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Abstract

Multi-stage cluster sampling is a common sampling design of social surveys because

populations of interest are often structured by, or partitioned into, disjoint organizational and

administrative units. The need to use cluster sampling can conflict with survey planners’ goal

to select a sample that contains a specific number of elements from certain domains of

interest. This can be a complex problem if sampling units, i.e. clusters, cut across the

domains of interest, as it is often the case. For example, an analysis require sufficient

observations from certain age and gender categories. But the population is clustered within

schools, hospitals, establishments, or municipalities and hence age-gender categories cannot

be used for stratification.

We propose a quadratic optimization approach to define inclusion probabilities that can be

used for drawing balanced cluster samples that comply with predefined sample sizes from

domains of interest. Henceforth the clusters may cut across domains. We also provide an

application of the proposed solution to the domain size problem for an existing social survey

on migration and emigration in Germany.

Keywords: planned domain sizes, balanced sampling, cluster sampling, quadratic optimization
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1 Introduction

Cluster sampling is a common sight within sampling designs in social surveys, where instead of

sampling individual elements groups of elements are selected. This is because the target

populations are often structured according to some hierarchical clustering. For example, residents

are clustered within municipalities, students are clustered within schools, and employees are

clustered within establishments. Sampling frames for these clustering units can be more easily be

compiled and maintained than a collective sampling frame for the entire population. There are

also other circumstances that make cluster sampling necessary, like cost and field time constraints.

Thus, feasible sampling strategies often involve selecting clusters of units first, then surveying all,

or parts, of the elements they contain.

Cluster sampling, however, comes with some disadvantages. In many practical applications it will

reduce the efficiency of estimation strategies, because the similarity of elements within the same

cluster is likely to increase the sampling variance of estimators (Lohr, 2009, Ch. 9.5). Another

drawback of cluster sampling is the difficulty it poses to the planning of domain sizes, which is the

focus of this paper. For instance, a survey planner may want to realize a certain allocation of the

sample size over predefined age-gender groups of a population of persons. Implementing such an

allocation would be straightforward, if a collective sampling frame existed that could be stratified

according to these age-gender groups.

Unfortunately, if persons cannot be selected under a single-stage sampling design, realizing

planned domain sizes in the sample is complicated. Especially, if clusters cut across domains of

interest. Typically clusters are intrinsic to the target population and cannot be designed freely,

hence their cutting across domains can be seen as the standard setting. The survey planner has to

find a sampling design for the first sampling stage and subsequent sampling stages that controls for

the domain sizes in the sample. Solving the problem of finding a multi-stage or cluster sampling

design that controls for domain sizes in the sample (i.e., The Domain Size Problem of Cluster
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Sampling) is only complicated, if inclusion probabilities of elements are to remain computable in

closed form. If inclusion probabilities do not need to be calculable, the problem can be solved by

adding a second sampling stage. Sampling at the second-stage (or any subsequent stage) is simply

made conditional on the selected cluster sample (or any prior selection of sampling units). But

knowing the inclusion probabilities is a prerequisite to construct widely used classes of unbiased

or asymptotically unbiased estimators (see e.g. Gelman, 2007; Kott, 2018).

An example of a two-stage design would be to pool all selected clusters, stratify the pooled

elements by domains of interest, and select a stratified simple random sample. If domain sizes are

constant across all clusters - and the number of sampled clusters is fixed - then such a design

would still have inclusion probabilities that have a straightforward closed form. However, if

domain sizes are not constant, then the stratum sizes of the second sampling stage will depend on

the set of sampled clusters, thus inclusion probabilities have to be approximated. First order

Taylor Series approximations could be used in such a case. Furthermore, variance estimation

under such a design would be difficult, as the second order inclusion probabilities also have to be

approximated. This is even more complex, especially if the domain sizes of the pooled samples

are random or not controlled for. One could use Monte Carlo methods to approximate the second

order inclusion probabilities. But this can be very time consuming and impractical, because the

process of calculating the first and second order probabilities has to be repeated with every

adjustment survey planners do to the pooled design. Because of uncertainties with the required

power of statistical test or field work parameters such as response rates, recalculations can be

expected to happen frequently during the planning stage. Due to the necessary approximations of

the inclusion probabilities, and the complex survey design, the variance estimation is complex as

well. These are impractical features making the pooling of clusters a cumbersome sampling

strategy for planning and inference.

it is even more complicated to solve the domain size problem with a cluster sampling design that

has calculable inclusion probabilities if the distribution of domain sizes is highly unequal across
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clusters. To better control for domain sizes in the sample the survey planner could split clusters

into multiple strata, where the strata contain clusters of similar domain size. The drawback of this

approach is that it increases the complexity of the sampling if different sampling designs within

the strata have to be used. For example, if some clusters have prohibitively large domain sizes and

thus only parts of them can be surveyed, whereas within other strata domain sizes are much

smaller and all elements in a cluster can be surveyed. Such mixed designs require alternative

methods for data analysis, typically leading to more complex procedures. For example, the

standard formula for the design effect (Kish, 1965, p. 162) can no longer be used (Gabler et al.,

1999). Also a stratification of primary sampling units (PSUs) that produce such homogeneous

strata with respect to domain sizes has to be found, which might be difficult without the help of

optimization methods.

We propose an approach to obtain a sampling design that ex-ante controls for the size of domains

within the sample and does not need a mixture of sampling designs. The basic idea is to use

balanced sampling with inclusion probability weighted domain sizes of clusters as balancing

variables. We show how to compute the optimal inclusion probabilities to plan domain sizes that

cut across clusters in cluster sampling.

The approach can also be applied to multi-stage sampling. For this, the domain specific sample

sizes from each PSU need to be both non-random and known. If more than a single element is

surveyed from at least one PSU we have a cluster of units from this PSU in the sample, i.e. the

PSUs are our clusters in case of multi-stage sampling.

In Section 2 we show how a balanced cluster sampling design can be found that has fixed domain

sizes, predefined by the survey planner, and known inclusion probabilities for the elements

populating the clusters.

We show that it is possible to solve the problem of finding inclusion probabilities that fulfill the

balancing requirements by treating it as a QP-optimization problem. In Section 3 we apply our
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method to solving the problem of developing a sampling design with fixed domain sizes for the

German Emigration and Remigration Panel Study. Furthermore, we compare the actual sampling

design that has been used for the surveys with our approach. This demonstrates the advantages of

balancing the cluster sample directly on the desired size of domains of interest in practice.

Finally, in Section 4 we give a summary of our method and point out which sampling design

planning problems our methods might be best suited.

2 Drawing Cluster Samples with Planned Domain Sizes

First we introduce some notation for cluster sampling and domain size planning. Let

U = {: |: = 1, . . . , #}, # > 2 and # ∈ N, be the index set of our target population of size # .

Further, let C = {2 |2 = 1, . . . , �}, with � > 2 and � ∈ N be the index set of clusters in the

population of interest, (e.g. our PSUs), and
⋃
2∈CU2 = U, whereU2 ⊂ U, i.e. U2 is the index

set of our target population within the 2-th cluster. We define a cluster sampling design as a

discreet probability distribution over set S= ⊂ P(C), where S= is the set of of all = sized subsets of

the power set P(C) of C. Function ?(.) is the discreet probability mass function of our sampling

design and the set of all B ∈ S= with ?(B) > 0 is the support of our sampling design. For the sake

of simplicity we denote S= as the support of our cluster sampling design with fixed samples sizes

of = clusters. Then the inclusion probability of the 2 − Cℎ cluster is given by

c2 =
∑
B∈S=

�2 (B)?(B) ,

where �2 (B) is an indicator function, assuming a value of one if 2 ∈ B and zero otherwise.

To define domains and domain sizes, let 3 = {1, . . . , �} be the index set of our � domains of

interest and <23 ∈ N a non-random integer denoting the elements surveyed from the 3-th domain

of the 2-th cluster, if �2 (B) = 1. We assume, the survey planner seeks to obtain a sample of clusters
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B ⊂ S= such that ∑
2∈B

<23 = g3 , ∀3 ∈ {1, . . . , �}, (1)

where, g3 , 3 = 1, . . . , �, are the planned domain sizes for the survey. That is, B needs to be

selected in such a way that the aggregated domain sizes of the selected clusters equal the desired

domain sizes in the sample.

The sampling design that allows us to impose constraints in Equation (1) is balanced sampling,

proposed by Royall and Pfeffermann (1982); Deville and Tillé (2004). Balanced sampling is a

method of selecting samples with equal or unequal inclusion probabilities, under the condition that

the Horvitz-Thompson estimators, (i.e. the inclusion probability weighted sample total), for the

known totals of the balancing variables have, in case of perfect balancing, a sampling variance of

zero (Tillé and Favre, 2004). The balancing variables can be chosen freely by the survey planner.

Thus, using the size of domains of interest per cluster multiplied by the inclusion probabilities of

the clusters as a balancing variable will result in fixed sample sizes for domains of interest.

For sampling design ?(.) to be (perfectly) balanced on known totals g3 , 3 ∈ {1, . . . , �}, the

following conditions need to be met

∑
B∈S=

�2 (B)<23
c2

= g3 , ∀3 = 1, . . . , �, ∀2 ∈ C. (2)

The two constraint in Equations (1) and (2) are conceptually very different. Where Equation (1)

constrains the domain sizes in the sample, Equation (2) constrains the estimated totals of the

domains on the level of the target population. We could use as balancing constraints in (2)

ḡ3 =
∑
2∈C <23 , i.e. we balance on the totals of the survey elements form domains 3 = 1, . . . , �.

However, this would not directly satisfy Equation (1). In order to achieve the constraints in

Equation (1) with a balanced sample it is necessary to find a suitable balancing variable 023 , such
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that ∑
2∈C

�2 (B)023
c2

= g3 , ∀3 = 1, . . . , � ∀B ∈ S=. (3)

Which is achieved by defining 023 = c2<23 as the balancing variable and consequently

g9 =
∑
2∈� 023 . Our aim is to find a vector of inclusion probabilities c ∈ (0, 1)� that satisfies

g3 =
∑
2∈� 023 as close as possible. At the same time it is desirable to deviate as little as possible

from some inclusion probabilities c∗, that are initially set by the survey planner. For example

probabilities proportional to the total elements surveyed from a cluster, i.e. c∗2 = <2/g, where

<2 =
∑�
3=1 <23 and g =

∑�
3=1 g3 . We choose the sum of squared deviations as distance measure

between c and c∗, since we would like to penalize more the greater the deviations from the initial

vector c∗ is. Other distance function can be used, however this results in adopting the following

optimization problems.

To find 023 , 2 = 1, . . . , � , 3 = 1, . . . , � that satisfy Equation 3 we formulate the following

optimization problem

0A6<8=
c2∈(0;1), n2∈R

U

∑
2∈C
(c2 − c∗2)2

2
+ (1 − U)

∑
3∈{1,...,�}

n2
�

2

B.C. � [
∑
2∈B

<23] = g3 + n3 , ∀3 ∈ {1, . . . , �}

(OP1)

The n3 ∈ R, 3 = 1, . . . , �, are some slackness variables, that allow the optimization procedure to

slightly deviate from the strict equality constraints, which ensures a non empty solution space.

Parameter U ∈ R>0 can be set by the survey planner to put either more importance on a small

deviation of c from c∗ (higher U/(1 − U)) or on the tightness of the constraints (lower U/(1 − U))

in Problem OP1.

For any sampling design with inclusion probabilities c that solve the optimization problem in

(OP1), � (
∑
2∈B <23) is equal to

∑
2∈C c2<23 . Therefore, the optimization Problem (OP1) can be
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rewritten as:

0A6<8=
c2∈(0;1), n2∈R

U

∑
2∈C
(c2 − c∗2)2

2
+ V

∑
3∈1,...,�

n2
�

2

B.C.
∑
2∈C

c2<23 = g̃3 + n3 ,∀3 ∈ {1, . . . , �}
(OP2)

Optimization Problem (OP2) can then be formulated as a quadratic programming problem as

follows:

0A6<8=
G=(c n), c∈(0;1), n∈R�

G′�G − 6′CG

B.C. �′1G = gG

�′2G > 0

�′3G > −1

with

� = 3806(3806((U)1×�), 3806((V)1×�)

6 = (U · c∗, (0)1×�)

�1 =
©«

-

3806((−1)1×�)

ª®®¬ , �2 =
©«
3806((1)1×�)

0�×�

ª®®¬ , �3 =
©«
3806((−1)1×�)

0�×�

ª®®¬ .

(OP3)

Problem (OP2) can be solved with standard quadratic programming problem solvers such as

quadprog in R by Turlach and Weingessel (2019). The resulting vector of inclusion probabilities c

can then be used in combination with a balanced sampling design, which balances on variable

023 = c2<23 , to obtain a sampling design that has a support that fulfills the condition in Equation

(1).
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3 Applications

To illustrate the benefit of our proposed method we compare it with the sampling design of a

survey that required samples with planned domain sizes, but had no collective sampling frame

available.

3.1 GERPS Sampling Design

The German Emigration and Remigration Panel Study (GERPS) includes a sample survey of

persons that have either emigrated out of, or migrated back to, Germany. The aim of the survey is

to assess the effects this event has on different aspects of peoples lives, like education and

professional careers (Ette, 2020). The study had two domains of interest when planning the

sampling design, emigrants and remigrates. It was planned to interview 3000 emigrants and

remigrates each. Assumed response and contact rates for remigrates and emigrants lead to a gross

sample that was required to contain 21467 emigrants and 20202 remigrates. That is, within the

notation of Section 2 we have, � = 2, and g1 = 21467, and g2 = 20202.

Contact information for emigrants and remigrates is available at the level of municipalities in

Germany. Emigrants are asked to notify the municipality in which they reside prior to their

departure about their intent to move abroad and leave an address under which they can be

contacted. Remigrates have to register in municipalities to which they move, as all residents in

Germany are required to. To gain access to the information on emigrants and remigrates

municipalities have to be contacted individually and cooperate voluntarily with the survey planner.

The major problem with selecting the gross samples was the high concentration of emigrants and

remigrates within a relatively small number of municipalities. There were, in total, 11054,

municipalities in Germany at the time the survey was designed. See Bundesamt (2017) for a

detailed description of available municipalities in 2017 in Germany. However most of them report
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no emigrants or remigrates at all or they have less than 3 emigrants and/or remigrates, in which

case no information on the number of emigrants or remigrates was given. Data on the number

emigrants and remigrates was then available form 4638 municipalities.

Figure 3.1 shows the Lorenz curves for the distribution of emigrants and remigrates over these

4638 municipalities in the sampling frame. The black and the red curve correspond to emigrants

and remigrates, respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

L(
p)

Emigrants
Remigrates

Figure 1: Lorenz curve of the number of remigrates and emigrants in municipalities in Germany

As apparent in the Lorenz curves, both distributions have a relatively high concentration, with

emigrants having a slightly higher concentration. The Gini coefficients, i.e. double the area

between bisector and these Lorenz curves, are 0.7237 and 0.7148 for emigrants and remigrates

respectively.

Additionally to the required number of emigrants and remigrates in the sample the condition was

imposed that sampled sizes for municipalities must not exceed 70. The mentioned requirements

and the high concentration of emigrants and remigrates made lead to the decision not to use a

single stage cluster sampling or a uniform two-stage sampling. The former was done to reduce the

concentration of remigrates and emigrants from the largest municipalities in the sample. The later,

because finding an appropriate first stage sampling design for municipalities and second stage
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sampling designs for emigrants and remigrates from each municipality in the frame was too

complex problem to solve manually. Implementing a design that fulfills all the above conditions is

difficult, because of the large heterogeneity in the number of emigrants and remigrates across the

municipalities. It involves the complex task of finding the number of emigrants and remigrates

that have to be surveyed in each municipality, such that the desired domain sizes are met with a

sample of 70 municipalities. However, this problem can be solved by finding the solution to

optimization problem OP2 or OP3 in Section 2.

To fulfill the stated requirements for the sample design it was decided to split the sampling frame

into two strata, where different sampling designs could be applied independently within those

strata. The first stratum was comprised of the 10 municipalities with the highest sum of emigrants

and remigrates, while the second stratum included all the others. Within the first stratum the ten

municipalities formed strata again. Then a stratified sample with simple random sampling within

municipalities was used for each domain within the first stratum of municipalities. The sample

sizes for emigrants and remigrates within the first stratum of municipalities was allocated

proportional to the domain sizes of the municipalities.

For the second stratum a single stage cluster sample was used, where all emigrants and remigrates

of each sampled municipalities were selected. We selected the sample of municipalities from the

second domain using a balanced sampling design (Deville and Tillé, 2004), with inclusion

probability proportional to the sum of both domains with each municipality and a balancing

variables equal to the number of emigrants and remigrates within each of the 16 federal states of

Germany were used. In order to reduce the range of inclusions probabilities all municipalities

with less than 5 emigrants or remigrates were excluded from the sampling. This left 2133

municipalities in the sampling frame of stratum 2. The first stratum of the sampling frame then

contained around 26% of the emigrant and 30% of the migrant population, while consisting only

of around 0.47% of municipalities in the frame.

Deciding on the number of emigrants and remigrates to be selected from the two municipality
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strata involved an interactive procedure using a simulation to approximate the expected domain

sizes in the second stratum, which is random. Their variances are limited by the used of the above

described balance sampling design, however.

3.2 Alternative Sampling Design

The method presented in Section 2 allows for a straightforward and transparent way of planning

samples sizes for domains of interest in the presence of clustered populations. Using the method

presented in Section 2 we can construct a sampling design, that does not require a predefined

cluster stratification, in order to define a survey sample satisfying domain size targets g1 and g2.

We apply our method to four scenarios that differ by the sampling frames used.

Scenario F : The sampling frame includes all 4638 municipalities that have 3 or more emigrants

and/or remigrates.

Scenario S : The sampling frame includes all 2143 municipalities that have 5 or more emigrants

and remigrates.

Scenario R : The sampling frame includes all 4638 municipalities that have 3 or more emigrants

and/or remigrates. The domain sizes of the 10 largest municipalities are set to the number of

emigrants and remigrates sampled from these municipalities in the GERPS sampling design.

Scenario RS : The same sampling frame as in Scenario R, but only with the 2143 municipalities

that have 5 or more migrants and remigrates.

To evaluate how well our proposed method in Section 2 is able to select inclusion probabilities

that, in conjunction with a balanced design, fulfill the condition in Equation 3, we conducted a

simulation study. First, for each scenario, we compute the inclusion probabilities by solving

optimization Problem OP3 as described in Equation (3). Following the notation introduced in
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Section 2 we have <21 and <22 as the number of emigrants and remigrates in the 2-th

municipality, respectively. As a starting vector c∗ for the optimization of the inclusion

probabilities we use a ”probability proportional to size approach”, with

c∗2 = 70 · <21 + <22∑
2∈C (<21 + <22)

, ∀2 ∈ C. (4)

Table 1: Expected relative Bias of domain and sample sizes
sample sizes emigrants remigrates

F -0.000311 0.000000 -0.000000
S -0.000671 0.000000 -0.000000
R 0.019218 0.000006 -0.000009

RS 0.018762 0.000006 -0.000009

As can be seen in Table 1 the optimized inclusion probabilities for all scenarios lead to low

expected biases. In Scenarios R and RS the total of the inclusion probabilities is around 71.3

indicating that about 71 municipalities should be drawn for the sample. In Scenarios F and S the

total of the inclusion probabilities is almost 70 and hence reaching the targeted values for the

sample size almost perfectly. In all Scenarios, the targeted domain sizes for emigrants and

remigrates are met precisely. That is
∑
2∈C c2G23 ≈ g3 , 3 = 1, 2 is archived with high accuracy.

Given the scenarios and their computed inclusion probabilities we draw 2000 balanced samples

using the cube method to evaluate how good the used implementation of the balanced samples

method (Grafström and Lisic, 2019), fulfills our balancing conditions, as show in Equation (3). As

balancing variables we use the following three:

021 = c2<21

022 = c2<22

12 = c2

(5)

Variables 021 and 022 are used to control for domain sizes g1 and g2 in the sample and 12 to

control for the number of clusters sampled, because
∑
2∈C c2 ≈ 70. Inclusion probabilities
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c2, 2 = 1, . . . , � are the solution to Problem OP3.

Figure 2 shows the distribution of the relative bias from the planned domains and sample size

target for the four different scenarios. The Scenarios F and S behave similarly as do R and RS.
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Figure 2: Boxplot of relative Bias of the number of municipalities, emigrants and remigrates in the
sample over 2000 repeated samples

The driving factor of differences is here the reduction in the domain sizes of the largest 10

municipalities. This can be explained by the reduced concentration of domain size in the scenarios

R and RS, which makes it easier to balanced the samples using the cube method (Deville and Tillé,

2004). This means that at the cost of increasing the municipality sample by only one element, it is

possible to find a balanced sampling design that almost perfectly fulfills the required domain sizes

without having to combine multiple sampling design as in the original design of the GERPS study.

4 Summary and Outlook

With the methodology presented in Section 2 we address a common problem when planning a

sampling design for a clustered population. We show how to control for the size of domains of
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interest in the sample, when domains of interest cut across sampling clusters. E.g., planning the

size of age and gender categories in a sample of persons when persons are clustered within

municipalities or institutions like schools, hospitals or retirement homes.

We propose to solve a quadratic optimization problem to find a vector of inclusion probabilities

which can be used, by a balanced sampling design, to achieve the planned domain sizes. To

demonstrate our approach we apply it to solve the problem of planning the number of emigrants

and remigrates of the GERPS study, which use a more conventional approach, of combining

different independent sampling designs to solve the domain problem. We showed that we can

produce a sampling design that achieves the same goals while having a much more streamlined

work flow, which does not require manually setting the different parameters of multiple sampling

designs. As only one sampling design was to be accounted for when using our proposed method,

variance estimation and substantial analysis on the sampled data is less complex and in line with

the standard approach. Therefore, the presented approach allows to apply available software to

estimate sampling variances, such as the R survey package (Lumley, 2004).
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