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Abstract

Building on the success of Ferreira and Santa-Clara (2011) in separately forecast-

ing the return components of the stock market, this paper examines the links be-

tween economic regimes and these components to predict the aggregate U.S. stock

market. We propose a three-step methodology that we call the flexible regime ap-

proach. First, we estimate the regime dynamics of ten macro-financial variables

using Markov-switching regressions. Second, we treat the regime filtering results

from the Hamilton filter as views and test the predicted regime classification, the

predicted regime probabilities, and the conditional and mixture densities as view

generators. We use entropy pooling to re-weight the historical distribution and

to derive posterior probabilities. Finally, we link these probabilities to the re-

alized outcomes of earnings growth and changes in the price-earnings multiple

to form the sum-of-the-parts forecast. Our results demonstrate significant pre-

dictability from a statistical and economic perspective. We emphasize the role of

default spreads and interest rates in predicting earnings growth and stock market

volatility and inflation in predicting multiple growth. Finally, our results suggest

that the predictability of both return components varies over time and is affected

by the business cycles. While earnings growth is more predictable during periods

of expansion, forecasting multiple growth is more advantageous during recessions.
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1 Introduction

“The sum of the parts is more than the whole” – with this insight, Ferreira and Santa-

Clara (2011) established a new strand in the literature on return predictability. De-

composing the complex return process into its economic components helps to reduce

estimation uncertainty and increase predictability. In their basic model, they assume

that earnings growth has only a low-frequency predictable trend, that the changes

in the price-earnings ratio are zero, and that the dividend-price ratio follows a ran-

dom walk. There is ample evidence that this simple forecasting strategy is hard to

beat, especially for the U.S. stock market, see for instance McMillan and Wohar (2011)

and Dichtl et al. (2021). So far, extensions have either predicted the return compo-

nents using fundamental variables and/or technical indicators as regressors (Ferreira

and Santa-Clara 2011; Baetje and Menkhoff 2016; Yi et al. 2019; Dai and Zhou 2020;

Dichtl et al. 2021) or modeled the dynamics of the components endogenously (Faria

and Verona 2018; Dai and Zhu 2020). It is evident that earnings growth is linked to

the business cycle (Longstaff and Piazzesi 2004; Van Binsbergen and Koijen 2010) and

that the price-earnings multiple tends to revert in the medium to long term (Shiller

2015). Accordingly, the dynamics of these components should exhibit some cyclical-

ity, which may be related to different economic conditions. Nevertheless, a compre-

hensive evaluation of the predictive relationship between economic regimes and the

return components is still lacking in the literature.

This paper fills this gap by combining economically motivated model restrictions

with regimes. We propose a three-step methodology, which we call the flexible regime
approach. First, we filter the regime dynamics of ten macro-financial predictors using

a two-state Markov-switching autoregressive model. Second, we derive flexible prob-

abilities of economic regimes to re-weight the empirical distribution. In this context,

we employ entropy pooling to derive the posterior probabilities, treating the informa-

tion about the regime dynamics as a view. We test the predicted regime classifica-

tion, the predicted regime probabilities, the conditional and mixture densities as view

generators. We compute expected values of earnings and price-earnings growth as a

weighted average of historical realizations and regime-implied probabilities. Finally,

we combine the return component forecasts with the current dividend-price ratio to

predict excess returns. We examine whether the predictability of changes in earnings

or the price-earnings ratio contributes more to the aggregate return predictability. We

also analyze whether their impact depends on the state of the economy and which

macro-financial predictor is helpful in this regard.

The empirical results demonstrate significant predictability of the flexible regime
approach in terms of statistical accuracy and economic benefits for the United States

over a 75-year history (1947/12 to 2022/12). Depending on the specification, almost
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all forecasts have both positive R2
OS and certainty-equivalent gains. At their best, these

strategies outperform the historical average by 1.96% in terms of R2
OS , and a moder-

ately risk-averse investor would be willing to pay an average management fee of 2.17%

p.a. at most. Testing different weighting schemes suggests that binary regime clas-

sification and predicted state probabilities are more advantageous in recessions, and

density-smoothed approaches, whether as a conditional state density or as a mixture

of two states, are more beneficial in expansions. In this context, a Bayesian perspective

using entropy pooling significantly improves the trade-off between forecast variance

and forecast accuracy. The impact of regime-filtered variables depends on whether the

economy is in an expansion or a recession and whether the predictability stems from

changes in earnings or the price-earnings ratio. The results emphasize the role of de-

fault spreads or interest rates in predicting earnings growth and stock market volatility

or inflation in predicting price-earnings multiple growth. We provide evidence that

the predictability of both return components varies over time and is affected by the

business cycles. While earnings growth is more predictable during expansion, fore-

casting changes in the price-earnings ratio is more advantageous during recessions.

In addition, our regime-based trading strategies are robust to transaction costs and

various investment constraints and are particularly helpful for investors with low and

moderate risk aversion.

This paper contributes to several strands of the literature. First, we add to the

overwhelming body of research on the predictability of stock returns. Finding ad-

equate predictors or approximating the stock market dynamics is difficult for many

reasons (Welch and Goyal 2008). Continuous learning by investors and competition

among market participants often ensure that predictable patterns quickly disappear

once they have been discovered. From an empirical perspective, parameter instabil-

ity, model and estimation uncertainty complicate this task (Pesaran and Timmermann

1995). Therefore, successful strategies should reduce estimation uncertainty, detect

time-varying patterns, rely on robust economic or behavioral relationships, and ex-

ploit frictions in the financial market structure. According to the survey of Rapach

and Zhou (2013), four promising paths are able to at least partially meet these require-

ments: (i) economically motivated model restrictions (Campbell and Thompson 2008;

Ferreira and Santa-Clara 2011; Pettenuzzo et al. 2014; Zhang et al. 2019), (ii) mod-

eling regime shifts (Guidolin and Timmermann 2007; Dangl and Halling 2012), (iii)

dimension reduction (Ludvigson and Ng 2007; Çakmaklı and Dijk 2016), and (iv) fore-

casting combination (Rapach et al. 2010; Neely et al. 2014). There are also examples

that combine some (Zhu and Zhu 2013; Hammerschmid and Lohre 2018; Haase and

Neuenkirch 2023). However, studies that employ economic restrictions and regime-

switching models are rare. Since restrictions aim to reduce estimation uncertainty,

this is usually at the expense of timely consideration of regime changes. We resolve
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this trade-off through a novel combination scheme that separates the evaluation of ob-

servations with economic regimes from a decomposed forecasting model. Instead of

using complex models for the return components, we propose a flexible but simple

approach in which the expected return components are expressed as a weighted av-

erage of past realizations and of a flexible probability vector. The vector is derived

using entropy pooling, which modifies a prior distribution to ensure that the moments

resulting from the respective regime prediction are satisfied. This procedure captures

regime shifts in a timely manner without adding too much variability to the forecasts

due to lower estimation uncertainty.

Second, our results provide a more nuanced view of the drivers of stock market

predictability. There is a extensive academic debate as to whether the discount rate

or cash flow channel drives the predictability of stock returns. Based on the present

value decomposition of Campbell and Shiller (1988), proponents of the former argue

that changes in dividends are independent and identically distributed (i.i.d.) such

that the current dividend yield results only from expected returns (Cochrane 2011).

In contrast, proponents of the cash flow channel say that fluctuations in the dividend

yields are mainly due to the uncertainty in future cash flows and long-term growth

expectations (Bansal and Yaron 2004). Our results suggest that the role of each channel

is state-dependent and influenced by the dynamics of different variables. The cash flow

channel (approximated by earnings growth) is more predictable during expansions

with the regime filtering of monetary policy and default spreads, while the dynamics

of the discount rate channel (using price-earnings multiple growth as a proxy) is more

predictable during recessions.

Third, we contribute to the empirical strand of the literature that emphasizes the

different information content of (past) observations. Based on the assumption that

historical observations do not have the same relevance for the future path of a vari-

able, a variety of weighting schemes are possible that can be used for parameter esti-

mation and forecasting. In this context, nonlinear models such as smooth transition,

Markov-switching, or kernel estimation are popular choices (Gisbert 2003; Guidolin

et al. 2009; Cheng et al. 2019). More recently, Czasonis et al. (2020) addressed an-

other avenue by measuring the relevance of observations as the sum of similarity (to

the last data point) and informativeness (expressed as deviation from expected normal

conditions). They use this measure as a decision criterion to select the relevant subset

for the prediction task. Closely related to this approach, Meucci (2010) introduces a

flexible, non-parametric way to model the future distribution of returns. He derives

flexible probabilities for historical scenarios conditioning on time, market states, or

some prospective market views. While his primary focus lies on risk management

and stress testing tasks, this idea can be applied to forecasting and asset allocation

exercises, see for example Meucci et al. (2014) and Pedersen (2017). We build on this
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strand of the literature by using the filtration from Markov-switching models to sys-

tematically evaluate the utility of economic regimes for weighting observations. To the

best of our knowledge, we are the first to pursue precisely this direction.

The remainder of this paper is organized as follows: Section 2 reviews the sum-of-

the-parts literature. Section 3 presents the three steps of our flexible regime methodol-

ogy and the evaluation measures. Section 4 introduces the dataset. Section 5 illustrates

how our approach works in-sample, and Section 6 reports the out-of-sample results us-

ing a recursive forecasting setup. Finally, Section 7 concludes.

2 The Sum-of-the-Parts Method

Ferreira and Santa-Clara (2011) introduce their sum-of-the-parts (SOP) methodology

by decomposing the gross stock market return (1 + Rt+1) into gross capital gains (1 +

CGt+1), and the dividend yield (DYt+1):

1 +Rt+1 = 1 +CGt+1 +DYt+1 =
Pt+1

Pt
+
Dt+1

Pt
. (1)

The capital gain is defined as the percentage change in the stock price (CGt+1 = Pt+1/Pt−
1) and the dividend yield is the ratio of future dividends to the lagged stock price

(DYt+1 = Dt+1/Pt). If both the numerator and the denominator are expanded by the

gross growth rate of earnings (1 + GE = Et+1/Et), then the gross capital gain can be

expressed as the product of the gross growth rate of the price-earnings multiple (1 +

GM = Pt+1/Et+1
Pt/Et

) and that of earnings:1

1 +CGt+1 =
Pt+1

Pt
=
Pt+1/Et+1

Pt/Et

Et+1

Et

= (1 +GMt+1)(1 +GEt+1)
(2)

Similarly, the dividend yield can be decomposed as the product of the dividend-price

ratio Dt+1/Pt+1 and the gross capital gain:

DYt+1 =
Dt+1

Pt
=
Dt+1

Pt+1

Pt+1

Pt

=
Dt+1

Pt+1

(
Pt+1/Et+1

Pt/Et

Et+1

Et

)
= DPt+1(1 +GMt+1)(1 +GEt+1)

(3)

1. As Ferreira and Santa-Clara (2011) note, the earnings Et+1/Et and the multiple Pt+1/Et+1 can be
replaced by the book value, the free cash flow, or another fundamental measure and their respective
multiple. Our choice of earnings growth is motivated by its close relationship with macroeconomic
variables and the limited data availability over a long history for the other measures.
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Combining the two parts from Eq. (1) shows that the total stock return is equal to the

product of one plus the dividend-price ratio and the gross growth rate of the price-

earnings multiple and that of earnings:

1 +Rt+1 =
Pt+1

Pt
+
Dt+1

Pt

= (1 +GMt+1)(1 +GEt+1) +DPt+1(1 +GMt+1)(1 +GEt+1)

= (1 +GMt+1)(1 +GEt+1)(1 +DPt+1)

(4)

Taking the logarithm of both sides makes the term additive:

rt+1 = gmt+1 + get+1 + dpt+1 (5)

The SOP method suggests that the components of stock returns should be forecasted

separately. Ferreira and Santa-Clara (2011) make assumptions about reasonable es-

timates of the three components. In their simplest version, they assume that the

dividend-price ratio follows a random walk and that there are no expected changes

in the price-earnings multiple. Based on Van Binsbergen and Koijen (2010)’s findings

that earnings growth has only a low-frequency predictable component, they propose a

20-year moving average as a proxy for future earnings growth. As a result, their excess

return forecast (µ̂) over the risk-free rate (rf ) is as follows:

µ̂t+1 = r̂t+1 − rft+1 = ḡe20Y
t + dpt − rft+1. (6)

According to Ferreira and Santa-Clara (2011), this forecasting model can also be in-

terpreted as a constrained predictive regression with the (excess) earnings growth as

intercept and the dividend-price ratio as predictor with a slope of one.2 They show

that this simple model robustly predicts stock returns. The main advantages are the

lower estimation uncertainty compared to predictive regression models and a better

ability to capture the long-term cyclicality of the economy relative to the historical av-

erage. International evidence suggests that the SOP approach works particularly well

for the equity markets in the UK, Japan, and the U.S. (Ferreira and Santa-Clara 2011;

McMillan and Wohar 2011). Therefore, we use this version as the ultimate benchmark

strategy throughout the paper and refer to it as FSC.

Ferreira and Santa-Clara (2011) test two extensions themselves. First, they forecast

multiple growth or its reversion using predictive regression with fundamental predic-

tors. And second, they use analysts’ earnings forecasts instead of realized earnings to

better capture the expected part. By applying shrinkage to the regression estimates,

they achieved improvements in predictability in both cases. Particularly helpful were

2. Since such a constraint could be purely coincidental, Ferreira and Santa-Clara (2011) verified the
robustness and could allayed these concerns.
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term spreads, bond yields, net equity expansions, and default yield spreads. Alterna-

tive estimates of the three components are possible. First, some authors focus on the

components’ dynamics and decompose the frequency spectrum using wavelet anal-

ysis (Faria and Verona 2018) or empirical mode decomposition (Dai and Zhu 2020).

Second, other researchers model the expected return components with external pre-

dictors. Baetje and Menkhoff (2016) extend the set of fundamental predictors with

technical indicators, apply predictive regression to all components, and pool the uni-

variate forecasts to account for model uncertainty. Yi et al. (2019) use predictive re-

gression with cyclically decomposed predictors. Dai and Zhou (2020) predict multiple

growth with economic restrictions based on momentum rules of past predictability,

trimming extreme forecasts or restricting the forecast sign. All of these extensions are

able to find certain strategies that can significantly outperform the basic FSC in terms

of statistical accuracy and economic value. Of course, data snooping and multiple

testing can be a problem, but Dichtl et al. (2021) show that the SOP method (including

some extensions) still provides robust results even after controlling for these effects.

3 Methodology

A large body of research shows that regimes matter for stock markets (Guidolin and

Timmermann 2007; Henkel et al. 2011; Hammerschmid and Lohre 2018). Therefore, it

would be a logical consequence that their components are also, to some extent, regime-

dependent. The relevant question is how to empirically account for regimes in a fore-

casting setting.

We address this question through a three-step procedure that combines regime

models with economically motivated restrictions to forecast stock returns. Figure 1

summarizes the methodology of our semi-parametric approach, which we call the flex-
ible regime approach. Instead of relating the predictors directly to the return compo-

nents, we employ Markov-switching models on ten economic variables k to filter their

regime dynamics (Step 1a). The Hamilton filter provides several alternatives for the

weighting vector to reflect our regime view v (Step 1b). We test the predicted state

classification (A), the predicted regime probabilities (B), the conditional (C), and mix-

ture densities (D) as view generators (Step 2a). Then, we apply entropy pooling to

derive flexible probabilities p∗(v,k) that minimize the distance relative to the historical

distribution, using our views as constraints (Step 2b). This step helps to reduce the

variance of the forecasts by smoothing the observation weights. We link the resulting

posterior probabilities to the realized earnings outcomes and multiple growth to form

conditional expectations on both components (Step 3a). Finally, we aggregate their

predictions with the current dividend-price ratio to obtain the sum-of-the-parts fore-

cast (Step 3b). We test different specifications to evaluate the marginal benefits of the
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economically motivated restriction and assess whether the predictability of earnings

growth or multiple growth contributes more to the aggregate return predictability.

Additionally, we combine the information from individual regime forecasts as part of

our extensions.

Figure 1: Graphical Summary of the Flexible Regime Approach

Step 1a: EsƟmate Dynamics of State Variable k 

Step 1b: Filtering Regime ProbabilƟes  

Start  

Step 2b: Compute Posterior Probability 
 via Entropy Pooling 

τ  = 240 

τ  = 241 

τ  = 242 

τ = T 

EsƟmaƟon Windows  
   [1, 2, …, τ] 

………………………………………………………………... 
……………………………………………………... 

Economic State Variables 

Data 

T x K 

k = ERP, GM, GE, DP, RVOL, TMS, DFY, TBL, IP, INF 

Step 2a: Compute Flexible ProbabilƟes as Views 

Step 3a: Compute PredicƟons for  
 Return Components 

Step 3b: Sum-of-the Parts Return PredicƟon 

Notes: Figure summarizes our three-step methodology. Step 1 estimates the Markov-switching au-
toregressive models to filter the regime dynamics from the respective variables using the Hamil-
ton filter. Q represents the transition probability matrix with its elements qij = P r(St,k = j |St−1,k =
i), ξt+1|t,k =

[
P(St+1,k = 0|Ωt),P(St+1,k = 1|Ωt)

]′ is the vector of predicted probabilities and ξt|t,k =[
P(St,k = 0|Ωt),P(St,k = 1|Ωt)

]′ denotes the filtered probabilities. The conditional state density is de-
fined as f (xt,k |St,k = j,Ωt−1) = ηt,k and the mixture density is given as f (xt,k |Ωt−1) = 1′(ξt|t−1,k ⊙ ηt,k) =∑1

j=0P(St,k = j |Ωt−1)f (xt,k |St,k = j,Ωt−1). Step 2 computes the flexible probabilities that re-weight the
historical distribution function to account for our regime prediction. In this context, we test four dif-
ferent specifications v ∈ {A,B,C,D} as view generators and use entropy pooling to reduce estimation
uncertainty. In the final step, we first map the flexible probabilities to the distribution of subsequent
realizations of earnings and multiple growth to form their expected value. Finally, we combine the
forecasts of both return components with the most recent dividend-price ratio to obtain the final sum-
of-the-parts return prediction. We re-iterate all steps using an expanding window to compute the one-
step ahead flexible regime forecast for each regime variable. In Step 3, alternative forecasting models are
tested, and the state variable for earnings and multiple growth prediction need not be identical. For
more details, we refer to Subsection 3.3. The first estimation window ranges from 1927/12 to 1947/11,
and the out-of-sample period runs from 1947/12 to 2022/12.

The notation for the next subsections is as follows. The economic variables are

given by a T ×K matrix X with the corresponding elements xt,k. The number of vari-
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ables is given by K (k = 1,2, ...,K), and the number of observations by T (t = 1,2, ...,T ).

The total sample length consists of an initial estimation window of length T0 and an

out-of-sample period of length T1 (T = T0 + T1). The hidden state of an observable

variable k at time t is denoted by St,k. We assume the existence of two discrete states.

In each t, we make one-step ahead predictions for t + 1 using the available informa-

tion set Ωt. We use a recursive approach with τ as the monthly time index repre-

senting the expanding estimation window, starting with an initial window of 20 years

(τ = 240,241, ...,T − τ).

3.1 Step 1: Filtering the Regime Dynamics

Markov-switching models are useful tools for extracting real-time information about

unobservable regimes that can often be explained ex-post (Ang and Timmermann

2012). The use of parametric mixture distributions allows researchers to capture many

stylized facts about macroeconomic and financial data (e.g., asymmetric and leptokur-

tic patterns) in a still analytically tractable framework. Exploiting these capabilities,

we apply these models to various stock market predictors to gain insights into the

(expected) state of the economy or a particular market.

We specify the data-generating process for each variable independently and try to

control for possible short-run persistence in their dynamics. Thus, we propose a first-

order Markov-switching autoregressive model, MSAR(1):

xt,k = αSt,k +φSt,kxt−1,k +ut,k

ut,k ∼ i.i.d. N (0,σ2
St,k

)

P r(St,k = j |St−1,k = i) = qij

(7)

We assume that the hidden regime variable St,k follows a homogeneous first-order

Markov chain, i.e. the current regime j depends only on the realization of the pre-

vious regime i. Thus, the transition probability matrix Q drives the entire dynamics

(qij ∈Q). All parameters in the mean equation (αSt,k ,φSt,k ) as well as the variance of the

errors σ2
St,k

are allowed to vary between regimes. To demonstrate the regime depen-

dence and to avoid unnecessarily complex modeling (due to the increasing number

of parameters), we consider only two regimes (i, j ∈ {0,1}). Certainly, a higher num-

ber of regimes helps to better understand the regime dynamics and to increase the

explanatory power of the process, but the higher estimation uncertainty is usually a

hindrance for prediction purposes. Often, two regimes are sufficient (Ang and Tim-

mermann 2012; Haase and Neuenkirch 2023). Therefore, we leave the investigation of

the number of regimes to future research.
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Since the process St,k is hidden, it is never known with certainty in which regime

you are in t. Hamilton (1989) developed a recursive filter to derive inferences about

St,k. Let denote ξt|t,k =
[
P(St,k = 0|Ωt),P(St,k = 1|Ωt)

]′ be the vector of filtered probabil-

ities and ξt+1|t,k =
[
P(St+1,k = 0|Ωt),P(St+1,k = 1|Ωt)

]′ be the vector of predicted proba-

bilities. We denote ηt,k as the vector of normally distributed conditional state densities.

ηt,k =


f (xt |St,k = 0,Ωt−1) = 1√

2πσ0,k
exp

(
−xt,k−α0,k−φ0,kxt−1,k

2σ2
0,k

)
f (xt |St,k = 1,Ωt−1) = 1√

2πσ1,k
exp

(
−xt,k−α1,k−φ1,kxt−1,k

2σ2
1,k

)
 (8)

According to Hamilton (1994, p.692), we can run the update scheme for each new t

based on an initial probability vector ξ1|0,k:

f (xt,k |Ωt−1) = 1′(ξt|t−1,k ⊙ ηt,k)

ξt|t,k =
ξt|t−1,k ⊙ ηt,k
f (xt,k |Ωt−1)

(9)

ξt+1|t,k = Qξt|t,k

where ⊙ is the element-by-element product and 1 is a vector of ones. This recursive

procedure, also known as Hamilton filter, allows us to assign the observation xt,k to

a particular regime and provides valuable insight into the regime’s dynamics. A nice

feature is that the likelihood function f (xt,k |Ωt−1) results as a by-product of the fil-

ter. We estimate all model parameters using the maximum likelihood method with

numerical optimization.

In order to forecast the regime dynamics, we rely on the predicted probabilities

ξt+1|t,k to classify the next state Ŝt+1,k and to compute the predicted densities ηt+1,k and

f (xt+1,k |Ωt).

3.2 Step 2: Flexible Regime Probabilities

First introduced by Meucci (2010), the flexible probability approach allows researchers

to re-weight historical observations to match specific scenarios of a target variable.

This scenario could be determined by a time weighting, the current conditions, or a

subjective market view. The flexible probability approach can be considered as a non-

parametric way of modeling the distribution of future returns, offering great flexibil-

ity at low computational cost. This method is also closely related to weighted kernel

estimation techniques (Gisbert 2003) and approaches that evaluate the relevance of

observations based on a reference point (Czasonis et al. 2020).3 According to Meucci

3. They measure the relevance of observations as the sum of similarity (Mahalanobis distance to the
most recent data point) and informativeness (Mahalanobis distance to expected normal conditions).
They use this measure as a decision criterion to select the relevant subset for prediction. Their so-called
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(2010) the empirical distribution of i.i.d. invariants zt can be generalized with the help

of a flexible probability measure pt:

hz ≡
τ∑

t=1

ptδ
zt (z) (10)

where δzt (z) is the Dirac delta centered at the generic point zt.4

This general case nests the historical probability density function when we weight

the observations equally (pt = 1/τ). We are flexible in our choice of pt as long as we

re-normalize the probabilities so that they sum to one (
∑τ

t=1pt = 1).5

With this framework, we can incorporate views on economic regimes to account for

the non-uniform weighting of historical observations. We let the flexible probabilities

pt(v,k) be a function of a given economic variable k and its filtered outcomes v. For the

latter, we explicitly rely on the recursive Hamilton filter, as given in Eq. (9). We always

assume a proportional relationship (denoted by ∝) between the flexible probabilities

and the predictive regime dynamics obtained from four different specifications (v ∈
{A,B,C,D}):6

(A) Binary State Classification

pt(A,k) ∝

1 if Ŝt+1,k = j∗

0 otherwise
(11)

(B) Predicted State Probabilities

pt(B,k) ∝ P(St+1,k = j∗|Ωt) (12)

(C) Conditional State Density

pt(C,k) ∝ f (xt+1,k |St+1,k = j∗,Ωt) (13)

(D) Mixture Density

pt(D,k) ∝ f (xt+1,k |Ωt) (14)

partial sample regression converges to ordinary linear regression as the subset size approaches to the
total sample size.

4. The Dirac delta is a generalized function whose probability mass is concentrated at the generic
point and zero elsewhere. We refer to Meucci (2005) for more details on this topic.

5. We use the terms ‘flexible probabilities’ and ‘observation weights’ as synonyms in the rest of the
paper.

6. We also test the filtered and the smoothed probabilities as weights. Such a choice would change
the perspective from the predictive to the current regime dynamics. The results are not reported, but
are qualitatively similar and available upon request.
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where j∗ is the future state with the highest predicted probability (j∗ = argmax{P(St+1,k =

j |Ωt−1) : j = 0,1}) and Ŝt+1,k the predicted state classifier which is either 0 or 1. The four

approaches differ significantly in their selectivity and, thus, in how much they utilize

information from the estimation window. Approach (A) considers only observations

belonging to the future regime and weights them equally, while (B) increases the in-

formation content by relaxing the binary restriction. The approaches (C) and (D) can

be interpreted as kernel smoothing, using almost all observations. Still, they differ in

their distribution assumption (conditional normal or mixture of two normal distribu-

tions) and thus in their observation-dependent impact.

Since the generalized distribution function for a given historical path of xk is en-

tirely determined by the set {xk ,p(v,k)}, all four specifications require a high degree

of confidence in the regime measurement of the economic variable. However, both

the prediction and the real-time identification of regimes are usually associated with

a high amount of uncertainty. Therefore, it is often advisable to adopt a Bayesian

perspective (Connor 1997; Pettenuzzo et al. 2014). Meucci (2008) recommends a

method to incorporate fully flexible views into a predictive distribution. He suggests

the use of entropy pooling (EP) to minimize the distance between two distributions

using the investor’s views as constraints. More formally, he measures the distance

between distributions using the relative entropy (aka Kullback-Leibler divergence)

d(p,p0) =
∑τ

t=1pt ln(pt/p
0
t ), where pt represents the posterior probability to be found

and p0
t a prior distribution.

We treat the weights from (A)−(D) as a view and blend them with the historical

distribution function (p0
t = 1/τ) as prior. Following Meucci (2008), we apply entropy

pooling to shift the probability mass of the prior distribution to a new probability

vector p∗ that satisfies the first two moments of our regime-based view while being as

close as possible to the historical distribution.7 We rely on numerical optimization to

find the posterior probabilities p∗:

p∗(v,k) = argmin
p

τ∑
t=1

pt ln(ptτ)

s.t.
τ∑

t=1

ptxt,k =
τ∑

t=1

pt(v,k)x̂t,k

τ∑
t=1

ptx
2
t,k =

τ∑
t=1

pt(v,k)x̂2
t,k

(15)

7. Since our analysis refers to the full marginal distribution of our regime variables, constraints on
higher moments (such as skewness and kurtosis) are also possible. However, we assume that the first
two moments are a reasonable approximation. We leave the question of the empirical advantages of
including higher moments to future research.
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with linear constraints on the first two moments, which are based on the regime-

implied distribution pt(v,k). x̂t,k represent simulated values of the regime variable

corresponding to our view. The main advantage of entropy pooling is that it smoothly

incorporates the views by changing the prior distribution as “minimally” as possi-

ble, significantly reducing forecast uncertainty and increasing robustness. For each

new observation, we re-estimate the Markov-switching model to account for changing

regime dynamics and update the weighting procedures.

3.3 Step 3: Forecasting with Earnings and Multiple Growth

We start by using the posterior flexible regime probabilities as weighting parameters for

the return components in each t. Using the historical realizations of earnings and mul-

tiple growth, we compute the component forecasts as weighted averages of the flexible

regime probabilities p∗(v,k) and the realizations of earnings and multiple growth:

µ̂
ge
τ+1(v,k) =

τ∑
s=2

p∗s−1(v,k)ges (16)

µ̂
gm
τ+1(v,k) =

τ∑
s=2

p∗s−1(v,k)gms (17)

with the conditional expectation operators µ̂
ge
τ+1(v,k) = Eτ [geτ+1|Ŝτ+1,k = j∗,v,Ωτ ] and

µ̂
gm
τ+1(v,k) = Eτ [gmτ+1|Ŝτ+1,k = j∗,v,Ωτ ]. It is important to note that we are focusing

on predictive relationships since we are always using the subsequent realization of

earnings and multiple growth.

In the final step, the forecasts of the return components are combined with the

current dividend-price ratio (dpt), and the logarithmic risk-free rate (rft+1 = log(1 +

Rft+1)) is subtracted. The latter is known in advance, as in Rapach and Zhou (2013).

Specification (1): In the baseline case, we predict both return components with

the same state variable k:

µ̂
(1)
τ+1(v,k) = dpτ + µ̂

ge
τ+1(v,k) + µ̂

gm
τ+1(v,k)− rfτ+1 (18)

However, it is also likely that the regime dynamics of the variable k only has a pre-

dictive content for either earnings or multiple growth. Therefore, based on the bench-

mark model of Ferreira and Santa-Clara (2011), we evaluate the return predictability

by introducing two constraints:

Specification (2): We set the multiple growth to zero (µ̂gmτ+1 = 0) and model only the

earnings growth with our flexible regime approach.

µ̂
(2)
τ+1(v,k) = dpτ + µ̂

ge
τ+1(v,k)− rfτ+1 (19)
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Specification (3): As the second constraint, we adapt the assumption of Ferreira

and Santa-Clara (2011) that earnings growth has only a low-frequency predictable

component (µ̂geτ+1 = ḡe20Y
τ ), but now we allow that multiple growth is regime-dependent.

µ̂
(3)
τ+1(v,k) = dpτ + ḡe20Y

τ + µ̂
gm
τ+1(v,k)− rfτ+1 (20)

To evaluate the benefits of the SOP methodology, we also apply our three-step proce-

dure directly to the aggregated returns rather than to their components.

Specification (4): We reject any component-specific predictability and compute a

regime-weighted average of historical returns:

µ̂
(4)
τ+1(v,k) =

 τ∑
s=2

p∗s−1(v,k)rs

− rfτ+1 (21)

As benchmark model for our flexible regime approach, we use the FSC model of Ferreira

and Santa-Clara (2011) as in Eq. (6) and the historical average EW. In its unrestricted

version, the EW is equal to the prior distribution of the return components (pt = 1/τ).

We also apply the same restrictions as in specifications (2) and (3).

To further investigate the variable-specific effect on earnings and multiple growth,

we combine regimes with different variables. For this purpose, we provide two exten-

sions.

Extension 1: For each choice of v, we test all possible pairs for the ten state vari-

ables, where k (l) represents the regime-filtered variable for predicting earnings growth

(multiple growth) so that the baseline equation is extended as follows:

µ̂τ+1(v,k, l) = dpτ + µ̂
ge
τ+1(v,k) + µ̂

gm
τ+1(v, l)− rfτ+1 (22)

This specification nests the baseline case of (1) for k = l and creates 90 new combina-

tions for k , l.

Extension 2: Instead of using just one variable for each component, we consider

the component forecasts of all variables. The pooled forecast is the weighted average

of all variable-specific forecasts.

µ̂
ge
τ+1,pool(v) =

10∑
k=1

ωτ+1,kµ̂
ge
τ+1(v,k) (23)

µ̂
gm
τ+1,pool(v) =

10∑
k=1

ωτ+1,kµ̂
gm
τ+1(v,k) (24)

To determine the forecast weights ωτ+1,k, we apply to both components the average

forecast (AVE) with equal weights (ωk = 1/10) as well as an endogenous weighting
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scheme, as proposed by Rapach et al. (2010), which adjusts the equal weights based on

their past forecast performance. The weights of the Discount Mean Squared Forecast

Error (DMSFE) combination are calculated as follows:

ωτ+1,k = Φ−1
τ+1,k/

10∑
k=1

Φ−1
τ+1,k

with

Φτ+1,k =
τ−1∑
s=m

θτ−1−s(ys+1 − ŷs+1,k)2

(25)

where y is a placeholder for GE and GM, m+ 1 is the start of the out-of-sample period,

and θ is the discount factor. To account for the momentum of predictability (Dai and

Zhou 2020), we give more weight to recent forecasting performance by setting θ = 0.9.

The combined forecasts for GE and GM are then used as input for the SOP prediction

as in Eq. (22).

3.4 Evaluation Measures

We evaluate the statistical accuracy of the one-month ahead excess return forecast

µ̂k,t+1 corresponding to the regime variable k with the mean squared forecast error

(MSFE).

MSFE(µ̂t+1,k) =
1
T1

T1∑
t=T0

(µt+1 − µ̂t+1,k)2 (26)

Let T0 be the in-sample period and T1 the out-of-sample period. We test the pre-

dictability of excess stock returns with the out-of-sample R2 from Campbell and Thomp-

son (2008), which compares the relative value added in MSFE of our forecasts to the

historical average (MSFE(µ̄t+1)).

R2
OS(µ̂k,t+1) = 1−

MSFE(µ̂t+1,k)
MSFE(µ̄t+1)

(27)

A positive R2
OS indicates a lower MSFE of the forecast k and, thus, an improvement of

the predictability relative to the historical benchmark. Most empirical studies show

that it is very challenging to beat the historical average (Welch and Goyal 2008). Since

the predictability can vary significantly over time, we calculate the cumulative differ-

ences in the squared forecast error (CDSFE), defined as:

CDSFE(µ̂t+1,k) =
T1∑

t=T0

(µt+1 − µ̄t+1)2 −
T1∑

t=T0

(µt+1 − µ̂t+1,k)2 (28)
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This measure is very informative for detecting time-varying predictability. An increase

(decrease) in the CDSFE signals a lower (higher) prediction of the regime-based fore-

casts relative to the historical average for that period.

To determine the significance of R2
OS , we test the hypothesis H0 : R2

OS ≤ 0 against

H1 : R2
OS > 0. For nested forecasts, it is common to rely on the adjusted MSFE from

Clark and West (2007), which is defined as:

êt+1 = (µt+1 − µ̄t+1)2 − [(µt+1 − µ̂t+1,k)2 − (µ̄t+1 − µ̂t+1,k)2] (29)

Using the sample mean ē = 1/T1
∑T1

t=T0
êt+1 and the sample variance V̂ = 1/(T1−1)(êt+1−

ē), the CW test statistic (
√
T1ē/V̂ ) is approximately standard normal distributed. There-

fore, we can directly apply the standard critical values for a one-sided hypothesis test.

In order to verify the economic benefits of an investor, we translate the predictions

of the equity risk premium into a trading strategy that can switch between stocks and

cash. We assume a risk-averse agent with mean-variance preferences. By solving the

standard expected utility maximization problem, we obtain the optimal equity market

weight according to Merton (1969):

wt,k =
µ̂t+1,k

γσ̂2
t+1

(30)

We assume a moderate (relative) risk aversion (γ = 3), and we use the historical five-

year variance as an estimate of the expected variance σ̂2
t+1. The portfolio return RPt+1,k

of the trading strategy k is then:

RPt+1,k = wt,kRt+1 +Rft+1 (31)

To design a walk-forward backtest of the timing strategies that is consistent with the

constraints of practitioners, we do not allow short selling and leverage, so that the

equity weight varies only between 0% and 100%. In addition, we account for propor-

tional transaction costs by assuming a roundtrip fee of 50 basis points.8

To evaluate the trading strategies, we use the certainty equivalent return (CER) as

the average utility gain for a mean-variance investor:

CER = µRP (k) −
1
2
γσ2

RP (k) (32)

µRP (k) (σ2
RP (k)) is the average return (variance) of the strategy for the out-of-sample pe-

riod. To assess the value added of the timing strategies, we calculate the CER gain

8. As a part of our robustness testing, we check the sensitivity of our results to variations in risk
aversion (γ = 1,3,5), to the possibility of partial short selling (wmin = −50%), and to partial leveraging
(wmax = 150%).
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as the difference between the strategy’s CER and the CER of the historical average

(henceforth ∆k
CER). The ∆k

CER has the practical interpretation as annual management

fee an investor is willing to pay to participate in the forecast-based strategy (Rapach

and Zhou 2013). To evaluate the investor’s utility over time, we compute the rolling

five-year certainty equivalent gain (∆k,5Y
t,CER), which corresponds to a typical investment

horizon of a medium-term investor.

4 Data

We use the monthly dataset of Welch and Goyal (2008) to examine the impact of

regimes on the predictability of return components.9 The sample begins in Decem-

ber 1927 and ends in December 2022. We use continuously compounded stock market

returns including dividends of the Standard & Poor’s (S&P) 500 Index in excess of the

risk-free rate. Dividends and earnings are calculated as trailing 12-month sum. The

corresponding return components are the dividend-price ratio (DP ), earnings growth

(GE), and the price-earnings multiple growth (GE), all expressed in logs.10

Table A1 presents the summary statistics. Over the 95-year period, the annual-

ized equity risk premium is 6.1%, with a volatility of 18.8%. The largest variability

in returns results from the multiple and earnings growth, with annual standard devi-

ations of 23.1% and 14.9%, respectively. Multiple growth exhibits only slight persis-

tence, while the strong autocorrelation of earnings growth can be attributed to overlap-

ping observations due to the measurement of earnings. The dividend-price ratio and

the risk-free rate demonstrate similar descriptive properties and are highly persistent,

with an AR(1) coefficient of 0.98.

Figure 2 illustrates the trajectory of the stock market and its components. The

cumulative series of the dividend-price ratio is characterized by a smooth and steady

increase, while earnings growth exhibits an upward trend with cyclical dips associated

with NBER recessions. The data indicate that multiple growth does not demonstrate a

distinct trend over the entire period. Rather, it frequently exhibits peaks at the end of

recessions.

9. We thank Amil Goyal for providing and updating this valuable data source (https://sites.google.
com/view/agoyal145, accessed on 10/26/2023). If no separate source is indicated, the time series were
taken from this data set.

10. For reasons of clarity, we deviate from the notation in Section 2 and always use the variable abbre-
viations in capital letters.
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Figure 2: Stock Market and its Component
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Notes: Cumulative stock market return and the corresponding components of the S&P 500 according to
the decomposition of Eq. (5). The period is from 1927/12 to 2022/12. Gray shaded areas indicate NBER
recessions.

To infer the impact of economic regimes on stock market predictability, we first

examine the excess return, ERP , and the return components GE, GM, DP . This allows

to analyze the endogenous dynamics.

1. Equity risk premium (ERP ) is defined as the monthly excess return of the aggregate

stock market over the one-month risk-free rate.

2. Earnings growth (GE) is denoted as the monthly log change of the trailing 12-

month sum of the S&P 500’s earnings per share.11

3. Multiple growth (GM) is expressed as a monthly log change in the price-earnings

ratio of the S&P 500.

4. Dividend-price ratio (DP ) is defined as the logarithm of the ratio between the trail-

ing 12-month sum of the S&P 500 dividends and the current price plus one.

11. Since monthly changes in the 12-month sum of earnings produces very short-lasting regimes,
we slightly deviate from this variable definition and use annual log changes as input for the Markov-
switching model.
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To capture exogenous data sources, we also consider six additional macro-financial

variables (RVOL, TMS, DFY , T BL, IP , INF), which are well-documented state vari-

ables that appear to be promising for predicting returns or their components, see for

instance Rapach and Zhou (2013) and references therein.

5. Realized stock market volatility (RVOL) is estimated using the method of Mele

(2007): RVOLt =
√

π
2

√
12 1

12
∑12

i=1 |rt+1−i |.

6. Term spread (TMS) is defined as the yield differential between a 10-year Treasury

bond and a 3-month treasury bill rate.

7. Default spread (DFY ) is denoted as the yield differential between Moody´s BAA

and AAA-rated corporate bonds.

8. Short-term interest rate (T BL) is represented by the 3-month Treasury bill rate.

9. Industrial production (IP ) is measured as the month-over-month growth rate in

Industrial Production.12

10. Inflation (INF) is expressed as the month-over-month growth rate in the Consumer

Price Index (All Items in U.S. City Average)

Given that the level of many of these variables is already reflected in the current

price, our focus is on the changes in the state variables. Accordingly, the variables are

either already measured as percentage changes (GE, GM, ERP ) or have been trans-

formed to first differences (DP , RVOL, TMS, DFY , T BL).13 The descriptive statistics

clearly show non-normal patterns in the data, highlighted by skewed and often lep-

tokurtic unconditional distributions. In addition, the serial correlation inherent in the

level of many exogenous series can be reduced by the data transformation.14 From

the correlation matrix, it can be seen that the contemporaneous relationship between

many state variables and earnings or multiple growth is stronger than for the excess

return (RVOL, T BL, IP , INF). This provides some first descriptive evidence that the

SOP approach can improve the predictability.

12. We obtain this data from FRED database (https://fred.stlouisfed.org/series/INDPRO, Accessed on
10/26/2023)

13. We leave IP and INF unchanged from the definition above, but we lag both macroeconomic vari-
ables by one month to account for the publication lag.

14. The serial correlation inherent in the level of many exogenous series can be reduced by the data
transformation. The remaining autocorrelation is controlled for by using an AR(1) coefficient in the
Markov-switching model.
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5 In-Sample Results

We start with the in-sample (IS) estimation results of the regime models (Table 1). It

becomes evident that the dispersion parameter is the most effective discriminator for

the regime-dependent distributions. The turbulent (calm) regime is associated with

negative (positive) changes for ERP , GM, T BL and an increase (decrease) for TMS.

For some processes, the state-dependent mean is comparable between states (RVOL,

IP , INF). All economic variables show the presence of (highly) persistent regimes with

an expected duration between 9 (DFY ) and 103 months (INF). The less volatile regime

is typically more persistent than the more volatile one. Despite the transformation of

the economic variables, some time dependence in the mean process persists, which is

addressed by incorporating the state-dependent autoregressive term φ (insignificant

only for ERP and changes in RVOL).

Table 1: Estimation of Regime Models

Parameters of univariate MSAR(1) models

Economic Variable q̂00 q̂11 α̂0 α̂1 φ̂0 φ̂1 σ̂0 σ̂1

ERP 0.985 0.908 0.892*** −1.71* −0.011 0.088 3.792 10.881
GM 0.989 0.937 0.182 −0.641 0.116*** 0.341*** 4.096 13.279
GE 0.984 0.905 0.001 0.003 0.978*** 0.979*** 0.020 0.170
DP 0.986 0.908 −0.001 0.002 0.057 0.211*** 0.011 0.066
RVOL 0.990 0.937 0.009 0.008 −0.039 −0.023 1.433 4.409
TMS 0.928 0.951 −0.013*** 0.008 −0.005 0.106*** 0.091 0.458
DFY 0.973 0.886 −0.002 0.011 0.263*** 0.207*** 0.049 0.326
TBL 0.958 0.938 0.011*** −0.012 0.231*** 0.328*** 0.074 0.527
IP 0.976 0.920 0.174*** 0.104 0.346*** 0.531*** 0.634 3.003
INF 0.990 0.979 0.139*** 0.126*** 0.439*** 0.507*** 0.264 0.735

Notes: Table shows the estimation results of the two-state Markov-switching autoregressive model,
MSAR(1), using the full-sample (1927/12 to 2022/12). The estimation is done by numerical optimiza-
tion. State 1 (0) always indicates the volatile (calm) regime. ERP : excess stock return, GM: price-
earnings ratio growth, GE: earnings growth, DP : change in log dividend-price ratio, RVOL: change
in realized 12M volatility, TMS: change in 10Y–3M term spread, DFY : change in BAA–AAA default
spread, T BL: change in 3M Treasury bill rate, IP : industrial production growth, INF: CPI inflation.
The Data are transformed before estimation, as described in Section 4. ***/**/* denotes significance at
the 1%/5%/10% level.

In Step 1 of the analysis, the regime dynamics of the excess stock return are fil-

tered by an MSAR(1) model, with the estimated parameters from Table 1. Figure 3

illustrates the evolution of the log price of the S&P 500, together with the correspond-

ing predicted probabilities and the NBER recession periods. It has been observed that

there is a high correlation between economic crises and financial market turmoil. A

surge in regime probabilities is frequently observed in the period preceding or during

economic recessions. Typically, the stock market begins to recover around the time of
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an economic turning point. However, it should be noted that not all economic reces-

sions are associated with a decline in stock prices and vice versa.15

Figure 3: Economic Regimes of Excess Return (Step 1)
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Notes: Figure displays the predicted regime probability (B) of the monthly excess stock returns. The
predicted probabilities of the turbulent regime is depicted in red (left axis). For reasons of illustration,
we plot the log stock prices over time. The in-sample period runs from 1927/12 to 2022/12. Gray
shaded areas indicate NBER recessions.

The subsequent step is to compute the flexible probabilities in accordance with our

regime view (Step 2). The predicted state probabilities indicate a continuation of the

turbulent regime, which suggests a weighting according to the upper left panel of Fig-

ure 4. Given the uncertainty associated with our view, our objective is to identify a

weighting vector that is consistent with the fundamental characteristics of our view

(represented by the first two moments) while remaining as close as possible to the his-

torical distribution. Consequently, entropy pooling is employed to derive a posterior

probability vector p∗ (illustrated in the upper right panel). By combining the flexible

probabilities with historical scenarios (resampled by bootstrapping), we can compare

the historical distribution (depicted in red) with both the view-based density (lower

15. Figure A1 in the Appendix A displays the ex post regime identification for all ten economic regime
variables.
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left panel of Figure 4 in green) and with the posterior density (lower right panel in

green). It can, therefore, be concluded that entropy pooling compresses the historical

distribution and assigns greater probability mass to negative outcomes. Relative to the

original view-based density, these observations occur to an even greater extent.

Figure 4: Flexible Probabilities and Entropy Pooling (Step 2)
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View: Regime−Implied Density {ERP, p(B, ERP)}
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Notes: Figure shows the flexible probabilities (upper panel) and regime-implied densities (lower panel
in green) for the excess stock return, both relative to the historical prior with equal weights (red line
and red density, respectively). The flexible probabilities are determined by the predicted turbulent state
probabilities (B) as of 2022/12. In the left plots, the flexible probabilities are fully captured by the state
probabilities, while in the right plots the entropy pooled weights are used. The density simulations are
generated by bootstrapping with 10,000 draws. The interval ranges from 0.5% to 99.5% quantile.
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In the final Step 3, we retain the posterior probability vector and bind it with the

realizations of the return components GE and GM. The result is the regime-implied

probability distribution (in green) depicted in Figure 5. In comparison to the histor-

ical distribution, it is evident that there is a greater concentration towards the left

side, with a corresponding reduction in probability mass in the middle. This accounts

for the characteristics of the turbulent market view, which has a higher likelihood

in 2022M12. Finally, we combine the distributions of GE, and GM with the current

dividend-price ratio dp and subtract the risk-free rate to get the flexible regime dis-

tribution of the SOP forecasts. The expected value of this distribution is then the

prediction for the next excess return.

Figure 5: Regime-implied Densities for the SOP Predictions (Step 3)
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Notes: Figure shows the regime-implied densities (green) and its historical density (red) for earnings
growth (GE), multiple growth (GM), and the combined sum-of-the-parts (SOP) predictive distribution
of the unrestricted specification (1). The flexible probabilities are determined by the predicted turbulent
state probabilities (B) as of 2022/12. The density simulations are generated by bootstrapping with
10,000 draws. The interval ranges from 0.5% to 99.5% quantile.
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6 Out-of-Sample Results

Starting with an initial estimation window of 20 years, we employ a recursive approach

that updates the regime filtering and probability weighting every month to forecast

the excess stock return with a one-month horizon. The total out-of-sample (OS) period

spans approximately 75 years, from December 1947 to December 2022.

6.1 Individual Economic Regimes

The statistical accuracy of our return forecasts is presented in Table 2. We can demon-

strate that our flexible regime approach is an effective method for predicting stock re-

turns. Irrespective of the economic variable, weighting method, or restriction under

examination, the R2
OS is found to be significantly positive in most cases (only three

exceptions exist). Compared to the historical average, the benefit in R2
OS is frequently

around 1% and reaches its maximum at 1.69%. The predictability is generally higher

in NBER recessions (average R2
OS of 1.9%) than in expansions (average R2

OS of 0.6%),

which is consistent with the extensive evidence in the literature (Henkel et al. 2011;

Rapach and Zhou 2013).

Applying our methodology directly to returns, rather than to return components,

leads to worse results, as specification (4) illustrates. In more than 90% of all cases, the

SOP method yields higher R2
OS than the direct return forecasts (for the unrestricted as

well as all restricted cases). Even if the forecast quality itself is not inadequate, no eco-

nomic regime exists where the direct approach dominates all three SOP specifications.

In light of these results, we identify the SOP approach as an important element in the

forecasting process. Consequently, subsequent attention will be devoted to specifica-

tions (1) to (3).

The benchmark approaches also offer high predictability of returns with R2
OS be-

tween 0.81% (unrestricted EW ) and 1.27% (FSC). Compared to these references, how-

ever, a substantial number of models provide better forecasts (highlighted in bold en-

tries). More precisely, the number of superior forecasting models ranges from six using

specifications (1) and (3) to 19 in the specification (2). In this context, the value-added

of the density-weighting approaches (C) and (D) is particularly evident. Therefore, re-

placing the moving average earnings estimate with a regime-weighted one and setting

the expected multiple growth to zero is an advantageous strategy. This finding is not

surprising given the volatile nature of multiple changes and the well-established re-

lationship between corporate earnings and the business cycle (Longstaff and Piazzesi

2004).
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Table 2: Statistical Accuracy (R2
OS in %)

Overall Expansion Recession
Variable (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Panel 1: Benchmark

FSC - 1.27*** - - 0.83*** - - 2.52*** -
EW 0.81*** 1.08*** 1.04*** - 0.3* 0.57** 0.6** - 2.25** 2.56*** 2.3*** -

Panel 2: Binary State Classification (A)

ERP 1.55*** 0.81*** 1.69*** 1.27*** 1.15*** 0.63** 1.03** 1.04*** 2.7** 1.31* 3.58** 1.93*
GM 1.33*** 1.13*** 1.28*** 1.08*** 0.75** 1.01*** 0.38* 0.66** 3*** 1.49** 3.84*** 2.26**
GE 0.92*** 1.32*** 0.86*** 0.69*** 0.43** 0.81*** 0.43** 0.41** 2.32*** 2.79*** 2.09*** 1.52*
DP 0.87*** 1.06*** 1.1*** 0.68** 0.34* 0.52** 0.65** 0.37** 2.38** 2.61*** 2.39*** 1.56*
RVOL 1.31*** 1.12*** 1.39*** 0.97*** 1.07*** 0.68** 1.11*** 0.9*** 1.98** 2.39*** 2.17*** 1.16
TMS 0.62*** 0.92*** 0.35** 0.28** 0.32* 0.38** 0.08* 0.16* 1.48** 2.47*** 1.14** 0.61
DFY −0.01 1.39*** −0.04 −0.22 0.27** 1.31*** −0.22 0.22** −0.82 1.62** 0.47 −1.49
TBL 1.06*** 1.4*** 0.78*** 0.79*** 1.04*** 1.23*** 0.44* 0.95*** 1.1* 1.9** 1.74** 0.32
IP 0.71*** 1.19*** 0.75*** 0.51** 0.22* 0.94*** 0.04 0.2* 2.11** 1.89** 2.77*** 1.39*
INF 0.96*** 1.11*** 1.08*** 0.72*** 0.46** 0.68** 0.54** 0.39** 2.41** 2.36*** 2.63*** 1.66*

Panel 3: Predicted Probabilities (B)

ERP 1.47*** 0.84*** 1.69*** 1.2*** 0.97*** 0.65** 0.95*** 0.88*** 2.88** 1.37* 3.81*** 2.12**
GM 1.21*** 1.01*** 1.32*** 0.96*** 0.72** 0.8** 0.6** 0.64** 2.6*** 1.62** 3.36*** 1.86**
GE 0.88*** 1.23*** 0.94*** 0.67** 0.35* 0.64** 0.54** 0.34* 2.39*** 2.92*** 2.06*** 1.58**
DP 0.85*** 1.09*** 1.06*** 0.66** 0.32* 0.56** 0.6** 0.34* 2.37** 2.6*** 2.39*** 1.55*
RVOL 1.49*** 1.14*** 1.57*** 1.18*** 1.15*** 0.72** 1.18*** 1.02*** 2.44*** 2.34*** 2.68*** 1.63*
TMS 0.55** 0.97*** 0.53** 0.28* 0.21* 0.45** 0.22* 0.15 1.54** 2.46*** 1.39** 0.67
DFY 0.94*** 1.51*** 0.68** 0.68*** 0.66** 1.33*** 0.1 0.58** 1.75** 2.03*** 2.33** 0.97
TBL 0.98*** 1.31*** 0.88*** 0.76*** 0.59** 0.89*** 0.45** 0.58** 2.08** 2.5*** 2.09*** 1.28*
IP 0.69*** 1.19*** 0.82*** 0.51** 0.18* 0.85*** 0.21 0.19* 2.14** 2.16*** 2.57*** 1.4*
INF 0.95*** 1.23*** 1.01*** 0.7** 0.45** 0.8*** 0.49** 0.37** 2.39** 2.48*** 2.52*** 1.62*

Panel 4: Conditional State Density (C)

ERP 1.07*** 1.44*** 0.72*** 0.75*** 0.76*** 1.28*** 0.1 0.6** 1.95** 1.87*** 2.48*** 1.17*
GM 1.02*** 1.3*** 0.95*** 0.66*** 0.77*** 1.04*** 0.5** 0.56** 1.75** 2.05*** 2.21*** 0.96
GE 0.79*** 1.16*** 0.91*** 0.58** 0.32* 0.69** 0.46** 0.32* 2.14** 2.51*** 2.19*** 1.34*
DP 0.78*** 1.11*** 0.92*** 0.57** 0.32* 0.69** 0.44** 0.31* 2.1** 2.29*** 2.28*** 1.32*
RVOL 0.97*** 1.37*** 0.83*** 0.43** 0.79*** 1.07*** 0.49** 0.35** 1.47** 2.22*** 1.8*** 0.65
TMS 0.87*** 1.19*** 0.91*** 0.63** 0.34** 0.84*** 0.25* 0.29* 2.39*** 2.16*** 2.8*** 1.59**
DFY 0.76*** 1.52*** 0.4** 0.45** 0.71*** 1.37*** 0.01 0.56*** 0.92* 1.94*** 1.51** 0.15
TBL 1.16*** 1.55*** 0.81*** 0.86*** 0.9*** 1.38*** 0.27* 0.79*** 1.9** 2.03** 2.37*** 1.07
IP 0.71*** 1.38*** 0.53** 0.48** 0.26* 1.14*** −0.15 0.2* 2.01** 2.07*** 2.44** 1.28*
INF 0.96*** 1.26*** 1*** 0.7*** 0.55** 0.89*** 0.52** 0.46** 2.11** 2.3*** 2.37*** 1.37*

Panel 5: Mixture Density (D)

ERP 1.02*** 1.49*** 0.68** 0.69*** 0.67** 1.28*** 0.09 0.5** 2.03** 2.07*** 2.38*** 1.24*
GM 0.99*** 1.38*** 0.86*** 0.67*** 0.65** 1.05*** 0.4* 0.49** 1.97** 2.32*** 2.17*** 1.16*
GE 0.67*** 0.92*** 1.02*** 0.47** 0.2* 0.49** 0.52** 0.21* 1.99** 2.16*** 2.44*** 1.19*
DP 0.78*** 1.04*** 0.97*** 0.58** 0.32* 0.61** 0.51** 0.31* 2.1** 2.29*** 2.28*** 1.32*
RVOL 1.05*** 1.38*** 0.9*** 0.57** 0.86*** 1.04*** 0.59** 0.5** 1.61** 2.35*** 1.81*** 0.77
TMS 1.26*** 1.52*** 0.9*** 1.01*** 0.81*** 1.26*** 0.27* 0.77*** 2.54*** 2.27*** 2.71*** 1.7**
DFY 1.14*** 1.59*** 0.62** 0.82*** 0.83*** 1.42*** 0.03 0.67*** 2.04*** 2.08*** 2.28*** 1.25*
TBL 1.32*** 1.51*** 1.01*** 0.97*** 0.9*** 1.18*** 0.48** 0.74*** 2.51*** 2.45*** 2.53*** 1.64**
IP 0.66** 1.39*** 0.54** 0.46** 0.17* 1.12*** −0.13 0.15 2.08** 2.15*** 2.46** 1.34*
INF 0.94*** 1.35*** 0.83*** 0.65** 0.47** 1.04*** 0.22* 0.34* 2.29*** 2.23*** 2.55*** 1.54*

Notes: Table shows the out-of-sample R2. In the unrestricted version (1) the SOP forecast consists of
variable-specific regime forecasts for earnings and multiple growth. (2) assumes no multiple growth
(µ̂gm = 0) and uses only the flexible regime forecasts for earnings growth, (3) assumes that earnings
growth follows a 20-year moving average (ḡe20Y ) and the expected multiple growth are is predicted
by the flexible regime forecasts. Finally (4) computes the return forecasts directly. Panel 1 displays the
benchmark models FSC (Ferreira and Santa-Clara 2011), and the SOP forecasts assuming equal weights
(EW ). The Panels 2−5 show the accuracy with a weighting according to the different views. Superior
results compared to FSC are highlighted in bold. ***/**/* denotes significance at the 1%/5%/10% level
according to the CW statistics.
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However, it is challenging to identify a superior weighting method, as the results

are dependent on the chosen specification, the state of the business cycle, and the

economic variable. While the binary state classification (A) and the predicted proba-

bilities (B) prove their relative usefulness mainly during NBER recessions with R2
OS of

up to 3.84%, the forecasting power of the density-smoothed approaches (C) and (D)

is stronger during economic expansions (R2
OS of more than 1%). The regime dynam-

ics of ERP and RVOL, derived from the binary state classification or the predicted

probabilities, yield promising results for predicting multiple growth. Changes in the

price-to-earnings multiple may be regarded as an approximation of the discount rate

channel, which is more affected by higher uncertainty or risk aversion. Typically, these

two factors experience a surge during periods of economic contraction and can be ap-

proximated using the filtered regimes of ERP and RVOL. Concerning the cash flow

channel, earnings growth can be predicted with the dynamics of DFY and T BL, as

the results of specification (2) indicate. Over all weighting approaches they serve as

adequate state variables as they capture aggregated credit risk and monetary policy,

which are typically correlated with cash flow news.

A review of the forecast performance over time reveals that the average statistical

accuracy does not guarantee predictability over the entire test period. The occurrence

of structural breaks and the presence of continuous learning investors are the pri-

mary factors that contribute to the emergence and decline of predictability. Figure 6

provides empirical evidence for this argumentation and shows which time periods

are responsible for the observed predictability. The graphs show the best forecast-

ing strategies according to the CDSFE for each weighting method and highlight the

best strategies for the unconstrained and the two constrained cases. The benchmark

approach of Ferreira and Santa-Clara (2011) is represented by the black line and in-

dicates that much of its average predictability is concentrated from the beginning of

the test period until the mid-80s. Over the past four decades, the forecast accuracy

has moved more or less sideways. There are just two brief periods when FSC has

outperformed the historical average: from 2001 to 2003 and in 2008.

In comparison, our regime-based forecasts have a similar trajectory up to the fi-

nancial crisis of 2008, with a rising course mostly around NBER recessions. The un-

restricted return forecasts in red slightly underperform the FSC benchmark at the

beginning before they manage to catch up and beat the benchmark in 3 out of 4 cases

by the end of 2022. Return forecasts that focus on modeling earnings growth (green

lines) and using the weighting approaches (C) and (D) produce smooth and steadily in-

creasing CDSFE curves. In particular, they have provided superior forecasts since the

end of the financial crisis in 2009. The forecasting power of approaches that predict

only multiple growth (blue lines) was rather low at the beginning of the test period but

increased sharply in the wake of the oil crisis in the mid-1970s and remained so until
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1982. Since the late 1990s, the flexible probability weighting scheme has played a more

prominent role. From this time until the end of 2022, approaches using regime proba-

bilities or binary classification as weighting have sudden spikes of outperformance in

1999, 2002, and 2020. However, all charts illustrate the difficulty of predicting returns

in the decade from the late 1980s to the late 1990s, as documented by numerous stud-

ies (Welch and Goyal 2008; Dangl and Halling 2012; Hammerschmid and Lohre 2018).

Our findings illustrate the benefits of economic regimes, especially in the recent past,

and partly explain the success of research focusing on regime predictability over the

last 25 years (Haase and Neuenkirch 2023, e.g.,).

Figure 6: Statistical Accuracy over time (CDSFE)

Binary State Classification (A)
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Predicted State Probabilities (B)
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Conditional State Density (C)
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Mixture Density (D)
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Notes: Figure shows the cumulative differences in squared forecast errors (CDSFE) of the best unre-
stricted (in red), GM-restricted (in green), and GE-restricted (in blue) regime-based forecasts. As a
benchmark, the FSC forecast of Ferreira and Santa-Clara (2011) is added in black. A rising (falling)
line indicates a lower (higher) prediction error than the historical average for a given point in time.
Graph (A) indicates the weighting scheme using the binary state classification, (B) uses the predicted
state probabilities, (C) the conditional state density and (D) the mixture state density. The test period
runs from 1947/12 to 2022/12. Gray shaded areas indicate NBER recessions. All values are multiplied
by 100.
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We evaluate the economic benefit from a mean-variance investor’s perspective us-

ing Merton’s rule according to Eq. (30) (with no short-selling and no leverage) as an

asset allocation model derived from the return forecasts. The corresponding trading

strategies always consider proportional transaction costs of 50 basis points and a rel-

ative risk aversion of three to enable realistic backtesting. Table 3 shows the ∆CER

of our regime-based strategies. All models exceed the historical average, which has

a certainty equivalent return of 7.2%. Across the test sample, an investor is willing

to pay an annual management fee between 0.5 and 1.97% to participate in the indi-

vidual regime-based strategies. As previously demonstrated in the statistical accuracy

assessment, the investor benefit is more pronounced during periods of economic con-

traction (average ∆CER of 6.7%) than during periods of economic growth (average ∆CER

of 0.4%). The best strategy uses the regime dynamics of the interest rate (T BL) with

the binary state classification as the view generator and utilizes specification (2), which

focuses on forecasting earnings growth.

Among all variables and all weighting approaches, the dynamics of GM and ERP

provide the most robust results for the unrestricted specification (1), T BL and DFY

for specification (2), and INF and RVOL for specification (3). This demonstrates that

the economic benefit of stock market forecasts is contingent upon the influence of

the economic variable on the various return components. Some economic regimes are

more conducive to approximating the cash flow channel, while others are more suited

to capture changes in the discount rate. Most models provide higher gains than the

equally weighted benchmark (EW ) with a ∆CER of 1.22 to 1.41%. Considering the

FSC benchmark (∆CER = 1.72%) and highlighted by bold entries, we have ten superior

regime-based strategies. A review of the economic cycle reveals that the number of

models demonstrating a higher ∆CER increases to 26 in expansions and 16 in reces-

sions, with each panel producing at least one strategy that dominates all benchmarks.

The robustness test in the Appendix C (Tables C1−C3) shows how sensitive the

∆CER behaves if we vary the risk aversion or if we relax the investment restrictions

(such as partial leveraging or short selling). In the baseline case, we always assume

γ = 3 and w = [0,1]. Reducing risk aversion does not result in a notable change in the

absolute certainty equivalent gains. However, it increases the probability of outper-

forming the FSC benchmark. Conversely, an increase in risk aversion to a value of five

results in a discernible reduction in the ∆CER. This finding can be explained by the

fact that our timing strategies cannot achieve an appropriate risk reduction. Further-

more, a relaxation of investment restrictions leads to higher certainty equivalent gains.

The marginal effect is largest when the leverage restriction is removed. These results

confirm the findings of Baltas and Karyampas (2018), who analyzed the performance

of return forecasting models in different regimes and concluded that the economic

benefits for high risk-averse and leverage-constrained investors are diminishing.
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Table 3: Economic Value (∆CER in % p.a.)

Overall Expansion Recession
Variable (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Panel 1: Benchmark

FSC - 1.72 - - 0.67 - - 8.20 -
EW 1.22 1.34 1.41 - 0.25 0.30 0.48 - 7.16 7.75 7.13 -

Panel 2: Binary State Classification (A)

ERP 1.68 1.02 1.51 1.17 0.62 0.22 0.30 0.27 8.19 6.01 9.04 6.72
GM 1.67 1.15 1.31 1.15 0.59 0.41 0.09 0.19 8.39 5.75 8.84 7.07
GE 1.31 1.55 1.33 0.91 0.37 0.47 0.40 0.16 7.12 8.20 7.07 5.53
DP 1.23 1.36 1.56 0.93 0.23 0.31 0.62 0.17 7.40 7.80 7.37 5.67
RVOL 1.62 1.24 1.66 1.13 0.71 0.24 0.74 0.42 7.19 7.42 7.35 5.55
TMS 0.67 0.97 0.88 0.56 −0.06 −0.14 0.32 0.00 5.16 7.83 4.32 4.01
DFY 1.27 1.58 0.69 0.84 0.47 0.96 −0.32 0.30 6.25 5.44 6.95 4.22
TBL 1.33 1.97 1.00 1.01 0.81 1.09 0.10 0.66 4.55 7.45 6.56 3.20
IP 1.16 1.57 0.97 0.70 0.19 0.71 −0.20 −0.08 7.11 6.84 8.19 5.55
INF 1.36 1.55 1.61 0.95 0.33 0.58 0.44 0.15 7.68 7.54 8.84 5.88

Panel 3: Predicted Probabilities (B)

ERP 1.64 0.93 1.51 1.13 0.59 0.14 0.31 0.24 8.15 5.83 8.95 6.64
GM 1.68 1.07 1.48 1.12 0.62 0.24 0.35 0.19 8.22 6.14 8.48 6.86
GE 1.22 1.50 1.27 0.87 0.23 0.33 0.42 0.11 7.35 8.72 6.47 5.58
DP 1.19 1.35 1.47 0.90 0.19 0.31 0.52 0.13 7.38 7.80 7.36 5.64
RVOL 1.70 1.27 1.83 1.24 0.76 0.34 0.94 0.50 7.46 6.99 7.33 5.78
TMS 0.79 1.10 0.88 0.50 0.16 0.03 0.42 0.07 4.69 7.74 3.71 3.17
DFY 1.28 1.65 0.97 0.94 0.54 1.00 −0.02 0.42 5.89 5.67 7.07 4.21
TBL 1.20 1.76 0.92 0.71 0.34 0.75 0.07 0.04 6.49 8.03 6.14 4.85
IP 1.04 1.57 1.06 0.67 0.09 0.61 −0.01 −0.09 6.94 7.56 7.73 5.36
INF 1.36 1.71 1.40 0.97 0.42 0.62 0.42 0.21 7.22 8.42 7.45 5.65

Panel 4: Conditional State Density (C)

ERP 1.37 1.64 1.11 0.95 0.48 0.86 −0.05 0.27 6.87 6.48 8.31 5.14
GM 1.30 1.65 1.16 0.85 0.43 0.77 0.23 0.21 6.71 7.04 6.96 4.83
GE 1.41 1.75 1.18 0.87 0.43 0.74 0.27 0.11 7.43 7.97 6.79 5.57
DP 1.23 1.22 1.32 0.78 0.32 0.27 0.42 0.07 6.89 7.11 6.92 5.20
RVOL 1.14 1.58 1.02 0.75 0.44 0.69 0.32 0.14 5.45 7.12 5.33 4.55
TMS 1.03 1.39 1.41 0.76 0.04 0.43 0.09 −0.04 7.17 7.31 9.54 5.70
DFY 1.30 1.70 0.83 0.92 0.54 0.95 −0.20 0.35 6.04 6.33 7.19 4.48
TBL 1.62 1.91 1.18 1.16 0.78 1.01 0.06 0.48 6.79 7.48 8.10 5.40
IP 1.12 1.83 0.65 0.65 0.20 0.96 −0.46 −0.08 6.76 7.25 7.58 5.16
INF 1.45 1.55 1.43 0.98 0.49 0.59 0.41 0.20 7.39 7.46 7.72 5.76

Panel 5: Mixture Density (D)

ERP 1.53 1.77 1.11 0.96 0.58 0.90 −0.05 0.22 7.38 7.16 8.29 5.55
GM 1.43 1.71 1.15 0.83 0.51 0.75 0.22 0.10 7.13 7.65 6.91 5.32
GE 1.11 1.48 1.41 0.65 0.15 0.50 0.39 −0.10 7.02 7.53 7.70 5.30
DP 1.24 1.18 1.39 0.80 0.32 0.22 0.50 0.09 6.89 7.11 6.92 5.20
RVOL 1.43 1.71 1.18 0.93 0.63 0.75 0.46 0.22 6.36 7.62 5.64 5.30
TMS 1.34 1.68 1.32 1.07 0.32 0.74 0.01 0.29 7.63 7.46 9.48 5.86
DFY 1.56 1.83 0.99 1.08 0.68 0.96 −0.16 0.39 7.00 7.19 8.08 5.36
TBL 1.40 1.54 1.49 1.01 0.52 0.64 0.37 0.33 6.85 7.10 8.46 5.20
IP 0.95 1.76 0.81 0.57 0.03 0.83 −0.36 −0.15 6.65 7.55 8.04 5.05
INF 1.39 1.73 1.26 0.83 0.31 0.71 0.10 −0.03 8.00 8.02 8.42 6.16

Notes: Table shows the certainty equivalent gains. In the unrestricted version (1) the SOP forecast con-
sists of variable-specific regime forecasts for earnings and multiple growth. (2) assumes no multiple
growth (µ̂gm = 0) and uses only the flexible regime forecasts for earnings growth, (3) assumes that earn-
ings growth follows a 20-year moving average (ḡe20Y ) and the expected multiple growth are is predicted
by the flexible regime forecasts. Finally (4) computes the return forecasts directly. Panel 1 displays the
benchmark models FSC (Ferreira and Santa-Clara 2011), and the SOP forecasts assuming equal weights
(EW ). The Panels 2−5 show the economic value with an observation weighting according to the different
views. Superior results compared to FSC are highlighted in bold.
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Figure 7: Economic Value over Time (∆5Y
CER)
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Conditional State Density (C)
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Notes: Figure shows the rolling five-year certainty equivalent gains (∆5Y
CER) of the best unrestricted (in

red), GM-restricted (in green), and GE-restricted (in blue) regime-based trading strategies. As a bench-
mark, the FSC forecast of Ferreira and Santa-Clara (2011) is added in black. Graph (A) indicates the
weighting scheme using the binary state classification, (B) uses the predicted state probabilities, (C) the
conditional state density and (D) the mixture state density. The ∆CER measures the maximum man-
agement fee an investor is willing to pay to participate on the forecast-based strategy (in % p.a.). Gray
shaded areas indicate NBER recessions.

So far, we have evaluated the economic value only on average. The empirical ev-

idence suggests, however, that the benefits are time-dependent (Dangl and Halling

2012; Baltas and Karyampas 2018). Therefore, Figure 7 presents the rolling 5-year

average ∆5Y
CER of the best strategies for the constrained and unconstrained cases, sep-

arated by the weighting method (A)−(D). There is no trading strategy that strongly

dominates all others, nor has a positive ∆5Y
CER over the evaluation period. The relatively

flat performance observed at the beginning and end of the 1960s is attributable to the

leverage restriction and illustrates comparable certainty equivalent gains between the

regime strategies and the naı̈ve forecast strategy. From this point onwards, the ∆5Y
CER

increased substantially, indicating that it is advantageous to follow a timing strategy

based on our flexible regime approach until the 1980s. The rolling average certainty

equivalent gain demonstrates a benefit of up to 12% per year. Similar to the results of

the CDSFE curves, it is challenging for the models to achieve economic gains between
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the 1980s and the end of the 1990s, even if a ∆5Y
CER of approximately 3% can be attained

during the recessionary phase at the beginning of the 1990s. From the 2000s onwards,

the majority of timing strategies are once again capable of generating continuous util-

ity gains for a risk-averse investor. While the amount is limited to a maximum of 5%, it

is notable that at the most recent measurement date in December 2022, specifications

(1) and (2) still managed to generate slightly positive certainty equivalent gains over

the past five years. In contrast, the FSC benchmark was unable to achieve this.

6.2 Combining Economic Regimes

We provide two extensions by combining the results from the individual variable anal-

ysis. We start with a test of all 90 combinations using different predictors for earnings

growth and multiple growth. Table 4 presents the out-of-sample results with the choice

of the multiple (earnings) predictor in the rows (columns). With bold entries, we high-

light the best GM predictor µgm(v, l) for a given GE predictor µge(v,k).

The results show that it is rarely the best choice to use the same variable to pre-

dict earnings growth and multiple changes. Typically, a combination of different vari-

ables is needed to achieve the lowest prediction errors or the highest economic benefit.

Using the binary state classification as a view generator, the R2
OS of the bold entries

ranges between 1.26% (ERP+TMS) and 1.89% (ERP+DFY ), whereas the predicted

probability weighting produces R2
OS of 1.30% (RVOL+TMS) and 1.96% (ERP+DFY ).

The results of the density-weighted approaches are qualitatively similar but somewhat

weaker with R2
OS of 1.32% (in (C) with INF+DFY ) and 1.41% (in (D) with T BL+DFY ).

The best pairs, according to the ∆CER, range from 1.69% (in (D) with T BL+DFY ) to

2.17% (in (A) with RVOL+T BL). These benefits provide substantial improvements

relative to the previous subsection. Analyzing the patterns according to each regime

variable, we emphasize the robust evidence of predicting multiple growth with ERP ,

RVOL, INF, and GE and the usefulness of DFY , T BL, and TMS as earnings growth

predictors.

31



Ta
bl

e
4:

Pe
rf

or
m

an
ce

fo
r

Pa
ir

s
of

E
co

no
m

ic
R

eg
im

es
(c

on
ti

nu
ed

on
ne

xt
p

ag
e)

W
ei

gh
ti

ng
w

it
h

B
in

ar
y

St
at

e
C

la
ss

ifi
ca

ti
on

(A
)

W
ei

gh
ti

ng
w

it
h

P
re

di
ct

ed
P

ro
ba

bi
li

ti
es

(B
)

Pa
ne

l1
:O

u
t-

of
-S

am
p

le
R-

Sq
u

ar
ed

(R
2 O
S

in
%

) G
E

P
re

d
ic

to
r

G
E

P
re

d
ic

to
r

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

GMPredictor

E
R

P
1.

55
1.

61
1.

61
1.

32
1.

50
1.

26
1.

89
1.

72
1.

52
1.

45
1.

47
1.

45
1.

51
1.

32
1.

50
1.

26
1.

96
1.

57
1.

49
1.

53
G

M
0.

94
1.

33
1.

27
0.

97
1.

10
0.

87
1.

43
1.

33
1.

11
1.

06
0.

96
1.

21
1.

21
1.

02
1.

15
0.

93
1.

55
1.

24
1.

13
1.

18
G

E
0.

41
0.

73
0.

92
0.

60
0.

70
0.

45
1.

01
0.

92
0.

72
0.

65
0.

51
0.

68
0.

88
0.

68
0.

78
0.

56
1.

19
0.

89
0.

78
0.

82
D

P
0.

65
0.

96
1.

12
0.

87
0.

94
0.

71
1.

25
1.

19
0.

97
0.

89
0.

64
0.

81
1.

00
0.

85
0.

92
0.

72
1.

31
1.

05
0.

93
0.

96
R

V
O

L
0.

96
1.

31
1.

48
1.

22
1.

31
1.

06
1.

48
1.

52
1.

27
1.

21
1.

20
1.

39
1.

55
1.

41
1.

49
1.

30
1.

81
1.

62
1.

47
1.

51
T

M
S

-0
.0

2
0.

34
0.

59
0.

37
0.

34
0.

62
0.

54
0.

96
0.

46
0.

35
0.

18
0.

36
0.

57
0.

45
0.

49
0.

55
0.

85
0.

79
0.

56
0.

57
D

FY
-0

.4
8

-0
.2

4
-0

.1
7

-0
.4

8
-0

.2
8

-0
.5

0
-0

.0
1

-0
.0

1
-0

.1
5

-0
.3

2
0.

25
0.

36
0.

51
0.

31
0.

47
0.

25
0.

94
0.

57
0.

51
0.

53
T

B
L

0.
34

0.
65

0.
81

0.
55

0.
62

0.
50

0.
93

1.
06

0.
75

0.
61

0.
47

0.
63

0.
82

0.
67

0.
75

0.
60

1.
15

0.
98

0.
80

0.
82

IP
0.

32
0.

55
0.

62
0.

32
0.

51
0.

32
0.

95
0.

82
0.

71
0.

49
0.

40
0.

50
0.

64
0.

44
0.

61
0.

39
1.

10
0.

71
0.

69
0.

68
IN

F
0.

65
0.

93
1.

05
0.

77
0.

89
0.

68
1.

25
1.

18
0.

96
0.

96
0.

60
0.

74
0.

91
0.

73
0.

85
0.

65
1.

27
0.

98
0.

89
0.

95

Pa
ne

l2
:O

u
t-

of
-S

am
p

le
C

er
ta

in
ty

E
qu

iv
al

en
t

G
ai

ns
(∆

C
E
R

in
%

)

G
E

P
re

d
ic

to
r

G
E

P
re

d
ic

to
r

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

GMPredictor

E
R

P
1.

68
1.

53
1.

27
1.

06
1.

26
0.

48
1.

72
1.

45
1.

57
1.

28
1.

64
1.

41
1.

15
1.

06
1.

39
0.

80
1.

76
1.

28
1.

39
1.

32
G

M
1.

32
1.

67
1.

24
0.

86
1.

11
0.

64
1.

30
1.

44
1.

34
1.

25
1.

18
1.

68
1.

42
1.

16
1.

41
1.

05
1.

59
1.

45
1.

38
1.

44
G

E
0.

70
0.

97
1.

31
1.

01
1.

04
0.

53
1.

14
1.

50
1.

31
1.

17
0.

61
0.

79
1.

22
1.

06
1.

05
0.

82
1.

30
1.

32
1.

22
1.

23
D

P
0.

86
0.

95
1.

23
1.

23
1.

05
0.

56
1.

50
1.

47
1.

44
1.

26
0.

78
0.

76
1.

21
1.

19
1.

08
0.

70
1.

53
1.

31
1.

23
1.

40
R

V
O

L
0.

95
1.

39
1.

64
1.

54
1.

62
1.

31
1.

60
2.

17
1.

65
1.

60
1.

24
1.

55
1.

70
1.

71
1.

70
1.

58
1.

82
2.

05
1.

79
1.

78
T

M
S

0.
44

0.
60

0.
47

0.
46

0.
50

0.
67

0.
97

1.
45

0.
89

0.
84

0.
35

0.
50

0.
60

0.
47

0.
56

0.
79

0.
91

1.
05

0.
73

0.
90

D
FY

0.
50

0.
41

0.
42

-0
.1

3
0.

31
-0

.2
8

1.
27

0.
53

0.
83

0.
36

0.
58

0.
43

0.
57

0.
37

0.
69

0.
30

1.
28

0.
69

0.
85

0.
80

T
B

L
0.

45
0.

51
0.

63
0.

53
0.

52
0.

29
0.

96
1.

33
0.

81
0.

79
0.

43
0.

45
0.

76
0.

62
0.

65
0.

60
1.

11
1.

20
0.

75
0.

92
IP

0.
53

0.
50

0.
45

0.
13

0.
41

-0
.2

6
1.

25
0.

62
1.

16
0.

50
0.

49
0.

56
0.

58
0.

46
0.

69
0.

29
1.

13
0.

76
1.

04
0.

75
IN

F
1.

01
1.

12
1.

18
1.

03
1.

10
0.

47
1.

47
1.

46
1.

49
1.

36
0.

82
0.

94
1.

03
0.

92
1.

11
0.

80
1.

30
1.

38
1.

28
1.

36

32



Ta
bl

e
4:

O
S

Pe
rf

or
m

an
ce

fo
r

Pa
ir

s
of

E
co

no
m

ic
R

eg
im

es
(c

on
ti

nu
ed

fr
om

p
re

vi
ou

s
p

ag
e)

W
ei

gh
ti

ng
w

it
h

C
on

di
ti

on
al

St
at

e
D

en
si

ty
(C

)
W

ei
gh

ti
ng

w
it

h
M

ix
tu

re
D

en
si

ty
(D

)

Pa
ne

l1
:O

u
t-

of
-S

am
p

le
R-

Sq
u

ar
ed

(R
2 O
S

in
%

) G
E

P
re

d
ic

to
r

G
E

P
re

d
ic

to
r

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

GMPredictor

E
R

P
1.

07
0.

76
0.

47
0.

51
0.

87
0.

73
1.

12
1.

09
0.

90
0.

67
1.

02
0.

78
0.

03
0.

43
0.

79
1.

03
1.

18
1.

05
0.

81
0.

73
G

M
1.

16
1.

02
0.

87
0.

83
1.

09
0.

89
1.

24
1.

26
1.

07
0.

91
1.

12
0.

99
0.

34
0.

66
0.

98
1.

14
1.

25
1.

14
0.

97
0.

91
G

E
1.

12
0.

95
0.

79
0.

73
1.

02
0.

81
1.

20
1.

17
1.

01
0.

85
1.

23
1.

12
0.

67
0.

78
1.

11
1.

25
1.

34
1.

25
1.

13
1.

07
D

P
1.

15
0.

92
0.

64
0.

78
1.

01
0.

81
1.

23
1.

16
0.

98
0.

80
1.

21
1.

04
0.

29
0.

78
1.

03
1.

24
1.

38
1.

24
1.

02
0.

96
R

V
O

L
0.

83
0.

90
1.

05
0.

84
0.

97
0.

76
0.

90
1.

14
0.

94
0.

89
1.

06
1.

06
0.

67
0.

79
1.

05
1.

13
1.

12
1.

10
1.

04
1.

04
T

M
S

1.
18

0.
92

0.
71

0.
68

1.
01

0.
87

1.
22

1.
23

1.
09

0.
90

1.
25

1.
01

0.
37

0.
64

1.
02

1.
26

1.
39

1.
26

1.
06

0.
98

D
FY

0.
73

0.
44

0.
13

0.
17

0.
53

0.
37

0.
76

0.
73

0.
56

0.
32

0.
96

0.
71

-0
.1

0
0.

34
0.

71
0.

97
1.

14
0.

98
0.

73
0.

63
T

B
L

1.
09

0.
83

0.
59

0.
62

0.
93

0.
78

1.
13

1.
16

0.
96

0.
78

1.
29

1.
11

0.
52

0.
78

1.
12

1.
32

1.
41

1.
32

1.
14

1.
08

IP
0.

90
0.

55
0.

20
0.

26
0.

64
0.

49
0.

95
0.

86
0.

71
0.

44
0.

89
0.

63
-0

.1
8

0.
25

0.
63

0.
89

1.
07

0.
90

0.
66

0.
54

IN
F

1.
25

1.
00

0.
76

0.
77

1.
09

0.
93

1.
32

1.
28

1.
11

0.
96

1.
11

0.
94

0.
29

0.
61

0.
94

1.
14

1.
25

1.
14

0.
96

0.
94

Pa
ne

l2
:O

u
t-

of
-S

am
p

le
C

er
ta

in
ty

E
qu

iv
al

en
t

G
ai

ns
(∆

C
E
R

in
%

)

G
E

P
re

d
ic

to
r

G
E

P
re

d
ic

to
r

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

E
R

P
G

M
G

E
D

P
R

V
O

L
T

M
S

D
FY

T
B

L
IP

IN
F

GMPredictor

E
R

P
1.

37
1.

22
0.

84
0.

69
1.

13
0.

90
1.

42
1.

60
1.

38
0.

92
1.

53
1.

33
0.

36
0.

62
1.

29
1.

35
1.

60
1.

29
1.

34
1.

17
G

M
1.

34
1.

30
1.

30
1.

09
1.

27
0.

95
1.

39
1.

38
1.

47
1.

07
1.

49
1.

43
0.

78
1.

04
1.

40
1.

35
1.

53
1.

27
1.

46
1.

36
G

E
1.

36
1.

29
1.

41
0.

86
1.

23
1.

00
1.

39
1.

44
1.

44
1.

09
1.

54
1.

41
1.

11
1.

02
1.

39
1.

35
1.

60
1.

33
1.

50
1.

38
D

P
1.

40
1.

28
0.

77
1.

23
1.

30
0.

93
1.

50
1.

40
1.

34
0.

88
1.

45
1.

42
0.

41
1.

24
1.

33
1.

40
1.

62
1.

33
1.

33
1.

37
R

V
O

L
1.

03
1.

10
1.

29
1.

05
1.

14
0.

96
1.

12
1.

38
1.

13
1.

22
1.

41
1.

41
1.

05
1.

24
1.

43
1.

44
1.

44
1.

39
1.

46
1.

45
T

M
S

1.
42

1.
31

1.
06

0.
70

1.
23

1.
03

1.
49

1.
61

1.
57

1.
21

1.
51

1.
33

0.
57

0.
52

1.
27

1.
34

1.
60

1.
19

1.
40

1.
19

D
FY

1.
17

0.
92

0.
45

0.
38

0.
84

0.
77

1.
30

1.
20

1.
15

0.
64

1.
46

1.
27

-0
.1

3
0.

38
1.

15
1.

28
1.

56
1.

09
1.

21
0.

99
T

B
L

1.
29

1.
23

1.
13

0.
82

1.
21

0.
95

1.
33

1.
62

1.
39

1.
08

1.
64

1.
55

0.
97

1.
07

1.
60

1.
61

1.
69

1.
40

1.
68

1.
63

IP
1.

06
0.

74
0.

12
0.

16
0.

72
0.

56
1.

19
1.

10
1.

12
0.

42
1.

25
1.

00
-0

.1
7

0.
15

0.
84

1.
00

1.
36

0.
90

0.
95

0.
73

IN
F

1.
61

1.
51

1.
33

0.
91

1.
51

1.
22

1.
70

1.
79

1.
66

1.
45

1.
39

1.
27

0.
80

0.
89

1.
28

1.
29

1.
53

1.
23

1.
36

1.
39

N
ot

es
:

Ta
bl

e
sh

ow
s

th
e

st
at

is
ti

ca
l

(P
an

el
1)

an
d

ec
on

om
ic

p
er

fo
rm

an
ce

(P
an

el
2)

u
si

ng
al

l
p

ai
rs

of
ec

on
om

ic
re

gi
m

es
fo

r
th

e
re

tu
rn

co
m

p
on

en
ts

G
E

(c
ol

u
m

ns
)

an
d
G
M

(r
ow

s)
.T

he
re

su
lt

s
ar

e
so

rt
ed

ac
co

rd
in

g
to

th
e

d
iff

er
en

tr
eg

im
e

w
ei

gh
ti

ng
s.

T
he

st
at

is
ti

ca
la

cc
u

ra
cy

(e
co

no
m

ic
va

lu
e)

of
th

e
re

tu
rn

fo
re

ca
st

s
is

m
ea

su
re

d
by

th
e

ou
t-

of
-s

am
p

le
R

2 O
S

(∆
C
E
R

)r
el

at
iv

e
to

th
e

hi
st

or
ic

al
av

er
ag

e.

33



The course of the most dominant strategies according to the statistical accuracy and

the economic value is depicted in Figure 8. The CDSFE curves indicate that a combina-

tion of different pairs of variables has a higher forecasting accuracy than the historical

average over long periods of time. Of particular note is the outstanding forecast accu-

racy observed during the 1970s, from the late 1990s until the 2008 financial crisis, as

well as from 2010 to 2022. In light of the rolling five-year CER gain, it is evident that

the considerable benefit gains observed in the 1970s, with average values over 10%,

cannot be replicated. This is largely attributable to the intensifying competition to

exploit market inefficiencies, which reduce economic profits. Nevertheless, even mod-

estly positive ∆CER, ranging from 0.5 to 1%, at the end of 2022 can be regarded as a

noteworthy achievement.

Figure 8: Forecasting Performance over Time for the Best Pairs

CDSFE: Best Pairs

1950 1960 1970 1980 1990 2000 2010 2020

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FSC
A: ERP + DFY
B: ERP + DFY
C: INF + DFY
D: TBL + DFY

CER Gain: Best Pairs

1950 1960 1970 1980 1990 2000 2010 2020

−5
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15
FSC
A: RVOL + TBL
B: RVOL + TBL
C: INF + TBL
D: TBL + DFY

Notes: Figure shows the cumulative differences in the squared forecast errors (CDSFE, left graph) and
the rolling five-year certainty equivalent gain (∆5Y

CER, right graph) of the best forecasting pairs according
to each weighting scheme. The label reads as follows: (A) indicates the weighting scheme using the
binary state classification, (B) the predicted state probabilities, (C) the conditional state density and (D)
the mixture state density. The variable in the first place is the best forecast for multiple growth (GM),
and the variable in the second place the best forecast for earnings growth (GE). As benchmark, the
FSC forecasts of Ferreira and Santa-Clara (2011) is added in black. Gray shaded areas indicate NBER
recessions. All values are expressed in percentage points.

As a second extension, we do not consider only one economic variable; we rather

pool all forecasts together to predict both return components separately. Such an ap-

proach has the benefit of hedging against model uncertainty and is popular in the re-

turn predictability literature (Rapach et al. 2010). Table 5 presents the out-of-sample

performance for the pooled forecasts. We see that the forecast quality has deteriorated

compared to the best individual forecasts. Whether we rely on the equally weighted

combination or ‘tilt’ the weights according to their past performance (DMSFE), we ob-

tain an R2
OS of around 1%. During expansions, this value ranges between 0.62 and

0.75%, while during recessions, values of around 2% are achieved. On average, these

34



results still indicate a significant predictability of returns, but they are all worse than

the FSC or EW benchmarks. The situation is similar if we measure the benefit of an

investor. The pooled timing strategies deliver a total ∆CER of 1.37−1.53% (0.44−0.6%

in expansions and 7.05−7.44% in recessions). In addition, we cannot document ma-

jor differences in the forecasting performance across the equally weighted average and

the DMSFE weighting. This result suggests a high similarity and low dispersion of

the component forecasts. For comparison purposes, the pooling of forecasts was also

employed for flexible regime forecasts for aggregate returns directly. Neither a signif-

icant improvement in forecast errors nor a higher economic value is achieved. This

demonstrates the need for decomposing returns.

Table 5: Performance of Pooled Forecasts

Forecast Combination

R2
OS (in %) ∆CER (in % p.a.)

Overall Expansion Recession Overall Expansion Recession

Panel 1: Binary State Classification (A)

SOP-DMSFE 1.09*** 0.75*** 2.07** 1.51 0.57 7.33
R-DMSFE −0.21 0.25* −1.5 0.05 0.07 −0.12
SOP-AVE 1.09*** 0.75*** 2.07** 1.50 0.57 7.27
R-AVE −0.21 0.25* −1.53 0.05 0.07 −0.15

Panel 2: Predicted Probabilities (B)

SOP-DMSFE 1.07*** 0.62** 2.33*** 1.53 0.58 7.36
R-DMSFE −0.19 0.19* −1.28 0.09 0.09 0.07
SOP-AVE 1.06*** 0.62** 2.33*** 1.53 0.60 7.33
R-AVE −0.19 0.19* −1.29 0.09 0.09 0.07

Panel 3: Conditional State Density (C)

SOP-DMSFE 1.01*** 0.68** 1.96** 1.37 0.44 7.06
R-DMSFE −0.46 −0.02 −1.74 0.06 0.07 0.02
SOP-AVE 1.02*** 0.69** 1.97** 1.37 0.45 7.05
R-AVE −0.46 −0.01 −1.75 0.07 0.07 0.02

Panel 4: Mixture Density (D)

SOP-DMSFE 1.04*** 0.65** 2.17*** 1.47 0.50 7.44
R-DMSFE −0.43 −0.02 −1.62 0.08 0.07 0.09
SOP-AVE 1.04*** 0.65** 2.15*** 1.48 0.53 7.34
R-AVE −0.43 −0.01 −1.63 0.08 0.07 0.09

Notes: Table shows the statistical and economic performance of out-of-sample pooled forecasts. Two ap-
proaches are used. SOP-DMSFE computes the weights for both return components (GE and GM) based
on the realized forecast performance with a discount factor of 0.9, and SOP-AVE comines all component
forecasts with a equal weight. R-DMSFE and R-AVE apply forecast combination to regime-based return
forecasts instead of the return components. Panel 1−4 separate the combination approaches according
to the different views. The statistical accuracy (economic value) of return forecasts is measured with the
out-of-sample R2

OS (∆CER) relative to the historical average.
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6.3 Benefits of Entropy Pooling

Assuming that regime filtering has some predictive power, the question arises whether

entropy pooling is necessary for the prediction at all. Instead, the information on

regime dynamics from the four approaches (A)−(D) could be used directly to compute

the observation weights. The answer to this question is given in Table B1. In statistical

(R2
OS) and economic (∆CER) terms, entropy pooling provides an average improvement

of 39 basis points (bps) over the plain view approach. Across the different weighting

approaches, the average difference in R2
OS is 77 bps, respectively 67 bps for ∆CER in

(A), 50 and 48 bps in (B), 10 and 18 bps in (C), and 22 and 27 bps in (D). Since the

density-weighted approaches already generate relatively smooth flexible probabilities,

the added value of entropy pooling is significantly lower there. The most significant

improvements are documented in specification (2) using (A) and (B) as view genera-

tors. ERP , GM, RVOL, and TMS achieve performance increases of at least 100 and at

most 330 bps.

Another argument in favor of entropy pooling is the relatively low dispersion in

forecasting power across all economic variables and across all weighting schemes,

which can be seen in Tables 2 and 3. Certainly, the assumption of a common prior

distribution affects the results. However, minimizing the relative entropy can mitigate

significant discrepancies while accentuating particular aspects identified within the

regime views.

Figure 9: Forecast Variance vs. Squared Forecast Bias
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Notes: Figure shows the trade-off between forecast bias and forecast variance for the earnings growth
and the price-earnings multiple growth. (A) indicates the weighting scheme using the binary state
classification, (B) uses the predicted state probabilities, (C) the conditional state density and (D) the
mixture state density. We add the assumption of the basic model of Ferreira and Santa-Clara (2011) to
both return components. 20Y: 20-year rolling average of earnings growth and 0: no multiple growth
(constant). For comparison, we also print the results of the historical average for both components (HA).
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A reason for the success of our flexible regime approach is the low forecast variabil-

ity. According to Theil et al. (1966) and Rapach et al. (2010), a forecaster can typically

improve the MSFE either by reducing the squared forecast bias or by decreasing the

forecast variance.16 Figure 9 demonstrates that the primary advantage is the reduction

of forecast variance for earnings growth and, to a lesser extent, the reduction of fore-

cast bias for multiple changes (using the unrestricted case as an example). Concerning

the different weighting methods, (C) and (D) exhibit particularly low forecast variance,

whereas forecasts from (A) and (B) are more volatile.

In addition to predictive performance, the information content is often a key is-

sue when considering flexible probabilities (Meucci 2012). If too few observations

are used, the analysis might depend heavily on single observations and is therefore

very sensitive to small data changes. Since the four specifications emphasize different

fractions of the historical sample, we want to evaluate the informativeness of a given

flexible probability choice. For this purpose, we rely on the effective number of scenarios
(ENS), as Meucci (2012) suggests.17

Table B2 in the Appendix B compares the ENS of the view-based flexible probabil-

ities with the entropy pooled counterparts, whereby the average out-of-sample ENS

is expressed as the fraction of the upper limit. Along with all methods, we see an im-

provement in the information content of the entropy pooling approaches relative to the

plain regime view. The ENS is always around 90% of the equally weighted reference

and the entropy pooling increases the information content by more than 10% relative

to the view-based approaches. Additionally, we find that the predictable probability

weighting (B) has the highest proportional ENS on average in both approaches.

We conclude that entropy pooling improves the predictability and increases the ro-

bustness of our results. Similar to other Bayesian approaches (Connor 1997), introduc-

ing some degree of shrinkage helps to reduce estimation uncertainty. This is valuable,

especially in applications with high uncertainty, such as financial market forecasting.

7 Conclusion

Predicting stock returns is of great interest to investors and academics. Despite their

relevance, it is difficult to find successful strategies that are robust to market frictions,

such as transaction costs and data snooping (Pesaran and Timmermann 1995; Welch

16. Theil et al. (1966) approximate the MSFE of a variable y using MSFE ≈ (ȳ − ¯̂y)2 +σŷ +σy assuming
only a weak correlation between the predicted and the realized return. To deal with the bias-variance
trade-off, reducing the squared bias (ȳ− ¯̂y)2 typically comes at the cost of increasing the forecast variance
σŷ .

17. The ENS is defined as exponent of the entropy ENSt = exp(−
∑τ

t=1pt ln(pt)), and measures the
“concentration of probability mass” (Meucci 2012) in the probability vector p. The effective number of
scenarios is maximal for an equally-weighted historical average and minimal when using only a single
data point.
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and Goyal 2008). As Dichtl et al. (2021) show, the SOP method of Ferreira and Santa-

Clara (2011) succeeds in overcoming this challenge.

This paper revises the SOP method by combining economic regimes with model re-

strictions. We propose a three-step methodology that deals with parameter instability

and estimation uncertainty to separately predict the return components before aggre-

gation. We use Markov-switching models (Hamilton 1989) and flexible probabilities

(Meucci 2008, 2010) to semi-parametrically forecast earnings growth and changes in

the price-earnings multiple using filtered regime dynamics with a Bayesian approach.

We provided a comprehensive evaluation and achieved economically and statistically

significant results that outperformed the SOP benchmark of Ferreira and Santa-Clara

(2011) with R2
OS and ∆CER of more than 1.5%. We highlighted the role of DFY and

T BL in predicting earnings growth and RVOL, ERP , and INF in predicting multiple

growth. Finally, our results suggest that the predictability of both return components

varies over time and is affected by the business cycles. While earnings growth was

more predictable during periods of expansion, forecasting multiple changes was more

advantageous during recessions.

Based on our results, there are many avenues for future research. In this paper,

we only use the expected value of the distribution implied by our flexible regime ap-

proach. Thus, incorporating predictive information about higher (regime-dependent)

moments (variance, skewness, kurtosis) or specific tail measures may improve our re-

sults and be helpful for risk management and portfolio insurance purposes. In addi-

tion, the number of regimes can be augmented, and the regime dynamics can be jointly

filtered using multivariate models. Another promising avenue would be to follow Faria

and Verona (2018) and conduct a wavelet analysis of the return components to relate

the economic regimes only to the frequency-decomposed parts. Finally, it would be

interesting to test the robustness of our methodology for other equity markets or asset

classes.
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Appendix

Appendix A: Full-Sample Results

Table A1: Summary Statistics of Economic Variables

Panel A: Univariate statistics

Variable Mean Median Std Minimum Maximum Skewness Kurtosis AR(1)

ERP 0.51 0.97 5.42 −34.88 35.60 −0.43 7.53 0.07
GM 0.03 0.13 6.67 −72.38 53.61 −0.57 20.53 0.26
GE 0.44 0.64 4.30 −52.83 70.39 1.92 98.53 0.77
DP 0.31 0.28 0.15 0.09 1.27 1.23 3.45 0.98

RVOL 16.59 14.44 9.20 5.44 68.17 2.61 8.92 0.97
TMS 1.69 1.72 1.29 −3.65 4.55 −0.23 0.15 0.96
DFY 1.12 0.90 0.68 0.32 5.64 2.53 9.28 0.97
TBL 3.30 2.74 3.08 0.01 16.30 1.13 1.37 0.99
IP 0.24 0.28 1.81 −14.37 15.32 −0.09 17.08 0.50
INF 0.25 0.24 0.52 −2.05 5.88 1.14 14.22 0.49

Panel B: Correlations

Variable ERP GM GE DP RVOL TMS DFY TBL IP

ERP
GM 0.77
GE 0.07 −0.58
DP −0.86 −0.69 −0.01
RVOL −0.06 0.03 −0.13 0.05
TMS −0.01 0.01 −0.02 0.03 0.06
DFY −0.26 −0.12 −0.13 0.33 0.14 0.05
TBL −0.05 −0.10 0.09 0.04 −0.05 −0.77 −0.14
IP 0.03 −0.09 0.18 −0.02 −0.17 −0.09 −0.13 0.08
INF −0.04 −0.12 0.16 0.04 −0.01 0.01 −0.02 0.03 0.18

Notes: Panel A shows the univariate statistics of the economic variables before transformation (in %).
ERP : excess stock return, GM: price-earnings ratio growth, GE: earnings growth, DP : log dividend-
price ratio, RVOL: realized 12M volatility, TMS: 10Y–3M term spread, DFY : BAA–AAA default spread,
T BL: 3M Treasury bill rate, IP : industrial production growth, INF: CPI inflation. Panel B presents the
contemporaneous correlation of the transformed variables. For more information about the variable
definitions and the transformation, we refer to Section 4. The sample period runs from 1927/12 to
2022/12.
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Figure A1: Economic Regimes over Time (continued on next page)
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Figure A1: Economic Regimes over Time (continued from previous page)
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Notes: Figure displays the regime identification of the ten economic variables. The smoothed probabili-
ties of the turbulent regime is depicted in red (left axis) and is calculated according to the Kim smoother
(Kim 1994). For reasons of illustration, we plot the variables in levels or annual growth rate in black
(right axis). The actual regime filtering is applied on the transformed variables. We refer to the Section 4
for further details. The in-sample period runs from 1927/12 to 2022/12. Gray shaded areas indicate
NBER recessions.

Figure A2: Flexible Probabilities for Excess Returns (ERP)
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Notes: Figure shows the flexible probabilities (before entropy pooling) for the turbulent regime of excess
stock returns over the entire sample. Four different weighting schemes are used. Panel A uses the
state classifier, Panel B the predicted probability, Panel C the conditional state density, and Panel D the
mixture density. For comparison, the red line shows an equal-weighting. The in-sample period runs
from 1927/12 to 2022/12.
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Appendix B: Additional Out-of-Sample Results

Table B1: EP vs. View: Differences in Forecasting Performance

R2
OS(EP)−R2

OS(View) ∆CER(EP)−∆CER(View)

Variable (1) (2) (3) (4) (1) (2) (3) (4)

Panel 1: Binary State Classification (A)

ERP 1.12 3.11 1.04 0.99 0.90 0.30 0.97 0.69
GM 0.78 1.93 −0.12 0.67 0.95 0.78 −0.02 0.67
GE 1.72 0.34 1.06 1.59 2.35 0.46 1.51 1.93
DP 0.09 −0.05 0.2 0.09 0.05 0.04 0.25 0.17
RVOL 1.00 1.72 0.53 0.84 0.81 0.47 0.58 0.70
TMS 0.82 3.32 −0.49 0.58 0.92 2.56 0.26 0.56
DFY −0.34 1.69 −0.17 −0.35 0.09 −0.10 0.34 −0.02
TBL 1.16 1.00 1.68 0.99 1.56 1.41 1.61 1.08
IP 0.48 0.47 0.11 0.40 0.99 −0.06 0.24 0.45
INF 0.10 0.4 0.07 0.16 −0.03 0.36 −0.04 −0.01

Panel 2: Predicted Probabilities (B)

ERP 0.98 1.54 0.68 0.90 0.87 0.07 0.64 0.67
GM 0.78 1.01 0.11 0.69 1.01 0.46 0.11 0.74
GE 0.88 0.17 0.53 0.77 1.80 0.24 0.67 1.20
DP 0.07 −0.02 0.12 0.07 0.02 0.03 0.18 0.11
RVOL 1.26 1.01 0.58 1.17 0.93 0.34 0.52 0.85
TMS 0.37 2.07 −0.82 0.25 0.91 2.59 −0.42 0.33
DFY 0.18 0.82 0.00 0.14 0.02 0.15 0.34 −0.04
TBL 0.57 0.65 0.85 0.50 0.94 1.26 0.86 0.20
IP 0.08 0.34 −0.09 0.07 0.02 0.05 −0.03 0.04
INF 0.16 0.38 −0.10 0.20 0.04 0.45 −0.20 0.12

Panel 3: Conditional State Density (C)

ERP 0.02 0.03 0.00 0.03 0.02 0.01 0.03 0.02
GM 0.03 0.00 0.03 0.02 0.05 −0.01 0.04 0.04
GE 1.49 0.04 0.86 1.28 2.67 0.48 1.24 1.99
DP 0.01 −0.38 0.51 0.05 −0.02 −0.48 0.61 0.08
RVOL −0.01 −0.01 −0.01 0.01 0.10 −0.01 0.09 0.08
TMS −0.10 0.06 −0.09 −0.04 0.02 0.01 0.02 0.01
DFY −0.02 0.09 −0.10 −0.10 0.11 0.07 −0.02 0.01
TBL 0.05 0.00 0.26 0.04 −0.02 −0.17 0.40 0.00
IP 0.20 0.05 0.14 0.16 0.32 0.03 0.15 0.20
INF −0.21 0.09 −0.24 −0.10 −0.48 0.08 −0.28 −0.34

Panel 4: Mixture Density (D)

ERP 0.01 −0.05 0.22 −0.02 0.16 0.01 0.32 0.08
GM −0.13 −0.07 −0.03 −0.10 0.00 −0.04 −0.02 −0.10
GE 3.47 0.50 1.42 2.97 3.54 1.33 1.76 2.41
DP 0.01 −0.40 0.50 0.06 −0.02 −0.52 0.68 0.09
RVOL −0.30 −0.08 −0.19 −0.30 0.00 0.01 −0.15 −0.03
TMS −0.10 0.00 0.00 −0.05 −0.20 −0.07 0.13 −0.08
DFY 0.17 0.10 0.00 0.17 0.31 0.06 0.17 0.11
TBL 0.10 0.00 0.63 0.02 −0.16 0.04 0.89 −0.06
IP 0.22 −0.03 0.30 0.21 0.20 −0.13 0.44 0.22
INF −0.20 0.10 −0.30 −0.10 −0.27 0.08 −0.24 −0.25

Notes: Table shows the differences in forecasting performance between entropy pooling (EP) and the
plain view-based weighting. In the unrestricted version (1) the SOP forecast consists of variable-specific
regime forecasts for earnings and multiple growth. (2) assumes no multiple growth (µ̂gm = 0) and uses
only the flexible regime forecasts for earnings growth, (3) assumes that earnings growth follows a 20-
year moving average (ḡe20Y ) and the expected multiple growth are is predicted by the flexible regime
forecasts. Finally (4) computes the return forecasts directly.
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Table B2: Average Effective Number of Scenarios (ENS)

ENS: Flexible Probability Weighting

View p(v,k) Entropy Pooling p∗(v,k)
Variable (A) (B) (C) (D) (A) (B) (C) (D)

ERP 81.4 87.7 85.7 82.5 94.2 94.9 83.9 89.8
GM 75.5 83.4 81.4 77.2 93.6 94.2 84.9 89.9
GE 56.3 76.4 65.4 62.8 93.6 94.2 84.9 89.9
DP 99.8 99.9 99.8 99.8 99.8 99.8 97.7 97.7
RVOL 77.8 85.5 83.5 78.9 94.0 94.6 84.3 89.3
TMS 50.8 73.6 63.6 58.2 94.0 94.6 84.3 89.3
DFY 70.2 83.0 76.0 73.7 88.2 93.6 84.6 87.5
TBL 60.1 77.3 67.5 64.7 88.1 95.2 87.6 83.7
IP 78.9 89.7 84.3 81.4 90.4 94.7 89.1 92.2
INF 66.6 78.1 75.3 70.6 89.1 91.4 86.6 90.7

Mean 71.7 83.5 78.3 75.0 92.5 94.7 86.8 90.0

Notes: Table shows the average out-of-sample effective number of scenarios for the different flexible
probability choices in % of the maximal information content (with pt = 1/τ). (A) indicates the weighting
scheme using the binary state classification, (B) uses the predicted state probabilities, (C) the conditional
state density and (D) the mixture state density. In addition, Mean shows the average over all variables
for each weighting scheme.
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Appendix C: Out-of-Sample Robustness

Table C1: Robustness in ∆CER (in %) for unrestricted model (1)

w = [0,1] w = [0,1.5] w = [−0.5,1.5]

Variable γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5

Panel 1: Benchmarks

FSC 0.78 1.72 1.46 2.21 2.36 1.78 2.12 2.28 1.74
EW 1.00 1.22 0.61 1.92 1.24 0.73 2.20 1.44 0.89

Panel 2: Binary State Classification (A)

ERP 0.99 1.68 1.24 1.95 2.05 1.27 2.22 2.23 1.42
GM 0.96 1.67 1.13 1.89 1.94 1.30 2.17 2.12 1.45
GE 0.92 1.31 0.86 1.94 1.56 1.02 2.24 1.73 1.17
DP 0.93 1.23 0.65 1.79 1.29 0.79 2.11 1.57 1.00
RVOL 0.93 1.62 1.12 1.87 1.78 1.16 2.04 1.91 1.27
TMS 0.50 0.67 0.14 1.09 0.29 0.14 1.22 0.42 0.24
DFY 0.57 1.27 1.08 1.36 1.83 1.36 1.13 1.59 1.15
TBL 1.03 1.33 0.68 1.79 1.26 0.63 2.02 1.39 0.73
IP 0.86 1.16 0.46 1.61 1.01 0.52 1.87 1.21 0.69
INF 0.77 1.36 0.86 1.61 1.57 0.89 2.11 1.94 1.14

Panel 3: Predicted Probabilities (B)

ERP 1.08 1.64 1.14 1.91 1.91 1.16 2.21 2.09 1.30
GM 1.00 1.68 1.08 1.91 1.86 1.21 2.20 2.03 1.36
GE 0.99 1.22 0.77 1.92 1.42 0.93 2.20 1.59 1.09
DP 0.92 1.19 0.63 1.77 1.26 0.77 2.10 1.54 0.98
RVOL 1.06 1.70 1.32 1.94 2.17 1.50 2.15 2.30 1.63
TMS 0.60 0.79 0.28 1.10 0.54 0.42 1.26 0.68 0.52
DFY 0.78 1.28 1.06 1.55 1.83 1.27 1.60 1.81 1.28
TBL 0.76 1.20 0.71 1.47 1.31 0.86 1.80 1.56 1.05
IP 0.85 1.04 0.39 1.70 0.92 0.50 1.95 1.13 0.67
INF 0.70 1.36 0.83 1.56 1.51 0.87 2.05 1.88 1.12

Panel 4: Conditional State Density (C)

ERP 0.91 1.37 0.99 1.60 1.59 1.18 1.71 1.71 1.28
GM 0.94 1.30 0.88 1.56 1.42 1.05 1.67 1.55 1.16
GE 0.97 1.41 0.61 1.91 1.26 0.68 2.25 1.47 0.85
DP 0.85 1.23 0.61 1.61 1.20 0.68 1.88 1.37 0.83
RVOL 0.22 1.14 0.88 0.69 1.26 0.65 0.84 1.37 0.72
TMS 0.52 1.03 0.67 1.24 1.21 0.80 1.54 1.38 0.95
DFY 0.83 1.30 0.91 1.57 1.50 1.14 1.73 1.62 1.25
TBL 1.08 1.62 1.07 2.17 1.86 1.06 2.55 2.08 1.24
IP 0.75 1.12 0.50 1.56 1.03 0.53 1.85 1.20 0.68
INF 1.07 1.45 0.87 2.00 1.53 0.92 2.30 1.71 1.07

Panel 5: Mixture Density (D)

ERP 0.99 1.53 0.93 1.83 1.60 1.02 1.97 1.73 1.13
GM 0.82 1.43 0.91 1.57 1.56 0.97 1.73 1.70 1.09
GE 1.07 1.11 0.46 1.91 1.00 0.51 2.21 1.17 0.66
DP 0.85 1.24 0.62 1.61 1.21 0.69 1.88 1.38 0.83
RVOL 0.53 1.43 0.96 1.38 1.61 0.85 1.52 1.75 0.95
TMS 1.10 1.34 0.96 1.99 1.58 1.38 2.17 1.73 1.51
DFY 0.86 1.56 1.06 1.83 1.82 1.15 2.02 1.95 1.28
TBL 0.74 1.40 0.90 1.57 1.48 1.20 1.72 1.62 1.32
IP 0.80 0.95 0.35 1.61 0.83 0.46 1.86 1.02 0.61
INF 0.97 1.39 0.83 1.80 1.45 0.89 2.08 1.61 1.03

Notes: Table shows the certainty equivalent gains for varying coefficients of risk aversion (γ) and invest-
ment constraints (w). Panel 1 displays the two benchmark models FSC (Ferreira and Santa-Clara 2011)
and EW (pt = 1

τ ). The Panels 2−5 present the results for different weightings using the regime-dynamics
of the ten state variables. The unrestricted SOP forecasting model (1) consists of variable-specific regime
forecasts for earnings and multiple growth. Superior results compared to FSC are highlighted in bold.
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Table C2: Robustness in ∆CER (in %) for restricted version (2) with µ̂gm = 0

w = [0,1] w = [0,1.5] w = [−0.5,1.5]

Variable γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5

Panel 1: Benchmarks

FSC 0.78 1.72 1.46 2.21 2.36 1.78 2.12 2.28 1.74
EW 1.57 1.34 0.98 2.72 1.76 1.20 2.95 1.92 1.34

Panel 2: Binary State Classification (A)

ERP −0.13 1.02 0.85 0.61 1.33 1.22 0.06 1.07 1.05
GM 0.25 1.15 1.06 1.07 1.68 1.41 1.04 1.73 1.46
GE 1.32 1.55 1.36 2.39 2.26 1.69 2.64 2.45 1.84
DP 1.59 1.36 0.97 2.76 1.75 1.18 3.02 1.91 1.32
RVOL 0.90 1.24 0.98 1.89 1.60 1.32 2.00 1.73 1.43
TMS 0.85 0.97 0.63 1.54 1.14 0.82 2.03 1.47 1.07
DFY 0.73 1.58 1.39 1.85 2.18 1.83 1.91 2.23 1.85
TBL 2.00 1.97 1.30 3.06 2.25 1.18 3.55 2.55 1.42
IP 0.80 1.57 1.20 1.88 1.88 1.24 1.99 2.02 1.33
INF 1.24 1.55 1.15 2.06 1.94 1.31 2.27 2.08 1.43

Panel 3: Predicted Probabilities (B)

ERP −0.06 0.93 0.80 0.65 1.24 1.15 0.37 1.12 1.08
GM 0.48 1.07 1.04 1.18 1.66 1.38 1.08 1.63 1.36
GE 1.41 1.50 1.27 2.60 2.15 1.58 2.78 2.31 1.70
DP 1.59 1.35 0.99 2.76 1.77 1.21 3.02 1.93 1.34
RVOL 0.76 1.27 1.04 1.88 1.67 1.38 1.95 1.79 1.49
TMS 1.04 1.10 0.73 1.91 1.28 0.96 2.32 1.52 1.15
DFY 1.17 1.65 1.36 2.38 2.13 1.85 2.52 2.21 1.90
TBL 1.88 1.76 1.23 2.95 2.17 1.24 3.32 2.39 1.41
IP 1.21 1.57 1.19 2.43 1.97 1.30 2.62 2.14 1.43
INF 1.36 1.71 1.26 2.44 2.11 1.40 2.62 2.25 1.51

Panel 4: Conditional State Density (C)

ERP 0.62 1.64 1.20 1.63 1.86 1.43 1.79 1.99 1.52
GM 0.86 1.65 1.18 1.93 1.87 1.42 2.09 2.01 1.53
GE 1.34 1.75 1.13 2.67 2.01 1.27 2.92 2.20 1.41
DP 0.74 1.22 0.79 1.73 1.32 1.21 1.89 1.44 1.31
RVOL 0.99 1.58 1.16 1.93 1.85 1.45 2.08 2.00 1.56
TMS 0.76 1.39 1.08 1.69 1.72 1.24 1.81 1.84 1.35
DFY 0.65 1.70 1.38 1.67 2.11 1.70 1.82 2.20 1.78
TBL 1.39 1.91 1.53 2.51 2.50 1.59 2.68 2.64 1.71
IP 0.69 1.83 1.34 1.78 2.03 1.42 1.96 2.18 1.53
INF 1.16 1.55 1.14 2.19 1.82 1.34 2.29 1.94 1.44

Panel 5: Mixture Density (D)

ERP 0.72 1.77 1.25 1.82 1.93 1.45 1.98 2.07 1.54
GM 0.93 1.71 1.29 2.09 2.03 1.55 2.22 2.18 1.66
GE 1.33 1.48 0.77 2.59 1.47 0.89 2.75 1.64 1.03
DP 0.74 1.18 0.73 1.73 1.23 1.12 1.89 1.35 1.22
RVOL 1.09 1.71 1.21 2.24 1.93 1.49 2.36 2.07 1.60
TMS 1.04 1.68 1.17 1.97 1.78 1.46 2.10 1.92 1.56
DFY 0.58 1.83 1.27 1.69 2.01 1.51 1.86 2.15 1.60
TBL 0.82 1.54 1.03 1.67 1.60 1.29 1.78 1.72 1.39
IP 0.94 1.76 1.23 2.20 1.90 1.40 2.31 2.04 1.51
INF 1.25 1.73 1.23 2.56 2.04 1.48 2.68 2.17 1.59

Notes: Table shows the certainty equivalent gains for varying coefficients of risk aversion (γ) and invest-
ment constraints (w). Panel 1 displays the two benchmark models FSC (Ferreira and Santa-Clara 2011)
and EW (pt = 1

τ ). The Panels 2−5 present the results for different weightings using the regime-dynamics
of the ten state variables. The forecasting model is restricted on the multiple growth µ̂gm = 0 such that
the SOP forecast consists of variable-specific regime forecasts only for earnings growth. Superior results
compared to FSC are highlighted in bold.
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Table C3: Robustness in ∆CER (in %) restricted version (3) with µ̂ge = ḡe20Y

w = [0,1] w = [0,1.5] w = [−0.5,1.5]

Variable γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5 γ = 1 γ = 3 γ = 5

Panel 1: Benchmarks

FSC 0.78 1.72 1.46 2.21 2.36 1.78 2.12 2.28 1.74
EW 0.60 1.41 1.12 1.69 1.84 1.40 1.75 1.94 1.48

Panel 2: Binary State Classification (A)

ERP 0.93 1.51 1.21 1.97 1.99 1.27 2.09 2.11 1.37
GM 0.82 1.31 1.06 1.80 1.70 1.44 1.88 1.80 1.52
GE 0.78 1.33 0.98 1.69 1.64 1.12 1.69 1.70 1.17
DP 0.76 1.56 1.22 1.74 2.02 1.49 1.86 2.15 1.57
RVOL 0.63 1.66 1.25 1.82 1.97 1.55 1.95 2.09 1.63
TMS 0.59 0.88 0.24 1.49 0.47 −0.03 1.49 0.50 −0.01
DFY 0.16 0.69 0.53 0.89 1.02 0.77 0.72 0.88 0.63
TBL 0.66 1.00 0.86 1.45 1.53 0.93 1.39 1.54 0.97
IP 0.51 0.97 0.75 1.45 1.39 0.99 1.62 1.51 1.11
INF 1.14 1.61 1.26 2.33 2.08 1.48 2.47 2.21 1.56

Panel 3: Predicted Probabilities (B)

ERP 0.96 1.51 1.24 1.97 2.00 1.40 2.10 2.12 1.50
GM 0.75 1.48 1.24 1.76 2.02 1.53 1.85 2.12 1.61
GE 0.73 1.27 0.97 1.61 1.59 1.22 1.64 1.69 1.30
DP 0.68 1.47 1.17 1.59 1.93 1.44 1.71 2.06 1.53
RVOL 0.72 1.83 1.51 1.96 2.38 1.82 2.07 2.49 1.90
TMS 0.59 0.88 0.54 1.33 0.88 0.62 1.35 0.92 0.65
DFY 0.36 0.97 0.73 1.24 1.31 0.96 1.25 1.39 1.02
TBL 0.54 0.92 0.79 1.46 1.28 1.13 1.39 1.30 1.15
IP 0.72 1.06 0.86 1.55 1.49 1.11 1.69 1.60 1.21
INF 0.92 1.40 1.12 1.92 1.80 1.38 2.15 1.96 1.48

Panel 4: Conditional State Density (C)

ERP 0.75 1.11 0.85 1.59 1.52 1.09 1.58 1.53 1.12
GM 0.66 1.16 1.02 1.62 1.62 1.30 1.55 1.64 1.32
GE 0.58 1.18 0.97 1.47 1.61 1.21 1.44 1.64 1.25
DP 0.62 1.32 1.04 1.46 1.77 1.27 1.72 1.98 1.43
RVOL −0.13 1.02 0.97 0.15 1.39 0.99 0.15 1.40 1.00
TMS 1.02 1.41 0.97 2.21 1.78 1.20 2.16 1.80 1.23
DFY 0.43 0.83 0.56 1.29 1.09 0.78 1.28 1.19 0.86
TBL 0.89 1.18 0.97 1.97 1.65 1.21 1.89 1.66 1.23
IP 0.38 0.65 0.54 1.20 1.05 0.77 1.25 1.10 0.85
INF 1.01 1.43 1.18 2.18 1.98 1.37 2.27 2.12 1.47

Panel 5: Mixture Density (D)

ERP 0.76 1.11 0.87 1.70 1.54 1.08 1.64 1.53 1.10
GM 0.43 1.15 0.95 1.41 1.56 1.21 1.33 1.57 1.24
GE 0.89 1.41 1.14 1.83 1.93 1.41 1.82 1.96 1.44
DP 0.66 1.39 1.11 1.56 1.89 1.34 1.80 2.09 1.50
RVOL 0.12 1.18 1.05 0.72 1.61 1.04 0.84 1.69 1.09
TMS 1.16 1.32 1.02 2.20 1.80 1.33 2.20 1.76 1.32
DFY 0.78 0.99 0.79 1.74 1.44 0.99 1.75 1.43 1.01
TBL 0.75 1.49 1.16 2.06 1.97 1.43 2.03 1.96 1.43
IP 0.41 0.81 0.64 1.31 1.23 0.86 1.36 1.26 0.92
INF 0.39 1.26 1.00 1.36 1.67 1.25 1.23 1.66 1.23

Notes: Table shows the certainty equivalent gains for varying coefficients of risk aversion (γ) and invest-
ment constraints (w). Panel 1 displays the both benchmark models FSC (Ferreira and Santa-Clara 2011)
and EW (pt = 1

τ ). The Panels 2−5 present the results for different weightings using the regime-dynamics
of the ten state variables. The forecasting model is restricted on the earnings growth (ḡe20Y ) such that
the SOP forecast consists of variable-specific regime forecasts only for multiple growth. Superior results
compared to FSC are highlighted in bold.
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