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Abstract

Spatial dynamic microsimulations allow for the multivariate analysis of complex socio-

economic systems with geographic segmentation. For this, a synthetic replica of the

system as base population is stochastically projected into future periods. Thereby, the

projection is based on micro-level transition probabilities. They need to accurately

represent the characteristic dynamics of the system to allow for reliable simulation

outcomes. In practice, transition probabilities are unknown and must be estimated

from suitable survey data. This can be challenging when the characteristic dynamics

vary locally. Survey data often lacks in regional detail due to confidentiality restric-

tions and limited sampling resources. In that case, transition probability estimates

may misrepresent local dynamics as a result of insufficient local observations and

coverage problems. The simulation process then fails to provide an authentic evolu-

tion. We present two transition probability estimation techniques that account for

regional heterogeneity when the survey data lacks in regional detail. Using methods of

constrained optimization and ex-post alignment, we show that local micro level tran-

sition dynamics can be accurately recovered from aggregated regional benchmarks.

The techniques are compared in theory and subsequently tested in a simulation study.

Keywords: Constrained Maximum Likelihood, Logit Scaling, Spatiotemporal Mod-

elling, Regional Benchmark
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1 Introduction

Microsimulations are powerful tools for the multivariate analysis of complex systems, such

as economic markets or medical care infrastructures. They differ from the more established

macrosimulations in terms of the objects that are considered in the simulation process.

While in macrosimulations the behaviour of aggregated system-intrinsic entities is modelled,

microsimulations target the smallest entities of the system (units) directly. This allows for

the investigation of multidimensional interactions and nonlinear dependencies within the

system that cannot be studied by macrosimulations. Examples for microsimulation models

can be found in Klevmarken (2010), Lawson (2011), O’Donoghue et al. (2011), as well as

Markham et al. (2017).

Microsimulations are often conducted according to a basic procedure. First, a base popu-

lation as synthetic replica of the system of interest is constructed. In practice, this may be

either artificially constructed data, or real-world observations from administrative records

and surveys (Li and O’Donoghue, 2014). Next, multiple parameters that characterize the

system in its initial state are altered in scenarios. Thereby, the alterations are designed

to target properties of the system in the light of the research objectives. The effects of

the alterations are then projected into future periods and construct individual branches in

the system’s evolution. After a given number of periods (simulation horizon), the branches

are compared and give insights on important dynamics and interdependencies within the

system (Burgard et al., 2019).

There are different types of microsimulations. They mainly differ in the manner in which

the mentioned alterations are projected. An important distinction is between static and

dynamic microsimulations (Li and O’Donoghue, 2013). Static microsimulations are charac-

terized by the constancy of unit characteristics over time. When constructing the synthetic

replica, every unit is provided with a set of characteristics that determines its behaviour

and interaction with other units. In static microsimulations, these characteristics don’t

change over the simulation horizon. Only specific simulation inputs are altered, depending

on the research objectives. Examples for static microsimulation models can be found in

Peichl et al. (2010), as well as Sutherland and Figari (2013).

Dynamic microsimulations, on the other hand, are characterized by stochastic changes of

unit characteristics (state transitions) over time. The evolution of units, as well as their

interactions, are determined by frequently changing base datasets. Examples for dynamic

microsimulation models can be found in O’Donoghue et al. (2009), as well as Fialka et al.

(2011). If the dynamic microsimulation is time-discrete, state transitions can only appear
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periodically at distinct points of time. If the simulation is time-continuous, they can appear

at any given time and thus are modelled via survival functions (Willekens, 2009).

In the following, we focus on dynamic microsimulations with discrete time. More precisely,

we look at dynamic microsimulation models in socio-economic research where primarily

polytomous variables are of interest. This conceptual delimitation differentiates the topic

from other fields where corresponding simulation methods are also relevant, such as particle

physics or cancer research. In order to initialize a corresponding simulation, every unit in

the synthetic replica must be provided with an individual set of transition probabilities.

They define the conditional likelihood of a state transition for some unit characteristic given

its current state as well as other characteristics. The probabilities constitute stochastic

processes within the synthetic replica over the simulation horizon. Thereby, they need to

represent elementary dynamics of the real system as genuine as possible to obtain valid

simulation results. Transition probabilities are usually unknown in practice and thus must

be estimated. This is done via parametric statistical models using suitable survey data.

Transition probability estimation can be challenging if the system of interest is geographi-

cally segmented into regions. In the literature, a microsimulation that accounts for regional

data structures is often referred to a small area or spatial microsimulation (Rahman et al.,

2010; Rahman and Harding, 2016; Tanton et al., 2018). In such a setting, there may be

heterogeneity across regions with respect to transition dynamics. The statistical approach

used for transition probability estimation must explicitly account for these local differences

in order to adequately reflect the system’s dynamics. However, in practice, we often en-

counter the problem that the survey data used for transition probability estimation lacks

in regional detail. Due to confidentiality restrictions, regional identifiers that would allow

for spatial localization of the sample elements may be censored. Regional heterogeneity in

transition dynamics then cannot be observed as spatial aggregates are indistinguishable.

Further, even if regional identifiers are available, the majority of survey samples often con-

tain only a few observations per region due to limited resources. In that case, observed

regional transition frequencies may be inaccurate or even biased as a result of coverage

problems. Ignoring these issues may cause only small deviations in the initial phase of the

simulation. But due to the complex interactions between units, the inaccuracies accumu-

late and self-reinforce over the simulation horizon. Hence, local transition dynamics are

misrepresented over time and the simulation fails to provide an authentic evolution of the

synthetic replica with respect to the real system. The simulation outcomes are subsequently

not reliable anymore (Chin and Harding, 2006; Tanton, 2014). Accordingly, if the survey
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data used for transition probability estimation lacks in regional detail, methodological ad-

justments are required.

In this paper, we investigate two extensions of the multinomial logit model (McCullagh

and Nelder, 1989; Greene, 2002) to recover local heterogeneity in transition dynamics when

the primary database lacks in regional detail. The extensions are addressed in the context

of spatial dynamic microsimulations where it is required to provide micro-level transition

probabilities for every unit of the synthetic replica. We consider a situation in which

external benchmarks on regional transition dynamics are available (e.g. from census data).

The general idea is to incorporate this regional information in the multinomial logit model

and modify the estimation process such that resulting micro level probability estimates are

consistent with the benchmarks when aggregated. Benchmark consistency can be either

perfect in the sense that all values are reproduced exactly, or approximately by allowing

for deviations in terms of box constraints. With this, we seek to recover the previously

unobservable regional heterogeneity in transition dynamics on the micro level.

The first extension is called logit scaling and was originally proposed by Stephensen (2016).

It is an ex-post alignment method based on iterative proportional fitting (Bishop et al.,

1970). After the initial estimation process, the transition probability estimates obtained

from multinomial logit are adjusted sequentially until they are consistent with the exter-

nal benchmarks. Thereby, the Kullback-Leibler divergence between original and adjusted

estimates is minimized. The second extension was developed in this study and draws from

constrained maximum likelihood theory (e.g. Dong and Wets, 2000; Chatterjee et al., 2016).

The external regional benchmarks are used to directly modify parameter estimation in the

multinomial logit model. This done by imposing box constraints on model predictions and

thus transition probability estimates. Constrained parameter estimation is performed by a

sequential quadratic programming approach (Kraft, 1994).

The methods are first described and discussed in theory. Afterwards, they are applied

and tested under different settings in an extended simulation study. For this, survey data

from the German Microcensus 2013. We find that the inclusion of aggregated regional

benchmarks allows for the recovery of local micro level transition dynamics despite a lack

in regional detail. The remainder of the paper is organized as follows. In Chapter 2, the

required technical framework and the multinomial logit model are described. In Chapter

3, the two extensions to the model are presented. Chapter 4 contains the simulation study.

Chapter 5 closes with some conclusive remarks.
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2 Basic Methodology

2.1 Technical Framework

We introduce a technical framework that is required to describe the estimation methods

within this paper. For simplicity, assume that the system of interest is an arbitrary popula-

tion of individuals. In the following, three representations of this population are considered.

First, let U denote the real population that contains |U| = N individuals. It marks the

system that the researcher seeks to analyze. With respect to the spatial segmentation dis-

cussed in Chapter 1, assume that U =
⋃R
r=1 Ur consists of R areas indexed by r = 1, ..., R

with Ur,Uv ∈ U pairwise disjoint for r 6= v. The number of individuals per area is |Ur| = Nr

with
∑R

r=1Nr = N . Second, denote Ũ as the synthetic replica of U containing |Ũ | = Ñ

units indexed by u = 1, ..., Ñ . It is projected over simulation horizon S = {1, ..., S} with

simulation periods s to provide essential insights on U . Note that formally S is an index set.

For the projection, every u ∈ Ũ must be associated with a set of transition probabilities

that accurately represent relevant dynamics of U . Since Ũ is designed to be a close-to-

reality representation of U , it must reflect the spatial segmentation of the real population.

Accordingly, we have Ũ =
⋃R
r=1 Ũr with Ũr, Ũv ∈ Ũ pairwise disjoint for r 6= v. The number

of units per synthetic area is |Ũr| = Ñr with
∑R

r=1 Ñr = Ñ . And third, let D ⊂ U be a

survey sample that is drawn from U with observations of |D| = n unique individuals for T

time periods, where i = 1, ..., n and t = 1, ..., T . It marks the data basis from which tran-

sition probability estimates are derived in order to apply them to Ũ . In an ideal sampling

situation, D contains area-specific subsamples Dr ⊂ Ur with |Dr| = nr and nr sufficiently

large for all r. In practice, the regional index r might be unknown, or nr may be small.

As stated previously, every unit is associated with a set of characteristics that determines its

behaviour and interaction with other units. Since we consider dynamic microsimulations,

the unit-specific values of this set may change in any s ∈ S. Let Y : Y → E be a polytomous

random variable representing a unit characteristic for which transition probabilities are

desired. It can have a finite number J of possible outcomes that form the state space

Y = {Y1, ..., YJ} whose elements Yj are unordered, mutually exclusive, and indexed by

j = 1, ..., J . E is some measurable space. Let F be the σ-algebra of subsets of Y and

P : F → [0, 1] be a probability measure. In order to understand the following definitions,

we briefly recall the concept of discrete stochastic processes.

Definition 1 Let (Y ,F , P ) be a probability space, E be a measurable space, and S = Z+

be an index set. Suppose that for every s ∈ S, there is a Y (s) : Y → E defined on (Y ,F , P ).
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Then, the function Y : S × Y → E is called discrete stochastic process.

Thereafter, we need to distinguish between the concepts of state occurrence and state

transition for the estimation methods in the subsequent chapters.

Definition 2 Let y
(s)
ur be the realized value of Y for some u ∈ Ũr in s ∈ S. A state

occurrence is the outcome of a discrete stochastic process where y
(s)
ur = Yj for a given

Yj ∈ Y. Its probability is given by π
(s)j
ur := P (y

(s)
ur = Yj).

Definition 3 A state transition is the outcome of a discrete stochastic process where y
(s)
ur =

Yj and y
(s+1)
ur = Yk with Yj, Yk ∈ Y and Yj 6= Yk for u ∈ Ũr and s ∈ S. Its probability is

given by π
(s+1)jk
ur := P (y

(s+1)
ur = Yk|y(s)ur = Yj).

Please note that Yj = Yk is also allowed in the simulation process. However, we don’t

refer to it as a state transition since the unit-specific value of Y has not changed between

periods. Let X = (X1, ..., Xp) be a set of random variables with Xι : Ω→ R for ι = 1, ..., p

that represent other unit characteristics statistically related to Y . Denote the value of X

for u ∈ Ũr in simulation period s as x
(s)
ur . The conditional probability of a state transition

from Yj to Yk for u ∈ Ũr in s+ 1 is defined according to:

π(s+1)jk
ur (y(s)ur ,x

(s+1)
ur , s) := P (ys+1

ur = Yk|y(s)ur = Yj,X = x(s+1)
ur ,S = s), (1)

where Yj, Yk ∈ Y and 0 ≤ π
(s+1)jk
ur (y

(s)
ur ,x

(s+1)
ur , s) ≤ 1. For notational convenience, assume

that it is sufficient to only consider the last period when modelling the state transition. Fur-

ther, for simplicity, assume that the conditional transition probabilities are time-invariant

and only vary across units as well as simulation scenarios. Hence,

π(s+1)jk
ur (y(s)ur ,x

(s+1)
ur , s) = π(s+1)jk

ur (y(s)ur ,x
(s+1)
ur ). (2)

However, the methods discussed in this paper can be adjusted to provide conditional time-

variant transition probabilities, e.g. by including time variable in X. Note that π
(s+1)k
ur

is driven by the last state y
(s)
ur and the additional characteristics x

(s+1)
ur . On the contrary,

π
(s+1)jk
ur varies exclusively with x

(s+1)
ur . Generally, in the light of all simulation periods and

potential states, transition dynamics can be summarized in a right stochastic matrix

Pur =


π
(s+1)11
ur (y

(s)
ur ,x

(s+1)
ur ) π

(s+1)12
ur (ysur,x

s+1
ur ) ... π

(s+1)1J
u (y

(s)
ur ,x

(s+1)
ur )

...
...

. . .

π
(s+1)J1
ur (y

(s)
ur ,x

(s+1)
ur ) π

(s+1)J2
ur (ysur,x

s+1
ur ) ... π

(s+1)JJ
ur (y

(s)
ur ,x

(s+1)
ur )

 , (3)
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where
∑J

k=1 π
(s+1)jk
ur (y

(s)
ur ,x

(s+1)
ur ) = 1. However, note that for a given u ∈ Ũr with known

y
(s)
ur = Yj and x

(s+1)
ur , we have π

(s+1)jk
ur = π

(s+1)k
ur . In that case, the probabilities of state

occurrences are equal to the state transition probabilities. Subsequently, they can be sum-

marized for a given simulation period s+1 in a vector π
(s+1)
ur = (π

(s+1)j1
ur , ..., π

(s+1)jJ
ur ). Next,

the concept of regional heterogeneity in transition dynamics in our setting is introduced.

Definition 4 Let π
(s+1)jk
ur = P (ys+1

ur = Yk|y(s)ur = Yj) with Yj, Yk ∈ Y and s ∈ S. Re-

gional heterogeneity in transition dynamics is a situation where Ñ−1r
∑

u∈Ũr π
(s+1)jk
ur 6=

Ñ−1q
∑

u∈Ũq π
(s+1)jk
uq for Ũr, Ũq ∈ Ũ and r 6= q.

Accordingly, the term corresponds to regional differences in the mean of probabilities for

a given state transition. Within this paper, we provide an overview of methods to obtain

transition probability estimates π̂
(s+1)jk
ur from the sample elements i ∈ D to obtain π

(s+1)
ur

for every u ∈ Ũ and s = 1, ..., S−1 under regional heterogeneity. It is argued that if D does

not allow for the empirical observation of local transition dynamics, the resulting estimates

π̂
(s+1)jk
ur are inaccurate with respect to transition dynamics in Ur.

2.2 Multinomial Logit

We use the well-established multinomial logit model (McCullagh and Nelder, 1989; Greene,

2002) as basic methodology for transition probability estimation. All descriptions are with

respect to the survey-based micro data obtained from D. Assume that the regional in-

dex r is not observed for the sample elements. Let the pair (Y,X) be observed for

the sampled individuals i ∈ D with time- and individual-specific values (y
(t)
i ,x

(t)
i ) in t.

Let π
(t)j
i = P (y

(t)
i = Yj) be the occurrence probability of Yj for individual i in t with∑J

j=1 π
(t)j
i = 1. Define Y

(t)j
i as a binary random variable that takes value 1, if y

(t)
i = Yj,

and 0 else. Its realization is denoted by y
(t)j
i , with

∑J
j=1 y

(t)j
ir = 1. The probability distri-

bution of y
(t)j
i is given by

P (Y
(t)1
i = y

(t)1
i , ..., Y

(t)J
i = y

(t)J
i ) =

(
1

y
(t)1
i , ..., y

(t)J
i

)
(π

(t)1
i )y

(t)1
i · ... · (π(t)J

i )y
(t)J
i . (4)

In order to model the probabilities π
(t)j
i dependent on the time- and individual-specific

covariate values x
(t)
i as well as the last state value y

(t−1)
i , it is common to determine one state

as reference outcome. Since our basic setting is to estimate the probability of a transition

from Yj to Yk, we use Yj as reference. Recall from Chapter 2.1 that the probability of

occurrence is equal to the transition probability when conditioned on the previous period.

The log-odds for all feasible states relative to this reference outcome are calculated as a
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linear function of the predictors:

η
(t)k
i = η

(t)k
i (αk,βk, γk) = log

(
π
(t)k
i

π
(t)j
i

)
= αk + (x

(t)
i )′βk + (y

(t−1)
i )′γk, (5)

for k 6= j, where αk ∈ R is a state-specific constant, βk ∈ Rp is the vector of regres-

sion coefficients associated with x
(t+1)
i and γk ∈ RJ is a coefficient vector quantifying the

influence of y
(t−1)
i = (y

(t−1)1
i , ..., y

(t−1)J
i ). Note that βk also varies across log-odds. One

obtains a set of J − 1 independent binary regression models, in which all other states are

separately regressed against the reference outcome. From (5), the individual probabilities

can be obtained from (Böhning, 1992)

π
(t)k
i =

exp
(
η
(t)k
i (αk,βk,γk)

)
1 +

∑J
l∈{1,...,J}\j exp

[
η
(t)l
i (αl,βl,γ l)

] (6)

for k 6= j, and for k = j

π
(t)k
i =

1

1 +
∑J

l∈{1,...,J}\j exp
[
η
(t)l
i (αl,βl,γ l]

) . (7)

The parameters of the multinomial logit model are then estimated via maximum likelihood.

Define θk := (αk,βk,γk). For notational convenience, we display the log-likelihood function

for a single individual i ∈ D, which is given by (Böhning, 1992)

l
(t)
i (θ1, ...,θJ) = log

(∏J
l=1(π

(t)l
i )y

(t)l
i

)
=
∑J

l∈{1,...,J}\j y
(t)l
i η

(t)l
i (θl)− log

(
1 +

∑J
l∈{1,...,J}\j exp

[
η
(t)l
i (θl)

])
.

(8)

Assuming the sample observations are independent, model parameter estimates are ob-

tained from minimizing the sum of negative individual log-likelihoods

(θ̂1, ..., θ̂J) = argmin
θ1,...,θJ

{
−

[
T∑
t=2

∑
i∈D

l
(t)
i (θ1, ...,θJ)

]}
. (9)

Maximization can be performed by various numerical procedures, such as generalized it-

erative scaling (Darroch and Ratcliff, 1972), iteratively reweighted least squares (Bishop,

2006), or the Newton-Raphson (Böhning, 1992). Theoretically, once the model parameter

estimates are obtained from D, they can be used to estimate π̂(s+1)
ur for all u ∈ Ũr. This is
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then achieved by combining them with the unit-specific values (y
(s)
ur ,x

(s+1)
ur ) according to

π̂(s+1)jk
ur = π̂(s+1)k

ur =
exp[α̂k + (x

(s+1)
ur )′β̂k + γ̂jk]

1 +
∑J

l∈{1,...,J}\j exp[α̂l + (x
(s+1)
ur )′β̂l + γ̂jl ]

∀ k = 1, ..., J, (10)

where γ̂jk ∈ γ̂k is the coefficient resulting from y
(s)
ur = Yj. However, we argue that if

the survey data D does not allow for the observation of regional heterogeneity according

to Definition 4, the resulting transition probability estimates π̂
(s+1)jk
ur for a given u ∈ Ũr

misrepresent the local transition dynamics in Ur.

3 Extensions for Regional Heterogeneity

We now show how to account for regional heterogeneity despite D lacking in regional detail.

For this, assume that benchmarks

τ (t)kr :=
∑
i∈Ur

J∑
k=1

y
(t)k
ir with y

(t)k
ir =

{
1 if y

(t)
ir = Yk

0 else
(11)

are known for all Yk ∈ Y as well as all r = 1, ..., R and some t corresponding to s + 1. At

this point, we postpone the discussion whether corresponding knowledge is realistic and

pick it up again in Section 5. Due to the lack in regional detail in D and the consequences

for the resulting transition probability estimates (10), it may be that

∆(s)k
r :=

∣∣∣∣∣∣
∑
u∈Ũr

J∑
j=1

π̂(s+1)jk
ur − τ (t)kr

∣∣∣∣∣∣ > εkr , (12)

for some Ũr ∈ Ũ and Yk ∈ Y . εkr ∈ R≥0 denotes a predefined critical deviation value for

category Yk resulting from box constraints with respect to Ur. To ensure consistency with

respect to the regional benchmarks, we would like to find new sets {π̂(s+1)∗
1r , ..., π̂

(s+1)∗
Nrr

} that

satisfy the system of inequality constraints

∆
(s)1
1 ≤ ε11, ∆

(s)2
1 ≤ ε21, . . . ∆

(s)J
1 ≤ εJ1 ,

∆
(s)1
2 ≤ ε12, ∆

(s)2
2 ≤ ε22, . . . ∆

(s)J
2 ≤ εJ2 ,

...
...

. . .

∆
(s)1
R ≤ ε1R, ∆

(s)2
R ≤ ε2R, . . . ∆

(s)J
R ≤ εJR.

(13)
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For this, the methodology for transition probability estimation must be extended. Here-

after, two corresponding extensions are described.

3.1 Logit Scaling

The first extension is logit scaling and has been proposed by Li and O’Donoghue (2014),

as well as Stephensen (2016). It is a simple multivariate ex-post alignment method that

manipulates the estimated probability distribution resulting from the multinomial logit

model. For some Ũr ∈ Ũ and Yj ∈ Y , this is achieved by sequentially adjusting the mean

q(s+1)j
ur :=

1

Ñr

∑
u∈Ũr

π̂(s+1)j
ur (14)

until the regional constraint is satisfied. Thereby, the adjustment is performed via iterative

proportional fitting Bishop et al. (1970). Hereafter, we sketch the methodology based on

Stephensen (2016). Let Qr = {q(s+1)j
ur |u = 1, ..., Ñr; j = 1, ..., J} be the joint discrete

probability distribution of states and units for Ũr. Denote Q[0]
r as the initial probability

distribution estimated from the multinomial logit model in Chapter 2.2. On that note,

let q
[0](s+1)j
ur and π̂

[0](s+1)j
ur be the initial versions of q

(s+1)j
ur and π̂

(s+1)j
ur after estimating the

multinomial logit model. The objective is to find a set of new probability distributions

{Q∗1, ....,Q∗R} that satisfy (13) while restricting the adjustment of the π̂
[0](s+1)j
ur for all Yj ∈

Y within Ũr ∈ Ũ to a minimum. This is achieved by minimizing the Kullback-Leibler

divergence between Q[0]
r and Qr

DKL
r

(
Qr || Q[0]

r

)
=
∑
u∈Ũr

J∑
j=1

q(s+1)j
ur log

(
q
(s+1)j
ur

q
[0](s+1)j
ur

)

=
1

Nr

∑
u∈Ũr

J∑
j=1

π̂(s+1)j
ur log

(
π̂
(s+1)j
ur

π̂
[0](s+1)j
ur

) (15)

subject to the system of inequality constraints. Hence, for some Ũr ∈ Ũ , we obtain the

minimization problem

min
π̂

(s+1)
1r ,...,π̂

(s+1)
Nrr

{
DKL
r

(
Qr || Q[0]

r

)}
s.t. ∆(s)1

r ≤ ε1r , . . . ,∆(s)J
r ≤ εJr . (16)

Solving it for r = 1, ..., R individually then obtains sets (π̂
(s+1)∗
1r , ..., π̂

(s+1)∗
Nrr

) with the

desired properties. Stephensen (2016) showed that the minimization problem can be solved

by a bi-proportionate scaling algorithm Define matrices Π̂
[0](s+1)

r := (π̂
[0](s+1)
1r , ..., π̂

[0](s+1)

Ñrr
)′
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for all Ũr ∈ Ũ . Let ` = 1, 2, ... be the index of iterations. The algorithm is performed on

Π̂
(s+1)

1 , ...., Π̂
(s+1)

R as described hereafter.

Algorithm 1 Bi-Proportionate Scaling

1: set π̂
[`](s+1)j
ur = π̂

[0](s+1)j
ur for j = 1, ..., J and r = 1, ..., R

2: for r = 1, ..., R do

3: while ∆
(s)j
r > εjr for any Yj ∈ Y do

4: scale columns with ω
[`]
k : set π̂

[`+1](s+1)j
ur = ω

[`]
k π̂

[`](s+1)j
ur such that∣∣∣∣∣∣

∑
u∈Ũr

π̂[`+1](s+1)j
ur − τ (t)jr

∣∣∣∣∣∣ < εkr

5: scale rows with ζ
[`]
ur: set π̂

[`+1](s+1)j
ur = ζ

[`]
urπ̂

[`](s+1)j
ur such that

J∑
j=1

π̂[`+1](s+1)j
ur = 1

6: end while

7: end

Note that logit scaling can also be seen as an ex-post adjustment of the intercept estimated

in the multinomial logit model. For further details, we refer to Stephensen (2016).

3.2 Constrained Maximum Likelihood

The second extension was developed in this study and can be viewed as a special case of

constrained maximum likelihood estimation (Dong and Wets, 2000; Chatterjee et al., 2016).

Unlike logit scaling, it is a direct alignment method where the consistency to the regional

benchmarks is achieved within model parameter estimation of the multinomial logit model.

This is achieved by solving the constrained minimization problem

min
θ1,...,θJ

{
−

[
T∑
t=2

∑
i∈D

l
(t)
i (θ1, ...,θJ)

]}
s.t. ∆(s)1

r ≤ ε1r , . . . ,∆(s)J
r ≤ εJr (17)

for all Ũr ∈ Ũ individually. The solutions are obtained from a sequential quadratic pro-

gramming approach (Kraft, 1994). At this point, providing a technical description of the

computational details is beyond the scope of this paper. Therefore, we only briefly sketch
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the method and refer to Kraft (1994) for deeper insights. Sequential quadratic programming

allows for the inclusion of nonlinear constraints within a given minimization problem. In the

process, each of the R original constraint minimization problems in (17) is substituted by

a series of constrained least squares problems. The algorithm optimizes successive second-

order approximations of the objective function with first-order affine approximations of the

constraints. Starting point of the method is the minimization of the negative log-likelihood

over the sample observations in D. Let ` = 1, 2, ... denote the index of iterations required

for model parameter estimation. Within every iteration and for a given Ũr ∈ Ũ , predic-

tions π̂
[`](s+1)jk
ur for all u ∈ Ũr are produced simultaneously to model parameter estimation.

Thereby, the predictions are based on the current model parameter estimates θ̂
[`]

1 , ..., θ̂
[`]

J .

For each region, the (potentially) resulting deviations ∆
[`](s)1
r , ...,∆

[`](s)J
r are penalized by

adding them from the regional Lagrangian. Define the negative log-likelihood

L(θ1, ...,θJ) := −

[
T∑
t=2

∑
i∈D

l
(t)
i (θ1, ...,θJ)

]
, (18)

regional constraint functions

Cr(θ1, ...,θJ) := −

√√√√√
∑
u∈Ũr

J∑
j=1

π̂
(s+1)jk
ur − τ (t)kr

2

∀ r = 1, ..., R, (19)

as well as the regional Lagrangians

Lr(θ1, ...,θJ ,λ) := L(θ1, ...,θJ)− λ′Cr(θ1, ...,θJ) ∀ r = 1, ..., R, (20)

where λ is the Lagrange multiplier. In a given iteration ` of the algorithm, a descent

direction d[`] is defined as a solution to the constrained least squares subproblem

d[`] = argmin
d

{
L(θ

[`]
1 , ...,θ

[`]
J ) +∇L(θ

[`]
1 , ...,θ

[`]
J )′d +

1

2
d′∇2Lr(θ[`]1 , ...,θ

[`]
J ,λ

[`])d

}
s.t. Cr(θ[`]1 , ...,θ

[`]
J ) +∇Cr(θ[`]1 , ...,θ

[`]
J )′d ≥ 0,

(21)

which can be solved efficiently according to Kraft (1988). Afterwards, an appropriate

step size is determined and a BFGS update is used to obtain new parameter estimates

θ̂
[`+1]

1 , ..., θ̂
[`+1]

J . The procedure is repeated until the constraints are satisfied. For more

details, see Kraft (1994).
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4 Simulation Study

4.1 Setup

The presented methods are tested within a Monte Carlo simulation study with S = 500

runs. Thereby, we focus on two particular questions that are relevant in the context of

transition probability estimation from survey data for dynamic microsimulations:

1. Can the methods obtain decent estimates when the survey sample is subject to cov-

erage problems (i.e. when specific population groups are underrepresented)?

2. Can the methods recover regional transition dynamics when there are no regional

identifiers for the survey observations?

Although both aspects can emerge from a lack in regional detail, we evaluate them indi-

vidually. This allows for a clear separation of the potential adjustment effects in different

scenarios. Further, we conduct two distinct simulations within the study: a model-based

and a design-based. They are briefly sketched hereafter.

Model-Based Setup

In the model-based simulation, the data used for estimation and evaluation is created

artificially. This includes all population representations U , Ũ ,D described in Section 2.1.

Note that for the study U = Ũ is defined. It would be redundant to create an artificial

population U first, and then generate a synthetic replica Ũ that is meant to be an artificial

representation of U . The advantage of the model-based approach is that the purely artificial

creation allows for a controlled environment with respect to modelling and estimation.

Therefore, it serves as a proof of concept in this study. The population U is created in each

simulation run individually with a size of N = 100 000. Transition probability estimates are

produced for the employment status (employed, unemployed) of any i ∈ U . Thus, we choose

Y as binary variable rather than a polytomous one. This is, on the one hand, for illustrative

purposes as adjustment effects are much easier to visualize in the binary case. On the other

hand, it is due to the heavy computational burden of the simulation study. However, note

that the simulation results are still meaningful with respect to the multinomial estimation

techniques. It is well-known that a multinomial logit for J categories can be restated as a

set of J − 1 binary logits.

Regarding X, every individual is associated with iid variables age (15-80), gender (male,

female) and ISCED level (1-5). The functional relation between Y and X on the micro

level is retrieved from a binary logit model on data from the German Microcensus 2013.

13



The values used for artificial employment probability definition can be found in Table

2 of the appendix. The employment status is added by drawing a state regarding the

calculated probabilities. Subsequently, samples of 1%, 0.05% and 0.025% are drawn from

U to calculate a logit model for the estimation of the employment status on the population

data. In the simulation, we assume that the set of auxiliary variables and the regional

population totals τr :=
∑

i∈Ur yir are known as external benchmarks.

Design-Based Setup

The design-based simulation is largely similar to the model-based setup. However, the

important difference is that it is conducted on real-world observations obtained from the

German Microcensus 2013. There is no synthetic data generation in the original sense.

The advantage of this approach is that the methods are tested on actual data structures

that occur in practice, where there are no ideal distribution characteristics. The sampled

individuals of the Microcensus are taken as fixed population U . In every simulation run,

random samples of 0.1%, 0.05% and 0.025% are drawn and subsequently used for transition

probability estimation. The inference is then analysed with respect to the fixed population

rather than the hyper parameters as in the model-based study. The number of employed

persons per region is again defined as a known benchmark. In order to examine the align-

ment to regional benchmarks, the sampling model is used to predict the employment status

in each German federal state. In this case, the true employment rate of each federal states

is assumed to be known.

Scenarios and Implementation

With respect to the first aspect of missing regional detail, different sampling scenarios

are implemented to mimic coverage problems in both simulation types. In practice, a

coverage problem occurs when the sample proportions of essential characteristics don’t

fit the corresponding proportions in the regional population. Table 1 shows the different

scenarios where disproportional sampling probabilities are used to differ in the observation

proportions of Y and X. The scenarios are repeated for all three sample sizes.
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Scen. 1 Simple Random Sampling

Scen. 2 Reduction of the drawing probability of employed persons by 10%

Scen. 3 Reduction of the drawing probability of employed persons by 20%

Scen. 4 Reduction of the drawing probability of employed persons by 30%

Scen. 5 Reduction of the drawing probability of unemployed persons by 10%

Scen. 6 Reduction of the drawing probability of unemployed persons by 20%

Scen. 7 Reduction of the drawing probability of unemployed persons by 30%

Scen. 8 Reduction of the drawing probability of males by 40%

Scen. 9 Reduction of the drawing probability of males by 60%

Scen. 10 Reduction of the drawing probability of males by 80%

Scen. 11 Reduction of the drawing probability education level 1 by 40%

Scen. 12 Reduction of the drawing probability education level 1 by 60%

Scen. 13 Reduction of the drawing probability education level 1 by 80%

Scen. 14 Reduction of the drawing probability education level 2 by 40%

Scen. 15 Reduction of the drawing probability education level 2 by 60%

Scen. 16 Reduction of the drawing probability education level 2 by 80%

Scen. 17 Reduction of the drawing probability age ≥50 by 80%

Scen. 18 Reduction of the drawing probability age <50 by 80%

Table 1: Sampling scenarios

Regarding the second aspect of missing regional details, in every simulation run, a random

sample is drawn from U via simple random sampling. The sample observations are drawn

from all regions of the population with equal sampling probability (SRS). Thereby, all

regional identifiers of the sample observations are deleted. Transition probability estimation

is then conducted for one specific region at a time.

Performance Measures

To evaluate the discussed methods with respect to transition probability estimation and

predictive inference, we look at several performance measures. The first is the mean squared
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deviation of the predicted state occurrence probabilities and the actual state occurrences,

1

S ·N

S∑
s=1

∑
i∈U

(
π̂
(s)
i − y

(s)
i

)2
, (22)

where y
(s)
i = 1 if the state has occurred in simulation run s, and 0 else. Since transition

probability estimation is performed by minimizing the negative log-likelihood of the logit

model, this measure is suitable for assessing goodness of fit with respect to the estimated

parameters θ̂
(s)

on the population data. It is given by

−
∑
i∈U

y(s)i log

 exp
(

(x
(s)
i )′β̂

(s)
)

1 + exp
(

(x
(s)
i )′β̂

(s)
)
+ (1− y(s)i ) log

 1

1 + exp
(

(x
(s)
i )′β̂

(s)
)

 , (23)

where β̂
(s)

are obtained from the sample data in the s-th run of the simulation. The smaller

the negative log-likelihood value, the better the estimated parameters fit the population.

To further evaluate the model parameter estimates, we look at the (squared) differences

β(s) − β̂
(s)

and
(
β(s) − β̂

(s)
)2

(24)

of the parameters estimated on the sampling data in simulation run s to the parameters of

the population model. In the design-based framework, the population remains coefficients

βs remain constant. Note that in the design-based setup, the population remains constant.

Hence, y
(s)
i = yi and x

(s)
i = xi for all i ∈ U , as well as β(s) = β.

4.2 Model-Based Results

Although both aspects of missing regional detail have been studied in both simulation types,

we focus hereafter on coverage problems to avoid repetitions. The recovery of regional

transition dynamics is then discussed in the design-based setup. All additional results are

included in the appendix. Logit scaling is referred to as LS while constrained maximum

likelihood is called Opt. The standard logit model without adjustments is denoted as Mod.

To evaluate the goodness of fit with respect to the parameters on the population data,

we compare the negative log-likelihood values (21) in Figure 1. It can be seen that both

Opt and LS are capable of improving the likelihood relative to Mod. Especially in case

of smaller sample sizes, Opt consistently leads to better likelihood values. Accordingly,

despite the absence of coverage problems in Scenario 1, the additional information on the
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Figure 1: Scenario 1: negative log-likelihood values

benchmarks slightly improves the probability estimates. The mean value over 500 sampling

runs is for n = 500 (n = 1000, n = 250) 45.643 (45.090, 46.888), for Mod, 45.412 (45.039,

45.611) for LS and 45.492 (45.039, 45.606) for Opt.
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Figure 2: Scenario 10, 16, 18: negative log-likelihood values, n=500

Now, coverage problems with respect to the auxiliary variables are introduced via dis-

proportional sampling. Here, the performance differences are more evident. We look at

Scenario 10, 16, and 18. Figure 2 shows the strongest disproportionality scenarios for the

variables sex, ISCED level and age. In all three scenarios, Opt leads to the smallest nega-

tive log-likelihood values on average. With less disproportional sampling, the results show
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the same tendencies, although less pronounced. Further details can be found in Tables 4, 5

and 16 in the appendix. There is no systematic bias detectable for the estimates under Opt

and LS, and they improve the probability estimates relative to Mod. The consideration

of the standard error and impact of all parameters in Opt provides a more efficient and

targeted adjustment relative to LS. The increasing standard deviation of the coefficients of

the undercovered variable leads to the adjustment of this parameter having less impact on

the overall log-likelihood of the model estimated on the sample. Additionally, the dispro-

portionality causes a primarily small adjustment of a parameter to have much influence on

the constraint of the population data.
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Figure 3: Scenario 2 - 4: negative log-likelihood values, n=500

When coverage problems are with respect to the target variable, the efficiency discrepancies

between adjusted and unadjusted estimates become very evident. Unlike the previously

discussed disproportional sampling regarding to auxiliary variables, the underlying missing

data mechanism now directly depends on the dependent variable Y . Without adjustment,

this introduces a considerable bias to transition probability estimation. Figure 3 shows

boxplots of the likelihood values based on samples with approx. 10%, 20% and 30% less

employed persons (Scenario 2 - 4). These scenarios directly affect the intercept of the logit

model, allowing LS to counteract the distortion quite well. Nevertheless, Opt (10%: 45,513,

20%: 45,530, 30% 45,479) displays slightly lower mean values than LS (10%: 45,521, 20%:

45,569, 30% 45,564). The analysis of the squared deviations of the predicted from the

actual value is very similar. It can also be shown that the sum of squared errors can be

reduced after using Opt and LS. Detailed results can be found in the Tables 7, 8 and 9.
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Figure 4: Scenario 1 and 4: intercept estimation, n=500

To consider the distribution of the estimated parameters, the densities of deviations (22)

are superimposed for the intercept in Figure 4. On the left density plot, the sample was

drawn without restriction (Scenario 1), in the right side employed persons were underdrawn

by 30% (Scenario 4). While in the case of SRS no differences can be identified, Opt is able

to reliably counteract any distortion of a biased intercept in Scenario 4.
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Figure 5: Scenario 10: intercept estimation, n=500

A slightly different picture occurs when undercoverage is with respect to auxiliary variables,

as in Figure 5. On the left, we have the intercept estimation under Scenario 4, and on

the right, the regression coefficient for males is depicted. We see that both methods are
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unbiased in terms of intercept estimation. However, the estimation efficiency with respect

to the regression coefficient is considerably increased when accounting for the regional

benchmarks. The estimation density of Opt is much more concentrated around 0 compared

to Mod in that case.

4.3 Design-Based Results

We now focus on recovering regional transition dynamics from a sample lacking regional

identifiers. The probability estimates are produced for the German federal states. In

the following the results for Rhineland-Palatinate, Baden-Wuerttemberg, and Bavaria are

presented. The results of the remaining federal states for different sample sizes can be

found in the Tables 18, 19 and 20 of the appendix. Note that unlike the previous results,

no disproportional sampling is conducted. Evaluation of results is again with respect to

the log-likelihood values (21).
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Figure 6: -Log-likelihood Model based simulation, n=2000

In Figure 6, we again see the improvements of LS and Opt relative to Mod. Both meth-

ods allow for considerably better goodness of fit with respect to model parameters on the

regional population - despite the fact that model parameter estimation was performed on

observations from all federal states. Thereby, it is not clear whether LS or Opt obtain the

best results. In the model-based setup, Opt was slightly more efficient and generally had a

smaller probability of producing estimation outliers (Figure 2). However, in practice, this

tendency is not observable anymore. Regarding the design-based results of the undercov-

erage scenarios of Table 1, see the appendix. The results are essentially identical to the
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model-based setup. Therefore, we omitted a dedicated interpretation at this point.

5 Discussion

The estimation of regional transition probabilities from survey data lacking in regional detail

has been investigated. Missing regional observations can either lead to coverage problems

in local samples or prevent a spatial localization of the sample observations. It could be

shown that common estimation methods obtain inefficient or even biased results in these

cases. We discussed two methods that are able to account for regional heterogeneity by

aligning micro level transition probability estimates to regional benchmarks. Both methods

allowed for considerably more efficient estimates in all scenarios. In the light of the coverage

problems, the most significant efficiency gains were realized when undercoverage was with

respect to the variable transition probability estimates were required for. Regarding the

missing regional identifiers, both adjustments were able to recover the transition dynamics

more efficiently relative to standard methods.

The findings of this study have major implications for future research conducted by means

of dynamic microsimulations. The basic principle of this simulation type is the projection of

system units into future periods with micro-level transition probabilities. If these probabil-

ities don’t accurately represent regional transition dynamics of the real world, the obtained

simulation results are not reliable. In general, both logit scaling and constrained maximum

likelihood are suitable to solve this problem. However, from a practical perspective, the

researcher may want to choose one of them. One that note, Stephensen (2016) pointed

out several criteria that determine a good alignment method in the context of dynamic

microsimulations. The subsequent discussion is partially guided by these aspects.

Both techniques adjust the probability estimates such that they are consistent with the

regional benchmarks. Thereby, both allow for multinomial alignment in a logit environment,

are formulated symmetrically, and retain zero probabilities in the process. A difference is

that logit scaling retains the original shape of the probability distribution. In constrained

maximum likelihood, this is not the case due to the adjustment of multiple parameters

simultaneously. However, our point of view is that depending on the context, it may not

be desirable to retain the original shape of the distribution. The simulation study showed

that in the case of an undercoverage regarding the target variable, the model parameter

estimates are considerably biased. Subsequently, the resulting probability distribution gets

distorted and may misrepresent real-world transition dynamics. Another point is the easy

and efficient implementation of the methods in the simulation process. In general, the

21



algorithm used for logit scaling is certainly easier and faster to apply than the sequential

quadratic programming approach we propose. But it should be recalled that logit scaling

is an ex-post alignment method. Thus, it has to be performed for each period of the

simulation horizon individually. The constrained maximum likelihood approach allows for

direct alignment in the process of model parameter estimation. Accordingly, it has to

be performed only once in the initial phase of the simulation. Further, there are many

software packages in which sequential quadratic programming is implemented such that

they can be easily applied. Further research should be conducted on the behaviour of

adjustment methods when regional benchmarks are not known, but also estimated from

survey data. This setting is more likely in the light of public reporting and data sources of

official statistics. In principal, the box constraints discussed for the regional benchmarks

can be constructed to account for estimation errors, for example in terms of confidence

intervals. However, this might not be the optimal choice since the optimization algorithms

for alignment will stop when the estimates are consistent with the interval boundaries.

Since regional estimates of population characteristics are often subject to high uncertainty

due to a lack in regional detail as well, boxes may be very large and the efficiency gains

from adjustment decrease.
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A Appendix

Table 2: Logit Regression for employment status

Emplyment status: employed

Age 0.386 (0.002)∗∗∗

Agê −0.005 (0.00002)∗∗∗

Male −0.546 (0.011)∗∗∗

ISCED 2 1.017 (0.032)∗∗∗

ISCED 3 1.489 (0.029)∗∗∗

ISCED 4 1.759 (0.036)∗∗∗

ISCED 5 2.151 (0.031) ∗∗∗

Intercept −6.811 (0.053)∗∗∗

Observations 271,288
Log Likelihood −107,899.400
Akaike Inf. Crit. 215,814.900

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.1 Model based simulation results

Table 3: -Log-likelihood by scenarios for n = 1000, model based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Szen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 44, 773 44, 729 44, 726 44, 917 44, 871 44, 871 44, 941 44, 887 44, 885 45, 090 45, 039 45, 039
2 45, 018 44, 713 44, 711 45, 250 44, 874 44, 875 45, 270 44, 888 44, 884 45, 511 45, 040 45, 037
3 45, 819 44, 709 44, 689 46, 235 44, 881 44, 866 46, 271 44, 889 44, 873 46, 606 45, 043 45, 032
4 47, 435 44, 707 44, 698 47, 972 44, 886 44, 847 48, 011 44, 902 44, 869 48, 615 45, 059 45, 021
5 44, 941 44, 705 44, 710 45, 131 44, 849 44, 848 45, 185 44, 875 44, 873 45, 391 45, 040 45, 039
6 45, 673 44, 734 44, 721 46, 005 44, 909 44, 885 46, 037 44, 903 44, 887 46, 355 45, 056 45, 031
7 46, 920 44, 746 44, 731 47, 478 44, 932 44, 899 47, 525 44, 943 44, 913 48, 065 45, 095 45, 057
8 44, 755 44, 713 44, 702 44, 917 44, 855 44, 845 44, 952 44, 894 44, 881 45, 115 45, 045 45, 037
9 44, 780 44, 714 44, 707 44, 961 44, 904 44, 887 45, 001 44, 924 44, 893 45, 185 45, 096 45, 050
10 44, 824 44, 753 44, 709 45, 029 44, 931 44, 863 45, 125 44, 978 44, 887 45, 323 45, 151 45, 031
11 44, 744 44, 711 44, 710 44, 913 44, 864 44, 864 44, 948 44, 894 44, 890 45, 118 45, 045 45, 036
12 44, 788 44, 732 44, 720 44, 962 44, 909 44, 887 44, 987 44, 923 44, 906 45, 159 45, 091 45, 078
13 44, 800 44, 748 44, 713 45, 024 44, 964 44, 904 45, 134 45, 043 44, 925 45, 324 45, 220 45, 105
14 44, 781 44, 731 44, 735 44, 939 44, 891 44, 875 44, 968 44, 910 44, 902 45, 126 45, 070 45, 055
15 44, 773 44, 729 44, 734 44, 956 44, 909 44, 891 44, 982 44, 925 44, 907 45, 152 45, 079 45, 056
16 44, 844 44, 787 44, 748 45, 048 44, 986 44, 903 45, 140 45, 051 44, 942 45, 320 45, 207 45, 100
17 44, 796 44, 752 44, 727 44, 980 44, 897 44, 853 45, 063 44, 963 44, 884 45, 245 45, 119 45, 018
18 44, 876 44, 798 44, 757 45, 073 44, 985 44, 921 45, 142 45, 025 44, 954 45, 337 45, 199 45, 119

Table 4: -Log-likelihood by scenarios for n = 500, model based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Szen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 45, 031 44, 955 44, 957 45, 301 45, 194 45, 183 45, 385 45, 272 45, 266 45, 643 45, 512 45, 492
2 45, 278 44, 980 44, 975 45, 596 45, 249 45, 237 45, 709 45, 294 45, 283 46, 053 45, 521 45, 513
3 46, 053 44, 941 44, 940 46, 638 45, 208 45, 164 46, 730 45, 287 45, 254 47, 312 45, 569 45, 530
4 47, 450 44, 972 44, 937 48, 216 45, 228 45, 181 48, 433 45, 299 45, 236 49, 319 45, 564 45, 479
5 45, 246 44, 989 44, 977 45, 607 45, 246 45, 231 45, 668 45, 316 45, 305 46, 063 45, 586 45, 580
6 45, 888 44, 955 44, 942 46, 457 45, 201 45, 201 46, 561 45, 289 45, 258 47, 006 45, 550 45, 500
7 47, 144 44, 997 44, 975 47, 986 45, 282 45, 203 48, 109 45, 345 45, 284 48, 809 45, 624 45, 543
8 45, 070 44, 953 44, 936 45, 368 45, 235 45, 231 45, 424 45, 309 45, 290 45, 713 45, 588 45, 577
9 45, 107 45, 007 44, 962 45, 407 45, 269 45, 204 45, 515 45, 343 45, 270 45, 794 45, 596 45, 504
10 45, 192 45, 075 44, 993 45, 602 45, 378 45, 214 45, 711 45, 447 45, 260 46, 026 45, 701 45, 506
11 45, 080 44, 995 44, 988 45, 344 45, 248 45, 230 45, 409 45, 301 45, 285 45, 675 45, 550 45, 537
12 45, 080 44, 986 44, 959 45, 386 45, 250 45, 198 45, 482 45, 345 45, 283 45, 754 45, 593 45, 513
13 45, 148 45, 071 44, 973 45, 590 45, 431 45, 258 46, 121 45, 918 45, 352 46, 166 45, 943 45, 613
14 45, 053 44, 958 44, 960 45, 353 45, 239 45, 222 45, 429 45, 307 45, 286 45, 724 45, 581 45, 537
15 45, 097 45, 007 44, 977 45, 369 45, 259 45, 208 45, 495 45, 364 45, 318 45, 770 45, 618 45, 603
16 45, 171 45, 074 45, 016 45, 536 45, 408 45, 291 45, 831 45, 635 45, 371 46, 191 45, 934 45, 604
17 45, 134 45, 037 44, 931 45, 477 45, 326 45, 213 45, 684 45, 486 45, 272 45, 902 45, 720 45, 529
18 45, 191 45, 060 44, 972 45, 606 45, 396 45, 243 45, 831 45, 541 45, 345 46, 190 45, 833 45, 597

27



Table 5: -Log-likelihood by scenarios for n = 250, model based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 45, 673 45, 515 45, 474 46, 189 45, 961 45, 946 46, 379 46, 132 46, 106 46, 888 46, 611 46, 606
2 45, 845 45, 444 45, 416 46, 475 45, 920 45, 898 46, 676 46, 124 46, 075 47, 282 46, 651 46, 549
3 46, 599 45, 483 45, 425 47, 516 45, 981 45, 922 47, 688 46, 133 46, 040 48, 470 46, 531 46, 484
4 48, 058 45, 472 45, 357 49, 372 45, 973 45, 875 49, 627 46, 173 45, 994 50, 687 46, 640 46, 410
5 45, 806 45, 426 45, 427 46, 365 45, 889 45, 861 46, 584 46, 089 46, 041 47, 104 46, 525 46, 468
6 46, 427 45, 480 45, 449 47, 206 45, 972 45, 882 47, 494 46, 163 46, 064 48, 322 46, 677 46, 538
7 47, 710 45, 561 45, 464 48, 865 46, 056 45, 940 49, 156 46, 341 46, 164 50, 171 46, 877 46, 664
8 45, 689 45, 468 45, 419 46, 212 46, 033 45, 961 46, 435 46, 192 46, 174 46, 992 46, 665 46, 578
9 45, 727 45, 559 45, 499 46, 329 46, 099 45, 973 46, 664 46, 336 46, 160 47, 311 46, 929 46, 625
10 45, 879 45, 611 45, 399 46, 594 46, 203 45, 876 47, 164 46, 542 46, 028 47, 774 47, 040 46, 495
11 45, 662 45, 454 45, 415 46, 210 45, 978 45, 928 46, 437 46, 188 46, 109 47, 030 46, 707 46, 611
12 45, 712 45, 535 45, 474 46, 356 46, 124 46, 043 46, 717 46, 447 46, 183 47, 136 46, 793 46, 694
13 45, 902 45, 663 45, 483 46, 700 46, 354 46, 009 51, 970 51, 498 46, 431 47, 947 47, 581 46, 783
14 45, 666 45, 482 45, 459 46, 229 45, 971 45, 926 46, 460 46, 221 46, 153 46, 891 46, 616 46, 530
15 45, 648 45, 499 45, 428 46, 265 45, 997 45, 979 46, 642 46, 360 46, 207 47, 113 46, 790 46, 685
16 45, 829 45, 691 45, 504 46, 717 46, 392 46, 109 49, 766 49, 346 46, 404 47, 929 47, 545 46, 984
17 45, 908 45, 626 45, 443 46, 598 46, 280 45, 879 47, 104 46, 589 46, 078 47, 639 47, 114 46, 563
18 45, 992 45, 704 45, 486 46, 918 46, 522 46, 069 47, 632 46, 919 46, 282 48, 389 47, 429 46, 862

Table 6: Squared prediction error for n = 1000, model based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 14, 590 14, 574 14, 572 14, 647 14, 627 14, 625 14, 653 14, 633 14, 632 14, 711 14, 689 14, 689
2 14, 684 14, 571 14, 570 14, 770 14, 626 14, 626 14, 781 14, 633 14, 632 14, 873 14, 692 14, 691
3 14, 991 14, 569 14, 562 15, 151 14, 631 14, 625 15, 166 14, 634 14, 629 15, 302 14, 690 14, 686
4 15, 605 14, 569 14, 562 15, 813 14, 631 14, 624 15, 835 14, 638 14, 627 16, 069 14, 698 14, 684
5 14, 656 14, 568 14, 570 14, 718 14, 620 14, 620 14, 736 14, 628 14, 627 14, 811 14, 691 14, 690
6 14, 911 14, 579 14, 574 15, 008 14, 637 14, 629 15, 037 14, 639 14, 634 15, 162 14, 695 14, 689
7 15, 335 14, 586 14, 578 15, 528 14, 648 14, 637 15, 546 14, 652 14, 642 15, 748 14, 708 14, 698
8 14, 584 14, 572 14, 569 14, 647 14, 624 14, 621 14, 657 14, 636 14, 632 14, 713 14, 691 14, 688
9 14, 594 14, 570 14, 567 14, 661 14, 637 14, 632 14, 673 14, 645 14, 634 14, 742 14, 709 14, 687
10 14, 608 14, 582 14, 567 14, 685 14, 648 14, 625 14, 717 14, 666 14, 632 14, 789 14, 733 14, 684
11 14, 584 14, 564 14, 565 14, 642 14, 625 14, 627 14, 658 14, 638 14, 636 14, 714 14, 691 14, 685
12 14, 593 14, 575 14, 574 14, 664 14, 641 14, 633 14, 675 14, 650 14, 643 14, 734 14, 711 14, 705
13 14, 606 14, 585 14, 567 14, 690 14, 667 14, 640 14, 732 14, 696 14, 650 14, 802 14, 758 14, 716
14 14, 596 14, 577 14, 575 14, 648 14, 635 14, 630 14, 663 14, 641 14, 639 14, 722 14, 700 14, 697
15 14, 588 14, 574 14, 579 14, 662 14, 644 14, 637 14, 669 14, 647 14, 641 14, 730 14, 701 14, 696
16 14, 618 14, 597 14, 585 14, 692 14, 668 14, 641 14, 727 14, 694 14, 654 14, 792 14, 748 14, 712
17 14, 597 14, 581 14, 573 14, 665 14, 638 14, 620 14, 687 14, 653 14, 628 14, 747 14, 714 14, 680
18 14, 633 14, 605 14, 585 14, 711 14, 675 14, 649 14, 735 14, 689 14, 662 14, 815 14, 755 14, 720
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Table 7: Squared prediction error for n = 500, model based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 14, 682 14, 656 14, 657 14, 781 14, 743 14, 742 14, 805 14, 764 14, 763 14, 904 14, 854 14, 849
2 14, 775 14, 660 14, 662 14, 896 14, 752 14, 753 14, 934 14, 771 14, 768 15, 069 14, 858 14, 851
3 15, 072 14, 654 14, 646 15, 291 14, 744 14, 728 15, 325 14, 769 14, 758 15, 524 14, 863 14, 846
4 15, 611 14, 662 14, 643 15, 903 14, 754 14, 733 15, 973 14, 774 14, 753 16, 302 14, 872 14, 842
5 14, 750 14, 665 14, 665 14, 875 14, 756 14, 753 14, 897 14, 781 14, 778 15, 017 14, 878 14, 876
6 14, 979 14, 653 14, 652 15, 160 14, 744 14, 741 15, 193 14, 768 14, 758 15, 350 14, 866 14, 840
7 15, 399 14, 672 14, 657 15, 675 14, 764 14, 743 15, 712 14, 789 14, 769 15, 940 14, 885 14, 855
8 14, 697 14, 653 14, 649 14, 801 14, 759 14, 754 14, 820 14, 778 14, 772 14, 923 14, 876 14, 876
9 14, 716 14, 678 14, 659 14, 822 14, 776 14, 747 14, 851 14, 791 14, 765 14, 953 14, 876 14, 849
10 14, 737 14, 696 14, 660 14, 883 14, 797 14, 744 14, 920 14, 828 14, 761 15, 028 14, 930 14, 845
11 14, 706 14, 675 14, 672 14, 790 14, 763 14, 755 14, 818 14, 778 14, 772 14, 922 14, 863 14, 846
12 14, 703 14, 664 14, 662 14, 810 14, 757 14, 743 14, 847 14, 795 14, 773 14, 942 14, 875 14, 850
13 14, 737 14, 700 14, 665 14, 904 14, 832 14, 771 14, 975 14, 905 14, 801 15, 117 15, 009 14, 904
14 14, 692 14, 663 14, 654 14, 797 14, 752 14, 748 14, 820 14, 776 14, 769 14, 929 14, 872 14, 864
15 14, 709 14, 673 14, 661 14, 801 14, 765 14, 748 14, 844 14, 796 14, 780 14, 946 14, 886 14, 885
16 14, 731 14, 696 14, 677 14, 863 14, 816 14, 770 14, 965 14, 897 14, 803 15, 072 15, 002 14, 900
17 14, 714 14, 676 14, 649 14, 832 14, 778 14, 742 14, 883 14, 819 14, 758 14, 975 14, 907 14, 849
18 14, 741 14, 696 14, 660 14, 896 14, 810 14, 759 14, 975 14, 867 14, 794 15, 117 14, 989 14, 898

Table 8: Squared prediction error for n = 250, model based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 14, 895 14, 830 14, 827 15, 096 15, 006 14, 997 15, 129 15, 043 15, 037 15, 315 15, 221 15, 208
2 14, 960 14, 827 14, 810 15, 189 14, 987 14, 973 15, 254 15, 040 15, 027 15, 467 15, 207 15, 189
3 15, 260 14, 847 14, 816 15, 580 14, 991 14, 973 15, 643 15, 045 15, 018 15, 937 15, 190 15, 189
4 15, 795 14, 827 14, 805 16, 290 14, 997 14, 947 16, 354 15, 050 14, 997 16, 749 15, 207 15, 140
5 14, 924 14, 812 14, 809 15, 124 14, 974 14, 966 15, 182 15, 030 15, 016 15, 361 15, 161 15, 162
6 15, 133 14, 827 14, 806 15, 381 15, 005 14, 980 15, 452 15, 046 15, 018 15, 710 15, 214 15, 178
7 15, 559 14, 856 14, 834 15, 869 15, 032 14, 994 15, 963 15, 099 15, 046 16, 336 15, 300 15, 217
8 14, 890 14, 824 14, 812 15, 073 15, 013 14, 986 15, 145 15, 061 15, 062 15, 305 15, 241 15, 203
9 14, 914 14, 856 14, 831 15, 135 15, 043 15, 004 15, 228 15, 116 15, 057 15, 441 15, 329 15, 249
10 14, 979 14, 883 14, 806 15, 209 15, 086 14, 973 15, 375 15, 176 15, 009 15, 600 15, 368 15, 156
11 14, 903 14, 832 14, 819 15, 096 15, 006 14, 991 15, 159 15, 072 15, 046 15, 342 15, 249 15, 228
12 14, 922 14, 849 14, 838 15, 132 15, 037 15, 016 15, 205 15, 110 15, 072 15, 408 15, 299 15, 253
13 15, 006 14, 912 14, 850 15, 283 15, 169 15, 018 15, 531 15, 441 15, 130 15, 718 15, 589 15, 311
14 14, 909 14, 833 14, 832 15, 080 15, 008 14, 991 15, 155 15, 072 15, 052 15, 317 15, 209 15, 178
15 14, 897 14, 836 14, 825 15, 103 15, 020 14, 996 15, 208 15, 115 15, 067 15, 370 15, 260 15, 233
16 14, 960 14, 911 14, 850 15, 267 15, 146 15, 043 15, 501 15, 434 15, 143 15, 632 15, 506 15, 323
17 14, 974 14, 890 14, 812 15, 185 15, 077 14, 967 15, 313 15, 150 15, 019 15, 505 15, 314 15, 182
18 15, 009 14, 919 14, 849 15, 351 15, 198 15, 055 15, 547 15, 327 15, 110 15, 788 15, 522 15, 308
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Table 9: Squared differences to true parameter, n=1000

Intercept Age Age2 Sex
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 6.994 6.790 6.698 0.332 0.332 0.327 0.004 0.004 0.004 1.787 1.787 1.774
2 8.496 6.838 6.717 0.344 0.344 0.338 0.004 0.004 0.004 1.645 1.645 1.631
3 11.686 6.814 6.357 0.324 0.324 0.305 0.004 0.004 0.004 1.692 1.692 1.596
4 15.592 6.998 6.264 0.351 0.351 0.316 0.004 0.004 0.004 1.420 1.420 1.269
5 7.047 6.769 6.638 0.326 0.326 0.320 0.004 0.004 0.004 1.504 1.504 1.500
6 8.256 6.848 6.575 0.333 0.333 0.320 0.004 0.004 0.004 1.886 1.886 1.788
7 11.925 7.664 6.960 0.392 0.392 0.355 0.005 0.005 0.004 2.086 2.086 2.019
8 6.556 6.353 6.318 0.309 0.309 0.307 0.004 0.004 0.004 1.963 1.963 1.593
9 7.470 7.073 6.962 0.353 0.353 0.350 0.004 0.004 0.004 2.790 2.790 1.820
10 7.879 6.969 6.651 0.343 0.343 0.340 0.004 0.004 0.004 4.762 4.762 1.757
11 6.648 6.539 6.522 0.313 0.313 0.310 0.004 0.004 0.004 1.575 1.575 1.575
12 6.820 6.409 6.279 0.294 0.294 0.292 0.003 0.003 0.003 1.969 1.969 1.952
13 8.436 7.455 6.631 0.295 0.295 0.294 0.003 0.003 0.003 1.774 1.774 1.755
14 6.877 6.819 6.723 0.321 0.321 0.317 0.004 0.004 0.004 1.728 1.728 1.717
15 6.770 6.600 6.586 0.332 0.332 0.329 0.004 0.004 0.004 1.572 1.572 1.579
16 7.043 7.087 6.903 0.353 0.353 0.347 0.004 0.004 0.004 1.686 1.686 1.686
17 5.891 5.524 5.460 0.343 0.343 0.307 0.005 0.005 0.004 1.537 1.537 1.541
18 14.807 13.049 10.792 0.563 0.563 0.509 0.005 0.005 0.005 1.819 1.819 1.806

Educ2 Educ3 Educ4 Educ5
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 2.513 2.513 2.491 2.619 2.619 2.601 2.644 2.644 2.620 2.921 2.921 2.890
2 2.584 2.584 2.539 2.371 2.371 2.358 2.772 2.772 2.716 2.681 2.681 2.631
3 2.746 2.746 2.612 2.717 2.717 2.589 2.751 2.751 2.628 2.962 2.962 2.767
4 2.867 2.867 2.577 2.613 2.613 2.294 2.677 2.677 2.363 3.082 3.082 2.802
5 2.236 2.236 2.239 2.745 2.745 2.696 2.894 2.894 2.858 3.206 3.206 3.159
6 2.558 2.558 2.430 2.494 2.494 2.401 2.741 2.741 2.655 2.893 2.893 2.737
7 3.261 3.261 2.985 3.211 3.211 3.002 2.989 2.989 2.804 3.475 3.475 3.143
8 2.421 2.421 2.402 2.728 2.728 2.727 2.950 2.950 2.932 2.854 2.854 2.839
9 2.487 2.487 2.464 2.698 2.698 2.660 2.864 2.864 2.837 2.887 2.887 2.850
10 2.699 2.699 2.680 2.766 2.766 2.751 2.659 2.659 2.642 2.869 2.869 2.857
11 3.329 3.329 3.224 2.985 2.985 2.898 3.501 3.501 3.424 3.167 3.167 3.019
12 4.125 4.125 3.649 4.145 4.145 3.746 3.926 3.926 3.477 3.837 3.837 3.368
13 8.360 8.360 4.650 8.118 8.118 4.582 8.695 8.695 4.797 7.803 7.803 4.374
14 3.463 3.463 3.211 2.641 2.641 2.638 3.083 3.083 3.065 2.566 2.566 2.546
15 4.116 4.116 3.664 2.096 2.096 2.093 2.207 2.207 2.192 2.496 2.496 2.488
16 8.439 8.439 5.061 2.210 2.210 2.202 2.688 2.688 2.678 2.412 2.412 2.392
17 2.094 2.094 2.088 2.390 2.390 2.369 2.395 2.395 2.387 2.926 2.926 2.914
18 3.329 3.329 3.285 3.572 3.572 3.519 3.349 3.349 3.339 3.373 3.373 3.348
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Table 10: Squared differences to true parameter, n=500

Intercept Age Age2 Sex
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

19 13.963 13.529 13.232 0.667 0.667 0.650 0.008 0.008 0.008 3.598 3.598 3.573
20 16.888 14.114 13.467 0.728 0.728 0.702 0.009 0.009 0.008 3.683 3.683 3.640
21 20.006 13.084 12.365 0.683 0.683 0.644 0.008 0.008 0.008 3.365 3.365 3.265
22 27.461 16.089 14.663 0.801 0.801 0.721 0.009 0.009 0.008 3.613 3.613 3.299
23 13.601 14.566 14.249 0.741 0.741 0.724 0.008 0.008 0.008 3.809 3.809 3.784
24 13.166 13.723 12.977 0.677 0.677 0.649 0.008 0.008 0.008 3.865 3.865 3.761
25 16.947 14.323 13.798 0.712 0.712 0.673 0.008 0.008 0.008 4.461 4.461 4.056
26 14.308 13.645 13.316 0.681 0.681 0.672 0.008 0.008 0.008 4.310 4.310 3.822
27 14.721 13.767 13.239 0.668 0.668 0.650 0.008 0.008 0.008 5.823 5.823 3.569
28 14.771 13.319 12.759 0.669 0.669 0.651 0.008 0.008 0.008 9.629 9.629 3.366
29 14.706 14.244 13.934 0.682 0.682 0.669 0.008 0.008 0.008 3.875 3.875 3.848
30 16.794 15.409 14.206 0.651 0.651 0.636 0.008 0.008 0.007 3.569 3.569 3.531
31 34.312 30.979 14.351 0.623 0.623 0.613 0.007 0.007 0.007 3.778 3.778 3.721
32 14.582 14.598 14.355 0.763 0.763 0.751 0.009 0.009 0.009 3.761 3.761 3.690
33 14.454 14.164 13.820 0.768 0.768 0.746 0.009 0.009 0.009 3.442 3.442 3.393
34 14.135 14.093 13.664 0.720 0.720 0.701 0.008 0.008 0.008 3.657 3.657 3.650
35 13.625 12.045 11.176 0.804 0.804 0.612 0.012 0.012 0.008 3.142 3.142 3.139
36 30.716 26.108 19.661 1.122 1.122 0.951 0.011 0.011 0.010 3.945 3.945 3.873

Educ2 Educ3 Educ4 Educ5
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 5.142 5.142 5.100 5.840 5.840 5.811 5.702 5.702 5.610 6.516 6.516 6.400
2 5.509 5.509 5.476 6.054 6.054 5.952 6.005 6.005 5.915 6.522 6.522 6.385
3 5.588 5.588 5.142 6.527 6.527 6.168 6.256 6.256 5.987 6.260 6.260 5.947
4 5.576 5.576 5.251 5.238 5.238 4.857 5.787 5.787 5.351 5.769 5.769 5.267
5 6.211 6.211 6.187 5.838 5.838 5.670 5.671 5.671 5.528 6.746 6.746 6.608
6 5.201 5.201 4.859 6.311 6.311 6.013 6.613 6.613 5.951 6.467 6.467 6.159
7 6.325 6.325 5.989 5.426 5.426 5.107 6.225 6.225 5.893 6.440 6.440 6.149
8 5.601 5.601 5.595 6.233 6.233 6.139 6.257 6.257 6.215 6.205 6.205 6.192
9 5.918 5.918 5.876 5.714 5.714 5.682 5.585 5.585 5.501 5.095 5.095 5.055
10 5.836 5.836 5.777 6.050 6.050 6.055 4.965 4.965 4.927 5.871 5.871 5.879
11 7.444 7.444 7.046 7.565 7.565 7.107 7.443 7.443 7.113 7.760 7.760 7.413
12 10.023 10.023 7.743 9.841 9.841 7.873 10.195 10.195 8.232 10.733 10.733 8.627
13 53.902 53.902 9.967 52.460 52.460 9.302 52.960 52.960 10.560 50.946 50.946 10.068
14 6.995 6.995 6.396 4.662 4.662 4.618 4.927 4.927 4.864 6.040 6.040 5.903
15 9.555 9.555 8.192 4.812 4.812 4.767 5.035 5.035 4.985 5.481 5.481 5.428
16 18.707 18.707 9.705 5.074 5.074 5.041 5.253 5.253 5.196 5.290 5.290 5.223
17 4.665 4.665 4.681 4.696 4.696 4.649 5.909 5.909 5.889 5.372 5.372 5.322
18 6.596 6.596 6.521 6.781 6.781 6.758 6.166 6.166 6.116 6.697 6.697 6.658
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Table 11: Squared differences to true parameter, n=250

Intercept Age Age2 Sex
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

39 44.264 34.040 31.199 1.742 1.742 1.562 0.021 0.021 0.018 7.476 7.476 6.887
40 53.000 33.953 28.593 1.859 1.859 1.532 0.023 0.023 0.019 7.889 7.889 6.991
41 29.803 30.562 29.873 1.586 1.586 1.542 0.019 0.019 0.018 7.987 7.987 7.884
42 31.805 36.103 33.784 1.815 1.815 1.702 0.022 0.022 0.020 7.539 7.539 6.996
43 35.634 39.544 36.429 2.023 2.023 1.855 0.024 0.024 0.022 8.117 8.117 7.249
44 37.921 36.714 36.551 1.851 1.851 1.868 0.022 0.022 0.022 9.798 9.798 8.172
45 38.497 36.148 34.462 1.720 1.720 1.666 0.020 0.020 0.019 12.814 12.814 7.765
46 37.077 32.958 31.044 1.588 1.588 1.512 0.019 0.019 0.018 26.226 26.226 8.169
47 34.677 33.049 31.648 1.549 1.549 1.502 0.018 0.018 0.018 7.649 7.649 7.440
48 47.533 45.144 34.359 1.713 1.713 1.643 0.020 0.020 0.019 8.135 8.135 7.959
49 262.721 242.277 34.845 1.503 1.503 1.472 0.018 0.018 0.017 7.474 7.474 7.372
50 32.781 32.393 31.089 1.658 1.658 1.585 0.020 0.020 0.019 7.752 7.752 7.471
51 34.754 35.621 33.482 1.756 1.756 1.668 0.021 0.021 0.020 8.034 8.034 7.870
52 32.935 34.476 32.065 1.610 1.610 1.543 0.019 0.019 0.019 8.000 8.000 7.843
53 30.238 26.582 24.575 1.823 1.823 1.372 0.028 0.028 0.018 7.093 7.093 7.069
54 84.069 69.243 42.466 2.969 2.969 2.130 0.028 0.028 0.023 8.484 8.484 8.390

Educ2 Educ3 Educ4 Educ5
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

39 10.968 10.968 10.502 12.490 12.490 12.204 12.307 12.307 11.713 15.358 15.358 14.497
40 12.599 12.599 10.873 12.421 12.421 10.617 12.397 12.397 11.075 14.169 14.169 12.657
41 10.934 10.934 10.568 11.594 11.594 11.316 12.633 12.633 12.047 12.401 12.401 11.930
42 12.135 12.135 11.260 13.013 13.013 12.084 11.929 11.929 11.059 13.832 13.832 12.526
43 12.589 12.589 11.755 16.426 16.426 14.016 15.422 15.422 13.992 16.932 16.932 15.301
44 11.245 11.245 10.976 11.928 11.928 11.701 13.479 13.479 13.503 15.235 15.235 15.177
45 11.895 11.895 11.522 11.674 11.674 11.462 12.748 12.748 12.462 13.885 13.885 13.459
46 11.283 11.283 10.882 11.741 11.741 11.428 12.618 12.618 12.262 13.667 13.667 13.042
47 16.279 16.279 14.318 17.216 17.216 15.116 18.145 18.145 16.284 17.658 17.658 15.598
48 41.024 41.024 17.007 42.612 42.612 17.650 39.018 39.018 16.390 37.072 37.072 17.532
49 590.656 590.656 34.446 564.785 564.785 33.270 554.181 554.181 34.586 541.848 541.848 33.366
50 16.269 16.269 14.963 11.139 11.139 10.739 12.453 12.453 12.119 13.000 13.000 12.743
51 23.342 23.342 18.013 11.144 11.144 10.881 10.977 10.977 10.739 13.314 13.314 12.948
52 231.263 231.263 24.985 10.282 10.282 10.182 11.802 11.802 11.598 11.547 11.547 11.367
53 9.607 9.607 9.389 10.314 10.314 10.225 11.180 11.180 10.957 13.206 13.206 13.029
54 15.082 15.082 14.577 15.968 15.968 15.337 16.107 16.107 15.467 15.231 15.231 14.628
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A.2 Design based simulation results

Table 12: -Log-likelihood by scenarios for n = 4000, design based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 169, 268 169, 233 169, 234 169, 399 169, 354 169, 354 169, 423 169, 377 169, 378 169, 542 169, 496 169, 497
2 170, 390 169, 228 169, 227 170, 725 169, 324 169, 317 170, 756 169, 369 169, 367 171, 094 169, 468 169, 469
3 174, 227 169, 232 169, 221 174, 897 169, 339 169, 327 174, 987 169, 375 169, 357 175, 716 169, 475 169, 457
4 180, 999 169, 246 169, 230 182, 101 169, 373 169, 350 182, 237 169, 416 169, 376 183, 446 169, 539 169, 483
5 169, 957 169, 236 169, 233 170, 242 169, 352 169, 352 170, 294 169, 381 169, 380 170, 604 169, 486 169, 488
6 172, 389 169, 249 169, 249 173, 025 169, 366 169, 361 173, 078 169, 407 169, 400 173, 688 169, 511 169, 503
7 176, 743 169, 249 169, 241 177, 752 169, 382 169, 381 177, 782 169, 439 169, 420 178, 788 169, 579 169, 543
8 169, 291 169, 236 169, 230 169, 427 169, 372 169, 361 169, 467 169, 409 169, 405 169, 604 169, 530 169, 530
9 169, 331 169, 282 169, 273 169, 472 169, 390 169, 375 169, 518 169, 445 169, 427 169, 655 169, 558 169, 541
10 169, 419 169, 363 169, 332 169, 630 169, 538 169, 456 169, 719 169, 587 169, 502 169, 891 169, 779 169, 650
11 169, 277 169, 234 169, 239 169, 413 169, 362 169, 355 169, 456 169, 403 169, 401 169, 576 169, 515 169, 517
12 169, 311 169, 263 169, 260 169, 454 169, 400 169, 391 169, 505 169, 449 169, 447 169, 631 169, 553 169, 565
13 169, 362 169, 321 169, 300 169, 517 169, 470 169, 436 169, 645 169, 584 169, 543 169, 815 169, 739 169, 684
14 169, 304 169, 263 169, 259 169, 447 169, 402 169, 381 169, 496 169, 445 169, 438 169, 648 169, 582 169, 572
15 169, 363 169, 308 169, 296 169, 525 169, 466 169, 460 169, 588 169, 524 169, 493 169, 761 169, 683 169, 625
16 169, 459 169, 414 169, 365 169, 693 169, 638 169, 542 169, 837 169, 750 169, 621 170, 051 169, 941 169, 782
17 169, 698 169, 578 169, 650 169, 990 169, 870 169, 924 170, 059 169, 943 169, 983 170, 340 170, 209 170, 258
18 170, 171 169, 871 170, 021 170, 619 170, 243 170, 384 170, 702 170, 358 170, 518 171, 130 170, 694 170, 906

Table 13: -Log-likelihood by scenarios for n = 2000, design based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

19 169, 538 169, 451 169, 454 169, 779 169, 682 169, 682 169, 851 169, 752 169, 751 170, 095 169, 968 169, 981
20 170, 613 169, 474 169, 466 171, 098 169, 694 169, 674 171, 200 169, 763 169, 754 171, 703 169, 959 169, 961
21 174, 313 169, 504 169, 468 175, 248 169, 698 169, 673 175, 444 169, 804 169, 777 176, 525 170, 050 170, 016
22 181, 112 169, 472 169, 432 182, 814 169, 723 169, 681 182, 902 169, 780 169, 720 184, 592 170, 013 169, 927
23 170, 207 169, 451 169, 446 170, 624 169, 678 169, 682 170, 739 169, 740 169, 736 171, 184 169, 968 169, 955
24 172, 528 169, 526 169, 530 173, 329 169, 761 169, 732 173, 487 169, 825 169, 799 174, 286 170, 038 169, 988
25 176, 998 169, 545 169, 507 178, 161 169, 826 169, 770 178, 298 169, 891 169, 849 179, 437 170, 119 170, 105
26 169, 597 169, 526 169, 510 169, 876 169, 757 169, 737 169, 932 169, 819 169, 799 170, 169 170, 017 169, 981
27 169, 640 169, 544 169, 495 169, 936 169, 794 169, 725 170, 013 169, 870 169, 811 170, 247 170, 100 170, 044
28 169, 769 169, 648 169, 567 170, 181 169, 995 169, 835 170, 349 170, 084 169, 908 170, 655 170, 386 170, 156
29 169, 592 169, 481 169, 485 169, 871 169, 773 169, 765 169, 925 169, 816 169, 818 170, 167 170, 040 170, 043
30 169, 614 169, 544 169, 522 169, 948 169, 823 169, 815 170, 048 169, 937 169, 923 170, 301 170, 172 170, 153
31 169, 715 169, 602 169, 595 170, 075 169, 904 169, 848 170, 643 170, 508 170, 189 170, 665 170, 492 170, 391
32 169, 621 169, 523 169, 502 169, 885 169, 767 169, 745 169, 998 169, 873 169, 856 170, 271 170, 119 170, 082
33 169, 700 169, 587 169, 544 169, 973 169, 831 169, 817 170, 152 170, 008 169, 949 170, 438 170, 269 170, 228
34 169, 822 169, 694 169, 607 170, 243 170, 119 169, 988 170, 581 170, 384 170, 096 171, 053 170, 713 170, 429
35 170, 007 169, 815 169, 841 170, 448 170, 178 170, 261 170, 629 170, 397 170, 379 170, 963 170, 745 170, 744
36 170, 471 170, 134 170, 175 171, 102 170, 756 170, 783 171, 391 170, 945 170, 975 172, 048 171, 551 171, 455
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Table 14: Log-likelihood by scenarios for n = 1000, design based simulation

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

37 170, 179 169, 978 169, 976 170, 683 170, 420 170, 413 170, 813 170, 579 170, 569 171, 318 171, 028 171, 053
38 171, 127 169, 986 169, 962 171, 928 170, 404 170, 413 172, 145 170, 568 170, 551 172, 884 171, 001 170, 980
39 174, 772 169, 924 169, 875 176, 369 170, 333 170, 313 176, 507 170, 609 170, 530 177, 908 171, 120 171, 001
40 181, 433 170, 042 169, 966 183, 687 170, 471 170, 332 183, 974 170, 671 170, 503 186, 434 171, 127 170, 873
41 170, 723 169, 959 169, 977 171, 471 170, 444 170, 425 171, 670 170, 606 170, 603 172, 383 171, 065 171, 060
42 173, 021 170, 023 169, 954 174, 169 170, 464 170, 429 174, 475 170, 659 170, 627 175, 722 171, 164 171, 173
43 177, 364 170, 032 170, 009 179, 191 170, 583 170, 541 179, 433 170, 793 170, 712 181, 307 171, 314 171, 192
44 170, 107 169, 916 169, 914 170, 711 170, 464 170, 416 170, 886 170, 617 170, 558 171, 430 171, 065 170, 982
45 170, 175 169, 976 169, 970 170, 790 170, 533 170, 420 170, 954 170, 656 170, 563 171, 510 171, 184 170, 990
46 170, 420 170, 202 170, 011 171, 229 170, 886 170, 455 171, 646 171, 082 170, 698 172, 364 171, 551 171, 150
47 170, 143 169, 997 169, 979 170, 771 170, 571 170, 553 170, 981 170, 770 170, 773 171, 459 171, 242 171, 195
48 170, 253 170, 063 170, 033 170, 942 170, 675 170, 661 171, 655 171, 403 170, 993 171, 688 171, 400 171, 408
49 170, 401 170, 192 170, 177 171, 298 171, 054 170, 923 176, 931 176, 682 171, 695 172, 655 172, 395 172, 131
50 170, 186 170, 026 169, 989 170, 731 170, 473 170, 465 170, 930 170, 710 170, 682 171, 331 171, 160 171, 094
51 170, 280 170, 071 170, 071 170, 955 170, 734 170, 596 171, 167 170, 914 170, 803 171, 867 171, 572 171, 358
52 170, 589 170, 327 170, 134 171, 425 171, 058 170, 758 172, 046 171, 642 171, 100 172, 812 172, 328 171, 719
53 170, 511 170, 236 170, 141 171, 326 170, 922 170, 815 171, 770 171, 250 171, 012 172, 487 171, 773 171, 602
54 171, 412 170, 951 170, 830 172, 401 171, 820 171, 658 172, 830 172, 157 172, 015 173, 815 173, 053 172, 867

Table 15: Squared prediction Error, design based simulation, n=4000

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 53, 560 53, 549 53, 550 53, 613 53, 597 53, 597 53, 630 53, 615 53, 615 53, 685 53, 664 53, 664
2 54, 069 53, 561 53, 561 54, 205 53, 607 53, 603 54, 232 53, 623 53, 621 54, 372 53, 665 53, 663
3 55, 611 53, 566 53, 564 55, 912 53, 621 53, 611 55, 920 53, 634 53, 627 56, 213 53, 683 53, 676
4 58, 260 53, 582 53, 572 58, 736 53, 640 53, 627 58, 778 53, 657 53, 639 59, 236 53, 716 53, 688
5 53, 719 53, 553 53, 553 53, 818 53, 593 53, 593 53, 831 53, 606 53, 605 53, 926 53, 646 53, 645
6 54, 462 53, 548 53, 548 54, 643 53, 592 53, 589 54, 664 53, 604 53, 602 54, 863 53, 646 53, 641
7 55, 801 53, 548 53, 547 56, 094 53, 594 53, 590 56, 100 53, 611 53, 602 56, 364 53, 652 53, 640
8 53, 579 53, 562 53, 561 53, 632 53, 612 53, 611 53, 647 53, 627 53, 626 53, 698 53, 674 53, 670
9 53, 591 53, 575 53, 570 53, 655 53, 625 53, 621 53, 669 53, 645 53, 637 53, 727 53, 697 53, 685
10 53, 625 53, 605 53, 595 53, 701 53, 674 53, 646 53, 738 53, 693 53, 660 53, 813 53, 769 53, 710
11 53, 566 53, 556 53, 555 53, 623 53, 604 53, 603 53, 632 53, 615 53, 615 53, 680 53, 661 53, 662
12 53, 585 53, 570 53, 569 53, 639 53, 617 53, 617 53, 655 53, 635 53, 634 53, 705 53, 678 53, 678
13 53, 593 53, 582 53, 573 53, 663 53, 641 53, 628 53, 700 53, 679 53, 665 53, 768 53, 732 53, 720
14 53, 576 53, 561 53, 561 53, 630 53, 614 53, 609 53, 641 53, 625 53, 623 53, 686 53, 669 53, 666
15 53, 586 53, 571 53, 569 53, 644 53, 631 53, 624 53, 669 53, 648 53, 639 53, 724 53, 700 53, 691
16 53, 615 53, 605 53, 586 53, 695 53, 674 53, 646 53, 747 53, 718 53, 676 53, 830 53, 788 53, 745
17 53, 789 53, 730 53, 759 53, 897 53, 840 53, 872 53, 926 53, 872 53, 894 54, 037 53, 977 53, 999
18 53, 739 53, 698 53, 784 53, 852 53, 809 53, 930 53, 898 53, 859 53, 971 54, 006 53, 975 54, 128
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Table 16: Squared prediction error, design based simulation, n=2000

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 53, 653 53, 632 53, 633 53, 745 53, 714 53, 714 53, 771 53, 734 53, 734 53, 860 53, 814 53, 811
2 54, 137 53, 634 53, 635 54, 338 53, 716 53, 713 54, 384 53, 749 53, 745 54, 574 53, 833 53, 829
3 55, 612 53, 658 53, 638 55, 993 53, 734 53, 727 56, 081 53, 770 53, 760 56, 531 53, 851 53, 849
4 58, 335 53, 654 53, 636 59, 019 53, 745 53, 736 59, 036 53, 778 53, 752 59, 689 53, 875 53, 841
5 53, 795 53, 619 53, 618 53, 932 53, 704 53, 700 53, 966 53, 720 53, 719 54, 100 53, 802 53, 798
6 54, 478 53, 641 53, 638 54, 740 53, 720 53, 715 54, 777 53, 743 53, 735 55, 035 53, 813 53, 805
7 55, 793 53, 644 53, 631 56, 221 53, 733 53, 716 56, 233 53, 754 53, 739 56, 622 53, 833 53, 814
8 53, 674 53, 653 53, 648 53, 778 53, 736 53, 729 53, 800 53, 761 53, 754 53, 902 53, 839 53, 829
9 53, 690 53, 660 53, 642 53, 794 53, 744 53, 728 53, 829 53, 781 53, 758 53, 925 53, 878 53, 845
10 53, 745 53, 701 53, 660 53, 893 53, 817 53, 775 53, 950 53, 855 53, 795 54, 071 53, 970 53, 891
11 53, 666 53, 634 53, 636 53, 760 53, 724 53, 731 53, 787 53, 751 53, 752 53, 885 53, 843 53, 843
12 53, 684 53, 660 53, 648 53, 788 53, 754 53, 745 53, 835 53, 797 53, 793 53, 942 53, 888 53, 883
13 53, 709 53, 669 53, 660 53, 832 53, 784 53, 768 53, 919 53, 870 53, 852 54, 041 53, 996 53, 954
14 53, 673 53, 646 53, 639 53, 764 53, 730 53, 723 53, 806 53, 764 53, 759 53, 901 53, 846 53, 842
15 53, 683 53, 652 53, 644 53, 790 53, 751 53, 739 53, 844 53, 796 53, 778 53, 940 53, 887 53, 873
16 53, 727 53, 696 53, 678 53, 872 53, 820 53, 780 53, 976 53, 915 53, 822 54, 112 54, 032 53, 920
17 53, 891 53, 792 53, 816 54, 077 53, 957 53, 991 54, 135 54, 031 54, 035 54, 280 54, 169 54, 187
18 53, 833 53, 784 53, 851 54, 041 53, 983 54, 029 54, 119 54, 044 54, 100 54, 283 54, 211 54, 278

Table 17: Squared prediction error, design based simulation, n=1000

0.25 quantile 0.5 quantile 0.75 quantile mean
Scen Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 53, 840 53, 783 53, 779 54, 010 53, 930 53, 924 54, 056 53, 980 53, 978 54, 240 54, 156 54, 151
2 54, 330 53, 810 53, 804 54, 625 53, 961 53, 964 54, 710 54, 008 54, 004 54, 984 54, 144 54, 160
3 55, 730 53, 793 53, 779 56, 356 53, 950 53, 919 56, 433 54, 023 53, 996 57, 019 54, 177 54, 145
4 58, 366 53, 834 53, 811 59, 285 54, 012 53, 952 59, 374 54, 062 54, 005 60, 266 54, 226 54, 154
5 53, 973 53, 788 53, 791 54, 186 53, 929 53, 926 54, 242 53, 990 53, 990 54, 439 54, 137 54, 127
6 54, 609 53, 769 53, 758 54, 997 53, 944 53, 942 55, 040 53, 992 53, 984 55, 390 54, 152 54, 146
7 55, 856 53, 807 53, 790 56, 420 53, 975 53, 963 56, 497 54, 034 54, 008 57, 012 54, 188 54, 158
8 53, 835 53, 776 53, 769 54, 062 53, 960 53, 951 54, 114 54, 023 54, 002 54, 307 54, 201 54, 182
9 53, 877 53, 802 53, 800 54, 088 53, 989 53, 964 54, 140 54, 038 54, 003 54, 346 54, 210 54, 158
10 53, 982 53, 881 53, 821 54, 259 54, 095 53, 986 54, 391 54, 192 54, 059 54, 638 54, 393 54, 215
11 53, 843 53, 798 53, 795 54, 051 53, 982 53, 984 54, 127 54, 054 54, 055 54, 325 54, 231 54, 218
12 53, 898 53, 831 53, 819 54, 131 54, 035 54, 028 54, 199 54, 112 54, 101 54, 379 54, 304 54, 295
13 53, 955 53, 875 53, 866 54, 250 54, 173 54, 121 54, 443 54, 374 54, 250 54, 679 54, 588 54, 483
14 53, 858 53, 800 53, 788 54, 042 53, 973 53, 962 54, 098 54, 025 54, 017 54, 264 54, 170 54, 158
15 53, 867 53, 811 53, 809 54, 099 54, 018 53, 998 54, 171 54, 092 54, 056 54, 366 54, 286 54, 232
16 53, 966 53, 893 53, 823 54, 238 54, 138 54, 041 54, 438 54, 310 54, 138 54, 698 54, 538 54, 348
17 54, 045 53, 911 53, 899 54, 371 54, 177 54, 151 54, 536 54, 310 54, 246 54, 829 54, 532 54, 501
18 54, 129 54, 029 54, 032 54, 402 54, 303 54, 289 54, 541 54, 412 54, 403 54, 812 54, 662 54, 685
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Table 18: -Log-likelihood by federal states, design based simulation, n=4000

0.25 quantile 0.5 quantile 0.75 quantile mean
Fed. State Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 5, 846 5, 844 5, 844 5, 852 5, 850 5, 850 5, 862 5, 860 5, 859 5, 855 5, 853 5, 852
2 3, 357 3, 356 3, 357 3, 365 3, 364 3, 365 3, 376 3, 373 3, 375 3, 367 3, 366 3, 367
3 16, 586 16, 580 16, 581 16, 599 16, 593 16, 592 16, 620 16, 609 16, 608 16, 604 16, 596 16, 596
4 1, 543 1, 533 1, 532 1, 548 1, 537 1, 536 1, 554 1, 542 1, 541 1, 549 1, 538 1, 537
5 35, 358 35, 266 35, 263 35, 426 35, 310 35, 304 35, 497 35, 368 35, 361 35, 437 35, 321 35, 318
6 13, 107 13, 105 13, 105 13, 120 13, 115 13, 115 13, 133 13, 127 13, 127 13, 122 13, 118 13, 118
7 7, 938 7, 930 7, 930 7, 946 7, 937 7, 936 7, 957 7, 945 7, 944 7, 949 7, 938 7, 938
8 22, 127 21, 955 21, 954 22, 177 21, 987 21, 983 22, 237 22, 024 22, 021 22, 187 21, 994 21, 991
9 26, 983 26, 802 26, 797 27, 054 26, 850 26, 841 27, 135 26, 899 26, 892 27, 066 26, 857 26, 848
10 2, 169 2, 167 2, 166 2, 173 2, 170 2, 170 2, 178 2, 175 2, 174 2, 174 2, 171 2, 171
11 7, 811 7, 660 7, 678 7, 842 7, 676 7, 696 7, 873 7, 692 7, 718 7, 844 7, 678 7, 700
12 4, 950 4, 941 4, 944 4, 966 4, 957 4, 960 4, 981 4, 973 4, 976 4, 966 4, 958 4, 960
13 3, 276 3, 242 3, 244 3, 287 3, 248 3, 250 3, 296 3, 254 3, 256 3, 287 3, 249 3, 251
14 8, 443 8, 410 8, 416 8, 463 8, 427 8, 435 8, 486 8, 446 8, 453 8, 467 8, 430 8, 436
15 4, 861 4, 826 4, 826 4, 877 4, 838 4, 838 4, 894 4, 850 4, 850 4, 878 4, 839 4, 839
16 4, 660 4, 656 4, 655 4, 670 4, 666 4, 665 4, 683 4, 678 4, 676 4, 672 4, 667 4, 666

Table 19: -Log-likelihood by federal states, design based simulation, n=2000

0.25 quantile 0.5 quantile 0.75 quantile mean
Fed. State Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 5, 856 5, 853 5, 853 5, 867 5, 862 5, 862 5, 883 5, 879 5, 879 5, 870 5, 866 5, 866
2 3, 362 3, 360 3, 361 3, 374 3, 372 3, 373 3, 390 3, 387 3, 388 3, 377 3, 375 3, 376
3 16, 614 16, 601 16, 601 16, 639 16, 625 16, 626 16, 675 16, 662 16, 659 16, 648 16, 634 16, 633
4 1, 545 1, 535 1, 534 1, 552 1, 542 1, 540 1, 561 1, 548 1, 547 1, 553 1, 542 1, 541
5 35, 417 35, 317 35, 321 35, 510 35, 394 35, 393 35, 621 35, 491 35, 484 35, 533 35, 414 35, 409
6 13, 129 13, 122 13, 122 13, 148 13, 141 13, 141 13, 175 13, 166 13, 167 13, 156 13, 148 13, 148
7 7, 952 7, 941 7, 941 7, 966 7, 953 7, 953 7, 985 7, 967 7, 968 7, 970 7, 956 7, 956
8 22, 158 21, 979 21, 976 22, 242 22, 029 22, 025 22, 331 22, 089 22, 083 22, 254 22, 044 22, 039
9 27, 012 26, 822 26, 817 27, 109 26, 888 26, 876 27, 247 26, 971 26, 963 27, 136 26, 907 26, 897
10 2, 172 2, 169 2, 168 2, 178 2, 175 2, 174 2, 185 2, 181 2, 180 2, 179 2, 176 2, 175
11 7, 810 7, 670 7, 685 7, 856 7, 694 7, 715 7, 899 7, 719 7, 746 7, 860 7, 697 7, 718
12 4, 954 4, 945 4, 948 4, 974 4, 965 4, 967 4, 994 4, 986 4, 990 4, 976 4, 967 4, 970
13 3, 276 3, 244 3, 246 3, 290 3, 253 3, 255 3, 305 3, 263 3, 264 3, 292 3, 254 3, 256
14 8, 448 8, 417 8, 423 8, 477 8, 441 8, 448 8, 508 8, 466 8, 475 8, 481 8, 444 8, 451
15 4, 863 4, 831 4, 832 4, 882 4, 845 4, 846 4, 905 4, 863 4, 862 4, 886 4, 847 4, 848
16 4, 665 4, 660 4, 660 4, 677 4, 672 4, 672 4, 693 4, 688 4, 687 4, 680 4, 675 4, 674
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Table 20: -Log-likelihood by federal states, design based simulation, n=1000

0.25 quantile 0.5 quantile 0.75 quantile mean
Fed. State Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 5, 877 5, 869 5, 869 5, 899 5, 890 5, 890 5, 928 5, 919 5, 918 5, 905 5, 897 5, 896
2 3, 375 3, 369 3, 368 3, 394 3, 389 3, 390 3, 418 3, 411 3, 413 3, 398 3, 393 3, 394
3 16, 675 16, 655 16, 653 16, 729 16, 702 16, 700 16, 794 16, 767 16, 766 16, 741 16, 716 16, 714
4 1, 550 1, 539 1, 539 1, 563 1, 549 1, 548 1, 577 1, 562 1, 559 1, 565 1, 551 1, 549
5 35, 543 35, 435 35, 432 35, 736 35, 571 35, 559 35, 948 35, 757 35, 731 35, 780 35, 608 35, 596
6 13, 180 13, 167 13, 166 13, 221 13, 204 13, 202 13, 272 13, 251 13, 249 13, 233 13, 214 13, 213
7 7, 978 7, 964 7, 963 8, 005 7, 988 7, 988 8, 042 8, 017 8, 018 8, 013 7, 995 7, 994
8 22, 215 22, 058 22, 049 22, 345 22, 134 22, 124 22, 480 22, 233 22, 224 22, 364 22, 157 22, 151
9 27, 073 26, 901 26, 893 27, 220 27, 003 26, 981 27, 395 27, 118 27, 102 27, 255 27, 027 27, 016
10 2, 178 2, 174 2, 174 2, 190 2, 184 2, 183 2, 202 2, 195 2, 193 2, 192 2, 186 2, 185
11 7, 839 7, 691 7, 709 7, 910 7, 726 7, 749 7, 985 7, 778 7, 803 7, 920 7, 738 7, 759
12 4, 963 4, 950 4, 953 4, 995 4, 982 4, 985 5, 031 5, 014 5, 017 5, 000 4, 985 4, 988
13 3, 285 3, 251 3, 253 3, 305 3, 264 3, 266 3, 331 3, 279 3, 281 3, 310 3, 267 3, 269
14 8, 472 8, 429 8, 437 8, 512 8, 468 8, 475 8, 568 8, 514 8, 520 8, 524 8, 476 8, 484
15 4, 874 4, 835 4, 839 4, 905 4, 861 4, 862 4, 941 4, 887 4, 887 4, 911 4, 865 4, 866
16 4, 673 4, 667 4, 666 4, 696 4, 686 4, 686 4, 724 4, 711 4, 709 4, 701 4, 691 4, 690

Table 21: Squared prediction error by federal states, design based simulation, n=4000

0.25 quantile 0.5 quantile 0.75 quantile mean
Fed. State Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 1, 850 1, 849 1, 849 1, 853 1, 851 1, 851 1, 856 1, 855 1, 855 1, 853 1, 852 1, 852
2 1, 056 1, 056 1, 056 1, 059 1, 059 1, 059 1, 062 1, 062 1, 062 1, 059 1, 059 1, 060
3 5, 240 5, 237 5, 237 5, 246 5, 242 5, 242 5, 255 5, 248 5, 248 5, 248 5, 243 5, 243
4 498 496 496 500 497 497 502 498 499 500 497 497
5 11, 336 11, 317 11, 316 11, 354 11, 331 11, 331 11, 377 11, 350 11, 347 11, 359 11, 335 11, 335
6 4, 127 4, 127 4, 126 4, 131 4, 131 4, 131 4, 137 4, 136 4, 136 4, 133 4, 132 4, 132
7 2, 519 2, 516 2, 516 2, 523 2, 519 2, 518 2, 527 2, 522 2, 521 2, 524 2, 519 2, 519
8 6, 947 6, 880 6, 879 6, 969 6, 891 6, 890 6, 992 6, 906 6, 904 6, 972 6, 894 6, 892
9 8, 443 8, 372 8, 369 8, 474 8, 390 8, 387 8, 505 8, 416 8, 415 8, 477 8, 395 8, 393
10 695 694 694 696 695 695 698 697 696 697 696 695
11 2, 520 2, 482 2, 489 2, 530 2, 488 2, 495 2, 539 2, 495 2, 504 2, 530 2, 489 2, 497
12 1, 541 1, 539 1, 540 1, 545 1, 544 1, 544 1, 550 1, 548 1, 549 1, 546 1, 544 1, 545
13 1, 052 1, 045 1, 045 1, 055 1, 047 1, 047 1, 059 1, 049 1, 049 1, 056 1, 047 1, 047
14 2, 661 2, 655 2, 657 2, 667 2, 660 2, 662 2, 673 2, 665 2, 667 2, 668 2, 661 2, 662
15 1, 541 1, 533 1, 533 1, 545 1, 536 1, 536 1, 550 1, 539 1, 540 1, 546 1, 536 1, 537
16 1, 459 1, 459 1, 458 1, 463 1, 462 1, 461 1, 467 1, 466 1, 465 1, 463 1, 462 1, 462
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Table 22: Squared prediction error by federal states, design based simulation, n=2000

0.25 quantile 0.5 quantile 0.75 quantile mean
Fed. State Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 1, 853 1, 852 1, 852 1, 858 1, 855 1, 855 1, 863 1, 860 1, 860 1, 858 1, 856 1, 856
2 1, 057 1, 057 1, 057 1, 062 1, 061 1, 062 1, 068 1, 067 1, 067 1, 063 1, 062 1, 063
3 5, 249 5, 244 5, 244 5, 260 5, 252 5, 252 5, 274 5, 263 5, 263 5, 263 5, 255 5, 255
4 499 497 496 501 498 498 504 500 500 501 499 499
5 11, 354 11, 334 11, 333 11, 383 11, 359 11, 359 11, 419 11, 392 11, 391 11, 391 11, 366 11, 366
6 4, 134 4, 132 4, 133 4, 141 4, 139 4, 139 4, 151 4, 148 4, 148 4, 144 4, 141 4, 141
7 2, 524 2, 519 2, 519 2, 529 2, 524 2, 524 2, 536 2, 529 2, 528 2, 531 2, 525 2, 524
8 6, 956 6, 886 6, 885 6, 987 6, 903 6, 901 7, 024 6, 924 6, 923 6, 993 6, 908 6, 907
9 8, 450 8, 374 8, 371 8, 488 8, 402 8, 400 8, 545 8, 442 8, 438 8, 499 8, 409 8, 406
10 696 695 695 698 697 697 700 699 698 698 697 697
11 2, 521 2, 487 2, 491 2, 534 2, 495 2, 502 2, 547 2, 504 2, 513 2, 535 2, 496 2, 503
12 1, 543 1, 541 1, 542 1, 548 1, 547 1, 548 1, 555 1, 553 1, 553 1, 549 1, 547 1, 548
13 1, 053 1, 045 1, 046 1, 057 1, 048 1, 049 1, 061 1, 051 1, 052 1, 057 1, 049 1, 049
14 2, 663 2, 657 2, 659 2, 671 2, 665 2, 667 2, 681 2, 673 2, 674 2, 673 2, 666 2, 667
15 1, 541 1, 534 1, 535 1, 547 1, 539 1, 539 1, 554 1, 543 1, 544 1, 548 1, 539 1, 540
16 1, 461 1, 460 1, 460 1, 466 1, 464 1, 464 1, 471 1, 469 1, 469 1, 466 1, 465 1, 465

Table 23: Squared prediction error by federal states, design based simulation, n=1000

0.25 quantile 0.5 quantile 0.75 quantile mean
Fed. State Mod LS Opt Mod LS Opt Mod LS Opt Mod LS Opt

1 1, 859 1, 857 1, 857 1, 867 1, 864 1, 864 1, 876 1, 872 1, 872 1, 869 1, 865 1, 865
2 1, 061 1, 059 1, 060 1, 067 1, 066 1, 067 1, 076 1, 074 1, 075 1, 069 1, 068 1, 068
3 5, 266 5, 259 5, 258 5, 286 5, 273 5, 273 5, 310 5, 296 5, 297 5, 290 5, 279 5, 278
4 501 498 498 504 501 501 508 505 504 505 501 501
5 11, 394 11, 371 11, 372 11, 449 11, 422 11, 417 11, 518 11, 470 11, 469 11, 466 11, 428 11, 426
6 4, 149 4, 144 4, 144 4, 162 4, 157 4, 157 4, 181 4, 173 4, 173 4, 167 4, 161 4, 161
7 2, 532 2, 526 2, 526 2, 541 2, 534 2, 533 2, 554 2, 544 2, 544 2, 544 2, 537 2, 536
8 6, 971 6, 906 6, 906 7, 013 6, 930 6, 928 7, 065 6, 963 6, 962 7, 023 6, 938 6, 936
9 8, 462 8, 389 8, 388 8, 515 8, 427 8, 427 8, 591 8, 481 8, 479 8, 532 8, 441 8, 438
10 698 697 697 702 700 699 705 703 702 702 700 700
11 2, 531 2, 493 2, 499 2, 549 2, 507 2, 514 2, 572 2, 524 2, 532 2, 552 2, 510 2, 517
12 1, 546 1, 544 1, 544 1, 555 1, 553 1, 554 1, 566 1, 562 1, 563 1, 557 1, 554 1, 555
13 1, 055 1, 048 1, 049 1, 061 1, 052 1, 052 1, 069 1, 057 1, 057 1, 063 1, 053 1, 054
14 2, 670 2, 663 2, 665 2, 682 2, 674 2, 676 2, 701 2, 686 2, 689 2, 686 2, 676 2, 678
15 1, 545 1, 538 1, 538 1, 554 1, 544 1, 545 1, 567 1, 552 1, 552 1, 557 1, 546 1, 546
16 1, 464 1, 462 1, 462 1, 471 1, 469 1, 468 1, 480 1, 477 1, 476 1, 473 1, 470 1, 470
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