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Abstract
We consider a situation where the sample design of a survey is modified over time in order
to save resources. The former design is a classical large-scale survey. The new design
is a mixed mode survey where a smaller classical sample is augmented by records of an
online survey. For the online survey no inclusion probabilities are available. We study
how this change of data collection affects regression coefficient estimation when the model
remains constant in the population over time. Special emphasis is placed on situations
where the online records are selective with respect to the model. We develop a statistical
framework to quantify so-called survey discontinuities in regression analysis. The term
refers to differences between coefficient estimates that solely stem from the survey redesign.
For this purpose, we apply hypothesis tests to identify whether observed differences in
estimates are significant. Further, we discuss propensity estimation and calibration as
potential methods to reduce selection biases stemming from the web survey. A Monte Carlo
simulation study is conducted to test the methods under different degrees of selectivity. We
find that even mild informativeness significantly impairs regression inference relative to the
former survey despite bias correction.

Keywords: Calibration, hypothesis test, informative sampling, propensity score estimation

1 Introduction

Survey samples long have been the primary data sources for empirical analysis in various
research fields, such as economics, sociology, and political science. For the collection of a
survey sample, essential features like sampling frame and sample design must be defined
in order to associate every individual of the target population with a non-zero inclusion
probability. After the sampling process, these probabilities are anticipated in the statistical
analysis to allow for sound inference. See Särndal et al. (1992) or Fuller (2009) for a
comprehensive overview. However, the collection of exhaustive survey samples – especially
on national levels – is typically very costly. Therefore, sample sizes are more and more
reduced by policy-makers in order to save resources. Naturally, this leads to an increase in
sample variance that may impair estimation quality beyond acceptable levels. In this case,
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alternative data sources such as online surveys are often considered to augment classical
sample observations by reducing variance in the estimation process. The combination of a
classical survey and an online survey is called web-augmented mixed mode survey. It usually
contains a comparable number of sampled individuals relative to a classical exhaustive
survey, but is faster and considerably cheaper to collect.

There is an ongoing debate to what extent web-augmented mixed mode surveys represent
true alternatives to classical large-scale surveys. An important drawback of online data
is that it is typically not possible to quantify inclusion probabilities since the sampling
frame is unknown. In some situations, there is information available that can be used to
approximate the unknown inclusion probabilities, for instance via propensity score estima-
tion (Rosenbaum and Rubin, 1983) or calibration methods (Deville and Särndal, 1992).
However, in the absence of such information, the sample observations have to be treated
as the result of a simple random sample. This marks a major issue for statistical inference,
as online surveys are known to be affected by informative sampling due to framing errors
and coverage problems (Zagheni and Weber, 2015). The term informative sampling refers
to situations where the inclusion probabilities are not independent from the outcomes of a
statistical model after conditioning on auxiliary data (Pfeffermann and Sverchkov, 2009).
If not accounted for, this can lead to severe bias in the empirical analysis. Therefore, it has
to be carefully evaluated how web-augmented data collection alters estimation outcomes
relative to a classical survey, and whether it really improves their quality.

A suitable concept for a corresponding evaluation is called survey discontinuity (van den
Brakel et al., 2008). It quantifies the difference between two estimates of a given statistic
that solely stems from a change in the preceding sampling process. In the literature, survey
discontinuities are typically assessed via model-based time series analysis. On that note,
van den Brakel and Roels (2010) use a state-space intervention model for the estimation
of discontinuities in a Dutch survey on social participation and environmental conscious-
ness. Smith et al. (2017) study potential discontinuities in the National Survey for Wales.
Further, van den Brakel et al. (2020) compare the state-space intervention approach with
a structural time series model that is combined with a parallel run of the former survey
design. These studies provide important insights into how the predictive inference based
on corresponding models is affected by the redesign of a survey.

In this paper, survey discontinuities are investigated from a different perspective. On the
example of linear regression, we study how inference with respect to the model parameters
themselves is affected by changes in the sampling process. For this, we consider a situation
where the sample design of a survey is modified over time in order to save resources. The
former design is a classical large-scale survey, while the new design is a web-augmented
mixed mode survey consisting of a small classical sample and records of an online survey.
For latter, no information about inclusion probabilities is available. Under the assumption
that the model is constant in the population over time, we develop a statistical framework
to quantify sampling-related differences in regression coefficient estimates between both
periods. Hypothesis tests are used to assess whether found differences are significant under
the null hypothesis of equality. Further, we address the issue of informative sampling in on-

2



line surveys by discussing propensity score estimation and calibration as potential methods
for approximating the missing inclusion probabilities. An extended Monte Carlo simulation
study is conducted where the corresponding setting is implemented based on the synthetic
dataset AMELIA (Burgard et al., 2017). We consider different scenarios with respect to
the degrees of informativity associated with the augmenting online survey records. We
find that even mild informativeness of the augmenting data significantly impairs regression
inference relative to the former survey despite using correction methods.

The remainder of the paper is organized as follows. In Section 2, the statistical framework
to quantify the impact of the data collection change on regression coefficient estimation as
well as the correction methods are presented. Section 3 contains the simulation study as
well as a critical analysis of its results. Section 4 closes with some conclusive remarks and
an outlook on future research.

2 Theory

We first present the statistical framework to quantify differences between regression coeffi-
cient estimates that may indicate survey discontinuities resulting from web-augmentation.
Thereafter, we present propensity score estimation and calibration as correction methods
for bias stemming from missing inclusion probabilities and informative sampling as a result
of self-selectivity in online records.

2.1 Sampling

For the subsequent developments, we follow the definitions for finite population inference
based on survey sampling provided by Cassel et al. (1977), Chapter 1. Consider a finite
population at two time periods t ∈ {1, 2}. Let U1 = {1, ..., N1} denote the population
in period t = 1 containing |U1| = N1 individuals indexed by i = 1, ..., N1. Likewise, let
U2 = {1, 2, ..., N2} be the population in period t = 2 containing |U2| = N2 individuals
indexed by i = 1, ..., N2. For the first period, assume that a survey sample S1 ⊂ U1 of
size |S1| = n1 < N1 is drawn from U1 under a given sample design. We define the term
sample design as a function that associates every possible subset of the required size from
the population of a period with a probability of being chosen. Thus, for period t = 1, the
sample design is formally given by P1 : S1 → [0, 1] with S1 = {S1 : S1 ⊂ U1 ∧ |S1| = n1}
and

∑
S1∈S1 P1(S1) = 1. The inclusion probability for some i ∈ S1 is denoted by

π1i := Pr(i ∈ S1) =
∑
S1∈S1

1(i∈S1)P1(S1), (1)

where 1(·) is the indicator function. For the second period, let a survey sample S2 of size
|S2| = n2 < N2 and (n2/N2) < (n1/N1) be drawn from U2. Suppose that the sample design
P2 : S2 → [0, 1] with S2 = {S2 : S2 ⊂ U2 ∧ |S2| = n2} and

∑
S2∈S2 P2(S2) = 1 is different

from the design in the last period. The inclusion probability for some i ∈ S2 is denoted by

π2i := Pr(i ∈ S2) =
∑
S2∈S2

1(i∈S2)P2(S2). (2)

3



Let D ⊂ U2 be an additional subset of the population in period t = 2 with |D| = nD.
The subset represents the online dataset that is used for augmenting the records from the
smaller sample in t = 2. In light of Section 1, suppose that there is no information available
on how D is collected. Although, for simplicity, assume that D ∩ S2 = ∅.

2.2 Regression Coefficient Estimation

Let y be a real-valued response variable of interest with realization yit ∈ R for some i ∈ Ut.
Denote x = {x1, ..., xp} as a set of real-valued covariates statistically related to y with
realization xit ∈ R1×p for i ∈ Ut. Suppose the relation for any i ∈ Ut is characterized by

yti = xtiβ + eti, eti
iid∼ N(0, σ2), (3)

where β ∈ Rp×1 is a vector of unknown regression coefficients and eit is a random model
error with variance parameter σ2 > 0. Note that we assume (3) to hold for all individuals
and time periods. Hence, β is constant for t = 1, 2. Let the pair (yti,xti) be observed for
all individuals in S1 as well as S2 ∪ D. The objective is to estimate β from each temporal
data basis individually. For t = 1, this can be done via weighted least squares according to

β̂1 = argmin
β∈Rp

∑
i∈S1

π−11i (y1i − x1iβ)2

= argmin
β∈Rp

(y1 −X1β)′Π−11 (y1 −X1β)

= argmin
β∈Rp

y′1Π
−1
1 y1 − y′1Π

−1
1 X1β − β′X′1Π

−1
1 y1 + β′X′1Π

−1
1 X1β,

(4)

where y1 = (y11, ..., y1n1)
′, X1 = (x′11, ...,x

′
1n1

)′, and Π1 = diag(π11, ..., π1n1). We differenti-
ate with respect to β and set the gradient to zero:

∇β̂1
= 2

(
−X′1Π

−1
1 y1 + X′1Π

−1
1 X1β

) !
= 0p. (5)

Solving for β then yields the well-known weighted least squares estimator

β̂1 =
(
X′1Π

−1
1 X1

)−1
X′1Π

−1
1 y1. (6)

Let e1 = (e11, ..., e1n1)
′ denote the model error vector of all sampled individuals i ∈ S1

with Var(e1) = σ2In1 , where In1 is the (n1 × n1)-identity matrix. Since (6) is an unbiased
estimator of β and e1 is the only random component, its variance is given by

Var(β̂1) = E

[(
β̂1 − β

)(
β̂1 − β

)′]
= E

[(
X′1Π

−1
1 X1

)−1
X′1Π

−1
1 e1

((
X′1Π

−1
1 X1

)−1
X′1Π

−1
1 e1

)′]
=
(
X′1Π

−1
1 X1

)−1
X′1Π

−1
1 σ2In1Π

−1
1 X1

(
X′1Π

−1
1 X1

)−1
.

(7)

For t = 2, we have to pool the observations from S2 and D to create a combined objective
function for regression coefficient estimation. Recall that we have information on inclusion
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probabilities for sampled individuals in S2, but not for individuals in D. Under this premise,
the weighted least squares estimator of β is the solution to the optimization problem

β̂2 = argmin
β∈Rp

∑
i∈S2

π−12i (y2i − x2iβ)2 +
∑
i∈D

N2

nD
(yDi − xDiβ)2

= argmin
β∈Rp

((y′2,y
′
D)′ − (X′2,X

′
D)′β)

′
Π−12D ((y′2,y

′
D)′ − (X′2,X

′
D)′β)

= argmin
β∈Rp

(y′2,y
′
D)Π−12D(y′2,y

′
D)′ − (y′2,y

′
D)Π−12D(X′2,X

′
D)′β

− β′(X′2,X
′
D)Π−12D(y′2,y

′
D)′ + β′(X′2,X

′
D)Π−12D(X′2,X

′
D)′β

(8)

where y2 = (y21, ..., y2n2)
′, yD = (yD1, ..., yDnD)′, X2 = (x′21, ...,x

′
2n2

)′, XD = (x′D1, ...,x
′
DnD

)′.
Further, Π2D is a [(n2 + nD) × (n2 + nD)]-diagonal matrix where π21, ..., π2n2 are the first
n2 main diagonal elements and the remaining nD elements are given by nD/N2. As before,
we differentiate with respect to β and set the gradient to zero:

∇β̂2
= 2

(
−(X′2,X

′
D)Π−12D(y′2,y

′
D)′ + (X′2,X

′
D)Π−11 (X′2,X

′
D)′β

) !
= 0p. (9)

Solving for β yields the weighted least squares estimator based on the combined data

β̂2 =
(
(X′2,X

′
D)Π−12D(X′2,X

′
D)′
)−1

(X′2,X
′
D)Π−12D(y′2,y

′
D)′. (10)

Note that with this specification of Π2D, we have to assume that the observations in D have
been collected via simple random sampling, or at least such that they are non-informative
with respect to the model. That is to say, E(yi|xi) = E(yi|xi,1(i∈{S2∪D})) must be fulfilled
for all i ∈ U2. By the comments on online survey records in Section 1, this may not
hold in practice. In the worst case, it leads to β̂2 being a biased estimator of β. Let
e2 = (e21, ..., e2n2)

′ and eD = (eD1, ..., eDnD)′ denote the model error vectors for all i ∈ S2
and i ∈ D, respectively, with Var(e′2, e

′
D) = σ2In2+nD . Provided the non-informativity

assumption is fulfilled and by the argumentation for (7), the variance of β̂2 is given by

Var(β̂2) = E

[(
β̂2 − β

)(
β̂2 − β

)′]
= E

[
A−1(X′2,X

′
D)Π−12D(e′2, e

′
D)′
(
A−1(X′2,X

′
D)Π−12D(e′2, e

′
D)′
)′]

= A−1(X′2,X
′
D)Π−12Dσ

2In2+nDΠ−12D(X′2,X
′
D)′A−1,

(11)

where A = (X′2,X
′
D)Π−12D(X′2,X

′
D)′.

2.3 Hypothesis Test

We now present the concept of survey discontinuities in our setting. For this, we have
to assess whether the regression coefficient estimates based on S1 as well as S2 ∪ D differ
significantly. If the model (3) holds in the population over time and the web-augmented
mixed mode survey S2∪D is not affected by informative sampling, then there should be no
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differences between estimates β̂1 and β̂2 on expectation. In order to evaluate this aspect
quantitatively, we follow Clogg et al. (1995) and Pasternoster et al. (1998) by using a t-test
for two independent samples that tests the equality of regression coefficient estimates. For
two given estimates β̂1j ∈ β̂1 and β̂2j ∈ β̂2, the null hypothesis is H0 : β̂1j = β̂2j. The
corresponding test statistic is given by

Tj =
β̂1j − β̂2j√

Var(β̂1j) + Var(β̂2j)
, (12)

where Var(β̂1j) and Var(β̂2j) are the j-th elements of Var(β̂1) and Var(β̂2), respectively.
The test statistic approximately follows a standard normal distribution for n1 and n2 + nD
sufficiently large. A deviation between estimates is called significant if we have

Tj /∈ [z(α/2); z(1− α/2)], α ∈ (0, 1) (13)

for some significance level α and the related quantile z(·) of the standard normal distribu-

tion. Please note that even if E(β̂1) = E(β̂2), it holds that

E
(
1Tj /∈[z(α/2);z(1−α/2)]

)
= α, j = 1, ..., p. (14)

That is to say, for repeated samples S1 and S2 ∪ D that are drawn iteratively as decribed
before, and for corresponding regression coefficient estimates β̂1 and β̂2, we still find sig-
nificant deviations in α ·100% of cases under non-informative sampling. However, if S2∪D
is affected by informative sampling, then β̂2 is biased and E(β̂1) 6= E(β̂2). In this case, the
expectation (15) is larger than α, which indicates systematic deviations stemming from the
survey redesign. In other words, we define a survey discontinuity as a situation where

E
(
1Tj /∈[z(α/2);z(1−α/2)]

)
> α, j = 1, ..., p (15)

under the assumption of an underlying constant model over time.

2.4 Correction Methods

We now discuss common methods to account for the bias stemming from missing inclusion
probabilities and informative sampling. Recall the diagonal matrix Π2D defined in Section
2.1. This matrix induces a weighting scheme over the observations from the mixed mode
survey S2 ∪ D for the weighted least squares estimator presented in (10). Due to the lack
of information regarding the inclusion probabilities for the sampled individuals i ∈ D, the
term nD/N was used for weighting. As discussed in the previous section, this choice may
not be suitable depending on how D was collected. In what follows, we show how propensity
score estimation and calibration methods can be used to adjust the weighting scheme for
situations where the records of the online records are informative.

We start with propensity score estimation. For this, we draw from developments provided
by Rosenbaum and Rubin (1983) as well as Lee (2006). However, please note that we
partially modify their proposed methods in order to make them applicable to our setting.
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The basic idea of applying propensity scores within the statistical framework presented in
Section 2.1 is to estimate the unknown inclusion probabilities for all i ∈ D by means of a
logit model (Nelder and Wedderburn, 1972). That is to say, we assume that there exists a
set of real-valued variables z = {z1, ..., zq} with observed realizations zi ∈ R1×q such that
Pr(i ∈ D|zi) is equal for all individuals. In this case, the logit model describes the log-odds
for sample inclusion as a linear function of the z-realizations according to

ηi(γ) := log
Pr(i ∈ D)

1− Pr(i ∈ D)
= ziγ. (16)

where γ ∈ Rq×1 is a vector of unknown logit regression coefficients. If (16) holds, then

πDi := Pr(i ∈ D) =
exp(ziγ)

1 + exp(ziγ)
=

1

1 + exp(−ziγ)
(17)

quantifies the unknown inclusion probability for some i ∈ D, as desired. The remaining
step is to estimate the vector of unknown logit regression coefficients. This can be done via
maximum likelihood estimation. We minimize the negative loglikelihood under the model

γ̂ = argmin
γ∈Rq

− log
∏

i∈{S2∪D}

(πDi)
1(i∈D)

= argmin
γ∈Rq

−
∑

i∈{S2∪D}

[
1(i∈D)ηi(γ)− log (1 + exp(ziγ))

]
.

(18)

The solution to (18) can be found numerically, for instance via a Newton-Raphson algo-
rithm. See Train (2009), Chapter 8, for comprehensive insights on the estimation of logit
models. Once the logit regression coefficients have been estimated, the inclusion probability
for some i ∈ D is estimated via model prediction as follows:

π̂Di =
exp(ziγ̂)

1 + exp(ziγ̂)
=

1

1 + exp(−ziγ̂)
. (19)

The estimated inclusion probability can then be used in order to replace the corresponding
main diagonal element of Π2D to adjust the weighting scheme for the weighted least squares
estimator presented in (10).

We continue with the calibration approach. For this, we rely on developments provided by
Deville and Särndal (1992) and Burgard et al. (2019). Define

τ 2X = (τ2X1 , ..., τ2Xp) with τ2Xj
=
∑
i∈U2

x2ij, j = 1, ..., p (20)

as covariate population totals and let

τ̂ 2X = (τ̂2X1 , ..., τ̂2Xp), with τ̂2Xj
=

∑
i∈{S2∪D}

w2ix2ij, j = 1, ..., p (21)

denote the sample estimator of them. Note that (21) is based on the weights w2i that cor-
respond to π−12i or N2/nD, depending on whether i ∈ S2 or i ∈ D, respectively. Calibration
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in our setting is used to adjust the original weights w21, ..., w2n2+nD such that the popula-
tion totals (20) are reproduced by the sample estimators (21). The basic idea is that the
marginal sample covariate distributions are forced to be consistent with the marginal popu-
lation covariate distributions. As we are interested in the conditional expectation E(Y |X),
correcting the marginal distribution of X may reduce the bias in regression coefficient es-
timation when the informativeness of sample inclusion depends on the covariates. For this
purpose, we choose a function D : R→ R that (implicitely) quantifies the distance between
an original weight w2i and an adjusted weight w2ig2i, where g2i ∈ R is an correction weight.
The objective is to minimize the sum over all weight distances while simultaneously ensur-
ing that the estimates in (21) reproduce (20) when the correction weights g21, ..., g2n2+nD

are used. That is to say, we solve the constrained optimization problem

min
g2∈Rn2+nD

∑
i∈{S2∪D}

D(g2i) s.t.
∑

i∈{S2∪D}

w2ig2ix2ij = τ2Xj
, j = 1, ..., p, (22)

where g2 = (g21, ..., g2n2+nD). Note that the optimal correction weights, let’s say ĝ21, ..., ĝ2n2+nD ,
heavily depend on the choice of D. We use the raking function (Deville and Särndal, 1993)

D(g2i) = g2i log g2i − g2i + 1, (23)

as it produces non-negative weights without additional box constraints. The inclusion
of box constraints in (22) leads to differentiability problems, as shown by Rupp (2018).
Solving the problem then would require quite sophisticated numerical procedures, such as
semismooth Newton methods. With the raking function, a standard Newton-Raphson can
be used. For further insights on calibration with other distance functions, see Singh and
Mohl (1996), as well as Devaud and Tillé (2019). In light of our baseline problem, which is
to find a new weighting scheme in order to account for the missing inclusion probabilities,
we replace the main diagonal element in Π2D that corresponds to some sampled individual
i ∈ {S2 ∪ D} by the term π̂2i = (w2iĝ2i)

−1.

3 Simulation Study

3.1 Setup

A Monte Carlo simulation study with R = 1 000 iterations indexed by r = 1, ..., R is
conducted. We use the synthetic dataset AMELIA on the person-level (Burgard et al.,
2017). It contains a realistic artificial population that is generated based on data obtained
from the large-scale survey EU statistics on income and living conditions (EU-SILC). See
European Commission (2019) for insights on EU-SILC. The AMELIA population consists
of 10 012 600 individuals that are hierarchically located in 11 provinces, 40 districts, and
1 592 cities. For the simulation, we draw a random subset of 1 000 000 individuals from the
population via simple random sampling. This subset is drawn once prior to the simulation
and marks the target population for the subsequent statistical analysis. However, as the
AMELIA population is based on a cross-sectional survey, we need to implement an artificial
temporal shift for the variables of interest in order to reproduce the statistical framework
described in Section 2. The variables of interest are as follows:
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• INC : personal income / sum of all income variables (Y )

• PY010 : employee cash or near-cash income (X1)

• SOC : social income (X2)

We are interested in the statistical relation Y ∼ β1X1 + β2X2 within the target population
for two time periods. Recall that we assumed the linear model (3) holds for both t = 1
and t = 2. Therefore, we use the drawn AMELIA subset for both t = 1 and t = 2 in order
to avoid unintended model discontinuities that may result from projecting population from
one period into the next. In each iteration of the simulation, we draw samples from the
target population for both time periods. For t = 1, we draw a 1%-sample of n1 = 10 000
persons via stratified random sampling. The strata are the 40 districts of AMELIA, while
the stratum-specific sample fraction is 1%. This sample represents S1 in accordance with
Section 2. For t = 2, we also draw via stratified random sampling in order to obtain S2.
However, the strata are the 11 districts of AMELIA with a proportional stratum-specific
sample fraction that varies over simulation scenarios. We let the contribution of |S2| = n2

to the total sample size n2 + nD = 10 000 vary according to n2 ∈ {2 000, 5 000} in order to
study the simulation outcomes under different degrees of augmentation.

Further, we consider four different settings with respect to the informativity of the online
records of the web survey. The first is no informativity, where D is drawn via simple random
sampling from the target population. The second is mild informativity, D is drawn via
simple random sampling from a subgroup of the population. In particular, we only consider
individuals with age between 18 and 45. With this selection, some degree of informativity
is achieved due to age being positively correlated to income in AMELIA. Next, we have
medium informativity, where the (unknown) inclusion probabilities are defined as

π2i = (n1 − n2) ·
x21i∑
i∈U2 x21i

, ∀ i ∈ U2 \ S2. (24)

Thus, the inclusion probabilities for the augmenting online data set positively depend
on covariate realizations. Therefore, people with larger value for PY010 have a higher
probability of being selected. Finally, we have strong informativity by letting the person-
specific inclusion probabilities directly depend on the realizations of INC :

π2i = (n1 − n2) ·
y2i∑
i∈U2 y2i

, ∀ i ∈ U2 \ S2. (25)

All in all, the simulation scenarios are characterized in Table 1. Under these scenarios,
the results of both survey discontinuity evaluation and regression analysis are measured as
follows. For the first aspect, we look at the proportion of significant deviations (PSD) in
the sense of (13) for a given significance level

PSD(β̂j, α) =
1

R

R∑
r=1

1(T r
j /∈[z(α/2),z(1−α/2)]), α ∈ {0.10, 0.05, 0.01}. (26)
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Scenario Sample Sizes Augmented Informative Correction
1 n2 = 2 000 No No No
2 n2 = 2 000, nD = 8 000 Yes No No
3 n2 = 2 000, nD = 8 000 Yes Mild No
4 n2 = 2 000, nD = 8 000 Yes Medium No
5 n2 = 2 000, nD = 8 000 Yes Strong No
6 n2 = 2 000, nD = 8 000 Yes No Propensity Score
7 n2 = 2 000, nD = 8 000 Yes Mild Propensity Score
8 n2 = 2 000, nD = 8 000 Yes Medium Propensity Score
9 n2 = 2 000, nD = 8 000 Yes Strong Propensity Score
10 n2 = 2 000, nD = 8 000 Yes No Calibration
11 n2 = 2 000, nD = 8 000 Yes Mild Calibration
12 n2 = 2 000, nD = 8 000 Yes Medium Calibration
13 n2 = 2 000, nD = 8 000 Yes Strong Calibration
14 n2 = 5 000 No No No
15 n2 = 5 000, nD = 5 000 Yes No No
16 n2 = 5 000, nD = 5 000 Yes Mild No
17 n2 = 5 000, nD = 5 000 Yes Medium No
18 n2 = 5 000, nD = 5 000 Yes Strong No
19 n2 = 5 000, nD = 5 000 Yes No Propensity Score
20 n2 = 5 000, nD = 5 000 Yes Mild Propensity Score
21 n2 = 5 000, nD = 5 000 Yes Medium Propensity Score
22 n2 = 5 000, nD = 5 000 Yes Strong Propensity Score
23 n2 = 5 000, nD = 5 000 Yes No Calibration
24 n2 = 5 000, nD = 5 000 Yes Mild Calibration
25 n2 = 5 000, nD = 5 000 Yes Medium Calibration
26 n2 = 5 000, nD = 5 000 Yes Strong Calibration

Table 1: Characterization of Simulation Scenarios

For regression analysis, we consider bias and variance of model parameter estimation

Bias(β̂tj) =
1

R

R∑
r=1

β̂rtj − βtj, Var(β̂tj) =
1

R

R∑
r=1

(
β̂rtj −R−1

R∑
s=1

β̂stj

)2

(27)

for t ∈ {1, 2}. Here, the true value βtj corresponds to the obtained regression coefficient
estimate when considering all individuals from the population of a given period. We further
look at the corresponding mean squared error (MSE), which is given by

MSE(β̂tj) =
1

R

R∑
r=1

(
β̂rtj − βtj

)2
. (28)
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3.2 Results

We start with survey discontinuity evaluation. They are summarized in Table 2. The table
contains the PSD (26) at the significance levels 10%, 5%, and 1%. Note that we restrict
the analysis to β1 in order to avoid confusion resulting from oversized tables. Further,
recall equation (15) stating that we expect α · 100% significant deviations in the absence of
informative sampling. Survey discontuities are indicated by surpassing this expectation.

Scenario Data Cor. Informative 10% 5% 1%
n2 = 2 000, nD = 8 000

1 S2 No No 0.119 0.061 0.019
2 S2 ∪ D No No 0.112 0.058 0.013
3 S2 ∪ D No Mild 0.632 0.509 0.281
4 S2 ∪ D No Medium 0.941 0.892 0.758
5 S2 ∪ D No Strong 1.000 1.000 1.000
6 S2 ∪ D PS No 0.137 0.058 0.014
7 S2 ∪ D PS Mild 0.605 0.466 0.233
8 S2 ∪ D PS Medium 0.921 0.857 0.656
9 S2 ∪ D PS Strong 1.000 1.000 1.000
10 S2 ∪ D Cal No 0.129 0.058 0.013
11 S2 ∪ D Cal Mild 0.620 0.482 0.255
12 S2 ∪ D Cal Medium 0.925 0.876 0.724
13 S2 ∪ D Cal Strong 1.000 1.000 1.000

n2 = 5 000, nD = 5 000
14 S2 No No 0.113 0.052 0.015
15 S2 ∪ D No No 0.106 0.051 0.013
16 S2 ∪ D No Mild 0.658 0.541 0.320
17 S2 ∪ D No Medium 0.892 0.836 0.656
18 S2 ∪ D No Strong 1.000 1.000 1.000
19 S2 ∪ D PS No 0.206 0.110 0.040
20 S2 ∪ D PS Mild 0.400 0.248 0.092
21 S2 ∪ D PS Medium 0.785 0.666 0.438
22 S2 ∪ D PS Strong 1.000 1.000 1.000
23 S2 ∪ D Cal No 0.112 0.061 0.017
24 S2 ∪ D Cal Mild 0.457 0.326 0.135
25 S2 ∪ D Cal Medium 0.854 0.778 0.594
26 S2 ∪ D Cal Strong 1.000 1.000 1.000

Table 2: Proportion of Significant Devations per Significance Level

Let us first investigate the overall dependence of PSD and informativity of the augmenting
data. In the absence of augmenting data (Scenario 1 and 14), the PSD is between 1.5%
and 11.9%, depending on the significance level chosen for the test. By the expectation
defined in (15), this is in line with theory. The small deviations from the expected values
are due the general Monte Carlo error. In the presence of augmenting data that is non-

11



informative (Scenario 2, 6, 10, 15, 19, and 23), the PSD ranges from 1.3% to 20.6%,
depending on whether a correction method has been used (we address this aspect later).
Under informative data augmentation, the PSD figures are significantly larger. Even for
mild informativity (Scenario 3, 7, 11, 16, 20, and 24), they range from 9.2% to 63.2%. For
medium informativity (Scenario 4, 8, 12, 17, 21, and 25), we have 43.8% to 94.1%. And for
strong informativity (Scenario 5, 9, 13, 18, 22, and 26), the PSD is constantly 100%. The
findings suggests that as soon as the online records are slightly informative with respect
to the model, the outcomes of regression coefficient estimation are significantly different to
those obtained from a classical survey sample.

Let us now look at the ability of the correction methods to account for the informativity of
the augmenting data. For this, recall that the Scenario 1-5 and 14-18 contain no correction
method, Scenario 6-9 and 19-22 implement the propensity score approach, and Scenario
10-13 as well as 23-26 are based on the calibration approach. We see that in the absence of
informativity, applying a correction method can actually slightly increase the PSD relative
to using no correction. While the PSD with no correction ranges between 1.3% and 11.2%,
propensity score estimation obtains 1.4% to 20.6% and the calibration produces 1.3% to
12.9%. This is due to the correction methods implicitly introducing a model to the weight-
ing scheme of the weighted least squares estimator. In the non-informative case without
adjustment, the survey weights vary only slightly over the sampled individuals. Applying
propensity score estimation increases this variation considerably, as the survey weights now
directly depend on the individual covariate realizations. This can lead to large devations
in terms of regression coefficient estimation relative to no adjustment. The calibration’s
impact is not as severe, as in a non-informative sample the population totals are already
reproduced in the sense of (22) on expectation. Thus, the necessary weight adjustment for
consistency as required in the constrained optimization problem is small.

In the presence of informativity in the augmenting data, a different picture arises. This is
visualized in Figure 1. The PSD results with correction are plotted in red, the propensity
score results are blue, and the calibration results are marked in green. The horizontal black
line displays the expectation under non-informative sampling. We observe that in the pres-
ence of mild informativity, the correction methods reduce the PSD by quite a large margin.
While no correction has a PSD of 54.1%, the propensity score approach obtains 24.8% and
the calibration method yields 32.6%. In the presence of medium informativity, the reduc-
tion is still evident, but not as pronounced as before. While no correction has a PSD of
83.6%, propensity score estimation achieves 66.6% and calibration obtains 77.8%. Under
strong informativity, we already mentioned that no reduction is evident despite correction.
We observe that for mild and medium informativity, the propensity score approach tends
to be a slightly better correction method than the calibration method. This could be ex-
pected from theory, as propensity score estimation focusses on the baseline problem of our
setting, which is the absence of inclusion probabilities for the online records. Calibration
focusses on aligning the marginal sample covariate distributions with their counterparts in
the population. This only marks an implicit correction method for the problem at hand.
By looking back at Table 2, we also see that the correction performance increases with
smaller significance levels. Further, it becomes evident that the correction performance is
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best in the scenarios where the contribution of the classical survey in terms of sampled
individuals is equal to this of the online survey. That is, with a sample size decomposition
of n2 = 5 000, nD = 5 000, the correction methods can reduce the PSD considerable better
than for n2 = 2 000, nD = 8 000. However, by looking at the absolute PSD figures, it has
to be concluded that overall the correction methods can only slightly mitigate the survey
discontinuities resulting from informative sampling. In the majority of estimations, the
regression outcomes are significantly different after all.
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Figure 1: PSD under α1 = 0.05 and n2 = 5 000, nD = 5 000

Let us investigate regression coefficient estimation. Again, we focus on the analysis of β1 in
order to avoid oversized tables. The results are summarized in Table 3. Note that we now
also include the estimates obtained from the sample S1 in t = 1 as an additional Scenario
0. This is done in order to compare the results within scenarios for the mixed mode survey
with the resultsd that would have been achieved under classical survey sampling with
decent sample size. First, we observe that overall best estimates are produced based on S1.
The results display the lowest bias and MSE, despite the fact that all considered scenarios
(except Scenario 1 and 14) have the same sample size in total. Thus, it can be concluded
that the estimates obtained from the mixed mode surveys are less efficient in our setting.
The next aspect is that the bias grows with increasing levels of informativity. Given the
statistical framework introduced in Section 2.1, this was expected.
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Scenario Data Cor. Informative Bias Variance MSE
n2 = 2 000, nD = 8 000

0 S1 No No 0.00008 0.00010 0.00010
1 S2 No No 0.00063 0.00047 0.00047
2 S2 ∪ D No No -0.00018 0.00010 0.00010
3 S2 ∪ D No Mild -0.02651 0.00011 0.00081
4 S2 ∪ D No Medium -0.03239 0.00010 0.00115
5 S2 ∪ D No Strong -2.10331 0.03882 4.46274
6 S2 ∪ D PS No -0.00021 0.00011 0.00011
7 S2 ∪ D PS Mild -0.02557 0.00010 0.00076
8 S2 ∪ D PS Medium -0.02887 0.00007 0.00090
9 S2 ∪ D PS Strong -0.33197 0.00044 0.11064
10 S2 ∪ D Cal No -0.00018 0.00010 0.00010
11 S2 ∪ D Cal Mild -0.02609 0.00011 0.00079
12 S2 ∪ D Cal Medium -0.03186 0.00013 0.00114
13 S2 ∪ D Cal Strong -1.92951 0.03623 3.75924

n2 = 5 000, nD = 5 000
14 S2 No No 0.00066 0.00019 0.00019
15 S2 ∪ D No No 0.00013 0.00010 0.00010
16 S2 ∪ D No Mild -0.02515 0.00021 0.00084
17 S2 ∪ D No Medium -0.03059 0.00013 0.00107
18 S2 ∪ D No Strong -1.20945 0.03986 1.50263
19 S2 ∪ D PS No -0.00033 0.00020 0.00020
20 S2 ∪ D PS Mild -0.01671 0.00012 0.00040
21 S2 ∪ D PS Medium -0.02359 0.00010 0.00065
22 S2 ∪ D PS Strong -0.27848 0.00070 0.07825
23 S2 ∪ D Cal No 0.00016 0.00010 0.00010
24 S2 ∪ D Cal Mild -0.01800 0.00013 0.00045
25 S2 ∪ D Cal Medium -0.02463 0.00012 0.00073
26 S2 ∪ D Cal Strong -1.15623 0.03703 1.37390

Table 3: Results of Model Parameter Estimation

However, the correction methods are capable of reducing the bias to a notable extent,
especially for the sample size decomposition of n2 = 5 000, nD = 5 000. Let

Bias(β̂no1 )− Bias(β̂ad1 )

Bias(β̂no1 )
· 100%

denote the relative reduction in percent achieved by correction. Under mild informativity,
the propensity score approach reduces the bias between 4% and 51%. The calibration
method yields 2% to 43%. For medium informativity, we have 11% to 23% and 2% to
19%, respectively. The largest bias reduction is achieved under strong informativity. Here,
the propensity score method obtains a reduction between 77% and 84%. The calibration
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approach achieves 4% to 8%. Thus, even though the hypothesis tests based on (12) and (13)
display a very high share of significant deviations under informativity despite correction,
the overall β-inference is considerably improved by reweighting.
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Figure 2: Deviation of Model Parameter Estimation, n2 = 2 000, nD = 8 000

This is further visualized in Figure 2. It displays the densities of the devation β̂1 − β1 over
all simulation iterations and degrees of informativity. Again, the results without correction
are plotted in red, those obtained by propensity score estimation are blue, and the results
of calibration are marked in green. The graph supports the bias reduction tendencies of
both correction methods mentioned before. It further supports the finding that propensity
score estimation is the better correction method for our setting, which was already evident
for the survey discontinuities. Another interest observation is that the propensity score is
capable of reducing the estimation variance in the presence of informativity. Under medium
and strong informativity, we see that the blue densities are not only closer located to zero,
their overall masses are also more concentrated around their respective centers of gravity.

4 Conclusion and Outlook

We studied survey discontinuities in settings where a classical survey sample is substituted
by a mixed mode survey that relies on web-augmentation in terms of online records. On the
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example of linear regression, we investigated how inference regarding the regression coeffi-
cients is affected by a corresponding change in data collection. For this purpose, a suitable
hypothesis test was presented that assesses whether the outcomes of regression analysis
in the two surveys are significantly different. A special emphasis was placed on situations
where the records of the online survey are informative with respect to the regression model.
We further discussed propensity score estimation and calibration as potential methods for
correcting the bias resulting from a potential informativity of the augmenting data. An
extended Monte Carlo simulation study was conducted in order to assess the effects of the
mentioned survey redesign under different degrees of informativity. We found that even
mild informativity of the augmenting data leads to survey discontinuities in the majority of
cases. It further impairs the results of regression coefficient estimation considerably. The
presented correction methods are capable of reducing the negative effects of informative
online records to some extent. However, the overall quality of estimates obtained from the
classical survey cannot be achieved by any means.

The presented paper makes a case on treating online data sources in the context of survey
analysis carefully. Web-augmented mixed mode surveys undoubtedly have great advan-
tages. They are overall resource-efficient and – depending on the application – even allow
to empirically investigate areas of life that are typically hard to monitor via classical surveys.
Therefore, they indeed mark a valuable addition to socioeconomic and political research in
future studies. However, since model-based inference has emerged as the primary approach
to quantitative analysis in these fields, researchers have to carefully evaluate whether the
data bases are informative with respect to their models. Currently, much research effort is
put in finding suitable correction methods for bias stemming from informativity. Yet, as
our simulation study suggest, the effectiveness of such approaches very much depends on
the degree of informativity and on the availability of suitable auxiliary data for correction.
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