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Abstract

A chained price index is said to suffer from chain drift bias if it indicates an overall

price change, even though the prices and quantities in the current period have

reverted back to their levels of the base period. The empirical relevance of this

bias is well documented in studies that apply sub-annual chaining to scanner data.

There it is shown that stockpiling can lead to downward chain drift bias. The present

paper draws attention to the fact that smoothing consumption causes substantial

upward chain drift. In addition, this study introduces a simple utility framework

consistent with stockpiling and smoothing. Building on this framework, a “stress

test” is conducted that examines whether rolling window variants of multilateral

indices (GEKS, TPD, and GK) effectively curtail the chain drift problem.
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1 Introduction

The conventional approach to compute the price change between a base period 0 and a
comparison period T uses only the prices and quantities of these two periods. Such index
formulas are known as bilateral price indices (or direct price indices). In the following, they
are denoted by P T/0. As an alternative to the bilateral index, P T/0, one may compute the
price change between periods 0 and T from a sequence of overlapping adjacent bilateral
price indices, P t/(t−1). The elements of this sequence can be linked by multiplication:
P 1/0P 2/1 . . . P T/(T−1). Such products are known as chain indices and its factors as chain
links.

When the item universe remains constant over time and all prices and quantities in the
current period T revert back to their levels in the base period 0, a price index comparing
the current period with the base period should indicate that no price change occurred.
All reasonable bilateral price indices, P T/0, satisfy this requirement. However, chained
bilateral price indices usually violate it. In the present paper, this violation is denoted
as chain drift bias. It is usually attributed to sales triggering non-standard substitution
behaviour of consumers. Feenstra and Shapiro (2003, p. 135) examine scanner data on
canned tuna and compile a weekly chained Törnqvist index that exhibits upward chain
drift caused by sales, while de Haan (2008, p. 19), studying scanner data on detergents,
finds that sales lead to downward chain drift, even though both studies apply the same
index formula and frequency of chaining.

These contradictory results suggest to analyse the causes of chain drift in a more
systematic way. The present paper puts its focus on chained bilateral indices that include
the quantities of both, the base and the current period (e.g., the indices of Törnqvist,
Fisher, Marshall-Edgeworth, and Walsh). It is shown that the chain drift of such chained
bilateral price indices is caused by quantity and price changes that are not perfectly
synchronised in time.2 Such asynchronous price and quantity changes can arise from
different forms of intertemporal optimisation behaviour of consumers.

A well known example of such consumer behaviour is stockpiling. During a sale, the
consumers increase both their consumption and their stocks. Therefore, the purchases
“overshoot” consumption. As soon as the price returns to normal, the purchases overshoot
consumption in the downward direction because the consumers first use up their extra
stocks. When in the subsequent periods the price remains on its normal level, purchased
quantities gradually align with consumed quantities. For simplicity, these consequences
of stockpiling are denoted here as overshooting quantity reactions to price changes. Also
temporary price spikes trigger overshooting quantity reactions.

There are other forms of intertemporal optimisation behaviour leading to asynchron-
ous price and quantity changes. Probably the most important one are delayed quantity
adjustments to price changes. Often, this smoothing is caused by search and adjustment
costs. Even so the price of a consumer’s favourite product may have permanently in-
creased or the price of a competing product may have permanently fallen, the consumer

2Hill (2006, pp. 314-315) reaches a similar conclusion for the chained Laspeyres index and the chained
Paasche index.
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may show no or only a moderate immediate change in her usual purchasing behaviour.
Only at some later point of time, after acquiring information about the qualitative features
or the handling of alternative products, she may partly or completely switch over to such
alternatives. Other reasons for delayed quantity reactions are consumption habits caused
by harmful addictions (e.g., nicotine) or by past investments in increased enjoyment from
consumed goods (e.g., ability to cook tasty and healthy food). For simplicity, all delayed
quantity adjustments are denoted here as sticky quantity reactions to price changes.

Several studies of scanner data (e.g., de Haan, 2008, p. 18; de Haan and van der Grient,
2011, p. 43) demonstrate that overshooting quantities cause downward chain drift. The
chain drift arising from sticky quantities, however, went largely unnoticed.3 Therefore, the
present paper’s first contribution is to demonstrate that sticky quantities lead to upward
chain drift.

As a solution to the chain drift problem, Ivancic et al. (2011) advocate a rolling
window variant of the Gini-Éltető-Köves-Szulc (GEKS) approach. The GEKS index is
free of chain drift. However, its rolling window variant (R-GEKS) involves a mechanism
that links the current window to past windows. This special form of chaining is usually
denoted as splicing. It cannot be ruled out that splicing generates chain drift.

By now, several variants of such R-GEKS indices have been developed.4 Besides R-
GEKS indices, many other multilateral approaches have been proposed to overcome the
chain drift problem. These include rolling window variants of the time-product dummy
method (R-TPD) and of the Geary-Khamis approach (R-GK).5 Again, these methods
require some form of splicing. Consequently, they might also suffer from chain drift bias.

How can one investigate this suspicion? A meaningful examination requires an un-
assailable benchmark such that the deviation of an index number from that benchmark
represents chain drift bias. This benchmark directly follows from the definition of chain
drift: when all prices and quantities revert back to their former levels, a price index
should indicate that no price change occurred. Unfortunately, the prices and quantities
of real world data (e.g., scanner data) never return to their original levels. Therefore, an
analysis of chain drift that uses real world data would have to do without an unassailable
benchmark.

Is a simulation approach preferable? To obtain the desired benchmark, the researcher
can generate price-quantity scenarios where all prices and quantities return to their ori-
ginal levels. However, the simulation must ensure that the price-quantity scenarios reflect
real world purchasing behaviour. This requires price scenarios with sales and ordinary
price changes as well as quantities that reflect the intertemporal optimisation behaviour of
households. Thus, the second contribution of the present study is a simple and transpar-
ent utility framework that transforms price scenarios into quantity scenarios. It captures

3A notable exception is Triplett (2003, p. 152) who points out that storage, search, and information
cost may generate measurement problems for scanner data price indices.

4For compact surveys see, for example, Diewert and Fox (2022, pp. 357-359), Van Loon and Roels
(2018, pp. 7-8), or Appendix B of the present paper.

5For recent surveys of the various methods see, for example, Chessa et al. (2017), Chessa (2019), de
Haan and Krsinich (2014), or Diewert and Fox (2022).
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overshooting and sticky quantities arising from consumer behaviour such as stockpiling
and smoothing of consumption.

This study’s third contribution is a quantitative analysis of the chain drift bias of the
R-GEKS, R-TPD, and R-GK approaches. It is shown that these index methods reduce
chain drift bias, but they cannot eliminate it. Furthermore, some variants are more
effective than others.

As a first step, Section 2 introduces the notion of chain drift and explains, why over-
shooting quantities and sticky quantities cause different directions of chain drift. Section
3 briefly discusses the implications of chain drift for price measurement relying on scanner
data and explains why a simulation approach is appropriate for a systematic examination
of the various index methods’ resilience to chain drift bias. Section 4 introduces a new
utility framework. Drawing on this utility function, Section 5 presents a simulation based
“stress test” that examines whether the R-GEKS, R-TPD, and R-GK methods curtail
chain drift and whether some variants are better suited than others. Section 6 concludes.

2 Chain Drift and Its Sources

Let the integers i = 1, . . . , N , represent the N items of an economy. All items are available
during the base period (t = 0) and the comparison period (t = T ). The period t vector
of prices is (pt1, . . . , p

t
N) and the corresponding vector of quantities is (xt

1, . . . , x
t
N). It is

customary to interpret a bilateral price index, P , as a mapping of the N -dimensional
vectors (p01, . . . , p

0
N), (x

0
1, . . . , x

0
N), (p

T
1 , . . . , p

T
N), and (xT

1 , . . . , x
T
N) into a single positive

number, P T/0, that measures the “overall price change” between periods 0 and T . All
bilateral price indices considered in this study are listed in Appendix A.

Consider some sequence of time periods, t = 0, . . . , T .

Definition 1 A chain index that compares period T to the base period 0 is defined by

P̃ T/0 = P 1/0P 2/1 . . . P T−1/T−2P T/T−1 . (1)

When the prices and quantities in period T return to their levels of period 0, the chain
index, P̃ T/0, should give the same index number as the bilateral index, P T/0, namely 1
(e.g., Ivancic et al., 2011, p. 26). Accordingly, in this specific price-quantity-scenario, the
deviation from unity is an appropriate measure of the extent of chain drift bias (e.g., Ribe,
2012, p. 3; Diewert, 2018, p. 25; Diewert and Fox, 2022, p. 557). This interpretation of
chain drift bias can be formalised in the following way:

Definition 2 The chain drift test of the bilateral price index, P t/t−1, postulates that

P 1/0P 2/1 . . . P T−1/T−2P 0/T−1 = 1 . (2)
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Condition (2) can be found in Walsh (1901, p. 401) who later calls it the circularity test
(see Diewert, 1993, p. 40).6 Note that for T = 1 the chain drift test simplifies to the time
reversal test: P 1/0 = 1/P 0/1.7

In standard microeconomic consumer theory, consumers instantaneously adjust their
current purchases to the current prices. The usual assumption is that consumers substitute
away from products that have become relatively more expensive. The larger the elasticity
of demand, the more pronounced are these quantity reactions. Figure 1 translates this
standard theory into a highly stylised example. The figure depicts the prices and quantities
of some item during nine consecutive periods, t = 0, . . . , 8. In the depicted Scenario 1,
the prices of the item can take only the values “low”, “normal”, and “high”, and the
quantities sold can be “small”, “normal”, or “large”.

Price changes are marked by the weight icons. The price starts at a normal level,
drops in period 1 to the lower level, stays there for another period, returns to normal
in period 3, and stays there also during period 4. In period 5, the price increases to
high, stays there for another period, before it drops back to normal during period 7 and
remains there during period 8. The quantities purchased move exactly inversely to the
prices, that is, the consumers’ quantity reactions are perfectly synchronous to the price
changes. As soon as the price returns to normal, also the quantity returns to normal. In
times of constant prices also the quantities remain constant. When the price elasticity of
demand is less than unity, expenditure shares and prices are positively correlated.

Many price indices are expenditure weighted averages of intertemporal price ratios
(pTi /p

0
i ) where the impact of the two periods 0 and T on the expenditure weights is

symmetric (e.g., Törnqvist, Walsh, Marshall-Edgeworth, Theil, Sato-Vartia).8 Due to
this symmetric impact, Scenario 1 generates weights such that the price decline between
periods 0 and 1 (its weight is related to the expenditures during periods 0 and 1) and
the price increase between periods 2 and 3 (its weight is related to the expenditures

6Walsh later calls condition (2) the circularity test (see Diewert, 1993, p. 40). In the current price
index literature, this label is reserved for the condition P 2/0 = P 2/1P 1/0. This condition is stricter than
the alternative formalization of chain drift because it does not prescribe that the prices and quantities
of periods 0 and 2 coincide. In the context of spatial price comparisons, circularity is usually denoted
as transitivity. Diewert (1993, p. 40) coins the chain drift test as the “multiperiod identity test”. Note,
however, that the chain drift (or multiperiod identity) test considers the case where the quantities reverse
to their base period values, while in the identity test the evolution of the quantities is completely irrelevant.
In fact, a chain drift test without the quantity reversal postulate is considered in de Haan (2008, p. 10).
He calls it the “invariance to price bouncing test”.

7An anonymous referee pointed out that for bilateral price indices that satisfy the time reversal test,
one gets PT/T−1 = P 0/T−1 = 1/PT−1/0 and condition (2) becomes (P 1/0P 2/1 . . . PT−1/T−2)/(PT−1/0) =
1. According to this alternative formalization, a bilateral price index suffers from chain drift when the
ratio of the chained index and the corresponding bilateral index, P̃T−1/0/PT−1/0, deviates from unity.
Several writers use this alternative formalization of chain drift (e.g., Forsyth and Fowler, 1981, p. 234;
Frisch, 1936, p. 8; Hill, 2006, pp. 14-15; Lent, 2000, p. 314; Persons, 1921, p. 109; Persons, 1928, p. 101).
Szulc (1983, p. 554) points out that ratios different from unity do not necessarily indicate chain drift
bias, since a time-distant bilateral price index, PT/0, is likely to suffer from substitution bias.

8The Fisher index and the generalised unit value (GUV) indices of Banerjee, Davies, and Lehr (Auer,
2014, pp. 848-852) exhibit a similar type of “intertemporal symmetry”. A more complete classification
of “symmetric bilateral price indices” is provided by Auer and Shumskikh (2022, Section 2).
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Figure 1: Synchronous Quantity Reactions to Price Changes (Scenario 1).

during periods 2 and 3) exactly offset each other. Graphically, this balanced weighting is
indicated by the equal sized weight icons located at the price decline between periods 0
and 1 and at the price increase between periods 2 and 3. The same is true for the price
increase between periods 4 and 5 and the price decline between periods 6 and 7. As a
consequence of this balanced weighting of price increases and price declines, symmetrically
weighted indices are immune to chain drift from scenarios like Scenario 1 and one gets
P 1/0 · P 2/1 · . . . · P 8/7 = 1.9

Scenario 1 corresponds to standard consumer theory as presented in introductory
microeconomics textbooks. Real world consumer behaviour, however, is more complex.
One important aspect ignored by standard consumer theory is stockpiling. For example,
sales usually lead to increased purchases, part of which are stored. If in the next period
the price returns to its normal level, the purchased quantity falls below its normal level,
because consumers first use up their extra stock. Only after the extra stock is depleted,
the purchased quantity returns to its normal level. In the following, such a scenario
is denoted as an overshooting quantity response to sales.10 During the sales period,
acquisitions exceed consumption (that is, stocks increase), while right after the sales
period, consumption exceeds acquisitions (stocks decrease).

Periods 0 to 3 of Scenario 2 (see Figure 2) depict this case in a highly stylised form.
In such a scenario, symmetrically weighted indices exhibit chain drift. As a result of
the overshooting quantity response, the weight attached to the price reduction between
periods 0 and 1 is larger than the weight attached to the price increase between periods 1
and 2. Therefore, the price index level of period 2 is below that of period 0. At the end of
period 2, the customers’ inventory is back to its normal level. Therefore, the purchases in
period 3 increase to their normal level, even though the price is constant. In the literature,
there is a rather broad consensus that every valid bilateral index formula must satisfy the

9Chain drift arises, however, for the Laspeyres and Paasche index. This issue is addressed in various
studies including Forsyth and Fowler (1981, pp. 234-235), Szulc (1983, pp. 540-541), and Hill (2006,
pp. 314-315).

10This type of scenario is described, for example, in Ivancic et al . (2009, p. 4), de Haan and van der
Grient (2011, p. 39), and Ribe (2012, p. 3).
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identity test. This test says that, in the absence of any price changes, the price index is
unity, regardless of any quantity changes. All price indices listed in Appendix A satisfy
the identity test. Therefore, the price index level of period 3 remains on the level of period
2 and, thus, below that of period 0. In other words, downward chain drift arises.

Figure 2: Downward Chain Drift Bias From Overshooting Quantity Reactions Caused By
Sales Or Price Spikes (Scenario 2).

Periods 0 to 3 of Scenario 2 describe a storable item that consumers keep in stock.
In times of unusually low prices (sales) the consumers add to their ordinary stock some
extra stock and they deplete that extra stock when the price reverts to its normal level.
This is the standard narrative of stockpiling.

However, stockpiling is not only relevant in times of sales, but also in times of price
spikes. During such spikes consumers can plunder their ordinary stock and restock it
as soon as the price returns to normal. Again, overshooting quantity reactions arise.
This is depicted by periods 4 to 8 of Scenario 2. The price increases in period 5. Many
consumers switch to using up their stocks. This leads to a negative quantity reaction that
is larger than for items that cannot be stored. In period 6, the price returns to its normal
level. This gives the consumers the opportunity to refresh their inventories. At the same
time they return to their normal consumption. Therefore, the total quantity purchased
exceeds the normal quantity. As a result of these overshooting quantity responses, the
weight attached to the price increase between periods 4 and 5 is smaller than that attached
to the price reduction between periods 5 and 6. This leads again to downward chain drift.
At the end of period 6 the stock is back to its standard level, such that the purchases in
period 7 return to their normal level even though no price change occurs between periods
6 and 7.

In sum, overshooting quantities triggered by sales or by price spikes work in the same
direction. Both generate downward chain drift. Overshooting quantities, however, are
only one driver of chain drift. Another driver operates in the opposite direction, that is,
it causes upward chain drift.

In the field of industrial organisation there is extensive literature on search and adjust-
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ment costs and their implications for markets.11 Also in the field of price measurement
it is well known that search and adjustment costs are relevant in real world consumption
decisions and that they create problems for price measurement purposes (e.g., Reinsdorf,
1994, p. 137; Triplett, 2003, p. 152). Such costs can delay the consumers’ substitution
behaviour, such that part of the quantity response or the complete quantity response
happens in a later period than the underlying price change. This is particularly true
when the length of a period is relatively short (e.g., one week or one month). Another
cause of delayed quantity responses are harmful or beneficial consumption habits that
the consumers have developed over time. Delayed quantity responses are denoted here as
sticky quantities.

Figure 3 illustrates the consequences of sticky quantities. In the depicted Scenario 3,
demand is completely price inelastic in the short-run, but price elastic in the long-run.
More specifically, the complete quantity reaction to each price change is delayed by one
period.

Figure 3: Upward Chain Drift Bias Caused By Sticky Quantity Reactions to Price Changes
(Scenario 3).

In period 1 the price drops, while the quantity remains unchanged. Therefore, the
observed expenditure during period 1 is smaller than it would be with the usual quantity
reaction of an elastic demand. As a consequence, also the weight attached to the price
decline is smaller than it would be with an elastic demand. Graphically, this diminished
weight is indicated by the small weight icon at the price decline between periods 0 and 1.

The complete quantity reaction to the reduced price in period 1 occurs one period
delayed, that is, in period 2. The price in period 2 remains on the level of period 1. All
popular price indices satisfy the identity test. Therefore, their price index level does not
change between periods 1 and 2.

Since demand is inelastic in the short-run, the price increase between periods 2 and 3
occurs without a quantity reduction. Therefore, the weight attached to this price increase
is larger than it would be with the usual quantity reduction. The large weight icon at the
transition from period 2 to period 3 highlights this inflated weight. The price increase

11A survey of this literature is Fisher Ellison (2016).
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between periods 4 and 5 is analogous to that between periods 2 and 3. Again, the price
increase receives an inflated weight. The price decline between periods 6 and 7 shows the
same pattern as that between periods 0 and 1. This price decline receives a diminished
weight. Overall, this unbalanced weighting of price declines and price increases leads to
upward chain drift.

Theoretically, one can think of quantity reactions that are antedated by one period.
This could be regarded as a “negative delay”. The weighting effects are exactly opposite
to those of Scenario 3. Price increases receive a diminished weight, whereas price declines
receive an inflated weight. As a result, downward chain drift would arise. In reality,
such anticipating consumption behaviour is unlikely, unless stockpiling is involved. Then
stocks are depleted in anticipation of the sale. This tends to aggravate the overshooting
quantities effect and the resulting downward chain drift. Anticipated price spikes have
the same effect.

In summary, sticky quantities (the result of smoothing of consumption) lead to upward
chain drift, whereas overshooting quantities (the result of stockpiling) lead to downward
chain drift. The underlying problem of both cases is the asymmetric weighting of price
increases and price reductions. This asymmetry is facilitated by quantity changes in times
of constant prices. Since all popular bilateral price indices satisfy the identity test, they
indicate in such periods no overall price change. This suggests that a solution to the chain
drift problem may come from price indices that violate the identity test. The R-GEKS
indices studied in Sections 4 and 5 are a prominent example. They violate the identity
test.12 This could be interpreted as a weakness of the R-GEKS indices. On the contrary,
the fact that immunity to chain drift requires price indices that violate the identity test
can be interpreted as a weakness of the identity test.13

Overshooting and sticky quantities generate diametrical chain drift bias. For example,
Feenstra and Shapiro (2003, p. 133) identify delayed quantity responses in the context
of sales.14 In their data set, the immediate quantity response to a sale is modest, but
substantially increased after, in a later period, the sale is advertised. Overall, they identify
upward chain drift bias. This suggests that in their data set the upward bias generated
by sticky quantities dominates the downward bias generated by overshooting quantities.

3 Implications for a Quantitative Analysis of Chain

Drift Bias

Storing one’s favourite beer when it is on sale may reduce further purchases of beer for
some weeks or months but probably not for years. Delayed quantity reactions are also

12This is noted also by Ribe (2012, p. 4).
13In ILO (2004, p. 293) it is reported that the identity test is somewhat controversial. A more elaborate

critique of the identity test can be found in Auer (2008, pp. 2-7).
14Adapting an artificial scenario analysed in Persons (1928, p. 102), Diewert (2018, p. 27) discusses

a situation that combines sales with somewhat delayed quantity responses. This scenario resembles the
pattern that Feenstra and Shapiro (2003) identify in their scanner data set.
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rather a question of weeks than years. This implies that chaining of monthly price indices
is more likely to cause chain drift bias than chaining of yearly price indices. Since scanner
data allow for the compilation of monthly or even weekly price indices, the issue of chain
drift becomes particularly relevant for this type of data source.

GEKS indices offer themselves as a solution because they are transitive and, therefore,
free of chain drift.15 However, when the time span covered by a GEKS index becomes
too large, the measured price change of neighbouring periods is affected by very distant
periods. This may reduce the reliability of the results. As a solution, Ivancic et al. (2011,
p. 33) propose a rolling window variant of the GEKS approach. This rolling window
variant is denoted here as R-GEKS index. In its original form, the GEKS index is based
on the bilateral Fisher index, while Caves et al. (1982) propose to use the Törnqvist
index. Diewert and Fox (2022, p. 355) denote the latter variant as the Caves-Cristensen-
Diewert-Inklaar (CCDI) approach.

When a R-GEKS index is used, the price levels compiled from the most recent window
must be linked to the price levels compiled from the earlier windows. Empirical studies
demonstrate (e.g., Melser, 2018, pp. 518-521) that the choice of the linking procedure
(called “splicing”) affects the results of R-GEKS indices. The R-GEKS approach and five
different splicing variants are explained in Appendix B. The five mentioned variants are
the following: movement splice (Ivancic et al ., 2011, p. 33), window splice (Krsinich, 2016,
pp. 383-87), half splice (de Haan, 2015, pp. 25-26), mean splice (Diewert and Fox, 2022,
pp. 560-561), and direct mean splice (Melser, 2018, p 518).16 Splicing can be viewed as a
special form of chaining. In fact, the splicing of chain drift free GEKS indices can cause
chain drift bias.

R-RGEKS indices are not the only rolling window indices that have been proposed to
solve the issue of chain drift bias. The alternatives include rolling window variants of the
time-product dummy method (R-TPD) and of the Geary-Khamis approach (R-GK).17

The available splicing variants are the same as for R-GEKS indices and the suspicion of
chain drift bias also applies to the R-TPD and R-GK approaches.18

The diversity of index and splicing methods raises the question whether one method
is more immune to chain drift than others. Does the relative performance of the methods
depend on the relative strength of stockpiling (overshooting quantities) and smoothing of
consumption (sticky quantities). The cycle lengths of overshooting quantities and sticky
quantities are likely to differ. Therefore, a window length that is suitable for addressing
overshooting quantities is unlikely to be adequate for sticky quantities. In other words,

15The acronym GEKS honours the publications of Gini (1924), Éltető and Köves (1964), and Szulc
(1964) who introduced this approach for interregional price comparisons. Balk (1981, pp. 73-74) adopts
this approach to the intertemporal price measurement of seasonal products. That multilateral price
indices can curtail chain drift bias is pointed out also in Kokoski et al . (1999, p. 141).

16Diewert and Fox (2022, p. 561) advocate another splicing strategy that is not considered in the
present study. Melser and Webster (2021, p. 765) point out that for theoretical purposes the linking
stage could be replaced by a second round of GEKS aggregation.

17An exposition of these methods can be found in various studies (e.g., Diewert and Fox, 2022, p. 561).
18Various splicing methods are surveyed in Chessa (2019, pp. 3-5) and in Appendix B of the present

paper.
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a one-size-fits-all window may not exist. In such a situation, should one apply a shorter
or rather a longer window length? Do the answers to these questions depend on the
consumers’ behavioural characteristics (e.g., price elasticity of demand)?

A quantitative analysis of these questions should use an unassailable benchmark for
assessing the extent of chain drift bias inherent in the index methods to be compared. To
obtain this benchmark, the data set should be such that, after some periods, all prices and
quantities return to their original values. Thus, scanner data and other real world data
are not particularly helpful in this context.19 Artificial price-quantity scenarios appear
better suited. However, these scenarios should be sufficiently “realistic”, that is, they
should capture those patterns of real world data that can cause chain drift bias.

To begin with, the price data should be generated by a transparent stochastic process
that features ordinary price changes as well as sales. Furthermore, the transformation of
the price scenario into a corresponding quantity scenario should mimick utility maxim-
ising households that smooth consumption and benefit from stockpiling. In other words,
a model is required that combines both behavioural traits in one unifying utility frame-
work.20

Once a price-quantity scenario is generated in this way, the index numbers of the
various index methods could be computed and compared to the reference. As a result,
some index methods may look superior to some other methods. However, this ranking may
depend on the specific price-quantity scenario. Therefore, the complete process should be
repeated many times and, for each index method, the deviations of the index numbers
from the reference should be averaged over these repetitions.21

The ranking of the index methods may also depend on the parameter values of the
utility framework transforming the price scenarios into quantity scenarios. Therefore,
alternative parameter values must be examined. To this end, the complexities of real
world intertemporal decision making should be condensed into a simple utility framework
with few parameters. Each parameter should have a clear economic interpretation. For
example, one parameter should represent the cost of stocking and some other parameter
should represent the households’ desire to smooth consumption. The following section
introduces such a utility framework.

19Estimating from real world data the parameters driving the households’ intertemporal consumption
paths is a difficult task because the observable date of a product’s acquisition often deviates from its
unobservable date of consumption and stockpiling. Various sophisticated stockpiling models attempt
to solve this problem. For example, Osborne (2018) considers stockpiling households and estimates a
dynamic structural utility model from real world household-level scanner data. The author also relates
his approach to alternative stockpiling models, including those of Feenstra and Shapiro (2003) as well as
Hendel and Nevo (2006). There is a separate but similarly sophisticated literature on empirical models
of smoothing of consumption. For example, Hong and Shum (2006) show how the equilibrium conditions
of standard search models can be exploited to estimate search cost distributions solely from observed
prices. Honka et al. (2019) survey the econometric literature on consumer behaviour in the presence of
search cost.

20In Section 4, the need for a unifying utility framework is further elaborated.
21Real world data can be interpreted as an experiment with only one sample. Repeated samples could

generate results that differ from the observed one. This possibility weakens the reliability of the results
obtained from the actually observed sample.
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4 Utility Framework

Triplett (2003, p. 152) points out that the analysis of high-frequency data such as scanner
data is an analysis of acquisitions and not of consumption: “To confront the household
behaviour recorded in high-frequency data requires a theory that adequately describes
search, storage, shopping, and other household activities that drive a wedge between
acquisition periodicity and consumption periodicity.” Households build up inventories
during sales and afterwards gradually reduce these inventories to their standard levels.
This stockpiling behaviour results in overshooting quantities. Households benefit from
stockpiling in at least three ways. By exploiting sales, households can buy the product at
a lower average price. Furthermore, as the Covid-19 pandemic has shown, stocks represent
a hedge against supply interruptions. Finally, consumers usually have adjustment costs
when they adapt their purchased quantities to price changes. Stocks represent buffers
against unwanted adjustments and the associated cost.

Thus, stockpiling and smoothing of consumption are not independent. Neither are they
fully dependent. Stockpiling would occur even without the desire to smooth consumption,
simply as a hedge against future price increases. Conversely, due to habits and addiction,
smoothing of consumption would occur even if the cost of stockpiling were infinite. These
considerations imply that a quantitative analysis of the chain drift bias of different index
methods should address the phenomena of stockpiling and smoothing of consumption in
one unifying framework.

Regardless of which benefit of stockpiling prevails, sales lead to overshooting quant-
ities. A meaningful utility framework must capture this effect. For the purpose of the
intended simulation approach outlined in Section 3, a simple solution suffices. Therefore,
the present paper proposes a utility framework where stockpiling directly contributes to
the household’s utility. The household is myopic, that is, it optimises present consumption
and stocks, given the prices, income, and stocking costs of the present period, and given
the consumption and stocks of the past. This considerably simplifies the analysis. The
utility framework incorporate not only stockpiling behaviour but also delayed quantity
adjustments. This second important dynamic feature of consumer behaviour is absent
from existing models of households engaged in stockpiling.

The new utility framework is composed of two CES functions. One of them captures
the subutility of consumption and the other one the subutility of stockpiling. The two
CES functions are nested in a Cobb-Douglas utility function.

Consider some representative household endowed with income m and stocks s̄i (i =
1, . . . , N) inherited from the previous period. To avoid a cluttered notation, time sub-
scripts are omitted. Instead, a bar on a variable indicates that the value is from the
previous period. The budget constraint of the household in the present period is

m+
N∑
i=1

pis̄i =
N∑
i=1

pici +
N∑
i=1

pi (1 + µ) si , (3)

where pi is the price, ci is the consumed quantity, si is the stock (retained for the next
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period), and µpisi (µ ≥ 0) is the storage cost of item i in the present period.22 The
left-hand side of Equation (3) can be considered as the household’s “net endowment”,
m̃ = m+

∑N
i=1 pis̄i. The purchased quantity, xi, is the sum of the consumed quantity, ci,

and the change in stocks, (si − s̄i):

xi = ci + si − s̄i . (4)

The household’s subutility levels from consumption, C, and stockpiling, S, are given
by

C =

[
N∑
i=1

(
ci
c̄γi

)θ
]1/θ

and S =

[
N∑
i=1

sϕi

]1/ϕ
, (5)

where θ, ϕ ̸= 0 and the term ci/c̄
γ
i describes, for given past consumption, c̄i, the contri-

bution of present consumption, ci, to subutility C.23 A positive value of γ would capture
the phenomenon that past consumption produces “aspirations” that are harmful to the
utility derived from present consumption. The household’s utility function is defined by

U = CαS1−α , (6)

where the parameter α represents the household’s preference for instantaneous consump-
tion. The following parameter restrictions are imposed: 0 < α ≤ 1 and θ, ϕ < 1.

If α were equal to 1, the household would never want to stockpile. Furthermore,
Appendix C shows that −1/(1 − θ) and −1/(1 − ϕ) approximate the price elasticities
of present consumption and stockpiling, respectively. Therefore, negative values of θ
and ϕ imply that consumption and stockpiling are inelastic and households cannot easily
substitute between the various items.

A price-induced change of ci implies that in next period’s optimisation a new value c̄i is
relevant, triggering another adjustment of ci even without any further price changes. The
term −γθ/(1 − θ) approximates the elasticity of present consumption, ci, with respect
to past consumption, c̄i (see Appendix C). A stable steady-state equilibrium requires
that | − γθ/(1 − θ)| < 1. The sticky quantities of smoothing behaviour require that
0 < −γθ/(1 − θ) < 1. For −1 < −γθ/(1 − θ) < 0, the adjustment path to the steady-
state equilibrium would be oscillatory. Only when γθ = 0, a price change causes an
instantaneous and complete quantity adjustment.

The maximisation of utility function (6) subject to constraint (3) yields the following
purchasing behaviour (see Appendix C):

x∗
i = αm̃c̄

−γθ
1−θ

i p
−1
1−θ

i P
θ

1−θ

C︸ ︷︷ ︸
c∗i

+(1− α) m̃p̃
−1
1−ϕ

i P
ϕ

1−ϕ

S︸ ︷︷ ︸
s∗i

−s̄i , (7)

22For simplicity, it is assumed that, if the household wishes, it can sell during the present period units
of the inherited stock s̄i at the price pi. In the simulations presented in this study, the consumers never
wish to sell inherited stock.

23The simulation presented in the next section uses the parameter values θ = ϕ = −0.3. If the values
of θ and ϕ converged to 0, the subutility functions in (5) would not converge to Cobb-Douglas functions.
Such a convergence would arise if in front of the terms ci/c̄

γ
i and si the factor (1/N) appeared.
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with p̃i = pi (1 + µ) representing the price of stocks including storage costs. The “price
indices” PC and PS are defined by

PC =

(
N∑
i=1

c̄
−γθ
1−θ

i p
−θ
1−θ

i

)− (1−θ)
θ

and PS =

(
N∑
j=1

p̃
−ϕ
1−ϕ

i

)− (1−ϕ)
ϕ

. (8)

The variables x∗
i , c

∗
i , and s∗i in (7) are the optimal values of the variables xi, ci, and si in

Equation (4).
The demand function (7) can be used to compute for any scenario (prices, pi, income,

m, inherited stocks, s̄i, former consumption levels, c̄i, as well as parameters α, θ, ϕ, µ,
and γ) the corresponding quantities purchased by the utility maximising household. To
capture a stockpiling household (leading to overshooting quantities) that does not smooth
quantity adjustments to price changes (no sticky quantities), the parameters must be such
that 0 < α < 1 and γ = 0. In this case, the demand function (7) simplifies to

x∗
i = m̃

(
αp

−1
1−θ

i P
θ

1−θ

C + (1− α) p̃
−1
1−ϕ

i P
ϕ

1−ϕ

S

)
− s̄i .

Smoothing without stockpiling arises for α = 1 and γ ̸= 0. The resulting purchases are

x∗
i = m̃c̄

−γθ
1−θ

i p
−1
1−θ

i P
θ

1−θ

C ,

with m̃ = m.

5 Simulation and Implications

The simulation comprises T = 120 periods (t = 1, 2, . . . , 120). In each period, the house-
holds can choose among the same N = 40 items (i = 1, . . . , 40). Each item receives a
randomly drawn “base price” between 2.00 and 5.00. The simulation starts with a phase-
in interval of 10 periods during which all N items are sold at their base price. This interval
is followed by a core interval of 100 periods in which some randomly drawn items exhibit
price changes triggering quantity reactions. After the core interval, there is a phase-out
interval of 10 periods in which all items are sold at their respective base prices. Therefore,
not only the prices but also all quantities return to the levels that had prevailed at the
start of the phase-in interval.

10 of the 40 items keep their base price throughout the time horizon, while 10 other
items exhibit cyclical sales patterns during the core interval. Every cycle starts with a
price reduction that randomly lasts for one or two periods. Afterwards the price returns
to its basic level and stays there until the next cycle starts. Each of the sales items has
its own fixed price reduction (randomly drawn between 10%, 20%, 30%, and 40%) and
its own fixed cycle length (randomly drawn from 6 to 12 periods). Also the period for the
start of the first cycle differs between the items. It occurs within the first twelve periods
of the core interval and is randomly drawn. As an illustration, the upper part of Figure 4
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Figure 4: Sales (Upper Panel) and the Resulting Quantities of Stockpiling Households
(Middle Panel) and Smoothing Households (Bottom Panel).

depicts the cyclical sales prices of item 10 of the simulation’s first iteration (out of 5000
iterations).

The remaining 20 items exhibit price changes that are not related to sales. On average,
the price of such an item changes every fifth period. The periods of change are randomly
drawn and the new price can deviate from the previous price by a percentage drawn from
a normal distribution (with mean 0 and standard deviation 0.2). This random process
applies to periods 11 to 60, that is, to the first half of the core interval. For the second half
of the core interval the order of the prices is simply reversed. Thus, even prices that have
drifted a long way from their original levels return to these levels in a gradual manner.24

The upper part of Figure 5 depicts the price evolution of item 9 of the simulation’s first
iteration.

All households are confronted with the same price tableau (40 items during 120 peri-
ods). Two different types of households exist: stockpiling households (α < 1 and γ = 0)
and smoothing households (α = 1 and γ ̸= 0). More specifically, for stockpiling house-
holds, the importance of consumption relative to stockpiling is set to α = 0.7 and, for

24This was a suggestion of an anonymous referees.
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Figure 5: Ordinary Price Changes (Upper Panel) and the Resulting Quantities of Stock-
piling Households (Middle Panel) and Smoothing Households (Bottom Panel).

smoothing households, the smoothing parameter of consumption is set to γ = 1.5. The
stockpiling households generate overshooting quantities, while the smoothing households
generate sticky quantities.

The two types of households have many features in common. The purchased quant-
ities are derived from the demand function (7). The parameters that govern the price
elasticities are set to θ = −0.3 and ϕ = −0.3 (inelastic consumption and stocking). The
values of the storage cost parameter and the endowment are µ = 0.1 and m = 1000,
respectively. The c̄i-levels (former consumption) and s̄i-levels (stocks inherited from the
preceding period) relevant for period t = 1 are set to the steady-state equilibrium values
corresponding to the base prices.25

The upper panel of Figure 4 depicts the typical price pattern of regular sales. The
middle panel shows the corresponding overshooting quantities purchased by stockpiling
households. They are derived from demand function (7), with α = 0.7 and γ = 0. The
sticky quantities purchased by smoothing households can be seen in the lower panel. In
their computation, the parameter values in demand function (7) are set to α = 1.0 and

25These values are computed from the steady-state formulas derived in Appendix C.
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γ = 1.5.
The upper panel of Figure 5 shows price changes not attributable to sales. The corres-

ponding overshootig quantities purchased by stockpiling households are depicted in the
middle panel, while the bottom panel shows the sticky quantities of smoothing households.

Three different scenarios are considered. In the overshooting quantities scenario,
all households are stockpiling households, while in the sticky quantities scenario, only
smoothing households exist. In the hybrid quantities scenario, every fourth household is
a stockpiling household and all other households are smoothing households. For all three
scenarios (Overshooting, Sticky, Hybrid), the index numbers of various chained bilateral
indices and of many different R-GEKS, R-TPD, and R-GK variants are compiled.

The price level of period t = 1 is set equal to 100. In period t = 111, all prices have
returned to their initial values and stay there for all subsequent periods. Within a few
periods, also the quantities return to their initial values. Therefore, in period t = 120 the
price index number generated by the various index methods should have returned to its
initial level, that is, to 100.26 The extent of chain drift bias is the deviation of the price
level in period t = 120 from 100.

For each of the three scenarios and each index formula, this simulation exercise is
repeated 5000 times. For example, one receives 5000 different numbers for the chain drift
bias of a chained Törnqvist index in the overshooting quantities scenario (only stockpiling
households exist). These 5000 numbers are averaged. The result of this averaging is the
top left number in Table 1. In the overshooting quantities scenario, the Törnqvist index
reaches 8.51% downward chain drift. The other listed price indices exhibit a downward
chain drift that varies between 7.96% and 8.68%. In the sticky quantities scenario (only
smoothing households exist), the listed bilateral indices show an upward chain drift that
varies between 9.13% and 9.63%. The results of the hybrid scenario (three quarters are
smoothing households, one quarter are stockpiling households) lie between the other two
scenarios.

Table 1: Chain Drift of Several Bilateral Price Indices With Symmetric Expenditure
Weights (in %).

Overshooting Sticky Hybrid

Törnqvist -8.51 9.63 4.90
Marshall-Edgeworth -7.96 9.13 4.69
Walsh -8.68 9.46 4.86
Theil -8.60 9.48 4.86
Sato-Vartia -8.60 9.48 4.86

Table 2 documents the chain drift of the other chained bilateral price indices mentioned

26This is a weaker condition than the condition of the chain drift test (Definition 2) of bilateral price
indices. The latter postulates that already in period t = 111 the price index number must be 100.
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in the paper. Again, the overshooting quantities scenario generates a large downward
chain drift that varies between the indices. Also the upward chain drift values arising
from sticky quantities are similar to those listed in Table 1.

Table 2: Chain Drift of Some Additional Bilateral Price Indices (in %).

Overshooting Sticky Hybrid

Fisher -7.95 9.12 4.68
Banerjee -8.60 9.48 4.86
Davies -7.96 9.13 4.69
Lehr -9.19 9.60 4.96

The tables show that chained bilateral indices generate the expected results. Over-
shooting quantities lead to considerable downward chain drift, while sticky quantities
generate considerable upward chain drift. Overall, the bilateral price indices of Marshall-
Edgeworth, Fisher, and Davies slightly outperform the other ones. This is true for over-
shooting quantities as well as for sticky quantities.

GEKS indices are transitive and, thus, immune to chain drift bias arising from over-
shooting quantities. Therefore, R-GEKS indices have been proposed as a remedy for chain
drift bias. However, these indices involve some form of splicing which, in turn, can cause
chain drift bias. The performance of the various R-GEKS indices may depend on the
choice of the splicing method and the window length (e.g., Melser, 2018, p. 517). There-
fore, Table 3 presents the results for various splicing methods and for window lengths of
4, 8, 12, and 24 periods. These results are derived from R-GEKS indices that use the
Törnqvist index as their bilateral base index.

The index numbers in the first two rows of Table 3 show that the direct mean splice
and the mean splice produce virtually the same R-GEKS index numbers. Overall, the
numbers reinforce the arguments of Diewert and Fox (2022, pp. 560-561) and de Haan
(2015, pp. 25-26) in favour of a more “balanced” splicing approach than the movement
splice or window splice. With a sufficiently large window, the R-GEKS approach in
conjunction with the direct mean splice, mean splice, or half splice effectively curtails
chain drift bias arising from overshooting quantities (upper left part of Table 3). The half
splice with a window length of twelve months performs best. The upper middle part of
Table 3 reveals that the previous findings carry over to the scenario of sticky quantities.

In the hybrid scenario, three quarters of the households are smoothing households.
The resulting R-GEKS index numbers are listed in the upper right part of Table 3. The
chain drift bias caused by the smoothing households seems to dominate the chain drift
bias caused by the stockpiling households. However, this effect is driven by the parameters
α and γ as well as by the share of stockpiling households. When that share is sufficiently
increased or the relevance of consumption (α) and smoothing (γ) is sufficiently reduced,
the dominance would be reversed (not shown in the table).
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Table 3: Chain Drift Bias of R-GEKS, R-TPD, and R-GK Indices (in %) for Different
Scenarios, Splicing Methods, and Window Lengths (4, 8, 12, and 24 Months).

Overshooting Sticky Hybrid
Window Length 4 8 12 24 4 8 12 24 4 8 12 24

R-GEKS
Direct Mean -2.41 -0.60 -0.35 -0.14 3.49 0.99 0.61 0.25 2.03 0.60 0.38 0.16
Mean -2.41 -0.60 -0.34 -0.13 3.49 0.99 0.59 0.24 2.03 0.60 0.37 0.15
Movement -2.56 -1.28 -0.80 -0.33 3.38 1.47 0.97 0.41 1.90 0.79 0.54 0.23
Half -2.11 -0.23 -0.01 -0.15 3.72 0.59 0.20 0.28 2.27 0.39 0.15 0.18
Window -2.56 -1.28 -0.78 -0.32 3.38 1.47 0.96 0.39 1.90 0.79 0.53 0.22

R-TPD
Direct Mean -1.65 -0.21 -0.01 0.22 3.14 0.65 0.33 -0.03 2.00 0.44 0.25 0.03
Mean -2.44 -0.60 -0.33 -0.12 3.33 0.98 0.58 0.23 1.96 0.60 0.36 0.14
Movement -0.16 0.09 0.46 0.68 2.70 0.60 0.17 -0.29 1.97 0.47 0.24 -0.06
Half -2.21 -0.23 -0.01 -0.14 3.45 0.61 0.22 0.27 2.16 0.40 0.16 0.17
Window -4.91 -2.62 -2.01 -1.29 3.86 2.30 1.71 1.04 1.76 1.10 0.81 0.47

R-GK
Direct Mean -4.03 -1.34 -1.24 -1.22 1.23 -0.45 -0.91 -1.46 -0.04 -0.67 -0.99 -1.41
Mean -2.67 -0.64 -0.35 -0.13 3.63 1.03 0.60 0.23 2.13 0.62 0.37 0.14
Movement -6.88 -4.18 -4.00 -3.35 -3.48 -3.58 -4.17 -4.23 -4.34 -3.74 -4.13 -4.02
Half -2.30 -0.22 0.03 -0.16 3.79 0.60 0.19 0.27 2.38 0.40 0.14 0.16
Window 1.36 1.46 2.35 2.75 11.12 6.96 6.46 5.26 8.77 5.62 5.46 4.65

The other qualitative results are not affected by changes of α, γ, and the share of
stockpiling households. The direct mean splice, mean splice, and half splice remain the
least biased options when applied with a sufficiently large window length. Reducing the
price elasticity of consumption (governed by the parameter θ) clearly increases the chain
drift bias in the sticky quantities scenario, while the chain drift bias in the overshooting
quantities scenario is not much affected. By contrast, reducing the price elasticity of
stockpiling (governed by the parameter ϕ) clearly reduces the chain drift bias in the
overshooting quantities scenario, while the chain drift bias in the sticky quantities scenario
is not much affected.

R-GEKS indices are not the only approach to curb the chain drift problem. Among
the alternatives are the R-TPD and the R-GK approach. Therefore, the same stress test
with the same splicing options and window lengths has been conducted for the R-TPD
and the R-GK approach. Table 3 also presents these results. For the R-TPD and the
R-GK approach, the choice of the splicing method causes more variation than in the
R-GEKS approach. When the window splice is avoided, the R-TPD approach appears
to outperform the R-GEKS approach and the R-GK approach. The R-TPD approach
combined with the direct mean splice appears particularly attractive. When the mean
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splice or the half splice are applied, the choice between R-GEKS, R-TPD, and R-GK is
of minor relevance.

It should be kept in mind that in the applied simulation no item attrition occurs.
With item attrition, large windows may generate assignment or assortment bias (e.g.,
Auer, 2017, p. 84). In a context of item attrition, Melser and Webster (2021, pp. 777-783)
identify in their own simulations life cycle pricing and, in particular run-out sales, as an
important driver of chain drift.

6 Concluding Remarks

Sales and the associated stockpiling give rise to “overshooting quantity” movements. It
is well known that overshooting quantities create problems for sub-annual chaining of
bilateral price indices, because such quantities generate downward chain drift bias. The
present study argues that overshooting quantities are only part of the chain drift problem.
Another important cause of chain drift bias are search and adjustment costs as well as
habits. They imply that price changes lead to delayed quantity changes. The resulting
“sticky quantities” generate upward chain drift.

In the literature, R-GEKS, R-TPD, and R-GK approaches have been proposed as
a remedy for chain drift bias. However, it is unclear whether these approaches merely
reduce chain drift bias or even eliminate it. Furthermore, some approaches may be more
effective than others. The present paper answers all of these questions. To this end, it
develops a novel utility framework that is consistent with households that have a desire
for stockpiling (overshooting quantities) and/or for smoothing quantity adjustments over
time (sticky quantities). This utility framework assumes that households are myopic and
directly derive utility from stockpiling.

Building on this utility framework, a stress test is developed that examines the resi-
lience of different price indices against chain drift. This stress test is applied to various
bilateral price indices and to several splicing variants and window lengths of R-GEKS,
R-TPD, and R-GK indices. The bilateral price indices show the expected results. Over-
shooting quantities generate downward chain drift bias, while sticky quantities generate
upward chain drift bias. R-GEKS, R-TPD, and R-GK indices reduce this bias, but do not
eliminate it. Shorter window lengths tend to generate more chain drift bias than longer
ones. The window splice is clearly outperformed by the half splice and mean splice. When
the latter two splicing variants are used, the choice between R-GEKS, R-TPD, or R-GK
indices is of minor relevance.

19



Appendix A: Index Formulas

The paper considers several price indices that are symmetrically weighted averages of
price ratios. Defining vti = ptix

t
i and sti = vti/

∑
vtj, the indices can be expressed in the

following form:

Törnqvist : lnPT ö =
∑ 1

2

(
s0i + sTi

)
ln

pTi
p0i

Marshall-Edgeworth : PME =

∑
pTi (x

0
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i )∑
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0
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Sato-Vartia : lnPSV =
∑ L

(
vTi , v

0
i

)
L
(∑

vTj ,
∑

v0j
) ln pTi

p0i
,

where L (a, b) =
a− b

ln a− ln b
for a ̸= b and L (a, b) = a for a = b.

Other popular price indices include

Laspeyres : PL =

∑
pTi x

0
i∑

p0ix
0
i

Paasche : PP =

∑
pTi x

T
i∑

p0ix
T
i

Fisher : PF =
√
PLPP .

The GUV indices of Davies, Banerjee, and Lehr are defined by

P =

∑
vTi∑
v0i

∑
x0
i ẑi∑

xT
i ẑi

,

with

Davies : ẑi =
√

p0i p
T
i

Banerjee : ẑi =
(
p0i + pTi

)
/2

Lehr : ẑi =
(
v0i + vTi

) /(
x0
i + xT

i

)
.
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Appendix B: Splicing Methods

Figure 6 illustrates various splicing methods proposed in the literature. The illustration
utilises a window length of four periods. Period t is the current period. The upper
grey bar represents the current window, covering periods t − 3 to t. The lower grey bar
highlights the window associated with the previous period (t−1). This old window covers
the periods t − 4 to t − 1. The circle on the lower grey bar indicates the price level of
period t − 1: P t−1. This is the reference for the price level to be computed in period t:
P t. The latter is represented by the circle on the upper grey bar.

Figure 6: Four Methods of Splicing.

Applying a multilateral price index (GEKS, TPD, or GK) to the information contained
in the current window, [t− 3, t], generates for all pairs of periods (t′ and t′′) included in this

window a price ratio P
t′/t′′

[t−3,t], where the superscript indicates the periods that are compared

(comparison period t′, base period t′′), while the subscript documents the window from
which the result is computed. For example, the GEKS index computes the price ratio

P
t′/t′′

[t−3,t] as the geometric average of all possible pairs of bilateral price indices that link the

periods t′′ and t′ via some link period s included in the window:

P
t′/t′′

[t−3,t] =
t∏

s=t−3

(
P t′/sP s/t′′

)1/4
. (9)

This averaging principle is applied for each pair of periods covered by the window [t− 3, t].

The computed ratios are transitive, that is, P
t/(t−2)
[t−3,t] = P

t/(t−1)
[t−3,t] P

(t−1)/(t−2)
[t−3,t] .

To obtain the new price level P t, the results of the current window can be linked to
the price level P t−1 that was computed from the previous window (regardless of whether
the values of that window were computed by the GEKS, TPD, or GK method). Several
methods have been proposed for this linking procedure (denoted as “splicing”). They are
illustrated in Figure 6.

Ivancic et al . (2011, p. 33) propose a “movement splice” (indicated by the red “M”
in Figure 6). This approach multiplies the price level P t−1 by the price change between
periods t and t− 1 computed from the current window:

P t = P t−1P
t/(t−1)
[t−3,t] (movement splice) . (10)
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As an alternative, Krsinich (2016, pp. 383-87) suggests the “window splice”. This

approach (the yellow “W” in Figure 6) uses the price ratio P
(t−3)/(t−1)
[t−4,t−1] compiled by the

old window to get backward from the price level P t−1 to the price level of period t−3, the
first period of the current window. The result of the backward computation is multiplied
by the price change between periods t− 3 and t as compiled by the current window:

P t = P t−1P
(t−3)/(t−1)
[t−4,t−1] P

t/(t−3)
[t−3,t] (window splice) .

“Half splice” is another option (the orange “H” in Figure 6). The idea and its justific-
ation is due to de Haan (2015, pp. 25-26).27 Here, the period linking the current and the
new window is period t − 2 which is half way between the linking periods of movement
splice (period t− 1) and window splice (period t− 3):

P t = P t−1P
(t−2)/(t−1)
[t−4,t−1] P

t/(t−2)
[t−3,t] (half splice) .

Diewert and Fox (2022, pp. 560-561) introduce yet another splicing variant which they
call “mean splice”. They compute the geometric average of the results obtained from the
movement, half, and window splice:

P t = P t−1
[
P

t/(t−1)
[t−3,t]

(
P

(t−2)/(t−1)
[t−4,t−1] P

t/(t−2)
[t−3,t]

)(
P

(t−3)/(t−1)
[t−4,t−1] P

t/(t−3)
[t−3,t]

)]1/3
(mean splice) .

When the window is longer than four periods, also the results compiled from all additional
possible linking periods are included in this geometric average.

To obtain the current price level P t, the movement splice directly links the current
window’s price level of the current period t to the published price level P t−1, while the
half splice and the window splice require an additional link derived from the preceding
window. In Figure 6, this link is indicated by the lower orange and yellow bows. There
are alternative options for directly linking the current window’s price level of the current
period t to formerly published price levels, making former windows redundant. This is
illustrated in Figure 7 (the movement splice is depicted in red).

For example, the price level of period t could be directly linked to the published price
level P t−2 that was derived from the penultimate window (Chessa, 2016, p. 15):

P t = P t−2P
t/(t−2)
[t−3,t] (direct half splice) .

In Figure 7, this option is depicted in orange. To distinguish this option from the (indirect)
half splice depicted in Figure 6, it could be denoted as “direct half splice”. Similarly, the
option

P t = P t−3P
t/(t−3)
[t−3,t] (direct window splice)

could be denoted as “direct window splice”(Chessa, 2016, p. 14). In Figure 7, this option
is depicted in yellow. Melser (2018, p. 518) proposes to compute a weighted geometric

27He makes this proposal in the context of a time-product dummy index.
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Figure 7: Direct Splicing Methods.

mean of the movement splice, direct half splice, and direct window splice. The unweighted
variant is given by

P t =
[(

P t−1P
t/(t−1)
[t−3,t]

)(
P t−2P

t/(t−2)
[t−3,t]

)(
P t−3P

t/(t−3)
[t−3,t]

)]1/3
(direct mean splice) .

We denote this option as “direct mean splice”. When the window is longer than four
periods, also the results compiled from all additional possible linking periods are included
in this geometric average. In the empirical part of the paper, only the direct mean splice
is considered.

Splicing methods with a fixed reference period (Chessa, 2019, p. 4-5) are also not
included in the empirical part of the paper. These methods are illustrated in Figure 8.

Figure 8: Direct Splicing With a Fixed Reference Period.

Period t − 3 is the fixed reference period. The price level of period t − 2, P t−2, is
computed by the direct movement splice (depicted in green). The price level P t−1 is
computed by the direct half splice (depicted in blue), and the price level P t is computed
by the direct window splice (depicted in red). For the computation of the price level of the
next period, P t+1, period t would be the new reference period and the direct movement
splice would be applied.28

28Chessa (2016, p. 16) also proposes a direct splicing approach with a fixed reference period and an
expanding window (instead of a rolling window).
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Appendix C: Derivation of Demand Function (7)

A generalised form of the utility function defined by (5) and (6) is

U =

[[
N∑
i=1

f θ
i

]1/θ
︸ ︷︷ ︸

=C

]α[[ N∑
i=1

gϕi

]1/ϕ
︸ ︷︷ ︸

=S

]1−α

,

with fi = fi (ci, c̄i) and gi = gi (si, s̄i). The compilation of optimal consumption c∗i and
stocks s∗i (i = 1, . . . , N) starts with the derivation of the cost minimising values of ci
for reaching a given subutility level C. The derivation of the cost minimising values of
si for reaching a given subutility level S is perfectly analogous. Afterwards, the utility
maximising values of C and S are determined, given the net endowment, m̃ = m +∑N

i=1 pis̄i, and past consumption, c̄i (i = 1, . . . , N). Putting everything together yields
consumption c∗i and stocks s∗i (i = 1, . . . , N).

The cost minimising values of ci corresponding to some subutility level C are derived
from the Lagrangian

L =
N∑
i=1

pici + λ

(
N∑
i=1

f θ
i − Cθ

)
,

with fi = fi(ci, c̄i) being a monotonic continuous function. The first order conditions are

∂L
∂ci

= pi − λθf θ−1
i f ′

i = 0 , (i = 1, . . . , N) (11)

∂L
∂λ

=
N∑
i=1

f θ
i − Cθ = 0 . (12)

Each pair of conditions (11) leads to the relationship

pif
1−θ
i f ′

j = pjf
1−θ
j f ′

i .

Exponentiating by θ/ (1− θ) and rearranging yields

f θ
i = p

−θ
1−θ

i p
θ

1−θ

j

(
f ′
j

) −θ
1−θ (f ′

i)
θ

1−θ f θ
j . (13)

Inserting (13) in (12) gives

Cθ = f θ
j

(
f ′
j

) −θ
1−θ p

θ
1−θ

j

N∑
i=1

p
−θ
1−θ

i (f ′
i)

θ
1−θ . (14)

In the simulation, the specification fi = ci/(c̄
γ
i ) is used. This specification gives the

derivative f ′
i = c̄−γ

i . Then, exponentiating (14) by 1/θ, gives

C = cj c̄
−γ
j

(
c̄−γ
j

) −1
1−θ p

1
1−θ

j

(
N∑
i=1

p
−θ
1−θ

i

(
c̄−γ
i

) θ
1−θ

) 1
θ

.
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Swapping the indices j and i and rearranging, yields

ci = Cc̄
−γθ
1−θ

i p
−1
1−θ

i P
1

1−θ

C , (15)

with

P
1

1−θ

C =

(
N∑
j=1

p
−θ
1−θ

j c̄
−γθ
1−θ

j

)− 1
θ

. (16)

Therefore, the minimum cost of subutility C can be expressed as

N∑
i=1

pici = CP
1

1−θ

C

N∑
i=1

p
−θ
1−θ

i c̄
−γθ
1−θ

i = CPC . (17)

When the number of items, N , is sufficiently large, the derivative of PC with respect
to pi is approximately 0:

∂PC

∂pi
≈ 0 . (18)

Then, differentiating (15) with respect to pi gives

∂ci
∂pi

≈ −1

1− θ
p−1
i Cc̄

−γθ
1−θ

i p
−1
1−θ

i P
1

1−θ

C =
−1

1− θ
p−1
i ci .

Rearranging yields the approximated price elasticity of present consumption:

∂ci
∂pi

pi
ci

≈ −1

1− θ
.

From (16), differentiating P
θ

1−θ

C with respect to pi gives

∂P
θ

1−θ

C

∂pi
= −

(
N∑
j=1

p
−θ
1−θ

j c̄
−γθ
1−θ

j

)−2

p
−θ
1−θ

−1

i c̄
−γθ
1−θ

i = −P
2θ
1−θ

C p
−1
1−θ

i c̄
−γθ
1−θ

i . (19)

An analogous derivation applies to subutility S. Choosing the specification gi =
si/(s̄

δ
i ), the derivation of the optimal si-value, for a given subutility level S, is perfectly

analogous to the derivation of (15) and (16). One obtains

si = Ss̄
−δϕ
1−ϕ

i p̃
−1
1−ϕ

i P
1

1−ϕ

S , (20)

where p̃i = pi (1 + µ) and

P
1

1−ϕ

S =

(
N∑
j=1

p̃
−ϕ
1−ϕ

j s̄
−δϕ
1−ϕ

j

)− 1
ϕ

. (21)
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Total expenditures on stockpiling are

N∑
i=1

p̃isi = SPS . (22)

Using (17) and (22), the budget constraint (3) can be expressed in the form

m̃ = CPC + SPS . (23)

Utility defined in (6) is maximised, subject to the budget constraint (23). The Lagrangian
can be written in the form

L = α lnC + (1− α) lnS − λ (m̃− CPC − SPS) .

From the first order conditions

∂L
∂C

=
α

C
+ λPC = 0 and

∂L
∂S

=
1− α

S
+ λPS = 0

one obtains

−CPC =
α

λ
(24)

−SPS =
1− α

λ
. (25)

Inserting these expressions in (23), yields the third first order condition:

−m̃ =
α

λ
+

1− α

λ
=

1

λ
. (26)

Inserting this result back in (24) and (25) gives

C = α
m̃

PC

(27)

S = (1− α)
m̃

PS

. (28)

Inserting these results in (15) and (20) and noting that in the simulations the parameter
δ is set to 0, yields the optimal levels of consumption and stocks stated in (7):

c∗i = αm̃c̄
−γθ
1−θ

i p
−1
1−θ

i P
θ

1−θ

C (29)

s∗i = (1− α) m̃ s̄
−δϕ
1−ϕ

i︸︷︷︸
=1 for δ=0

p̃
−1
1−ϕ

i P
ϕ

1−ϕ

S . (30)

Differentiating (29) with respect to pi and using (19) gives

∂c∗i
∂pi

= αm̃c̄
−γθ
1−θ

i

[
−1

1− θ
p

−1
1−θ

−1

i P
θ

1−θ

C − p
−1
1−θ

i P
2θ
1−θ

C p
−1
1−θ

i c̄
−γθ
1−θ

i

]
= αm̃c̄

−γθ
1−θ

i P
θ

1−θ

C p
−2+θ
1−θ

i

[
−1

1− θ
− p

−θ
1−θ

i P
θ

1−θ

C c̄
−γθ
1−θ

i

]
< 0 . (31)
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Analogously, one gets

∂s∗i
∂pi

=
∂s∗i
∂p̃i

∂p̃i
∂pi

< 0 and
∂s∗i
∂µ

=
∂s∗i
∂p̃i

∂p̃i
∂µ

< 0 .

Using (18), the derivative of (29) with respect to c̄i yields

∂c∗i
∂c̄i

≈ −γθ

1− θ
c̄−1
i αm̃c̄

−γθ
1−θ

i p
−1
1−θ

i P
θ

1−θ

C =
−γθ

1− θ

c∗i
c̄i

.

Rearranging gives the approximated elasticity of present consumption, c∗i , with respect to
past consumption, c̄i:

∂c∗i
∂c̄i

c̄i
c∗i

≈ −γθ

1− θ
.

For a non-oscillatory time path to a stable steady-state equilibrium, this elasticity
must be non-negative but below 1: 0 ≤ −γθ < 1 − θ. Analogously, the approximated
elasticity of stockpiling with respect to past stocks is

∂s∗i
∂s̄i

s̄i
s∗i

≈ −δϕ

1− ϕ
.

A non-oscillatory time path to a stable steady-state equilibrium requires that 0 ≤ −δϕ <
1− ϕ. For δ = 0 (as in the simulations), this stability condition is satisfied.

The final step is the derivation of the stable steady-state equilibrium. From (17), (22),
(27), and (28) it can be seen that the expenditure shares of total consumption (CPC)
and total stockpiling (SPS) are constants. However, delayed adjustments in stockpiling
(this requires that δ ̸= 0) lead to a change in the net endowment, m̃. If the prices,
pi (i = 1, . . . , N), and income, m, remain unchanged, the stocks defined by (30) and,
therefore, the net endowment, m̃, eventually reach their unique and stable steady-state
levels (s∗∗i and m̃∗∗). Then, income m is used to pay for consumption and storage cost,
but no longer for adjustments of the stocks:

m = αm̃∗∗ + µ
N∑
i=1

pis
∗∗
i . (32)

In a steady-state equilibrium, one can replace in (30) s∗i and s̄i by s∗∗i :

(s∗∗i )
1−ϕ+δϕ

1−ϕ = (1− α) m̃∗∗p̃
−1
1−ϕ (P ∗∗

S )
ϕ

1−ϕ , (33)

with

(P ∗∗
S )

−ϕ
1−ϕ =

N∑
j=1

p̃
−ϕ
1−ϕ

j

(
s∗∗j
)−δϕ

1−ϕ . (34)

Exponentiating (33) by −δϕ/ (1− ϕ+ δϕ) and then multiplying by p̃
−ϕ
1−ϕ

i gives

p̃
−ϕ
1−ϕ

i (s∗∗i )
−δϕ
1−ϕ = [(1− α) m̃∗∗]

−δϕ
1−ϕ+δϕ p̃

−ϕ(1−δ)
1−ϕ(1−δ)

i (P ∗∗
S )

δϕ2

(1−ϕ+δϕ)(1−ϕ) .
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Summing over all N products and rearranging leads to

(P ∗∗
S )

ϕ
1−ϕ = [(1− α) m̃∗∗]

δϕ
1−ϕ

(
N∑
i=1

p̃
−ϕ(1−δ)
1−ϕ(1−δ)

i

)− 1−ϕ(1−δ)
1−ϕ

. (35)

Inserting this result in (33) and exponentiating by (1− ϕ) / (1− ϕ+ δϕ), yields

s∗∗i = (1− α) m̃∗∗p̃
−1

1−ϕ(1−δ)

i

(
N∑
j=1

p̃
−ϕ(1−δ)
1−ϕ(1−δ)

j

)−1

. (36)

Inserting this expression in (32) gives

m = αm̃∗∗ + (1− α) m̃∗∗ µ

1 + µ

N∑
i=1

p̃ip̃
−1

1−ϕ(1−δ)

i

(
N∑
j=1

p̃
−ϕ(1−δ)
1−ϕ(1−δ)

j

)−1

and, therefore,

m̃∗∗ = m
1 + µ

α + µ
. (37)

Inserting this result in (36) gives the steady-state stockpiling level:

s∗∗i = (1− α)
1 + µ

α + µ
mp̃

−1
1−ϕ(1−δ)

i

(
N∑
j=1

p̃
−ϕ(1−δ)
1−ϕ(1−δ)

j

)−1

.

Inserting (37) in (35) and exponentiating by (1− ϕ) /ϕ yields the steady-state price index
of stockpiling

P ∗∗
S =

[
(1− α)

1 + µ

α + µ
m

]δ( N∑
i=1

p̃
−ϕ(1−δ)
1−ϕ(1−δ)

i

)− 1−ϕ(1−δ)
ϕ

. (38)

Steady-state expenditures on stockpiling are

p̃is
∗∗
i = (1− α)

1 + µ

α + µ
mp̃

−ϕ(1−δ)
1−ϕ(1−δ)

i

(
N∑
j=1

p̃
−ϕ(1−δ)
1−ϕ(1−δ)

j

)−1

.

Adding over all N products yields total expenditures on stockpiling:

N∑
i=1

p̃is
∗∗
i = (1− α)

1 + µ

α + µ
m . (39)

Analogously, the steady-state consumption level is

c∗∗i = α
1 + µ

α + µ
mp

−1
1−θ(1−γ)

i

(
N∑
j=1

p
−θ(1−γ)
1−θ(1−γ)

j

)−1

. (40)
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Steady-state expenditures on consumption are

pic
∗∗
i = α

1 + µ

α + µ
mp

−θ(1−γ)
1−θ(1−γ)

i

(
N∑
j=1

p
−θ(1−γ)
1−θ(1−γ)

j

)−1

and total consumption expenditures are

N∑
i=1

pic
∗∗
i = α

1 + µ

α + µ
m . (41)

Furthermore, the steady-state price index of consumption is

P ∗∗
C =

(
α
1 + µ

α + µ
m

)γ
(

N∑
i=1

p
−θ(1−γ)
1−θ(1−γ)

i

)− 1−θ(1−γ)
θ

. (42)
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