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Abstract: A model-based derivation of an e¤ective antitrust policy requires an economic
framework that includes three actors: a cartel, a group of competing fringe �rms, and
a welfare maximizing antitrust authority. In existing models of cartel behavior, at least
one of these actors is always missing. By contrast, the present paper�s oligopoly model
includes all three actors. The cartel is the Stackelberg quantity leader and the fringe �rms
are in Cournot competition with respect to the residual demand. Taking into account that
the antitrust policy instruments (e¤ort, �ne, and leniency program) are not costless for
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1 Introduction

The �prestressing steel cartel�operated on the European market between 1984 and 2002.
It agreed to set quotas on the quantities to be supplied to shared clients. The cartel
comprised eighteen members competing against six fringe �rms. The collusion was com-
plicated by new competitors and by a drop in demand in 1996. In 2002, the cartel was
detected. In 2011, it was �nally punished by a penalty of almost e 270 million.2 The
�methionine cartel�operated between 1986 and 1999. It agreed to limit its sales outside
the USA and Japan. The cartel had four members competing against two fringe �rms.
When in 1991 the fringe competitor Novus introduced a successful rival product, the co-
operation within the cartel became more di¢ cult. The cartel was detected in 2001 and a
year later penelized with a �ne of e 127 million.3

These two examples suggest that the collusion of cartels is confronted by at least
three external threats: the investigations of antitrust authorities, competition from fringe
�rms, and changes in the market environment. Therefore, the model-based derivation of
an e¤ective antitrust policy requires an economic framework that includes three actors:
a cartel, a group of competing fringe �rms, and an antitrust authority that incorporates
into its policy the speci�c characteristics of the relevant market. In existing models of
cartel behavior, at least one of these actors is missing. To address this oversight, the
present paper develops a comprehensive oligopoly model that includes all three actors.
Allowing for fringe �rms complicates the theoretical analysis, as it raises the issue of

cartel stability (d�Aspremont et al., 1983). A cartel is stable if no cartel member has an
incentive to become a fringe �rm and, at the same time, no fringe �rm wants to become a
cartel member. Questions of stability usually have been studied in the context of so-called
leadership models.4 However, existing leadership models are not concerned with antitrust
policy and, accordingly, do not include an antitrust authority.
Therefore, we introduce a leadership model with a welfare maximizing antitrust au-

thority that tries to deter �rms from becoming cartel members. The authority can decide
on its own investigative e¤ort, on the appropriate size of the �ne that detected cartels
must pay, and on the discount o¤ered to testifying �rms (leniency program). Of these
three instruments, the authority�s own investigative e¤ort is its most direct option to
increase the probability of detection. Investigative e¤ort is also necessary to turn �nes
and leniency programs into e¤ective antitrust instruments. Nevertheless, the authority�s
e¤ort has rarely been addressed in the literature.5

In our leadership model, a more aggressive antitrust policy reduces the size of the cartel
and increases the number of fringe �rms. However, increasing the policy�s aggressiveness
is not costless for society. This cost must be considered in the design of an optimal
antitrust policy. We employ a three-stage game to derive such a policy. In the �rst stage,

2EC (2010, paras. 6, 93, 122, 142, 424, 533), EC (2011, p. 1).
3EC (2003, paras. 1, 36-40, 81-89, 279, 356).
4An alternative to the leadership approach is the so-called supergame approach. Only a few studies

of that strand of literature are concerned with stability. They are discussed in Section 2.
5Some exceptions are discussed in Section 2. They all relate to the supergame approach.
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the antitrust authority decides on its optimal policy, taking into account the reactions of
all �rms. In the second stage, each of the �rms decides on its status (cartel member or
fringe �rm). In the third stage, the cartel and each fringe �rm determine their optimal
output quantities, given the implemented antitrust policy.
The markets in which cartels operate are not uniform and they change over time. For

example, stronger demand may increase the market volume and/or new producers may
enter the market. Should the antitrust authority react to these changes by an expansion
or reduction of its three policy instruments (e¤ort, �ne, discount)? Should all three in-
struments change in the same direction or does it make sense to alter two instruments in
one direction and the third in the opposite direction? Existing models of cartel behavior
are not designed to address such important practical questions. With the comparative
statics of our model we can tackle such issues. For example, we show that minor expan-
sions of the market volume allow for a reduction of all three policy instruments, while the
optimal response to large expansions of the market volume is a more aggressive policy
that induces one or more cartel members to become fringe �rms.
This paper proceeds as follows. Section 2 surveys the related literature. In Section 3 we

introduce our model and discuss its assumptions. Sections 4 through 6 are devoted to the
derivation of the optimal antitrust policy. Section 7 discusses the underlying economics
and the resulting policy implications. Concluding remarks are o¤ered in Section 8.

2 Related Literature

The current literature on cartel behavior is rarely concerned with a cartel�s stability. In-
stead, the focus is on a cartel�s sustainability. A cartel is sustainable, if all members
adhere to the collusive agreement. Following Friedman�s (1971) seminal paper, this liter-
ature usually relies on repeated oligopoly games (supergames) with grim-trigger strategies
that form a symmetric subgame perfect Nash equilibrium. For example, Motta and Polo
(2003, p: 353) assume that the authorities have a given budget that they must e¢ ciently
allocate for the monitoring and prosecution of cartels. Spagnolo�s (2005, p: 13) supergame
features an antitrust authority that can raise the conviction probability by increasing its
own e¤ort, the size of the �ne, and the extent of leniency. As in our own model, none of
these measures is costless.
Escrihuela-Villar (2008, p: 326; 2009, p: 138) as well as Bos and Harrington (2010, pp:

92-93; 2015, p: 133) criticize this part of the supergame literature, because it focuses on
all-inclusive cartels, while in reality cartels usually compete against some fringe �rms.6

Models that neglect the role of fringe �rms cannot analyze the link between antitrust
policy and cartel stability.7 Therefore, Bos and Harrington (2010, pp: 92-93) propose

6This point has also been made by Bos (2009, pp: 11-12). Empirical studies such as Harrington
(2006) and Levenstein and Suslow (2006) con�rm this position. Hellwig and Hüschelrath (2017) provide
a dataset on 114 illegal cartels convicted by the European Commission between 1999 and 2016. The data
reveal frequent entries into the cartel and exits from the cartel. Both instances con�rm the existence of
a fringe.

7This is also true for studies by Souam (2001) and Mouraviev and Rey (2011). The latter consider
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a supergame with heterogeneous capacity-constrained �rms, some of which may stay
outside the cartel. They show (p: 101) that a sustainable and stable cartel is made up
of the largest �rms. The smallest �rms prefer the status of a fringe competitor. The
fringe �rms produce at capacity, whereas the cartel members restrict their output below
capacity. In supergames with quantity setting �rms, Escrihuela-Villar (2008, p: 327-331;
2009, pp: 139-140) demonstrates that even homogeneous �rms can establish a sustainable
and stable cartel.
Levenstein and Suslow (2006, p: 78) argue that in the real world the breakup of cartels

is pre-dominantly the result of changing economic conditions and not so much the cartel�s
response to the misbehavior of a cartel member. Misbehavior often results in limited
retaliation rather than in the dissolution of the cartel (see also Genesove and Mullin,
2001, pp: 390-394). The grim-trigger strategies underlying most supergames are not fully
consistent with this empirical observation.8 Eaton and Eswaran (1998) and Escrihuela-
Villar and Guillén (2011) propose supergames that do not rely on grim-trigger strategies.
Instead, the non-cheating members of a cartel continue to operate the cartel without the
cheating member.
All previously listed supergames either neglect the issue of an antitrust policy or pre-

clude fringe �rms. In a later study, however, Bos and Harrington (2015, p: 135) amend
their former supergame framework by an exogenously given antitrust policy and investig-
ate the impact of that policy on the properties of the cartel and the fringe. Their analysis
con�rms that antitrust policies a¤ect the stability of cartels. At the same time, the au-
thors concede that even with the exogenously given antitrust policy �the relationship
between antitrust enforcement and cartel size is too complex for us to provide speci�c
guidance for enforcement policies (p: 148)�.
To derive appropriate antitrust enforcement policies, the present paper explores a

completely di¤erent route. It revives the leadership approach and augments it with an
endogenously derived antitrust policy. The leadership approach was once the backbone of
stability analysis. In the price leadership model developed by d�Aspremont et al. (1983)
the cartel is the Stackelberg price leader. The fringe �rms take the leader�s price as
given and set their quantities such that price equals marginal cost. The price leadership
model with its perfectly competitive fringe might �t industries with a large number of
competing �rms. In the two cartel cases described in the introduction, the number of
fringe �rms was six and two, respectively. Furthermore, the cartel agreement focused
on admissible quantities. Such a situation is better described by a special variant of a
framework that Daughety (1990) introduced to analyze the welfare e¤ects of mergers. This
special variant is the quantity leadership model advocated by Sha¤er (1995). The cartel
is the Stackelberg quantity leader and the fringe �rms are in Cournot competition with

a cartel the members of which play sequentially instead of simultaneously. The authors show how this
can facilitate collusion. Souam (2001) proposes a framework in which the antitrust authority takes the
market price as a signal for the probability that a cartel exists. Since antitrust enforcement is costly,
the antitrust authority should increase its e¤ort with the observed market price. If the market price is
su¢ ciently low, however, collusion should be tolerated. Sustainability is not an issue in his framework.

8See also Green and Porter (1984).

3



respect to the residual demand. The present paper builds on this oligopoly framework.
Leadership models have inspired additional work on the conditions required for the

successful formation and stability of cartels. For example, Donsimoni (1985), Donsimoni
et al. (1986), and Prokop (1999) utilize the price leadership model, whereas studies by
Konishi and Lin (1999) and Zu et al. (2012) are based on the quantity leadership model.
Antitrust policy is not an issue in either type of leadership model. Instead, these

studies focus on the formal conditions for the existence and uniqueness of a stable cartel.
The present study combines Sha¤er�s (1995) quantity leadership model with an active
antitrust authority that wants to maximize social welfare.
The supergame approach and the leadership approach, including our own model, have

a common weakness. Studies such as Levenstein and Suslow (2006) and Harrington (2006)
show that colluding �rms usually develop organizational structures that ensure some de-
gree of enforceability of the cartel agreement. By contrast, the supergame approach is
built on the assumption that the cartel has no means of enforcement. In the leadership
approach this extreme assumption is replaced by the opposite extreme: perfect enforce-
ability of the cartel agreement.

3 Model

3.1 Three Stage Antitrust Game

Our model is a three stage game with a �nite integer number of n � 2 identical �rms
and an antitrust authority. First, the antitrust authority chooses its policy, taking into
account the reactions of the n �rms. Then, given the implemented antitrust policy, each
of the n �rms decides whether it wants to become a fringe �rm or a member of the cartel.
The resulting number of fringe �rms is denoted by nF . The remaining (n� nF ) �rms
form the cartel. In their choice between fringe and cartel the �rms take into account the
resulting equilibrium output quantities and the associated pro�ts. Both are determined
in the third stage of our antitrust game.
In that �nal stage, all n �rms produce the same homogeneous good and have the same

constant marginal cost equal to c. The inverse demand function is P = a�bQ, where P is
the market price, Q is the aggregate quantity produced, and a and b are positive constants.
The (n� nF ) members of the cartel act as one company and collectively determine their
pro�t maximizing joint output QC . Afterwards, each fringe �rm determines its pro�t
maximizing output qF . In other words, the cartel acts as a Stackelberg leader, while
the group of fringe �rms is the Stackelberg follower.9 If the cartel shrinks to one �rm

9In equilibrium, the cartel always produces more than half of the complete output. Therefore, assigning
the role of the Stackelberg leader to the cartel is a reasonable feature of the quantity leadership model.
As an additional justi�cation, Sha¤er (1995, pp: 348-349) points out that the cartel bene�ts from the
Stackelberg sequence and, therefore, may want to impose its will on the fringe �rms. Huck et al . (2007)
provide some experimental evidence that �rms that cooperate in a binding manner show leadership
behavior, whereas the remaining �rms exhibit follower behavior. For additional references that support
the leadership role of perfectly colluding �rms see Brito and Catalão-Lopes (2011, pp: 3-4).
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(n � nF = 1), this �rm will no longer represent an illegal cartel, but will become a legal
Stackelberg leader. Since that �rm would never want to give up that position, we know
that nF � n � 1. Each fringe �rm considers both the cartel�s output, QC , and the
aggregate output of the other fringe �rms, Q�F , as given. Therefore, the output of each
fringe �rm, qF , is determined by the Cournot-Nash equilibrium concept.
If a cartel exists (n � nF � 2), it is detected with some probability p 2 [0; 1]. The

probability depends on the antitrust authority�s policy. The policy is implemented before
the n �rms decide on their cartel membership and their output quantities.
Three policy instruments are available to the authority. The �rst instrument is the

�ne f � 0 that the members of a detected cartel must pay. The second instrument is
the expected discount o¤ered to some or all cartel �rms that inform the authority about
the cartel. The expected discount is de�ned by d = r� 2 [0; 1), with r � 0 denoting the
percentage by which the �ne of an eligible and cooperating cartel member is reduced, and
� 2 [0; 1] denoting the share of cartel members eligible for that reduction.10 Accordingly,
p f (1� d) is the expected �ne of each member of the cartel and f (1� d) is the average
�ne of the members of a detected cartel. The third policy instrument is the authority�s
own investigative e¤ort, e � 0.
We de�ne the probability of detection by the multiplicative function

p = h(e; f; d) g(n� nF ) : (1)

The factor h(e; f; d) 2 [0; 1] captures the impact of the authority�s antitrust policy. We
assume that h(e; f; d) is a continuous concave function that approaches 1 from below and
has positive �rst order and negative second order derivatives. Furthermore, h(0; f; d) =
h(e; 0; d) = 0. When e > 0 and f > 0, then 0 < h(e; f; 0) < 1. The second factor,
g(n� nF ) 2 [0; 1], takes care of the fact that larger cartels are more likely to be detected
than smaller ones. We assume that g(1) = 0 and that g(n�nF ) is concave and approaching
1 from below. A more elaborated justi�cation of these assumptions is provided in Section
3.2.
Our model recognizes that the implementation of an antitrust policy is not costless.

Following the law enforcement literature initiated by Becker (1968), we capture this cost
by a continuous social cost function, s(e; f; d), with positive �rst order partial derivatives.
The objective of the antitrust authority is to implement a policy (e; f; d) that max-

imizes welfare. This policy is denoted as the optimal antitrust policy. Welfare does not
depend on the budgetary e¤ects of the �nes and discounts, because these are of a purely
redistributional nature. Therefore, welfare is de�ned here as the sum of consumer and
producer rent minus the social cost, s(e; f; d), caused by the antitrust policy.11

10Suppose that the cartel is detected. If � = 0:1 and the number of cartel members is n � nF = 10,
then exactly one member is randomly drawn. This member is regarded as a cooperating �rm and receives
the reduction r. If � = 0:1 and n� nF = 5, again one member is randomly drawn and that member has
a 50% chance of being regarded as a cooperating �rm.
11Wilson (2019) and Albæk (2013) present some explanations why antitrust authorities such as the U.S.

Federal Trade Commission and the European Commission focus on consumer rent and tend to neglect
producer rent. A compact discussion of these issues can be found in Motta (2004, pp: 19-22).
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3.2 Discussion of Some Assumptions

In practice, �nes are often linked to turnover or to pro�ts. However, for algebraic simpli-
city, we assume that the �ne, f , is lump-sum.
There is ample evidence that leniency programs increase the probability of detecting

cartels (e.g., Aubert et al., 2006, p: 1242; Brenner, 2009, pp: 642-644). In anticipation
of being detected, cartel �rms may apply for leniency by providing evidence of a cartel
agreement. Furthermore, even if cartel members consider it unlikely that the antitrust
authority will discover anything, they may worry that some fellow member will apply for
leniency and, because of that worry, apply themselves. Harrington (2013, pp: 2-3) denotes
these two e¤ects as �prosecution e¤ect�and �preemption�e¤ect, respectively. The policy
variables f and d = r� in h(e; f; d) capture these e¤ects. An expansion of eligibility, �, or
an increase in the percentage r by which the �ne of an eligible cartel member is reduced,
strengthens the preemptive e¤ect of discounts. However, it lowers the average �ne of
the members of a detected cartel, weakening the prosecution e¤ect. We assume that the
former e¤ect dominates the latter e¤ect, that is, @h=@d > 0. Our speci�cation allows for
a percentage r > 1. For plausibility reasons, however, we restrict the domain of d = r�
to the interval [0; 1). Otherwise, the members of a detected cartel, on average, receive a
reward instead of a �ne: f (1� d) � 0. This cannot be a sensible antitrust policy.
A positive e¤ort, e, is necessary to turn the �ne and the leniency program into e¤ective

instruments. Without any e¤ort on the side of the antitrust authority the prosecution ef-
fect and the preemption e¤ect do not exist, regardless of the size of the cartel and the size
of the �ne. Therefore, the case e = 0 must give p = 0, which requires that h(0; f; d) = 0.
When a detected cartel never pays a �ne (f = 0), the investigative sta¤ is likely to be
demoralized and its e¤ort may become completely ine¤ective, that is, h(e; 0; d) = 0. If the
�ne for detected cartels is positive, the antitrust authority must be able to detect an exist-
ing cartel through its own investigative e¤ort e. Therefore, we assume that h(e; f; 0) > 0,
when e > 0 and f > 0. The preceding discussion demonstrates that the probability of
detection de�ned by Equation (1) captures several important interdependencies between
the policy instruments of the antitrust authority.12

The assumption g(1) = 0 ensures that a �cartel�with only one member cannot be
detected, because this member does not form an illegal cartel, but merely represents a
legal Stackelberg leader.
The function s(e; f; d) represents the social cost arising from the three antitrust policy

instruments. Obviously, if society desires a larger e¤ort, e, it must provide the resources
necessary to hire more and better sta¤ and to purchase a more e¤ective system. Less
obvious is the social cost arising from the �ne f . The antitrust authority has a strong
incentive to choose very large �nes, because this reduces the expected pro�ts from cartel
membership. Excessive �nes, however, induce a social cost, because they violate the

12Nevertheless, some interdependencies may exist that are not fully represented by this speci�cation.
For example, the separability between the factors g(n � nF ) and h(e; f; d) implies that the e¤ect of the
cartel size on the probability of detection does not depend on the speci�c policy mix ensuring a given
value of h(e; f; d).
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principle of proportional justice and may increase the risk of convicting innocent �rms
(e.g., Allain et al., 2015). The discount, d, causes similar social costs. The public may
dislike the idea that testifying �rms that have broken the law can get away with a discount
or, even worse, are rewarded. Lenient treatment of guilty �rms may undermine a general
respect for the law and may encourage unlawful behavior.
We will solve our three stage game by backward induction, starting with the derivation

of the pro�t maximizing quantity reactions, qF and QC , to each given antitrust policy,
(e; f; d), and number of fringe �rms, nF (Section 4). Then, to each given antitrust policy,
(e; f; d), we derive the equilibrium number of nF , that is, the pro�t maximizing status
decisions (fringe or cartel) of the n �rms (Section 5). To this end, we exploit the previously
derived quantity reactions, qF and QC , and the concept of stability. Finally, given the
equilibrium reactions of the n �rms (status and output quantity), we derive the optimal
antitrust policy (Section 6).

4 Third Stage: Determining the Output Quantities

In the presence of a given antitrust policy, (e; f; d), and a given number of fringe �rms,
nF 2 (0; : : : ; n�1), there is a given expected �ne, p f (1� d). This �ne can be interpreted
as a �xed cost of the cartel members and, therefore, does not a¤ect their pro�t maximizing
behavior. The resulting equilibrium output of the cartel (Stackelberg leader) is

QC =
a� c
2b

; (2)

while each fringe �rm produces

qF =
a� c

2b(nF + 1)
: (3)

Therefore, total output is

Q = QC + nF qF =
a� c
b

2nF + 1

2nF + 2
(4)

and the market price is

P = c+
a� c

2 (nF + 1)
: (5)

The pro�t of each fringe �rm is13

�F (nF ) =
(a� c)2

4b(nF + 1)2
; (6)

while each cartel member receives the expected pro�t

E [�C (nF )] =
(a� c)2

4b(nF + 1)(n� nF )
� p f (1� d) : (7)

13The results (2) to (6) can also be found in Sha¤er (1995, p: 745).
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5 Second Stage: Choosing the Status

At this stage, the n �rms decide whether they want to become a fringe �rm or a member
of the cartel. In their decision, they take the policy (e; f; d) as given and they anticipate
the quantity reactions (2) and (3) and the associated pro�ts (6) and (7).
Suppose that a member of the cartel is presented with an o¤er to become a fringe

�rm. If and only if
E [�C (nF )] > �F (nF + 1) ; (8)

the �rm rejects the o¤er. If all cartel members reject the o¤er, the cartel is denoted as
internally stable.14 The cartel is externally stable, if each fringe �rm rejects the o¤er to
become a member of the cartel. This rejection arises, if and only if

E [�C (nF � 1)] � �F (nF ) : (9)

A stable cartel is a cartel that is internally and externally stable.15

Our model determines the �nal status of a �rm (cartel or fringe) using the following
random process. First, each of the n �rms is randomly assigned its status. Then one �rm
is randomly drawn and given the opportunity to change its status. If the �rm is a member
of the cartel and if (8) is violated, the �rm decides to become a fringe �rm. Since all cartel
members are identical, the decision is independent of which cartel member is drawn. If,
instead, a fringe �rm is drawn and condition (9) is violated, this �rm decides to enter the
cartel. Again, the decision is independent of which fringe �rm is drawn. Next, another
(or the same) �rm is randomly drawn and allowed to change its status. This random
process is continued until two consecutive draws occur in which the two �rms drawn have
di¤erent statuses and both decide to keep their status. After these two decisions the
random process terminates, because all fringe �rms are identical and all cartel members
are identical and, therefore, in all additional random draws no �rm would want to change
its status.
For the characterization of the equilibrium solution it is useful to de�ne the �force�,

A, of the given policy (e; f; d) by the following expression:

A := h(e; f; d)f (1� d) � 0 : (10)

The value of A depends on the policy instruments e, f , and d, but not on n and nF .
Any antitrust policy with e = 0 or f = 0 leads to h(e; f; d) = 0 and, therefore, to A = 0
and p = 0. Therefore, such a policy completely eliminates the possibility of detecting
an operating cartel. We denote such policies as passive antitrust policies. Increases in
the e¤ort, e, and the �ne, f , raise the value of A. The impact of the discount d on the
value of A is ambiguous, since it increases the value of the factor h(e; f; d) and, therefore,

14In the original de�nition given by d�Aspremont et al. (1983, p: 21) and many subsequent papers a
weakly larger pro�t is su¢ cient to reject the o¤er.
15Thoron (1998) demonstrates that the internal and external stability concepts merely reproduce a

Nash equilibrium of a participation game.
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the probability of detection, p, but lowers the average �ne of the members of a detected
cartel, f (1� d). Since d was restricted to values smaller than 1, A cannot be negative.
The pro�ts (6) and (7) imply that an all-inclusive cartel (nF = 0) is internally stable,

if and only if

A <
(a� c)2

4b

�
1

n
� 1
4

�
: (11)

For n � 4, the right hand side would be non positive, while A is non negative. Therefore,
an all-inclusive cartel with more than three members cannot be stable, even when A = 0.
At least one member of the cartel would decide to change its status. For n = 3 or n = 2,
however, an all-inclusive cartel is conceivable.
Furthermore, we introduce the following �threshold variable�:

T (nF ) :=
(a� c)2
4b

nF (2nF + 1� n) + 1
nF (n� nF + 1)(nF + 1)2g(n� nF + 1)

: (12)

It is independent of the policy (e; f; d). In Lemma 1 (see Appendix) it is shown that
@T (nF )=@nF > 0.

Theorem 1 Given some antitrust policy (e; f; d) and the quantity reactions (2) and (3),
the random process that determines a �rm�s status leads to a unique equilibrium nF -value.
Policies that satisfy condition (11) lead to nF = 0. For all other policies, the equilibrium
value of nF is given by

T (nF ) � A < T (nF + 1) : (13)

Proof: See Appendix.

Theorem 1 determines the size of the stable cartel for each policy, (e; f; d). For ex-
ample, a policy with the force A = T (nF ) leads to a stable cartel with (n� nF ) members.
Since @T (nF )=@nF > 0, an increase in the equilibrium nF -value (that is, a reduction of
the cartel�s size) requires an increase in the policy�s force, A. Whether such an increase
is desirable, is to be examined in the �rst stage of the antitrust game.

6 First Stage: Determining the Antitrust Policy

The sum of consumer and producer rent is equal to (a� c)Q � 0:5(a � P )Q, where the
values of Q and P are de�ned by (4) and (5). Subtracting the social cost, s(e; f; d), yields
the following welfare function:

W (e; f; d) =
(a� c)2 (2nF + 1) (2nF + 3)

8b (nF + 1)
2 � s(e; f; d) : (14)

The antitrust authority chooses its policy, (e; f; d), such that welfare,W (e; f; d), is maxim-
ized. This policy is denoted as the authority�s optimal antitrust policy, (e�; f�; d�). In the
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derivation of this policy, the authority anticipates the equilibrium nF -value (determined
by Theorem 1) and the corresponding quantity reactions (2) and (3).
Relationship (13) implies that for passive antitrust policies the condition for stability

becomes
T (nF ) � 0 < T (nF + 1) : (15)

Only one nF -value exists that satis�es this condition. We denote this value by nminF ,
because an active antitrust policy (e > 0 and f > 0) would lead to nF -values that are
at least as large as nminF and, therefore, to cartels that are never larger than

�
n� nminF

�
.

Thus, we can con�ne our search for the optimal antitrust policy to those policies (e; f; d)
that lead to nF 2

�
nminF ; : : : ; n� 1

�
.

To �nd the optimal antitrust policy (e�; f�; d�), we pursue a three step procedure.
First, we �nd nminF . Then, we derive for each given nF 2

�
nminF ; : : : ; n� 1

�
the antitrust

policy (e�nF ; f
�
nF
; d�nF ) that minimizes the social cost, s(e; f; d). Finally, we compute the

resulting welfare for each of these cost minimizing antitrust policies. The policy that
generates the largest welfare is the optimal antitrust policy (e�; f�; d�). In the following,
we describe these three steps in more detail.

6.1 Finding nminF

For n = 2 or n = 3, we get nminF = 0. When n > 3 and a passive antitrust policy is chosen,
the number nminF is the smallest nF -value that satis�es the left hand side inequality of
(15). Using (12), this inequality simpli�es to n� nF � nF + 1+ 1=nF . Therefore, nminF is
the largest integer for which the condition n � nminF � nminF + 2 is satis�ed. Rearranging
this condition gives nminF � (n� 2) =2.16 Therefore,

nminF =

�
(n� 2) =2 for even n
(n� 3) =2 for uneven n :

(16)

The antitrust authority can restrict its search for the optimal antitrust policy (e�; f�; d�)
to policies that lead to nF � nminF , where nminF is de�ned by (16).

6.2 Computing the Cost Minimizing Policies

Among all antitrust policies leading to a stable cartel with (n�nminF )members, the passive
policy (e; f; d) = (0; 0; 0) is the cost minimizing policy (e�

nm inF
; f�
nm inF

; d�
nm inF

). Suppose that

the antitrust authority wants to shrink the cartel from
�
n� nminF

�
members to (n� nF )

members, where nF 2
�
nminF + 1; : : : ; n� 1

�
. This requires an active antitrust policy, that

is, a policy with e > 0, f > 0, and d � 0.
From condition (13) we know that an active antitrust policy pursuing a cartel with

(n� nF ) members must be such that the resulting A-value de�ned by (10) falls into the
interval [T (nF ); T (nF + 1)). An in�nite number of active policies exist that satisfy this

16This is just a reformulation of Sha¤er�s (1995, p: 746) Proposition 4.
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condition. All of these policies lead to the same given nF -value and, therefore, to the same
quantity Q and price P . Thus, they all yield the same consumer rent and producer rent.
However, the social cost varies. Therefore, the authority should choose the policy that
causes the lowest social cost, s(e; f; d). Since @s=@d > 0, a welfare maximizing antitrust
authority will always decide for a d-value that satis�es the condition @A=@d > 0. This
implies that lower A-values allow for lower values of e, f , and d. In other words, lower
A-values reduce the social cost, s(e; f; d).
Therefore, for each given nF -value, the antitrust authority should opt for a policy the

force of which, A, reaches the lower bound of its admissible interval de�ned by (13):

A = T (nF ) : (17)

Choosing a force A slightly below T (nF ) would make a cartel with (n� nF ) members
externally instable and its size would increase to (n� nF + 1). Therefore, Equation (17)
de�nes the smallest possible force, A, that caps the cartel size at (n� nF ). We denote
condition (17) as the e¢ cacy condition.
An in�nite number of policies (e; f; d) satisfy the e¢ cacy condition (17). Among these

policies, the authority should choose the one that causes the lowest social cost, s(e; f; d).
For given nF , this cost minimization problem can be written in the following form:

min
e;f;d

s(e; f; d) subject to A = T (nF ) . (18)

The solution to this cost minimization problem is denoted by (e�nF ; f
�
nF
; d�nF ). We know

that this solution is characterized by e > 0 and f > 0. An interior solution would also
require that d > 0.
To keep the model analytically tractable, we assume that the two factors of the prob-

ability of detection, p, de�ned by Equation (1) are given by

g(n� nF ) =
n� nF � 1
n� nF

(19)

and
h(e; f; d) = w(e) � k(d) �m(f) ; (20)

where

w(e) =
e

e+ 1
(21)

k(d) =
d+ �

d+ �+ 1
(� > 0) (22)

m(f) =
f

f + 1
: (23)

This speci�cation is fully consistent with the postulated properties of g(n � nF ) and
h(e; f; d) discussed in Sections 3.1 and 3.2.
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Furthermore, we assume that the continuous social cost function is

s(e; f; d) = s(z) with z = �e+ �fm(f) + 
d and @s=@z > 0 : (24)

The parameters �, �, and 
 can be interpreted as the marginal e¤ects of the respective
policy instrument on the social cost variable z.17

The speci�cations (19) to (24) imply that a unique solution arises (though not neces-
sarily an interior solution).18 To characterize the cost minimizing policy (e�nF ; f

�
nF
; d�nF ),

we make use of the following de�nitions:

E := T (nF )

k(d) (1� d) (25)

F := E +
�
�

�
E
�1=2

(26)

D := �@E
@d

"�
��

E

�1=2
+ �

#
: (27)

The three terms E , F , and D depend on d, but not on e and f .

Theorem 2 For each nF 2
�
nminF + 1; : : : ; n� 1

�
, the unique cost minimizing policy that

leads to a stable cartel with (n� nF ) members, is

e�nF =

�
�

�
E
�1=2

(28)

f �nF =
1

2

h
F +

�
F2 + 4F

�1=2i
: (29)

If d is endogenous, an interior solution, d�nF > 0, must satisfy the condition

D = 
 : (30)

Proof: See Appendix.

For a given cartel size, (n� nF ), Equations (28) to (30) of Theorem 2 specify the cost
minimizing policy (e�nF ; f

�
nF
; d�nF ), such that the e¢ cacy condition (17), A = T (nF ), is

satis�ed.
An increase in e or f raises the antitrust policy�s force, A = h(e; f; d) f (1� d). The

e¤ort, e, exerts its positive in�uence only via the �probability factor� h(e; f; d), while
the �ne, f , exerts its positive in�uence via both, the probability factor h(e; f; d) and the
average �ne f (1� d).
17Again, for reasons of analytical simplicity, we use the function �fm(f) instead of the simple linear

function �f . Since limf!1m(f) = 1, the function �fm(f) closely approximates the function �f .
18Uniqueness merely requires that in e-f -d-space the plane corresponding to the e¢ cacy condition (17)

and to a given nF -value is �more convex�than the isocost-planes of the applied social cost function.
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The third policy variable is the expected discount, d. As was true for e and f , an
increase in d increases the probability factor h(e; f; d). However, an increase in d also
reduces the average �ne f (1� d) and, therefore, counteracts the increase in h(e; f; d).
As a consequence, an increase in d can make sense only if it has a strong positive e¤ect
on h(e; f; d). This requires that the original d-value was su¢ ciently small. Since the right
hand side of condition (30) and the expression in square brackets in Equation (27) are
positive, the inequality @E=@d�nF < 0 is a necessary condition for a cost e¢ cient positive
discount d�nF .
Lemma 2 in the Appendix shows that @E=@d < 0, if and only if (d+ �)2+2d+ � < 1.

For � � 0:61803, this inequality is never satis�ed. Then the cost minimizing value of d
is d�nF = 0 and Equation (30) of Theorem 2 is redundant. The cost minimizing values
e�nF and f

�
nF
are obtained from Equations (28) and (29). In many countries, the antitrust

authorities are not completely free to determine their policy (e; f; d), but are restricted
by legal regulations on the �ne, f , and/or the expected discount, d. For example, if the
expected discount is legally �xed at d = �d, Equation (30) is redundant. Instead, the value
�d is inserted in Equation (25). Inserting the resulting values of E and F in Equations (28)
and (29) yields the cost minimizing values e�nF and f

�
nF
. This process of �nding the cost

minimizing policy (e�nF ; f
�
nF
; �d) is executed for each given nF .

If � < 0:61803 and, at the same time, 
 is not too large, the value d�nF satisfying
condition (30) is positive. Inserting this cost minimizing value d�nF in (25) to (29), yields
the cost minimizing values e�nF and f

�
nF
. For each given nF , the cost minimizing policy

(e�nF ; f
�
nF
; d�nF ) is derived in this way.

6.3 Selecting the Optimal Antitrust Policy

If the expected discount is exogenously given, d = �d, we insert nF = nminF and the passive
policy

�
0; 0; �d

�
in the welfare funtion (14) and compute the corresponding welfare level.

Then we compile the welfare levels arising from active policies. To this end, we insert
�d, (24), (28), and (29) in the welfare function (14) and maximize this expression with
respect to nF . We obtain the optimal fringe size, n�F , the corresponding policy (e

�; f�; �d),
and the resulting welfare. The policy (e�; f�; �d) is implemented, if the associated welfare
is larger than the welfare arising from the passive policy

�
0; 0; �d

�
.

When d is endogenous, we start by inserting nF = nminF and the passive policy
(e; f; d) = (0; 0; 0) in welfare function (14) and compute the resulting welfare level. Then
we consider the cost minimizing active antitrust policies (e�nF ; f

�
nF
; d�nF ). The welfare levels

corresponding to each integer nF 2
�
nminF + 1; : : : ; n� 1

�
are calculated. For this purpose

we insert each of these nF -values together with its corresponding cost minimizing policy
(e�nF ; f

�
nF
; d�nF ) in the welfare function (14). We get a set of welfare levels. From this

set we select the maximum value. If this welfare is larger than the one generated by the
passive policy, the corresponding number of fringe �rms is the optimal fringe size n�F . The
cost minimizing antitrust policy leading to the stable cartel with (n�n�F ) members is the
optimal antitrust policy (e�; f�; d�).
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7 Further Analysis and Policy Recommendations

To derive important economic implications from Theorem 2, we analyze how changes in
the parameter values a¤ect the optimal antitrust policy (e�; f�; d�). We begin the analysis
with small parameter changes that do not a¤ect the optimal number of fringe �rms, n�F .
Afterwards, larger parameter changes are considered that alter n�F . Only interior solutions
(d� > 0) are discussed.
The force of the original optimal antitrust policy, (e�; f�; d�), is denoted by A� and

the corresponding threshold by T (n�F ). We analyze changes in the social cost parameters
(�; �; 
), the discount parameter (�), the market volume parameters (a; b; c), and the
number of �rms (n). Changes in the parameters �, �, 
, and � do not alter the threshold
T (n�F ). They primarily a¤ect the relative cost-e¤ectiveness of the three antitrust policy
instruments. By contrast, changes in the parameters a, b, c, and n change the threshold
T (n�F ) and, therefore, primarily a¤ect the overall cost-e¤ectiveness of antitrust policy.
Even though we analyze changes in the parameters, our �ndings can be interpreted

in two di¤erent ways. Obviously, they show how the antitrust authority should adjust
its policy to changes that occur in some given market. However, they also describe how
di¤erences between two markets should be re�ected in the corresponding optimal antitrust
policies. Before the formal results will be presented (see Theorem 3), we provide a brief
intuitive elucidation of these results.
Social cost parameters �, �, and 
: The larger the parameter �, the more resources

the antitrust authority needs to achieve a given level of e¤ort e. The parameters � and 

measure the damage to the rule of law when disproportionate �nes are imposed, innocent
�rms are prosecuted, or discounts are granted to guilty �rms. A small change in �, �,
or 
 does not a¤ect the threshold T (n�F ). Therefore, the new policy must preserve the
original policy�s force, A�.
Suppose that parameter � increases (e.g., the antitrust authority must pay higher

wages to attract or retain quali�ed personnel). We know that an optimal antitrust policy,
(e�; f�; d�), ensures that marginal changes to any pair of policy instruments (e.g., e and
f) consistent with the e¢ cacy condition, lead to changes in the social cost that exactly
o¤set each other. An increase in � raises the relative cost of e¤ort e and reduces the
relative cost of the �ne f and the expected discount d. More speci�cally, to preserve the
original policy�s force, A�, the role of e within the probability factor h(e; f; d) must be
reduced in favor of f and d. Furthermore, the role of the probability factor h(e; f; d) must
be downsized in favor of the factor f (1� d). The latter requires an increase in f and a
reduction of d. Therefore, we expect a decrease in e� and an increase in f �, while the
identi�cation of the overall e¤ect on d� requires a more formal examination. This will be
provided in Theorem 3.
A small increase in � (e.g., stronger public dislike for disproportionate penalties)

strengthens the role of e and d and weakens the role of f within the probability factor
h(e; f; d) and the factor f (1� d). The latter would require a reduction of f and/or d.
Overall, we expect an increase in e� and a decrease in f �, while the e¤ect on d� appears
to be ambiguous. In Theorem 3 we will show that this is not the case.
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A small increase in 
 (e.g., stronger erosion of the respect for the law when guilty �rms
get away with reduced �nes) raises the cost of the expected discount relative to the cost
of the e¤ort and the �ne. Within the factors h(e; f; d) and f (1� d) the role of d must be
reduced in favor of e and f . Therefore, one expects that the new optimal antitrust policy
must be characterized by a reduced value of d� and by larger values of e� and f �.
Discount parameter �: The parameter � indicates the independence of the antitrust

policy�s e¢ cacy from the existence and size of the leniency program (expected discount
d�). As was pointed out earlier, for � � 0:61803 no leniency program should be installed
(d� = 0). Here we consider smaller �-values such that d� > 0. A small increase in �
(e.g., improved ethical standards within the management of the �rms) raises the prob-
ability factor h(e; f; d) and, therefore, the original policy�s force such that A� > T (n�F ).
Theoretically, the increase in A� allows for reductions of all three policy instruments, e�,
f �, and d�. However, the instruments e and f have become more attractive relative to
d. Therefore, a strong reduction of d� accompanied by increases of e� and f � is another
plausible result. The correct result will be derived in Theorem 3.
Market volume parameters a, b, and c: How should the antitrust authority react to

changes in the market volume, (a� c) =b? A small increase in a or a small reduction in c
or b increase the market volume, the sum of consumer and producer rent and, therefore,
the value of T (n�F ) such that A

� < T (n�F ). To restore the e¢ cacy condition, the policy�s
force, A�, must increase. Therefore, we expect an increase in e�, f �, and d�.
Number of �rms n: In dynamic markets, new �rms can enter. If they join the cartel,

the number of fringe �rms, nF , remains constant, while n increases. The pro�ts of the
fringe �rms are not a¤ected by the additional cartel member. This is also true for the
aggregate pro�t of the cartel. However, the pro�t per cartel member falls and, therefore,
the attractiveness of the cartel status also falls. This allows the antitrust authority to
lower the values of the three policy variables e�, f �, and d�, without changing the number
of fringe �rms.
In this intuitive discussion of the antitrust authority�s adaptation to parameter changes,

some questions remained unanswered (e.g., the change of d� when � or � change or the
changes of e� and f � when � changes). The following Theorem 3 provides the missing
answers and veri�es all of the intuitive conclusions by a rigorous formal analysis.

Theorem 3 Marginal changes in the social cost parameters (�; �; 
), the discount para-
meter (�), the market volume parameters (a; b; c), or the number of �rms (n), a¤ect the
optimal antitrust policy (e�; f�; d�), but not the optimal number of fringe �rms, n�F . The
individual e¤ects of the parameter changes are listed in Table 1.

Proof: See Appendix.

Consider again some optimal policy, (e�; f�; d�), and the corresponding force, A�. A
su¢ cient increase in e, f , and d and, therefore, of A would induce one of the cartel
members to become a fringe �rm. This changeover increases the sum of consumer and
producer rent by

(a� c)2

8b

2nF + 3

(n2F + 3nF + 2)
2 > 0 : (31)
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Table 1: Comparative statics of optimal antitrust policy for given n�F (�+� indicates a

positive and ���a negative derivative).

parameter e¤ort e� �ne f � exp. discount d�

� � + +

� + � +


 + + �
� � � �
a + + +

b � � �
c � � �
n � � �

We denote this bene�cial welfare e¤ect as the positive �competition e¤ect�of the addi-
tional fringe �rm. For all positive values of nF , the competition e¤ect is positive and
falling in nF . However, the additional fringe �rm also causes a negative �cost e¤ect�,
because the larger values of e, f , and d raise the social cost s(e; f; d). Since the original
force, A�, was optimal, the cost e¤ect would overcompensate the competition e¤ect and
welfare would fall.
However, after a su¢ ciently large change in the parameters, the original force A�

might be no longer optimal and the competition e¤ect may outweigh the cost e¤ect. For
example, consider a signi�cant decrease in the social cost parameters �, �, and 
. For
each given nF , the change in the parameters reduces the negative cost e¤ect, while the
competition e¤ect is una¤ected. The same is true when � increases. If the reduction of
the cost e¤ect is su¢ ciently strong, the increase in A above the original level A� and the
ensuing increase in nF from n�F to n

�
F +1 would be welfare increasing. Theoretically, even

a change to n�F +2 could be welfare increasing. Note, however, that the competition e¤ect
de�ned by Equation (31) is falling in nF , while, due to the speci�cation of h(e; f; d), the
size of the cost e¤ect tends to increase.
Equation (31) also shows that a signi�cant increase in the market volume, (a� c) =b,

leads to a strong increase in the competition e¤ect. However, the value of T (nF ) and,
therefore, the required values of the three policy instruments also increase (see Theorem
3). Unless the cost function possesses a highly exponential form, the former e¤ect would
dominate the latter, such that raising nF to n�F + 1 would be welfare increasing.
Finally, suppose that new �rms enter the market and that all of them join the cartel.

Then, n increases, but nF remains constant. FromTheorem 3 we know that this parameter
change allows for a reduction of all three policy instruments. Therefore, for each given
nF , the cost e¤ect falls. The competition e¤ect, however, remains unchanged, because it
depends on nF , but not on n. Therefore, with a su¢ ciently strong increase in n, raising
nF to n�F + 1 would be welfare increasing.
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8 Concluding Remarks

A model-based derivation of an e¤ective antitrust policy requires an economic framework
that includes three actors: a cartel, a group of competing fringe �rms, and a welfare
maximizing antitrust authority. In existing models of cartel behavior, at least one of
these actors is always missing. We take a �rst step in the present paper to address this
situation. Our paper introduces a quantity leadership model with an antitrust authority
that has three policy instruments at its disposal: its own e¤ort, a �ne for detected cartels,
and a leniency program for cartel members that cooperate with the authority. Taking the
cost of these instruments into consideration, we derive an optimal antitrust policy. We
show that the antitrust authority should reduce the size of the cartel until the resulting
gains in the sum of consumer and producer rent (the positive competition e¤ect) no longer
overcompensate the resulting increase in social cost (the negative cost e¤ect).
Our analysis reveals that both, the optimal force and the optimal mix of the antitrust

authority�s policy depend on the characteristics of the speci�c market. The market char-
acteristics include aspects such as the e¢ ciency of the antitrust authority�s operations,
the public respect for the rule of law, the ethical standards of the �rms�managers, the
market volume, and the number of �rms operating on the market. With heterogeneous
markets, a one-size-�ts-all antitrust policy is inappropriate. For example, suppose that
there is a public attitude that collusion in the banking sector deserves particularly harsh
punishment. In other words, the additional social cost from increasing the �ne is low,
while the social cost savings from lowering the discount are large. The antitrust authority
should respond to this situation by a policy that features a larger �ne and a lower discount
than in other markets with, otherwise, similar characteristics.
Furthermore, our �ndings demonstrate that the antitrust authority should recalibrate

its policy when changes in the market environment occur. For example, a small increase in
the market volume should lead to small reductions of all three policy instruments. These
minor adjustments would leave the size of the cartel unchanged. However, if a su¢ ciently
strong expansion of the market volume occurs, the policy instruments should be adjusted
in the opposite direction, that is, the antitrust authority should pursue a more forceful
policy that induces one or more of the cartel members to become fringe �rms.
As pointed out earlier, supergames of collusive behavior assume that the cartel is

completely unable to enforce the cartel agreement, while our quantity leadership model
assumes perfect enforceability. However, the empirical evidence shows that cartels are
impressively creative in designing cartel agreements that allow for limited forms of monit-
oring and dispute settlement. Therefore, a promising area of future research are oligopoly
models that analyze the e¤ects of antitrust policy directed at cartels that have limited
means of inducing cooperative member behavior.

Appendix

Lemma 1 The function T (nF ) de�ned by (12) increases in nF and decreases in n.
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Proof: Consider the threshold

T (nF ) =
(a� c)2
4b

I(nF )

g(n� nF )

with

I(nF ) =
2n2F + (1� n)nF + 1

nF (n� nF + 1)(nF + 1)2
: (32)

Di¤erentiation of (32) with respect to nF (by quotient rule) gives a positive denominator
and the numerator

(4nF + 1� n)nF (n� nF + 1)(nF + 1)2 (33)

� (n� nF + 1)(nF + 1)2[2n2F + (1� n)nF + 1] (34)

� 2nF (nF + 1)(n� nF + 1)[2n2F + (1� n)nF + 1] (35)

+ nF (nF + 1)
2[2n2F + (1� n)nF + 1] : (36)

The expression in line (33) is equal to

(2nF + 2� n)nF (n� nF + 1)(nF + 1)2 + (2nF � 1)nF (n� nF + 1)(nF + 1)2 : (37)

We add to the �rst summand of (37) the expression in line (34) and obtain

(nF � 1)(n� nF + 1)(nF + 1)2 � 0 :

Next we add to the second summand of (37) the expressions in lines (35) and (36), factor
out nF (nF + 1), and simplify the remaining term to get

nF [4n
2
F + (2� 5n)nF + 2n2 + 4]� 3n� 2

= nF

"�
2nF +

1

4
(2� 5n)

�2
+
7

16
(n� 2)2 + 3n+ 2

#
� 3n� 2 :

For nF � 1, this expression and, therefore, the expression in lines (33) to (36) are positive
and so is the derivative of I(nF ) with respect to nF : I(nF ) > I(nF � 1). In addition,
g(n� nF ) is increasing in (n� nF ), and therefore, decreasing in nF : g (n� nF ) < g(n�
nF + 1). Therefore, we get

I(nF )

g (n� nF )
>

I(nF � 1)
g (n� nF + 1)

which is identical to T (nF ) > T (nF � 1).
The sign of the derivative of T (nF ) with respect to n is equal to the sign of the

derivative of
(nF + 1)

2 � nF )(n� nF + 1)
nF (n� nF + 1)(nF + 1)2g(n� nF + 1)

(38)
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with respect to n. The latter derivative is

�nFD � nF (nF + 1)2 [[@g(n� nF + 1)=@n] (n� nF + 1) + g(n� nF + 1)]N
D2

=
�nF [1 + (nF + 1)2 [[@g(n� nF + 1)=@n] (n� nF + 1) + g(n� nF + 1)]T (nF )]

D
;

where N denotes the numerator and D the denominator of the quotient (38). We know
that @g(n� nF )=@n > 0 and D > 0. Thus, for T (nF ) � 0, the derivative is negative. �

Proof of Theorem 1: In Lemma 1 it was shown that T (nF ) is monotonically increasing
in nF . Given (e; f; d), A is some non negative number. Therefore, for each policy (e; f; d)
with A � T (n), exactly one nF -value satisfying (13) exists. The right hand inequality
in (13) can be transformed into the internal stability condition (8). If it is violated, nF
and, therefore, T (nF ) and T (nF + 1) increase until internal stability is established. The
left hand inequality of (13) can be transformed into the external stability condition (9).
If it is violated, nF and, therefore, T (nF ) and T (nF + 1) decrease until external stability
is established. �

The following lemmas will be used in the proofs of Theorems 2 and 3.

Lemma 2 Di¤erentiation of Equation (25) yields

@2E
@d2

> 0 ;
@E
@�

< 0 ;
@2E
@d2

� 1

E

�
@E
@d

�2
> 0 ; and

@E
@d

@2E
@d@�

� @E
@�

@2E
@d2

> 0 : (39)

For
(d+ �)2 + 2d+ � < 1 ; (40)

di¤erentiation of Equation (25) yields

@E
@d

< 0 ;
@2E
@d@�

> 0 ; and
@2E
@d@�

� 1

2E
@E
@d

@E
@�

> 0 : (41)

Proof: Di¤erentiation of (25) with respect to d gives

@E
@d

= T (nF )

�
d+ �+ 1

(d+ �)(1� d)2 �
1

(d+ �)2(1� d)

�
= T (nF )

(d+ �)2 + 2d+ �� 1
(d+ �)2(1� d)2 : (42)

This derivative is negative, if and only if condition (40) is satis�ed.
To prove the �rst inequality in (39), we di¤erentiate (42) with respect to d:

@2E
@d2

= 2T (nF )
(d+ �+ 1)(d+ �)(1� d)� (1� 2d� �) [(d+ �)2 + 2d+ �� 1]

(d+ �)3(1� d)3

= 2T (nF )
(d+ �)2(1� d) + (d+ �)(1� d) + (2d+ �� 1)(d+ �)2 + (2d+ �� 1)2

(d+ �)3(1� d)3

= 2T (nF )
(d+ �)3 + (d+ �)(1� d) + (2d+ �� 1)2

(d+ �)3(1� d)3 > 0 : (43)
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To prove the second inequality in (41), we di¤erentiate (42) with respect to �:

@2E
@d@�

=
T (nF )

(1� d)2

�
1

(d+ �)2
� 22d+ �� 1

(d+ �)3

�
=
T (nF ) (2� 3d� �)
(1� d)2(d+ �)3 > 0 ; (44)

where the inequality follows from condition (40), because that condition implies that

2 > (d+ �)2 + 2d+ �+ 1=4 + 3=4 = (d+ �� 1=2)2 + 3d+ 2�+ 3=4 > 3d+ � :

To prove the second inequality in (39), we di¤erentiate (25) with respect to �:

@E
@�

=
T (nF )

1� d

�
d+ �� (d+ �+ 1)

(d+ �)2

�
=

�T (nF )
(1� d) (d+ �)2 < 0 : (45)

To prove the third inequality in (41), we insert expressions (25), (42), (44), and (45):

T (nF )

(1� d)2(d+ �)3

�
2� 3d� �+ (d+ �)

2 + 2d+ �� 1
2(d+ �+ 1)

�
:

Rearranging the term in square brackets yields

�5d2 � �2 � 6d�+ 3�+ 3
2(d+ �+ 1)

=
1� [(d+ �)2 + 2d+ �] + 2 + 2d+ 4�� 4d�� 4d2

2(d+ �+ 1)

=
1� [(d+ �)2 + 2d+ �] + 2(1� d2) + 2d(1� d) + 4�(1� d)

2(d+ �+ 1)
> 0 ;

where the inequality follows from condition (40).
To prove the third inequality in (39), we insert expressions (25), (42), and (43):

T (nF )
2 [(d+�)3 + (d+�)(1�d)+(2d+��1)2]

(d+ �)3(1� d)3 � T (nF )
[(d+�)2 + 2d+ �� 1]2

(d+�)3(1�d)3(d+�+1) > 0 ;

where the inequality can be seen after expanding the left quotient by (d + � + 1). The
resulting numerator of that quotient is larger than the numerator of the right quotient:

2(d+ �+ 1)(d+ �)3 + 2(d+ �+ 1)(d+ �)(1� d) + 2(d+ �+ 1)(2d+ �� 1)2

> 2(d+ �)4 + 2(2d+ �� 1)2

>
�
(d+ �)2 + (2d+ �� 1)

�2
:

To prove the fourth inequality in (39), we insert expressions (42) to (45):

T (nF )
2

�
[(d+�)2+2d+��1] (2�3d��)

(d+ �)5(1� d)4 +
2 [(d+�)3+(d+�)(1�d) + (2d+��1)2]

(d+ �)5(1� d)4

�
:
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The sum of the two numerators is positive, because the �rst numerator yields�
(d+ �)2 + (d+ �)� (1� d)

�
[2(1� d)� (d+ �)]

> �(d+ �)3 + [(d+ �)� (1� d)] [2(1� d)� (d+ �)]
= �(d+ �)3 � 2(1� d)2 � (d+ �)2 + 3(1� d)(d+ �)

and the second numerator yields

2(d+ �)3 + 2(d+ �)(1� d) + 2 [(d+ �)� (1� d)]2

= 2(d+ �)3 + 2(1� d)2 + 2(d+ �)2 � 2(1� d)(d+ �) :
�

Lemma 3 Di¤erentiation of Equation (27) yields

@D
@d

< 0 :

If condition (40) is satis�ed, di¤erentiation of Equation (27) yields

@D
@�

< 0 and
@D

@T (nF )
> 0 :

Proof: Di¤erentiation of (27) with respect to d yields

@D
@d

=� @
2E
@d2

"�
��

E

�1=2
+ �

#
+
(��)1=2

2

�
1

E

�3=2�
@E
@d

�2
(46)

=� �@
2E
@d2

�
�
��

E

�1=2
@2E
@d2

+

�
��

E

�1=2
1

2E

�
@E
@d

�2
=� �@

2E
@d2

�
�
��

E

�1=2 "
@2E
@d2

� 1

2E

�
@E
@d

�2#
< 0 ; (47)

where the inequality follows from (39) of Lemma 2.
Di¤erentiation of (27) with respect to � yields

@D
@�

=� @2E
@d@�

"�
��

E

�1=2
+ �

#
+
(��)1=2

2

�
1

E

�3=2
@E
@d

@E
@�

(48)

=� � @
2E

@d@�
�
�
��

E

�1=2 �
@2E
@d@�

� 1

2E
@E
@d

@E
@�

�
< 0 ; (49)

where the inequality follows from (41) of Lemma 2.
Inserting (42) in (27) yields

D = �T (nF )
(d+ �)2 + 2d+ �� 1
(d+ �)2(1� d)2

"�
k (d) (1� d)��

T (nF )

�1=2
+ �

#

= �(d+ �)
2 + 2d+ �� 1

(d+ �)2(1� d)2

"�
(d+ �) (1� d)��T (nF )

(d+ �+ 1)

�1=2
+ �T (nF )

#
:
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Therefore,

@D
@T (nF )

= �(d+�)
2+2d+��1

(d+ �)2(1� d)2

"�
(d+�) (1�d)��
(d+ �+ 1)

�1=2
1

2
T (nF )

�1=2+�

#
> 0 : (50)

�

Proof of Theorem 2: Minimizing the monotonically increasing social cost function (24)
is equivalent to minimizing the sum

�e+ �fm(f) + 
d : (51)

From (10), (17), (20), and (25) we obtain, for e > 0, another formulation of the e¢ cacy
condition:

fm(f) =
E
w(e)

: (52)

Inserting the right hand side of (52) in (51), we can transform the constrained minimiza-
tion problem (18) into the unconstrained minimization problem

min
e;d

�
�e+ �

E
w(e)

+ 
d

�
. (53)

Minimizing this expression with respect to e yields

[w(e)]2

w0(e)
=
�

�
E : (54)

Exploiting the relationship [w(e)]2 =w0(e) = e�2 for the left hand side of (54), taking the
square root, and replacing d by dn�F gives the cost minimizing e¤ort (28), for given nF
and dn�F .
Inserting Equation (28) in Equation (21) gives

E
w
�
e�nF
� = E [(�=�) E ]1=2 + 1

[(�=�) E ]1=2
= E +

��
�

�

�
E
�1=2

= F : (55)

Substituting in (52) the function m(f) by its de�nition (23), substituting the right hand
side of (52) by the right hand side of (55), replacing f by f �nF , and solving for f

�
nF
yields

the cost minimizing �ne (29), for given nF and d�nF .
To �nd the cost minimizing expected discount, d�nF , we insert the right hand sides of

Equations (28) and (55) in (53) to obtain the following minimization problem:

min
d

h
(2��E)1=2 + �E + 
d

i
:

The �rst order condition is "�
��

E

�1=2
+ �

#
@E
@d
+ 
 = 0

22



which is equivalent to condition (30). From Lemmas 2 and 3 we know that @E=@d < 0
and @D=@d < 0, respectively. This monotony proves the uniqueness of d�nF and, therefore,
of e�nF and f

�
nF
. �

Lemma 4 The parameter change d� > 0 leads to dF > 0.

Proof: F is de�ned in (26). Its di¤erential is

dF = @F
@d
dd+

@F
@�
d� ;

with

@F
@d

=
@E
@d
+
1

2

�
�

�E

�1=2
@E
@d

=
@E
@d

"
1 +

1

2

�
�

�E

�1=2#
< 0

@F
@�

=
1

2

�
E
��

�1=2
=
1

2�

�
�E
�

�1=2
> 0 :

We get dF > 0, if and only if

d�
dd
> � @F=@d

@F=@� = �
@E
@d

"
2

�
��

E

�1=2
+
�

E

#
: (56)

To determine the value of d�=dd, we exploit (30) and write the di¤erential of D:

dD = @D
@d
dd+

@D
@�
d�+

@D
@�
d� +

@D
@�
d� = 0 : (57)

Since only d and � change, we get from (57):

d�
dd
= � @D=@d

@D=@� :

Therefore, (56) can be written in the form

� @D=@d
@D=@� > �

@E
@d

"
2

�
��

E

�1=2
+
�

E

#
: (58)

Since
@D
@�

= �1
2

@E
@d

�
�

�E

�1=2
> 0 ;

(58) becomes

�@D
@d

>

�
@E
@d

�2 "
�

E +
1

2E

�
��

E

�1=2#
: (59)
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Replacing in (59) the derivative @D=@d by (47) yields

�
@2E
@d2

+

�
��

E

�1=2 "
@2E
@d2

� 1

2E

�
@E
@d

�2#
� 1

2E

�
@E
@d

�2�
��

E

�1=2
>

�
@E
@d

�2
�

E

�
@2E
@d2

� � 1E

�
@E
@d

�2
+

�
��

E

�1=2 "
@2E
@d2

� 1

E

�
@E
@d

�2#
> 0"

� +

�
��

E

�1=2#"
@2E
@d2

� 1

E

�
@E
@d

�2#
> 0 ; (60)

where we exploit (39) of Lemma 2. Therefore, condition (56) is satis�ed. �

Lemma 5 The parameter change d� > 0 leads to de� > 0.

Proof: Total di¤erentiation of e� in (28) yields

de� =
@e�

@d
dd+

@e�

@�
d� ;

with

@e�

@�
=
1

2

�
E
��

�1=2
> 0 and

@e�

@d
=
@e�

@E
@E
@d

=
1

2

�
�

�E

�1=2
@E
@d

< 0 :

We get de� > 0, if and only if

d�
dd
> �@e

�=@d

@e�=@�
= �

�
�

�E

�1=2
@E
@d

�
E
��

��1=2
= ��E

@E
@d

: (61)

When only d and � change, we get from (57):

d�
dd
= �@D=@d

@D=@� :

Then, condition (61) can be expressed in the form

�@D=@d
@D=@� > �

�

E
@E
@d

: (62)

Since
@D
@�

= �@E
@d

"
1

2

�
�

�E

�1=2
+ 1

#
> 0 ;

condition (62) becomes

�@D
@d

>
�

E

�
@E
@d

�2 "
1

2

�
�

�E

�1=2
+ 1

#
which is condition (59). �
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Lemma 6 The parameter change d� > 0 leads to dE < 0.

Proof: Total di¤erentiation of E in (25) and dividing through by d� gives

dE
d�
=
@E
@d

dd
d�
+
@E
@�

:

Exploiting (57) yields

dE
d�
= �@E

@d

@D=@�
@D=@d +

@E
@�

=
� (@E=@d) (@D=@�) + (@E=@�) (@D=@d)

@D=@d : (63)

Using (46) and (48), the two summands in the numerator on the right hand side of (63)
can be expressed as

�@E
@d

@D
@�

=
@E
@d

@2E
@d@�

"�
��

E

�1=2
+ �

#
� (��)

1=2

2

�
1

E

�3=2�
@E
@d

�2
@E
@�

@E
@�

@D
@d

= �@E
@�

@2E
@d2

"�
��

E

�1=2
+ �

#
+
(��)1=2

2

�
1

E

�3=2�
@E
@d

�2
@E
@�

:

Therefore, the numerator on the right hand side of (63) is equivalent with"�
��

E

�1=2
+ �

# �
@E
@d

@2E
@d@�

� @E
@�

@2E
@d2

�
> 0 ;

where the inequality follows from (39) of Lemma 2. Thus, dE=d� < 0. �

Lemma 7 The parameter change dT (nF ) > 0 leads to dE > 0.

Proof: Total di¤erentiation of E in (25) and dividing through by dT (nF ) yields

dE
dT (nF )

=
@E
@d

dd
dT (nF )

+
@E

@T (nF )
=
� (@E=@d) (@D=@T (nF )) + (@E=@T (nF )) (@D=@d)

@D=@d :

(64)
From Lemma 3 we know that the denominator is negative. Using (42) and (50), the �rst
summand in the numerator on the right hand side of (64) yields

�@E
@d

@D
@T (nF )

=
1

T (nF )

�
@E
@d

�2 "
1

2

�
��

E

�1=2
+ �

#
: (65)

Using
@E

@T (nF )
=

1

k(d)(1� d) =
E

T (nF )
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and (47), the second summand in the numerator of (64) yields

@E
@T (nF )

@D
@d

= � E
T (nF )

@2E
@d2

"�
��

E

�1=2
+ �

#
+
1

2

1

T (nF )

�
��

E

�1=2�
@E
@d

�2
: (66)

Adding (65) and (66) gives

�@E
@d

@D
@T (nF )

+
@D
@d

@E
@T (nF )

=
E

T (nF )

"�
��

E

�1=2
+ �

#"
1

E

�
@E
@d

�2
� @

2E
@d2

#
:

From (39) of Lemma 2 we know that the term in the last square brackets is negative.
Thus, dE=dT (nF ) > 0. �

Proof of Theorem 3:
�: E , D, and F depend on d, but not on e and f . For given d�, an increase in �

increases the value of D in (27). Since @D=@d < 0 (Lemma 3), in (30) the restoration of
the original D-value 
 requires an increase in the expected discount d�. Since @E=@d < 0
(Lemma 2), this leads to a reduction of E . In (28) both, the reduction of E and the
increase in � reduce e�. Furthermore, the larger �-value directly increases F in (26),
while the d�-induced reduction of E reduces F . We know from Lemma 4 that the direct
F-increasing e¤ect dominates. In (29) the larger F-value raises the �ne f �.
�: The same line of reasoning as for � leads to an increase in d� and a lower E-value.

The latter e¤ect reinforces the �-induced decrease in F in (26). This leads to a reduction
of f � in (29). (28) shows that the increase in � and the reduction of E have opposing
e¤ects on the e¤ort e�. Lemma 5 shows that the former e�-increasing e¤ect dominates.

: (30) shows that the increase in 
 necessitates an equal increase inD. Since @D=@d <

0, a reduction of d� is required. Since @E=@d < 0, the reduction of d� increases E . (26),
(28), and (29) reveal that the larger E-value raises e� and f �.
�: For given d�, the increase in � and, therefore, k(d) reduces the value of E in (25).

This has a direct D-increasing e¤ect, but also an indirect D-reducing e¤ect, because
@E=@d < 0 and @2E= (@d@�) > 0 (Lemma 2). From Lemma 3 we know that the latter
e¤ect dominates, that is, D falls. From (30) we can see that d� must be reduced to restore
D to its former level 
 (@D=@d < 0). Since @E=@d < 0, the reduction of d� raises the value
of E , counteracting the previous decrease. In Lemma 5 it is shown that the new value of
E remains smaller than its original value. Thus, e� and F and, therefore, f � decrease.
(a� c) =b: For given d�, the increase in T (nF ) leads to a larger E-value in (25). In (27)

the larger E-value directly reduces D. In addition, (42) reveals that the increase in T (nF )
increases the value of (�@E=@d) in (27), increasing D. We know from Lemma 3 that
the overall e¤ect on D is positive. To restore D to its original value 
, d� must increase.
Since @E=@d < 0, the increase in d� reduces E , counteracting the previous increase. From
Lemma 7 we know that the new value of E is larger than its original value. Thus, also e�
and F and, therefore, f � increase.
n: We know from Lemma 1 that T (nF ) decreases in n. Therefore, we get exactly the

opposite results as for an increase in the market volume (a� c) =b. �

26



Literature

Albæk, S. (2013), Consumer Welfare in EU Competition Policy, in: Heide-Jørgensen, C.
et al. (eds.) Aims and Values in Competition Law, Copenhagen: DJØF Publishing,
67-88.

Allain, M.L., M. Boyer, R. Kotchoni, J.P. Ponssard (2015), Are Cartel Fines Op-
timal? Theory and Evidence From the European Union, International Review of
Law and Economics, 42, 38-47.

Aubert, C., P. Rey, W.E. Kovacic (2006), The Impact of Leniency and Whistle-
Blowing Programs on Cartels, International Journal of Industrial Organization,
24(6), 1241-1266.

Becker, G.S. (1968), Crime and Punishment: An Economic Approach, Journal of Polit-
ical Economy, 76, 169-217.

Bos, I. (2009), Incomplete Cartels and Antitrust Policy: Incidence and Detection, Am-
sterdam: Tinbergen Institute.

Bos, I., J.E. Harrington (2010), Endogenous Cartel Formation With Heterogeneous
Firms, RAND Journal of Economics, 41(1), 92-117.

Bos, I., J.E. Harrington (2015), Competition Policy and Cartel Size, International
Economic Review, 56(1), 133-153.

Brenner, S. (2009), An Empirical Study of the European Corporate Leniency Program,
International Journal of Industrial Organization, 27(6), 639-645.

Brito, D., M. Catalão-Lopes (2011), Small Fish Become Big Fish: Mergers in Stack-
elberg Markets Revisited, The B.E. Journal of Economic Analysis & Policy, 11(1),
Article 24.

d�Aspremont, C., A. Jacquemin, J.J. Gabszewicz, J.A. Weymark (1983), On
the Stability of Collusive Price Leadership, The Canadian Journal of Economics,
16(1), 17-25.

Daughety, A.F. (1990), Bene�cial Concentration, American Economic Review, 80(5),
1231-1237.

Donsimoni, M.P. (1985), Stable Heterogeneous Cartels, International Journal of In-
dustrial Organization, 3(4), 451-467.

Donsimoni, M.P., N. Economides, H. Polenachakis (1986), Stable Cartels, Inter-
national Economic Review, 27(2), 317-327.

Eaton, C., M. Eswaran (1998), Endogenous Cartel Formation, Australian Economic
Papers, 37(1), 1-13.

27



EC (2003), O¢ cial Journal of the European Union, L 255/1, 8.10.2003, Case C.37.519
-Methionine, Decision of July 2, 2002.

EC (2010), Commission Decision of 30.06.2010, C(2010) 4387 �nal, COMP/38.344 -
Prestressing Steel.

EC (2011), Press Release IP/11/403, 04.04.2011, ht-
tps://ec.europa.eu/commission/presscorner/detail/en/IP_11_403.

Escrihuela-Villar, M. (2008), On Endogenous Cartel Size Under Tacit Collusion, In-
vestigaciones Económicas, 32(3), 325-338.

Escrihuela-Villar, M. (2009), A Note On Cartel Stability and Endogenous Sequencing
With Tacit Collusion, Journal of Economics, 96(2), 137-147.

Escrihuela-Villar, M., J. Guillén (2011), On Collusion Sustainability With Stacked
Reversion, Economic Reserach - Ekonomska Istraµzivanja, 24(2), 89-98.

Friedman, J.W. (1971), A Non-Cooperative Equilibrium for Supergames, Review of
Economic Studies, 38(1), 1-12.

Genesove, D., W.P. Mullin (2001), Rules, Communication, and Collusion: Narrative
Evidence From the Sugar Institute Case, American Economic Review, 91(3), 379-
398.

Green, E.J., R.H. Porter (1984), Noncooperative Collusion Under Imperfect Price In-
formation, Econometrica, 52(1), 87-100.

Harrington, J.E. (2006), How Do Cartels Operate?, Foundations and Trends in Mi-
croeconomics, 2(1), 1-105.

Harrington, J.E. (2013), Corporate Leniency Programs When Firms Have Private In-
formation: The Push of Prosecution and the Pull of Pre-Emption, The Journal of
Industrial Economics, 61(1), 1-27.

Hellwig, M., K. Hüschelrath (2017), When Do Firms Leave Cartels? Determinants
and the Impact On Cartel Survival, ZEW Discussion Paper No. 17-002.

Huck, S., K.A. Konrad, W. Müller, H.-T. Normann (2007), The Merger Paradox
an why Aspiration Levels Let it Fail in the Laboratory, The Economic Journal, 117,
1073-1095.

Konishi, H., P. Lin (1999), Stable Cartels With a Cournot Fringe in a Symmetric Oli-
gopoly, KEIO Economic Studies, 36(2), 1-10.

Levenstein, M.C., V.Y. Suslow (2006), What Determines Cartel Success?, Journal
of Economic Literature, 44(1), 43-95.

28



Motta, M. (2004), Competition Policy: Theory and Practice, Cambridge University
Press, New York.

Motta, M., M. Polo (2003), Leniency Programs and Cartel Prosecution, International
Journal of Industrial Organization, 21(3), 347-379.

Mouraviev, I., P. Rey (2011), Collusion and Leadership, International Journal of In-
dustrial Organization, 29(6), 705-717.

Prokop, J. (1999), Process of Dominant Cartel Formation, International Journal of In-
dustrial Organization, 17(2), 241-257.

Sha¤er, S. (1995), Stable Cartels With a Cournot Fringe, Southern Economic Journal,
61(3), 744-754.

Spagnolo, G. (2005), Divide et Impera: Optimal Leniency Programs, Stockholm School
of Economics, unpublished manuscript.

Thoron, S. (1998), Formation of a Coalition-Proof Stable Cartel, Canadian Journal of
Economics, 31(1), 63-76.

Wilson, C.S. (2019), Welfare Standards Underlying Antitrust Enforcement: What You
Measure is What You Get, in: Luncheon Keynote Address delivered at the George
Mason Law Review 22nd Annual Antitrust Symposium, Arlington, VA.

Zu, L., J. Zhang, S. Wang (2012), The Size of Stable Cartels: An Analytical Ap-
proach, International Journal of Industrial Organization, 30(2), 217-222.

29


	Deckblatt 2019-07
	Auer Pham 2020 Optimal Destabilization of Cartels

