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Abstract: Innovations in statistical methodology is often accompanied by
Monte-Carlo studies. In the context of survey statistics two types of infer-
ences have to be considered. First, the classical randomization methods
used for developments in statistical modelling. Second, survey data is typ-
ically gathered using random sampling schemes from a finite population.
In this case, the sampling inference under a finite population model drives
statistical conclusions.

For empirical analyses, in general, mainly survey data is available. So
the question arises how best to conduct the simulation study accompanying
the empirical research. In addition, economists and social scientists often
use statistical models on the survey data where the statistical inference is
based on the classical randomization approach based on the model assump-
tions. This confounds classical randomization with sampling inference. The
question arises under which circumstances – if any – the sampling design
can then be ignored.

In both fields of research – official statistics and (micro-)econometrics –
Monte-Carlo studies generally seek to deliver additional information on an
estimator’s distribution. The two named inferences obviously impact dis-
tributional assumptions and, hence, must be distinguished in the Monte-
Carlo set-up. Both, the conclusions to be drawn and comparability between
research results, therefore, depend on inferential assumptions and the con-
sequently adapted simulation study.

The present paper gives an overview of the different types of inferences
and combinations thereof that are possibly applicable on survey data. Ad-
ditionally, further types of Monte-Carlo methods are elaborated to provide
answers in mixed types of randomization in the survey context as well as un-
der statistical modelling using survey data. The aim is to provide a common
understanding of Monte-Carlo based studies using survey data including a
thorough discussion of advantages and disadvantages of the different types
and their appropriate evaluation.

Keywords and phrases: Monte-Carlo simulation, survey sampling, ran-
domization inference, model inference.

1. Introduction

A practical way to study new tools and methodologies in statistics is Monte-
Carlo (MC) simulation. Often an estimator’s distribution – and its properties
derived therefrom – is analytically or computationally too cumbersome for an
analysis. Then, resampling techniques relying on the empirical sampling distri-
bution can be as well conclusive when the sample size is efficiently large [Mooney,
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1997, pp. 3] and its usage reduces the complexity of the analysis. Halton [1970]
defines the Monte-Carlo method as the solution of an estimation problem of a
statistical model that has employed a random sequence of numbers to construct
a sample of the population to obtain statistical estimates of the parameter. The
increasing computational power enables thus researchers to apply more and
more frequently MC studies to underpin the performance of new methods and
to get an idea about the theoretical behavior of an estimator. The frequent use
of Monte-Carlo simulation, however, also increases the proneness to conceptual
mistakes. Especially in survey statistics, the design of MC studies plays a vital
role for the assessment of the studied methodologies. The analysis of survey data
has to account for different sources of stochasticity depending on the conceptual
set-up. Therefore, the MC evaluation of new statistical methods should account
for the probability law under which the proposed estimators should be applied.

Estimators take as input realizations of random variables, which is often also
referred to as ‘random sample’. In survey statistics, the term random sample
has some peculiarities: It does not refer to a random experiment that could
theoretically be repeated to infinity (i.e. independent and identical replications
of a random variable), but is linked to a subset s of a finite index set U =
{1, . . . , N} where s is the realization of a random variable S ∼ PD. That is,
the first source of stochasticity stems from a survey design PD ∈ Prob

(
U, 2U

)
that yields some subset selection s ⊂ U . The probability law PD may depend on
design variables z := (zi : i ∈ U), zi ∈ Rp′ , PD = PD(·; z). For reasons outlined
below, we require that PD is measurable in this second argument. For better
distinguishability with the other source of stochasticity which we shall discuss
later, we refer thus to s as a survey and call the probability law PD a survey
design. The subset s is then used to draw inference on the finite population U
and not on a statistical model [Valliant et al., 2000, p. 1].

Many fields of statistical application are directly or indirectly affected by sur-
vey sampling. Official statistics or biological enquiries aim at the estimation of
characteristics y := (yi : i ∈ U), yi ∈ Rp of a finite population U and functions
gU thereof, for example the total number of animals of a species or the average
income in a country. Due to cost and time constraints, surveys s ⊂ U rather
than censuses are realized to gather these informations. For correct inference, s
should be realized randomly, i.e. be an outcome of S ∼ PD.

Other fields of applications focus on statistical models M, for example in
order to discover causal relationships. Estimators ϑ̂ of a model parameter ϑ,
where M = {PMθ

probability measure for all θ ∈ Θ} should be close to the
latter in some statistical sense. The model’s parameter space is named Θ that
is, any value θ ∈ Θ could theoretically suit the model set-up, but data stem
from PMϑ

, ϑ ∈ Θ. In that case, the characteristics yi of units in the finite
population U are considered to be realizations of a random variable Yi ∼ PMϑ

and consequently already y = (yi : i ∈ U) is seen as a classical random sample.
Nonetheless, many studies in social sciences use a survey drawn from a finite
population s ⊂ U , (yi : i ∈ s), to estimate ϑ for the statistical model Mϑ.
Thus, survey sampling plays an active role in this case, too. Such fields are for
example micro-econometrics or empirical social sciences. Another scientific field
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which acknowledges the difference between survey sampling and other statistical
modeling approaches is soil science [Brus and de Gruijter, 1997].

In the following, we will focus on likelihood based inference for this second
focus in survey statistics. Especially in the context of statistical models PM,
Bayesian statistics is often named as a counterpart to likelihood based statistics.
The increased computational power also enables to run Monte-Carlo simulations
to get posterior distributions in the Bayesian context. However, our focus here
lies on simulation in survey sampling and in this case, Bayesian simulations do
hardly differ from likelihood based MC studies: Bayesian studies only require an
additional generation step of the parameter values ϑ that in this case obey a non-
trivial probability law. For this reason, we focus in the following on Fisherian
statistics. For Bayesian statistics, we refer to the relevant textbooks such as
Gelman et al. [2009]. A brief introductory example is given in Little [1982].

With regard to MC studies, these different aspects of survey sampling imply
also different terms of sampling distributions that could be used for simula-
tions. Consequently, a special care has to be laid on MC simulation design when
the researcher works with survey data. Therefore, this article seeks to give an
overview on the aspects of survey sampling in MC simulation. In the following,
we elaborate the different types of inference in survey sampling, the underly-
ing sampling distributions and their implications for Monte-Carlo simulation.
Example simulations are described in order to illustrate the stated differences
in inference and the resulting variations in an estimator’s evaluation. With this
work, we hope to illuminate the different MC set-ups found in the literature and
to give a guideline for the appropriate choice of the simulation set-up with whom
researchers may truely answer the research question that they have posed.

This article is organized as follows. First, some basic mathematical notation is
briefly introduced. Second, a general definition of MC simulations and the basic
Monte-Carlo algorithm is given. Next, the two main inferences, randomization-
based and model-based estimation, are introduced and their implications on
Monte-Carlo studies are discussed. Subsequently, combinations of the above in-
ferences in Monte-Carlo studies are discussed and how they are systematized by
their types of inference. In the sixth Chapter, examples of applied statistics are
described, where the set-up of MC-studies matters. The final section concludes.

2. Mathematical Notation

In the following, probability measures are denoted by P· and the corresponding
subscript refers to the context of the probability law. Expectation and vari-
ance with respect to P· bear the same subscript. Furthermore, we assume dif-
ferent index sets where one important set, the finite population, is denoted
U = {1, . . . , N} with N ∈ N. Linked to the population U is the random variable
S with values in NN0 . The i-th element of of a realization S = s indicates the
number of times that unit i ∈ U is drawn into a the sample s.

Usually, we denote the probability law of S by PD, where the D stands for
design. In the case of without replacement designs, S is a vector in {0, 1}N
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and we can identify realizations of S with subsets of U . In the case of with
replacements designs, S is a multiset with elements from U . It may be that the
survey design depends on real-valued design variables, PD = PD(·;y, z) where
y ∈ ×Ni=1Y, Y ⊆ Rp and z ∈ ×Ni=1Z, Z ⊆ Rp′ respectively. We assume that
PD is measurable in it’s second argument. This means that the survey design
belongs to a family of designs with outcomes depending on the points y and
z in their respective variable spaces Y and Z. For ease of analysis, we assume
that all random variables equal the identity on the underlying probability space.
This means that S = idNU0 . Obviously, 1S can only take finitely many values,
therefore all moments exist for without replacement designs and the probability
law of S is well defined by the ensemble of moments of 1S . We refer to |S|, the
l1 norm of S, as the sample size and set ED [|S|] = n.

In another statistical context, we assume random variables
(Y, Z) = ((Yi, Zi) : i = 1, . . . , N). We refer to Y as the variable of interest and
to Z as auxiliary or design variables. Again we assume that (Y,Z) = idΩ with
Ω = ×Ni=1(Y × Z) ⊂ ×Ni=1Rp+p

′
where each Yi takes values in the subset Y

of Rp and Zi in the subset Z of Rp′ . In order to ease measurability conditions

on projections from Ω to ×|S|i=1Y etc., we assume that the σ-algebra on Ω is
the product σ-algebra of the algebras on Y × Z that yields (Yi, Zi), i ∈ U ,
measurable.

Sampled sub-arrays of Y = (Y1, . . . , YN ) and Z = (Z1, . . . , ZN ) are denoted
by a subscript, i.e. YI := (Yi : i ∈ I) and ZI = (Zi : i ∈ I) where I is a com-
bination (possibly with repetition) of U . In the case of without replacement
designs, I ⊂ U . From the context it should become clear whether I is a single
index (usually indices i and j) or a (multi-)subset of indices. Realizations of
Y and Z are denoted by y and z respectively and we have the same notation
for sub-arrays of realizations, i.e. yI and zI . Furthermore, we assume as data
generating process for (Y,Z)

(Y,Z) ∼ PMϑ
, (2.1a)

PMϑ
∈ {PMθ

∈ Prob (Ω,A) : θ ∈ Θ} =: PM . (2.1b)

For the parameter space, we have Θ ⊂ Θ̃ ⊂ Rq to be PMθ
-measurable for all

θ ∈ Θ. An estimator for ϑ is a function that is for all θ ∈ Θ PMθ
-measurable

with

ϑ̂s : X → Θ̃ (2.2)

where s ⊆ U and X ∈ {×i∈sY,×i∈s(Y×Z), (×i∈s(Y×Z))×i∈sc Z}. This
means that an estimator uses the s-sample of the variable of interest and op-
tionally also the auxiliary variable Z or a sub-array thereof. In order to have a
general formulation we write

ϑ̂ : S × Ω→ Θ̃ , (2.3)

where S ⊂ 2U and S = ∪ω∈Ω suppPD (·;Y (ω), Z(ω)). The class of functions
that are PMθ

-measurable for all θ ∈ Θ is denoted by F and the class of estimators
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is denoted by Θ̂ ⊂ F. Often, estimators are (higher order) integrable for all
θ ∈ Θ, then we have even Θ̂ ⊂ ∩θ∈ΘL

m (Ω,A, PMϑ
) where m ∈ N.

3. Monte-Carlo Simulations

The term Monte-Carlo simulation is made up of two parts, and it is quite illumi-
nating to give here the view of Kalos and Whitlock [1986, pp. 2]: “A distinction
is sometimes made between simulation and Monte Carlo. In this view, simula-
tion is a rather direct transcription into computing terms of a natural stochastic
process [...]. Monte Carlo, by contrast is the solution by probabilistic methods of
nonprobabilistic problems. This distinction is somewhat useful, but often impos-
sible to maintain.” Indeed, in the context of survey sampling, this differentiation
is possible only in a very limited manner. As already stated above, often, the
aim is to learn about an estimator’s distribution by an empirical approxima-
tion thereof. In that sense, what was given as a short definition of Monte-Carlo
agrees with the view of Kalos and Whitlock [1986]. In the case of survey sam-
pling, though, this typically implies to draw realizations of S ∼ PD, where PD
follows deterministic rules and S is a random variable. This corresponds to a
‘direct transcription into computing terms of a natural stochastic process’, i.e.
simulation. Hence, in the following, Monte-Carlo and simulation are thought as
an ensemble and often, we use MC simulation and MC study interchangeably.

Assume that interest lies on the distribution of an estimator g : P → Rq,
where P is the set of outcomes of an distribution estimator P̂ for P and g (P ) is
the estimand, a statistic’s value that depends on the probability law P . Having
an estimator P̂ for P , it is thus possible to express the estimator of g (P ) as

g
(
P̂
)

. The distribution of the estimator is thus expressed by P
(
g(P̂ ) ∈ ·

)
. We

fix as a general MC procedure the following: Given a transcription of P into
computing terms, it is possible to generate independently random realizations
of a variable X ∼ P indexed by b = 1, . . . , B leading to realizations of the
estimator P̂ , say P̂1, . . . , P̂B . Then these realizations of empirical distributions
can be used to construct an empirical probability measure that assigns mass 1

B

to each realization g(P̂b), b = 1, . . . , B. This gives an empirical distribution for
the general estimator g(P̂ ). A summary of these steps is given in Algorithm 1.

Algorithm 1 General Monte-Carlo Simulation Algorithm

Require: A probability measure P and an estimator of a statistic g(P ), i.e. g(P̂ ), B ∈ N
Ensure: A Monte-Carlo distribution for the estimator g(P̂ )

for b = 1, . . . , B do
Generate a realization of X ∼ P
Derive the empirical distribution of P , namely P̂b

Evaluate the estimator g at P̂b

end for
Set the empirical probability function of g(P̂ ) to 1

B

∑B
b=1 1{g(P̂b)}

(·)

MC studies rely on properties coming with large sample sizes: P
(
g(P̂ ) ∈ ·

)
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is proxied by its empirical counterpart. “The principle behind Monte-Carlo sim-
ulation is that the behavior of a statistic in random samples can be assessed by
the empirical process of actually drawing lots of random samples and observ-
ing this behavior.” [Mooney, 1997, p. 3]. At least for independent realizations
of random variables, relative frequencies are known to converge uniformly to
their probabilities [Vapnik and Chervonenkis, 1971]. Applying this theorem to
empirical frequencies stemming from MC-simulation, this then implies that the
expectation of bounded estimators converge to the expectation under the un-
derlying distribution. For survey sampling under the design-based set-up with a
maximum sample size, this holds even for every statistic and therefore calculus
of properties of g(P̂ ) is only a combinatorial problem. Furthermore, also for the
model-based simulation set-up, laws of large numbers are often applicable when
the distribution is such that second order moments exist. Note, however, that
counterexamples can be built where the law of large numbers does not hold.
Hence, many MC runs (B � 0) cannot replace prior theoretical considerations.

4. Types of Inference

4.1. Classical Inference in Empirical Research

4.1.1. Model-based Inference

Under model-based estimation, we understand the classical estimation theory
e.g. often used in (micro-)econometrics: The estimand is a parameter ϑ ∈ Θ or
a statistic thereof, g(ϑ). For simplicity we set g(ϑ) = ϑ. It is supposed that we
have realizations (y, z) of the random variables (Y, Z) ∼ PMϑ

where it is only
known that PMϑ

∈ PM.

As the estimand is ϑ, we denote estimators by ϑ̂· instead of g used in the
previous section. In general, the choice of an estimator ϑ̂ ∈ F depends on the
particular statistical problem and the statistician’s requirements on statistical
properties of ϑ̂ (‘closeness to ϑ in some statistical sense’). One possible example

for required statistical properties may be unbiasedness, i.e. EMθ

[
ϑ̂ (Y,Z)

]
= θ

for all θ ∈ Θ. An estimator might then be considered to be ‘close’ when it is
uniformly optimal in squared deviation

EMθ

[(
ϑ̂− θ

)2
]

= inf
θ̂∈F

EMθ

[(
θ̂ − θ

)2
]

within the subclass of unbiased estimators in F, that is minimality subject to

EMθ

[
ϑ̂ (Y,Z)

]
= θ .

Other types of ‘closeness’ and statistical properties are possible, though.
In the framework of survey sampling, model-based estimation thus means

that the N -dimensional array of characteristics y, and design variables z, are
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considered to be realizations of (Y,Z) ∼ PMϑ
. Hence, ideally, estimators ϑ̂U us-

ing the complete information (y, z) would be employed to estimate ϑ. However,
not all elements of the characteristic y are observable in survey sampling but
only the subset s ⊂ U due to the sampling process described above.

Then, obviously, another estimator ϑ̂s is required, mapping first from Ω to a
projective space X and then to Θ̃. In general, the employed estimator ϑ̂U that
would be used for parameter estimation if all elements in y and z were observed,
belongs to a sequence of estimators {ϑ̂Uk}k∈N with . . . ⊂ Uk ⊂ Uk+1 ⊂ . . . and
|Uk| →k→∞ ∞. Researchers ignoring the sampling design PD tend to choose

ϑ̂s ∈ {ϑ̂Uk}k∈N as s ⊂ U , hoping that the statistical properties of {ϑ̂Uk}k∈N also

hold for ϑ̂s though s is a random sample realization.
This means that such researchers assume that inference on PMϑ

is equal to
inference based on the probability measure

PMϑ,D(s×A) :=

∫
A

PD (s;Y (ω), Z(ω)) dPMϑ
(ω) , (4.1)

where A ∈A. Rubin-Bleuer and Kratina [2005] and Boistard et al. [2015] leave
out the random variable Y in the definition of PMϑ,D because they assume that
the survey design is non-informative [Pfeffermann, 1993, Definition 3] for the

estimator ϑ̂s. Implicitely, they assume with the short cut Z = πzU ((Y, Z)) that

PMϑ,D(s×A) =

∫
A

PD (s;Z(ω)) dPMϑ
(ω) (4.2)

because in that case, for a measurable C ⊂ Θ̃, we have for PMϑ,D

(
ϑ̂s ∈ C

)
and

FCY (ω) = {y ∈ ×Ni=1Y : y ∈ Z−1(ω)}

PMϑ,D

(
ϑ̂s ∈ C

)
=
∑
s∈S

∫
Ω

PD (s;Z(ω)) · 1C
(
ϑ̂s(s, (Y,Z)(ω))

)
dPMϑ

(ω)

=
∑
s∈S

∫
Ω

PD(s;Z(ω)) · PMϑ

(
ϑ̂s(s, Y, Z) ∈ C|Z(ω)

)
dPMϑ

(ω)

=

∫
Ω

∑
s∈S

PD(s;Z(ω)) · PMϑ

(
ϑ̂s(s, Y, Z) ∈ C|Z(ω)

)
dPMϑ

(ω)︸ ︷︷ ︸
=PMϑ(ϑ̂s(S,Y,Z)∈C|Z(ω))

= PMϑ

(
ϑ̂(S, Y, C) ∈ C

)
(4.3)

Under the assumption of survey non-informativity, it is thus theoretically jus-
tified to take ϑ̂s ∈ {ϑ̂N}N∈N and researcher can limit their focus on desirable

properties of the sequence {ϑ̂Uk}k∈N and the elements therein.

4.1.2. Monte-Carlo Inference for Empirical Research

The general principles of MC studies also apply when these are used in survey
sampling under model-based inference. Actually, the description given in the
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previous section has only to be broken down to the probability laws introduced
in this Section, PMϑ

and PMϑ,D. Due to the derivation (4.3) that underlies
model-based inference, the focus shall lie here on the probability measure PMϑ

.
In the case that model violations (i.e. Assumption 4.2) shall be studied using
MC, however, there is no possibility to avoid the joint measure PM,D. We refer
to Section 5 for a discussion of corresponding MC studies.

Adjusting Algorithm 1 to the notation of this section on model-based in-
ference, we write here for an estimator ϑ̂ instead of g and for the distribution

underlying the estimator PMϑ

(
ϑ̂ ∈ ·

)
instead of P (g ∈ ·). The estimator ϑ̂ di-

rectly depends on the empirical distribution of (Y,Z) because it was assumed

that PMϑ

(
ϑ̂ ∈ ·

)
∈ A and (Y,Z) is the source of stochasticity. Therefore, the

estimator’s empirical distribution results from the standardized count measure
of ϑ̂ evaluated at the realizations (y, z).

In mathematical terms, the description of Mooney [1997] can be summarized

as follows: Assume that a distributional property ι of an estimator ϑ̂ for ϑ,

ϑ̂ : X → Θ̃

ι : PM × Θ̂→ E (4.4)

is of interest, and E is an appropriate normed space, usually E ∈ {Rk, PM}. As
the sample s ⊂ U is considered to be a realization of the law PMϑ

without any
subsampling procedure, we have here usually X = ×i∈s(Y×Z). Examples for

ι are ϑ̂’s distribution (ι = PMϑ

(
ϑ̂ ∈ ·

)
) or expectation (ι(PMϑ

, ϑ̂) =
∫
ϑ̂dPMϑ

).

We write interchangeably ι
(
PMϑ

, ϑ̂
)

= ι
(
PMϑ

(ϑ̂ ∈ ·)
)

.

The Monte-Carlo estimator for ι
(
PMϑ

, ϑ̂
)

, ι̂MC,B based on b = 1, . . . , B MC

runs is based on the empirical measures

P̂BMϑ
:=

1

B

B∑
b=1

1 ((Yb, Zb) ∈ ·) and P̂BMϑ
(ϑ̂ ∈ ·) :=

1

B

B∑
b=1

1
(
ϑ̂b ∈ ·

)
, (4.5)

where

ϑ̂b := ϑ̂(Yb, Zb), (Yb, Zb) ∼ PMϑ
∀b = 1, . . . , B . (4.6)

The MC distribution of the estimator is thus (4.5) and the MC expectation for

ι = EMϑ

[
ϑ̂
]

is

ι̂MC,B
(
PMϑ

, ϑ̂
)

=
1

B

B∑
b=1

ϑ̂b .

The procedure for general ι is summarized in Algorithm 2. The motivation for
Algorithm 2 is the strong law of large numbers: If

∫
Ω
g dPMϑ

exists, then the
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mean of the independent realizations in Algorithm 2, converges PMϑ
-almost

surely to
∫

Ω
g dPMϑ

because the empirical probability measure P̂BMθ
converges

uniformly to the true probability law PMθ
. However, note that delimiting the

Monte-Carlo study to a fixed B does not reveal that ĝB might not converge
when the expectation does not exist.

Algorithm 2 Basic Idea of Model-based Monte-Carlo

Require: 0� B ∈ N, probability space
(
Ω,A, PMϑ

)
, estimator ϑ̂, property ι(PMϑ

, ϑ̂)

Ensure: A MC estimate ιMC,B

for b = 1, . . . , B do
Realize (Y, Z) ∼ PMϑ

. Denote the realization (yb, zb)

Evaluate ϑ̂(yb, zb) =: ϑ̂b
end for
Set P̂B

Mϑ
(ϑ̂ = x) , 1

B

∑B
b=1 1{x}(ϑ̂b)

Calculate distributional properties of ϑ̂ using P̂B
Mϑ

(ϑ̂ = ·), ι̂MC,B = ι
(
P̂B
Mϑ

(ϑ̂ ∈ ·)
)

Note again that Algorithm 2 ignores the sample design PD and sample re-
alization s. This is due to the fact that for model-based estimation in survey
sampling, the design is assumed ignorable and inference is thus based on PMϑ

only. As discussed in Section 5.1, this is motivated by the asymptotic indepen-
dency of PD and PMvartheta [Rubin-Bleuer and Kratina, 2005]. In that case,
simulation from PMϑ

is much easier and sufficient for the research question,
except for the study of model violations, cf. Section 5.

Under the model, subsampling from U is not required or alternatively, we set
s := U for the estimator ϑ̂s from the previous section. Note that if interest lies
on Y |Z = z, for example in regression analysis, it is an alternative to sample
Z from its marginal distribution once and simulate Y conditional on Z that is
kept fixed during the simulation. In that case, only Y must be B times realized
in the study, using its conditional distribution on Z = z. Confer Section 5.1 for
that case. This, however, reduces the variability of the estimator and therefore

impacts ι. In fact, it is then ι
(
PMϑ

(ϑ̂ ∈ ·|Z)
)

that is studied and estimated.

From a computational point of view, it might happen that already the sam-
pling (Y,Z) ∼ PMϑ

is cumbersome or not implemented in standard statistical
programs. In these cases, the generation of random variables may be subject to
Monte-Carlo methods, too. This is a sub-field of (pseudo) random number gen-
eration. An overview about MC-methods such as acceptance-rejection methods,
importance sampling, simulations of Markov chains and the Metropolis-Hastings
algorithm is given in Gentle [2006]. The main idea of these MC methods is
(rather than integral approximation that we outlined in the paragraph before)
to sample random numbers from a proposed distribution Q that is easier to
handle than PMϑ

. Those random numbers are then put into relation to those
that would result from the desired distribution PMϑ

. This ‘putting into relation’
might include a reweighting scheme, rejection of too improbable realizations or
convergence to a stable state related to PMϑ

. Though the accuracy and/or speed
of convergence of these algorithms are of interest, too, they are not generally
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part of the application of MC-methods in the field of survey sampling. However,
note that nonetheless some estimation algorithms used in our context employ
MC-sampling (cf. Booth and Hobert [1999] in a model-based context).

4.2. Inference for Sampling from Finite Populations

4.2.1. Design-based Inference

In the following, we return to the finite index set U = {1, . . . , N} and statistics g
of characteristics y as estimands. Survey sampling deals with randomly drawn
subsets s of U where s is thus a realization of a random variable S under a
survey design PD. As the survey design might depend on design variables z
(and possibly also y under informativity), we have PD = PD(·;y, z). We require
that PD is a probability measure in the first argument and for each s ∈ S

measurable in the second argument [Rubin-Bleuer and Kratina, 2005, Boistard
et al., 2015], PD is thus a probability kernel. We define furthermore S to be the
set of all realizable samples under the design PD, i.e. S ⊆ NN0 . We differentiate
between S and NN0 as sample space because some estimators gS might only be
defined for samples of fixed size, i.e. when PD is such that |S| ≡ n.

In survey sampling, interest then lies in the study of estimators of the type

gS : S × Ω→ Rq (4.7)

where we remind that (y, z) ∈ Ω and the notation gS : X → Rq is not admissible
because X includes ×i∈sY and as s is a random variable, the projection space
X is random, which does not suit the definition of a fixed domain. gS shall
return estimates for a finite population statistic gU (y) where

gU : ×Ni=1Y→ Rq . (4.8)

Note that the domains of gU and gS might not only differ because gS employs
random realizations s ∈ S, but also because the estimator gS can employ (a sub-
array of) auxiliary information z. Note that for the extension of the type (4.1)
that we aim at in the next section, both gS and gU should also be measurable.

An example where no auxiliary information z is used in gS is the Horvitz-
Thompson (HT) estimator [Horvitz and Thompson, 1952]

gS(s,y, z) ,
∑
i∈U

di · 1s(i) · yi (4.9)

where

di ,
1

ES [1S(i)]
. (4.10)

The Generalized Regression Estimator (GREG) [Särndal et al., 1992] on the
other hand uses auxiliary information

gS(s,y, z) ,
∑
i∈U

di · 1s(i) · yi + Bs

(∑
i∈U

zi −
∑
i∈U

di · 1s(i) · zi

)
(4.11)
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with

Bs ,

(∑
i∈U

di · 1s(i) · zTi zi

)−1(∑
i∈U

di · 1s(i) · ziyTi

)
. (4.12)

It is thus assumed that the auxiliary information zi is known for all i ∈ U . Bs

is hence a realization of BS which in turn is an estimator for the least squares
regression matrix at the finite population level BU

BU ,

(∑
i∈U

zTi zi

)−1(∑
i∈U

ziy
T
i

)
.

Note that in a pure survey sampling context, no causal relation between z
and y has to be assumed. BU is purely descriptive and being a least squares
solution, it holds that the residuals y− zBU always sum up to zero. These two
estimators (4.9) and (4.11) make obvious, however, that basic design estimation
(here expressed by {di}i∈S) needs to be available to ensure unbiased estimation.
Sample informativity thus results when this is not the case.

As |S| <∞ for most designs, the statistical properties ι (moments, quantiles
etc.) of gS are calculable. However, for complex designs or N � 0, this is practi-
cally infeasible and thus Monte-Carlo methods represent an alternative [Halton,
1970]. From a theoretical point of view, asymptotics for gS are not applicable
because both |U | is fixed and the sample size |S| is bounded by N . Consequently,
asymptotic studies of gS when gS ∈ {gS,N}N∈N require monotonically growing
finite populations {UN}N∈N, . . . ⊂ UN−1 ⊂ UN ⊂ UN+1 ⊂ . . . , and an adjust-
ment of the sample design PDN to the respective population is required. If the
population size is large with respect to ED [|S|], however, it can be sufficient to
increase the expected sample size within the analysis or simulations in order to
study asymptotic behavior of a sequence of estimators gS .

If, on the other hand, real asymptotics are to be studied, i.e. growing finite
populations are necessary, a data generating process (DGP) for both, the vari-
able of interest Y and the design variables Z must be assumed as in (2.1a) which
then again leads to the analysis of PMϑ,D [Boistard et al., 2015].

4.2.2. Monte-Carlo Inference in Survey Statistics

In consistency with the statistical framework described above, simulation studies
under the sampling randomization framework require a fixed finite population
U and a vector with characteristics (y, z) ∈ Ω. In order to exclude any ‘con-
founding’ with a statistical model like the ones introduced in Section 4.1, these
data stem ideally from a real-world population, for example from register data
[Burgard, 2013]. Then the statistic of interest, gU could directly be derived from
the register and neither estimator gS nor MC studies are required. Consequently,
simulation studies on register data are usually run when the register contains a
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characteristic ỹ that is similar to the one of interest, y. The simulation study is
then conducted assuming that the estimator gS behaves similary for y and ỹ.

Nonetheless, register data might not be either available or accessible to the
researcher. Then, a close-to-reality synthetic data set as basis for the simulation
study is an alternative. Whilst we refer to simulation studies based on register
data as (purely) design-based, those relying on synthetic data are referred to
as realistic design-based. An example for such synthetic but realistic data for
social sciences is AMELIA [Burgard et al., 2017], stemming from the AMELI
project [Alfons et al., 2011b]. An introduction to (quasi) design-based simulation
studies is given in Alfons et al. [2011a]. In the DACSEIS project, realized samples
from real world data were used as populations from which samples were drawn
[Münnich et al., 2003, work package 3]. When the finite population is generated
differently, e.g. by a statistical model, we come to the context of mixed MC
studies and inferences to be discussed in the next section.

From these data y, z, sub-arrays are drawn by generating index samples s
of S ∼ PD. The sampling estimator gS then can be evaluated using ys (and
possibly z or zs). The distribution of PD(gS ∈ ·) can then be numerically ap-
proximated after b = 1, . . . , B repetitions. This empirical distribution in return
allows to derive empirical statistics ιMC,B based on the distribution of gS such
as bias, mean squared error (MSE) etc.

Putting purely design-based and realistic design-based MC simulations to-
gether (ignoring the difference between ỹ and y), they are summarized in Al-
gorithm 3. If the study is quasi design-based, the data either originates from a
synthetic data set or is generated by a pre-defined DGP before the MC-loop.

Algorithm 3 Basic Idea of Design-Based Monte-Carlo
Require: 0 � B ∈ N, finite population U with characteristics y and z, probability space(

S, 2S , PD(·;y, z)
)
, estimator gS

Ensure: Estimate ιMC,B (PD (gS ∈ ·))
for b = 1, . . . , B do

Realize S ∼ PD. Denote the realization sb
Evaluate gS (sb,y, z) =: gsb

end for
Set P̂B

D (gS = x) , 1
B

∑B
b=1 1{x}(gsb ) (where x ∈ Rq)

Calculate distributional properties of gS , ιMC,B (PD(gS ∈ ·)) = ι
(
P̂B
D (gS ∈ ·)

)

It is remarkable – though not very surprising given the definition of Monte-
Carlo studies – that the basic principles in design-based and model-based sim-
ulation studies are quite similar: In both cases, the distribution of an estimator
and consequently additional properties ι are unknown (be it either PMϑ

(ϑ̂ ∈ ·)
or PD(gS ∈ ·)) and is approximated by its empircal counterpart. This is under-
done in order to derive information on the behavior of the estimator under the
given probability law (PMϑ

or PD), i.e. it is assumed that B is large enough to
have a good approximation due to convergence properties. The differentiation
between the statistical models PMϑ

and PD that either assume infinitely many
identically and independently distributed random variables (Yb, Zb), b ∈ N or a
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fixed population with infinitely many identically and independently distributed
random variables Sb, b ∈ N is nonetheless essential for the interpretation of
simulation results.

5. Combinations of Simulation Types

In this section, we discuss mixtures of the previously named simulation types
which constitute the majority of settings in current research in survey statistics.
Besides the realistic design-based framework which we already named in the pre-
vious section, we differentiate in addition between MC studies that are synthetic
design-based, quasi model-based, conditional model-based or model-based under
finite populations.

5.1. Model-based Simulation under Finite Populations

The integration of a randomization based probability law PD and the data gen-
erating model PMϑ

into PMϑ,D that was already mentioned in Section 4.1, is
of major interest in social sciences: This is the framework in which most anal-
yses in empirical social science and micro-econometrics are conducted (though
some researcher assume erroneously the model-based framework). Model-based
inference is sought, but the data from a surveys is used. That is, an integrated
framework like in Rubin-Bleuer and Kratina [2005] is required that also leads
to the probability law PMϑ,D in Equation (4.1). In that scenario, the DGP for
the finite population PMϑ

is often referred to as superpopulation model [Särndal
et al., 1978, for example]. An overview on the differences between design-based
and model-based estimation is given in Brus and de Gruijter [1997].

Many results concerning estimators ϑ̂ (and also the asymptotics of sequences
{gSN }N∈N) under non-informative design PD and thus PMϑ,D are already known
[Pfeffermann, 1993, Rubin-Bleuer and Kratina, 2005, Boistard et al., 2015, Kott,
2018]. For example, Rubin-Bleuer and Kratina [2005, Theorem 5.1] state that a

uniformly in z design-consistent estimator ϑ̂s(·; z) for an estimate ϑ̂U (y; z) (i.e.
an estimator using survey data that converges for almost each z (and PD(·;u))
to its finite population estimate), converges in probability under PMϑ,D, too.
Boistard et al. [2015] extend the functional central limit theorem to the pseudo
empirical cumulative distribution function (the HT estimator of the empirical
cumulative distribution function)

F̂HT(t) ,
1

N

N∑
i=1

di · 1S(i) · 1(−∞,t](Yi)

when Yi is 1-dimensional and PD meets certain requirements. This means, that
{F̂ (t)−F (t)}t∈R converges weakly to a zero-mean Gaussian process for N,n→
∞, which is a weaker result than the Glivenko-Cantelli theorem which would be
applicable for

∑N
i=1 1(−∞,t](Yi).
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In model-based simulation studies under finite populations, there can be two
aspects of interest: Either the performance of estimators gS for varying popula-
tion statistics (due to the choice and realizations following PMθ

) or the impact
of survey designs on estimates of model parameters θ ∈ Θ.

First assume that an estimator gS of a statistic gU (y) is of interest. The
model-based framework under finite populations allows to exclude – unlike a
design-based simulation study – that the performance of gS depends only on
the specific characteristics y and z found in the finite population. This is espe-
cially important when the estimator gS is either model-assisted like the GREG
[Särndal et al., 1992] or even model-based like it is common in small area es-
timation [Rao, 2005]. Alternatively, the impact of different designs PD can be
studied and under which properties of Z conditioning PD on Z might help to in-
crease efficiency of gS . Also, the violation of the non-informativity assumption,
PD = PD(·; (y, z)) instead of PD = PD(·; z) may be studied. Note that this is
also possible (with a different inference) in design-based studies.

Second, for causal inference in empirical social science and microeconomet-
rics, it is usually an estimator for ϑ ∈ Θ that is going to be studied. In contrast
to purely model-based studies, where only the impact of the choice PMϑ

can be
studied, model-based simulations under finite populations offer also the possi-
bility to study how important asymptotic independence assumptions of PD and
PMϑ

are.
As PMϑ,D consists of two steps chaining PD and PMϑ

, it is the easiest way to
design the MC study also in two steps. The law generating the finite population
precedes the sampling process, which must also be taken into account in the
simulation set-up.

A summary of model-based MC studies under finite populations is given in
Algorithm 4. We refer to the estimator here as g ∈ {gS , ϑ̂s}. Note again that in
this setting, the projection from Ω to X is a random variable itself, which does
not allow to set X as domain. Therefore, we write like in Section 4.2 for the
domain of an estimator g : S × Ω→ Rq.

Algorithm 4 Basic Idea of Model-based Monte-Carlo Studies under Finite
Populations

Require: B ∈ N, probability space
(
Ω,A, PMϑ

)
, probability space (S, 2S , PD), estimator g

Ensure: Estimate ι̂MC,B
(
PMϑ,D, g

)
= ι
(
P̂B
Mϑ,D

(g ∈ ·)
)

for b = 1, . . . , B do
Generate (Y, Z) ∼ PMϑ

. Denote the realization (yb, zb)

Define the survey design P b
D := PD(·;yb, zb)

Realize S ∼ P b
D. Denote the realization sb

Evaluate g(sb,yb, zb) =: gsb
end for
Set P̂B

Mϑ,D
(g = x) , 1

B

∑B
b=1 1{x}(gsb )

Approximate the distributional properties ι of g by ιMC,BP̂Mϑ,D(g ∈ ·) = ι
(
P̂B
Mϑ,D

(g ∈ ·)
)

Often, simulation set-up 4 can be simplified because only the conditional
distribution Y |Z = z is of interest. For example in linear regression, we have
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usually the assumption Yi ∼ind N(zTi β, σ
2). To reflect this assumption, it is

sufficient to generate once the auxiliary data Z and to consider for each A ∈A

the conditional probability PMϑ,D

(
A ∩ πy

(
(πz)−1(z)

))
=: PMϑ

(Y ∈ A|Z = z)
for measurable A ⊂ Y.

5.2. Quasi Model-based Simulation

Quasi model-based simulation differs only sometimes from model-based simu-
lation under finite populations. Depending on the survey design PD, it is not
always necessary to generate a finite population to sample from PMϑ,D previous
to survey sampling in order to generate (YS , ZS).

Consider for example Zi ∼ Bern(p) and Yi|Zi = k ∼ind Qk where k = 1, 2.
Concerning the survey design PD, units i ∈ U with Zi = 1 get sampled with
probability q1 and q0 < q1 otherwise, i.e. PD corresponds to Bernoulli sampling.
The sampling rates are thus pq1 and (1− p)q0. Then it is sufficient to draw n1

units Yi|Zi = 1 ∼ Q1 and n0 units Yj |Zi = 0 ∼ Q0 where N1 ∼ Bin(N, p) and
n1 ∼ Bin(N1, q1) and n0 ∼ Bin(N−N1, q2). This means, S is directly generated
without the help of a finite population.

If the asymptotic behavior of g when N,n→∞ is studied, it is even possible
to leave out the bounding by N in the example and implied by
PMϑ,D (πs((Y, S)) ∈ ·). It is simply taken S as the finite population, not un-
der the law PMϑ

but PMϑ
(πs ∈ ·). Note, that this method is especially feasible

when PD(i ∈ S ∧ j ∈ S|Z) = PD(i ∈ S|Z) · PD(j ∈ S|Z) but can get compli-
cated otherwise. If implementable, however, one gains possibly computational
efficiency.

Leaving out the two-step procedure from Algorithm 4, one needs to formulate
from PMϑ,D ((Y, Z) ∈ ·) to PMϑ,D (πs((Y, S)) ∈ ·) where πs is the coordinate pro-
jection from U to S. If this is simple, one can reduce the overall computational
effort. Note, though, that in this setting, the estimator g cannot be contrasted
with a finite population statistic, as units U \ S are not generated. Estimators
thus can only be compared to statistics of model parameters ϑ, which means
that only estimators with estimands stemming from ϑ can be studied.

5.3. Conditional Model-based Simulation

Algorithm 2 summarizes what Burgard [2013] calls ‘purely model-based’: Both,
auxiliary variables Z and the variable of interest Y are generated in each MC
run. It can, however, often be observed that only the variable of interest Y is
generated within the simulation loop [Burgard and Dörr, 2018, e.g]. This obser-
vation is due to the fact that often, we have only distributional assumptions on
Y given Z. If sampling is non-informative, this analysis also allows to keep one
survey-design fixed, even though it may depend on auxiliaries. In that case, the
probability law under study is PMϑ,D (· × (Y, z)). The advantage is less com-
putational effort and that also close-to-reality auxiliary variables may be used.
Less assumptions on a marginal law of Z have to be made. On the other hand,
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the drawback is that conclusions are only (under constraints) transferable to
other auxiliary data different from the realization z. Because the generation of
the dependent variable in each simulation run then depends on the realization
z, we refer to those simulation studies as conditional model-based MC studies.
Those may occur in a model-based (under finite populations) or quasi-model
based setting.

5.4. Synthetic Design-based Simulation

There are different possibilities to deal with the joint probability law PMϑ,D

as pointed out in Burgard [2013]: Alternatively to Section 5.1, one could study
PMϑ,D(S = · × (Y,Z) = (y, z)), which Burgard [2013] denotes ‘smooth design-
based’ and we refer to synthetic design-based: In fact, this probability law is
simply a design-based law, i.e. survey design, as we required PD to be a proba-
bility kernel.

In fact, this does not vary very much from a quasi-design based simulation
study besides the fact that there is due to the impact of PMϑ

possibly more
structure in the data and the DGP of the finite population’s characteristic is
better known to the researcher. This can help to evaluate estimators gS that
assume models. Note, that conclusions on the behaviour of gS on any other finite
population than the generated one is not admissibile and similar behaviour of gS
on similar realizations of the finite population characteristics (y, z) is suggestive.

For this reason, we do not further consider this case here and refer to Sec-
tion 4.2.2. A brief summary of such MC studies is given in Algorithm 5.

Algorithm 5 Basic Idea of Synthetic Design-Based Monte-Carlo
Require: 0� B ∈ N, index set U , probability space (Ω,A, PMϑ

) with dimension N , proba-
bility kernel PD, estimator gS

Ensure: Estimate ιMC,B (PD (gS ∈ ·; (Y, Z) = (y, z)))
Realize (Y, Z) ∼ PMϑ
Determine PD (·; (y, z)) = PMϑ,D (· × {(y, z)}) and the corresponding probability space on

2U

for b = 1, . . . , B do
Realize S ∼ PD. Denote the realization sb
Evaluate gS (sb,y, z) =: gsb

end for
Set P̂B

D (gS = x; (y, z)) , 1
B

∑B
b=1 1{x}(gsb ) (where x ∈ Rq)

Calculate distributional properties of gS , ιMC,B (PD(gS ∈ ·; (y, z))) = ι
(
P̂B
D (gS ∈ ·; (y, z)

)

To finish this section, an overview on the terms statistic of interest, estimand,
estimator and others in the context of different simulation set-ups is given in
Table 1.
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Table 1
Overview of Statistical Terms under Different Inferences

Term Mathematical Notation
(Quasi) design-based:
Finite population is available or (partially synthetically) generated. Samples are drawn re-
peatedly from the universe according to a given sampling design to generate the MC distri-
bution of the estimator of interest.

Statistic of interest gU : ×N
i=1Y→ Rq

Estimand gU (y) ∈ Rq

Estimator g : S × Ω→ Rq

Estimator’s distribution PD (g ∈ ·)
Monte-Carlo probability 1

B

∑B
b=1 1{·} (g(sb,y, z)) where Sb ∼ PD

Model-based:
Variables of interest and explanatories are considered to originate from a statistical model.
They are realized repeatedly according to the model to generate the MC distribution of the
estimator of interest.

Statistic of interest g : Θ→ Rq (usually and henceforth g = id)
Estimand ϑ ∈ Θ

Estimator ϑ̂ : Ω→ Θ̃ ⊃ Θ

Estimator’s distribution PMϑ

(
ϑ̂ ∈ ·

)
Monte-Carlo probability 1

B

∑B
b=1 1{·}

(
ϑ̂(yb, zb)

)
where (Yb, Zb) ∼ PMϑ

Model-based under Finite Populations:
Characteristics in the finite population are considered to be realized by a statistical model.
Samples are drawn from the finite population. Both steps are repeated to generate the MC
distribution of the estimator of interest.

Statistic of interest g : Θ→ Rq (usually and henceforth g = id)
Estimand ϑ ∈ Θ

Estimator ϑ̂ : S × Ω→ Θ̃ ⊃ Θ

Estimator’s distribution PMϑ,D

(
ϑ̂ ∈ ·

)
Monte-Carlo probability 1

B

∑B
b=1 1{·}

(
ϑ̂(yb, zb)

)
where (Yb, Zb) ∼ PMϑ

and

sb ∼ PD (·;yb, zb)
Conditional Model-based (under Finite Populations):
The auxiliary variables of the statistical model that generates the variable of interest are
considered to be fixed. Except for this peculiarity, the statistical model (and sampling process)
and therefore the generation of the estimator’s MC distribution are realized as before.

Statistic of interest g : Θ→ Rq (usually and henceforth g = id)
Estimand ϑ ∈ Θ

Estimator ϑ̂ : (S×)Ω→ Θ̃ ⊃ Θ

Estimator’s distribution PMϑ(,D)

(
ϑ̂ ∈ ·|Z = z

)
Monte-Carlo probability 1

B

∑B
b=1 1{·}

(
ϑ̂(sb,yb, z)

)
where Yb ∼ PMϑ,D(·|Z = z) (and

sb ∼ PD(·;yb, z))
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6. Examples

6.1. Small Area Estimation

An illustration of the different types of inference and their implication on MC
studies is easily demonstrated using a basic set-up in the field of small area
estimation (SAE): In SAE, the finite population is the ensemble of d = 1, . . . , D
partitions, U = ∪·Dd=1Ud. Hence, it is possible to formulate estimands and esti-
mators for any projection πd from U to Ud, d = 1, . . . , D. The basic idea is to
define the estimators as

gsd , EMϑ,D [gUd |Y,Z, S] . (6.1)

It is thus obvious that small area estimators can at most be unbiased for the
estimand EMθ

[gUd(Y )] and, for non-trivial cases, never for gUd (y). Estimators
that rely exclusively on observations S ∩ Ud are in that setting inconvenient
because the efficiency of estimators is usually an increasing function in the
sample size. On the other hand, if PMϑ

is now such that variables πUd(Y ) and
πUd′ (Y ) share some joint parameters in ϑ even for d 6= d′, units from Ud′ ∩S can
be used for the prediction in Ud ∩ Sc, which is denoted as ‘borrowing strength’.

Usually, it is assumed that Y is generated by mixed models: Additional to an
identically and independently distributed, zero-centered idiosyncratic error εi
for each h(Yi), i.e. h(Yi) = µd + εi where µd = E[h(Yi)|i ∈ Ud], a zero-centered
random area effect νd, EMϑ

[νd] = 0, d = 1, . . . , D, is shared for all {h(Yi)}i∈Ud .
h is an appropriate transformation to restablish the assumptions on the errors;
usually the identity. However, h can also denote, for example, the Box-Cox or
logarithmic transformation [Rojas-Perilla et al., 2017, Zimmermann, 2018].

It is now interesting how the estimators {gsd}d=1,...,D behave under different
simulation scenarios, especially as they are usually contrasted to design-based
estimators. Those are usually defined under fixed populations, for example the
HT [Horvitz and Thompson, 1952]. Keeping thus the realizations of Y and Z
fixed, thus can be justified by the comparison with such estimators (and the
application of SAE in practice, where the population is fixed, too). This yields
(synthetic) design-based simulation studies like in Burgard [2013]. On the other
hand, repeated realizations of the finite population can be argued for by the
definition of the SAE, which makes the model-based MC studies enter the scene
[Verret et al., 2015, Wagner et al., 2017, Zimmermann, 2018].

Furthermore, the ‘true values’ with whom the MC outcomes are contrasted
with, need to be documented as well: One could either contrast with the finite
population statistic gUd(yb) in MC run b. Under the model-based set-up, this
is of course unfavorable for SAEs in contrast to design-based statistics. On
the other hand, one could argue that this is closer to reality. Or, one could
contrast all estimators with EMϑ,D [gUD (Y )] as this value is consistent with the
framework of PMϑ,D and is also defined for design-based estimators such as the
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HT. Remember that

EMϑ,D

[
(gsd − gUd)

2
]

= EMϑ,D

[
(gsd − EMϑ,D [gUd ])

2
]

+ Var [gUd ]

+ 2 · E [gsd − EMϑ,D [gUd ] , gUd − EMϑ,D [gUd ]] ,

where the last term is usually non-negative. Thus, choosing the first option yields
a larger MC variation than contrasting the estimators with their model-design
expectation.

Depending on the simulation set-up, different conclusions on the performance
of estimators {gSd}d=1,...,D can be made. Depending on the probability law
under study in the MC study, the global statistic against which the estimator
gSd is contrasted, must be chosen. In the example with mixed models, as the
random effect is under the model and unconditionally zero-centered, it may be
asked whether a small area estimator should be contrasted against EMϑ

[gUd |νd]
or EMϑ

[gUd ] in a model-based simulation study [Zimmermann, 2018]. This is an
even more important question when model-based SAE is compared to design-
based estimators. When S ⊥ Y given the auxiliary information Z, one could
study the marginal distribution of the estimator given Y and Z, integrating out
the sample. This is then possible even when conditioning on νd. When Y 6⊥ S|Z,
it may become impossible to integrate out S without keeping conditioning on
ν.

We demonstrate these differences in inference with a small simulation study.
We generate once Xi ∼iid Pois(1) where i = 1, . . . , 1000 and assign randomly to
each outcome a domain d = 1, . . . , 50 where |Ud| ≡ 20. In each of the B = 1000
simulation runs, we generate for i ∈ Ud

Yi = 1 + xi + νd + εi (6.2a)

νd ∼iid N(0, 32) (6.2b)

ε ∼iid N(0, 1). (6.2c)

From each domain, B = 1000 times a simple random sample is drawn with
|Ud ∩ S| ≡ 5 without replacement and we evaluate for each domain the HT
estimator [Horvitz and Thompson, 1952] τ̂HTd and the Battese-Harter-Fuller
estimator [Battese et al., 1988] τ̂BHFd for the domain total of y (or Y ). This
means, that we are in the context of conditional model-based simulation under
finite populations.

From the MC simulation, we get the empirical distribution of the estimators,
and study the relative mean squared error (RRMSE) across domains as a quality
measure: The empirical version for B simulation runs is

RMSEMC [τ̂d] :=

√√√√ 1

B
·
B∑
b=1

(τ̂d(sb)− E [τd|x])
2

RRMSEMC [τ̂d] :=
RMSEMC [τ̂d]

E [τd|x]
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Fig 1. Results of Model-based Simulation Study under Different Benchmarks
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where either

E [τd|x] = 20 +
∑
i∈Ud

xi or E [τd|x] =
∑
i∈Ud

y
(b)
i ,

where y
(b)
i is the b-th realization of the random variable Yi. The first definition

of the expectation E [τd|x] is the conditional model-based one whilst the second
is the design-based expectation in each simulation run. Obviously, the results
will depend on the choice of expectation as already outlined.

The RRMSEs for both the BHF and the HT under the different types of
inference are illustrated in Figure 1. The difference using different benchmarks
is striking: There is not only a quantitative difference, but also the qualitative
result on which estimator to prefer based on RRMSE is inconclusive: Under
the model (conditional on x), the BHF has a clear advantage. On the other
hand, the RRMSE of the BHF is larger then of the HT in the finite popula-
tion total contrast. This is due to the fact that in this setting, conditional on

y(b) = (y
(b)
1 , . . . , y

(b)
N )T , the BHF is biased. This bias seems to outweigh possible

efficiency gains. Alternatively to the model-based simulation under finite pop-
ulations, a (quasi) model-based simulation study could be run, what Burgard
[2013] calls ‘smooth design-based’. For this purpose, we realize once Y according
to the Model (6.2). Then, B = 1000 times a simple random sample within all
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Fig 2. Results of Quasi Design-based Simulation Study
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domains with |Ud ∩ S| ≡ 5 is drawn, that is, we employ a stratified sampling
design. The MC-RRMSE is plotted in Figure 2. As the Model (6.2) underlies
the finite population, the BHF performs well although it is not unbiased under
the design, meaning that the efficiency gain of the (correctly) assumed model
outweighs the design bias. Note furthermore, that the scaling of the RRMSE
is again different and that the HT does not perform too bad compared with
the BHF under this set-up. To conclude, it is thus essential to determine in ad-
vance the desired probability law to be studied using the MC-simulation. Due
to the highly diverging conclusions that may result from the varying set-ups,
the chosen scenario must be communicated in great detail.

6.2. Regression Analysis

Whilst the first example concerns summary statistics for finite population infer-
ence, the second example deals with regression analysis, common in econometrics
or social science for example. We demonstrate the problems with model-based
estimation in a set-up of finite populations: It is common in social science to
infer on estimators like under a model-based setting although a survey sample
has generated the data. This is obviously problematic when the sampling mech-
anism PD depends on the variable of interest, because in that case, we have
PMϑ,D(Y, S|Z) 6= PMϑ

(Y |Z) · PD(S|Z) and thus integrating out the sample is
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Fig 3. Monte-Carlo Distribution of Regression Estimators
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To illustrate this, we consider the following data generating process in each

simulation run b = 1, . . . , 5000

Y
(b)
i = 1 +Xi + ε

(b)
i , i = 1, . . . , N (6.3a)

εi ∼iid N(0, 1) (6.3b)

logXi ∼iid N (0, 4) . (6.3c)

and we sample n = 100 units across two strata: 75 units are drawn under those
with εi > 0.5 and the remaining units are drawn amongst those with εi ≤ 0.5.
The explanatory variables Xi, i = 1, . . . , N , are generated once. We are thus in a
conditional model-based framework. As illustrated in Boxplot 3, the informative
subsetting process, Y 6⊥ S|X, impacts the point estimation when the regression
is unweighted. Of course, this also affects inference: The coverage rate for the
intercept for the 95% confidence interval is 0, when the regression is unweighted,
whilst it is about 94% for the weighted regression.

In summary, this exemplary simulation study illustrates model-based simula-
tions under finite populations. Though in principle it would have been possible
to generate 25 and 75 units from the respective truncated normal distribution,
it is conceptually easier to take the workaround using a finite population to
sample from. Furthermore, this allows to calculate survey weights, which would
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not have been possible in quasi model-based simulation.

7. Further Notes

7.1. Nonresponse

In the intersection of model- and design based inference occurs also the phe-
nomenon and treatment of survey nonresponse. Units sampled into the survey
S sometimes do not answer either to the complete survey questionnaire or spe-
cific questions, leading to completely missing observations or at least missing
variables.

When simulations are conducted in order to study the performance of nonre-
sponse treatments, their conception and the inferential context of nonresponse
is consequently of importance, too.

Nonresponse can either be understood as another subsampling process from
S, that might again depend on auxiliaries Z or variables of interest Y . Or it can
be understood as an additional binary variable that is attributed to each unit
in the finite population, that is generated from a probability model possibly
employing Z and Y . Define the variable Ri ∼ Bern(pi) equal to one if unit i
responds and zero else. In the first setting, Ri is conditional on 1S(i) and only
defined for i ∈ S. In the second, Ri is defined for all i ∈ U . In both settings,
it is possible to differentiate between missing completely at random (MCAR),
missing at random (MAR), and not missing at random (NMAR) [Rubin, 1996].
In the design-based setting these may be described as follows: There exists no
function f such that pi = f(y, z) (MCAR), pi = f(y) (MAR) and there exists
a function h such that pi = h(y, z) (NMAR) for all i ∈ U respectively. In the
model-based setting MCAR, MAR and NMAR refer to R ⊥ (Y,Z), R ⊥ Y and
R 6⊥ Y respectively.

The different concepts of nonresponse impact the design of MC studies,
though. In the first framework, units in one and the same finite population
might once respond to the survey and another time not. Consequently, the fi-
nite population total exists and could theoretically be determined if all units in
U were observed.

A non-Bayesian application of this first framework is found in Bjørnstad
[2007]. There, nonresponse can be considered to be another sampling process
from the finite population, and the final survey is the intersection of the sampling
process Ri ∼ Ber(pi) and the realization of S ∼ PD. This approach is in so far
interesting as it needs not assume that y is a random realization. Also this
implies that nonresponse should be modelled prior to survey sampling within a
MC study.

In the second, nonresponse is part of the model-based, data generating pro-
cess and for a given finite population, the outcome of Ri is fixed regardless
whether i ∈ S. In contrast to the first setting, the finite population total would
even be unknown if all units i ∈ U were observed. This setting is especially in-
teresting when multiple imputation (MI) [Rubin, 1996] is considered to remedy
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nonresponse. MI is a model-driven methodology, seeking to explain missingness
in the variable of interest Y by the observed answers Z, i.e. MAR is assumed.
As is learned from Sections 2.3 to 2.5 in Rubin [1996], MI is put into the second
framework, implying that MC simulations studying MI are correctly conducted
simulating nonresponse once at the finite population level and repeating the
generation of finite populations. Note that even under MAR assumptions, MI
becomes critical when S 6⊥ Y |Z because in that case, (S,R) 6⊥ Y |Z and the
estimation of the correct imputation model becomes difficult.

The study of other violations of model assumptions such as the generation
process of R, though, also allows to use MI in the firstly named context, i.e. in
generating nonresponse in each sample realization S = s. Benchmarks in this
model-based setting are ambiguous like in the SAE case and need to be commu-
nicated clearly because the conclusions can depend on the choice of benchmarks
like in Section 6.1.

7.2. Resampling Methods

Independently from MC studies, basic resampling techniques such as the boot-
strap encounter problems in survey sampling: When inference aims at PMϑ,D,
there is no infinitely growing sample of realizations y. Furthermore, when in-
ference aims at PD, there is only one sample S = s available in practice which
makes resampling difficult. Hence, the bootstrap procedure must be adapted to
reflect the sampling process PD within one sample realization, for example this
is done in Sitter [1992b]. Competitors of the bootstrap such as the jackknife
and the Balanced Repeated Replication (BRR), can also be seen in this con-
text. For example, the BRR [McCarthy, 1966] may be considered to mimic the
sample design with simply half of the scheduled sample size. Adjusted jackknife
methods for complex samples, on the other hand, account for the impact of one
included observation yi in the sample s under design PD. An analysis of the
properties in stratified samples is given in Krewski and Rao [1981].

It is, however, an alternative to go the other way around, confer for example
Gross [1980] or Booth et al. [1994] or Shao [2003]: Taking the population statistic
gU as a function of the discrete probability law (Y, Z) ∼ Unif(y,z) =: PU , the
authors state the objective of finite population resampling to plug-in realizations
from Y ∼ P̂U into gU where the estimator P̂U is an empirical estimate for PU
employing the sample realization S = s. Note, that though the qualities of the
bootstrap variants based on the second motivation are proven, the motivation
is contrary to what we established as a sampling randomization framework.

As both motivations lead to non-parametric bootstrap variants that account
for PD, these methods are conceptually easily applicable to design-based MC
studies. Nonetheless, resampling methods within simulation studies are highly
computer intensive as any resampling size K scales up to B × K because the
resampling is redone in each simulation run b = 1, . . . , B [Shao, 2003, Münnich
et al., 2015]. Sitter [1992a] considers four different finite populations (based on
real world sample data) from which random samples were drawn. We consider
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this an extended design-based simulation study. Münnich et al. [2015] even run
resampling methods in combination with SAE and nonresponse scenarios.

The parametric bootstrap [Hinkley, 1988], on the other hand, assumes that
Y ∼ PMϑ

and makes inference with respect to Y ∼ PMϑ̂
. In that case, the

estimator ϑ̂ should account for the survey design PD. When inference on PMϑ,D

is aimed at, though, a design-adapted estimator is not sufficient to yield accurate
resampling inference, at least when the design is informative or the asymptotic
independence of PD and PMϑ

is not applicable. For model-based MC studies in
survey sampling, though, the parametric bootstrap is a useful method to yield
estimators for higher order statistics in each simulation run whose distribution
can then be evaluated using the MC probability P̂BMϑ

.

8. Discussion

In this paper, an overview of distinct statistical methodologies in survey sam-
pling is given and the implications on MC-studies are described. Depending on
the objective of a researcher’s analysis, there are different probability laws that
can be studied on survey data and the applicable probability law determines
the set-up of the simulation study. We differentiate between a randomization
approach returning a (synthetic) design-based Monte-Carlo simulation set-up,
and model-based approaches that assume that a parametric statistical model has
generated the data. The latter requires a model-based simulation set-up. Third,
there are hybrid cases that account for both sources of stochasticity and are
named (quasi or conditional) model-based scenarios, partially under finite pop-
ulation. We cite formulae on how to combine both probability laws and describe
an adequate Monte-Carlo set-up. The theoretical results are demonstrated in
exemplary Monte-Carlo studies.

The differentiation between the statistical frameworks is not always clear-
cut, especially when estimators from different points of view shall be compared
in the simulation study. Such examples are small area estimation and nonre-
sponse. Especially in these hybrid cases, the communication of the Monte-Carlo
framework has to be detailed and not all (empirical) papers on these fields are
comparable to each other due to varying underlying assumptions.

Of course, within an overview paper hardly all details can be discussed exten-
sively considering all hybrid versions of MC-studies in survey sampling. Nonethe-
less, we hope to have sharpened the view on important details of the overall sta-
tistical model that affect the set-up of simulation studies. Especially the quasi
and synthetic design-based variants are highly subject to the availability of
(close-to-reality) populations. Thus, the generation of such pseudo-populations
will be a major task in future statistical research. In addition, the definition
of the underlying population and response mechanisms extend straight to the
debate of Big Data in statistical analysis because in Big Data, it might not be
clear whether any unit in the population of interest could be contacted with pos-
itive probability and how the response patterns look like. Furthermore, machine
learning algorithms (that are often implicit statistical models) that are not run
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on image or online data but on populations of human beings encounter the prob-
lem of sub-sampling from a finite population, too. Design-based Monte-Carlo
studies can help to learn about the behavior of machine learning algorithms in
this (realistic) context.

The other way around, repeated Monte-Carlo studies are very computer in-
tensive and it is not always a priori clear, what an adequate number of Monte-
Carlo replications is or what could be chosen as a good proposal distributions.
Feeding a machine learning algorithm with pairs of MC replications or pro-
posal distributions respectively and the resulting MC error for supervised or
affirmative learning, could help to give answers to these questions or to allow
simulations with reduced Monte-Carlo variance.
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