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Abstract
The joint usage of unit- and area-level data for model-based small area estimation is
investigated. The combination of levels within a single model encloses a variety of
methodological problems. Firstly, it implies a critical decrease in degrees of freedom
due to more model parameters that need to be estimated. This may destabilize model
predictions in the presence of small samples. Secondly, unit- and area-level data has
different distributional characteristics in terms of dispersion patterns and correlation
structure. Thirdly, unit- and area-level data is usually subject to different kinds of
measurement errors. We propose a multi-level model with level-specific penalization to
overcome these issues and use unit- and area-level data jointly for model-based small area
estimation. An application is provided on the example of regional health measurement
in Germany. We combine health survey data on the unit-level and aggregated micro
census records on the area-level to estimate hypertension prevalence.

Keywords: disease mapping, multi-level model, multi-source estimation, penalization,
stochastic gradient descent
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1 Introduction

Small area estimation (SAE) is frequently applied to obtain reliable estimates of aggregate-
specific quantities (area-statistics) from small samples. A direct estimator that only uses
data of one area at a time cannot produce area-statistic estimates with sufficient accuracy
in that case. SAE was developed to solve this problem by combining data from multiple
areas in suitable regression models. The objective is to improve estimation efficiency
over a direct estimator by exploiting the functional relation between the area-statistic of
interest and auxiliary data. Depending on data availability and privacy regulations in
the field of application, unit- or area-level models are used for this purpose. The main
difference between these model types is the aggregation level of the auxiliary data they
consider for model parameter estimation. The original area-level model was proposed by
Fay and Herriot (1979) and uses auxiliary data on the area-level. The original unit-level
model was proposed by Battese et al. (1988) and considers auxiliary data below the
area-level. For a comprehensive overview on SAE, we refer to Rao and Molina (2015).
The efficiency gain of a small area estimator over a direct estimator is determined by the
explanatory power of the underlying regression model. Accordingly, when auxiliary data
for both unit- and area-level is available, both levels should be considered to maximize
the explanatory power and thus to produce optimal area-statistic estimates.

The joint usage of unit- and area-level data for model-based SAE is not as well-established
in the literature. A lot of multi-level SAE models use unit-level data while accounting for
heterogeneity in fixed effects on the area-level, as for example proposed by Moura and
Holt (1999). This marks an important generalization of the nested error structure in the
original unit-level approach by Battese et al. (1988), which models differences between
areas only via random intercept. Though, it does not allow for the direct combination
of unit- and area-level data sets as area-level heterogeneity is assumed to be due to ran-
dom deviations from unit-level fixed effects. Twigg et al. (2000) presented a multi-level
approach to include both individual and ecological components to predict small area
health-related behaviour as binary response. Still, the approach relies on a sequential
procedure to calibrate a model on one data set first, and then use it in conjunction
to another, which requires model specification to be very simple. Ghosh and Steorts
(2013) developed a two-stage benchmarking approach that combines unit-and area-level
in a single weighted squared loss function while benchmarking weighted means at both
levels. However, the focus of our contribution is not on benchmarking, but on a direct
and straightforward combination of unit- and area-level data.

Using unit- and area-level data in this manner encloses some methodological problems.
Firstly, it requires model parameter estimation at both levels simultaneously. In the
presence of small samples, the increased number of parameters may lead to considerably
high model parameter estimate variances due to the lack in degrees of freedom. Model-
based small area estimates then also suffer from high variance and are not reliable.
Secondly, unit- and area-level data tend to have different distributional characteristics
and correlation structures due to different degrees of aggregation (Clark and Avery,
1976). As a result, the levels should not be treated equally in terms variable selection
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or model parameter estimation. Thirdly, unit- and area-level data is usually subject to
different kinds of measurement errors. While unit-level data may suffer from false outliers
(e.g. due to wrong coding), area-level data might be uncertain because its values are
estimated. As ignoring measurement errors leads to suboptimal area statistic estimates,
the researcher should account for this (Lohr and Ybarra, 2008). And finally, unit- and
area-level data usually differs in terms of availability. Unit-level data is often rare due to
privacy issues, whereas area-level data is less sensitive and easier to access, for example
from registries. Accordingly, an approach must be able to deal with situations where
there are a lot of variables on one level while there are only few on the other.

We propose to combine unit- and area-level data in a multi-level model under level-
specific penalization. Level-specific penalization refers to penalized maximum likelihood
estimation of the model parameters where the fixed effects on each level are penal-
ized individually. For this purpose, `1-norm, squared `2-norm, elastic net, and mixed-
norm penalties are considered. Using level-specific penalization in multi-level models
for SAE solves the methodological problems mentioned before. Firstly, it allows for
high-dimensional inference. Hence, even if the number of model parameters surpasses
the number of observations, the underlying optimization problem for model parameter
estimation is still well-posed. This is particularly attractive in the presence of small
samples. Secondly, level-specific penalization marks an intuitive way to treat unit- and
area-level data differently for model parameter estimation. The penalties can be defined
dependent on the distributional characteristics of the corresponding auxiliary data. Fur-
ther, if a sparsity-inducing penalty is chosen (e.g. `1-norm), an automatic level-specific
variable selection is conducted. Thirdly, norm-based penalization implies a robustifi-
cation against measurement errors in the auxiliary data (Bertsimas and Copenhaver,
2018; Burgard et al., 2019). Accordingly, level-specific penalization allows for different
measurement errors on each level. And finally, the tuning parameter on each level re-
quired for penalization can be altered depending on the number of variables available
for prediction.

Penalized maximum likelihood estimation of the model parameters is performed with
a stochastic coordinate gradient descent algorithm using insights from Tseng and Yun
(2009) as well as Schelldorfer et al. (2011). Random effect prediction is done in a
Bayesian manner using a maximum a posteriori approach, as suggested by Schelldorfer
et al. (2011). The methodology is tested under multiple scenarios in a simulation study.
An empirical application is provided on the example of regional health measurement in
Germany. We combine unit-level data from the German health survey Gesundheit in
Deutschland aktuell (GEDA) with area-level data from aggregated micro census records
to estimate regional hypertension prevalence. The remainder of the paper is organized
as follows. In Chapter 2, the methodology is explained. This includes a description
of the multi-level model, the level-specific penalties, and model parameter estimation.
In Chapter 3, the simulation study is provided. Chapter 4 encloses the application to
regional health measurement. Chapter 5 closes with an outlook on future research.
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2 Methods

2.1 Multi-level model

Let U be a finite population of size N containing m pairwise disjoint areas of size Ni

with i = 1, ...,m and
∑m

i=1Ni = N . Let a random sample S of size n be drawn from
U such that there are m area sub-samples of size ni > 1 with

∑m
i=1 ni = n . Let

yi ∈ Rni×1 be a vector containing observations of some response variable y from which
the area-statistic of interest in area i is calculated. Let Xu

i ∈ Rni×pu be the fixed effect
design matrix in area i containing unit-level auxiliary data for the description of yi. Let
Xa
i = (xai , ...,x

a
i )
′ ∈ Rni×pa be the fixed effect design matrix resulting from an expansion

of the vector xai ∈ R1×pa containing area-level auxiliary data. Note that (pu + pa) > n
is allowed. Let Zi ∈ Rni×q be the random effect design matrix in area i with q ≤ p. In
the majority of SAE models, the random effect structure is usually limited to an area-
specific random intercept. However, the general formulation of the multi-level model
allows for an area-specific random effect on potentially all covariates. The multi-level
model combining unit- and area-level data is given by

yi = Xu
i β

u + Xa
iβ

a + Zibi + ei ∀ i = 1, ...,m, (1)

where βu ∈ Rpu×1, βa ∈ Rpa×1 are the fixed effect coefficient vectors for each level
and bi ∼ MVN(0,Ψ) denotes the random effect coefficient vector under multivariate
normality with some general positive-definite covariance matrix Ψ. ei ∼MVN(0, σ2Ini

)
is a vector of i.i.d. random errors with model variance parameter σ2. Note that b1, ..., bm,
e1, ..., em are assumed to be stochastically independent. Thus, the response vector has
the following multivariate normal distribution under the model:

yi ∼MVN
(
Xu
i β

u + Xa
iβ

a,Vi(σ
2,ψ)

)
∀ i = 1, ...,m, (2)

with Vi(σ
2,ψ) = σ2Ini

+ ZiΨZ′i, where the random effect covariance matrix Ψ is
parametrised by a vector ψ of dimension q∗ < n, for example resulting from a Cholesky
decomposition. Restating the model over all areas obtains

y = Xuβu + Xaβa + Zb+ e, (3)

with Xu = ((Xu
1)′, ..., (Xu

m)′)′, Xa = ((Xa
1)
′, ..., (Xa

m)′)′, Z = diag(Z1, ...,Zm) as stacked
matrices and y = (y′1, ...,y

′
m)′, b = (b1, ...,bm)′, e = (e′1, ..., e

′
m)′ as stacked vectors.

Define θ := (β1, ...,βk,ψ, σ2) ∈ Rpu+pa+q∗+1 as the full parameter vector. The negative
loglikelihood function is then:

− L(θ) = 1

2

[
n · log(2π) + log (|V|) + (y −Xuβu −Xaβa)′V−1 (y −Xuβu −Xaβa)

]
, (4)

with V = diag(V1, ...,Vm) and |V| denoting the determinant of V.
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2.2 Penalizations

The penalties used for level-specific penalization in the multi-level model are described.

`1-norm penalty
The first penalty is the `1-norm, which is used in the least absolute shrinkage and selec-
tion operator (LASSO) introduced by Tibshirani (1996) for linear models. It has been
extended to linear mixed models (LMMLASSO) in contributions of for example Bondell
et al. (2010), Ibrahim et al. (2011), or Schelldorfer et al. (2011). We use the LMMLASSO
with level-specific penalization by defining individual penalization parameters λu > 0,
λa > 0 for unit- and area-level. The resulting objective function is then given by

Q`1(θ, λu, λa) = −L(θ) + λu
∑
j∈Xu

|βuj |+ λa
∑
j∈Xa

|βaj |, (5)

with βuj ∈ βu, βaj ∈ βa and X u,X a denoting index sets that correspond to the auxiliary
variables in Xu,Xa. The `1-norm marks a sparsity-inducing penalty in the sense that
fixed effect coefficients irrelevant for the functional description of the response variable
will not only be shrunken towards zero, but set exactly to zero in the estimation process.
Thus, estimation and variable selection are performed simultaneously. Due to the level-
specific penalization, the level of sparsity and shrinkage on each level can be controlled
individually. If e.g. λu is raised, the sparsity in βu is increased and more βuj are set
to zero. However, note that the level of shrinkage has implications for bias in the fixed
effect coefficient estimation. See Fan and Li (2001) as well as Zou (2006) for further
details.

Squared `2-norm penalty
The next penalty is the squared `2-norm, which is used in ridge regression proposed by
Hoerl and Kennard (1970) for linear models. It has has been extended to linear mixed
models in contributions of for example Eliot et al. (2011), Li and Yang (2010), or Schulz-
Streeck and Piepho (2010). Again, under level-specific penalization, the corresponding
objective function is given by

Q`2(θ, λu, λa) = −L(θ) + λu
∑
j∈Xu

(βuj )2 + λa
∑
j∈Xa

(βaj )2. (6)

Unlike the `1-norm, the squared `2-norm does not induce are sparse solution for the
fixed effect coefficients, but a dense solution. The fixed effect coefficients are shrunken
towards zero, but not set exactly to zero. Further, their estimated values are smoothed
in the sense that the individual contributions of the corresponding predictors are equal-
ized depending on the value of the penalization parameters. Due to the level-specific
penalties, the level of smoothness and shrinkage on each level can be controlled individ-
ually. Note that because of the absence of sparsity, no automatic variable selection is
conducted. The squared `2-norm has shown to be superior in predictive power relative
to the `1-norm in the presence of highly correlated auxiliary data. Further details can
be found in Zou and Hastie (2005).
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Elastic net penalty
The third penalty is a linear combination of the `1-norm and `2-norm, which is used in
the elastic net proposed by Zou and Hastie (2005) for linear models. The elastic net
has been extended to linear mixed models in contributions of for example Ogutu et al.
(2012) or Sidi (2017). Under level-specific penalization, the objective function can be
stated as

Q`1&2
(θ, λu, λa) =− L(θ) + λu

[
(1− αu)

∑
j∈Xu

(
βuj
)2

+ αu
∑
j∈Xu

|βuj |

]

+ λa

[
(1− αa)

∑
j∈Xa

(
βaj
)2

+ αa
∑
j∈Xa

|βaj |

]
,

(7)

where αu ∈ [0, 1], αa ∈ [0, 1] are hyperparameters controlling the contribution of the
`1-norm and `2-norm on each level. The elastic net can be viewed as a compromise of
the LASSO and ridge regression, incorporating properties of both methods. It induces
a sparse solution due to the `1-norm. However, the resulting variable selection and
prediction performance has shown to be superior for highly correlated covariates relative
to a `1-norm penalization only. The additional influence of the squared `2-norm allows
for the anticipation of grouping structures in terms of correlation within the covariates
while variable selection and stabilizes model predictions. See Zou and Hastie (2005) as
well as Zou and Zhang (2009) for further details.

Mixed-norm penalty
The final penalty is a generic term for different `q-norm combinations. It basically refers
to penalizations where each level is associated with an individual norm. To the best
of our knowledge, mixed-norm penalties have mostly been studied in machine learning
contexts and biomedical applications, e.g. by Flamary et al. (2014) or Nath et al. (2009).
The objective function is given by

Qmix(θ, λu, λa) = −L(θ) + λuPu(βu) + λaPa(βa), (8)

where P(·) denotes some level-specific penalty. Within this paper, mixed-norm penaliza-
tion is achieved by associating one level with a `1-norm while associating the other with
a `2-norm. This allows for simultaneous sparse and dense solutions for model parameter
estimation, depending on the distributional characteristics of the auxiliary data.

2.3 Model parameter estimation

In order to estimate the model parameters under a given penalization, the following
minimization problem has to be solved:

θ̂ = arg min
βu,βa,ψ,σ2>0,Ψ>0

{
Q(·)(θ, λ

u, λa) = −L(θ) + λuPu(βu) + λaPa(βa)
}
. (9)
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For this purpose, a stochastic coordinate gradient descent algorithm is used. We pri-
marily draw from Schelldorfer et al. (2011) as well as Tseng and Yun (2009) and modify
their (block) coordinate gradient descent method by a randomized cycling order. This
improves the convergence probability in the light of the non-convexity of (9), as an un-
fortunate series of coordinates less likely to occur (Bottou et al., 2018). Minimization via
coordinate gradient descent implies that the value of the objective function is minimized
gradually by updating a single element of the target parameter vector θ at a time while
keeping the others fixed. Then the remaining elements are updated accordingly in an
iterative manner, such that a cyclic movement through all coordinates of θ is achieved.
This approach is particularly useful for the proposed multi-level model as it allows for
an easy implementation of level-specific penalization in the estimation process.

Due to the unknown variance parameters σ2 and ψ in the negative loglikelihood function
(4), the minimization problem (9) is non-convex. This complicates model parameter es-
timation significantly, as the algorithm is not guaranteed to achieve the global minimum.
The non-convexity of the objective functions Q(·) favours the existence of local minima,
which implies that the resulting model parameter estimates may be sensitive to starting
values. However, the minimization with respect to βu,βa is convex under fixed variance
parameters. Following the argumentation of Schelldorfer et al. (2011), this is exploited
in the estimation process. For st = 1, 2, ..., let Rst be the index cycling through the
coordinates {1}, {2}, ..., {p + q∗ + 1} in the t-th iteration of the algorithm. Note that
the order of the coordinates changes randomly after each iteration. Let θtRst denote the
s-th element of θt, where θt is the full parameter vector in the t-th iteration. Let dtst
be the descent direction and let htst = ∂2Q(·)(θ

t)/∂(θtRst )
2 be the second partial deriva-

tive of the objective function with respect to the current element in the t-th iteration.
Further, let I(θt)RstRst denote the diagonal element of the Fisher Information matrix
I(θt) corresponding to θtRst . Let l ∈ {u, a}. The stochastic coordinate gradient descent
algorithm shown in Algorithm 1.

Note that if θtRst
is subject to a penalization including the `1-norm, the first and second

partial derivatives don’t exist because the corresponding objective function is not con-
tinuously differentiable at the origin. In that case, htst and dtst are determined according
to Tseng and Yun (2009). If htst is not truncated, Schelldorfer et al. (2011) propose
an analytical update of the element that is obtained from setting atst and the fact that
L(θ) is quadratic with respect to the fixed effect coefficients. For the elastic net penalty,
additional shrinkage is achieved by dividing the `1-norm solution by 1 + λj(1 − α), as
suggested by Friedman et al. (2010). We further use an active-set algorithm in the case
of a sparsity-inducing penalty for a level according to Friedman et al. (2010) as well as
Schelldorfer et al. (2011). This implies that in each iteration of the stochastic coordinate
gradient descent algorithm elementwise minimization is only performed with respect to
non-zero parameters. Once a parameter is set to zero, it remains zero throught the
estimation process. This of course does not apply to the squared `2-norm, which does
not induce a sparse solution.
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Algorithm 1 Stochastic coordinate gradient descent

1: choose a starting value θ0

2: while not converged do

3: define a random cycling order st

4: for st = 1, 2, ...:

5: if θtRst subject to `1-norm or elastic net penalization

6: then htst ≈ I(θ)RstRst

7: if htst 6= min(max(I(θt)RstRst , cmin), cmax)

8: then dtst = median

λl − ∂g(θst )
∂θtRst

hst
,−βjRst ,

−λl − ∂g(θst )
∂θtRst

hst


Choose atst according to the Armijo Rule θt+1

Rst =

θtRst
− atstd

t
st

9: else if θtRst subject to `1-norm penalization

10: then θt+1
Rst =

[
sign ((y − ỹ)′V−1XRst ) ·max

(
|(y − ỹ)′V−1XRst | − λl, 0

)]
/htst

11: else θt+1
Rst =

[sign ((y − ỹ)′V−1XRst ) ·max (|(y − ỹ)′V−1XRst | − αλj, 0)]

1 + λl(1− α)]
/htst

12: else htst =
∂2Q(·)

∂(θtRst )2
θt+1
Rst = θtRst

−
∂Q(·)

∂θtRst

/htst

13: end while

14: return θ̂ = θt
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2.4 Prediction

Beside model parameter estimation, the random effects must be predicted. For this, we
use maximum a posteriori estimation, as suggested by Schelldorfer et al. (2011). This is
a Bayesian approach where the quantity of interest is estimated from the mode of the
posterior distribution. Let f denote a normal probability density. We have

b̃i = arg max
bi

{f(bi|y1, ...,ym,β
u,βa,ψ, σ2)}

= arg max
bi

{f(bi|yi,βu,βa,ψ, σ2)}

= arg max
bi

{
f(yi|bi,βu,βa,ψ, σ2) · f(bi|ψ)

f(yi|βu,βa,ψ, σ2)

}
= arg min

bi

{
1

σ2
||yi −Xu

i β
u −Xa

iβ
a − Zibi||2 + b′iΨ

−1bi

}
.

(10)

Solving (10) under the model assumption delivers

b̃i =
(
Z′iZi + σ2Ψ−1

)−1
Z′i (yi −Xu

i β
u −Xa

iβ
a) , (11)

which is then estimated by

b̂i =
(
Z′iZi + σ̂2Ψ̂

−1)−1
Z′i

(
yi −Xu

i β̂
u
−Xa

i β̂
a
)
, (12)

using the model parameter estimates obtained from the minimization of Q(·).

Now, in order to obtain estimates for the area statistic of interest, predictions from the
model must be produced. However, note that the exact procedure depends on the nature
of the area statistic. If it is linear, e.g. the area-specific mean of y, then it is sufficient
to use the area-specific means of unit level covariates Xu and the area-specific covariate
values of Xa. However, if the area statistic non-linear, then unit level predictions are
required. In the following, we consider the latter case. Let xuiι,x

a
iι and ziι denote the

fixed and random effect vector corresponding to some new individual ι in area i. The
response prediction of ι under model (3) is obtained from:

ŷiι = xuiιβ̂
u

+ xaiιβ̂
a

+ ziιb̂i. (13)

Note that ŷiι is the empirical best predictor for yiι under the model if θ̂ is a consistent
estimator for θ (Boubeta et al., 2016). Schelldorfer et al. (2011) provided a consistency
proof for high-dimensional `1-penalized LMM estimation with asymptotics m → ∞
assuming bounded eigenvalues of Z′iZi and some sparsity condition for β. However, we
are not aware of corresponding proofs for high-dimensional LMM estimation with other
penalizations.
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3 Simulation study

3.1 Set up

A monte carlo simulation with R = 500 iterations (r = 1, ..., R) is conducted in or-
der to test the methodology against established small area estimators in a controlled
environment. For this, a synthetic population of N = 20 000 individuals in m = 100
areas of size Ni = 200. In each iteration, a stratified random sample of size n = 200
with strata sample size ni = 2 is drawn. For unit level auxiliary data, a total of 40
variables with a weak internal correlation structure is drawn from a multivariate normal
with area-specific means. For area level auxiliary data, a total of 100 variables with a
strong internal correlation structure is drawn from a multivariate normal. The response
variable is created on the unit level according to

yiι = 100 + βu1xu1iι + βu2xu2iι + βa1xa1i + βa2xa2i + vi + eiι, (14)

where vi ∼ N(0, 2002) is a random area intercept and eiι ∼ N(0, 1002) is a unit level
error term. For simplicity, all fixed effect regression coefficients are set to 3. Note that
from the unit level and area level auxiliary data sets described above, only 2 variables
per set is relevant for the functional description of y. This is done in order to include
variable selection aspects in the simulation study. The area statistic of interest is the
area-specific mean of the response variable:

ȳi =
1

Ni

Ni∑
ι=1

yiι. (15)

In order to estimate ȳi, the following estimators are considered:

• LMM.Oracle: EBLUP under the true multi-level model (14) with known covariates
for all units of the population

• FH.Oracle: Fay-Herriot EBLUP considering the true auxiliary variables, but using
the true area-specific means of xu1iι , x

u2
iι as substitute for unit level data

• LMM.Select : EBLUP under a multi-level model where variable selection is per-
formed via the corrected conditional AIC proposed by Greven and Kneib (2010)

• LMMLASSO : Prediction from the multi-level model (3) with uniform `1-norm
penalization

• Mixed.Ridge: Prediction from the multi-level model (3) with uniform `2-norm
penalization

• LMMEN : Prediction from multi-level model (3) with uniform `1&2-norm penaliza-
tion

• Multi.L1 : Prediction from the multi-level model (3) with level-specific `1-norm
penalization
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• Multi.L2 : Prediction from the multi-level model (3) with level-specific `2-norm
penalization

• Multi.EN : Prediction from the multi-level model (3) with level-specific `1&2-norm
penalization

• Multi.MX : Prediction from the multi-level model (3) with mixed-norm penalization

Note that the EBLUP under original unit level model proposed by Battese et al. (1988)
is not included since exclusively considering the unit level variables cannot provide any
reasonable results given the way the response variable is generated. However, the EBLUP
under the Fay-Herriot model is included, as the unit level variables can be aggregated
in order to use them on the area level. The efficiency of the area-statistic estimation is
evaluated in terms of the relative root mean squared error, which is given by

Relative RMSE(̂̄yi) =
1

R ·m

R∑
r=1

m∑
i=1

√(̂̄yri − ȳri )2
ȳri

. (16)

In order to obtain more insights on the estimators’ performances, we further consider
the relative bias

Relative Bias(̂̄yi) =
1

R ·m

R∑
r=1

m∑
i=1

(̂̄yri − ȳri )
ȳri

(17)

as well as the coefficient of variation

Coeff.Variation(̂̄yi) =
1

R ·m

R∑
r=1

m∑
i=1

√(̂̄yri − E(̂̄yri ))2
E(̂̄yri ) . (18)

3.2 Results

Table 1 shows the overall performance of the estimators in terms of the point estimation
over all areas and iterations of the monte carlo simulation. As can be seen, all penalized
multi-level estimators except for the Mixed.Ridge outperform the unpenalized single-
level estimator FH.Oracle as well as the unpenalized multi-level estimator LMM.Select.
Their relative RMSEs are considerably smaller by a range of 12.9% to 23.8%. The
LMM.Select is slightly less efficient than the FH.Oracle despite using information from
both the unit- and the area-level. This is most likely due to additional uncertainty
resulting from multi-level covariate selection with a single-level information criterion,
as the LMM.Select does not know the true model. The most efficient estimator is the
LMM.Oracle, which has perfect information by knowing the true model and the covariate
values for all individuals in each area. It has the smallest relative bias and the smallest
relative RMSE. However, this was expected since it serves as reference estimator within
the simulation due to its unrealistic information advantage. An interesting observation
is that despite having perfect information, the LMM.Oracle does not have the smallest
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Predictor Relative Bias Coeff.Variation Relative RMSE
LMM.Oracle 0.00063 0.01977 0.01667
FH.Oracle 0.00094 0.02606 0.02313
LMM.Select 0.00026 0.02938 0.02368
LMMLASSO 0.00080 0.02157 0.01981
Mixed.Ridge 0.00343 0.01762 0.02486
LMMEN 0.00187 0.01863 0.02014
Multi.L1 0.00079 0.02148 0.01975
Multi.L2 0.00142 0.01846 0.01995
Multi.EN 0.00128 0.01951 0.01960
Multi.MX 0.00073 0.02084 0.01762

Table 1: Point estimation results

coefficient of variation. Four of the seven penalized estimators show less relative standard
deviation. This is due to additional variables they can consider since they don’t use the
true model, but more complex model fits that further decrease variance as a result from
sampling-induced dependencies. Though, the penalized estimators have a larger relative
bias that makes them ultimately less efficient than the unpenalized LMM.Oracle.

Figure 1: Boxplot of relative deviations

Figure 1 shows boxplots of the relative deviations of the estimates from the true values
of the area-specific means (̂̄yri − ȳri )/ȳ

r
i . As can be seen, within the group of penal-

ized estimators, the approaches with level-dependent penalization (Multi.L1, Multi.L2,
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Multi.EN) perform better than their counterparts with uniform penalization (LMM-
LASSO, Mixed.Ridge, LMMEN). The efficiency gain ranges from 0.3% to 19.8%. The
overall best estimator without perfect information is the Multi.MX, which uses the `1-
norm penalty on the unit-level and the `2-norm penalty on the area-level. Its efficiency
is close to the reference estimator LMM.Oracle.
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Figure 2: Density of relative deviations

The efficiency gain resulting from level-specific penalization is further visualized in Figure
2. The graph shows the density of relative deviations of three estimators with different
information usage. The results from single-level estimator FH.Oracle are depicted in
black, the multi-level estimator with uniform penalization LMMLASSO is displayed in
green, and the multi-level estimator with level-specific penalization Multi.MX is ablined
in red. As can be seen, the additional (implicit) information used by the three estimators
leads to a stronger concentration of the density mass around 0. The FH.Oracle is the
baseline estimator in this graph, as it only uses information on the area-level. The
LMMLASSO considers information from the unit- and the area-level and is thus more
efficient. However, it uses a uniform penalization that does not account for the different
covariate properties on the levels. Subsequently, the Multi.MX has a visible advantage
of the LMMLASSO by not only using level-specific tuning parameters, but even level-
specific penalties.

Figure 3 elaborates further on the comparison between uniform and level-specific penal-
ization. It shows point estimates of the Mixed.Ridge (black) and its counterpart, the
Multi.L2 (green). As can be seen, the Mixed.Ridge has problems with capturing the
tails of the distribution. The uniform shrinkage behaviour leads to solid estimates on
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Figure 3: Scatterplot of point estimates

average, but for more extreme values, there are larger deviations. With the level-specific
shrinkage behaviour of the Multi.L2, also the tails of the distribution can be captured
with decent accuracy. Again, the information advantage by anticipating level-specific
data properties leads to an increase in estimation efficiency. Further, by looking at Table
1, the Mixed.Ridge performs slightly worse than the unpenalized approaches FH.Oracle
and LMM.Select. This is likely due to suboptimal shrinkage behaviour in the light of
the strongly different level-specific correlation structures in combination with uniform
penalization and dense model parameter estimates.

4 Application

The methodology is applied to health measurement in Germany. The objective is to
estimate the hypertension prevalence for the population of age 18+ on regional levels.
The definition of the disease profile is adapted from the Robert Koch Institute (2012).
We combine two different data sources for this purpose. The first data source is the
German health survey Gesundheit in Deutschland aktuell (GEDA) from 2010. It con-
tains detailed medical and health-related information on roughly 20.000 participants
of age 18+. The observations of this survey are used as unit-level data source. The
second data source is aggregated records of the German micro census from 2010. The
micro census is a large-scale survey that covers 1%-sample of the German population.
It contains (among others) socio-demographic and economic information that we use in
aggregated form on regional levels to maximize the explanatory power for hypertension

14



prevalence estimation. The elastic net penalty with hyperparameters αu = αa = 0.5 is
used for penalized maximum likelihood estimation of the model parameters. The tuning
parameters λu, λa are determined by k-fold cross validation with a bivariate grid search.

As the elastic net is a sparsity-inducing penalty, an automatic variable selection is con-
ducted in the estimation process. In the following, we provide a brief overview of covari-
ates selected for hypertension prevalence estimation. Further, we gradually increased
the optimal level-specific tuning parameter values obtained from k-fold cross validation
in order to assess the relevance of the corresponding fixed effect for the regional hyper-
tension prevalence within the underlying regression model. With this, we obtain a rough
measure of (pseudo-) significance for the selected covariates. We distinguish three levels
of significance: strong (+++), medium (++), weak (+). From GEDA, variables were
selected on the unit-level.

• Demographic variables, e.g. sex (+++), age group affiliation (+++)

• Comorbidity variables, e.g. having other cardiovascular diseases (+++)

• Lifestyle variables, e.g. smoking, drinking (+++), sport activities (+++)

• Medical care variables, e.g. visits to the doctor (++), health insurance membership
(+)

• Living condition variables, e.g. degree of urbanisation (++)

From the micro census, variables were selected on the area-level. Examples are

• Socioeconomic variables, e.g. income distribution (+++), education structure
(+++)

• Labour market variables, e.g. working time, industrial sectors (++), unemploy-
ment (++)

• Ethnical variables, e.g. population structure in terms of nationalities (+)

Using the mentioned variables for regional hypertension prevalence estimation obtains
the following results. Figure 4 is a heat map of Germany in which the estimated hyperten-
sion prevalence per federal state are displayed. The nationwide hypertension prevalence
is at 26.8%. This is consistent with the results of the Robert Koch Institute (2012), which
calculated a survey-based 95%-confidence interval of [25.9%; 27.6%]. By looking at the
federal state estimates, one can see that the lowest prevalence is located in the south of
the country, which consists of the federal states Baden-Württemberg and Bavaria. The
highest prevalence can be found in the east of the country, which is the former territory
of the German Democratic Republic. The estimated regional distribution is plausible,
as in past studies similar distributions of closely related diseases, like diabetes mellitus
type 2, have been found (see e.g. Schipf et al., 2014).
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Figure 4: Estimated hypertension prevalence
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5 Outlook

A multi-level model for the joint usage of unit- and area-level data was proposed. The
model allows to combine multi-level data from different data sources to optimize model-
based small area estimation by maximizing the explanatory power of the underlying
regression model. The methodological problems associated with the level combination
are solved by level-specific penalization using the LASSO, the ridge penalty, and the
elastic net. Regularization parameter tuning is done via k-fold cross validation. Model
parameter estimation is performed by a stochastic gradient descent algorithm. For ran-
dom effect prediction, a maximum a posteriori approach is used.

Future research may focus on estimating the mean squared error of the area-statistic
estimates under level-specific penalization. On the one hand, the penalized model pa-
rameter estimates don’t have a closed-form solution. On the other hand, the penalized
maximum likelihood approach introduces some bias to the model parameter estimates
that is hard to quantify. Burgard et al. (2019) propose a modified Jackknife approach
to estimate the MSE of a penalized Fay-Herriot model. While the general procedure
is applicable to our approach, some further modifications may be required in order to
include the level-specific penalization in the estimation process.
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