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Abstract

Model-based small area predictors are derived under the assumption that data
files are complete. In application to real data, files may contain missing values. We
introduce a variant of the bivariate Fay-Herriot model that takes into account for
missing values in one component of the target variable and give fitting algorithms
to estimate the model parameters. Based on the new model, we introduce empirical
best predictors of domain means and derive an approximation to the mean squared
error.
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1 Introduction

Fay and Herriot (1979) considered an area-level linear mixed model and derived an empirical

best linear unbiased predictor (EBLUP) of a domain quantity that it is also called Fay-

Herriot (FH) predictor, or FH-EBLUP. It is widely applied in the context of small area

estimation (SAE). The idea of the FH predictor is to improve the precision of a direct

estimator on a domain of interest by borrowing strength from other domains. This method,

however, requires that for every statistic of interest there is a direct estimate available in all

the domains of the study. In the common case of unplanned sample sizes within domain, this

cannot be guaranteed. Therefore, it appears that for some domains direct estimates may

be missing by chance. Furthermore, estimates in domains or table cells can be suppressed

for confidentiality reasons, e.g. due to small cell sizes or high sampling errors as it was

done in Zayatz (2007).

Since the publication of the FH predictor, many extensions were made to allow for

different practical problems. Inter alia, Prasad and Rao (1990) and Datta and Lahiri

(2000) proposed mean squared error (MSE) estimators for the FH predictor, Li and Lahiri

(2010) and Yoshimori and Lahiri (2014) introduced new adjusted maximum likelihood

fitting methods, Ybarra and Lohr (2008), Arima et al. (2017), Burgard et al. (2019a),

and Burgard et al. (2019b) studied the effect of measurement errors in the covariates,

Pratesi and Salvati (2008), González-Manteiga et al. (2010), Articus and Burgard (2014)

and Morales et al. (2015) allow for a heterogeneous dependency structure in the FH model,

Datta et al. (1996), González-Manteiga et al. (2008), Porter et al. (2015) and Benavent

and Morales (2016) investigated and applied multivariate FH models, Esteban et al. (2012)

and Marhuenda et al. (2013) estimated small area poverty proportions under temporal and

spatio-temporal Fay-Herriot models respectively. Many other authors have studied further
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variants of the Fay-Herriot model adapted to different setups. However, for the problem of

missing values in the dependent variable, to our knowledge, there is no approach giving an

empirical best predictor (EBP) also for the domains with missings.

This manuscript introduces an EBP for settings where direct estimates are partially

missing. Furthermore, it derives an approximation to the MSE of the EBP and the corre-

sponding MSE estimator and it illustrates the potential benefits of the proposed approach

under different simulated data scenarios. In addition, the manuscript presents an applica-

tion of the developed methodology to a SAE problem with publicly available county-level

data from the U.S. American Community Survey (ACS).

The manuscript is structured as follows: Section 2 introduces the bivariate Fay-Herriot

model, which is the basis for the development of the EBP theory when part of the values

of the target variables are missing. Section 3 divides the set of domains in three groups

depending on the existence or not of missing values in each of the dependent variables and

gives the corresponding EBPs. Section 4 gives algorithms for calculating the maximum like-

lihood and the residual maximum likelihood estimators of the model parameters. Section

5 derives an approximation to the mean squared error of the best predictor and proposes

an explicit-formula estimator. Section 6 presents a parametric bootstrap procedure for

estimating the mean squared error.

2 The bivariate Fay-Herriot model

Let U be a finite population partitioned into D domains U1, . . . , UD. Let µd = (µd1, µd2)′

be a vector of characteristics of interest in the domain d and let yd = (yd1, yd2)′ be a vector

of direct estimates of µd calculated by using the data of the target survey sample.
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The bivariate Fay-Herriot model is defined in two stages. The first stage indicates that

direct estimators {yd} are unbiased and follow the sampling model

yd = µd + ed, ∀d ∈ {1, . . . , D}, (1)

where the vectors ed = (ed1, ed2)′ ∼ N2 (0, Ved) are independent and the 2 × 2 covariance

matrices Ved are known. In most cases, Ved is taken to be the design-based covariance

matrix of direct estimators yd, ∀d ∈ {1, . . . , D}. The covariance matrices Ved are

Ved =

 σ2
ed1 σed12

σed12 σ2
ed2

 , σed12 = ρed12σed1σed2, ∀d ∈ {1, . . . , D}.

In the second stage the true area characteristic µdk is assumed to be linearly related to

pk explanatory variables, k = 1, 2, d ∈ {1, . . . , D}. Let x′dk = (xdk1, . . . , xdkpk) be a row

vector containing the true aggregated (population) values of pk explanatory variables for

µdk and let Xd = diag(x′d1, x
′
d2) be a 2× p block-diagonal matrix with p = p1 + p2. Let

βk = (βk1, . . . , βkpk)′ be a column vector of size pk containing the regression parameters βkj

for µdk and let β = (β′1, β
′
2)′p×1. The linking model is

µd = Xdβ + ud, ud = (ud1, ud2)′ ∼ N2(0, Vud), ∀d ∈ {1, . . . , D}, (2)

where the vectors ud’s are independent of the vectors ed’s. The 2× 2 covariance matrix Vud

depends on three unknown parameters, θ1 = σ2
u1, θ2 = σ2

u2 and θ3 = ρ, i.e.

Vud =

 σ2
u1 ρσu1σu2

ρσu1σu2 σ2
u2

 , ∀d ∈ {1, . . . , D}.

The bivariate Fay-Herriot (BFH) model can be expressed as a single model in the form

yd = Xdβ + ud + ed, ∀d ∈ {1, . . . , D}, (3)
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or in the matrix form

y = Xβ + u+ e,

where

y = col
1≤d≤D

(yd), u = col
1≤d≤D

(ud), e = col
1≤d≤D

(ed), X = col
1≤d≤D

(Xd).

We finally assume that ud, ed, d ∈ {1, . . . , D}, are independent. The BFH model (3) is a

reparametrization of Model 3 introduced by Benavent and Morales (2016).

Let us define Vd = Vud + Ved, ∀d ∈ {1, . . . , D}. Under model (3), it holds that

E (y) = Xβ and V = var(y) = Z ′VuZ + Ve = Vu + Ve = diag
1≤d≤D

(Vd).

3 Prediction with missing target values

Let us assume that some of the ydk are missing. We define yd̄1 = (yd1, 0)′ and yd̄2 = (0, yd2)′,

and partition the domains into three groups:

D1 = {d ∈ N : 1 ≤ d ≤ D1} contains the D1 domains where only yd1 is observed.

D2 = {d ∈ N : D1 + 1 ≤ d ≤ D1 + D2} contains the D2 domains where only yd2 is

observed.

D3 = {d ∈ N : D1 + D2 + 1 ≤ d ≤ D} contains the remaining domains where

yd = (yd1, yd2)′ is fully observed.

If the BFH model (3) holds for d ∈ {1, . . . , D} and the missing data obey scheme {1, . . . , D} =

D1 ∪ D2 ∪ D3, we say that target vectors yd obey a missing data BFH (MBFH) model. If

the MBFH model holds, then
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1. yd1 ∼ N1 (x′d1β1, σ
2
u1 + σ2

ed1) and yd1|ud ∼ N1 (x′d1β1 + ud1, σ
2
ed1) if d ∈ D1,

2. yd2 ∼ N1 (x′d2β, σ
2
u2 + σ2

ed2) and yd2|ud ∼ N1 (x′d2β2 + ud2, σ
2
ed2) if d ∈ D2, and

3. yd ∼ N2 (Xdβ, Vud + Ved) and yd|ud ∼ N2 (Xdβ + ud, Ved) if d ∈ D3.

In a real situation where the target data follows a MBFH model, the BFH model is strictly

applicable to D3, but not to D1 or D2. For example, under the BFH model we can only

calculate EBLUPs of µd or ud for d ∈ D3. However, in what follows we show that it is

possible calculate EBPs for d ∈ D1 ∪ D2 under the MBFH model.

As the kernel of the n-variate normal distribution is

f(y|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
∝ exp

[
−1

2
y′Σ−1y + µ′Σ−1y

]
,

we have the following three propositions.

Proposition 3.1. If d ∈ D1, then the best predictor (BP) of ud under the MBFH model is

ûbpd = E[ud|yd1] = Φd1

 σ−2
ed1 0

0 0

 (yd̄1 −Xdβ), Φd1 =

 σ−2
ed1 0

0 0

+ V −1
ud

−1

.

Proof. The conditional distribution of ud, given yd1, is

f(ud|yd1) ∝ f(yd1|ud)f(ud)

∝ exp

−1

2
u′d

 σ−2
ed1 0

0 0

+ V −1
ud

ud + u′dΦ
−1
d1

Φd1

 σ−2
ed1 0

0 0

 (yd̄1 −Xdβ)

 .

Therefore, f(ud|yd1) is a bivariate normal distribution with parameters

var(ud|yd1) =

 σ−2
ed1 0

0 0

+ V −1
ud

−1

= Φd1, E[ud|yd1 ] = Φd1

 σ−2
ed1 0

0 0

 (yd̄1−Xdβ).

�
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Proposition 3.2. If d ∈ D2, then the BP of ud under the MBFH model is

ûbpd = E[ud|yd2] = Φd2

 0 0

0 σ−2
ed2

 (yd̄2 −Xdβ), Φd2 =

 0 0

0 σ−2
ed2

+ V −1
ud

−1

.

Proof. The proof is analogous as the one of Proposition 3.1.

Proposition 3.3. If d ∈ D3, then BP of ud under the MBFH model is

ûbpd = E[ud|yd] = ΦdV
−1
ed (yd −Xdβ), Φd =

(
V −1
ed + V −1

ud

)−1
.

Proof. The conditional distribution of ud given yd, is

f(ud|yd) ∝ f(yd|ud)f(ud)

∝ exp

{
−1

2
u′d
(
V −1
ed + V −1

ud

)
ud + u′dΦ

−1
d

[
Φd V

−1
ed (yd −Xdβ)

]}
.

Therefore, f(ud|yd) is a bivariate normal distribution with parameters

var(ud|yd) =
(
V −1
ed + V −1

ud

)−1
= Φd, E[ud|yd] = Φd V

−1
ed (yd −Xdβ).

�

Corollary 3.3. The BP of µd, d = 1, . . . , D, under the MBFH model is

µ̂bpd = Xdβ + ûbpd . (4)

Definition 3.1. The EBP of µd, d = 1, . . . , D, under the MBFH model (MBFH-EBP) is

obtained from formula (4) by plugging estimators β̂, σ̂2
u1, σ̂2

u2 and ρ̂ in the places of β, σ2
u1,

σ2
u2 and ρ respectively, i.e.

µ̂ebpd = Xdβ̂ + ûebpd . (5)
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4 Estimation of model parameters

This section presents the maximum likelihood (ML) and the residual maximum likelihood

(REML) methods for estimating the model parameters.

4.1 Maximum likelihood method

The vector of model parameters is ψ = (β′, θ′)′, where θ = (θ1, θ2, θ3)′ = (σ2
u1, σ

2
u2, ρ)′. The

log-likelihood is l =
∑D

d=1 ld, where

ld = −1

2
log 2π − 1

2
log(σ2

u1 + σ2
ed1)− 1

2(σ2
u1 + σ2

ed1)
(yd1 − x′d1β1)2, if d ∈ D1,

ld = −1

2
log 2π − 1

2
log(σ2

u2 + σ2
ed2)− 1

2(σ2
u2 + σ2

ed2)
(yd2 − x′d2β2)2, if d ∈ D2,

ld = − log 2π − 1

2
log |Vd| −

1

2
(yd −Xdβ)′V −1

d (yd −Xdβ), if d ∈ D3.

The ML Fisher-scoring algorithm, with Fisher-information matrices Fββ(θ(r)), Fθθ(θ
(r))

and score vectors Uβ(ψ(r)), Uθ(ψ
(r)), is

1. Set the initial values ψ(0) = (β
(0)
1 , β

(0)
2 , θ(0)) and ε > 0.

2. Repeat the following steps until the tolerance or the boundary conditions are fulfilled.

(a) Updating equations: Do

β(r+1) = β(r) + F−1
ββ (θ(r))Uβ(ψ(r)), θ(r+1) = θ(r) + F−1

θθ (θ(r))Uθ(ψ
(r)).

(b) Boundary condition: If θ
(r+1)
1 > 0, θ

(r+1)
2 > 0 and

∣∣θ(r+1)
3

∣∣ < 1, continue. Other-

wise, do ψ̂ = ψ(r) and stop.

(c) Tolerance condition: If
∣∣ψ(r+1)

j − ψ(r)
j

∣∣ < ε, j = 1, . . . , p + 3, do ψ̂ = ψ(r+1) and

stop. Otherwise, continue.
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3. Output: ψ̂.

Remark. As starting values, we take β
(0)
1 = β̂

(0)
1 , β

(0)
2 = β̂

(0)
2 , θ̂3,0 = 0, θ̂k,0 = σ̂2

uk,0, k = 1, 2,

where β̂
(0)
1 , β̂

(0)
2 and σ̂2

uk,0 are the REML or the ML estimators of the corresponding bivariate

Fay-Herriot that uses only the data of group D3.

4.2 Residual maximum likelihood method

In the case that there are no missing values, the residual maximum likelihood (REML)

log-likelihood is

lreml(θ) = −2D − p
2

log 2π +
1

2
log |X ′X| − 1

2
log |V | − 1

2
log |X ′V −1X| − 1

2
y′Py, (6)

where θ = (θ1, θ2, θ3), θ1 = σ2
u1, θ2 = σ2

u2, θ3 = ρ, P = V −1 − V −1X(X ′V −1X)−1X ′V −1,

PV P = P with PX = 0, y is the 2D-vector y = (y′1, . . . , y
′
D)′, and X the corresponding

2D × p-matrix X = (X1, . . . , XD)′. P is defined as before on the reduced X and V .

In the case that there are missing values, the residual maximum likelihood (REML)

log-likelihood is

lreml(θ) = −D1 +D2 + 2(D −D1 −D2)− p
2

log 2π +
1

2
log |X ′X|

−1

2
log |V | − 1

2
log |X ′V −1X| − 1

2
y′Py,

(7)

where now, the vector y and the matrices X and V are reduced to those rows and columns

that correspond to an observed value of ydk, ∀d ∈ D and k = 1, 2. Let D̃ := D1 + D2 +

2(D −D1 −D2), then the length of y is D̃ and the dimensions of X and V are D̃ × p and

D̃ × D̃ respectively.

The REML Fisher-scoring algorithm, with Fisher-information matrix F (θ(k)) and score

vector S(θ(k)), is

9



1. Set the initial values β(0), θ(0), and εk > 0, r = 1, . . . , p+ 3.

2. Repeat the following steps until the tolerance or the boundary conditions are fulfilled.

(a) Updating equation for θ: Do θ(k+1) = θ(k) + F−1(θ(k))S(θ(k)).

(b) Boundary condition: If θ
(k+1)
1 > 0, θ

(k+1)
2 > 0 and

∣∣θ(k+1)
3

∣∣ < 1, continue. Other-

wise, do θ̂ = θ(k) and stop.

(c) Updating equation for β: Do β(k+1) =
(
X ′V −1(θ(k+1))X

)−1
X ′V −1(θ(k+1))y.

(d) Tolerance condition: If
∣∣θ(k+1)
` − θ(k)

`

∣∣ < εp+`,
∣∣β(k+1)
k − β(k)

k

∣∣ < εk, r = 1, . . . , p,

` = 1, 2, 3, do θ̂` = θ
(k+1)
` , β̂ = β(k+1) and stop. Otherwise, continue.

3. Output: θ̂, β̂, F−1(θ̂),
(
X ′V −1(θ̂)X

)−1

.

The asymptotic distributions of the REML estimators θ̂ and β̂,

θ̂ ∼ N3(θ, F−1(θ)), β̂ ∼ Nk(β, (X
′V −1(θ)X)−1),

can be used to construct (1− α)-level confidence intervals for the components θ` of θ and

βi of β. Let βi denote the i-th component of the vector β, not the vector of regression

parameters of the i-th component. The confidence intervals are given by

θ̂` ± zα/2 ν1/2
`` , ` = 1, 2, 3, β̂i ± zα/2 q1/2

ii , i = 1, . . . , r, (8)

where F−1(θ̂) = (νab)a,b=1,2,3, (X ′V −1(θ̂)X)−1 = (qij)i,j=1,...,k and zα is the α-quantile of the

N(0, 1) distribution. For β̂i = β0, the p-value for testing the hypothesis H0 : βi = 0 is

p-value = 2PH0(β̂i > |β0|) = 2P (N(0, 1) > |β0|/
√
qii ). (9)
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5 Analytic approximation of the mean squared errors

5.1 Best predictors

Let us first consider the group D1. We use the notation

Φd1 =
(
Ad1 + V −1

ud

)−1
,

 φd1,11 φd1,12

φd1,12 φd1,22

 , Ad1 =

 σ−2
ed1 0

0 0

 .

As µ̂bpd − µd = ûbpd − ud, the MSE matrix of µ̂bpd is

MSE(µ̂bpd ) = MSE(ûbpd ) = E
[
(ûbpd − ud)(û

bp
d − ud)

′]
= Φd1Ad1(Vud + Ved)Ad1Φd1 + Vud − 2Φd1Ad1Vud.

For the group D2, we have similar mathematical derivations. For the sake of brevity, we

omit them.

Let us consider the group D3. As µ̂bpd − µd = ûbpd − ud, the MSE matrix of µ̂bpd is

MSE(µ̂bpd ) = MSE(ûbpd ) = E
[
(ûbpd − ud)(û

bp
d − ud)

′]
= ΦdV

−1
ed (Vud + Ved)V

−1
ed Φd + Vud − 2ΦdV

−1
ed Vud.

5.2 Empirical best predictors

We sketch the derivation for the empirical best predictors for group D1. The mathematical

derivations for group D2 and D2 are mostly analogous.

For d ∈ D1, we have the following approximation to MSE(µ̂ebpd ).

MSE(µ̂ebpd ) = Gd1(θ) +Gd2(θ) +Gd3(θ) +O2×2(D−1),
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where Gd2(θ) = Gd2,11(θ) +Gd2,22(θ) +Gd2,12(θ) +G′d2,12(θ) and

Gd1(θ) = Φd1(θ)Ad1(θ)(Vud(θ) + Ved(θ))Ad1(θ)Φd1(θ) + Vud(θ)− 2Φd1(θ)Ad1(θ)Vud(θ),

Gd2,ab(θ) =

 tr{Hdβbβa,11(θ) cov(β̂a, β̂b)} tr{Hdβbβa,21(θ) cov(β̂a, β̂b)}

tr{Hdβbβa,12(θ) cov(β̂a, β̂b)} tr{Hdβbβa,22(θ) cov(β̂a, β̂b)}

 , a, b = 1, 2,

Gd3(θ) =
σ2
ud1 + σ2

ed1

σ4
ed1

 tr{Gdθθ,11(θ) var(θ̂)} tr{Gdθθ,21(θ) var(θ̂)}

tr{Gdθθ,12(θ) var(θ̂)} tr{Gdθθ,22(θ) var(θ̂)}

 .

The remaining vectors and matrices are derived as follows. The EBP is a function of

the estimators (β̂, θ̂) and of the target variable yd1. For the sake of brevity, we write

hd(β̂, θ̂) , µ̂ebpd = Xdβ̂ + Φ̂d1Ad1(yd̄1 −Xdβ̂),

where Φ̂d1 = Φd1(θ̂) =
(
Ad1 + V̂ −1

ud

)−1

, V̂ud = Vud(θ̂) =

 σ̂2
u1 ρ̂σ̂u1σ̂u2

ρ̂σ̂u1σ̂u2 σ̂2
u2

 .

The derivatives of matrix Φd1(θ) with respect to θ`, ` = 1, 2, 3, are

∂Φd1

∂θ`
=
(
Ad1 + V −1

ud

)−1
V −1
ud Vud`V

−1
ud

(
Ad1 + V −1

ud

)−1
=

 φd1`,11 φd1`,12

φd1`,12 φd1`,22

 .

The derivatives of hd(β, θ) with respect to βkj and θ`, k = 1, 2, j = 1, . . . , pk, ` = 1, 2, 3,

are

∂hd
∂β1j

=

 xd1j

0

− xd1j

σ2
ed1

 φd1,11

φd1,12

 ,
 hdβ1j ,1

hdβ1j ,2

 ,
∂hd
∂β2j

=

 0

xd2j

 ,
 hdβ2j ,1

hdβ2j ,2

 ,

∂hd
∂θ`

=
∂Φd1

∂θ`
Ad1(yd̄1 −Xdβ) =

yd1 − x′d1β1

σ2
ed1

 φd1`,11

φd1`,12

 , yd1 − x′d1β1

σ2
ed1

 gdθ`,1

gdθ`,2

 .

The 3×1 vectors containing the derivatives with respect to θ are gdθ,1 = col
1≤`≤3

(
gdθ`,1

)
, gdθ,2 =

col
1≤`≤3

(
gdθ`,2

)
and the corresponding 3× 3 matrices are Gdθθ,ab = gdθ,ag

′
dθ,b, a, b = 1, 2.
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The pk × 1 vectors containing the derivatives with respect to βk, k = 1, 2, are

hdβk,1 = col
1≤j≤pk

(
hdβkj ,1

)
, hdβk,2 = col

1≤j≤pk

(
hdβkj ,2

)
,

and the corresponding pk1 × pk2 matrices are Hdβk1βk2 ,ab
= hdβk1 ,ah

′
dβk2 ,b

, k1, k2, a, b = 1, 2.

An estimator of MSE(µ̂ebpd ) is

mse(µ̂ebpd ) = Gd1(θ̂) +Gd2(θ̂) + 2Gd3(θ̂).

6 Bootstrap approximations of the mean squared er-

rors

This section introduces a parametric bootstrap procedure for approximating MSE(µ̂ebpd ).

Steps B1–B5 below describe the basic procedure for computing an approximation ofMSE(µ̂ebpd )

called direct parametric bootstrap estimator.

Parametric bootstrap procedure:

B1. Calculate the REML (or ML) estimates θ̂ and β̂ of θ and β respectively by using the

observable data, i.e. (yd1, Xd) ∀d ∈ D1, (yd2, Xd) ∀d ∈ D2, and (yd, Xd) ∀d ∈ D3.

B2. ∀d ∈ {1, . . . , D}, generate independent and identically distributed vectors u∗d ∼

N2(0, Vud(θ̂)).

B3. ∀d ∈ {1, . . . , D}, generate independent vectors e∗d ∼ N2(0, Ved).

B4. Construct the bootstrap model

y∗d = Xdβ̂ + u∗d + e∗d, ∀d ∈ {1, . . . , D}.
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For step B5 we introduce further notation. Let E∗ and MSE∗ denote the expectation and

MSE under the probability distribution induced by bootstrap model B4, given the initial

target vector y. The bootstrap mean vectors are

µ∗d = Xdβ̂ + u∗d, ∀d ∈ {1, . . . , D}.

Let β̂∗ and θ̂∗ be the REML (or ML) estimators of the parameters β̂ and θ̂ of bootstrap

model B4. These estimators are calculated by using only the observable bootstrap data

(y∗d1, Xd) if d ∈ D1, (y∗d2, Xd) if d ∈ D2, and (y∗d, Xd) if d ∈ D3.

Let µ̂∗bpd and µ̂∗ebpd be the BP and EBP of µ∗d under model B4 ∀d ∈ {1, . . . , D}. In the

same way, the bootstrap MSE of µ̂∗ebpd is

MSE1
∗(µ̂
∗ebp
d ) = E∗[(µ̂

∗ebp
d − µ∗d)(µ̂

∗ebp
d − µ∗d)′], ∀d ∈ {1, . . . , D}.

These 2× 2 matrices are called parametric bootstrap estimators. In practice, these estima-

tors can be approximated via Monte Carlo as described in B5.

B5. Generate B bootstrap vectors y∗(b) = (y
∗(b)
d : d ∈ {1, . . . , D}), b = 1, . . . , B, from

model B4. From each vector y∗(b), calculate the true means µ
∗(b)
d and their EBPs

µ̂
∗ebp(b)
d by using only the observable bootstrap data. Then compute the direct boot-

strap estimators

mse1(µ̂ebpd ) = B−1

B∑
b=1

(µ̂
∗ebp(b)
d − µ∗(b)d )(µ̂

∗ebp(b)
d − µ∗(b)d )′, ∀d ∈ {1, . . . , D}. (10)

Observe that mse1(µ̂∗ebpd ) is consistent for MSE1
∗(µ̂
∗ebp
d ) as B →∞.

We can also apply the bootstrap technique to approximate the terms G2 and G3 of

MSE(µ̂ebpd ). Following this idea, we define the term-to-term bootstrap estimator as

MSE2
∗(µ̂
∗ebp
d ) = Gd1(θ̂) + E∗[(µ̂

∗ebp
d − µ̂∗bpd )(µ̂∗ebpd − µ̂∗bpd )′].

14



As the plug-in estimator Gd1(θ̂) of Gd1(θ) is biased, we introduce the bias-corrected boot-

strap estimator

MSE3
∗(µ̂
∗ebp
d ) = 2Gd1(θ̂)− E∗[Gd1(θ̂∗)] + E∗[(µ̂

∗ebp
d − µ̂∗bpd )(µ̂∗ebpd − µ̂∗bpd )′].

A Monte Carlo approximation msea(µ̂∗ebpd ) of the bootstrap matrix MSEa
∗(µ̂
∗ebp
d ), for a =

2, 3, can be obtained similarly as (10).
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