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Abstract

An approach to model-based small area estimation under covariate measurement
errors is presented. Using a min-max approach, we proof that regularized regres-
sion coefficient estimation is equivalent to robust optimization under additive noise.
Applying this equivalence, the Fay-Herriot model is extended by `1-norm, squared
`2-norm and elastic net regularizations as robustification against design matrix per-
turbations. This allows for reliable area-statistic estimates without distributive infor-
mation about the measurement errors. A best predictor and a Jackknife estimator of
the mean squared error are presented. The methodology is evaluated in a simulation
study under multiple measurement error scenarios to support the theoretical findings.
A comparison to other robust small area approaches is conducted. An empirical ap-
plication to poverty mapping in the US is provided. Estimated economic figures from
the US Census Bureau and crime records from the Uniform Crime Reporting Program
are used to model the number of citizens below the federal poverty threshold.

Keywords: min-max, pathwise coordinate descent, regularized least squares, robust opti-
mization
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1 Introduction

Small area estimation (SAE) is widely used to obtain reliable estimates of aggregate-specific
quantities (area-statistics) from small samples. Model-based SAE methods use regression
models to combine data from multiple areas. The objective is to increase estimation effi-
ciency relative to a direct estimator that only uses information from one area at a time.
A famous corresponding approach is the Fay-Herriot model introduced by Fay and Herriot
(1979). It uses aggregated auxiliary information on the area-level as covariates for model
parameter estimation. It is thus commonly referred to as area-level model and has been
frequently applied in empirical studies over time (see e.g. Slud and Maiti, 2011; Xie et al.,
2007; You and Zhou, 2011).

The efficiency gain of the empirical best linear unbiased predictor (EBLUP) under the
Fay-Herriot model relative to a direct estimator is determined by the explanatory power of
the underlying regression model. It establishes a linear relation between the area-statistic
of interest and the aggregated auxiliary information. However, even if the proposed lin-
ear relation is generally valid, the corresponding regression model may lack in sufficient
explanatory power, or may give false implications regarding the area-statistic. That is,
if the covariates are subject to measurement errors. In the Fay-Herriot model, a direct
estimator of the area-statistic is regressed on the aggregated auxiliary information. Thus,
the approach implicitly allows for some random sampling error on the response variable
of the underlying regression model. However, the covariates are assumed to be measured
correctly. A violation of this assumption leads to considerably diminished area-statistic es-
timates, as the Fay-Herriot EBLUP is a convex linear combination of the direct estimates
and the predictions from the regression model. Accordingly, if the covariates are perturbed
by measurement errors, adjustments are required in order to obtain reliable results.

Several methods have been proposed to treat contaminated observations in model-based
SAE. A common approach is using M -estimators (Huber, 1973) for model parameter es-
timation, as e.g. demonstrated by Sinha and Rao (2009). The basic idea is to reduce the
influence of individual observations by applying a sophisticated weighting scheme (e.g. us-
ing influence functions). However, this method is primarily suitable for treating distributive
outliers of the response variable, but not for dealing with noise in the design matrix. A dif-
ferent approach that explicitly accounts for covariate measurement errors in the Fay-Herriot
model was proposed by Ybarra and Lohr (2008). Here, the perturbed covariate values are
treated as estimators of the real covariate values. Area-statistic estimates are then derived
by accounting for additional uncertainty resulting from the design matrix. A more general
approach to treat covariate measurement errors in regression analysis was introduced by
Loh and Wainwright (2012). They propose a correction term to a `1-regularized likelihood
function in order to ensure better estimation bounds for the regression coefficient estimates
in the presence of measurement errors. However, both Ybarra and Lohr (2008) as well as
Loh and Wainwright (2012) require the covariance matrix of the measurement error dis-
tribution to be known. This can be an overly restrictive assumption, depending on the
empirical application.

We propose a robust extension to the Fay-Herriot model that does not require distribu-
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tive information about the measurement errors. For this, we extend theoretical findings
provided by Bertsimas and Copenhaver (2018). They used a min-max approach to show
that regularized regression coefficient estimation is equivalent to robust optimization under
additive noise when the loss function is a seminorm and the regularization is a norm. How-
ever, the Fay-Herriot model (and many other regression models) does not fit naturally in
this setting, as its loss function is not a seminorm, but a function of a seminorm. In addi-
tion to that, many common regularizations, such as the ridge penalty (Hoerl and Kennard,
1970) or the elastic net (Zou and Hastie, 2005), are not norms, but functions of norms. In
order to use the characterization of Bertsimas and Copenhaver (2018) for a broader range
of models, we generalize their results and proof that a corresponding equivalence holds for
strictly monotonously increasing, bijective functions of seminorms and norms as well. In
the light of this equivalence, we robustify model parameter estimation in the Fay-Herriot
model against unknown design matrix perturbations by applying `1-norm, squared `2-norm
and elastic net regularizations. Along with robustness, the regularized estimation approach
also provides other advantages. Since regularization is often used in the context of high-
dimensional inference, it allows for efficient model parameter estimates when the number
of observations is small. This is particularly attractive for the SAE setting which is usually
characterized by small samples. Further, if the regularization of choice is sparsity inducing,
it even allows for automatic variable selection while model parameter estimation.

Regularization parameter tuning is done by way of k-fold cross validation. Regression co-
efficient estimation is performed via regularized least squared using a modification of the
pathwise coordinate descent algorithm proposed by Friedman et al. (2007). The model vari-
ance parameter of the Fay-Herriot model is estimated from adjusted maximum likelihood
according to Li and Lahiri (2010). A best predictor (BP) under covariate measurement
errors is derived. Thereafter, a conservative Jackknife estimator for the mean squared error
(MSE) is presented using insights from Jiang et al. (2002). A simulation study is conducted
where the regularized predictors are tested against the original Fay-Heriot EBLUP as well
as the approaches of Ybarra and Lohr (2008) and Loh and Wainwright (2012) under multi-
ple measurement error scenarios. In addition to that, an empirical application on poverty
mapping in the US is provided. We use estimated economic figures provided by the US
Census Bureau (US Census Bureau, 2016a,b) and crime records obtained from the Uniform
Crime Reporting Program (Uniform Crime Reporting (UCR) Program, 2016) from 2015
to model the number of people with an annual income below 100% of the federal poverty
threshhold on the state-level. The estimated values of the auxiliary variables are treated
as covariates with measurement error.

The remainder of the paper is organized as follows. In Chapter 2, the area-level model under
covariate measurement errors is presented. This includes a description of the Fay-Herriot
model and a corresponding extension to measurement errors. Further, it is shown how
the model can be robustified by applying regularization. In Chapter 3, model parameter
estimation and MSE estimation are presented. Chapter 4 contains the simulation study.
In Chapter 5, the empirical application is provided. Chapter 6 closes with an outlook and
some conclusive remarks.
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2 Regularized area-level model

2.1 Area-level model under covariate measurement errors

The original Fay-Herriot model is described first, then an extension to covariate measure-
ment errors is presented. Let U =

⋃m
i=1 Ui be a finite population of size N that is segmented

into m pairwise disjoint areas Ui of size Ni with
∑m

i=1Ni = N . For simplicity, we only refer
to areas with their corresponding index i = 1, ...,m. Assume a random sample S ⊂ U of
size n to be drawn such that there are m area-specific subsamples Si ⊂ Ui of size ni > 0
with S =

⋃m
i=1 Si and

∑m
i=1 ni = n. Note that in the SAE context, ni is usually small. Let

θi ∈ R denote an unknown statistic of interest within area i, for example the area-specific
mean of some random variable. Let θ̂diri ∈ R be a direct estimator of θi that is available

for all i = 1, ...,m. It is assumed to be design-unbiased, hence E(θ̂diri ) = θi, and obtained
from only using the sample information within Si. Due to the small area-specific sample
size ni, its variance V ar(θ̂diri ) is too large in order to draw reliable conclusions on θi. Thus,

the objective is to find a better estimator of θi, denoted by θ̂i ∈ R, for all i = 1, ...,m. Fay
and Herriot (1979) proposed a very influential model, the so-called Fay-Herriot model, to
obtain an improved estimator for θi by using suitable auxiliary information. The model
consists of two components. The first component (sampling model) states that due to

the design-unbiasedness of θ̂diri , the direct estimator is equal to the unknown θi plus some
random sampling error

θ̂diri = θi + ei, ei
ind∼ N(0, Di), ∀ i = 1, ...,m, (1)

with ei as sampling error and Di = V ar(θ̂diri |θi) as sampling variance in area i. Within this
paper, we assume Di to be known for all areas. In practise, it is usually obtained from some
generalized variance function. The second component (linking model) treats θi as random
and establishes a linear relation to some area-level auxiliary information

θi = x′iβ + vi, vi
iid∼ N(0, A), ∀ i = 1, ...,m, (2)

with xi ∈ Rp as vector of auxiliary information and β ∈ Rp as vector of regression coef-
ficients. vi denotes an area-specific random effect with unknown model variance A ≥ 0
and e1, ..., em, v1, ..., vm stochastically independent. The marginal distribution of the direct
estimator under the model thus is

θ̂diri
ind∼ N(x′iβ, Di + A), ∀ i = 1, ...,m, (3)

or, in matrix notation, θ̂
dir ind∼ MVN(Xβ,Σ(A)), with θ̂

dir
= (θ̂dir1 , ..., θ̂dirm )′ as response

vector, X = (x1, ...,xm)′ as design matrix, and Σ(A) = diag(A + D1, ..., A + Dm) as
covariance matrix of the variance components. The basic idea of the Fay-Herriot model is
to improve the direct estimator θ̂diri by exploiting the functional relation between θi and xi.
In order to determine the functional relation, the unknown model parameters A and β have
to be estimated. This is usually performed iteratively by finding some initial model variance

4



estimate Â first, and then obtain the regression coefficient estimates β̂ conditionally on Â
according to

β̂ = argmin
β

∣∣∣∣∣∣Σ(Â)−1/2
(
θ̂
dir
−Xβ

)∣∣∣∣∣∣2
2
, Σ(Â) = diag(D1 + Â, ..., Dm + Â). (4)

Afterwards, the model variance estimate Â is updated conditionally on β̂ using maximum
likelihood (ML) or restricted maximum likelihood (REML) approaches. See Li and Lahiri
(2010) or Yoshimori and Lahiri (2014) for further details. The conditional estimation steps
are repeated until convergence. Note that estimation is performed by using the sample
and auxiliary information from all m areas simultaneously. Accordingly, the estimation of
θi is improved through considering more information relative to the direct estimator θ̂diri ,
that only considers information from area i. This often referred to as borrowing strength.
The final estimator θ̂FHi under the Fay-Herriot model is then obtained from a convex linear

combination of θ̂diri and the regression-synthethic component x′iβ̂ of the model (Molina
et al., 2015):

θ̂FHi = γ̂iθ̂
dir
i + (1− γ̂i)x′iβ̂, ∀ i = 1, ...,m, (5)

with γ̂i = Â/(Â + Di) as area-specific shrinkage factor that is determined by the relation
between the variance parameters of the two model components. Here, the term shrinkage
relates to θ̂FHi being shrunken towards θ̂diri as a result of variance weighting. It is not

to be confused with the shrinkage of some β̂j ∈ β̂ towards zero due to regularization,

which is described in the next subsection. If β̂ = (X′Σ(Â)−1X)−1X′Σ(Â)−1θ̂
dir

, and Â

is a consistent estimator of A, then θ̂FHi is the EBLUP for θi. For further details on the
Fay-Herriot model, we refer to Rao and Molina (2015).

We now present the area-level model under covariate measurement errors and derive a
corresponding BP. Consider the sampling model (1) and the linking model (2) from the
original Fay-Herriot model. In order to account for the measurement errors, an additional
error model is required. It can be stated as

x̃i = xi + ∆i, ∀ i = 1, ...,m, (6)

where x̃i ∈ Rp denotes the impaired covariate vector resulting from an unknown area-
specific error vector ∆i ∈ Rp that is added to xi. From (1), (2) and (6), the area-level
model under measurement errors is formulated according to

θ̂diri = (xi + ∆i)
′β + vi + ei, ∀ i = 1, ...,m. (7)

Note that no distributive assumption regarding the measurement errors is made. We treat
∆i as a fixed unobservable perturbation of xi. Under the model (7), the conditional distri-

butions of the direct estimator θ̂diri are given by

θ̂diri |xi, vi ∼ N((xi + ∆i)
′β + vi, Di)

θ̂diri |xi ∼ N((xi + ∆i)
′β + vi, Di + A).

(8)
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Assuming the model variance A and the sampling variances Di to be known, for the con-
ditional distribution of the random effect

f(vi|θ̂diri ,xi) ∝ f(vi)f(θ̂diri |xi, vi) (9)

holds, where

f(vi)f(θ̂diri |xi, vi) =
1√
2πA

exp

(
− v

2
i

2A

)
1√

2πDi

exp

(
−(θ̂diri − (xi + ∆i)

′β − vi)2

2Di

)

∝ exp

(
− v

2
i

2A

)
exp

−v2i − 2vi

(
θ̂diri − (xi + ∆i)

′β
)

2Di


= exp

(
−v

2
i

2

(
1

Di

+
1

A

)
+
θ̂diri − (xi + ∆i)

′β

Di

vi

)

= exp

−v2i
2

1
Di·A
Di+A

+
1

Di·A
Di+A

A
(
θ̂diri − (xi + ∆i)

′β
)

Di + A
vi

 .

Accordingly, the conditional distribution is a univariate normal

vi|θ̂diri ,xi ∼ N

A
(
θ̂diri − (xi + ∆i)

′β
)

Di + A
,
Di · A
Di + A

 . (10)

Finally, the BP under the model is the conditional expectation E(θi|xi, θ̂diri ), which can be
expressed as

θ̂BPi = x′iβ + E
(
∆i|xi, θ̂diri

)
+ E

(
vi|xi, θ̂diri

)
= x′iβ + ∆′iβ +

A

A+Di

(
θ̂diri − x′iβ −∆′iβ

)
=

A

A+Di

θ̂diri +
Di

A+Di

(x′iβ + ∆′iβ)

= γiθ̂
dir
i + (1− γi) (x′iβ + ∆′iβ)

= γiθ̂
dir
i + (1− γi)x̃′iβ.

(11)

2.2 Robustification against covariate measurement errors

Hereafter, we show analytically how model parameter estimation in the presented area-
level model under covariate measurement errors is related to regularized model parameter
estimation in the original Fay-Herriot model. Recall that in the latter model the auxiliary
information is assumed to be measured without error. We robustify the regression coeffi-
cient estimates β̂ in the Fay-Herriot model against design matrix perturbations. The term
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“robustness” is not always connoted consistently and therefore many approaches exist that
account for the effects of measurement interference. Bertsimas et al. (2017) single out two
general approaches to robustification in regression, an optimistic and a pessimistic perspec-
tive, which they call the min-min and min-max approach. For a function g : Rn → R,
a set U ⊆ Rn×p, a design matrix X ∈ Rn×p and a response vector y ∈ Rn, the min-min
approach is formulated by the optimization problem

min
β∈Rp

min
∆∈U

g(y − (X + ∆)β),

while the min-max approach is characterized by the problem

min
β∈Rp

max
∆∈U

g(y − (X + ∆)β).

In both variants the design matrix is perturbed to account for some measurement errors.
The min-min approach is mainly used in robust statistics, where the concern is to robustify
against distributive outliers. Therefore, oftentimes distribution information about the mea-
surement errors is required. Examples of min-min methods include least trimmed squares
(Rousseeuw and Leroy, 2003), trimmed LASSO (Bertsimas et al., 2017) and total least
squares (Markovsky and Huffel, 2007). In contrast, the min-max method mainly stems
from robust optimization, which aims at finding solutions that are still “good” or feasible
under some uncertainty. Here, deterministic assumptions about the set U are made. The
set U is then called the uncertainty set and is chosen in accordance to how the user believes
the additive error might be structured. This robustification viewpoint is for example given
by Bertsimas and Copenhaver (2018), Ben-Tal et al. (2009), and El Ghaoui and Lebret
(1997). In light of the Fay-Harriot model, we assume to have no distributive information
about the errors, and at most we might only be able to guess the severance of the noise.
Due to this lack of information we regard the disturbance of X pessimistically, i.e., we use
the min-max approach to introduce robustness to our estimate. That is, we are looking at
the optimization model

min
β

max
∆∈U

∥∥∥Σ(Â)−1/2
(
θ̂
dir
− (X + ∆)β

)∥∥∥2
2
.

Since it is not obviously clear how to efficiently solve such a min-max problem, we next
present how this problem is connected to regularized regression problems in the form

min
β

g(y −Xβ) + λh(β), (12)

where λ > 0 is a regularization parameter. From an optimization stand point, problems of
the class (12) can be handled much better and therefore solved more efficiently. However,
it is uncommon to regard (12) as a robustification. Typically, regression models are ex-
tended by some form of regularization to induce some shrinkage on the coefficients in order
to conduct a model selection or to deal with multicollinearity. However, rarely are they
considered means of robustification. We take a look at the regularization from a different
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point of view, albeit an unconventional one, that is, we regard regularization as a form of
robustification. In this sense, the following result by Bertsimas and Copenhaver (2018) is
particularly helpful, in that it connects the min-max method with a regularization problem.
Proposition 1 (Bertsimas and Copenhaver (2018)). If g : Rn → R is a seminorm which
is not identically zero and h : Rp → R is a norm, then for any z ∈ Rn and β ∈ Rp

max
∆∈U

g(z + ∆β) = g(z) + λh(β)

where

U =

{
∆ : max

γ∈Rp
g(∆γ)

h(γ)
≤ λ

}
.

Clearly, the Proposition directly implies that

min
β

max
∆∈U

g((X + ∆)β − y) = g(Xβ − y) + λh(β)

for g, h and U as in Proposition 1. The framework provided by Bertsimas and Copenhaver
(2018) gives us novel insights into the role of regularization in regression. The choice
of a regularization function h with parameter λ directly constraints the uncertainty set U ,
which defines a set of perturbations for the design matrix. In other words, the regularization
controls the magnitude of noise, which can be added to X. Under this interference, β is
chosen such that the loss is minimal. The effect can be imagined as a two player game
where one player tries to minimize the loss by controlling β while the other player tries
to maximize the deviation by controlling the noise, which is added to X. However, many
regression methods are formulated using the squared norm or a mix of squared and non-
squared norms. For instance, ridge regression (Hoerl and Kennard, 1970) is posed as the
optimization problem

min
β
‖Xβ − y‖22 + λ‖β‖22

with both, the deviation and regularization, being squared. On the other hand, we have
LASSO (Tibshirani, 1996), which is defined by

min
β
‖Xβ − y‖22 + λ‖β‖1.

Here, the deviation is squared while the regularization term is not. Both optimization prob-
lems do not fit naturally into the framework of Proposition 1 since a squared (semi)norm
‖·‖2 is not a (semi)norm. However, it is claimed that ridge regression and LASSO corre-
spond to the specific cases g = h = `2 and g = `2, h = `1. In the following we propose a
generalization of the described issue and transfer it to the robustness framework presented
in Proposition 1.
Lemma 1. Let g : Rn → R and h1, h2, . . . , hd : Rn → R be convex functions. If

ẑ ∈ argmin
z∈Rn

g(z) +
d∑
i=1

λihi(z) (13)

8



for the parameters λ1, . . . , λd > 0, then there exist c1, . . . , cd > 0 such that

ẑ ∈ argmin
z∈Rn

g(z)

s.t. hi(z) ≤ ci for all 1 ≤ i ≤ d
(14)

and vice versa, if there is a z such that hi(z) < ci for all 1 ≤ i ≤ d then for given
c1, . . . , cd > 0 there exist λ1, . . . , λd > 0 such that ẑ is an optimal solution for both problems.

Proof. Assume (13) holds. We then define ci = hi(ẑ) for all 1 ≤ i ≤ d. Now assume that
ẑ is not an optimal solution of (14) and instead z∗ provides a better objective value, i.e.,
g(ẑ) > g(z∗), while satisfying hi(z

∗) ≤ ci for all 1 ≤ i ≤ d. This would imply that

g(z∗) +
d∑
i=1

λihi(z
∗) < g(ẑ) +

d∑
i=1

λihi(z
∗) ≤ g(ẑ) +

d∑
i=1

λihi(ẑ)

in contradiction to z being an optimal solution of (13). Therefore, (14) must hold.

Now assume that ẑ is an optimal solution of the constrained optimization problem, i.e.,
(14) holds. We use Lagrange duality to prove that (13) holds as well. Note that, the Slater
conditions are satisfied due to g, h1, . . . , hd being convex and because there is a z such that
hi(z) < ci for all 1 ≤ i ≤ d. Thus, strong duality holds. It follows that

max
λ≥0

min
z∈Rn

g(z) +
d∑
i=1

λi(hi(z)− ci) (15)

is equivalent to (14), that is, the objective values of (14) and (15) are identical. Let λ̂ be
an optimal solution of (15), then due to complementary slackness (see for example Boyd
and Vandenberghe, 2009, p. 242)

g(ẑ) = g(ẑ) +
d∑
i=1

λ̂i(hi(ẑ)− ci) = min
z∈Rn

g(z) +
d∑
i=1

λ̂i(hi(z)− ci)

holds, which proves the conjecture.

Proposition 2. Let g : Rn → R be a seminorm which is not identically zero, let h1, h2, . . . hd :
Rp → R be norms and f, f1, f2, . . . , fd : R+ → R+ be strictly monotonously increasing, bi-
jective functions, then there exist µ1, . . . , µd > 0 such that

argmin
β

max
∆∈U

g(y − (X + ∆)β) = argmin
β

f(g(y −Xβ)) +
d∑
i=1

λifi(hi(β))

where

U =

{
∆ : g(∆γ) ≤

d∑
i=1

µihi(γ) for all γ ∈ Rp

}

9



Proof. We first look at the right-hand side minimization problem

M := argmin
β

f(g(y −Xβ)) +
d∑
i=1

λifi(hi(β)).

Lemma 1 yields that there exist c1, . . . , cd > 0 such that

M = argmin
β

f(g(y −Xβ))

s.t. fi(hi(β)) ≤ ci for all 1 ≤ i ≤ d.

Since f1, . . . , fd are bijective and monotonously increasing, it follows that

M = argmin
β

g(y −Xβ)

s.t. hi(β) ≤ f−1i (ci) for all 1 ≤ i ≤ d.

We once again apply Lemma 1 and get that there are µ1, . . . , µd > 0 such that

M = argmin
β

g(y −Xβ) +
d∑
i=1

µihi(β)

It is easy to see that
∑d

i=1 µihi is a norm and thus by Proposition 1 we get that

M = argmin
β

max
∆∈U

g(y + (X + ∆)β)

with U =
{

∆ : g(∆γ) ≤
∑d

i=1 µihi(γ) for all γ ∈ Rp
}

.

The Proposition enables us to regard more sophisticated regularizations in light of robusti-
fication. Unfortunately, the direct one-to-one relation of the regularization parameter and
the uncertainty set is lost, when generalizing Proposition 1. However, in practice the opti-
mal regularization parameter is usually not known a priori and is obtained by conducting
a cross validation. Hence, we argue that a direct one-to-one connection is not necessarily
required, even though it would certainly paint a clearer picture.

2.3 Regularizations

After pointing out the relation between regularization and robustification in the Fay-Herriot
model, we briefly describe the regularizations considered for this study.

`1-regularization
The first regularization is the `1-norm, which is famously used for the LASSO introduced
by Tibshirani (1996) for linear regression. Within the Fay-Herriot model, including an
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`1-norm regularization changes the weighted minimization problem (4) for obtaining β̂ to

β̂`1 = argmin
β

∣∣∣∣∣∣Σ(Â)−1/2
(
θ̂
dir
−Xβ

)∣∣∣∣∣∣2
2

+ λ||β||1. (16)

Applying Proposition 2 with g(z) := ‖z‖2, h(z) = ‖z‖1, f(z) = z2 and f1(z) = z yields
the equivalence

β̂`1 = argmin
β

max
∆∈U`1

∥∥∥Σ(Â)−1/2
(
θ̂
dir
−Xβ

)
+ ∆β

∥∥∥
2

(17)

for some µ > 0 and U`1 = {∆ : ‖∆γ‖2 ≤ µ‖γ‖1 for all γ ∈ Rp}. From the formulation
(17), it is evident that the coefficients are robustified against noise by introduction of the
perturbation ∆, which is maximized in regard to the fitted coefficients and is constrained by
the uncertainty set U`1 . The following result by Bertsimas and Copenhaver (2018) improves
the interpretability of the uncertainty set U`1 .
Proposition 3 (Bertsimas and Copenhaver (2018)). Let be p ∈ [1,∞], let ‖β‖0 be the
number of non-zero entries of β and let ∆i be the i-th column of ∆. If

U ′ = {∆ : ‖∆β‖2 ≤ µ‖β‖0 ∀‖β‖p ≤ 1}

and
U ′′ = {∆ : ‖∆i‖2 ≤ µ ∀i}

then U`1 = U ′ = U ′′.

Thus, in case of the `1-regularization the noise is constrained column-wise by the parameter
µ. However, to our knowledge it remains an open question why a specific uncertainty set,
or accordingly a specific regularization, is an appropriate choice. Therefore, it makes sense
to take other well-known properties of a regularization into consideration. On that note,
including the `1-norm in the minimization problem induces a sparse solution for β̂. As a

result, some elements β̂j ∈ β̂ that are irrelevant for the functional description of θ̂
dir

are
set exactly to zero in the estimation process. This implies an automatic variable selection,
which makes the `1-norm regularization applicable to a broad range of high-dimensional
regression problems. However, note that it is known to produce instable results in the
presence of strongly correlated covariates (Zou and Hastie, 2005; Friedman et al., 2010).

`2-regularization
The second regularization is the squared `2-norm, which is famously used for ridge regression
proposed by Hoerl and Kennard (1970). The corresponding weighted minimization problem

to determine β̂ can be stated as

β̂`2 = argmin
β

∣∣∣∣∣∣Σ(Â)−1/2
(
θ̂
dir
−Xβ

)∣∣∣∣∣∣2
2

+ λ||β||22. (18)

Note that using the squared `2-norm ensures separability in the coordinate descent algo-
rithm used for model parameter estimation in Chapter 3.1. Thus, once again we cannot

11



use Proposition 1 directly and have to apply Proposition 2. When setting g(z) = ‖z‖2,
h(z) = ‖z‖2, f(z) = z2 and f1(z) = z2 we obtain

β̂`2 = argmin
β

max
∆∈U`2

∥∥∥Σ(Â)−1/2
(
θ̂
dir
−Xβ

)
+ ∆β

∥∥∥
2

for some µ > 0 and U`2 = {∆ : ‖∆γ‖2 ≤ µ‖γ‖2 for all γ ∈ Rp}. Clearly, U`2 is equal
to the set {∆ : σmax(∆) ≤ µ} where σmax(∆) is the maximum singular value of the
matrix ∆. Whereas, the `1 regularization induced bounds on the individual columns of the
perturbation, the `2 regularization enforces a coherent bound of the whole noise matrix.
In addition to the robustness effect, including the `2-norm in the minimization problem
induces a dense and smooth solution for β̂. All elements β̂j ∈ β̂ remain non-zero in
the estimation process, whereas their individual contributions to the description of θi are
equalized to some extent, depending on the value of λ. If λ→∞, then β̂1 = ... = β̂p. The
`2-norm regularization has shown to produce stable results in the presence of correlated
covariates. However, as β̂j 6= 0 ∀j = 1, ..., p, no automatic variable selection is conducted.

Elastic net
The third regularization is a linear combination of `1- and `2-norm, which is used for the
elastic net introduced by Zou and Hastie (2005). The corresponding weighted minimzation
problem is given by

β̂en = argmin
β

∣∣∣∣∣∣Σ(Â)−1/2
(
θ̂
dir
−Xβ

)∣∣∣∣∣∣2
2

+ λ
[
α||β||1 + (1− α)||β||22

]
, (19)

where α ∈ [0, 1] is a hyperparameter controlling the influence of the `1- and `2-norm in the
regularization. Note that for α = 1, the elastic net reduces to the LASSO, and for α = 0,
it is equivalent to the ridge penalty. By Proposition 2 where g(z) = ‖z‖2, h1(z) = ‖z‖1,
h2(z) = ‖z‖2, f(z) = z2, f1(z) = z and f2(z) = z2 we obtain

β̂en = argmin
β

max
∆∈Uen

∥∥∥Σ(Â)−1/2
(
θ̂
dir
−Xβ

)
+ ∆β

∥∥∥
2

for some µ1, µ2 > 0 and Uen = {∆ : ‖∆γ‖2 ≤ µ1‖γ‖1 + µ2‖γ‖2 for all γ ∈ Rp}. Unfortu-
nately, it is less apparent how to interpret Uen.

3 Estimation

3.1 Model parameter estimation

Hereafter, we apply the theoretical findings from Chapter 2 and present some details on
regularized model parameter estimation. For this, a value for the regularization parameter
λ must be chosen. Remember that λ has implications regarding the level of noise that
can be added to the design matrix X. Following Friedman et al. (2010), we use k-fold
cross validation under minimization of the squared prediction error in order to determine
λ. Then, assuming the sampling variances Di to be known for i = 1, ...,m, and letting
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r = 1, ... denote the index of iterations until convergence, model parameter estimation is
performed according to the following procedure:

Algorithm 1 Model Parameter Estimation

1: find an initial estimate Âinit and set Âinit := Âr−1

2: while not converged do

3: estimate β̂
r

= β̂
r
(Âr−1) conditionally on Âr−1 under a given regularization

4: update the model variance estimate Âr = Âr(β̂
r
) conditionally on β̂

r

5: set Âr := Âr−1

6: check convergence

7: end while

8: return β̂ := β̂
r

and Â = Âr

An initial estimate Âinit of A is chosen. Then the regression coefficients βr are estimated
given Âinit. Afterwards, the initial estimate is updated by a new estimate Âr conditionally
on the obtained estimates for βr. The procedure is repeated until convergence. In order to
include regularization in the estimation process, let

Q(α,β, λ) =
∣∣∣∣∣∣Σ(Â)−1/2

(
θ̂
dir
−Xβ

)∣∣∣∣∣∣2
2

+ λ
[
α||β||1 + (1− α)||β||22

]
(20)

denote the objective function to be minimized for regression coefficient estimation under
elastic net regularization. As Q(·) contains the `1-norm and `2-norm as special cases, all
regularizations discussed in Chapter 2.3 can be described accordingly. To minimize the
function, the pathwise coordinate descent algorithm described by Friedman et al. (2007) as
well as Friedman et al. (2010) is applied. Coordinate descent implies that the loss-function
is partially minimized with respect to a single β̃j ∈ β̃ in each coordinate descent step while
the remaining β̃k with k 6= j are kept fixed. This requires separability of the regression
coefficients in the objective function. If β̃j 6= 0, the gradient at βj = β̃j can be computed
according to

∂Q(·)
∂βj

∣∣∣∣
β=β̃

= −2
(
Σ(Â)−1/2xj

)′ [
Σ(Â)−1/2

(
θ̂
dir
−Xβ

)]
+ αλ+ 2λ(1− α)βj, (21)

where xj corresponds to the j-th column of the design matrix X. The coordinate descent
update is then given by

β̃j ←
S

(
2
(
Σ(Â)−1/2xj

)′ [
Σ(Â)−1/2

(
θ̂
dir
− θ̂

dir

(j)

)]
, λα

)
1 + λ(1− α)

, (22)

where θ̂
dir
− θ̂

dir

(j) is the partial residual resulting from regularized weighted partial least
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squares excluding the contribution of the j-th covariate and the corresponding regression
coefficient βj. S(·) is the soft-thresholding operator with value

sign(z, ζ)(|z| − ζ)+ =


z − ζ if z > 0 and ζ < |z|
z + ζ if z < 0 and ζ < |z|
0 if ζ ≥ |z|

. (23)

The βj are successively updated in that manner until convergence. Further details on the
algorithm can be retrieved from Friedman et al. (2007) as well as Friedman et al. (2010).
For estimating the model variance parameter A, adjusted maximum likelihood approach
proposed by Li and Lahiri (2010) is used. Let

L(A) = c|Σ(A)|−1/2exp
[
−1

2
(θ̂

dir
)′
(
Σ(A)−1 −Σ(A)−1X(X′Σ(A)−1X)−1X′Σ(A)−1

)
θ̂
dir
]

be the likelihood function for of the variance parameter, where c is a generic constant
independent from the other likelihood components. The corresponding adjusted maximum
likelihood estimate is then obtained from

Â = argmax
A

{A · L(A)} . (24)

We use standard constrained optimization techniques to solve the upper problem. See
Brent (2002) for further details. Adjusting the likelihood function L(A) by multiplying
with a candidate value for A avoids a common problem of the Fay-Herriot model, which is
obtaining Â = 0 as model variance parameter estimate. In such a case, for each shrinkage
factor γi = 1 holds. Then the predictor (5) collapses to a synthetic prediction from the
underlying linking model, which is often undesirable in the SAE context, as the information
regarding the design-unbiased direct estimates is partially ignored.

3.2 Mean squared error estimation

Next, we elaborate on MSE estimation for the empirical best predictor (EBP) under the
model in the presence of unknown covariate measurement errors, which is obtained from
replacing A and β by consistent estimates Â and β̂ in (11). The MSE of the original
Fay-Herriot EBLUP is usually decomposed into three components (Rao and Molina, 2015):

MSE
(
θ̂FHi

)
= E

[(
θ̂FHi − θi

)2]
= gi1 + gi2 + gi3, (25)

where gi1 is due to the estimation of the random effect vi, gi2 stems from the estimation
of the regression coefficients β and gi3 results from the general uncertainty of the chosen
estimation method. In the presence of covariate measurement errors, we also have to con-
sider the additional uncertainty resulting from the design matrix perturbations. However,
remember that no distributive information regarding the errors is available. Further, the
regularized regression coefficient estimates are biased and don’t have a closed-form solution

14



(except for the `2-regularization). Therefore, it is not clear how an analytic quantification
of the MSE components can be derived. Instead, we follow a different strategy for MSE
estimation. We first derive the conditional MSE of the BP under known model parameters
β, A, hence MSE(θ̂BPi |xi). It can be characterized by

MSE
(
θ̂BPi

∣∣∣xi) = E

[(
θ̂BPi − θi

)2]
= E

[(
γiθ̂

dir
i + (1− γi)(xi + ∆i)

′β − x′iβ − vi
)2]

= E

[(
γiθ̂

dir
i + x′iβ + ∆′iβ − γix′iβ − γi∆′iβ − x′iβ − vi

)2]
= E

[(
γiθ̂

dir
i + ∆′iβ − γix′iβ − γi∆′iβ − vi

)2]
= E

[(
γi

(
θ̂diri − x′iβ − vi

)
+ (1− γi)∆′iβ − (1− γi)vi

)2]
= E

[(
γiei + (1− γi)2(∆′iβ − vi

)2]
.

Recall that ei, vi are assumed to be independent for i = 1, ...,m. As no distributive in-
formation regarding the measurement errors is available, the term ∆′iβ is treated as an
unknown constant. It follows

MSE
(
θ̂BPi

∣∣∣xi) = γ2iE
[
e2i
]

+ (1− γi)2E
[
(∆′iβ − vi)

2
]

= γ2iDi + (1− γi)2E
[
(∆′iβ)

2 − 2∆iβvi + v2i

]
= γ2iDi + (1− γi)2A+ (1− γi)2(∆′iβ)2.

(26)

Next, as the term ∆′iβ cannot be quantified, we subsitute it by an upper boundary. Re-
member that the design matrix perturbations are limited by the regularization parameter.
For the `1-regularization the noise ∆ = (∆1, ...,∆m)′ is constrained column-wise in terms
of the maximum `2-norm, whereas for the `2-regularization the maximum singular value of
∆ is restricted. Therefore, we can provide a conservative estimate of the conditional MSE
by concluding

MSE(θ̂BPi |X) ≤ γ2iDi + (1− γi)2A+ (1− γi)2(λ′β)2, (27)

where λ ∈ Rp
+ is the expanded vector of the regularization parameter obtained from k-fold

cross validation. However, note that (27) corresponds to a worst-case quantification of the
MSE. It implies that for each area the biggest possible error is considered by assuming the
entire magnitude of feasible noise to be concentrated in the current observation. Further, it
implies that the measurement errors in the covariates all have the same direction. Clearly,
when estimating the MSE over all i = 1, ...,m, the actual noise in the design matrix and
the resulting prediction error are then vastly exaggerated. As a result, the corresponding
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MSE estimates are highly inefficient. In order to obtain more efficient MSE estimates,
some minor assumptions regarding the measurement errors are required. Due to the fact
that the absolute errors are bounded by the regularization parameter, assuming that the
error (m)−1

∑m
i=1 ∆′iβ = 0 we can state, that the maximal error δi in area i is δi = 0.5 · λ.

Further, by assuming the noise to be spreaded homogeneously over all areas, one obtains

M̃SE(θ̂BPi |X) ≤ γ2iDi + (1− γi)2A+
1

4m
(1− γi)2(λ′β)2. (28)

Note that (28) is less conservative than (27), as it excludes the extreme case of one area
containing all the noise. In practise, this assumption could be justified empirically by testing
for distributional outliers. It is likely that if all feasible noise is concentrated within one
or a small fraction of areas, it is detectable in advance. After quantifying the conditional
MSE, we follow the argumentation of Jiang et al. (2002) and apply a Jackknife procedure
to account for the uncertainty resulting from the unknown model parameters. For this, let
ϕ̂ := (Â, β̂) and define

θ̂EBPi = θ̂EBPi (ϕ̂) = γ̂iθ̂
dir
i + (1− γ̂i)x̃′iβ̂ (29)

as the EBP under regularization using the information from all areas. Further, let

bi(ϕ̂) = γ̂i
2Di + (1− γ̂i)2Â+

1

m
(1− γ̂i)2(λ′β̂)2. (30)

Then the following algorithm is applied:

Algorithm 2 Jackknife for MSE Estimation

1: for j = 1, ...,m do

2: delete area j from the data set

3: estimate Â−j and β̂−j from the remaining areas

4: quantify θ̂EBPi (ϕ̂−j) for all i = 1, ...,m according to (29)

5: quantify bi(ϕ̂−j) for all i = 1, ...,m according to (30)

6: end

The Jackknife estimator for the unconditional MSE of the EBP is finally given by

M̂SE(θ̂EBPi ) = bi(ϕ̂i)−
m− 1

m

m∑
j=1

[bi(ϕ̂−j)− bi(ϕ̂)]+
m− 1

m

m∑
j=1

[
θ̂EBPi (ϕ̂−j)− θ̂EBPi (ϕ̂)

]2
. (31)
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4 Simulation

4.1 Set up

In order to support the analytical findings numerically, a Monte Carlo simulation with
R = 1000 iterations (r = 1, ..., R) is conducted. For this, a synthetic population of m = 50
areas is generated. The area-statistic of interest is generated according to

θri = (xri )
′β + vri , vri ∼ N(0, 302), ∀ i = 1, ...,m,

where xri ∈ R7 and drawn independently in each iteration from a multivariate normal.

The direct estimator θ̂dir,ri for θri is simulated in each iteration by assigning a random
heteroscedastic random error to the area-statistic

θ̂dir,ri = θri + eri , eri ∼ N(0, Dr
i ), ∀ i = 1, ...,m,

where Dr
i is drawn in each iteration from unif(a = 2502, b = 3502). The predictions are

obtained from the following approaches:

• FH: original Fay-Herriot EBLUP (Fay and Herriot, 1979),

• YL: measurement error Fay-Herriot EBLUP (Ybarra and Lohr, 2008),

• CLASSO: corrected `1-regularized area-level predictor,

• L1: `1-regularized area-level predictor,

• L2: `2-regularized area-level predictor,

• EN: elastic net-regularized area-level predictor.

Note that CLASSO represents modification of the corrected LASSO proposed by Loh and
Wainwright (2012) that makes it applicable to the Fay-Herriot model. We adopt the sug-
gested correction term including the covariance matrix of the measurement errors into the
optimization problem (16). Within the simulation study, normal distributed errors are
added to xi in each iteration. The errors are generated for every area individually from
an area-specific covariance matrix Σ(∆r

i ) in order to meet the distributive assumptions
required by Ybarra and Lohr (2008). However, generating the measurement errors in this
manner violates the distributive assumptions required by Loh and Wainwright (2012). This
has to be considered when looking at the results in the next subsection. Still, as our method-
ology explicitly doesn’t demand any knowledge of the error distribution, and in the light
of the Fay-Herriot model, it seems more natural that the measurement error distribution
varies across areas. In practise, the covariates are typically aggregated auxiliary informa-
tion from disjoint geographic, administrative, or contextual units that differ systematically.
A total of 8 measurement error scenarios is considered:

• Scenario 1: no errors, true model known,

• Scenario 2: correlated errors in all areas, true model known,
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• Scenario 3: uncorrelated errors in 25 areas, true model known,

• Scenario 4: correlated errors in 25 areas, true model known,

• Scenario 5: no errors, true model unknown,

• Scenario 6: correlated errors in all areas, true model unknown,

• Scenario 7: uncorrelated errors in 25 areas, true model unknown,

• Scenario 8: correlated errors in 25 areas, true model unknown.

More details on the measurement error scenarios can be retrieved from the appendix. For
those scenarios, in which the true model is unknown, variable selection is performed from a
set of 15 potential covariates (7 are relevant) via the Akaike information criterion (Akaike,
1974). However, note that no variable selection is required for L1, EN and CLASSO, as the

`1-norm included in the weighted minimization problem induces a sparse solution for β̂.
The performance of the predictors is evaluated in terms of the relative root mean squared
error (RRMSE):

RRMSE(θ̂EBPi ) =

√
1/R

∑R
r=1

(
θ̂EBP,ri − θri

)2
∑r

i=1 θ
r
i

.

We further look at the relative bias

RBias(θ̂EBPi ) =
1/R

∑R
r=1

(
θ̂EBP,ri − θri

)
∑R

r=1 θ
R
i

in order to analyze the predictors’ behavior over all scenarios in greater detail. The MSE

estimation is evaluated by comparing M̂SE(θ̂EBP,ri ) with its corresponding Monte Carlo
approximation

M̂SE
MC

(θ̂EBPi ) = 1/R
R∑
r=1

(θ̂EBP,ri − θri )2,

with r = 1, ..., R as index of the Monte Carlo iterations. We further look at the cover-
age rates of 95% prediction intervals for the true value of the area-statistic. They are
constructed from the MSE estimates according to

Coverage rate =

∑R
r=1

∑m
i=1 1PIθr

i
(θri )

R ·m
· 100%,

where the 95% prediction interval is defined by

PIθri = θ̂EBP,ri ± 1.96 ·
√
M̂SE(θ̂EBP,ri ) ·

√
1 + 1/m.
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4.2 Results

We start by looking at the RRMSE of the area-statistic estimates over all areas. The
corresponding results are displayed in Table 1. The performance of the direct estimator
(Direct) is included additionally to the model predictors as reference for the influence of
the sampling variance implemented in the simulation. Note that the direct estimator does
not use any auxiliary information and is thus not affected by covariate measurement errors
or variable selection.

Scen Direct FH YL CLASSO L1 L2 EN
1 0.07724 0.03207 0.03224 0.03193 0.03128 0.03006 0.03119
2 0.07724 0.04394 0.04272 0.04298 0.04333 0.04216 0.04318
3 0.07724 0.04369 0.04344 0.04312 0.04312 0.04166 0.04287
4 0.07724 0.03754 0.03703 0.03690 0.03646 0.03516 0.03633
5 0.07724 0.04175 0.04215 0.04031 0.03831 0.03868 0.03802
6 0.07724 0.05234 0.05163 0.04921 0.04753 0.04695 0.04705
7 0.07724 0.05429 0.05289 0.05023 0.04867 0.04825 0.04817
8 0.07724 0.04658 0.04655 0.04414 0.04211 0.04208 0.04174

Table 1: Relative root mean squared error over all areas

One can see that the regularized predictors L1, L2 and EN outperform the unregularized
predictors FH and YL in terms of the RRMSE in all scenarios. Accordingly, their results
are more efficient, which supports the theoretical findings presented in Chapter 2.2. The YL
is more efficient than the FH for all scenarios that include measurement errors, hence 2 to
4 and 6 to 8. This is consistent with thel results of Ybarra and Lohr (2008). The CLASSO
also outperforms the unregularized predictors in all scenarios as well. Additionally, it is
more efficient than L1 and EN in scenario 2. Here, the additional knowledge about the
measurement error distribution improves the estimates further. For the other scenarios, it
delivers slightly worse results than the other regularized predictors. However, note that with
the area-specific measurement error covariance matrices, a distributive assumption of the
CLASSO is violated. Another interesting aspect is that the performance difference between
the regularized and unregularized predictors increases in the higher-dimensional scenarios
5 to 8, where variable selection is conducted. While the unregularized predictors show a
considerable increase in the RRMSE relative to the lower-dimensional scenarios 1 to 4, the
regularized predictors suffer only a small efficiency loss. This suggests that identifying the
correct model in the presence of covariate measurement errors is methodological problem
that can be solved with regularization.

Figure 1 shows the relative deviation of the area-statistic estimates from their true value in
percent for scenario 7. The results of Direct, FH and EN are displayed. When comparing
the Direct with the FH, it becomes evident that even without regularization the underlying
regression model leads to an efficiency gain despite measurement errors. The probability
mass of the FH is more concentrated around the point of zero deviation than the Direct.
Accordingly, it has a visibly smaller variance. However, the FH is outperformed by the
EN. Its advantage in terms of robustness against the additional uncertainty resulting from
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Figure 1: Distribution of the relative deviation, scenario 7

the covariates leads to even more efficient estimates. This underlines the effectiveness of
regularization in the estimation process.

Scen Direct FH YL CLASSO L1 L2 EN
1 -0.00033 -0.00035 -0.00040 -0.00085 -0.00031 0.00057 -0.00015
2 -0.00033 -0.00167 -0.00177 -0.00147 0.00116 0.00231 0.00134
3 -0.00033 -0.00189 -0.00233 -0.00156 0.00202 0.00317 0.00225
4 -0.00033 -0.00098 -0.00091 -0.00110 0.00041 0.00145 0.00059
5 -0.00033 -0.00051 -0.00053 -0.00105 0.00005 -0.00041 -0.00001
6 -0.00033 -0.00186 -0.00190 -0.00168 0.00058 -0.00032 0.00048
7 -0.00033 -0.00221 -0.00264 -0.00192 0.00081 -0.00029 0.00062
8 -0.00033 -0.00108 -0.00099 -0.00131 0.00024 -0.00035 0.00017

Table 2: Relative bias over all areas

Table 2 displays the relative bias of the area-statistic estimates over all areas. As can be
seen, the relative bias is below 0.4% for all predictors over all scenarios, which implies that
the bias is generally small. However, the impact of the measurement errors on the bias
is very evident. While all predictors have a relatively small bias in scenarios 1 and 5, it
increases in the other scenarios. In the scenario 6 to 8, where variable selection under
measurement errors is conducted for the FH and YL, the difference in bias is especially
evident. The regularized predictors L1, L2 and EN, however, are more robust in that
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regard. Their bias increases only slightly (or not at all). This further suggests that the
regularized solutions for the model parameter estimates are still decent in the presence of
measurement errors.
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Figure 2: Distribution of the mean shrinkage factor over all areas

Another interesting aspect is the shrinkage behaviour of the predictors within the area-level
model. In Figure 2, the distribution of the mean shrinkage factors over all areas per iteration
are displayed. The results of the FH and the L1 over all scenarios are included. One can see
that the unregularized FH shows a much more volatile shrinkage behaviour compared to
the regularized L1. The boxes as well as the whiskers that correspond to the FH are much
larger than those of the L1. This suggests that the different realizations of the covariate
measurement errors throughout the simulation lead to a very unstable weighting between
the direct component and the regression-synthetic component of the FH. The L1, on the
other hand, sustains a similar weighting scheme over the iterations. However, note that its
general level of shrinkage is higher than for the FH. Accordingly, it puts more emphasize on
the direct component, which makes sense in the presence of covariate measurement errors
as the underlying regression model is associated with additional uncertainty.

In the following, the results of the MSE estimation are presented. In Table 3, the MSE es-
timates (Est) of the simulation are displayed next to the Monte Carlo approximation (MC)
of the MSE. As can be seen, the MSE is overestimated in all scenarios. For the L1, the
relative overestimation ranges from 8.17% to 36.32% with a mean of 23.13%. For the L2, it
is from 29.36% to 76.90% with a mean of 50.54%. For the EN, it is from 8.66% to 42.29%
with a mean of 25.47%. This tendency of overestimation was generally expected. Using
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the expanded regularization parameter vector as substitute for the unknown area-specific
covariate perturbations marks a conservative approach to MSE estimation, even with the
proposed more practicable approximation. The MSE estimates for the L2 are the most
inefficient, as the largest singular values of the design matrix perturbations implemented in
the simulation study are always larger than their maximum column-wise `2-norm. Accord-
ingly, the optimal regularization parameter obtained from cross validation is always the
largest for the L2. By squaring the necessary term λ′β, the effect is even stronger, which
leads in large MSE estimates.

Scen L1 MC L1 Est L2 MC L2 Est EN MC EN Est
1 15 259 20 253 14 027 22 121 15 154 20 196
2 28 428 30 749 26 851 34 733 28 216 30 658
3 31 732 36 890 30 105 40 273 31 421 36 756
4 21 252 24 672 19 811 27 698 21 086 24 609
5 22 610 30 823 22 861 40 441 22 242 31 647
6 34 064 41 553 33 141 51 387 33 363 42 120
7 37 680 49 211 36 691 57 459 36 875 49 505
8 27 476 34 956 27 211 45 119 26 974 35 461

Table 3: MSE estimation for m = 50

However, the MSE estimates become more efficient if the number of areas is increased.
Therefore, we conducted an additional simulation run with m = 90 areas. The correspond-
ing results are displayed in Table 4. As can be seen, the overestimation tendency decreases
as more areas are used for model parameter estimation. L1 overestimates in a range from
4.27% to 27.61% with a mean of 13.57%. For the L2, it is from 9.00% to 35.37% with a
mean of 21.89%. The EN overestimates in a range from 4.31% to 27.78% with a mean of
14.64%. This increase in efficiency is mainly due to a decrease in variation resulting from
the Jackknife resamples. The corresponding model parameter estimates are more robust
against the deletion of a single area when the total number of areas is large.

Scen L1 MC L1 Est L2 MC L2 Est EN MC EN Est
1 8 433 10 761 7 982 10 806 8 403 10738
2 24 640 25 692 24 043 26 207 24 599 25 659
3 19 741 21 324 19 183 21 753 19 686 21 279
4 12 570 13 607 12 077 13 758 12 534 13 573
5 13 048 16 118 14 615 19 726 13 177 16 266
6 27 572 30 591 27 931 34 215 27 457 30 683
7 23 851 26 988 24 662 31 623 23 829 28 948
8 16 958 20 043 18 263 23 206 17 014 20 156

Table 4: MSE estimation for m = 90

Based on the MSE estimation for m = 50, we construct prediction intervals for the true
value of the area-statistic and check their coverage rates within the simulation. The corre-
sponding results can be found in Table 5. While all approaches deliver stable coverage rates
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for the scenarios 1 to 5, the FH fails to sustain the 95% level for the higher-dimensional
scenarios that include measurement errors. It cannot account for the additional uncertainty
resulting from the design matrix perturbations. On the other hand, the prediction inter-
val resulting from the regularized estimation procedure remain stable. The L2 shows the
highest coverage rates. All intervals significantly more than the aimed 95% level. This is
due to the relatively strong overestimation of the MSE displayed in Table 3.

Scen FH L1 L2 EN
1 98.69% 96.45% 97.53% 96.49%
2 95.29% 93.58% 95.55% 93.63%
3 95.53% 95.27% 96.19% 95.35%
4 96.69% 94.81% 96.17% 94.91%
5 94.44% 96.28% 98.32% 96.75%
6 90.07% 94.64% 97.72% 95.05%
7 90.78% 95.86% 97.73% 96.14%
8 92.34% 95.25% 97.86% 95.70%

Table 5: Prediction interval coverage rates

5 Empirical application

After the simulation study, the methodology is applied empirically to poverty mapping in
the US. We use estimated income-related figures from the US Census Bureau (US Census
Bureau, 2016b) and estimated crime records from the Uniform Crime Reporting (UCR)
Program (Uniform Crime Reporting (UCR) Program, 2016) as auxiliary information to
quantify of the number of people below 100% of the federal poverty threshold per state.
We take existing state-level estimates of the corresponding statistics obtained from the
Current Population Survey (US Census Bureau, 2016a), which is conducted in a collabo-
ration of the US Census Bureau and the Bureau of Labor Statistics. It encloses roughly
60 000 households. We robustify and improve these estimates by applying our regularized
estimation approach. Since the original estimates are published with the corresponding
standard errors, we don’t have to use a generalized variance function in order to quantify
the sampling variances. Further, as the auxiliary information values we use are also esti-
mated, the design matrix created from them in the estimation process is associated with
uncertainty. Therefore, the data situation fits naturally in our framework. All numbers
correspond to the report year 2015. A list of all considered variables can be found in the
appendix.

We use the elastic net regularization for poverty mapping. This choice is made for two
reasons. First, some variables within the considered data sets may not be relevant for
the functional description of the area-statistic of interest. As the elastic net is a sparsity
inducing regularization, its application leads to an automatic variable selection. Second,
within the set of relevant variables, there may be grouping structures. The elastic net
has been found to perform better than the `1-regularization in terms of variable selection
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and prediction in the presence of strong correlation within the covariates (Zou and Hastie,
2005). As pointed out in Chapter 3, the regularization parameter λ is obtained from k-fold
cross validation. Applying the robustified area-level modelling in the described manner
yields the following results.

State Model Former FH Former Var Model MSE FH MSE
Alabama 710 784 704 3 600 356 365
Alaska 62 65 65 36 38 65
Arizona 1 076 1 156 1 110 7 056 592 731
Arkansas 487 475 494 729 196 331
California 5 439 5 441 5 396 44 521 5 886 39 518
Colorado 570 538 525 4 761 363 850
Connecticut 379 324 341 1 849 173 310
Delaware 107 106 103 144 45 114
Distr. Columbia 120 113 112 64 128 89
Florida 3 017 3 253 3 117 30 976 2 972 5 714
Georgia 1 805 1 833 1 888 12 321 1 781 1 744
Hawaii 159 151 147 256 115 203
Idaho 197 204 187 441 83 107
Illinois 1 491 1 380 1 498 10 816 1 551 2 560
Indiana 780 880 784 5 184 290 654
Iowa 333 321 301 1 521 151 166
Kansas 333 404 329 1 764 123 244
Kentucky 760 851 758 3 249 651 509
Louisiana 871 854 869 3 249 429 717
Maine 138 165 170 400 67 188
Maryland 568 566 552 4 900 1 112 2 144
Massachusetts 808 782 757 4 225 617 1 007
Michigan 1 233 1 259 1 160 9 604 859 5 655
Minnesota 498 428 492 3 364 356 425
Mississippi 538 563 548 1 089 277 579
Missouri 686 582 622 5 041 525 1 166
Montana 117 121 121 144 63 136
Nebraska 204 192 206 324 76 94
Nevada 382 371 398 1 296 441 872
New Hampshire 86 94 94 169 56 141
New Jersey 929 1 004 896 9 025 968 863
New Mexico 426 400 425 784 222 340
New York 2 609 2 791 2 747 24 336 14 334 11 737
North Carolina 1 374 1 509 1 452 9 025 2 087 3 509
North Dakota 83 82 82 144 49 121
Ohio 1 541 1 550 1 690 11 025 721 3 068
Oklahoma 556 551 526 2 025 309 301
Oregon 506 478 503 4 761 231 443
Pennsylvania 1 483 1 542 1 470 11 449 2 226 1 631
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Rhode Island 122 123 122 256 70 110
South Carolina 834 683 800 3 136 536 685
South Dakota 117 118 115 100 43 92
Tennessee 982 973 1 008 4 900 438 407
Texas 4 075 4 036 4 261 42 849 3 842 5 623
Utah 239 279 245 900 245 339
Vermont 60 65 62 64 37 73
Virginia 1 040 894 923 6 561 2 284 1 718
Washington 855 819 824 2 916 1 457 1 402
West Virginia 258 261 234 2 116 141 235
Wisconsin 714 654 682 4 624 439 339
Wyoming 56 56 65 64 31 69

Table 6: Number of people below 100% of the federal poverty threshold in thousands

Table 6 shows the number of people below 100% of the federal poverty threshold per state
in thousands. The Model column corresponds to the model estimates from regularized
estimation approach, while the Former column displays to the original estimates provided
by the US Census Bureau. The FH column shows the results of the original unregularized
Fay-Herriot EBLUP. The Former Var column corresponds to the variance of the originally
published estimates of the US Census Bureau. The columns Model MSE and FH MSE
display the estimated MSEs of the respective model estimates. As can be seen, there
are some differences between the model estimates and the original estimates. While the
original nationwide estimate is 43 124 000, the regularized approach obtains 42 818 000 and
the Fay-Herriot EBLUP estimates 42 980 000. This marks a difference of -0.71% and -
0.33%, respectively. On the level of the federal states, the differences are partially larger.
However, given the relatively large variances of the original estimates, no model estimate
is implausible. The advantage of the model estimates is that they are more efficient in
terms of the MSE. While the average variance of the original estimates is 5 964, the average
MSE of the regularized estimates is 1 002. The average MSE of the Fay-Herriot EBLUP is
1971. Accordingly, the regularized modelling approach allows for a decisive efficiency gain
compared to both the original estimates as well as the results of the unregularized Fay-
Herriot approach. Another interesting aspect is the difference in the shrinkage behaviour
between the regularized estimates and the Fay-Herriot results. As already pointed out in
the simulation study, the Fay-Herriot tends to shrink less towards the original estimates
than the regularized approach. It puts more emphasize on the model component, which
can be problematic in the presence of uncertainty in the design matrix.

Figure 3 is a map of the estimated percentage of people below 100% of the federal poverty
threshold. It is obtained from dividing the regularized model estimates by the population
size, which is retrieved from the US Census Bureau. As can be seen, the highest poverty
rates are located in the south and in the south-east. The highest estimated percentage is
in New Mexico with approximately 20.48%, followed by Louisiana (18.66%), Mississippi
(18.00%), the District of Columbia (17.90%), Georgia (17.70%) and Kentucky (17.18%).
The lowest estimated percentage is in New Hampshire with approximately 6.47%, followed
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Figure 3: Percentage of people below 100% of the federal poverty threshold

by Utah (8.00%), Alaska (8.40%), Minnesota (9.08%), Maryland (9.55%) and Wyoming
(9.58%).

6 Conclusion

A robust extension to the Fay-Herriot model under covariate measurement errors was pro-
posed. We showed that regularized regression coefficient estimation is equivalent to robust
optimization under additive noise when loss and regularization are strictly monotonously
increasing, bijective functions of seminorms and norms. Applying this equivalence, we de-
rived a model parameter estimation procedure that is easy to implement, delivers efficient
results in the presence of design matrix perturbations, and does not require distributive
information about the measurement error. It further allows for stable area-statistic esti-
mates from small samples and, depending on the choice of the regularization, even performs
model parameter estimation and variable selection simultaneously. Therefore, it is partic-
ularly relevant for a variety of SAE applications where the available auxiliary information
is subject to uncertainty. Due to its general formulation, the presented equivalence has
implications for a much broader range of regression problems, for example in linear mixed
model theory or time series analysis. However, as our focus is on SAE, we limit the discus-
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sion on future research to that field, even though several aspects can be translated beyond
its scope.

An important question is how to optimally choose the regularization. Usually, the reg-
ularization is determined by observable distributive characteristics of the covariates (e.g.
grouping structures or multicollinearity), or depending on the researchers ideas towards the
true structure of the regression coefficients (e.g. sparsity). But in the light of the theoreti-
cal findings, when applying regularization as robustification against covariate measurement
errors, one has to further consider the potential structure of the noise in the design matrix.
As this noise is, however, unobservable, it is currently not obvious how to consider it for
the optimal regularization choice. A possible approach could be to perform k-fold cross
validation on multiple grids, where each grid corresponds to a regularization parameter for
a specific regularization. Another question is the efficiency of the MSE estimation when
the number of areas is small. Especially for the squared `2-norm, the proposed Jackknife
estimator overestimates the actual MSE considerably. Therefore, it should be investigated
how the MSE estimation procedure can be adjusted depending on the regularization.
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Appendix

Data for the empirical application

The following variables were considered on the state-level for the empirical application of
the methodology in Chapter 5.

Variable Source
Median household income US Census Bureau
Percentage of households with income below 10.000$ US Census Bureau
Percentage of households on the Supplemental US Census Bureau
Nutrition Assistance Program
Unemployment rate US Census Bureau
Number of people below 50% of the federal poverty threshold US Census Bureau
Number of people below 100% of the federal poverty threshold US Census Bureau
Number of violent crimes per 100.000 UCR Program
Number of murders and nonnegligent manslaughters per 100.000 UCR Program
Number of rapes per 100.000, legacy definition UCR Program
Number of rapes per 100.000, revised definition UCR Program
Number of robberies per 100.000 UCR Program
Number of aggravated assaults per 100.000 UCR Program
Number of property crimes per 100.000 UCR Program
Number of burglaries per 100.000 UCR Program
Number of larceny-thefts per 100.000 UCR Program
Number of motor vehicle thefts per 100.000 UCR Program

29



Measurement error scenarios

The design matrix perturbations are drawn for each iteration of the simulation individ-
ually from multivariate normal distributions with fixed area-specific covariance matrices
Σ∆r

1
, ...,Σ∆r

m
. Note that these measurement error covariance matrices differ per scenario.

They are generated according to the following procedure.

Scenario Generation Areas

1 Σ(∆r
i ) = 07,7 i = 1, ...,m

2 Σ(∆r
i ) ∈ R7×7

+ positive-definite, σrj,l ∼ unif(a = 40, b = 60) i = 1, ...,m

3 Σ(∆r
i ) = diag(σr1, ..., σ

r
7), σ

r
j ∼ unif(a = 40, b = 60) i = 1, ..., (m/2)

3 Σ(∆r
i ) = 07,7 i = (m/2 + 1), ...,m

4 Σ(∆r
i ) ∈ R7×7

+ positive-definite, σrj,l ∼ unif(a = 40, b = 60) i = 1, ..., (m/2)

4 Σ(∆r
i ) = 07,7 i = (m/2 + 1), ...,m

5 Σ(∆r
i ) = 015,15 i = 1, ...,m

6 Σ(∆r
i ) ∈ R15×15

+ positive-definite, σrj,l ∼ unif(a = 40, b = 60) i = 1, ...,m

7 Σ(∆r
i ) = diag(σr1, ..., σ

r
15), σ

r
j ∼ unif(a = 40, b = 60) i = 1, ..., (m/2)

7 Σ(∆r
i ) = 015,15 i = (m/2 + 1), ...,m

8 Σ(∆r
i ) ∈ R15×15

+ positive-definite, σrj,l ∼ unif(a = 40, b = 60) i = 1, ..., (m/2)

8 Σ(∆r
i ) = 015,15 i = (m/2 + 1), ...,m

30


	Deckblatt 2019-04
	Burgard_et_al_RobustFH
	Introduction
	Regularized area-level model
	Area-level model under covariate measurement errors
	Robustification against covariate measurement errors
	Regularizations

	Estimation
	Model parameter estimation
	Mean squared error estimation

	Simulation
	Set up
	Results

	Empirical application
	Conclusion


