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Abstract

We propose a novel dynamic mixture vector autoregressive (VAR) model in which the

time-varying mixture weights are driven by the predictive likelihood score. Intuitively,

the state weight of the k-th component VAR model is increased in the subsequent

period if the current observation is more likely to have been drawn from this particu-

lar state. The model is not limited to a specific distributional assumption and allows

for straightforward likelihood-based estimation and inference. We conduct a Monte

Carlo study and find that the score-driven mixture VAR model is able to adequately

filter and predict the mixture dynamics from a variety of different data generating pro-

cesses, which other observation-driven dynamic mixture VAR models cannot handle

appropriately. Finally, the empirical performance of the approach is illustrated by two

applications: (i) the conditional joint distribution of stock and bond returns, and (ii)

the regime-dependent connection of economic and financial conditions.
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1 Introduction

Regime-switching models have a long tradition in macroeconomics and finance. The most

commonly used approaches to capture regime-dependent non-linearities are the Markov-

switching (MS) vector autoregressive (VAR) model (Krolzig 1997; based on the seminal work

by Hamilton 1990), the threshold VAR model (Tsay 1998), and the smooth transition VAR

model (Weise 1999; Camacho 2004). More recent papers propose mixture VAR (MVAR)

models with K different components (or states), each being a linear Gaussian VAR process

weighted by so-called mixture weights. These weights can be constant over time (Fong et al.

2007), time-varying based on a Markovian process (Kalliovirta et al. 2016), or time-varying

governed by observable covariates (Burgard et al. 2019).

We propose a flexible alternative approach to construct MVAR models with time-varying

mixture weights, which are driven by past observations of the endogenous variables. To

infer the direction and intensity of the weight updating within our Score-driven Mixture

Vector Autoregression (SMVAR), we follow the generalized autoregressive score (GAS)1

approach developed by Creal et al. (2013) and Harvey (2013). They propose to update

parameters of econometric models towards the direction of the gradient of the log-likelihood

function, the so-called score, evaluated at the current observation.2 Consequently, time-

varying parameters are pushed towards the direction of steepest ascent of the observational

likelihood function as indicated by the gradient. Blasques et al. (2015) show that such an

update reduces the Kullback–Leibler divergence (Kullback and Leibler 1951) between the

true and model-implied conditional density in each step.

The derived updating scheme for the weight of each mixture component uses the scaled

conditional density of the component model evaluated at the current observation. Intuitively,

the procedure increases the weights of those mixture components that appear particularly

1Also referred to as score-driven (SD) model or dynamic conditional score (DCS) model.
2GAS models have been applied successfully in numerous applications in time series analysis and financial

econometrics. See, for example, Harvey and Lange (2017) and Gorgi et al. (2019) for applications in volatility
modeling or Oh and Patton (2018) and Bernardi and Catania (2019) for systemic risk applications.
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likely given the current observation. Since the updating sequence only depends on the

observation densities, the framework can conveniently accommodate specifications in which

some of the components are VAR models while others are not.3 Interestingly, this updating

mechanism is similar to those of univariate score-driven Markov switching models (Bazzi et al.

2017) and more general dynamic adaptive mixture models (Catania 2021). Moreover, the

(unconditional) scaled observation density is also used as a driving variable in the dynamic

MVAR models of Kalliovirta et al. (2016) and Burgard et al. (2019). We justify their ad-hoc

modeling choice within a GAS framework and provide reasoning for using scaled component

observation densities to capture mixture weight dynamics. The proposed SMVAR is more

flexible than other dynamic MVAR approaches and not restricted to a Gaussian component

model. In fact, parametric distributions for the component models can be specified freely.

In addition, we introduce the SMXVAR model which extends the weight updating process

of the baseline model by additionally incorporating external predictors. We discuss the

computation of generalized impulse responses of the model variables as well as the mixture

weights. The (conditional) likelihood function of the SM(X)VAR model can be evaluated

directly and allows for straightforward likelihood-based estimation and inference.

First, we perform a Monte Carlo study to investigate the abilities and limitations of

several dynamic MVAR models to recover mixture dynamics from various data-generating

processes both in-sample and out-of-sample. We find that the SM(X)VAR outperforms the

benchmark models across several deterministic and stochastic processes.

Second, we illustrate the practicality of the flexible SM(X)VAR model using two empir-

ical applications with time series of different frequency and noisiness. In Application 1, we

investigate the relation between monthly stock and bond returns, following previous studies

in the context of Markov-switching models (Guidolin and Ono, 2006; Guidolin and Tim-

mermann, 2006; Kole and van Dijk, 2023). The resulting estimated SMVAR features two

distinct components with differing levels of volatility. In line with prior contributions, stock

3In this regard, the SMVAR can be interpreted as a special case of the score-driven dynamic mixture
model as proposed in the online appendix of Creal et al. (2013).
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and bond returns are more strongly correlated in the high volatility component. The weight

changes in the mixture density are moving slowly and cyclically, indicating a time-varying

mixture rather than a (strict) regime interpretation. The SMXVAR results indicate that in

particular term structure variables can predict weight changes. However, the score-driven

updating remains the most important driver of weight dynamics when including external

predictors.

In Application 2, we model the joint distribution of the National Financial Conditions

Index and real GDP growth using a two-state SMVAR. We show that the mixture weights

identify a (tranquil) normal regime and a (volatile) economic and financial crisis regime. In

particular, all NBER recessions are accompanied by large values of the crisis state weight

with the mild and short recession of 2001 being the only exception. Moreover, the recessions

are anticipated by a drastic change in the mixture weights (or indicated with only a short

delay in the case of the 1990−1991 recession). On average, the economy is in the normal

state during 75% of the time. In an impulse response analysis, we find that adverse shocks on

economic growth and financial conditions significantly increase the conditional probability

of switching into the crisis regime for several quarters with financial shocks having a larger

impact.

The remainder of the paper is organized as follows. Section 2 introduces and discusses

a general framework that almost all (dynamic) mixture vector autoregressions have in com-

mon. Our proposed model – which includes local likelihood optimal mixture dynamics –

is presented and discussed in Section 3. A Monte Carlo study evaluating the performance

of the novel model is conducted in Section 4. The empirical applications are presented in

Section 5. Section 6 concludes.
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2 (Dynamic) Mixture Vector Autoregressions

Let (yt)
∞
t=1 denote a d-dimensional time series defined on a probability space (Ω,F ,P),

equipped with a filtration Ft = σ ({yt, . . . , y1}) representing the information set available

at time t. We assume the existence of K different states of the economy with yt being driven

by a different VAR specification in each state. The state of the economy is represented by a

sequence of random vectors st = (s1,t, . . . , sk,t)
> where in every period t either sk,t = 1 (state

k is active in period t) or sk,t = 0 holds (k = 1, . . . , K and
∑K

k=1 sk,t = 1). A general MVAR

model with K mixture components is then given by

yt =
K∑
k=1

sk,t

(
Φk0 +

pk∑
i=1

Φkiyt−i + Ω
1
2
k εt

)
(1)

where (εt)
∞
t=1 is a real-valued d-dimensional sequence of independently distributed random

vectors with identity dispersion matrix and positive definite Ωk. We additionally assume the

structural shocks εt to be independent of ys for s < t and to be conditionally independent

of st given Ft−1.

The state vector process st is not observable in general. We model a probability dis-

tribution pinning down the mixture weights αk,t = P [sk,t = 1 | Ft−1] in order to derive the

probability density of the time series of interest yt. Given a particular specification of these

weights, the conditional probability density function (pdf) can be obtained by

f(yt | Ft−1) =
K∑
k=1

αk,tfk(yt | Ft−1) (2)

where fk(yt | Ft−1) is the conditional pdf of the k-th VAR model component.

To this point, the empirical framework nests a variety of mixture VAR models. First,

there is the special case of constant mixture weights, that is, αi,t ≡ αi. The properties and

estimation approaches for this MVAR model are discussed in Fong et al. (2007). Second, it

nests the Hamilton filter implied by the popular Markov-Switching VAR (MSVAR) model
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(Krolzig 1997) with αkt =
∑K

i=1 pik1 (si,t−1 = 1) where pik is the transition probability from

state i to state k. Third, the dynamic MVAR models of Kalliovirta et al. (2016) and Burgard

et al. (2019) – that differ in the specification of the dynamic mixture weights αk,t – are

encompassed as well.4 Our novel specification also builds on the common framework above.

However, it is much more flexible than the other dynamic specifications and optimal with

regard to a local likelihood criterion.

3 Score-Driven Mixture Vector Autoregressions

We introduce the score-driven mixture VAR for a general number of mixture components K

and discuss its properties. In particular, we compare the SMVAR to other dynamic MVAR

specification and present a likelihood-based estimation strategy.

3.1 Score-Driven Mixture Weights

The updating scheme for the mixtures must ensure that the weights sum up to one in

each period, that is, the weights should result from the K-dimensional probability simplex

SK =
{
α ∈ RK

+ |
∑K

i=k αk = 1
}

. We achieve this by using a mapping h : RK−1 → SK with

h(α̃t) = αt for α̃t ∈ RK−1. This ensures that the time-varying mixture weights αt sum up to

one, while the dynamics of α̃t are modeled in the unrestricted domain space. We now define

the parameter updating as

α̃t = ω +

p∑
i=1

AiS
−1
t−i∇t−i +

q∑
i=1

Biα̃t−i + Cxt (3)

4We present and discuss the particular specification of αk,t in Section 3.3.
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with5

∇t =
∂ ln f(yt | Ft−1)

∂α̃t

= Jh(α̃t) ·


f1(yt | Ft−1)

f(yt | Ft−1)
...

fK(yt | Ft−1)

f(yt | Ft−1)

 (4)

where Jh(αt) is the Jacobian of the mapping h, xt is an n-dimensional process of exogenous

covariates measurable with respect to Ft−1, and ω ∈ Rk−1, Ai, Bi ∈ R(k−1)×(k−1), as well as

C ∈ R(k−1)×n are matrices of parameters. The updating equation (3) is a score-driven model

in the sense of Creal et al. (2013) and Harvey (2013) if C = 0 holds. When the latter

parameter matrix is nonzero, the model is a member of the quasi-score-driven model class

introduced by Blasques et al. (2023). The core feature of score-driven models is the choice

of the driving innovation st = S−1t ∇t where St is a matrix that scales the impact of the

observations on the parameter updating. A common choice is the Fisher information matrix

It = E
(
∇t∇>t | Ft−1

)
or the Cholesky factor thereof to relate the scaling to the variance

of the likelihood score. However, the Fisher information of observation densities cannot be

derived in closed-form for our particular mixture model. Therefore, we continue with another

frequent choice and set St equal to the identity matrix, that is, St = IK−1. This results in

the (scaled) score not having a unit variance (as in the case of a Cholesky factor) and not

being adjusted for possible covariation of the scores with respect to different component

weights. Despite these potential drawbacks, the literature on GAS Models acknowledges

that the choice of the scaling does not crucially affect the model performance in many

applications. Accordingly, we find that using a numerically computed Fisher information6

does not crucially improve the model performance while increasing the computational burden

significantly.

5A derivation of the score ∇t is provided in Appendix A.1.
6The Fisher information It = Jh(αt)HtJh(αt)

> can be approximated with numerical integration of

(Ht)i,j =

∫
fi(yt | Ft−1)fj(yt | Ft−1)

f(yt | Ft−1)
dyt. (5)
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The score-driven mixture weight updating derived in Eqs. (3) and (4) is particularly

appealing since it relates the updating direction and intensity for the next period to the

relative current observation density of the component to be updated. Put differently, if

the weighted observation density of the k-th component is high (low) in the current period

compared to the overall observation density of all states, the mixture weight of state k will be

increased (decreased) in the following period. Another attractive feature of the score-driven

mixture weight updating is that it is invariant with respect to the component distribution

models. Hence, the updating is not only valid for Gaussian component models (as assumed

for many dynamic mixture VAR specifications) but also for other distributions.

The driving innovation term in equation (3) is accompanied by an autoregressive and a

covariate term. These two features allow parsimonious modelling for persistent weight dy-

namics and the incorporation of external information to improve the predictive performance

of the score-driven updating scheme.

Next, we have to specify the particular parameter updating to implement the model.

One possible choice is the logistic transformation where the mapping is defined as

hk(α̃) =


exp(α̃k)

1 +
∑K−1

i=1 exp(α̃i)
, k = 1, . . . , K − 1

1−
∑K−1

j=1

exp(α̃j)

1 +
∑K−1

i=1 exp(α̃i)
, k = K

(6)

with the Jacobian given by7

(Jh(α̃))k,l =



exp(α̃k)
(

1 +
∑K−1

i=1 exp(α̃i)
)
− exp(2α̃k)(

1 +
∑K−1

i=1 exp(α̃i)
)2 , k = l, k 6= K

− exp(α̃k) exp(α̃l)(
1 +

∑K−1
i=1 exp(α̃i)

)2 , k 6= l, k 6= K

− exp(α̃l)(
1 +

∑K−1
i=1 exp(α̃i)

)2 , k = K.

(7)

7A derivation of the Jacobian is provided in Appendix A.2.
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We subsequently refer to the process given by the equations (1) to (7) as SMXVAR model8

and to the special case where C = 0 as SMVAR model. This logistic transformation is also

used by Bazzi et al. (2017) to create score-driven dynamics of the conditional probability

in univariate MS models. There are alternative transformations that could be considered,

for example, those used by Catania (2021) for the more general dynamic adaptive mixture

class. However, we did not encounter any striking improvement in our VAR context and,

consequently, decided to keep the rather simplistic logistic transformation. Additionally,

given this choice of transformation function, the model also encompasses the LMVAR model

of Burgard et al. (2019).

3.2 Two-Component Models

For simplicity, we present and discuss the properties of the SMXVAR model only for the

two-regime case. The model outlined in the following is also used in the simulation study in

Section 4 and the empirical applications in Section 5. In a two-regime model, the observation

density simplifies to

f(yt | Ft−1) =
exp(α̃t)

1 + exp(α̃t)
f1(yt | Ft−1) +

1

1 + exp(α̃t)
f2(yt | Ft−1). (8)

Note that one internal latent process α̃t suffices to describe the dynamic weights α1,t =

exp(α̃t)/[1 + exp(α̃t)] and α2,t = 1/[1 + exp(α̃t)] of the states k = 1 and k = 2, respectively.

Similarly, the Jacobian of the logistic transformation can be expressed as

Jh(α̃) =

(
exp(α̃)

(1 + exp(α̃))2
,
− exp(α̃)

(1 + exp(α̃))2

)
(9)

8We follow the naming convention of literature to add an X to models including external covariates (e.g.,
the ARMAX or the VARX model).
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for K = 2. Hence, we can derive the mixture weight updating as

α̃t+1 = ω + a
exp(α̃t)

(1 + exp(α̃t))2
f1(yt | Ft−1)− f2(yt | Ft−1)

f(yt | Ft−1)
+ bα̃t + cxt. (10)

The updating scheme in Eq. (10) is highly intuitive. An update of the mixture weights

is induced by a non-zero value of the scaled difference of the two-state observation densities

[f1(yt | Ft−1)− f2(yt | Ft−1)] /f(yt | Ft−1). If the current observation yt is more likely to be

drawn from the first component VAR model (indicated by f1(yt | Ft−1) > f2(yt | Ft−1) in the

numerator), the latent variable α̃t+1 is increased, given a > 0. This induces an increase in

the weight of state 1 (α1,t+1) in the following period and a decrease in the weight of state 2

(α2,t+1). The scaling term exp(α̃)/[1+exp(α̃)]2 results from the chosen weight transformation

h.

3.3 Differences to Other Dynamic Mixture VAR Models

We briefly discuss other dynamic MVAR models and relate them to the SM(X)VAR described

in the previous subsections.

3.3.1 Gaussian Mixture Vector Autoregression

The Gaussian Mixture Vector Autoregressive (GMVAR) model of Kalliovirta et al. (2016)

employs the same baseline model as described in Section 2, but with Gaussian innovations

and equal lag lengths for the VAR components representing the different states, hence pk = p

for k = 1, . . . , K. For the weight updating, they stack p lags of the time series model in a dp-

dimensional vector yt = vec(yt, yt−1, . . . , yt−p+1)
>. Hence, the regime component k features

the common density

fk(yt) = (2π)−dp/2 det(Σk)−
1
2 exp

{
−1

2
(yt − 1p ⊗ µk)>Σ−1k (yt − 1p ⊗ µk)

}
(11)
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with unconditional mean µk and covariance matrix Σk, which are functions of the param-

eter matrices Φk0,Φk1, . . . ,Φkp, and Ωk. The weight updating sets the weight equal to

the ratio of the observation density fk(yt−1) and the overall observation density f(yt−1) =∑K
i=1 αKfk(yt−1) of the mixture model for each regime. That is,

αk,t = αk
fk(yt−1)

f(yt−1)
(12)

where α = (α1, . . . , αK)> ∈ RK are unknown parameters. This parameterization also ensures

that the dynamic weights stay within the unit simplex (i.e.,
∑K

k=1 αk,t = 1). Kalliovirta et al.

(2016) show that the resulting process is stationary (if the component VARs are stationary)

as well as ergodic and establish asymptotic normality of the maximum likelihood (ML)

estimator.

The forcing variables of the dynamic weighting in the GMVAR in Eq. (12) and the

SMXVAR in Eq. (4) are conceptually similar. Both approaches infer information from the

ratios of the component model densities and the density of the overall mixture model. While

the SMXVAR relies on conditional observation densities, the common unconditional density

of the p̄ most recent observations pins down the dynamic weights in the GMVAR. While the

GMVAR is theoretically more appealing as the resulting time series is a Markovian process,

the SMXVAR offers more flexibility in describing the data. First, the autoregressive term

in the score-driven updating in Eq. (4) allows parsimonious modeling of persistence in the

mixture weights. A GMVAR could accommodate such persistent mixture dynamics only by

increasing the number of lags p, which crucially increases the number of parameters to be

estimated. Second, the SMXVAR can incorporate external predictor information and does

not have to rely on recent observations of the time series variables only. Third, our model

explicitly allows for non-Gaussian innovations in the component VARs.
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3.3.2 Logit Mixture Vector Autoregression

The Logit Mixture Vector Autoregressive model of Burgard et al. (2019) also employs the

same baseline model as described in Section 2, but defines the conditional mixture weights

using a logit model. Hence, the conditional mixture weights are given by

αk,t =
exp {γ′kxt−1}∑K
j=1 exp

{
γ′jxt−1

} (13)

with xt−1 being a vector of Ft−1-measurable predictors and γk being a regime-dependent

parameter vector. The set of predictors may include external variables and lags of the

endogenous variables of the VAR. In addition, Burgard et al. (2019) and Bennani et al.

(2023) use the component ratio from Eq. (12) of the GMVAR as predictor of the weight

dynamics. Hence, the component ratio driving the SMXVAR mixture update is also used

as driving variable. Both, the LMVAR and the SMXVAR, use a logistic transformation to

map weights onto the unit interval. However, the SMXVAR maps an unrestricted internal

process that may use external predictors, whereas the LMVAR directly ties the weights to

the predictors using an internal multinomial logit regression. More concretely, the LMVAR

is a special case of the SMXVAR if the coefficients of scores and prior weights in the updating

scheme are zero (i.e., Ai = Bi = 0). Hence, the SMXVAR can be a worthwhile alternative

to the LMVAR, especially when the predictors in xt are imperfect (for simulation evidence,

see Section 4.2.2).

3.4 Estimation and Inference

We estimate the vector θk = (Φ′0, vec(Φk1)
′, . . . , vec(Φk,pk)′, vech(Ωk)′)9 containing the VAR

parameters for each component submodel. Furthermore, we estimate the parameters charac-

terizing the mixture weight updating θs = (ω′, vec(A1)
′, . . . , vec(Ap)

′, vec(B1)
′, . . . , vec(Bp)

′)

as well as possible additional parameters characterizing the distribution of ϕ collected in

9vec(A) denotes the vectorization that stacks all columns of the matrix A into a vector and vech(A) the
half-vectorization that only stacks the upper triangular part of A.
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vector θ. In summary, this yields the complete parameter vector ϑ = (θ, θ1, . . . , θk, θs) with

at least (1+d+d(d+1)/2)K+(p+q)K2 +
∑K

k=1 pkd
2 entries. The conditional log-likelihood

function of the SMVAR model can be evaluated directly and is given by

lnL = ln
T∏
t=1

f(yt | Ft−1) =
T∑
t=1

ln
K∑
k=1

αk,tfk(yt | Ft−1) (14)

=
T∑
t=1

ln
K∑
k=1

αk,tϕ
(

Ω
− 1

2
k (yt − Φk0 − Φk1yt−1 − . . .− Φkpkyt−pk)

)
(15)

where αk,t is defined as in Eq. (3).

Inference is conducted in the standard fashion for ML estimators as suggested by Creal

et al. (2013) for GAS models. If ϑ stacks all the static parameters of the model, standard

asymptotic theory for ML estimators suggests that, under some regularity conditions, the

following holds:
√
T
(
ϑ̂− ϑ

)
d→ N

(
0, I−1(ϑ)

)
(16)

with I(ϑ) := −E
(
∂2lt/∂ϑ∂ϑ

>) being the Fisher information matrix, where lt is the log-

likelihood contribution of the i-th observation evaluated at ϑ.

Likelihood functions of mixture models often suffer from having many plausible local

optima. It is therefore advisable to use various starting values for the optimization to obtain

what is likely to be the global maximum.10 Another issue, as noted by Krolzig (1997),

is an identification problem that is superficially caused by the interchangeability of state

labels. We identify states in the following two-state application by the unconditional mixture

weights according to α1 > α2. For deriving standard errors, we numerically compute the

Fisher information matrix with a finite difference scheme.

10For this reason, we employ the OptQuest Nonlinear Programming (OQNLP) multistart heuristic algo-
rithm of Ugray et al. (2007). The heuristic comprises a global phase and a local phase. The global phase
involves a preliminary scatter search, in which trial points are generated and subsequently filtered to yield
a smaller subset of candidate starting points. In the local phase, local gradient-based NLP solvers (the
interior-point algorithm of Byrd et al. (1999) in our case) are employed to identify a local optimum from
these starting points.
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3.5 Impulse Responses

A popular VAR-based tool to investigate the impact of shocks, especially in empirical macroe-

conomics, is the impulse response analysis. Given a fitted and identified VAR model as well

as initial values, responses to a shock with known size and sign can be calculated in a straight-

forward manner. However, this conventional approach is not applicable for the SMVAR due

to its crucial non-linearities and incompletely known initial values. Instead, we follow Koop

et al. (1996) and compute generalized impulse response functions (GIRFs) given by

GI (n, ξt,Ft−1) = E (yt+n | ξt,Ft−1)− E (yt+n | Ft−1) (17)

where n is the number of periods ahead and ξt is a structural shock that occurs in period t as

realization of the error term εt.
11 Hence, Eq. (17) defines the impulse response as difference

between the n-period ahead prediction given the shock and the corresponding prediction in

absence of the shock.

We follow a Monte Carlo approach to derive the generalized impulse responses to the

shock ξt in (17). The main idea is to simulate a large number of random sequences (yt+n(Ft−1))
N
n=0

where the shocks (εt+n)Nn=0 are randomly drawn. Furthermore, a second series (yt+n(ξt,Ft−1))
N
n=0

is constructed for which the same random shocks are used but εt = ξt is imposed. Then, we

can use the means of these artificially drawn series to approximate the expectations in (17)

and compute GI by taking differences. The algorithm used in the empirical applications is

described in more detail in Appendix C.3.

4 Monte Carlo Study

We conduct a simulation study to investigate the performance of the SMVAR and SMXVAR

models in comparison to alternative (dynamic) MVAR models in literature.

11Virolainen (2020) uses the same concept to derive impulse responses for a structural version of the
GMVAR model.
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4.1 Data-Generating Processes

We base the Monte Carlo study on simulated time series with dimension d = 2 that are

affected by two regimes or states (K = 2). The two regimes feature conditional normal

distributions with the following parameter configurations:

yt = s1,t


0

1

+

0.5 0.2

0.2 0.5

 yt−1 +

0.5 0

0.2 0.5

 εt


+ s2,t


−1

0

+

0.6 0

0.4 0.6

 yt−1 +

0.2 0

0.8 0.2

 εt

 .

(18)

We consider several dynamic processes to describe the evolution of the mixture weight

in the data-generating process (DGP). These include deterministic paths, such as a time-

constant weight, a structural break, and a cycle. In addition, we simulate a Markovian

regime-switching model that depends on prior realizations of the latent variable st and a

logit transform of an autoregressive process of order one. The processes in the simulation

study are summarized in Table 1.

We simulate the DGP with different mixture weight dynamics for time series lengths

T ∈ {200, 500, 1000} and then estimate the parameter vector ϑ for a Gaussian12 SMVAR

with lags p = q = 1 and K = 2 using likelihood optimization. This means that the weight

updating is performed according to Eq. (10). We also fit an MVAR, an MSVAR, and a

GMVAR as benchmarks to evaluate the performance of our SMVAR model. In addition,

we also estimate the DGP V using SMXVAR and LMVAR models, which are able to use

external predictor information in xt.

12We restrict the simulation study to the Gaussian case in order to preserve comparability with the
benchmark models that require Gaussianity, even though the SMVAR is not restricted to this case.
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Table 1: Mixture Processes of the Simulation Study

DGP Mixture Weights (αt)

I Constant 0.5

II Break 0.8 · 1
(
t < T

2

)
+ 0.2 · 1

(
t ≥ T

2

)
III Cycle 0.5 + 0.45 · sin (4πt/T )

IV Markov-Switching (MS) 0.95 · 1(st−1 = 1) + 0.10 · 1(st−1 = 2)

V Logit Auto-Regressive (LAR) αt = 1/(1 + exp {−0.5xt})
xt = 0.97xt−1 + ut, ut

iid∼ N (0, 1)

4.2 Simulation Results

First, we discuss the performance of the SMVAR and the MVAR, MSVAR, and GMVAR

benchmarks with respect to filtering the mixture dynamics of DGPs I to V. Afterwards,

we compare the SMXVAR and LMVAR in the presence of external factor-driven mixture

dynamics.

4.2.1 Comparison of SMVAR and GMVAR

Figure 1 shows the average SMVAR and GMVAR estimates of αt fitted to 1000 Monte Carlo

replications and T = 500 alongside the true weights for DGPs I, II, and III.13 The shaded

areas indicate 90% bands. The left panel of Figure 1 displays the results for the SMVAR,

which shows similar adequate performance for all three DGPs. As all observation-driven

models, the SMVAR requires a certain time period to account for changes in the modeled

process. Apart from that, we clearly see that the SMVAR is able to track the true mixture

weight processes well. In particular, it can quite nicely adopt to structural breaks after a

reasonable amount of periods.

The right panel of Figure 1 shows the results for the GMVAR. We document that the

constant DGP I can be recovered on average, but the variation is particularly large when

13Note that a similar graphical representation of average estimates is not meaningful for the stochastic
DGPs (IV and V) as the mixture weight paths change with every draw. We refer to Table 2 for an evaluation
of these.
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Figure 1: Filtered Mixture Weights
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Filtered mixture weights α1,t averaged over 1000 replication of the DGPs (I) Constant, (II) Break,
and (III) Cycle. Solid lines display the true α1,t. The left (right) panel shows the averages of
SMVAR (GMVAR) estimates as dashed lines. Shaded areas indicate 90% bands.
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compared to the SMVAR. The reason for this result can be deduced from the used updating

mechanism in Eq. (12). To accommodate a constant α1,t, we would need to have α1 = 0.5

when abstracting from the unlikely and practically irrelevant scenario in which the ratio

f1(yt−1)/f(yt−1) is constant over time. Hence, the DGP I with α1,t ≡ αk = 0.5 is not nested

by the GMVAR. Here, the SMVAR benefits from the additional constant parameter ω that

allows an incorporation of any constant level in the static case, that is, if a and b are zero.

Indeed, we find that the learning and persistence parameters are estimated close to zero

with â = 0.0328 and b̂ = 0.0996 on average. The estimate for ω̂ is 0.078 on average, which

translates into an average unconditional weight of λ̂ = 0.5019. The same nesting problem is

visible in the break process (II) that is estimated with huge bands. The two constant levels

cannot be captured correctly – even on average – because the single parameter α1 has to

serve as average weight and changing probability of drawing from state 1 at the same time.

Interestingly, the level of the mixture weight is underestimated with almost the same size

before and after the break. Hence, a constant in the mixture process, as included in the

SMVAR, could be expected to crucially improve the GMVAR performance. An observation

in favor of the GMVAR is that the break in DGP II is acknowledged faster than by the

SMVAR. The cycles are captured quite well by the GMVAR, although the bands are still

larger than for the SMVAR. In particular, the turning points are acknowledged faster. A

reason for this faster detection of breaks and turning points is that the GMVAR depends

only on the most recent observations and not on its own past value. This allows for early

detection of such structural changes, but comes with the drawback of lacking flexibility to

capture persistent processes adequately.

Table 2 shows the average mean squared error (MSE) and the average mean absolute

error (MAE) for the estimates of the mixture weight α1,t from MVAR, MSVAR, GMVAR,

and SMVAR models with 1000 Monte Carlo replications and different sample sizes T . Table

B.1 in Appendix B states the corresponding average goodness-of-fit statistics. We compute

the error measures without the first 50 periods in order to mitigate the influence of starting
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Table 2: Average Estimation Error Comparison

MSE MAE

DGP T MVAR MSVAR GMVAR SMVAR MVAR MSVAR GMVAR SMVAR

200 0.006 0.010 0.128 0.010 0.062 0.076 0.321 0.076
I Constant 500 0.002 0.003 0.108 0.004 0.037 0.045 0.291 0.051

1000 0.001 0.002 0.096 0.003 0.025 0.031 0.271 0.043

200 0.108 0.080 0.088 0.027 0.301 0.230 0.231 0.117
II Break 500 0.103 0.072 0.080 0.018 0.300 0.221 0.218 0.095

1000 0.102 0.070 0.078 0.012 0.300 0.218 0.215 0.076

200 0.122 0.079 0.090 0.034 0.302 0.222 0.225 0.141
III Cycle 500 0.116 0.072 0.083 0.018 0.297 0.213 0.214 0.104

1000 0.116 0.069 0.080 0.013 0.297 0.209 0.210 0.088

200 0.194 0.067 0.104 0.070 0.409 0.121 0.176 0.157
IV MS 500 0.199 0.066 0.104 0.067 0.431 0.116 0.175 0.139

1000 0.204 0.067 0.104 0.066 0.442 0.113 0.174 0.132

200 0.087 0.065 0.103 0.041 0.244 0.202 0.243 0.159
V LAR 500 0.098 0.066 0.095 0.039 0.267 0.208 0.232 0.155

1000 0.104 0.068 0.093 0.038 0.277 0.211 0.229 0.155

Average mean squared error (MSE) and average mean absolute error (MAE) for the estimate of
the mixture weight α1,t from MVAR, MSVAR, GMVAR, and SMVAR models with 1000 Monte
Carlo replications and different sample sizes T . Bold numbers depict the best-performing models.

values. The results are in line with the graphical inspection of Figure 1. The SMVAR shows

a better performance than the GMVAR for all DGPs and sample lengths T . The improved

performance is particularly visible for the constant mixture weight DGP I. It is also worth

noting that the performance of the SMVAR is considerably close to the one of the correctly

specified MVAR benchmark. With respect to DGP IV, we see that the SMVAR is also able

to track Markov-Switching mixture dynamics quite well with the errors being larger than

the ones from the correctly specified MSVAR, but considerably lower than the ones of the

GMVAR and the static MVAR. With respect to DGP V, where the mixture weight is driven

by an external VAR process, we also find that the SMVAR can best capture the in-sample

weight dynamics.
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Table 3: Average Prediction Error Comparison

MSPE MAPE

DGP T MVAR MSVAR GMVAR SMVAR MVAR MSVAR GMVAR SMVAR

200 0.006 0.010 0.128 0.020 0.062 0.076 0.321 0.109
I Constant 500 0.002 0.003 0.110 0.007 0.037 0.045 0.293 0.064

1000 0.001 0.002 0.098 0.003 0.025 0.031 0.276 0.046

200 0.063 0.068 0.079 0.021 0.227 0.209 0.235 0.112
II Break 500 0.045 0.060 0.062 0.012 0.203 0.197 0.212 0.091

1000 0.042 0.049 0.052 0.009 0.200 0.172 0.203 0.073

200 0.021 0.063 0.164 0.045 0.121 0.218 0.378 0.180
III Cycle 500 0.015 0.058 0.146 0.029 0.108 0.213 0.349 0.140

1000 0.014 0.052 0.140 0.018 0.113 0.204 0.341 0.109

200 0.199 0.035 0.068 0.044 0.415 0.081 0.137 0.122
IV MS 500 0.200 0.029 0.053 0.033 0.432 0.072 0.125 0.100

1000 0.206 0.031 0.065 0.033 0.444 0.073 0.135 0.093

200 0.108 0.079 0.090 0.041 0.273 0.221 0.225 0.159
V LAR 500 0.106 0.072 0.088 0.035 0.279 0.220 0.221 0.145

1000 0.111 0.075 0.093 0.035 0.289 0.223 0.229 0.148

Mean squared prediction error (MSPE) and mean absolute prediction error (MAPE) for the out-
of-sample prediction of the mixture weight α1,T+1 from MVAR, MSVAR, GMVAR, and SMVAR
models with 1000 Monte Carlo replications and different sample sizes T . Bold numbers depict the
best-performing models.

Table 3 shows the mean squared prediction error (MSPE) and the mean absolute pre-

diction error (MAPE) for the out-of-sample prediction of the mixture weight α1,T+1 from

MVAR, MSVAR, GMVAR, and SMVAR models with 1000 Monte Carlo replications and

different sample sizes T . The results show that the performance of the SMVAR in compari-

son to the GMVAR also holds out-of-sample.14

As bottom line of this Monte Carlo study, we can conclude that the SMVAR is able

to recover a variety of different mixture dynamics and performs better than its dynamic

competitor model, the GMVAR both in-sample and out-of-sample. The latter has nice

theoretical properties because of its particular updating scheme but lacks the flexibility to

14The out-of-sample MVAR and MSVAR results for DGPs I and III should not be overinterpreted as the
weighting process approaches its average value in T by construction.
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accommodate a wide range of practically relevant DGPs which the SMVAR is able to handle

adequately by adding a constant and an autoregressive component to the mixture weight

updating scheme.

4.2.2 Comparison of SMXVAR and LMVAR

The LMVAR of Burgard et al. (2019) uses covariates to explain the mixture weight dynamics.

This is particularly useful if such covariates are known or proposed by theory. However, it

is evident that this method is not favorable if such covariates are not available or only poor

signals of the true drivers. The SMXVAR is able to consider external predictors for the

weights, while the general updating is still driven by a GAS process as in the SMVAR. In

the following, we examine the case where the explanatory value of the external factor is a

priori uncertain. We investigate whether the score-driven dynamics of the SMXVAR can

compensate for imperfectly measured predictors provided to the model.

Again, we simulate from the VAR model given by Eq. (18) now using DGP V as mix-

ture process. We also use 1000 Monte Carlo replications of different sample sizes T ∈

{200, 500, 1000}. Note that the dynamics of αt follow an LMVAR model as described by

Eq. (13) with K = 2. Hence, if we estimate an LMVAR given the true covariate xt, it

will trivially outperform the other models. The interesting question is what happens if we

provide the models with a noisy signal x̃t of xt. We create this signal by

x̃t = ρxt + (1− ρ)ũt, ũt
iid∼ N

(
0, σ2

)
(19)

where σ2 = 16.9205 is equal to the unconditional variance of the process xt as defined in

Table 1. Hence, the information content of the signal ranges from pure noise (ρ = 0) to

perfect information (ρ = 1).

Table 4 shows in panels (a) and (b) the average MSE and the average MAE for the

estimates of the mixture weight α1,t from an SMXVAR and an LMVAR model. We clearly
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Table 4: Comparison of Average Estimation Errors: SMXVAR vs. LMVAR

T SMXVAR LMVAR

ρ = 0 0.2 0.4 0.6 0.8 1 ρ = 0 0.2 0.4 0.6 0.8 1

(a) MSE

200 0.060 0.044 0.033 0.022 0.012 0.009 0.095 0.088 0.069 0.036 0.012 0.005
500 0.046 0.036 0.027 0.016 0.007 0.003 0.100 0.094 0.071 0.035 0.008 0.002
1000 0.040 0.035 0.027 0.015 0.006 0.001 0.105 0.099 0.074 0.035 0.008 0.001

(b) MAE

200 0.191 0.161 0.137 0.109 0.080 0.065 0.256 0.246 0.212 0.146 0.080 0.052
500 0.166 0.148 0.126 0.094 0.061 0.036 0.270 0.261 0.221 0.144 0.067 0.029
1000 0.158 0.147 0.124 0.091 0.055 0.027 0.279 0.270 0.227 0.145 0.064 0.021

(c) MSPE

200 0.070 0.049 0.034 0.023 0.013 0.009 0.113 0.107 0.083 0.042 0.013 0.005
500 0.047 0.034 0.026 0.015 0.007 0.003 0.105 0.099 0.075 0.038 0.010 0.002
1000 0.043 0.036 0.026 0.014 0.006 0.002 0.107 0.101 0.076 0.036 0.008 0.001

(d) MAPE

200 0.205 0.170 0.140 0.109 0.081 0.066 0.282 0.274 0.236 0.159 0.084 0.054
500 0.165 0.144 0.122 0.093 0.063 0.039 0.275 0.264 0.226 0.150 0.072 0.030
1000 0.162 0.148 0.122 0.088 0.055 0.029 0.282 0.272 0.230 0.149 0.066 0.021

Average mean squared error (MSE), average mean absolute error (MAE), mean squared prediction
error (MSPE), and average mean absolute prediction error (MAPE) for the estimate of the mixture
weight α1,t from an SMXVAR and an LMVAR model with 1000 Monte Carlo replications and
different sample sizes T . The parameter ρ indicates the informational content of the used covariate
signal. Bold numbers indicate which of the two models performed better.

see that the LMVAR using the true covariate outperforms all other models (as expected).

However, when the signal is imperfect, the SMXVAR almost always outperforms the LM-

VAR. The only exceptions are the two in-sample criteria MSE and MAE when ρ = 0.8 and

T = 200, where the values are almost the same for both models. Strikingly, the performance

of the LMVAR decreases much faster for decreasing ρ than it does for the SMXVAR. In par-

ticular, for ρ ≤ 0.2, the LMVAR is not able to outperform the static MVAR benchmark (see

DGP V, columns MVAR in Table 2) while the SMVAR still shows an adequate performance

for ρ = 0 because of its score-driven term.
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Also noteworthy is that the SMVAR without external information from xt (see Table 2)

outperforms the LMVAR if the signal is noisy with ρ ∈ {0, 0.2, 0.4}. The break-even point

at which both methods, SMVAR and LMVAR, are equal may be slightly above a ρ of 0.5.

Hence, more than 50% of the variation in the signal must come from the true covariate to

justify the use of LMVAR in this setting. As demonstrated throughout the literature, noise

ratios of 50% or more are not uncommon for many economic and, in particular, financial

variables. A similar result is found for the out-of-sample measures in panels (c) and (d) of

Table 4, where the break-even value of noise improves slightly in favor of the SMVAR (see

Table 3).

The main insight from this simulation exercise is that the SMXVAR is a worthwhile

alternative to the LMVAR and should be prioritized when external predictors are of ques-

tionable quality. The key advantage is that the score-driven part of the SMXVAR update

can compensate for imperfections of the covariates.

5 Empirical Applications

We demonstrate the applicability of SM(X)VAR models through two empirical applications.

Application 1 focuses on model performance relative to other dynamic MVAR specifications

and weight predictability in stock and bond return dynamics. Application 2 particularly

discusses the impact of shocks on regime probabilities of macro-financial linkages.

5.1 Application 1: Stock and Bond Return Dynamics

Many authors have documented regime shifts in the relation of stock and bond returns and

model these with Markov-Switching processes (see, for example, Guidolin and Ono 2006;

Guidolin and Timmermann 2006; Kole and van Dijk 2023). We further investigate the

regime dynamics of this relationship with a score-driven mixture VAR.
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5.1.1 SMVAR Results

We fit a two-state Gaussian SMVAR model using data from the Center for Research on

Security Prices (CRSP). We use value-weighted equity returns (including dividends) from

the NYSE, NASDAQ, and AMXE stock exchanges as stock market index. The bond index

return is based on 10-year to maturity US government bonds. We derive excess returns of

the two markets by subtracting the 1-month T-Bill rate. As supported by both information

criteria, we use K = 2 components. Considering lag lengths of up to 4 (i.e., 25 combinations

of p1 and p2), both AIC and BIC favor one lag in both VAR components.

Table 5: Estimation Results for Stock and Bond Return Dynamics

(a) VAR Parameters

Normal Regime Crisis Regime

Bondt Stockt Bondt Stockt

Bondt−1 0.063 −0.053 0.091 −0.086
(0.048) (0.022) (0.062) (0.031)

Stockt−1 0.162 −0.048 0.272 0.079
(0.112) (0.053) (0.130) (0.065)

const 0.069 1.247 0.273 −0.354
(0.075) (0.183) (0.166) (0.358)

(b) (Co-)Variance Parameters

Normal Regime Crisis Regime

Ω1,1 1.724 8.108
(0.200) (0.806)

Ω1,2 0.040 2.125
(0.261) (0.950)

Ω2,2 8.149 32.977
(0.885) (3.099)

(c) GAS Parameters

α̃ a b

0.423 1.706 0.952
(0.444) (0.404) (0.018)

Coefficients of the SMVAR model and the (co-)variances for both states as well as the estimates
for GAS mixture weight updating procedure of Eq. (10). Standard errors are given in parentheses.
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Table 5 shows the estimation results for the SMVAR model (with standard errors in

parentheses). The first component features moderate variances (Ω1,1 and Ω2,2) and an in-

significant covariance of the two return series (Ω1,2). The only significant coefficient in the

model represents a negative impact of lagged bond returns on stock returns. The second

component shows much higher variances and a significantly positive covariance. Hence, this

component seems to be particularly influential in times of crisis when volatility increases and

stock and bond returns typically move together. In this high volatility component, the neg-

ative spillovers from bonds to stocks are larger and bond returns are also positively affected

by lagged stock returns.

Turning to the weight dynamics in panel (c) of Table 5, it has to be noted that we

estimate a slightly re-parameterized internal updating process for the unrestricted mixture

weights, which is given by

α̃t+1 = α̃ + a
exp(α̃t)

(1 + exp(α̃t))2
p1(yt | Ft−1)− p2(yt | Ft−1)

p(yt | Ft−1)
+ b
(
α̃t − α̃

)
, (20)

where α̃ = ω/(1 − b) is the unconditional unrestricted mixture weight in case the process

is stationary. Accordingly, the estimate for the unconditional restricted mixture weight α is

given by 0.604,15 implying that the first component has a slightly larger weight on average.

The coefficient for the weight update a is positive and significant, indicating that the scaled

observation density evaluated at the current observation is informative for detecting changes

in future mixture weights. The estimate of 0.952 for the autoregressive parameter b suggests

that the weights are persistent.

Figure 5 shows the evolution of the transformed mixture weights αt = exp(α̃t)/[1 +

exp(α̃t)] over time based on our proposed SMVAR approach as well as MVAR, GMVAR, and

MSVAR models as benchmarks. We see that the high volatility component gains importance

(αt falls) in particular during NBER recessions (indicated by the shaded areas). Most striking

is the sharp drop of αt at the beginning of the global financial crisis in 2008 and the gradual

15α = exp(α̃)/(1 + α̃) = exp(0.423)/(1 + exp(0.423)) = 0.604
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recovery thereafter. This is in line with Guidolin and Timmermann (2006) who document

the existence of a recovery state. Especially for the SMVAR, the weight dynamics appear

to be slow-moving in cycles, best seen in the 1980s and 1990s. This speaks in favor of a

dynamic mixture interpretation instead of a setting with clearly separated regimes. When

comparing the three different dynamic approaches, it is noticeable that the GMVAR is

extremely volatile. This is particularly true in the 1980s, when the weight slowly transitions

between the components in the SMVAR and MSVAR. Again, we see that the GMVAR, due

to its Markovian structure, is better suited to model the switching between states and is

hardly able to capture slow-moving weight dynamics.

Figure 5: Development of αt over Time for Stock and Bond Return Dynamics
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Probability of being in the normal state as indicated by the estimated mixture weights αt based
on four different approaches. Shaded areas indicate NBER recessions.

5.1.2 Further Comparison to Alternative MVAR Models

Next, we compute the goodness-of-fit statistics and mean prediction errors after fitting dif-

ferent MVAR models to the same data set. These are shown in Table 6. We find that both

information criteria (AIC and BIC) favor the SMVAR models. Hence, the richer param-

eterization of the SMVAR seems to be rewarded in terms of model fit. The MAPE and

MSPE measures are based on implied return predictions instead of the unobservable mix-
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Table 6: Likelihood-based Goodness-of-Fit and Mean Prediction Errors

Model #ϑ L AIC BIC MAPE MSPE

Stocks Bonds Stocks Bonds

MVAR 19 −4157.5 8353.1 8443.0 1.5854 3.3910 4.5429 19.940

MSVAR 20 −4116.6 8273.3 8367.9 1.5846 3.4135 4.5317 20.159

GMVAR 19 −4142.8 8323.5 8413.4 1.5836 3.4050 4.5228 19.974

SMVAR 21 −4111.1 8264.2 8363.6 1.5848 3.4109 4.5348 20.207

tSMVAR 22 −4110.0 8264.0 8368.1 1.5840 3.4081 4.5357 20.236

Column #ϑ shows the number of estimated model parameters, L the log-likelihood, AIC the Akaike
Information Criterion, BIC the Bayesian Information Criterion, MSPE the mean squared prediction
error, and MAPE the mean absolute prediction error. Boldface entries indicate the best model
according to the respective information or prediction error criterion.

ture weights. Therefore, it is not surprising that both measures are similar for all models

due to the large variation in returns that does not come from the mixture weight dynamics.

Nevertheless, the prediction errors of the dynamic approaches are clearly smaller than that

of the static MVAR benchmark. This is another indication of the SMVAR’s appeal in cases

where the actual weight process is uncertain.

As noted above, the SMVAR allows for different component distributions. Hence, we

can easily generalize the model to incorporate Student’s t-distributions, which we denote

as tSMVAR.16 This only leads to a minor improvement over the Gaussian case in terms of

log-likelihood and AIC and to a decrease in BIC. This result most likely comes from the

large estimated degree of freedom parameter (ν = 22.854) and the fact that finite mixtures

of normal distributions are themselves capable of producing leptokurtic shapes, even though

asymptotically the tails behave in a Gaussian manner (McLachlan and Peel 2004; Haas and

Pigorsch 2009).

16Estimation results of the tSMVAR model are reported in Appendix C.2.
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5.1.3 External Predictors Using SMXVAR

The SMXVAR offers the opportunity to specify external predictors for the dynamic weight

updating. We consider several macroeconomic and financial variables that have a reported

connection to bond and stock return dynamics: (i) the 3-Month T-Bill yield, (ii) the loga-

rithm of the CRSP dividend yield, (iii) the term spread computed as difference between the

yields of the 10-Year T-Bond and the 3-Month T-Bill, (iv) the default spread defined as dif-

ferential yield on Moody’s Bbb and Aaa seasoned corporate bonds of the same maturity, and

(v) the seasonally adjusted growth rate of industrial production from the FRED database.

Table 7 shows the GAS parameter estimates and goodness-of-fit statistics of SMXVAR

model specifications using the aforementioned predictors. We see that only the 3-Month T-

Bill yield (column 2) and the term spread (column 4) significantly predict the weight changes

in the relationship between bond and stock returns. Whereas the short-term interest rate

increases the weight of the more volatile regime, the term spread contributes to a decrease

of this weight. The qualitative impact of both variables remains stable in a model using

all predictors simultaneously (column 7). Remarkably, the learning rate parameter a of the

GAS dynamics also remains stable when adding additional external predictors. Hence, the

autoregressive score dynamics still contributes most to filtering the dynamic mixture weights.

5.2 Application 2: Macro-Financial Linkages

Adrian et al. (2021) document a pronounced multimodality in the conditional distribution

of economic growth, especially in times of tight financial conditions. Mixture models are a

typical choice for modeling such multimodalities, and the time-varying weight in the SMVAR

allows to accommodate the dynamic linkages to financial conditions.
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Table 7: SMXVAR GAS-Parameters for Stock and Bond Return Dynamics

(1) (2) (3) (4) (5) (6) (7)

α̃ 0.423 2.005 0.640 0.663 2.451 0.367 1.349
(0.444) (0.643) (1.063) (0.757) (0.917) (0.525) (1.089)

a 1.706 1.543 1.696 1.567 1.717 1.701 1.323
(0.404) (0.389) (0.404) (0.383) (0.440) (0.406) (0.471)

b 0.952 0.940 0.953 0.961 0.907 0.951 0.901
(0.018) (0.021) (0.018) (0.015) (0.048) (0.021) (0.058)

3M T-Bill Yield – −0.025 – – – – −0.037
(0.010) (0.024)

Log Dividend Yield – – −0.011 – – – 0.209
(0.048) (0.138)

Term Spread – – – −0.036 – – 0.048
(0.018) (0.037)

Default Spread – – – – −0.201 – −0.244
(0.158) (0.177)

Ind. Prod. Growth – – – – – 0.013 0.047
(0.072) (0.102)

L −4111.1 −4105.9 −4111.1 −4109.3 −4109.2 −4111.1 −4100.6
AIC 8264.2 8255.7 8266.1 8262.6 8262.3 8266.2 8253.1
BIC 8363.6 8359.8 8370.3 8366.7 8366.4 8370.3 8376.2

GAS parameter estimates and goodness-of-fit statistics for several SMXVAR model specifications.
Standard errors are given in parentheses.

5.2.1 SMVAR Model Results

We choose the quarter-over-quarter annualized growth rate of real GDP as indicator for real

economic activity17 and we rely on the National Financial Conditions Index (NFCI) provided

by the Federal Reserve Bank of Chicago to capture financial conditions.18 Our sample starts

in 1971q1 with the first observation of the NFCI and ends in 2020q4. NBER recessions are

accompanied by lower GDP growth and a tightening of financial conditions as indicated by

17Source: https://fred.stlouisfed.org/series/GDPC1.
18The NFCI is a weighted average of 105 indicators of risk, credit, and leverage in the financial system, each

expressed relative to its sample average and scaled by its sample standard deviation (SD). Positive (negative)
values of the NFCI are associated with tighter-than-average (looser-than-average) financial conditions. The
data set and some background can be found here: https://www.chicagofed.org/publications/nfci/

index.
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higher values of the NFCI with the mild and short recession of 2001 being an exception.19 In

addition, the Covid-19 recession is also only associated with a short-lived surge in the NFCI.

Figure 6: Development of αt over Time for Macro-Financial Linkages

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
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0.4
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1

MVAR GMVAR MSVAR SMVAR

Probability of being in the normal state as indicated by the estimated mixture weights αt based
on four different approaches. Shaded areas are NBER recessions.

Again, we estimate a two-state SMVAR with one lag to examine the joint distribution of

the NFCI and real GDP as suggested by both information criteria. The fitted transformed

mixture weights αt are shown in Figure 6. All recessions (except the one in 2001) are

characterized by a low value of the mixtures weights αt. In contrast to the stock-bond

application, the mixture weight varies quite clearly between two levels. This leads – similar

to MSVAR models – to a switching interpretation of the two regimes as opposed to a mixture

of two components. Recessions are captured in a timely manner and even anticipated in the

case of both oil crises in the 1970s and early-1980s, the global financial crisis of 2008−2009,

and the Covid-19 slump of 2020. Only the recession of 1990−1991 is captured with a minimal

delay of two quarters. Since the latter recession and the one of 2001 are accompanied with

only a minor tightening of financial conditions (if at all), we can interpret the mixture weights

as indicator for joint economic and financial conditions.

19Figure C.2 shows both series over time.
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Table 8: Estimation Results for Macro-Financial Linkages

(a) VAR Parameters

Normal Regime Crisis Regime

NFCIt ∆GDPt NFCIt ∆GDPt

NFCIt−1 0.749 0.016 0.751 0.800
(0.027) (0.342) (0.086) (1.589)

∆GDPt−1 −0.013 0.106 −0.021 −0.206
(0.003) (0.052) (0.008) (0.149)

const −0.143 0.020 0.303 0.051
(0.016) (0.002) (0.137) (0.013)

(b) (Co-)Variance Parameters

Normal Regime Crisis Regime

Ω1,1 0.014 0.585
(0.002) (0.108)

Ω1,2 0.0003 −0.008
(0.0002) (0.007)

Ω2,2 0.0003 0.005
(0.0000) (0.001)

(c) GAS Parameters

α̃ a b

1.123 3.327 0.901
(0.811) (0.781) (0.046)

Coefficients of the SMVAR model and the (co-)variances for both states as well as the estimates
for GAS mixture weight updating procedure of Eq. (10). Standard errors are given in parentheses.

Table 8 shows the coefficients of the SMVAR model and the (co-)variances for both states

as well as the estimates for GAS mixture weight updating procedure of Eq. (10). Standard

errors are shown in parentheses. The variance parameters Ω1,1 for the NFCI and Ω2,2 for real

GDP growth indicate that the regime on the right-hand side of Table 8 is the more volatile

state. In addition, we observe a positive value for the constant of the NFCI equation in this

state, whereas the corresponding value for the other state is negative. Put differently, the

financial conditions are, ceteris paribus, tighter in the regime on the right-hand side. Hence,

we can therefore interpret the latter as crisis regime. The NFCI is similarly persistent in

both states. Changes in last period’s real GDP growth lead to a decrease in the current

period’s NFCI with a numerically larger effect in the crisis regime. Finally, GDP is found
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Figure 7: Impulse Responses of Mixture Weight

Economic Shock on Mixture Weight
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Generalized impulse responses (black lines) of the mixture weight to an economic and a financial
shock of four SD starting in the normal regime. Grey-shaded areas indicate 68% confidence bands.

to be persistent in the normal state, whereas there is no significant persistence during crisis

times. Turning to the GAS parameters, we find a high degree of persistence in the weights

as indicated by the estimate of 0.901 for the autoregressive coefficient b of Eq. (20). This

is also the reason for the smooth development of αt over time. The coefficient for the

weight update part a is positive and significant, implying that the scaled observation density

evaluated at the current observation is informative for detecting changes in future mixture

weights. Finally, the estimate for the average mixture weight is 0.755. Consequently, the

economy is – on average – in 75% of the time in the normal state.

5.2.2 Impulse Responses

Given the results of Application 2, a model with Markov-switching weights would also be

able to represent the reported dynamics. However, the SMVAR has the unique feature that

weights are driven by previous observations. This allows to investigate the impact of a shock

in an impulse response analysis not only via the direct lags in the VAR components but

also by the lagged impact on the component weights. In particular, we can investigate the

impact of an economic or financial shock on the probability of a switch into the crisis regime.

Figure 7 shows the GIRFs to an economic and a financial shock of four SD starting in the

normal regime (based on 10,000 Monte Carlo replications). We notice that the likelihood
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of triggering a crisis is – on average – higher after an financial shock than after a economic

shock of equal relative size. More precisely, the probability of a crisis increases by roughly

45 percentage points (pp) one period after a shock to financial conditions as compared to 13

pp in the case of an economic growth shock. Given an initial normal times regime weight

of 90%, the probability of switching into the crisis increases from 10% to 55% (23 %) in the

case of a financial (economic) shock.

We provide a detailed impulse response analysis in Appendix C.5. In particular, the

results show that the impulse responses become more uncertain in dynamic mixture VAR

models – such as the SMVAR – when compared to a situation where regime switches have

been ruled out. This is reasonable since the trajectory of the impulse response crucially

depends on whether or not the shock triggers a transition into another regime.

6 Conclusions

We proposed a novel dynamic mixture vector autoregressive model with time-varying mixture

weights, which are driven by earlier observations of the endogenous variables, the Score-

Driven Mixture Vector Autoregression. Our weight updating scheme follows the generalized

autoregressive score (or score-driven) approach developed by Creal et al. (2013) and Harvey

(2013). The derived scheme uses the scaled conditional density of the VAR component model,

evaluated at the current observation. Intuitively, the procedure increases the state weight for

the k-th component of the VAR model in the following period if the current observation is

more likely to be drawn from this particular state. The SMVAR is more flexible than other

dynamic MVAR approaches and allows for straightforward likelihood-based estimation and

inference.

We performed a Monte Carlo study to investigate the ability of the SMVAR to recover

mixture dynamics from various data generating processes and find that the SMVAR outper-

forms the GMVAR in filtering mixture weights with non-Markovian dynamics both in-sample
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and out-of-sample. One reason for this is the more flexible specification of our updating

scheme as the SMVAR includes a constant and an autoregressive part in the mixture weight

dynamics, whereas the GMVAR always updates the weights according to the recent scaled

observation density. In addition, the SM(X)VAR is also helpful if the instruments driving

the mixture weights in a Logit MVAR are unknown or uncertain as it outperforms the Logit

MVAR if the instruments are too noisy.

The benefits of the SM(X)VAR model were illustrated using two empirical applications

with time series of different frequency and noise level. The model is particularly appealing

because of its high flexibility. Moreover, it also provides novel analytical tools, such as

measuring the impact of shocks on mixture weights as part of an impulse response analysis

and incorporating predictors in the weight updating process.
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Online Appendix

A Derivations for GAS Updating Equations

A.1 General Weight Updating

∇t =
∂

∂α̃t

ln f(yt | Ft−1) (A.1)

=
∂

∂α̃t

ln
K∑
k=1

αk,tfk(yt | Ft−1) (A.2)

=
∂h

∂α̃t

· ∂
∂α t

ln
K∑
k=1

αk,tfk(yt | Ft−1) (A.3)

= Jh(α̃t) ·

∂

∂α t

∑K
k=1 αk,tfk(yt | Ft−1)

f(yt | Ft−1)
(A.4)

= Jh(α̃t) ·


f1(yt | Ft−1)

f(yt | Ft−1)
...

fK(yt | Ft−1)

f(yt | Ft−1)

 (A.5)

A.2 Jacobian of Logit Transformation

k = l, k 6= K:

∂hk
∂α̃l

(α̃) =
∂

∂α̃l

exp(α̃k)

1 +
∑K−1

i=1 exp(α̃i)
(A.6)

=
exp(α̃k)

(
1 +

∑K−1
i=1 exp(α̃i)

)
− exp(α̃k) exp(α̃l)(

1 +
∑K−1

i=1 exp(α̃i)
)2 (A.7)

=
exp(α̃k)

(
1 +

∑K−1
i=1 exp(α̃i)

)
− exp(2α̃k)(

1 +
∑K−1

i=1 exp(α̃i)
)2 (A.8)
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k 6= l, k 6= K:

∂hk
∂α̃l

(α̃) =
∂

∂α̃l

exp(α̃k)

1 +
∑K−1

i=1 exp(α̃i)
(A.9)

=
− exp(α̃k) exp(α̃l)(
1 +

∑K−1
i=1 exp(α̃i)

)2 (A.10)

(A.11)

k = K:

∂hk
∂α̃l

(α̃) =
∂

∂α̃l

(
1−

K−1∑
j=1

exp(α̃j)

1 +
∑K−1

i=1 exp(α̃i)

)
(A.12)

= − ∂

∂α̃l

exp(α̃l)

1 +
∑K−1

i=1 exp(α̃i)
−

K−1∑
j=1,j 6=l

∂

∂α̃l

exp(α̃j)

1 +
∑K−1

i=1 exp(α̃i)
(A.13)

=
− exp(α̃l)

(
1 +

∑K−1
i=1 exp(α̃i)

)
+ exp(2α̃l) +

∑K−1
j=1,j 6=l exp(α̃j) exp(α̃l)(

1 +
∑K−1

i=1 exp(α̃i)
)2 (A.14)

=
− exp(α̃l)(

1 +
∑K−1

i=1 exp(α̃i)
)2 (A.15)
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B Additional Simulation Results

Table B.1: Average Goodness-of-Fit Statistics

L AIC BIC

DGP T MVAR MSVAR GMVAR SMVAR MVAR MSVAR GMVAR SMVAR MVAR MSVAR GMVAR SMVAR

200 –430.9 –428.2 –450.2 –430.2 899.9 898.5 938.3 902.4 962.5 967.7 1001.0 971.6
I Constant 500 –1093.2 –1090.6 –1144.0 –1093.1 2224.3 2223.1 2325.9 2228.3 2304.4 2311.6 2406.0 2316.8

1000 –2194.2 –2191.4 –2297.9 –2195.3 4426.3 4424.9 4633.9 4432.6 4519.6 4527.9 4727.1 4535.7

200 –433.2 –422.8 –435.5 –421.5 904.5 887.5 909.0 885.0 967.13 956.8 971.7 954.3
II Break 500 –1091.7 –1077.1 –1101.8 –1058.9 2221.3 2196.3 2241.6 2159.8 2301.4 2284.8 2321.7 2248.3

1000 –2188.0 –2167.3 –2211.1 –2110.2 4414.0 4376.6 4460.1 4262.3 4507.2 4479.6 4553.4 4365.4

200 –433.6 –419.9 –432.9 –418.8 905.2 881.7 903.8 879.6 967.9 951.0 966.4 948.8
III Cycle 500 –1090.4 –1070.0 –1092.5 –1045.5 2218.8 2182.0 2223.0 2133.0 2298.8 2270.5 2303.1 2221.5

1000 –2184.0 –2153.3 –2191.3 –2088.6 4406.1 4348.6 4420.7 4219.2 4499.3 4451.7 4513.9 4322.2

200 –373.4 –346.3 –362.9 –351.7 784.8 734.6 763.8 745.3 847.51 803.8 826.4 814.6
IV MS 500 –961.0 –889.5 –925.8 –896.5 1959.9 1821.0 1889.5 1834.9 2040.0 1909.5 1969.6 1923.4

1000 –1931.6 –1789.0 –1857.1 –1798.6 3901.2 3620.0 3752.1 3639.2 3994.5 3723.1 3845.4 3742.3

200 –421.9 –415.5 –430.9 –414.3 881.7 873.1 899.9 870.7 944.4 942.3 962.5 939.9
V LAR 500 –1083.3 –1070.7 –1100.5 –1057.2 2204.5 2183.5 2239.1 2156.3 2284.6 2272.0 2319.1 2244.8

1000 –2182.4 –2158.6 –2212.0 –2123.1 4402.7 4359.2 4461.9 4288.2 4495.9 4462.2 4555.2 4391.3

Average log-likelihood (L), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) for the estimate of the mixture
weight α1,t from MVAR, MSVAR, GMVAR, and SMVAR models with 1000 Monte Carlo replications and different sample sizes T .
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C Additional Application Results

C.1 Time Series Plots

Figure C.1: Application 1: Excess Return Series
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The upper panel shows a bond index return based on 10-year to maturity US government bonds.
The lower panel shows the return to a value-weighted stock index (including dividends) from the
NYSE, NASDAQ, and AMXE exchanges (provided by CRSP). Returns are in excess of the 1-month
T-Bill rate. Shaded areas indicate NBER recessions.
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Figure C.2: Application 2: NFCI and Real GDP Growth
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Positive (negative) values of the normalized NFCI indicate tighter-than-average (looser-than-
average) financial conditions. Real GDP Growth QoQ is shown in percentage. Shaded areas
indicate NBER recessions.

42



C.2 Application 1: tSMVAR Results

Table C.1: Estimation Results for Stock and Bond Return Dynamics (tSMVAR)

(a) VAR Parameters

Normal Regime Crisis Regime

Bondt Stockt Bondt Stockt

Bondt−1 0.067 −0.049 0.087 −0.083
(0.049) (0.023) (0.062) (0.031)

Stockt−1 0.194 −0.067 0.201 0.100
(0.116) (0.057) (0.137) (0.069)

const 0.074 1.289 0.234 −0.291
(0.076) (0.198) (0.166) (0.371)

(b) (Co-)Variance Parameters

Normal Regime Crisis Regime

Ω1,1 1.684 7.224
(0.206) (0.963)

Ω1,2 −0.006 2.131
(0.275) (0.914)

Ω2,2 7.792 29.039
(0.969) (3.817)

(c) GAS Parameters

α̃ a b

0.407 2.076 0.953
(0.501) (0.632) (0.018)

(d) Distributional Parameters

ν

22.854
(16.602)

Coefficients of the SMVAR model and the (co-)variances for both states as well as the estimates
for GAS mixture weight updating procedure of Eq. (10). Standard errors are given in parentheses.
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Figure C.3: Development of αt over Time for Stock and Bond Return Dynamics (tSMVAR)
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Probability of being in the normal state as indicated by the estimated mixture weights αt. Shaded
areas indicate NBER recessions.
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C.3 Application 2: Detailed Impulse Response Analysis

In the following, we discuss the impulse response analysis for the application on macro-

financial linkages in more detail. Algorithm 1 shows the steps to simulate the GIRF given

by Eq. (17).

Algorithm 1: Generalized Impulse Responses for the SMVAR

1.) Estimate the model parameters of the SMVAR and pick an information set Ft−1
(usually represented by a sequence (yi)

t−1
i=0).

2.) for r = 1,. . .,R do

2.a) Draw N + 1 random shocks ε
(r)
t , ε

(r)
t+1, . . . , ε

(r)
t+N from N (0, Id).

2.b) for n = 0,. . .,N do

2.b) i) Use ε
(r)
t+n to compute

(
y
(r)
t+n(Ft−1)

)
with equation (1)

2.b) ii) Iterate the SMVAR recursion (3) to compute α
(r)
t+n+1

2.b) iii) Use α
(r)
t+n+1 to draw s

(r)
t+n+1.

end

2.c) Redo 2.b) with ε
(r)
t = ξt and shocks

(
ε
(r)
t+n

)N
n=1

to compute(
y
(r)
t+n(ξt,Ft−1)

)N
n=0

.

2.d) Calculate

GI(r)(n, ξt,Ft) = y
(r)
t+n(ξt,Ft−1)− y(r)t+n(Ft−1)

for n = 0, . . . , N .
end
3.) Form averages over the Monte Carlo replications:

ĜI(n, ξt,Ft) =
1

R

R∑
r=1

GI(r)(n, ξt,Ft)

To avoid conditioning on an information set, another Monte Carlo loop might be added

around Algorithm 1 in which ĜI is integrated over draws from the historical sequence (yi)
t−1
i=0.

Moreover, the algorithm could be easily adjusted for different distributions that are possible

in the SMVAR framework by replacing the innovation distribution in step 2.a).

In a first exercise, we look at the component-specific GIRFs for which we rule out regime

shifts. The black lines in the left panel of Figure C.4 show the mean responses in the normal

times regime under the assumption that no shift into the crisis regime may occur. The grey-
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shaded areas indicate 68% confidence bands. We find that the impact of the economic shock

on GDP growth fades out quickly, which is no surprise since we use quarter-over-quarter

growth rates. The adverse economic shock significantly reduces the NFCI on impact with

a peak effect of −0.076 SD. With respect to the financial shock, we see a greater degree of

persistence as its impact dies out only slowly. The financial shock also reduces GDP growth

significantly with a peak effect of −0.6 basis points (bps).

The right panel of Figure C.4 shows the GIRFs that occur within the crisis regime. The

qualitative behavior of the impulse responses is very similar to the behavior in the normal

state. In terms of magnitude, we find a significantly larger peak response of real GDP growth

(−4.1 bps as compared to −0.6 bps in the normal regime) after a financial shock. One reason

for this difference might be the size of the financial shock, which is roughly 5 times larger

in the crisis regime. However, there is one crucial difference that cannot be explained by

the relative shock size across regimes. The impulse response of the NFCI to the economic

shock has the opposite sign. It appears that while an adverse economic shock leads to a

slight easing of financial conditions in normal times, the opposite can be found in a crisis.

Here, we find a peak effect of 0.410 SD (as opposed to −0.076 SD in the normal regime).

One reason for this could be that countermeasures against economic shocks also improve

financial conditions in normal times, whereas this is not the case in crisis times. This holds

in particular if the economic shock does not trigger a change into the crisis regime (as ruled

out by assumption).
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Figure C.4: Component-wise Impulse Responses for Macro-Financial Linkages
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Generalized impulse responses (black lines) to an economic and a financial shock of four SD within
the normal regime (left panel) and the crisis regime (right panel). Regime shifts are ruled out.
Grey-shaded areas indicate 68% confidence bands.
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Looking at the component-wise impulse responses – which are equivalent to those of

linear VAR models – is one way to analyze time series dynamics. However, the SMVAR

explicitly models regime probabilities that recursively depend on prior observations. Hence,

the SMVAR not only allows to take the possibility of regime shifts into account, but also to

analyze the impact of shocks on the mixture weights. Consequently, we can investigate the

impact of an economic or financial shock on the probability of a switch into the crisis regime

(cf. Figure 7 and the discussion in Section 5.2.2). Figure C.5 shows the full set of GIRFs to

an economic and a financial shock of four SD starting in the normal regime.

There are four striking findings. First, the qualitative results concerning the persistence

of the shocks are similar when introducing possible regime shifts. The economic shock

decreases the shock variable significantly on impact and the effect is rapidly dying out (after

1 quarter), whereas the financial shock decreases the shock variable significantly on impact

with a clearly slower decay (4 quarters). Second, the confidence bands largely increase for

all impulse responses. This phenomenon can be observed for dynamic MVAR models in

general. The impulse responses largely differ depending on whether the initial shock triggers

a regime shift or not. In our case, we see in the lower panel of Figure C.5 that both shocks

significantly decrease the mixture weight and therefore make a shift into the crisis regime

more likely. Subsequently, the trajectories of the variables may strongly differ depending

on whether a crisis was triggered or not. Confidence bands may therefore be much less

informative as compared to a linear VAR but still provide some insight into the range of

possible variable developments. This is particularly prevalent when analyzing the effect of a

financial shock on GDP growth. In contrast to Figure C.4, the response is insignificant over

the full horizon.
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Figure C.5: Impulse Responses for Macro-Financial Linkages with Mixture Dynamics
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Generalized impulse responses (black lines) to an economic and a financial shock of four SD starting
in the normal regime. Grey-shaded areas indicate 68% confidence bands. The bottom panel
replicates Figure 7 from Section 5.2.2.

Third, we also notice that the likelihood of triggering a crisis is – on average – higher

after an financial shock than after a economic shock of equal relative size. More precisely,

the probability of a crisis increases by roughly 45 percentage points (pp) one period after a

shock to financial conditions as compared to 13 pp in the case of an economic growth shock.

Given an initial normal times regime weight of 90%, the probability of switching into the
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crisis increases from 10% to 55% (23 %) in the case of a financial (economic) shock. Fourth,

the response of the NFCI after the economic shock largely differs from both component-wise

responses that have opposing signs. The response in the full mixture model is negative on

impact in a magnitude similar to the normal regime but then turns slightly positive in the

aftermath. This is in contrast to the crisis regime in which the response is largely positive

on impact and decays only slowly.

These observed dynamics are an example of how nonlinear VAR models – like the SMVAR

– are able to alter our understanding of responses to shocks. In the regime-specific impulse

responses, the linkage between both series is underestimated. For instance, an initial shock

transmits directly though the normal times VAR model connections, but additionally in-

creases the probability of shifting into a crisis. Hence, the subsequent trajectory will also be

affected by a change in the unconditional mean and variance if the higher crisis probability

triggers an actual shift into the crisis regime.
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