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Abstract

Within this article, a generalized calibration approach is presented, which provides
coherent and efficient estimates considering a high number of constraints on differ-
ent hierarchical levels. These constraints may be obtained from different sources
such as survey data, register data, administrative data, or even other sources like
big data derived using different estimation approaches, including small area tech-
niques on different levels of interest. In order to incorporate a possible heterogeneous
quality and the multitude of the constraints, a relaxation of selected constraints is
proposed. In that regard, predefined tolerances are assigned to hardly achievable
constraints, mostly at low aggregation levels, or sample estimates with non-negligible
variances. In addition, the presented generalized calibration approach allows the
use of box-constraints for the calibration weights in order to avoid an inappropriate
high variation of the resulting weights. Furthermore, various penalty functions are
presented in order to accommodate particular circumstances in applications. The
proposed iterative algorithm provably finds the optimal solution and the numerical
implementation is able to deal with a huge data base such as the set of all households
in Germany. The performance is demonstrated in a short simulation study.

Keywords: Calibration, general regression estimator, coherent estimates, sampling weights,
soft constraints, box-constraints, semismooth Newton
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1 Introduction

Survey data are often accompanied by a weight vector to provide the necessary base for
design-unbiased estimates. One important property, not solely for official statistics, that
these weights have to fulfil is coherence. The European Statistics Code of Practice urges
coherence in principle 14 (see Eurostat, 2011). One straight forward method to construct
coherent weights is the application of calibration methods.

The general idea of calibration, as introduced in Deville and Sérndal (1992), is to modify
the design weights to a minimal extent in terms of a penalty function such that weighted es-
timates using the calibration variables satisfy the according known totals (cf. also Sarndal,
2007, Kott, 2006, Statistics Canada, 2003, pp. 45-46, or Merkouris, 2004). A recent
overview can also be drawn from Haziza and Beaumont (2017). In practice, however, the
classical calibration problem may suffer from different uncertainties such as using auxiliary
data from different sources, register data with unknown errors or inaccurate estimates.
Further, including too many constraints may result in extremely large weights with unac-
ceptable variation. The spread of weights including its importance for statistical modeling
was discussed in Gelman (2007) and in the context of survey and small area estimation in
Miinnich and Burgard (2012).

Since the auxiliary data are treated as known values in general, inaccuracies may hand over
to the calibration weights and the respective estimates. Mostly, this cannot be avoided in
classical calibration methods. However, there are several methods to consider this fact.
Chambers (1996) uses ridge calibration techniques, which is similarly applied in Rao and
Singh (1997), Beaumont and Bocci (2008), and Montanari and Ranalli (2009). To further
constrain the variation of weights, Théberge (2000) proposed the use of box-constraints.
The use of predicts from models within the calibration was proposed by Wu and Sit-
ter (2001) which was denoted by model calibration. Following this, Chen et al. (2002)
analyzed box-constraints in a model-calibration environment by computing empirical like-
lihood estimators and model-calibrated empirical likelihood estimators. Montanari and
Ranalli (2005) extend the approach of Wu and Sitter (2001) using non-parametric regres-
sion models. However, since model calibration may not satisfy the hard constraints for
survey estimates, Lehtonen and Veijanen (2015) proposed hybrid calibration with covers
both classical and model calibration.

In this article, we propose a generalized calibration method. The aim of the method is
to achieve coherency between estimates gained from different sources and to allow for a
high flexibility in the choice of the auxiliary data. The inclusion of subtotals in terms
of small area constraints is also possible. In order to avoid empty solution spaces or an
inappropriate variation of weights, we include box-constraints as well as the opportunity to
relax selected calibration constraints. Then, these only have to be satisfied within specific
predefined tolerances. This ensures the feasibility of the calibration problem even for large
problem instances and a large number of benchmark totals. The maximal tolerances allowed
may also be restricted using additional box-constraints. Finally, a numerical algorithm is
proposed that satisfies possible non-differentiabilities introduced by the box-constraints



where classical Newton-methods may tend to fail providing the optimum.

The article is structured as follows. In Section 2, the calibration framework is provided.
After presenting the classical calibration methods, a general intension is proposed which
contains soft and box-constraints. Additionally, a computation algorithms is presented that
allows finding the optimum under non-differentiability induced by the box-constraints. A
demonstration of the general calibration approach is finally presented in Section 3, which
considers national as well as regional estimates. Section 4 contains some brief concluding
remarks.

2 The generalized calibration method

2.1 General framework

We consider a finite population 4 = {1,..., N} and a sample S C U of size n < N. The
design weights denoted with dj; are known and strictly positive for each element £ € U of
the population. The major aim is to estimate the population total 7, = >, ,, yx of variable
of interest y using the calibration estimator %Z?AL = > res Wegryr with correction weights
gr (k € S). The correction weights g, are the result of the calibration procedure under

consideration of the the calibration benchmarks 7, = > ves kguTin (i=1,...,q) regarding

q auxiliary variables with the individual auxiliary values xy := (214, . .. ,mqk)T € RY for all
units of the sample. Then, the standard calibration approach is given by

min deD(gk)

geRm®
keS
, (1)
s.t. Z dkgszk = Tx; Vi = 1, o q,
keS

where the objective function is characterized by a predefined distance function D. The
most common distance function is the GREG-type distance function, since the calibration
estimator for the population total based thereon is equivalent to the GREG estimator (cf.
Deville and Séarndal, 1992). Some traditional choices for D are shown in Table 1 and plotted
in Figure 1. For other distance functions we refer to Deville and Sarndal (1992), Deville and
Sarndal (1993), Singh and Mohl (1996), and Stukel et al. (1996). In this article, we focus

Table 1: Common examples of distance functions for the calibration estimator.

D(gr)
GREG-type 5(gp — 1)
Raking Ratio gk log(gr) — gr + 1
Maximum-likelihood Raking | gx — 1 — log(gx)




on the GREG-type, the Raking, and the ML-Raking distance function. These functions
differ in their treatment of the penalty term, which affects the outcome of the objective
function depending on how greatly the calibration weight wy, := dygy differs from the design
weight dj, (i.e. the correction weight gy, differs from 1.0). The GREG-type distance function
assigns the same penalty to values of g, with an equal absolute distance to 1.0. The Raking
Ratio and the ML-Raking distance functions are based on a nonlinear dependency, where
smaller weights are penalized stronger compared to weights greater than 1.0.

In order to limit the spread of the calibration weights Deville and Sérndal (1993) and
Miinnich et al. (2012b) added box-constraints 0 < L,, < g, < U,, with L, < U,, for each
correction weight gi. Theses box-constraints are also known as range-restricted weights in
the literature. For this so-called box-constraint calibration method a very efficient algo-
rithm is published in Miinnich et al. (2012b) and Wagner (2013) based on a semismooth
Newton method.

As described in the introduction, various sources of the auxiliary data, different stratifica-
tion levels, and different quantity of auxiliary data may lead to infeasibility issues of the
calibration problem. To counteract this, some benchmarks may have to be relaxed, i.e. the
restrictions are weaken. As a results of the usage to these so called soft constraints, the
respective benchmarks only have to be fulfilled with a specific predefined perturbation. The
maximal tolerances allowed are added to the problem via additional box-constraints. Since
benchmarks possibly on different stratification levels are obtained from known totals and
different estimates gained by direct or small-area estimators (cf. Rao, 2003, Miinnich et al.,
2013, and Tzavidis et al., 2018), the relaxation may also prevent coherence problems be-
tween the estimation levels. Thus, an individual adjustment of the tolerance per benchmark
can facilitate to incorporate different confidence measures for the different benchmarks. As
a consequence, the confidence in a small area estimate is comparably low and the allowed
tolerance for this benchmark should be higher than for other benchmarks.

D(gx) ‘E ! (gk - 1)2/2 (GREG-type)
15+ 1
: | 0 (gx log(gr) — gx + 1) (Raking)
} .+ (96 — 1~ log(gs)) (ML-Raking)
LY | 4
0.5 ‘\“-‘ :
— | %

Figure 1: Common examples of distance functions for the calibration estimator.



2.2 Derivation of the method

By extending the calibration approach in (1), the relaxation and box-constraints are treated
as real restrictions. This approach amongst others relies on the developments of Wagner
(2013, Chapter 7) and is similarly presented in Rupp (2018, Chapter 5). By applying a
relaxation and box-constraints, the calibration problem (1) can be extended to

dD 8;D(
(9:€) efél]ngQ Z F gk + Z 6]

degkxik =T Vi=1,...,q1

keS (2)
degkx;ekl = €Tyl Vi=1,...,q

keS

Ly <gp <U, VE=1,....n

L, <e;<U,Vi=1,...,¢

with a distance function D defined in Table 1 and the total number of ¢ = ¢; + ¢2 equality
constraints. The auxiliary variables are denoted with z$},... 22 € Rand 23, ...zl € R
(k € S) for the restrictions which have to be fulfilled exactly and with a certaln degree
of precision, respectively. The degree of precision is defined by the box-constraints of
¢; € Ry, denoted by L., and U, (j = 1,...,¢2). The vector 0 € R¥ used as factors
in the objective function determines the magnitude of penalization within these bounds.
The box-constraints for the correction weights g, are denoted with 0 < L, < g < U,
(k € S). As described before, benchmark totals 7,ex (i =1,...,¢1) and 7ra (j =1,...,¢2)
may also be estimated totals instead of known totals. Due to simpliﬁcatiéns, the common
hat-notation is omitted.

In the following, the matrix X is defined as design weighted auxiliary matrix for the ¢
auxiliary variables z{},...,2g% € R for all units £ € S, whose benchmark totals need
to be satisfied exactly. Analogously, the matrix X' contains the g, auxiliary variables

2y, .. ooy € R, whose benchmarks have only to be fulfilled within a predefined tolerance:

1 1
dlxﬁ’l‘ oo dpaty dixy§ ... dpat,
X*=1| = t | €R® and X =| C | e R

ex rel rel
dlqul P % gy - dpzy,

The benchmark totals are denoted by 7gex,. .. s Tagx € R and Tyl ooy Tyrel € R, respec-
tively. The approved perturbations of the relaxed variables are given by €;,...,¢, € Ry.
In the notation considered here, the matrices X°* and X™ correspond to population total
benchmarks. If regional benchmarks are added for auxiliary variable i € {1,...,¢}, the
i row of X°* is extended. The amount of the constraints considered ¢; is then updated.
This procedure can be done consecutively for several variables or stratification levels and is
analogously possible for relaxed auxiliary variables. In addition, it is also valid to assume



an auxiliary variable with totals that have to be fulfilled exactly on highly aggregated strat-
ification levels, but the totals may be relaxed on more disaggregated levels. This procedure
is common in applications as, in general, the variance of estimates on low aggregation levels
is higher than on higher aggregation levels.

Using the above notation, the restriction matrix of problem (2) can be formulated as

X*] 0 ... 0
_Tl,liel 0
A= el N c ]R(Q1+Q2)><(TL+Q2)7 (3)
0 _Txrel
a2

where ¢, is the number of benchmarks to be fulfilled exactly and ¢, is the number of bench-
marks to be fulfilled with a tolerance. Whereas the totals for the relaxed benchmarks are
included in the low right block of the matrix A, the benchmarks for the exact benchmarks
are included in the right-hand side vector given by

b= (T;,;EllX,...,Txle}:lc,O,...,O)TGRQH-qQ‘ (4)

To measure the deviations of the design weights dj from the calibration weights w;, and the
perturbations €; to 1.0, we choose one of the distance functions D : R; — Ry, presented
in Table 1, i.e.

1. GREG-type:  D(z,) = 1(2. — 1)%,
2. Raking Ratio: D(z) = 2z, log(zs) — 2, + 1, or
3. ML-Raking: D(z,) = 2z, — 1 — log(z).

In that regard, kK = 1,...,n 4 ¢o is the composed index for the respective component of
the objective function of problem (2), i.e. indices k < n correspond to the n sampled units
(index k) and indices Kk > n correspond to one of the ¢o relaxed benchmarks (index j).
Then, problem (2) can then be equivalently rewritten as

n+q2

min P(z) := Z deD(2,)

z€R"tTa2 —
st. Az—b=0
L<z<U

(5)

with objective function P : R — Ry, , where z := (g,¢)7 € R™® is the dependent
variable of the problem, d := (d,0)T € R" % the vector of design weights and degrees of
penalization for the relaxed benchmarks, L := (L,, L.)" € R""% the lower bounds, and
U := (U,,U)" € R™% the upper bounds for ¢ and e.



As shown in Rupp (2018, Lemma 5.2.1), the objective function P of problem (5) is twice
continuously differentiable, strictly convex, and separable for the three distance functions
D : Ry — Ry, of Table 1. Moreover, D' is strongly monotonically increasing, such that
the inverse of function D’~! of D’ is well-defined for the three distance functions.

Based on that specific structure of the problem, the first order necessary optimality condi-
tions of problem (5) are also sufficient if the Slater condition is satisfied. This can be proved
using Theorem 3.8 in Horst (1979), the affine-linearity of all constraint functions, the strict
convexity of the objective function, and the strict convexity of the feasible set. Since the
objective function is also separable, the problem (5) can be equivalently reformulated as a
non-linear system of equations

T(A) =0 (6)
in analogy to Miinnich et al. (2012b) with

U ROTE 5 RUFER N Az(N) —b. (7)

In that regard, the function z(-) : R®*% — R""% is component-wise defined as

() = Prig, g (D,1 (-%2) ) )

for k =1,...,n + ¢, with the projection function Pr, ,(-) (cf. Definition A.3). Due to
regularity of D, the following theorem proves the equivalence of solving (5) and (6):

Theorem 2.1. A vector z* € R" % is the unique solution of the optimization problem (5)
if and only if there exist Lagrangian multipliers \* € R212 such that ¥(\*) = 0 defined in
(6) is satisfied.

For the proof of Theorem 2.1, we refer to Miinnich et al. (2012b, Theorem 3). Thus, only
the (g1 + ¢2)-dimensional nonlinear system of equations in (6) has to be solved to achieve
the optimal solution of the (n + g)-dimensional optimization problem in (5). Then, the
solution z* € R""% of problem (5) is component-wise given by

Ze = Ze(XY) (9)

forall k =1,...,n 4 g with z.(-) computed by (8). Finally, the optimal solution g* € R"
and the optimal penalty parameter ¢* € R are determined by

g =21, 2)" and € = (zh . zm0) (10)
Since g1 < n and ¢u < n in the most common applications, the computational burden to

solve (6) is supposed to be significantly lower than the computational effort needed to solve
problem (5).



2.3 The semismooth Newton algorithm

By introducing box-constraints to the standard calibration method (1), the function ¥ of
the non-linear system of equations (6) is not continuously differentiable which prohibits us
to apply the classical Newtons method. However, ¥ defined in (7) is (strongly) semismooth
(cf. Definition A.2) which is shown in Rupp (2018, Theorem 5.3.2). Thus, the application of
a semismooth Newton method (cf. Qi and Sun, 1993) is possible. Fortunately, in analogy to
the classical Newtons method Qi (1993) verify a local g-superlinear convergence rate of the
semismooth Newton method for semismooth functions ¥ and a local quadratic convergence
rate for strongly semismooth functions respectively.

For a detailed analysis of the theory of semismooth functions we refer to Clarke (1979).
Concerning the calibration problem, a more adapted overview about the generalized sub-
differential theory and semismooth functions is given in Miinnich et al. (2012b), Wagner
(2013), and Rupp (2018, Chapter 3.2). These sources also consider the convergence results
of the semismooth Newton method.

The algorithm is shown in Algorithm 1 with the generalized Jacobian 0W(-) (cf. Defini-
tion A.1) and an appropriate step-size rule to ensure numerical stability.

Algorithm 1 Semismooth Newton method
Input: ¥ : R""% — R"*% locally Lipschitz, \° € R""% initial iterate, \° € B(\*)
while ||U(\¥)|| > tol do
choose H* € OU(\F)
solve HFsF = —W(\F)
compute step-size v* € (0, 1]
AR = Nk hgh
k+—k+1
end while
return Solution \* « \*

Aside from the semismooth Newton method presented in this article, there are several
common calibration algorithms in the literature. One example is the function calib()
in the R package sampling (cf. Tillé and Matei, 2016). In addition, Vanderhoeft (2001,
pp. 29 f.) proposed a similar algorithm based on a projected Newton algorithm, which is
implemented in the SPSS module g-CALIB-S. Beside these two algorithms, there are other
algorithms like the function calibrate() (R package survey; cf. Lumley, 2011) and the
SAS module CALMAR (cf. Sautory, 1993), which are mostly based on Newton techniques. In
extreme cases (high number of constraints, strict box-constraints) some of these algorithms
may have issues in finding the optimal solution due to non-differentiabilities. As an alter-
native, Wagner (2013) proposed to solve problem (2) using the highly efficient commercial
software IBM ILOG CPLEX Optimization Studio', which provides the optimal solution.
Our approach also yields the optimal solution, but performs generally faster since it is
well-tailored to the structure of the optimization problem.

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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3 Simulation study

The generalized calibration method is applied on the AMELIA dataset (cf. Burgard et al.,
2017) consisting of 3781289 households accommodating 10012600 individuals. The pop-
ulation is stratified by the stratification levels REG (4 regions), PROV (11 provinces), DIS
(40 districts), and CIT (1592 cities/communities). Thus, the sampling design is based on
the 1592 cities (CIT), also called strata, and the overall sampling fraction is fixed to 5%, i.e.
the total sample size is given by n = 189 064 households. The stratified samples are drawn
using a univariate box-constraint optimal allocation concerning variable Personal Income
(INC; cf. Gabler et al., 2012 and Miinnich et al., 2012c). Further designs can be found
on the AMELIA homepage®. To allow a stable calibration procedure and estimation, the
lower bounds for the stratum-specific sample sizes are set to 100 households per stratum.
For the calibration benchmarks, the totals of considered auxiliary variables can be assumed
to be known by registers or other surveys, namely

e ZEN (number of persons living in the household),
e EF117A, EF117B (occupational status),
e ILO1, ILO3, ILO4 (type of employment), and

e ISCEDB, ISCEDC, ISCEDD (highest graduation)
as well as additional classes of cross-classifications of age (4 classes) and gender (2), namely

o AGE4.1 Sex.1, AGE4.2 Sex.1, AGE4.3 Sex.1, AGE4.4 Sex.1, and
AGE4.1 Sex.2, AGE4.2 Sex.2, AGE4.3 Sex.2, AGE4.4 Sex.2.

Some characteristics of these variables are omitted, such as ILO2 due to its rare appearance.
We consider three scenarios described in Table 2, depending on the amount of auxiliary
variables and stratification level. The number of benchmarks increases from the first to
the last row of the table. The stratum-specific (i.e. city-specific) benchmarks for ZEN are
included in each of the three scenarios without relaxation. In the first of the three cases,
region-specific benchmarks for the auxiliaries are added (as strict benchmarks). In the
second case, stratum-specific benchmarks are added for the auxiliaries as soft constraints
with a predefined tolerance of 7.5%. The third case additionally contains benchmarks
for AgexGender classes (exact for the regions and relaxed for cities/strata). The overall
number of benchmarks is tabulated in the last column.

As no relaxed benchmarks are used, the calibration estimator for the population total
concerning scenario REG.exact is equivalent to the GREG estimator for the population
total with the REG-specific totals of the auxiliaries and stratum-specific totals for ZEN used
as benchmarks. To evaluate the functionality of the calibration method, the HT estimates

2http://www.amelia.uni-trier.de
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Table 2: Scenarios applied in the simulation study. “v"” means the benchmarks are in-
cluded. The values in percent refer to the maximal allowed tolerance.

ZEN Auxiliaries AgexGender | Benchmarks
CIT | REG CIT | REG CIT

REG.exact v v — — — 1624
CIT.rel (Aux) v v +7.5% — — 14 360
CIT.rel (Aux&AxG) v v +7.5% ve +7.5% 27128

are also computed. Aside from the analysis of weights and benchmarks in Sections 3.1 and
3.2, the accuracy of point estimates is shown in Section 3.3. The accuracy is measured
by the Monte-Carlo RRMSE and RBIAS computed on the basis of the 1000 Monte-Carlo
replications. For each evaluation, the results for the three distance functions of Table 1 are
analyzed. The evaluations of Sections 3.1 and 3.2 are based on the results of one sample.
A randomly conducted study yields similar results for other samples.

3.1 Distribution of calibration weights

In general, the higher the influence of the calibration process (i.e. the higher the number
of benchmarks or the more restrictive the benchmarks), the more the correction weights
gx deviate from 1.0. To illustrate this, the correction weights g, are plotted using density

06 08 10 12 14
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| | | | | | | | | | | | | |
greg greg greg
REG.exact CIT.rel(Aux) CIT.rel(Aux&AxG)
840 N 0|68 2| 548 | P13
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4 - ; ; : : -
= ' ' -
raking raking raking
REG.exact CIT.rel(Aux) CIT.rel(Aux&AxG)
g +0 N 0|3 ; ; 12|40 1 8318
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- - 0
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Calibration weights g

Figure 2: Density plots of correction weights g for three scenarios and distance functions.
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plots in Figure 2 for the three scenarios and distance functions. The vertical dashed lines
highlight the position of the 5%- and the 95%-quantiles of the weights. Firstly, we observe
a significant increase in the variance of the weights for the scenarios two and three with
relaxed stratum-specific benchmarks. This is a result of the increased number of bench-
marks on disaggregated stratification levels. If we attempt to fulfill the stratum-specific
benchmarks exactly without relaxation, the semismooth Newton algorithm breaks down
due to the non-feasibility of the problem. When looking at the shapes of the density plots,
a similar behavior can be observed for the three distance functions. However, in consider-
ing the numbers at the top-right and top-left of each plot (corresponding to the number of
weights reaching the respective box-constraints), there are significant differences between
the three distance functions. This is consistent with the analysis of the distance function
in Figure 1, where the weight g being significantly smaller than 1.0 is more penalized for
Raking and ML-Raking compared to the GREG-type distance functions.

3.2 Strict versus relaxed benchmarks

As described before, the important feature of the generalized calibration method is to
permit specific benchmarks to be relaxed. In Figure 3 the functionality of the relaxation is
highlighted. Each boxplot contains the deviation of the totals estimated by the calibration
estimator and the benchmark totals for all restrictions which are included in the third
scenario (i.e. both stratum- and REG-specific benchmarks). The boxplots are divided
into two columns for the Auzxiliaries and Agex Gender, respectively. The dashed vertical
lines correspond to the maximal allowed tolerance for the relaxed benchmarks. In the
scenario without consideration of the stratum-specific benchmarks (REG. exact), there are
several stratum-specific estimates which substantially differ from their benchmark totals
and significantly exceed the maximal tolerance used in the scenarios two and three with
stratum-specific benchmarks. The maximal deviations are about +65% and —55%, which
are unacceptable if stratum-specific estimates are subject of the survey. This results in
regional inconsistencies, coherence problems, and inefficient stratum-specific estimates. The
possibility of the relaxation of specific benchmarks (see scenarios two and three) prevents

Auxiliaries Age x Gender

REG.exact :-;E}; : ° : ---{;ji»----:—m
CIT.rel(Aux) HH oct—:~ --- Ejl» --- :-ooo
.: H

T ' T T T T
0.5 1.0 1.5 0.5 1.0 1.5

o

Scenarios

CIT.rel(Aux&AxG) u”—-:t :{

Deviation of benchmarks (GREG objective function)

Figure 3: Compliance with benchmarks of SMP-specific estimates for scenarios with the
GREG-type objective function.
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those issues and enables the inclusion of stratum-specific totals, which may be gained
from registers or other surveys. Since benchmarks for highly disaggregated stratification
levels may appear to be important, benchmarks gained from small area estimates may also
be applied. The circumstance of including estimated benchmarks with different standard
errors can be considered by using different tolerance terms.

With regard to Table 2, the high number of benchmarks considered in the scenarios two
and three with relaxed benchmarks highlights the fact, that an exact fulfillment of all those
benchmarks would simply lead to an empty feasible set of problem (2), and therefore to
the non-feasibility of the problem. Thus, using relaxation techniques is the only way to
include such a high amount of restrictions.

3.3 Point estimates on regional level

Aside from coherence and consistency, increasing the accuracy of estimates is a key aspect
of the generalized calibration method. The RRMSEs of the city-specific point estimates
for six selected variables are shown in Figure 4 for all scenarios and for the GREG-type
objective functions. The variables comprise three variables which are (partly) included in
the calibration (upper panels) and three variables of interest (lower panels), which are not
involved in the calibration. Each boxplot contains 1592 points assigned to the 1592 cities
of AMELIA.

ISCEDB EF117A AGE4.1 Sex.1
Horvitz Thompson| o apooowoss - - {a} - - | o avowocccems- - Je] 4 o owoom ase- - {e] -
REG.exact| m@ocanm - - o] --! |@-f] -» oo avo and- - {o] - 4
CiTrel(Aux) | - {s} o bl o owoom cam! - Je] - &
CIT.rel(Aux8&AXG) | am- Jd w-bl e o3

T T T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.00 0.02 0.04 0.06 0.000.050.100.150.200.25

INC PEN FAM1

Horvitz Thompson| o acoeamat - {e] - 4 |0 oo --{e | --éo [0 @vowaw--{e}-!

REG.exact| @ e - fo] - oo @woow --{o | --do | @wcsw: - {o] -
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RRMSE of CIT-specific estimates

Scenarios (Var. of interest) Scenarios (Auxiliaries)

Figure 4: RRMSE of city-specific point estimates for scenarios with a GREG-type objective
function.
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In general, the point estimates for all variables (auxiliaries and variables of interest) and
all scenarios are at least as accurate as the HT estimates. Further, significant differences
can be observed in the behavior of the point estimates of the auxiliaries, which is primarily
a consequence of the usage of the auxiliary variables as benchmarks. With regard to
the scenario REG.exact, the accuracy of the stratum-specific (i.e. city-specific or CIT-
specific) estimates of all the auxiliaries ISCEDB and AGE4.1 Sex.1 is similar to the HT
estimates, since none of the auxiliary variables is included as benchmark on stratum-level.
In contrast, the accuracy of the stratum-specific estimates of EF117A increases due to the
high correlation between EF117A and ZEN (which is already included as stratum-specific
benchmark; see Table 2). In case of the other scenarios, the accuracy of the stratum-specific
estimates is significantly improved for the auxiliary variables, since they are applied as
relaxed benchmarks with predefined maximal perturbations. Moreover, the inclusion of
specific benchmarks does not necessarily lead to accuracy-changes for other not included
variables. In scenario CIT.rel (Aux&AxG), the accuracy of the estimates for ISCEDB and
EF117A slightly suffer due to the high amount of benchmarks included, as the feasible set
is shrunken.

With regard to the variables of interest, different behaviors can also be observed. The accu-
racy of the stratum-specific estimates increases if additional benchmarks are included due
to the correlation structure between the variables of interest and the auxiliaries. However,
as the increase of accuracy compared to the HT estimator may only be small it has to be
considered that the main task of the generalized calibration is not only to obtain accuracy
increased estimates but also to have consistency between benchmarks and auxiliaries.
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Figure 5: RBIAS of city-specific point estimates for scenarios with a GREG-type objective
function.
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In Figure 5, the RBIAS is presented for the city-specific point estimates for the same
scenarios and variables. Per definition, the HT estimator is unbiased for all variables. Since
the GREG estimator is model-assisted and an calibrated estimation can also be associated
to this type of estimators, estimates based on the generalized calibration method should
at least be asymptotically unbiased. Generally, unbiased estimates for most scenarios are
observed, including those with relaxed benchmarks. In addition, the bias is reduced if the
respective auxiliary variable is included as relaxed benchmarks in the calibration process.
The amount of the reduction highly depends on the predefined tolerances.

4 Concluding remarks

Calibration estimation has shown to provide a sound basis for producing coherent weights.
However, practical settings with many constraints may imply unacceptable weight distri-
butions or even non-solvable problems. This problem becomes even more evident when
considering estimates on sub-groups or smaller regions. The inclusion of box-constraints
and tolerances helps to overcome non-solvability of the calibration problem and to produce
more appropriate weights. In Germany, this is essentially important for the register-assisted
German Census (cf. Miinnich et al.; 2012a) and the new integrated German System of
Household Surveys (cf. Riede et al., 2013).

The proposed generalized calibration method allows smoothly to include many different
additional constraints in an appropriate manner. This includes the accuracy of the bench-
marking information, small area constraints or hierarchical settings. The iterative algo-
rithm, which is based on applying the semismooth Newton algorithm with step-control,
ensures the global optimum. This may not be achieved when using hard constraints on the
weights in combination with fully Newton-based methods. The solution strategy can also
be applied to large-scale calibration problems with acceptable computation time.
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A Appendix

The theory of semismooth functions is based on Clarke (1979), where a generalized sub-
differential theory is introduced for semismooth functions. Moreover, the semismooth New-
ton method and its convergence results are presented in Qi and Sun (1993) and Qi (1993).
In addition to that, Miinnich et al. (2012b), Wagner (2013), and Rupp (2018) give a more
application-specific overview about the semismooth theory. Thus, we largely skip this the-
ory and concentrate on the main results relating to the topic of this paper. Firstly, we
define the generalized Jacobian of a function F'

Definition A.l. (Generalized Jacobian) Let F : R" — R™ be locally Lipschitz, v €
R™, and let and let F'(x) € R™ " denote the Jacobian of F in v € Dp = {x € R" :
F is differentiable in x}. Then

OF (z) := conv{H € R™" : 3(2")pen C Dy : 2% — 2 and D'(2*) — H}
is called the generalized Jacobian of F' in x.

We note, that for all z € R"™ where F' is differentiable, the generalized Jacobian OF(x)
is of cardinality one and equals the Jacobian F'(z). Next, we define semismoothness of a
function F' which is locally Lipschitz:

Definition A.2. (Semismoothness) Let D C R™ and F : D — R™ be a locally Lipschitz
function and let all directional derivatives F'(z;r) in direction r exist in x € D. Then F
is called

HErk — F'(x;7%)

1) semismooth inx € D, i lim =0
(i) ’ frk—>O,Hk68F(x+rk) ||r*|| ’
Hk: k — F' - k
(ii) strongly semismooth in x € D, if lim sup r (z:77) < 00,
k|2
rk—0,Hk€OF (z+rk) HT’ H

(iii) (strongly) semismooth on D, if F' is (strongly) semismooth in all x € D.

We remark that the property of semismoothness is weaker than the differentiability. In con-
trast to differentiable functions, semismooth functions may have some kinks. One example
for a semismooth function is the projection:

Definition A.3. (Projection) Let [a,b] € R be an interval and x € R. The projection of x
on la,b] is defined as
a, ifr<a
Prag(z) = qz, ifa<z<b.
b, ifx >0
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