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Abstract

In this paper, we estimate a logit mixture vector autoregressive (Logit-MVAR)

model describing monetary policy transmission in the euro area over the period

1999−2015. MVARs allow us to differentiate between different states of the econ-

omy. In our model, the time-varying state weights are determined by an underly-

ing logit model. In contrast to other classes of non-linear VARs, the regime affil-

iation is neither strictly binary, nor binary with a transition period, and based on

multiple variables. We show that monetary policy transmission in the euro area

can indeed be described as a mixture of two states. The first (second) state with an

overall share of 84% (16%) can be interpreted as a “normal state” (“crisis state”). In

both states, output and prices are found to decrease after monetary policy shocks.

During “crisis times” the contraction is much stronger, as the peak effect is roughly

one-and-a-half times as large when compared to “normal times.” In contrast, the

effect of monetary policy shocks is less enduring in crisis times. Both findings pro-

vide a strong indication that the transmission mechanism is indeed different for

the euro area during times of economic and financial distress.
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1 Introduction

There is an ongoing discussion as to whether or not the transmission mechanism of

monetary policy is different during crisis times compared to normal times. For in-

stance, the “aim at safeguarding an appropriate monetary policy transmission” is used

by the European Central Bank (ECB) as justification for the Outright Monetary Trans-

actions program (ECB, 2012).

Empirical research based on cross-country studies generally supports the notion

that there are differences between normal times and crisis times. Bouis et al. (2013)

and Bech et al. (2014) find that monetary policy is less effective after a financial cri-

sis due to a partially impaired transmission mechanism. Jannsen et al. (2015) differ-

entiate between an acute initial phase of financial crises and a subsequent recovery

phase. They show that the transmission mechanism is only impaired during the recov-

ery phase, whereas the effects on output and inflation during the acute initial phase

are even stronger than during normal times. A related branch of the literature deals

with the asymmetric effects of monetary policy during the “regular” business cycle.

For instance, Weise (1999), Garcia and Schaller (2002), and Lo and Piger (2005) find

that monetary policy is more effective during recessions than during expansions.1

In all of these studies, monetary policy is examined either in a linear or in a regime-

switching vector autoregressive (VAR) model. We extend these approaches by using

a so-called mixture VAR model. Similar to threshold VARs (Tsay, 1998), Markov-

switching VARs (Hamilton, 1989, 1990), and smooth transition VARs (Weise, 1999;

Camacho, 2004), mixture VARs allow us to differentiate between different states of the

economy. In contrast to the three other classes of VARs, however, the regime affilia-

tion is neither strictly binary, nor binary with a transition period. Mixture VARs (Fong

et al., 2007) are comprised of a composite model with continuous state affiliations that

are allowed to vary over the complete sample period and that are potentially based on

multiple variables.

1Tenreyro and Thwaites (2016) find the opposite, as in their paper monetary policy in the United
States is less powerful during recessions.
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Our analysis is the first to implement the idea of Bec et al. (2008) of a concomitant

logit model for the calculation of state weights in a mixture VAR model. We deviate

from existing models (Dueker et al., 2011; Kalliovirta et al., 2016) by leaving the set of

variables that determine these weights open to the user, rather than restricting these

to the set of endogenous variables in the mixture VAR model. Employing a logit model

to determine the weights also leads to a smoother transition between the different

economic states and avoids the problem of jumping regime weights, as in Fong et al.

(2007) and Kalliovirta et al. (2016). In addition, we provide the first implementation of

a logit mixture vector autoregressive (Logit-MVAR) model in the context of monetary

policy transmission. Our analysis focuses on the euro area and the period 1999−2015.

We show that monetary policy transmission in the euro area can be described as a

mixture of two states. The second state with an overall share of 16% can be interpreted

as a “crisis state” as its weights are particularly large after the Lehman collapse in

2008. Other, albeit smaller, peaks are found during the recession in 2002−2003, the

euro area sovereign debt crisis in 2011, and the Greek sovereign debt crisis in 2015.

Correspondingly, the first state with an overall share of 84% can be interpreted as

representing “normal times.” In both states, output and prices decrease after monetary

policy shocks. During crisis times the contraction is much stronger, as the peak effect

of both variables is roughly one-and-a-half times as large compared to normal times.

In contrast, despite this stronger peak effect, the effect of monetary policy shocks on

output and prices is less enduring during crisis times. Both findings provide a strong

indication that the transmission mechanism is indeed different for the euro area during

times of economic and financial distress. In line with Weise (1999), Garcia and Schaller

(2002), Lo and Piger (2005), Neuenkirch (2013), and Jannsen et al. (2015), we find a

stronger reaction during the acute phase of the financial crisis and during recessions.

The remainder of this paper is organized as follows. Section 2 introduces the Logit-

MVAR model and the data set. Section 3 shows the empirical results. Section 4 con-

cludes with some policy implications.
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2 Econometric Methodology

The idea of non-linearities in macroeconomic variables, arising from business cycle

fluctuations, has been discussed for a long time. The most common approaches to

capture these regime-dependent non-linearities are the Markov-switching VAR model

proposed by Hamilton (1989, 1990) and the threshold VAR model of Tsay (1998). A

general criticism of both model classes is the binary regime affiliation as the economy is

assumed to shift between regimes, but is restricted to be located in strictly one regime

at a time. A transition period including a mixture of regimes, however, might be a

more realistic description of the data. Smooth transition VAR models (Weise, 1999;

Camacho, 2004) aim at filling this gap. Nevertheless, outside of the (possibly long-

lasting) transition period, the economy remains rigidly in one state in this class of

models, too. We overcome this shortfall by proposing a mixture VAR that assumes the

co-existence of two or more states with time-varying weights. As a consequence, we

are not studying a switch in regime, but the degree of dominance of one state over the

other(s). Finally, we also propose a submodel to examine and understand the economic

reasons for the time-varying weights.

2.1 Finite Mixture Vector Autoregressive Models

To the best of our knowledge, the only paper employing a finite mixture of VAR mod-

els in the context of monetary policy transmission is Fong et al. (2007).2 In their paper,

monetary policy transmission is described by K different components, each being lin-

ear Gaussian VAR processes with individual lag orders pk. Their MVAR(n,K ,p1,p2, . . . ,

pK ) model with K regimes and an n-dimensional vector of endogenous variables Yt is

given by:

F(yt |Ft−1) =
K∑
k=1

αkΦ
(
Ω
− 1

2
k

(
Yt −Θk0 −Θk1Yt−1 −Θk2Yt−2 − . . .−ΘkpkYt−pk

))
. (1)

2Lanne and Lütkepohl (2010) propose a structural VAR with non-normal residuals that are mod-
elled as a mixture of normally distributed errors and apply their model in the context of international
monetary interdependence.
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F denotes the information set up to time t − 1. Φ(.) is the multivariate cumulative

distribution function of independent and identically distributed standard normal ran-

dom variables. Θk0 is the n-dimensional vector of intercepts in regime k. Θk1,. . . ,Θkpk

are the n × n coefficient matrices for the kth regime, and Ωk is the n × n variance co-

variance matrix for the kth regime. The mixture weights 0 ≤ αk ≤ 1 with k = 1, . . . ,K

and
∑K
k=1αk = 1 can be interpreted as the time-unconditional probabilities of yt being

generated from the kth VAR process. Fong et al. (2007) provide a proof of two sufficient

stationarity conditions for MVAR processes.

Kalliovirta et al. (2016) extend this MVAR model by allowing the mixture weights

αk to vary over time and thus introduce the conditional probabilities 0 ≤ αt,k ≤ 1 with

k = 1, . . . ,K ,
∑K
k=1αt,k = 1, and t = 0, . . . ,T . The resulting MVAR model is given by:

F(yt |Ft−1) =
K∑
k=1

αt,kΦ
(
Ω
− 1

2
k

(
Yt −Θk0 −Θk1Yt−1 −Θk2Yt−2 − . . .−ΘkpkYt−pk

))
(2)

For the parameter estimation, Fong et al. (2007) and Kalliovirta et al. (2016) propose an

expectation maximization (EM) algorithm, where the missing information for comput-

ing the mixture weights is derived in the expectation step completing the likelihood.

In the maximization step, this completed likelihood is then maximized. Both steps are

repeated sequentially until convergence is achieved.

These weights αk in Eq. (1) and αt,k in Eq. (2), however, lead to very unstable

estimates in our application and to a huge variability in the impulse response functions

for different starting values. In addition, from an economic point of view, the transition

process should be dependent on variables known or suspected to have impact on the

regime weights rather than on a function of, inter alia, the residuals of the MVAR

model itself. To overcome this instability problem and to base the regime weights on

economic reasoning, we propose to use a submodel for the mixture weights as done in

mixture models for other contexts (Thompson et al., 1998; Wedel and Kamakura, 2000;

McLachlan and Peel, 2000; Grün and Leisch, 2008; Dang and McNicholas, 2015).
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2.2 Logit-Mixture Vector Autoregressive Models

We extend the models of Fong et al. (2007) and Kalliovirta et al. (2016) by introducing

a logit submodel similar to Thompson et al. (1998) to obtain the regime weights. The

resulting Logit-MVAR is given by:

F(yt |Ft−1) =
K∑
k=1

τt,kΦ
(
Ω
− 1

2
k

(
Yt −Θk0 −Θk1Yt−1 −Θk2Yt−2 − . . .−ΘkpkYt−pk

))
, (3)

where in the case of a multinomial logit submodel

τt,k =
eζ

T
t γk∑K

j=1 eζ
T
t γj

(4)

are the mixture weights that are functionally related to the covariates ζt of the under-

lying multinomial logit submodel. Let now the information set Ft−1 also incorporate

the exogenously given and fixed variables ζ, which also may include lagged mixture

weights. In this case, the τt,k are Ft−1-measurable, and thus, the conditions provided by

Kalliovirta et al. (2016, 486) still hold in our extension. One implication of employing

only lagged variables in the submodel is to preclude that monetary policy shocks can

change the state weights in period t through their contemporaneous effect on another

variable in the VAR that, in turn, might be crucial in determining the state weights.

Analogously to Fong et al. (2007) and Kalliovirta et al. (2016), we use an EM algo-

rithm for the parameter estimation. Starting from the aforementioned MVAR(n,K,p1,

p2, . . . ,pK ) process,3 we define Zt = (Zt,1, . . . ,Zt,K )>,∀t = 1, . . . ,T as the component affili-

ation of Yt:

Zt,i =


1 if Yt comes from the ith component;1 ≤ i ≤ K

0 otherwise.
(5)

3Note that it is possible to specify different lag lengths for each mixture component. This could be
particularly helpful in the context of a mixed frequency setting (see also Schorfheide and Song 2015).
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The conditional log-likelihood function at time t is then given by:

lt =
K∑
k=1

Zt,k log(αk)−
1
2

K∑
k=1

Zt,k log |Ωk | −
1
2

K∑
k=1

Zt,k(e
>
ktΩ

−1
k ekt) (6)

where

ekt = Yt −Θk0 −Θk1Yt−1 −Θk2Yt−2 − . . .−ΘkpkYt−pk

= Yt − Θ̃kXkt

Θ̃k = [Θk0,Θk1, . . . ,Θkpk ]

Xkt = (1,Y>t−1,Y
>
t−2, . . . ,Y

>
t−pk )

for k = 1, . . . ,K . The log-likelihood is then given by:

l =
T∑

t=p+1

lt =
T∑

t=p+1

 K∑
k=1

Zt,k log(αk)−
1
2

K∑
k=1

Zt,k log |Ωk | −
1
2

K∑
k=1

Zt,k(e
>
ktΩ

−1
k ekt)

 (7)

Expectation Step

Since we cannot directly observe the vectors Z1, . . . ,ZK , these are replaced by their con-

ditional expectation on the matrix of parameters Θ̃ and the observed vectors Y1, . . . ,YT .

Defining αt,k = E(Zt,k |Θ̃,Y1, . . . ,YT ) with t = 0, . . . ,T and k = 1, . . . ,K to be the conditional

expectation of the kth component of Zt, we obtain the mixture weights,

αt,k =
αk |Ωk |

1
2 e−

1
2 e
>
ktΩ

−1
k ekt∑K

k=1αk |Ωk |
1
2 e−

1
2 e
>
ktΩ

−1
k ekt

, ∀k = 1, . . . ,K, (8)

as in Kalliovirta et al. (2016). These weights αt,k, as already stated, lead to very unsta-

ble parameter estimates and variable impulse response functions for different starting

values. In addition, we prefer describing the transition process with an econometric

model to obtain further insights into the factors explaining the time-varying regime

weights.
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Therefore, we employ the mixture weights obtained in Eq. (8) as dependent vari-

ables in the multinomial logit model. The explanatory variables of the multinomial

logit model are denoted by the vector ζ and the γj ’s are the estimated parameters,

where we set γ1 = 0 for identification reasons. The expected mixture weights are then

the predictions of the submodel given ζ:

τ̂t,k =
eζ

T
t γk∑K

j=1 eζ
T
t γj

(9)

In the empirical application below, we restrict the description of the economy to a

mixture of two states and, accordingly, estimate a binary logit model as the submodel,

which simplifies Eq. (9) as follows:

τ̂t,k =
1

1 + e−(
∑n
j=0 βjxt,j )

(10)

β denotes the coefficients of the logit model and n is the number of exogenous variables

xj with x0 = 1.

Maximization Step

Given the expected values for Z, we can obtain estimates for the αk’s, the param-

eter matrices Θ̃k, and the variance-covariance matrices Ωk by maximizing the log-

likelihood function l in Eq. (7) with respect to each variable. This yields the following

estimates:

α̂k =
1

T − p

T∑
t=p+1

τ̂t,k (11)

̂̃
Θ
>
k =

 T∑
t=p+1

τ̂t,kXktX
>
kt

−1 T∑
t=p+1

τ̂t,kXktY
>
t

 (12)

Ω̂k =

∑T
t=p+1 τ̂t,k êkt ê

>
kt∑T

t=p+1 τ̂t,k
(13)
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Both, the expectation step and the maximization step are repeated until convergence

is achieved.

2.3 Data and Lag Length Selection

Our data set covers the period January 1999−December 2015. We estimate a four-

variable Logit-MVAR model for the euro area with (i) the industrial production index

(IP, in logs), (ii) the harmonized index of consumer prices inflation rate, and (iii) the

VSTOXX volatility index (end of month data) as endogenous variables. The fourth

variable is a composite indicator for the monetary policy stance. Until October 2008,

we use the ECB’s main refinancing rate (MRR).4 After that date, we replace the MRR

with the shadow interest rate by Wu and Xia (2016), which provides a quantification

of all unconventional monetary policy measures in a single shadow interest rate and

also allows for negative interest rates. In our view, this is the most parsimonious de-

scription of monetary policy in normal times and crisis times in a single variable. All

variables are linearly de-trended. Figure A1 in the Appendix shows all four variables

over the sample period. Augmented Dickey-Fuller tests reject the null hypothesis of

non-stationarity at the 1% level for all variables.

The selection of lag structures is based on a battery of specifications with different

lag lengths for all four variables in the VAR model and the concomitant submodel, the

latter of which also includes lags of the mixture weights. We choose the final model

based on three criteria. First, there should be no autocorrelation left in the residuals

of the VAR model.5 Second, the impulse responses should converge to zero, at least

asymptotically. Third, either model should be as parsimonious as possible, that is,

redundant (i.e., insignificant) lags should be removed. It turns out that a lag length of

four in both states in the main model and one lag of the four variables alongside the

lagged dependent variable in the submodel is sufficient to achieve these three goals.

4Note that replacing the MRR with the EONIA leaves the results virtually unchanged.
5Figure A2 in the Appendix shows the regime-independent residuals alongside tests for autocorre-

lation, which do not reject the null hypothesis of no autocorrelation at the 10% level.
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Including additional lags in either model only leads to a less sharp identification of the

impulse responses due to a loss in the degrees of freedom.

2.4 Calculation of Impulse Response Functions

The focus of our paper is to introduce a Logit-MVAR model in the context of monetary

policy transmission. Therefore, we follow Sims (1980a,b) and employ a rather simple

recursive identification scheme using a Cholesky decomposition. The ordering of the

baseline model follows the standard in the literature as IP is ordered first, followed

by the inflation rate, the interest rate, and the VSTOXX. This identification scheme

implies that monetary policy shocks affect output and prices only with a time lag,

whereas monetary policy shocks can affect stock market volatility instantaneously. As

part of our robustness tests, we allow for a contemporaneous reaction of monetary

policy to stock market volatility shocks and order the interest after the VSTOXX while

leaving the remaining order unchanged.

The calculation of impulse response functions is based on the bootstrap idea of

Runkle (1987) with an adjustment to the multinomial context of the mixture model

literature and done using the following six steps. First, we use the original sample

and calculate the estimates τ̂t,k,
̂̃
Θk, and Ω̂k using Eqs. (11)− (13). Second, we use the

original regime-dependent error terms ek1, . . . , ekt and calculate regime-independent

errors et =
∑K
k=1 τ̂t,k · ekt using the state weights. Third, we center et for each variable

to obtain the centered errors e∗t,n = et,n −
1
T

∑T
t=1 et,n with et,n denoting the error term

for variable n at time t. Fourth, we randomly draw 500 bootstrap samples using the

centered errors e∗t,n. Fifth, we calculate the orthogonalized impulse responses for each

of the 500 bootstrap samples with a horizon of 48 periods and the above mentioned

identification scheme. Finally, we obtain the impulse response functions by calculating

the mean over the 500 bootstrapped samples for each horizon. The corresponding

confidence bands are calculated using the 2.5%, 16%, 84%, and 97.5% quantile of the

distribution over the 500 bootstrapped samples for each horizon.
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It is worth highlighting that for the calculation of the impulse responses we do not

have to assume that the economy remains in a single state as is done in many Markov-

switching VAR applications. The overall impulse response function is a continuously

varying mixture of the impulse responses for both states, with the weights being de-

termined by the underlying logit model.

3 Empirical Results

3.1 State Weights

In a first step, we present the weights of the different states obtained with the help of

the logit submodel. Figure 1 shows a plot of the weights over time.

Figure 1: Weights of Both States

Notes: Weights of both states over time are obtained by estimation of Eq. (9).

State 2, in the right panel with an overall share of 15.8%, can be interpreted as a

“crisis state” as its weights are particularly large after the Lehman collapse in 2008

with a share of 75.4%. Other, albeit smaller, peaks are found during the recession

in 2002−2003, the euro area sovereign debt crisis in 2011, and the Greek sovereign

debt crisis in 2015. Correspondingly, State 1, in the left panel with an overall share

of 84.2%, can be interpreted as representing “normal times.” Consequently, the im-
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pulse responses for Models 1 and 2 will provide a quantification of monetary policy

transmission during “normal times” and “crisis times,” respectively.

Figure 2 shows the predicted probabilities of the logit submodel based on the pro-

cedure by Hanmer and Kalkan (2013) for both states, and different realized values

of lagged industrial production, lagged inflation, the lagged interest rate indicator,

and the lagged VSTOXX. Higher values of industrial production, lower inflation rates,

lower interest rates, and lower stock market volatility increase (decrease) the proba-

bility of being in State 1 (State 2). Three out of the four variables appear to play an

important role in determining the regime weights, indicating that the focus on a single

variable (e.g., as in smooth transition VARs) might oversimplify the state-determining

process.

For small values of industrial production the probability of being in State 1 is

45.9%, whereas for large values the probability increases up to 96.4%. Similarly, the

likelihood of being in the normal state decreases from 97.1% for small values of the

interest rate (90.8% for the VSTOXX) to 43.8% (55.8%) when considering particularly

large values. The predicted probabilities of inflation are—compared to the other three

variables— rather flat around the overall average share of 84% for normal times (88.6%

for low levels of inflation and 77.7% for high levels of inflation). When calculating the

bivariate correlation of the crisis state weights (see the right panel of Figure 1) with all

four variables of the submodel, it turns out that the one with the VSTOXX is the most

pronounced (ρ = 0.74), followed by the interest rate (ρ = 0.34), industrial production

(ρ = −0.19), and inflation (ρ = 0.12).

12



Figure 2: Predicted Probabilities of Logit Submodel

Notes: Figure shows the predicted probabilities of the logit submodel for both states and
different realized values of industrial production, inflation, the interest rate indicator, and the
VSTOXX. Dark gray-shaded areas indicate 68% confidence bands and light gray-shaded areas
indicate 95% confidence bands.
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3.2 Impulse Response Functions

In a second step, we derive the impulse response after a one standard deviation shock

in the error terms of the interest rate equation, which corresponds to roughly 40 ba-

sis points (bps) and is the same in both states. The results of the baseline ordering

are shown in Figure 3. The following discussion of the significance of the impulse

responses is based on the conservative 95% confidence bands. The discussion of differ-

ences in the responses across the states, however, will be based on the 68% confidence

bands as statistical testing fails to differentiate across normal times and crisis times

when using the 95% confidence bands.

There are three striking findings. First, all impulse responses are significant for

prolonged time periods when considering the 95% confidence bands. This is typically

not the case in linear VARs where researchers often resort to the 68% confidence bands

(see also the reaction of IP in Figure 4 below).

Second, the contractionary effects are stronger in the crisis state as a monetary pol-

icy shock leads to a maximum reduction in IP by 43.8 bps 14 months after the shock

and to a peak decrease in inflation by 11.3 bps 14 months after the shock. During

normal times, the reduction in output and prices is less than two thirds of the afore-

mentioned sizes (28.1 bps after 19 months for IP and 6.6 bps after 17 months for in-

flation).6 Similarly, the VSTOXX increases more strongly in the crisis state (107.9 bps

after seven months) than in the normal state (93.5 bps after nine months).

6Note that the response of IP is significantly positive on impact in both states, a finding in line
with previous literature for the euro area using a linear VAR (e.g., Neuenkirch, 2013). If at all, we
would expect such an increase over the very short-run for inflation (i.e., the “prize puzzle”). As part
of our robustness test (not shown but available on request), we transformed the indicator for industrial
production in several ways. However, the result of a short-run increase after a contractionary monetary
policy shock is robust to these modifications. A possible solution could be to employ sign restrictions to
identify a contractionary monetary policy shock, that is, to restrict the responses of IP and inflation to
be negative for a certain horizon after an increase in the interest rate. Since the focus of our paper is to
introduce a Logit-MVAR model in the context of monetary policy transmission for the first time, this is
something we leave for future research.
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Figure 3: Reaction to Contractionary Monetary Policy Shock: Baseline Ordering

Notes: Impulse responses for both states are obtained by the bootstrap procedure described in
Section 2.4 and the following ordering: (i) IP, (ii) inflation, (iii) interest rate, and (iv) VSTOXX.
Dark gray-shaded areas indicate 68% confidence bands and light gray-shaded areas indicate
95% confidence bands.
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Third, however, the effect of monetary policy shocks is less enduring during crisis

times compared to normal times. The effects become insignificant in the crisis state

after 20 months (IP), 30 months (inflation), and 14 months (VSTOXX), respectively,

whereas in the normal state the influence becomes insignificant four to five months

later (after 24/34/19 months for IP/inflation/the VSOTXX). The outside lag, in turn,

does not differ by much for the three variables over the two states.

Combining the aforementioned two findings, statistical testing indicates a signifi-

cantly stronger negative reaction for IP in the crisis state 5−17 months after the shock,

whereas the picture reverses after roughly two years (after 25−47 months), when the

negative response is stronger in the normal state. A similar picture emerges for infla-

tion where the response in the crisis (normal) state is stronger 5−22 (32−47) months

after the shock. In case of the VSTOXX, a significantly stronger positive reaction for

the crisis (normal) state is found after 5−6 (15−37) months. One possible explana-

tion of the fact that the reaction is less enduring during crisis times might be that the

monetary policy shocks themselves are—despite their equal size in both states—less

persistent in the crisis state. Indeed, statistical testing reveals that these are larger

during normal times 7−20 months after the shock.

As part of our robustness tests, we allow for a contemporaneous reaction of mon-

etary policy to stock market volatility shocks and order the interest rate after the VS-

TOXX while leaving the remaining order unchanged. The underlying idea is that the

ECB reacts instantaneously to changes in stock market volatility, which also might

serve as proxy for uncertainty or financial stress. A more technical reason in favor of

this alternative ordering is that we rely on the shadow rate for the period after the

Lehman bankruptcy. Movements in volatility might affect the term premia, which, in

turn, are relevant for our indicator of the monetary policy stance as the term structure

of interest rates is transformed into a single variable measuring all conventional and

unconventional monetary policy measures.

Figure A3 in the Appendix shows the impulse responses after a contractionary

monetary policy shock for this alternative ordering. We do not find much of a dif-
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ference in the reactions of IP, inflation, and the interest rate itself to monetary policy

shocks as compared to the results for the baseline ordering. The peak responses for the

VSTOXX are also roughly the same for both orderings. The only difference is that its

reaction is restricted to being zero on impact in the alternative ordering, whereas we

observe an insignificant negative reaction on impact in the baseline ordering. To sum-

marize, we are confident that the results are robust with respect to the two different

recursive orderings employed in this paper.

3.3 Comparison to Linear VAR

One crucial advantage of the Logit-MVAR model is the gain in efficiency compared to a

standard linear VAR model. Figure 4 shows the impulse responses of a contractionary

shock of 40 bps (i.e., the same size as for the Logit-MVAR) for a linear VAR model

obtained using the baseline identification strategy described in Section 2.4.

The maximum contractionary effect found for IP in the linear VAR (−41.5 bps) is in

between those of the crisis state and the normal state of the Logit-MVAR. In the case

of inflation (−14.0 bps) and the VSTOXX (139.9 bps), the peak effects are even larger

than in the crisis state of the Logit-MVAR. However, the significance of the impulse

responses is much more pronounced in the Logit-MVAR. Indeed, the reaction of IP is

never significant when considering the 95% confidence bands. Furthermore, the reac-

tion of inflation (the VSTOXX) becomes insignificant after 21 (12) months as compared

to 30 and 34 (14 and 19) months in the two states of the Logit-MVAR.

Comparing the residual sum of squares (RSS) to the Logit-MVAR indicates a worse

fit for the linear VAR in all four equations. The decrease in fit ranges from 9.9% for the

inflation equation to 31.4% for the IP equation. Moreover, at least the 68% confidence

bands of the Logit-MVAR are symmetric around the mean responses. In contrast, this

is not the case for a linear VAR where the mean is clearly below or above the median,

presumably due to outliers (or due to forcing two different states in a single one). In

short, monetary policy transmission in the euro area can be described more efficiently

with the help of a Logit-MVAR model than with a conventional linear VAR model.
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Figure 4: Impulse Reponses for Linear VAR

Notes: The figure shows impulse responses to a shock in the interest rate indicator with the
same size as in the Logit-MVAR. Dark gray-shaded areas indicate 68% confidence bands and
light gray-shaded areas indicate 95% confidence bands that are created by bootstrapping and
500 replications.

3.4 Comparison to Non-Linear VARs

Next, we compare the performance of our Logit-MVAR model to that of a standard

Markov-switching VAR (MSVAR) and a standard logistic smooth transition VAR

(LSTVAR) model with the same set of variables and the same set of lags.

The left panel of Figure 5 shows an almost perfect binary distinction of regimes

for the MSVAR. Interestingly, the first non-zero value for the non-dominant state is

observed in March 2006, whereas the last one can be found in September 2008, that

is, the month of the Lehman collapse. Hence, the non-dominant regime cannot be

considered as a crisis regime. In line with this finding, the correlation of the non-

dominant regime is strongest with IP (ρ=0.78), followed by the interest rate (ρ=0.72),

and inflation (ρ=0.36). Here, the VSTOXX ranks last (ρ=−0.19). Consequently, the
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non-dominant regime can be considered as capturing the build-up to the financial

crisis.

Figure 5: Regime Probabilities of Non-Linear VAR Models

Notes: The solid line in the left (right) panel shows the probabilities to be in the dominant state
for the MSVAR (LSTVAR) model. The dashed lines shows the state weights for “normal” times
for the Logit-MVAR model, which are taken from the left panel in Figure 1.

In line with our previous results for the Logit-MVAR, we use the VSTOXX as the

transition variable for the LSTVAR model. The right panel of Figure 5 favors a “sharp”

threshold VAR model, as there is no observation with a regime probability other than

0 or 1.7 The non-dominant state of the LSTVAR can be interpreted as a “crisis state”

as it takes the value 1 during the recession in 2002−2003, after the Lehman collapse in

2008, and during the euro area sovereign debt crisis in 2011. Indeed, the correlation

with the crisis state in the Logit-MVAR is quite pronounced (ρ = 0.74), showing that

both models capture similar crisis episodes.

Figure 5 indicates one major advantage of the Logit-MVAR model. In this model,

the state affiliations are allowed to continuously vary over the complete sample pe-

riod. Therefore, the Logit-MVAR model allows for different “degrees” of crises, which

in turn are captured by different weights of the two states in the impulse response

functions. In the other two types of non-linear models, we see an almost perfect bi-

7Note that the estimated smoothness parameter (γ = 92.0) is larger than in the original paper of
Weise (1999). However, restricting the smoothness parameter to a very small value of, say, γ = 1 does
not change the pattern of the binary regime distinction with the data set at hand.
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nary distinction of the regimes, a finding that only allows for two extreme cases and

no states in between.

Similar to the case of the Logit-MVAR, we find no evidence for autocorrelation in

the residuals of the MSVAR or the LSTVAR at the 10% significance level. Comparing

the RSS of the MSVAR (LSTVAR) to the Logit-MVAR indicates a slightly (clearly) better

fit in all four equations. For the MSVAR, the increase in fit ranges from 2.1% for the

interest rate equation to 7.4% for the VSTOXX equation. In the case of the LSTVAR,

the improvement ranges from 9.4% for the inflation equation to 31.2% for the VSTOXX

equation.

As a final step, we calculated impulse responses for both regimes in both non-linear

VAR models.8 For both the MSVAR and the LSTVAR, the impulse responses for the

dominant regime are well-behaved. However, those for the non-

dominant regime are not stable at all as these start exploding after roughly 18 months

in the case of the MSVAR, and after roughly nine months in the case of the LSTVAR,

respectively. Hence, the Logit-MVAR provides a stable identification of two states in

the monetary policy transmission mechanism for the euro area. Given the better fit of

the MSVAR and LSTVAR, it might be the case that these models suffer from overfit-

ting, at least for the data set at hand. Furthermore, the identification of continuously

varying state weights might be helpful in obtaining stable impulse responses as we do

not have to assume that the economy remains in a single state when calculating these.

4 Conclusions

In this paper, we estimate a logit mixture vector autoregressive model describing mon-

etary policy transmission in the euro area over the period 1999−2015. This model al-

lows us to differentiate between different states of the economy with the time-varying

state weights being determined by an underlying logit model. In contrast to other

classes of non-linear VARs, the regime affiliation is neither strictly binary, nor binary

with a transition period. Mixture VARs are comprised of a composite model with con-

8The impulse responses are not shown but available on request.
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tinuous state affiliations that are allowed to vary over the complete sample period and

that are potentially based on multiple variables.

We show that monetary policy transmission in the euro area indeed can be de-

scribed as a mixture of two states. The second state with an overall share of 16%

can be interpreted as a “crisis state” as its weights are particularly large after the

Lehman collapse in 2008. Other, albeit smaller, peaks are found during the recession

in 2002−2003, the euro area sovereign debt crisis in 2011, and the Greek sovereign

debt crisis in 2015. Correspondingly, the first state with an overall share of 84% can

be interpreted as representing “normal times.”

In both states, output and prices decrease after monetary policy shocks. During

crisis times, the contraction is much stronger, as the peak effect of both variables is

roughly one-and-a-half times as large when compared to normal times. In contrast,

despite this stronger peak effect, the effect of monetary policy shocks on output and

prices is less enduring during crisis times. Both results provide a strong indication

that the transmission mechanism for the euro area is indeed different during times

of economic and financial distress and are well in line with previous findings in the

literature.

One implication of our results is that monetary policy can be a powerful tool for

economic stimulus during crisis times in the euro area. However, the expansionary

effects are found to be rather short-lived indicating that more persistent interest rate

cuts (or other expansionary non-conventional policy measures) are required to move

the economy out of a recession.
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Appendix

Figure A1: Macroeconomic Variables for the Euro Area 1999−2015

ADF test: −3.42 ADF test: −2.75

ADF test: −2.82 ADF test: −3.23

Notes: All series are linearly de-trended. All Augmented Dickey-Fuller (ADF) tests reject the
null hypothesis of non-stationarity at the 1% significance level. Source: ECB (IP, inflation, and
MRR), Wu and Xia (2016) (shadow interest rate), and STOXX Limited (VSTOXX).
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Figure A2: Residuals of Logit-MVAR(4,4) Model

Box-Ljung test: 0.42 Box-Ljung test: 2.70

Box-Ljung test: 4.85 Box-Ljung test: 2.26

Notes: All Box-Ljung tests for autocorrelation with six lags do not reject the null hypothesis of
no autocorrelation at the 10% significance level.
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Figure A3: Reaction to Contractionary Monetary Policy Shock: Alternative Ordering

Notes: Impulse responses for both states are obtained by the bootstrap procedure described in
Section 2.4 and the following ordering: (i) IP, (ii) inflation, (iii) VSTOXX, and (iv) interest rate.
Dark gray-shaded areas indicate 68% confidence bands and light gray-shaded areas indicate
95% confidence bands.
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