizations of yi,xi and zi and
the complete-data likelihood lc would be given by

lc(Ψ) =

m∑
i=1

log

(
K∑
k=1

I (zi = k)πkfk(yi|xi,θk)

)
, (13)

which can be rearranged2 as

lc(Ψ) =

m∑
i=1

K∑
k=1

I (zi = k)(log πk + log fk (yi|xi,θk)). (14)

2For any i the indicator function equals 0 in K − 1 cases and the inner sum
∑K

k=1 I (zi =
k)(πkfk (yi|xi,θk)) reduces to a single term πkfk(yi|xi,θk) with corresponding log given by log πk +
log fk (yi|xi,θk)).
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Maximizing of lc with respect to the model parameters θk, the model probabilities
πk as well as the latent variable z is performed iteratively by altering between an

• Expectation-step (E-step), where an expectation Q of lc with respect to
I (zi = k) is derived given the current estimates of the unknown parameters
in Ψ, and a

• Maximization-step (M-step), where an updated estimate for Ψ is obtained
by maximizing this expectation.

These two steps are performed alternately until convergence.

More detailed, in the context of finite mixture models the following procedure is
applied:

• Specification of starting values
To begin, an initial choice of starting values is made. This can either be an
initial assumption for the parameters Ψ or a partition of observations into
K groups. See McLachlan and Peel (2000, chap. 2.12) for a discussion of
different initialization strategies and related convergence properties. As slow
convergence was not a problem in the performed simulation studies and the
real-data application presented below, we opted for a random assignment of
zi, i.e. for a random partition of areas into K subgroups.

• E-step
The expectation of the complete-data log-likelihood lc with respect to I (zi =
k) is derived as

Q(Ψ) = E[lc(Ψ)] (15)

= E

[
m∑
i=1

K∑
k=1

I (zi = k)(log πk + log fk (yi|xi,θk))

]

=

m∑
i=1

K∑
k=1

ξ̂
(t)
i,k(log πk + log fk (yi|xi,θk)),

where ξ̂i,k denotes the conditional expectation for zi = k given yi,xi and the

current estimate for Ψ. They are calculated using Ψ̂
(t−1)

, i.e. the estimates
for θk and πk obtained in the last iteration step (t − 1) (or, in the first
iteration, the chosen starting values):

ξ̂
(t)
i,k = Pr(zi = k|Ψ̂

(t−1)
, yi,xi) (16)

=
π̂
(t−1)
k fk(yi|xi, θ̂

(t−1)
k )∑

j∈K π̂
(t−1)
j fj(yi|xi, θ̂

(t−1)
j )

• M-step

In the M-step an updated estimate Ψ̂
(t)

for Ψ is obtained by maximizing Q
as derived in the E-step. It is obvious from (15) that optimization for θk can
be done for each model separately by maximizing the weighted component-

specific log-likelihood
∑m

i=1 ξ̂
(t)
i,k log fk (yi|xi,θk). For the FMFH-model this
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was solved numerically via the BFGS-algorithm using the R-package maxLik
(see Henningsen & Toomet, 2011).

Deriving an update for πk requires maximizing
∑m

i=1

∑K
k=1 ξ̂

(t)
i,k log πk under

the constraint
∑K

k=1 πk = 1. The result is

π̂
(t)
k =

1

m

m∑
i=1

ξ̂
(t)
i,k , (17)

i.e. π̂
(t)
k is obtained by taking the average of ξ̂

(t)
i,k over all observations.

• Termination
Both steps are repeated until the likelihood improvement in a step is smaller
than an ex ante specified threshold ε, that is until L(Ψ(t))−L(Ψ(t−1)) < ε.

The likelihood L(Ψ) is never decreased after an iteration step so that – for a
sequence of likelihood values bounded above – convergence of the algorithm is
guaranteed. For multimodal distributions this might, however, be convergence to
a local maximum (see Dempster et al., 1977; Wu, 1983). To overcome this issue,
the algorithm is usually applied repeatedly with different starting values. In both
the simulation study and the application presented below we adopted this simple
strategy. For a detailed account of convergence properties of the EM-algorithm
see Dempster et al. (1977), Wu (1983) and McLachlan and Krishnan (2008).

3.3 Simulation Study

To analyse the proposed estimator, a Monte Carlo (MC) simulation study was
performed. Several populations were generated to study the performance of the
suggested methods under different scenarios. The choice of scenarios and the
design of the populations with respect to covariates, fixed model coefficients and
variance components was guided by the characteristics of the application moti-
vating our proposal (see section 3.4). In what follows we present results for two
selected populations.

Population 1:

• K = 1

• βk=1 = (2.75, 0.15, 0.3)

• x2 ∼ N (5, 1.5) and x3 ∼ N (4.5, 1)

• σ2u = 0.07

• σ2e,i ∼ unif(0.02, 0.22)

Population 2:

• K = 2 and πk = 1/K for all k

• βk=1 = (2.75, 0.15, 0.3) and βk=2 = (6.5,−0.15, 0.0)

• x2 ∼ N (5, 1.5) and x3 ∼ N (4.5, 1)

• σ2u,k = 0.07 for all k
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• σ2e,i ∼ unif(0.02, 0.22)

The aim of population 1 was to analyse the consequences of a misspecification
in the sense of assuming a mixture distribution when the population actually is
homogeneous. With population 2 a scenario was considered where the areas actu-
ally are segmented into two equally-sized subgroups. In figure 3.3 the distribution
of the true conditional probabilities that area i belongs to class 1 are depicted.
The first boxplot illustrates the distribution of ξi,1 for areas actually belonging to
class 1, whereas the second boxplot shows ξi,1 for areas belonging to class 2. It
can be seen that the two subgroups, although indeed separated, do overlap to a
certain degree. We consider this a more realistic scenario than a sharp separation
of components.
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Conditional probability that area i belongs to class 1

Figure 1: Conditional probabilities ξi,1 for class 1

We performed a MC simulation study with 10,000 runs, applying the following
procedure: For each of the described scenarios we drew µi = xT

i βk + vi,k, i =
1, . . . , 200 from the superpopulation once. The random effect was then held fixed
over the simulation runs. Randomness was induced through the sampling variance
of the direct estimate, that is ei, i = 1, . . . , 200 was drawn from N(0, σ2e,i) in each
run.

In each MC-iteration, the specified model was estimated 30 times and the estima-
tion with the largest likelihood was chosen as the final result. For each scenario
the algorithm converged in all iterations. We obtained the proposed FMFH-
estimator as well as the alternative mixture-model based estimator suggested in
(10). Furthermore, we estimated the Standard FH-model and the FH-model with
a correctly assigned dummy-variable for subgroup identity as benchmark estima-
tors.

For the evaluation of results we considered the MC relative bias as well as the
MC relative root mean square error:

RBiasi =
1
R

∑R
r=1(µ̂i,r − µi)

µi
(18)

RRMSEi =

√
1
R

∑R
r=1(µ̂i,r − µi)2

µi
(19)

A crucial result of the simulation study was obtained from population 1. Al-
though we do not gain accuracy compared to the standard FH-estimator, when
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Figure 2: Relative Bias for Population 1

the assumption of the existence of subgroups is wrong), we do not lose it either
(see figure 3). The improvement realized trough the application of SAE meth-
ods instead of direct estimation is retained. Even more importantly, this kind of
misspecification does not cause a considerable amount of bias (see figure 2). As
shown in figure 4, where the MC-expectations for the FH-estimator are plotted
against those for the FMFH-estimator, the expectation for the predicts obtained
from the FH-model and the FMFH-model is almost equal for all areas.

In population 2, the assumption of the existence of two distinct subgroups of areas
actually was fulfilled. While the depiction of the relative bias shows almost no
difference between the different estimators (see figure 5), figure 6 illustrates that
the RRMSE can be reduced when employing the FMFH- instead of the standard
FH-estimator. This improvement was realized despite the construction of the two
subgroups as partly overlapping. A sharper separation of classes would further
increase the superiority of the FMFH-estimator over the standard approach. The
FH-estimator with dummy, included as a reference, clearly outperformed the
proposed method. As it uses the true subgroup identity, this is an expected
result. If subgroup identity were known, there would, however, be no need to
employ a mixture model approach. The aim of the proposed method of course is,
to come as close as possible to the results obtained with knowledge of subgroup
identity in cases where this information is unobserved.
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Figure 3: Relative Root Mean Square Error for Population 1
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Figure 5: Relative Bias for Population 2
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3.4 Application: Estimating Regional Rental Prices
for German Districts

The suggested method was motivated by our intention to estimate rental prices for
Germany on district level (NUTS-3). In the following we present this application
and discuss the employment of standard SAE methods as well as the improvement
realized when utilizing the proposed estimator.

Direct estimates for the estimation of regional rental prices were obtained from
the German Mikrozensus 2010, an important 1%-household survey with a special
section on housing every fourth year. The sample is drawn as a cluster sample
with repeated stratification. For further information see Statistisches Bundesamt
(2011, 2012). What is important to us is that results are usually not published
on district level because they do not fulfill precision requirements. For the anal-
ysis at hand, a special evaluation was provided by the Federal Statistical Office.
It contained average rents per square meter on district level for 246 of the 412
German districts.3 Furthermore, district-specific sample sizes ni as well as the
estimated design variances of the direct estimates were provided. As frequently
done in practical applications, we set σ̂2e,i = σ2e,i, i.e. we used these estimates as
the presumably known variances of the direct estimates, thereby ignoring the vari-
ability of the estimates (For a discussion of the implications of this assumption,
see Bell (2008)).

We started by estimating the standard FH-model. Auxiliary information could
be obtained from a broad range of regional indicators on district level provided
by official statistics in Germany. Variable selection was performed by pursuing
an literature-based analysis of important driving factors of rental prices as well as
by applying simple stepwise selection procedures. As a model selection criterion
we used the conditional AIC as suggested by Vaida and Blanchard (2005). Based
on the results a model including indicators of tension on local rental markets as
well as of purchasing power and attractiveness of a region was chosen. See table
1 for an overview.

Table 1: Auxiliary information

population growth rate PGRO
relevance of rented housing RENT
vacancy rate VACR
employment rate EMPL
net migration rate MIGR
price of building land LAND

The results were promising. The assumption of a common fixed part of the model
for all districts, however, seemed inappropriate and was criticized when presenting
the model to practitioners. We, therefore, adopted the proposed approach and
estimated a finite mixture of FH-models with K = 2 and the same set of covariates
as above for both components.

3Three of the federal states, namely Hesse, Bavaria, and Baden-Württemberg, did not give their
approval to use the data.
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Figure 7: Comparison of Direct Estimates and FMFH-Estimates

We used the porposed estimator to calculate FMFH-estimates of average rental
prices per square meter as a weighted mean of the predicts obtained from the
two models. In figure 7, we plotted FMFH-estimates against the available direct
estimates. Thus, the unbiased but imprecise direct estimates obtained from the
sample are deployed to judge the bias of model-based FMFH-estimates. This
simple plot has been suggested as a tool for bias diagnostic by Brown, Chambers,
Heady, and Heasman (2001). To further analyse large deviations between direct
and model-based estimates (that might either stem from a relatively high variance
of the direct estimate or from a large difference between direct and synthetic
estimate), data points for districts where |µ̂FMFH

i − µ̂Dir
i | > σe,i are indicated

by a cross. Note that deviations are acceptable if they are due to a large σe,i
yet problematic if the standard error of direct estimates is relatively small and
deviations are caused by a considerable discrepancy between synthetic and direct
estimates.4

The plot indicates a slight bias in the results for the cheapest districts. This affects
approximately 10 of the 246 areas considered here and is a problem we observed
for the standard FH-model as well. The results for the remaining regions appear
to be fairly good. There are, however, few regions where the distance between
direct estimate and FMFH-estimate is larger than the standard deviation of the

4Therefore, Fay and Herriot (1979) suggested a corresponding boundary to shrinkage towards the
synthetic component in the calculation of FH-estimates.
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Figure 8: Conditional Probabilities for model 1

direct estimate.

A natural question arising is, what factors determine the conditional probabili-
ties for subgroup identity. Put differently, the result of probabilistic clustering
realized in the estimation process is of interest. We, therefore, plotted the esti-
mated area-specific conditional probabilities ξ̂i,1 in a map (see figure 8). Note that

ξ̂i,1 + ξ̂i,2 = 1, which makes the illustration of conditional probabilities for model

2 redundant. The spatial representation of ξ̂i,1 hints at some kind of agglomera-
tion effect, as both the districts around Hamburg and the Rhineland-region are
strongly assigned to model 2.

The results for rental prices on district level are illustrated in figure 9. Estimated
prices range from approximately 3.70 to 7.00 Euro per square meter. As expected,
the map clearly shows the particularly high prices in large cities such as Hamburg,
Cologne, Düsseldorf, and Mainz. Rural districts in Eastern Germany and some
areas in Rhineland-Palladium are identified as especially low-priced. As indicated
above, Hesse, Bavaria, and Baden-Württemberg did not provide direct estimates
for the analysis at hand.

The aim of applying SAE techniques is to realize a gain in accuracy in the con-
text of small subsamples and, hence, large standard errors of traditional direct
estimates. With figure 10 the performance of the suggested approach is evalu-
ated in this regard. It depicts boxplots for the distribution of the estimated root
mean square error (RMSE) of the proposed FMFH-estimates and the standard
FH-estimates as well as of the Standard Deviation (SD) of the direct estimates.
The red stars mark the respective average RMSE and SD over the areas. MSE
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estimation for the FMFH-estimator is performed applying a double-bootstrap as
suggested by Chatterjee and Lahiri (2007). As expected, the plot shows that
a significant gain in accuracy can be realized when applying SAE methods in-
stead of direct estimation. Comparing the proposed approach and the standard
FH-model, a considerably improvement can be made for almost all areas when
applying the FMFH-estimator instead of standard methods. Correspondingly,
the FMFH-estimator has a smaller average RMSE. There is, however, a small
number of areas for which the standard method yielded better results.

4 Conclusion

Starting from the notion that the assumption of a common model for all areas
might be inappropriate in many applications of SAE, we proposed a finite mix-
ture of FH-models to account for the existence of unobserved or unobservable
subgroups of areas. More specifically, we assumed that the statistic of interest
is appropriately modelled by a mixture of K FH-models. As discussed above,
this is not only a possible way to account for the existence of subgroups of areas,
but can also be interpreted as a flexible semiparametric way to model unknown
distributional shapes. We introduced and discussed an corresponding estimator,
the FMFH-estimator, which is formulated as the weighted mean of predicts from
the mixture components.

The simulation study, performed to analyse the suggested estimators, showed
good results: The proposed method outperformed the standard FH-estimator
in terms of RRMSE. Furthermore, the scenario considered with population 1
showed that this is even true, when the assumption of different subgroups is false.
Finally, we obtained reasonable first results for the application to the problem of
estimating regional rental prices for Germany.

Further work on mixture distributions in SAE is under progress. First, to carry
on with the work presented here, we are working on the MSE estimation for the
proposed estimator. As described above, first attempts with a double-bootstrap
as suggested by Chatterjee and Lahiri (2007) were made and showed reasonable
preliminary results. Calculation time, however, was daunting and so far pro-
hibited the inclusion of MSE estimation into the simulation study. Second, we
are currently considering a finite mixtures of unit-level models. A corresponding
working paper is in progress. Finally, work remains to be done on model selection
and diagnostics for the proposed estimator. Improved techniques of model selec-
tion will, hopefully, also lead to even better results for the application presented
above.
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