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Mathematics for Economists

1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

1 Introductory Topics I: Algebra and Equations
1.1 Some Basic Concepts and Rules

natural numbers:
1, 2, 3, 4, ...

integers
0, �1, �2, �3, �4, ...

where �1 stands for both, +1 and �1
A real number can be expressed in the form

�m.α1α2...

Examples of real numbers are

�2.5
273.37827866...
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Mathematics for Economists

1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rule
The fraction

p/0

is not de�ned for any real number p.

Rule

a�n =
1
an

whenever n is a natural number and a 6= 0.

Warning:
(a+ b)r 6= ar + br
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Mathematics for Economists

1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rules of Algebra

(a) a+ b = b+ a (g) 1 � a = a
(b) (a+b)+c = a+(b+c) (h) aa�1 = 1, for a 6= 0
(c) a+ 0 = a (i) (�a)b = a(�b) = �ab
(d) a+ (�a) = 0 (j) (�a)(�b) = ab
(e) ab = ba (k) a(b+ c) = ab+ ac
(f ) (ab)c = a(bc) (l) (a+ b)c = ac + bc

Rules of Algebra

(a+ b)2 = a2 + 2ab+ b2 (1)

(a� b)2 = a2 � 2ab+ b2

(a+ b) (a� b) = a2 � b2
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1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rules for Fractions

a � c
b � c =

a
b

(b 6= 0 and c 6= 0)
�a
�b =

(�a) � (�1)
(�b) � (�1) =

a
b

� a
b

= (�1) a
b
=
(�1)a
b

=
�a
b

a
c
+
b
c

=
a+ b
c

a
b
+
c
d

=
a � d
b � d +

b � c
b � d =

a � d + b � c
b � d

a+
b
c

=
a � c
c
+
b
c
=
a � c + b
c
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1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rules for Fractions

a � b
c

=
a � b
c

a
b
� c
d

=
a � c
b � d

a
b
� c
d

=
a
b
� d
c
=
a � d
b � c
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1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rules for Powers

abac = ab+c

ab

ac
= ab�c

(ab)c = abc = (ac )b

a0 = 1 (valid for a 6= 0, because 00 is not de�ned)

Remark: The symbol , means �if and only if�.

Rule

b = c () ab = ac (2)
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1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rules for Roots

a1/2 =
p
a (valid if a � 0)p

ab =
p
a
p
br

a
b

=

p
ap
b

Warning: p
a+ b 6=

p
a+

p
b
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1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

Rules for Roots

a1/q = q
p
a

ap/q =
�
a1/q

�p
= (ap)1/q =

�
q
p
ap
�

(p an integer, q a natural number)

Rules for Inequalities

a > b and b > c ) a > c
a > b and c > 0 ) ac > bc
a > b and c < 0 ) ac < bc
a > b and c > d ) a+ c > b+ d
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Mathematics for Economists

1. Introductory Topics I: Algebra and Equations

1.1. Some Basic Concepts and Rules

De�nition
The absolute value of x is denoted by jx j, and

jx j =
�

x if x � 0
�x if x < 0

Furthermore,

jx j � a means that � a � x � a
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Mathematics for Economists

1. Introductory Topics I: Algebra and Equations

1.2. How to Solve Simple Equations

1.2 How to Solve Simple Equations

In the equation
3x + 10 = x + 4

x is called a variable.

An example with the three variables Y , C and I :

Y = C + I

Solving an equation means �nding all values of the variable(s)
that satisfy the equation.
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1. Introductory Topics I: Algebra and Equations

1.2. How to Solve Simple Equations

Two equations that have exactly the same solution are
equivalent equations.

Rule
To get equivalent equations, do the following to both sides of the
equality sign:

add (or subtract) the same number,

multiply (or divide) by the same number (di¤erent from 0!).
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1. Introductory Topics I: Algebra and Equations

1.2. How to Solve Simple Equations

Example

6p � 1
2
(2p � 3) = 3(1� p)� 7

6
(p + 2)

6p � p + 3
2
= 3� 3p � 7

6
p � 14

6

6p � p + 3p + 7
6
p =

3 � 6
6
� 14
6
� 3 � 3
2 � 3

8 � 6+ 7
6

p =
18� 14� 9

6
55p = �5

p =
�5
55

= � 1
11
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1. Introductory Topics I: Algebra and Equations

1.2. How to Solve Simple Equations

Example

x + 2
x � 2 �

8
x2 � 2x =

2
x

(not de�ned for x = 2, x = 0)

x (x + 2)
x (x � 2) �

8
x (x � 2) =

2 (x � 2)
x (x � 2) (for x 6= 2 and x 6= 0)

x (x + 2)� 8 = 2 (x � 2)
x2 + 2x � 8 = 2x � 4

x2 = 4

x = �2

This is the only solution, since for x = 2 the equation is not
de�ned.
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1. Introductory Topics I: Algebra and Equations

1.2. How to Solve Simple Equations

Example

For
z

z � 5 +
1
3
=

�5
5� z

no solution exists: For z 6= 5 one can multiply both sides by z � 5
to get

z +
z � 5
3

= 5

3z + z � 5 = 15

4z = 20

z = 5

But for z = 5 the equation is not de�ned.
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1. Introductory Topics I: Algebra and Equations

1.3. Equations with Parameters

1.3 Equations with Parameters

Equations can be used to describe a relationship between two
variables (e.g., x and y).

Examples

y = 10x

y = 3x + 4

y = �8
3
x � 7

2

These equations have a common �linear� structure:

y = ax + b

where y and x are the variables while a and b are real
numbers, called parameters or constants.
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

1.4 Quadratic Equations

De�nition
Quadratic equations (with one unknow variable) have the general
form

ax2 + bx + c = 0 (a 6= 0) (3)

where a, b and c are constants (that is, parameters) and x is the
unknown variable (for short: the unknown)

Division by the parameter a results in the equivalent equation:

x2 +
b
a
x +

c
a
= 0 (4)
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

Example

Solve the equation
x2 + 8x � 9 = 0

The solution applies a method called completing the square. This
method exploits formula (1)

x2 + 8x = 9

x2 + 2 � 4 � x = 9

x2 + 2 � 4 � x + 42 = 9+ 42

(x + 4)2 = 25

Therefore, the solutions are x1 = 1 and x2 = �9.
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

The general case:

x2 +
b
a
x +

c
a
= 0

x2 +
b
a
x = �c

a

x2 + 2
�
b/a
2

�
x +

�
b/a
2

�2
=

�
b/a
2

�2
� c
a�

x +
b/a
2

�2
=

b2

4a2
� 4ac
4a2

4a2
�
x +

b/a
2

�2
= b2 � 4ac
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

Note that for
b2 � 4ac < 0

no solution would exist.

However, if b2 � 4ac > 0, the solutions are

2a
�
x +

b/a
2

�
=

p
b2 � 4ac

2a
�
x +

b/a
2

�
= �

p
b2 � 4ac

which is equivalent to

2ax + b = �
p
b2 � 4ac (5)
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

Solving (5) for x gives the equation on the right hand side of
the following rule:

Rule (Quadratic Formula: Version 1)

If b2 � 4ac � 0 and a 6= 0, then

ax2 + bx + c = 0 , x =
�b�

p
b2 � 4ac
2a

(6)

The right hand part of (6) is called the quadratic formula.
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

The quadratic formula could be written also in the form

x =
�b/a�

p
b2/a2 � 4c/a
2

=
�b/a
2

�
p
b2/a2 � 4c/ap

4

=
�b/a
2

�

s
(b/a)2 � 4c/a

4

=
�b/a
2

�

s
(b/a)2

4
� c/a (7)
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

De�ning

p =
b
a

and q =
c
a

(8)

equation (4) simpli�es to

x2 + px + q = 0 (9)

and the quadratic formula (7) to the right hand side of the
following rule:

Rule (Quadratic Formula: Version 2)

If p2/4� q � 0, then

x2 + px + q = 0 , x = �p
2
�
r
p2

4
� q (10)
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

Example

Consider again the quadratic equation

x2 + 8x � 9 = 0

that is, p = 8 and q = �9. Therefore, the quadratic formula (10)
becomes

x1,2 = �8
2
�
r
82

4
+ 9

= �4�
p
16+ 9

= �4� 5

and the solutions are

x1 = 1 and x2 = �9
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1. Introductory Topics I: Algebra and Equations

1.4. Quadratic Equations

Another useful rule is:

Rule

If x1 and x2 are the solutions of ax2 + bx + c = 0, then

ax2 + bx + c = 0 , a (x � x1) (x � x2) = 0

Example

The latter rule implies that

x2 + 8x � 9 = 0

with its solutions x1 = 1 and x2 = �9 can be written in the form

(x � 1) (x + 9) = 0
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

1.5 Linear Equations in Two Unknowns

Economic models are usually a set of interdependent
equations (a system of equations).

The equations of the system can be linear or nonlinear.

A (non-economic) example with two linear equations:

2x + 3y = 18 (11)

3x � 4y = �7 (12)

We need to �nd the values of x and y that satisfy both
equations.
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Rule (Method 1)

Solve one of the equations for one of the variables in terms of the
other; then substitute the result into the other equation.

Example

From (11)

3y = 18� 2x

y = 6� 2
3
x
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example continued

Inserting in (12) gives

3x � 4
�
6� 2

3
x
�

= �7

3x � 24+ 8
3
x = �7

17
3
x = 17

Dividing both sides by 17 gives

1
3
x = 1

x = 3 (13)
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example (continued)

Inserting (13) in (11) gives

2 � 3+ 3y = 18

3y = 12

y = 4

Rule (Method 2)

Eliminate one of the variables by adding or subtracting a multiple
of one equation from the other.
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example

Multiply (11) by 4 and (12) by 3. This gives

8x + 12y = 72

9x � 12y = �21

Then add both equations. This gives

17x = 51

x = 3

Inserting this result in (11) gives

2 � 3+ 3y = 18

3y = 12

y = 4
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Rule (Method 3)

Solve both equations for the variable that we want to eliminate
�rst; then set the right hand sides of the two resulting equations
equal (or, equivalently, divide one equation by the other, that is,
divide the two left hand sides by each other and divide the two
right hand sides by each other).
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example

For solving the system

y = 5� x (14)

�x + y = 1 (15)

we solve both equations for y :

y = 5� x (16)

y = 1+ x (17)

Since the left hand sides of (16) and (17) are identical, also the
right hand sides are identical and we can write:

5� x = 1+ x (18)
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example (continued)

We solve (18) for x :

4 = 2x

x = 2

Inserting this result in any of the equations (14) to (17) yields

y = 3
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example

A prominent model from macroeconomics is

Y = C + I (19)

C = a+ bY (20)

where

Y = Gross Domestic Product (GDP)
C = Consumption
I = Investment

Y and C are considered here as variables.
a and b are positive parameters of the model with b < 1.
Also I is a parameter.
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example (continued)

Using method 1 to solve the macroeconomic model (19) and (20),
we �rst eliminate C by substituting C = a+ bY in equation (19):

Y = a+ bY + I

Y � bY = a+ I

(1� b)Y = a+ I

Y =
a

1� b +
1

1� b I (21)

This equation directly tells us for all parameter values (a, b, and I )
the resulting gross domestic product Y .
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1. Introductory Topics I: Algebra and Equations

1.5. Linear Equations in Two Unknowns

Example (continued)

Inserting (21) in (20) gives

C = a+ b
�

a
1� b +

1
1� b I

�
=

a (1� b)
1� b +

ba
1� b +

bI
1� b

=
a+ bI
1� b
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1. Introductory Topics I: Algebra and Equations

1.6. Nonlinear Equations

1.6 Nonlinear Equations

It is possible also to solve nonlinear equations.

In the following equations, x , y , z , and w are variables and all
other letters are parameters.

Example

The solutions of
x3
p
x + 2 = 0

are x = 0 and x = �2.
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1. Introductory Topics I: Algebra and Equations

1.6. Nonlinear Equations

Example (continued)

The only solutions of

x (x + a) = x (2x + b)

are x = 0 and x = a� b, because for x 6= 0 the equation simpli�es
to

x + a = 2x + b

which gives the second solution.

The solutions of

x (y + 3)
�
z2 + 1

�p
w � 3 = 0

are all x-y -z-w -combinations with x = 0 or y = �3 or w = 3.
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1. Introductory Topics I: Algebra and Equations

1.6. Nonlinear Equations

Example (continued)

The solutions of
λy = λz2

are for λ 6= 0 all y -z-combinations with y = z2 and for λ = 0 all
y -z-combinations.

39 / 358



Mathematics for Economists

2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

2 Introductory Topics II: Miscellaneous
2.1 Summation Notation

Suppose that there are six regions, each region being denoted
by a number:

i = 1, 2, 3, 4, 5, 6 or even shorter i = 1, 2, ..., 6

Let the population in a region be denoted by Ni . Then the
total population of the six regions is

N1 +N2 +N3 +N4 +N5 +N6 = N1 +N2 + ...+N6 =
6

∑
i=1
Ni

More generally, if there are n regions, the total population is
n

∑
i=1
Ni
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

Examples

5

∑
i=1
i2 = 12 + 22 + 32 + 42 + 52

= 1+ 4+ 9+ 16+ 25 = 55
5

∑
k=3

(5k � 3) = (5 � 3� 3) + (5 � 4� 3) + (5 � 5� 3) = 51

n

∑
i=3
(xij � x̄j )2 = (x3j � x̄j )2 + (x4j � x̄j )2 + ...+ (xnj � x̄j )2
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

The summation sign allows for a compact formulation of
lengthy expressions.

Examples

The expression

a1(1� a1) + a2(1� a2) + a3(1� a3) + a4(1� a4) + a5(1� a5)

can be written in the compact form

5

∑
i=1
ai (1� ai )
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

Examples (continued)

The expression

(b)3 + (2b)4 + (3b)5 + (4b)6 + (5b)7 + (6b)8

can be written in the compact form

6

∑
i=1
(ib)2+i
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

Rule (Additivity Property)
n

∑
i=1
(ai + bi ) =

n

∑
i=1
ai +

n

∑
i=1
bi

Rule (Homogeneity Property)
n

∑
i=1
cai = c

n

∑
i=1
ai

and if ai = 1 for all i then

n

∑
i=1
cai = c

n

∑
i=1
ai = c (n � 1) = cn
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

Rules for Sums

n

∑
i=1
i = 1+ 2+ ...+ n =

1
2
n (n+ 1)

n

∑
i=1
i2 = 12 + 22 + ...+ n2 =

1
6
n (n+ 1) (2n+ 1)

n

∑
i=1
i3 = 13 + 23 + ...+ n3 =

�
1
2
n (n+ 1)

�2
=

 
n

∑
i=1
i

!2

Rule for Sums
n

∑
i=0
ai =

1� an+1
1� a
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

Suppose that a �rm calculates the total revenues from its
sales in Z regions (indexed by i) over S months (indexed by
j). The revenues are represented by the rectangular array

a11 a12 � � � a1S
a21 a22 � � � a2S
...

...
. . .

...
aZ 1 aZ 2 � � � aZS

An element aij of this array represents the revenues in region i
during month j .

For example, element a21 represents the revenues in Region 2
during month 1.
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

The total revenues over all S months in some speci�c region i
(the elements in row i) can be written by

S

∑
j=1
aij = ai1 + ai2 + ...+ aiS

and the total revenues over all Z regions during some speci�c
month j (the elements in column j) can be written by

Z

∑
i=1
aij = a1j + a2j + ...+ aZj
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

The total revenues over all Z regions and all S months can be
expressed by a double sum:

Z

∑
i=1

 
S

∑
j=1
aij

!
= (a11 + a12 + ...+ a1S ) + (a21 + a22 + ...+ a2S )

+...+ (aZ 1 + aZ 2 + ...+ aZS )

or equivalently

S

∑
j=1

 
Z

∑
i=1
aij

!
= (a11 + a21 + ...+ aZ 1) + (a12 + a22 + ...+ aZ 2)

+...+ (a1S + a2S + ...+ aZS )

It is usual practice to delete the brackets:
S

∑
j=1

Z

∑
i=1
aij =

Z

∑
i=1

S

∑
j=1
aij
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

The double sum notation allows us to write lengthy
expressions in a compact way.

Rule

Z

∑
i=1
bi

S

∑
j=1
aijbj =

Z

∑
i=1

S

∑
j=1
aijbibj =

S

∑
j=1

Z

∑
i=1
aijbibj =

S

∑
j=1
bj

Z

∑
i=1
aijbi

Rule

Consider some summation sign ∑Z
i=1. All variables with index i

must be to the right of that summation sign.
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2. Introductory Topics II: Miscellaneous

2.1. Summation Notation

Example

Consider the expression

b1(a11b1 + a12b2 + ...+ a1SbS )

+ b2(a21b1 + a22b2 + ...+ a2SbS )
...

+ bS (aS1b1 + aS2b2 + ...+ aSSbS )

This sum can be written in the form

S

∑
i=1
bi (ai1b1 + ai2b2 + ...+ aiSbS )
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2.1. Summation Notation

Example (continued)

Writing the brackets in a more compact form gives

S

∑
i=1
bi

S

∑
j=1
aijbj

which can be expressed also in the form

S

∑
i=1

S

∑
j=1
aijbibj
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2.1. Summation Notation

Example (continued)

Writing the expression

Z

∑
i=1

S

∑
j=1
aijbibj

in the forms

Z

∑
i=1
bj

S

∑
j=1
aijbi , bi

Z

∑
i=1

S

∑
j=1
aijbj , or

Z

∑
i=1
aij

S

∑
j=1
bibj

is not admissable!

52 / 358



Mathematics for Economists

2. Introductory Topics II: Miscellaneous

2.2. Essentials of Set Theory

2.2 Essentials of Set Theory

Suppose that a restaurant serves four di¤erent dishes: �sh,
pasta, omelette, and chicken.

This menu can be considered as a set with four elements or
members (here: dishes):

M = fpasta, omelette, chicken, �shg

Notice that the order in which the dishes are listed does not
matter.

The sets

A = f1, 2, 3g and B = f3, 2, 1g

are considered equal, because each element in A is also in B
and each element in B is also in A.
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2.2. Essentials of Set Theory

Sets can contain many other types of elements. For example,
the set

A = f(1 , 3), (2 , 3), (1 , 4), (2 , 4)g
contains four pairs of numbers.
Sets could contain in�nitely many elements.
The set of �all� real numbers is denoted by R.
The set containing as elements �all� pairs of real numbers is
denoted by R2.
The notation

x 2 A
indicates that the element x is an element of set A.
The notation

x /2 A
indicates that the element x is not an element of set A.
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2.2. Essentials of Set Theory

Example

For the set
A = fa, b, cg

one gets d /2 A and for the set

B = R2

one gets (345.46 , 27.42) 2 B.
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2.2. Essentials of Set Theory

Let A and B be any two sets.

Then A is a subset of B if it is true that every member of A is
also a member of B.

Short hand notation: A � B.
If every member of A is also a member of B and at least one
element of B is not in A, then A is a strict (or proper) subset
of B: A � B.
An empty set f g is denoted by ?. The empty set is always a
subset of any other set.
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2.2. Essentials of Set Theory

Example

The sets

A = f1, 2, 3g and B = f1, 2, 3, 4, 5g

give A � B and therefore, A � B.
The sets

C = f1, 3, 2, 4g and D = f4, 2, 3, 1g

imply that C � D, D � C , and therefore, C = D.
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2.2. Essentials of Set Theory

There are three important set operations: union, intersection,
and minus.

A[ B In words: �A union B �. The elements that belong to
at least one of the sets A and B.

A[ B = fx : x 2 A or x 2 Bg

A\ B In words: �A intersection B �. The elements that
belong to both A and B.

A\ B = fx : x 2 A and x 2 Bg

AnB In words: �A minus B �. The elements that belong
to A, but not to B.

AnB = fx : x 2 A and x /2 Bg
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2.2. Essentials of Set Theory

Example

The sets
A = f1, 2, 3g and B = f3, 4, 5g

yield

A[ B = f1, 2, 3, 4, 5g
A\ B = f3g
AnB = f1, 2g

Note that
A\ B + AnB = A

59 / 358



Mathematics for Economists

3. Functions of One Variable

3.1. Basic De�nitions

3 Functions of One Variable
3.1 Basic De�nitions

Suppose that a variable x can take any value from an interval
of real values.

This interval is denoted as the domain D of the real variable x .

De�nition
A function of a real variable x with domain D is a rule that assigns
a unique real number to each number x in D.

As x varies over the whole domain, the set of all possible
resulting values f (x) is called the range of f .

Distinguish between the function (the rule) f and the value
f (x) which denotes the value of f at x .

60 / 358



Mathematics for Economists

3. Functions of One Variable

3.1. Basic De�nitions

Functions are often denoted by other letters than f (e.g., g ,
C , F , φ).

Example

f (x) = x3

Often one uses the shorter notation y instead of f (x):

y = x3

y is called the dependent (or endogenous) variable.

x is called the independent (or exogenous) variable.
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3.1. Basic De�nitions

The de�nition of a function is incomplete unless its domain is
speci�ed.

Convention: If a function is de�ned using an algebraic
formula, the domain consists of all values of the independent
variable for which the formula gives a unique value (unless
another domain is explicitly mentioned).

Example

The domain D of
f (x) =

1
x + 3

consists of all real numbers x 6= �3.
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Example

Suppose that the total dollar cost of producing x units of a
product is given by

C (x) = 100x
p
x + 500 (22)

for each nonnegative real number x that is smaller or equal than
the capacity limit x0: D = [0, x0]. Suppose that 16 < x0. The cost
of producing x = 16 units is

C (16) = 100 � 16
p
16+ 500

= 100 � 16 � 4+ 500
= 6900
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De�nition
A function f is called increasing
if x1 < x2 implies f (x1) � f (x2).

A function f is called strictly increasing
if x1 < x2 implies f (x1) < f (x2).

A function f is called decreasing
if x1 < x2 implies f (x1) � f (x2).

A function f is called strictly decreasing
if x1 < x2 implies f (x1) > f (x2).

The function (22) is strictly increasing.

The function f (x) = 4� 2x is strictly decreasing.
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3.2 Graphs of Functions

The Cartesian coordinate system (the x-y -plane) is useful for
depicting functions.

The x-axis together with the y -axis separates the plane into
four quadrants.

Any point in the x-y -plane represents an ordered pair of real
numbers (x , y).

Figure 3-1 depicts the ordered pair Q = (�5,�2) and the
ordered pair P = (3, 4).
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3.2. Graphs of Functions

Figure 3-1
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3.2. Graphs of Functions

Recall that y is often used as short hand notation for f (x).

De�nition
The graph of a function f is the set of all points ( x , y ), where x
belongs to the domain of f .
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3.2. Graphs of Functions

Example

Consider the function

y = x2 � 4x + 3

Therefore

x 0 1 2 3 4
y 3 0 �1 0 3

Plotting the points (0, 3), (1, 0), (2,�1), (3, 0), and (4, 3) and
then drawing a smooth curve through these points gives the
following graph.
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3.2. Graphs of Functions

Figure 3-2
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3.2. Graphs of Functions

The �gure shows a function f with domain Df and range Rf :

Figure 3-3
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3.2. Graphs of Functions

Some important graphs:

Figure 3-4
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3.2. Graphs of Functions

Some other important graphs:

Figure 3-5
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3.3 Linear Functions

De�nition
A linear function has the form

f (x) = ax + b

with a and b being constants (parameters).

Take f (x) = ax + b and an arbitrary value of x . Then

f (x + 1)� f (x) = [a (x + 1) + b]� (ax + b)
= ax + a+ b� ax � b
= a
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This says that f (x) changes by a units as x is increased by
one unit.

For this reason, the number a is the slope of the graph (a
straight line), and so called the slope of the linear function.

If a > 0, the line slopes upwards.

If a < 0, the line slopes downwards.

If a = 0, the line is horizontal.

The absolute value jaj measures the steepness of the line.
Since

f (0) = a � 0+ b = b
the parameter b indicates the intersection of the graph with
the y -axis, that is, the value of f (x) at x = 0.
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The lines of linear functions can be used to solve a system of
two linear equations in two unknowns.

This approach corresponds to �Method 3� (see page 36).

Example

A system of two linear equations with two unknowns was given by
equations (16) and (17):

y = 5� x (23)

y = 1+ x (24)

Graphically, this system gives the solution point (x , y) = (2, 3);
see Figure 3-6.

The algebraic solution gave the same result: x = 2 and y = 3.
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3.3. Linear Functions

Figure 3-6
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3.4 Quadratic Functions

De�nition
A quadratic function has the form

f (x) = ax2 + bx + c (25)

with a, b, and c being constants (a 6= 0).

The graph of such a function is called a parabola.

Its shape roughly resembles [ when a > 0 and \ when a < 0.
Three typical cases are illustrated in the following diagram
(with b > 0 and c > 0).

The dashed lines show the axis of symmetry.
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3.4. Quadratic Functions

Figure 3-7
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3.4. Quadratic Functions

Two key questions:

1. For which values of x (if any) is

ax2 + bx + c = 0 (26)

2. What are the coordinates of the
maximum/minimum point P (called the vertex
of the parabola).
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3.4. Quadratic Functions

Answer to Question 1: If b2 � 4ac < 0, no intersection exists.
We know from the quadratic formula (6), that for

b2 � 4ac � 0 (27)

and a 6= 0 (28)

the two x-values

x1, x2 =
�b�

p
b2 � 4ac
2a

(29)

satisfy (26).

De�nition
The values given by the quadratic formula (29) are called the roots
of the function de�ned by (25).
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3.4. Quadratic Functions

Answer to Question 2: The quadratic function yields:

f (x) = ax2 + bx + c

= ax2 + bx +
b2

4a
� b

2

4a
+
4ac
4a

= a
�
x2 + 2x

b
2a
+
b2

4a2

�
� b

2

4a
+
4ac
4a

= a
�
x +

b
2a

�2
� b

2 � 4ac
4a| {z }

constant

(30)
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3.4. Quadratic Functions

Only the term

a
�
x +

b
2a

�2
depends on x .

The term in brackets is positive except for

x = � b
2a

(31)

Therefore f (x) reaches a maximum/minimum at (31).

It is a minimum when a > 0 and a maximum when a < 0.
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The axis of symmetry is at position (31).

From (30) we know that

f
�
� b
2a

�
= �b

2 � 4ac
4a

Therefore, the vertex P is given by

P =
�
� b
2a
,�b

2 � 4ac
4a

�
When a > 0 (vertex represents a minimum), then for
b2 > 4ac the vertex is below the x-axis and for b2 < 4ac the
vertex is above the x-axis (then no intersection with the
x-axis exists).
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3.4. Quadratic Functions

Example

The price p per unit obtained by a �rm in producing and selling Q
units is

p(Q) = 102� 2Q
and the cost of producing and selling Q units is

C (Q) = 2Q +
1
2
Q2

Then the pro�t is

π(Q) = p(Q) �Q � C (Q)

= (102� 2Q)Q �
�
2Q +

1
2
Q2
�

= �5
2
Q2 + 100Q (32)
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Example continued

Equation (32) is a quadratic function with

a = �5
2
, b = 100, c = 0

Since a < 0, the pro�t has a maximum point (rather than a
minimum point) at position

Q = � b
2a

= � 100
2(� 5

2 )

= 20
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Example continued

The corresponding pro�t is

π(20) = �5
2
202 + 100 � 20

= �1000+ 2000
= 1000

Using (29), the graph�s intersections with the horizontal axis are at

Q1,Q2 =
�b�

p
b2 � 4ac
2a

=
�100�

p
1002

�5

which gives Q1 = 0 and Q2 = 40.
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3.5 Polynomials

De�nition
A cubic function has the form

f (x) = ax3 + bx2 + cx + d (33)

with a, b, c , and d being constants (a 6= 0).

Example

The graph of
f (x) = �x3 + 4x2 � x � 6

is shown in the following �gure.

Changes in the parameters lead to drastic changes in the
graphs.
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3.5. Polynomials

Figure 3-8
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3.5. Polynomials

The typical features of a cost function C (Q) are

C (0) > 0

C (Q) strictly increasing in Q

starts with a positive but decreasing slope before the
slopes starts increasing (as the �rm reaches its capacity
limit).

These features require that the parameters in the cost function

C (Q) = aQ3 + bQ2 + cQ + d

are a > 0, b < 0, c > 0, d > 0, and 3ac > b2.

The following graph depicts such a cost function.
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3.5. Polynomials

Figure 3-9
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3.5. Polynomials

De�nition
A general polynomial of degree n has the form

f (x) = anxn + an�1xn�1 + . . .+ a1x + a0 (34)

with an, an�1, ..., a0 being constants (an 6= 0).

The equation

anxn + an�1xn�1 + . . .+ a1x + a0 = 0

has at most n (real) solutions. That is, the polynomial (34)
hast at most n roots.

Possibly, there are no roots (e.g., f (x) = x100 + 1).

91 / 358



Mathematics for Economists

3. Functions of One Variable

3.5. Polynomials

The graph corresponding to (34) has at most n� 1 �turning
points�.

Rule (Fundamental Theorem of Algebra)

Every polynomial of the form (34) can be written as a product of
linear and quadratic functions.
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3.6 Power Functions

De�nition
A power function has the form

f (x) = Ax r (35)

with x > 0, and A and r being constants.

A special case is A = 1:

f (x) = x r (36)

For all r (36) gives f (1) = 1.

The graph corresponding to (36) depends on r (see next
�gure).
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3.6. Power Functions

Figure 3-10
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3.7 Exponential Functions

Exponential functions are widely used in statistics and
economics.

De�nition
An exponential function has the form

f (x) = Aax (37)

with A and a being positive constants.

a is called the base.
Since

f (0) = Aa0 = A

(37) can be written in the form

f (x) = f (0)ax
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As a consequence

f (1) = f (0)a, f (2) = f (0)a2 = f (1)a, etc.

Therefore, a is the factor by which f (x) increases or decreases
when x increases by one unit.

For a > 1 it is an increase and f (x) is stictly increasing.

For 0 < a < 1 it is a decrease and f (x) is strictly decreasing.
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A special case is A = 1 :

f (x) = ax (38)

Note the di¤erence to the power function

g(x) = xa

Since x is often used to describe units of time (periods), it is
usually replaced by t:

f (t) = Aat (39)
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Rule

A quantity K that increases by p% per year will have increased
after t years to

f (t) = K
�
1+

p
100

�t
A quantity K that decreases by p% per year will have decreased
after t years to

f (t) = K
�
1� p

100

�t
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3.7. Exponential Functions

Example

e 1000 of savings earning an interest rate of 8% per year (p = 8)
will have increased after t years to

f (t) = 1000 �
�
1+

8
100

�t
= 1000 � 1.08t

Therefore,

f (0) = 1000 � 1.080 = 1000
f (1) = 1000 � 1.081 = 1080

...

f (5) = 1000 � 1.085 = 1469.3
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3.7. Exponential Functions

Example

If a car, which at time t = 0 has the value A0, depreciates at the
rate of 20% each year, its value A(t) at time t is

A(t) = A0

�
1� 20

100

�t
= A00.8t

After 5 years its value is

A(5) = A00.85 � A0 � 0.32

that is, only 32% of its original value.
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In economics and statistics, the most important base a is the
(irrational) number e = 2.718281828459045...

De�nition
The natural exponential function has the form

f (x) = ex

Rules
All usual rules for powers apply also to this function

eset = es+t

es

et
= es�t

(es )t = est (40)

Sometimes the notation exp(x) is used instead of ex .
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3.8 Logarithmic Functions

If in (39) a > 1, how many periods does it take until f (t)
doubles (doubling time)?

The value of f (t) in period t = 0 is f (0) = A.

We want to know the period t� such that

f (t�) = 2A

that is, we want the value t� that solves the equation

Aat
�
= 2A

or more simply, the value of t� that solves the equation

at
�
= 2 (41)
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Such questions can be easily answered by using the concept of
natural logarithms.

Let x denote a positive number.

De�nition
The natural logarithm of x (denoted by ln x) is the power of the
number e(= 2, 718...) you need to get x :

e ln x = x

More colloquial, ln x is the answer to the following question:

�e to the power of �what number�gives x �?
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Example

ln 1 = 0, because �e to the power of zero gives 1�:

e0 = 1

ln e = 1, because �e to the power of 1 gives e�:

e1 = e

ln(1/e) = �1, because �e to the power of �1 gives 1/e�:

e�1 =
1
e

ln(ex ) = x , because �e to the power of x gives ex�:

ex = ex

ln(�6) is not de�ned because ex is positive for all x .
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Rules for Natural Logarithms

ln (xy) = ln x + ln y

ln
x
y

= ln x � ln y

ln (xp) = p ln x

ln 1 = 0

ln e = 1

e ln x = x (42)

ln ex = x

Rule

for x > 0, y > 0 : x = y () ln x = ln y
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Warning:
ln (x + y) 6= ln x + ln y

What is the solution to (41)? (41) is equivalent to

ln
�
at
�
�
= ln 2

t� ln a = ln 2

t� =
ln 2
ln a

De�nition
The function

f (x) = ln x

is called the natural logarithmic function of x . Its domain is x > 0.
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3.8. Logarithmic Functions

Figure 3-11
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3.8. Logarithmic Functions

Also logarithms based on numbers other than e exist.

De�nition
The logarithm of x to base a (denoted by loga x) is the power of
the base a you need to get x :

aloga x = x

More colloquial, loga x is the answer to the following question:

�a to the power of �what number�gives x �?

Example

log2 8 = 3
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3.8. Logarithmic Functions

Rules
The same rules as for the natural logarithm apply:

loga (xy) = loga x + loga y

loga
x
y

= loga x � loga y

loga (x
p) = p loga x

loga 1 = 0

loga a = 1

109 / 358



Mathematics for Economists

3. Functions of One Variable

3.9. Shifting Graphs

3.9 Shifting Graphs

This section studies in general how the graph of a function
f (x) relates to the graphs of the functions

f (x) + c , f (x + c), and cf (x),

where c is positive constant.

As an example, the function

y =
p
x

is considered.
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Figure 3-12
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3.9. Shifting Graphs

Figure 3-13
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3.9. Shifting Graphs

Figure 3-14
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Rule

(i) If y = f (x) is replaced by y = f (x) + c , the graph is
moved upwards by c units if c > 0 (downwards if c is
negative).

(ii) If y = f (x) is replaced by y = f (x + c), the graph is
moved c units to the left if c > 0 (to the right if c is
negative).

(iii) If y = f (x) is replaced by y = cf (x), the graph is
stretched vertically if c > 1 and compressed if
0 < c < 1(stretched or compressed vertically and
re�ected about the x-axis if c is negative).
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As a result, the graph of the function

y = 2� (x + 2)2

can be constructed with the graph of y = x2 as a reference.

The graph of y = x2 can be
1 re�ected about the x-axis,

2 moved to the left by two units, and �nally

3 moved upwards by two units.

Other sequences of these three steps are equally �ne.
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3.9. Shifting Graphs

Figure 3-15
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3.10 Computing With Functions

Let f (t) and m(t) denote the number of female and male
students in year t, while n(t) denotes the total number of
students.

Then
n(t) = f (t) +m(t)

The graph of n(t) is obtained by piling the graph of f (t) on
top of the graph of m(t).
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3.10. Computing With Functions

Figure 3-16
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3.10. Computing With Functions

Suppose that f and g are functions which both have the same
domain, namely an interval in the set of real numbers.

The sum of f and g is also a function. Here this function is
denoted as h

h(x) = f (x) + g(x)

The di¤erence between f and g is also a function. Here this
function is denoted as k

k(x) = f (x)� g(x)
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Example

When the cost function is

C (Q) = aQ3 + bQ2 + cQ + d

the average cost function is

A(Q) =
aQ3 + bQ2 + cQ + d

Q

= aQ2 + bQ + c +
d
Q

This is the sum of a quadratic function (aQ2 + bQ + c) and a
so-called hyperbolic function (d/Q).
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3.10. Computing With Functions

Figure 3-17
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Example

Let R(Q) denote the revenues obtained by producing and selling Q
units and suppose that the �rm gets a �xed price p per unit.

Therefore R(Q) is a straight line through the origin.

The pro�t π(Q) is given by

π(Q) = R(Q)� C (Q)

The graph of �C (Q) must be added to R(Q). This is equivalent
to subtracting the graph C (Q) from R(Q).

The maximum pro�t is at output Q�.
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3.10. Computing With Functions

Figure 3-18
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Suppose that f and g are functions which both are de�ned in
a set A of real numbers.

The product of f and g is also a function. Here this function
is denoted as h

h(x) = f (x) � g(x)
The quotient of f and g is also a function. Here this function
is denoted as k

k(x) =
f (x)
g(x)

with g(x) 6= 0.
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De�nition
Suppose that y = f (u) and u = g(x). Then y is a composite
function of x :

y = f (g(x))

with

g(x) being the interior function (or kernel) and

f being the exterior function.

The composite function y = f (g(x)) is often denoted by
f � g and it is read as �f of g�or �f after g�.
f � g and g � f are very di¤erent composite functions.
Do not confuse f � g with f � g .
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Example

Consider the composite function

y = e�(x�µ)2

with µ being a constant.

The choice of the interior and exterior function is to some degree
arbitrary.

One could de�ne g(x) = � (x � µ)2 as the interior function and
f (u) = eu as the exterior function.

Alternatively, one could de�ne g(x) = (x � µ)2 as the interior
function and f (u) = e�u as the exterior function.

126 / 358



Mathematics for Economists

3. Functions of One Variable

3.11. Inverse Functions

3.11 Inverse Functions

Suppose that the demand quantity D for a commodity
depends on the price per unit P according to

D =
30
P1/3 (43)

This gives for P = 27 the demand quantity

D =
30
271/3 =

30
3
= 10

From the perspective of the producers, however, it may be
more natural to treat output as something that the producer
can choose and to consider the resulting price.
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For this purpose (43) must be inverted, that is, P must
become a function of D:

P1/3D = 30

P1/3 =
30
D�

P1/3
�3

=

�
30
D

�3
P =

27000
D3

(44)

(44) is the inverse function of (43).
Solving (44) for D, that is, inverting (44) gives (43).
Therefore, (43) and (44) are inverse functions of each other,
or more simply, inverses.
Both functions convey exactly the same information.
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Let f be a function with domain Df .

This says that to each x in Df there corresponds a unique
number f (x).

Then the range of f is Rf and consists of all numbers f (x)
obtained by letting x vary in Df .

De�nition
The function f is said to be one-to-one in Df if f never has the
same value at any two di¤erent points in Df .

Then for each one y in Rf there is exactly one x in Df such
that y = f (x).

The following diagram shows on the left a function f that is
one-to-one in Df and on the right a function g that is not
one-to-one in Df .
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3.11. Inverse Functions

Figure 3-19
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Let f be a function with domain Df and range Rf .

Rule
If and only if f is one-to-one, it has an inverse function g with
domain Dg = Rf and range Rg = Df . This function g is given by
the following rule: For each y in Dg the value g(y) is the unique
number x in Rg such that f (x) = y . Then

g(y) = x () y = f (x)

with x in Df and y in Dg .

As a direct implication

g(f (x)) = x

In words: g undoes what f did to x .
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Rule
If g is the inverse function of f , then f is the inverse function of g
and vice versa.

If g is the inverse function of f , it is standard to use the
notation f �1 for g .

Note that f �1 does not mean 1/f !

Rule
The inverse of the natural exponential function

y = ex

is the natural logarithmic function

x = ln y
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3.11. Inverse Functions

Figure 3-20
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4 Di¤erentiation
4.1 Slopes of Curves

For the graph representing the function y = ax + b the slope
was given by the number a.

Consider some arbitrary function f .

The slope of the corresponding graph at some point x0 is the
slope of the tangent to the graph at x0.

In Figure 4-1, point P has the coordinates (x0, f (x0)).

The straight line T is the tangent line to the graph at point P.

It just touches the curve at point P.

The slope of the graph at x0 is the slope of T .

This slope is 1/2.
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4.1. Slopes of Curves

Figure 4-1
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4.2 Tangents and Derivatives

De�nition
The slope of the tangent line at point (x , f (x)) is called the
derivative of f at point x . This number is denoted by f 0(x).

Read f 0(x) as � f prime x �.

In Figure 4-1 the point x = x0 was considered.

The derivative of f at point x0 was

f 0(x0) =
1
2
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In Figure 4-2, P and Q are points on the curve (graph).

The entire straight line through P and Q is called a secant.

Keep P �xed, but move Q along the curve towards P.

Then the secant rotates around P towards the limiting
straight line T .

T is the tangent (line) to the curve at P.
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Figure 4-2
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De�ne ∆x to be the distance between x0 and the x-coordinate
of point Q (see Figure 4-3).

The coordinates of the points P and Q can be written in the
form

P = ( x0 , f (x0) ) and Q = ( x0 + ∆x , f (x0 + ∆x) )

The slope mPQ of the secant PQ is

mPQ =
f (x0 + ∆x)� f (x0)
(x0 + ∆x)� x0

=
f (x0 + ∆x)� f (x0)

∆x

For ∆x = 0 this quotient is not de�ned.
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Figure 4-3
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As Q moves towards P, ∆x tends to 0 and the slope of the
secant PQ tends towards the slope of the tangent T .

The mathematical symbol

lim
∆x!0

in front of some expression denotes the value of the expression
as ∆x tends towards 0.

De�nition
The derivative of the function f at point x0, denoted by f 0(x0), is
given by the formula

f 0(x0) = lim
∆x!0

f (x0 + ∆x)� f (x0)
∆x

(45)
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Example

The derivative of f (x) = x2 at point x0 is according to formula
(45)

f 0(x0) = lim
∆x!0

(x0 + ∆x)2 � (x0)2
∆x

= lim
∆x!0

(x0)2 + 2x0∆x + (∆x)2 � (x0)2
∆x

= lim
∆x!0

2x0∆x + (∆x)2

∆x

For all ∆x 6= 0 we can cancel ∆x and obtain

f 0(x0) = lim
∆x!0

(2x0 + ∆x) = 2x0

142 / 358



Mathematics for Economists

4. Di¤erentiation

4.2. Tangents and Derivatives

By f 0(x) we mean the function that gives us for every point
x0 the derivate of f (x) at point x0.

We call f 0(x) the derivative of f (x).
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In place of f 0(x) often y 0 or the di¤erential notation of
Leibniz is used:

dy
dx
, dy / dx ,

df (x)
dx

, df (x) / dx ,
d
dx
f (x)

The derivative f 0(x) can be used to de�ne the notion of
increasing and decreasing functions.

De�nition

f 0(x) � 0 for all x in Df () f is increasing in Df
f 0(x) > 0 for all x in Df () f is strictly increasing in Df
f 0(x) � 0 for all x in Df () f is decreasing in Df
f 0(x) < 0 for all x in Df () f is strictly decreasing in Df
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4.3 Rules for Di¤erentiation

The derivative of a function f at point x0 was de�ned by

f 0(x0) = lim
∆x!0

f (x0 + ∆x)� f (x0)
∆x

De�nition
If this limit exists, f is di¤erentiable at x0. If f is di¤erentiable at
every point x0 in the domain Df , then we call f di¤erentiable.
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Rules of Di¤erentiation

Rule 1: f (x) = A ) f 0(x) = 0
Rule 2: f (x) = A+ g(x) ) f 0(x) = g 0(x)
Rule 3: f (x) = Ag(x) ) f 0(x) = Ag 0(x)

Examples

f (x) = 5 ) f 0(x) = 0

f (x) = 5+ 2x ) f 0(x) = 2

f (x) = 5 � 2x ) f 0(x) = 5 � 2 = 10
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Figure 4-4
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Rule of Di¤erentiation

Rule 4 (power rule): f (x) = xa ) f 0(x) = axa�1

with a being an arbitrary constant.

Examples

f (x) = x3 ) f 0(x) = 3x2

f (x) = 3x8 ) f 0(x) = 3 � 8x7 = 24x7
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Rule of Di¤erentiation

Rule 5 (sums): If both f and g are di¤erentiable at x , then the sum
f + g and the di¤erence f � g are both di¤erentiable at x , and

h(x) = f (x)� g(x) ) h0(x) = f 0(x)� g 0(x)

Example

h(x) = x3 � 5x�2 ) h0(x) = 3x2 �
�
�2 � 5x�3

�
= 3x2 + 10x�3
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Rule of Di¤erentiation

Rule 6 (products): If both f and g are di¤erentiable at x , then so
is h = f � g , and

h(x) = f (x) � g(x) ) h0(x) = f 0(x) � g(x) + f (x) � g 0(x)
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Example

The function
h(x) =

�
x3 � x

� �
5x4 + x2

�
can be written as

h(x) = f (x) � g(x)
with

f (x) =
�
x3 � x

�
g(x) =

�
5x4 + x2

�
Therefore

h0(x) = f 0(x) � g(x) + f (x) � g 0(x)
=

�
3x2 � 1

� �
5x4 + x2

�
+
�
x3 � x

� �
20x3 + 2x

�
= 35x6 � 20x4 � 3x2
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Rule of Di¤erentiation

Rule 7 (quotient): If both f and g are di¤erentiable at x and
g(x) 6= 0, then h = f /g is di¤erentiable at x , and

h(x) =
f (x)
g(x)

) h0(x) =
f 0(x) � g(x)� f (x) � g 0(x)

(g(x))2

152 / 358



Mathematics for Economists

4. Di¤erentiation

4.3. Rules for Di¤erentiation

Example

The derivative of the function

h(x) =
3x � 5
x � 2 =

f (x)
g(x)

is

h0(x) =
f 0(x) � g(x)� f (x) � g 0(x)

(g(x))2

=
3 � (x � 2)� (3x � 5) � 1

(x � 2)2

=
�1

(x � 2)2

Note that h(x) is strictly decreasing at all x 6= 2.
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Rule of Di¤erentiation

Rule 8 (chain rule): If g is di¤erentiable at x and f is di¤erentiable
at u = g(x), then the composite function h(x) = f (g(x)) is
di¤erentiable at x , and

h0(x) = f 0(u) � g 0(x) = f 0(g(x)) � g 0(x)

In words: First di¤erentiate the exterior function with respect
to the interior function (kernel), then multiply by the
derivative of the interior function.

154 / 358



Mathematics for Economists

4. Di¤erentiation

4.3. Rules for Di¤erentiation

Example

Let f (u) = u3 and g(x) = 2� x2. The derivative of

h(x) = f (g(x)) =
�
2� x2

�3
is

h0(x) = f 0(g(x)) � g 0(x)
= 3

�
2� x2

�2 � (�2x)
= �6x

�
4� 4x2 + x4

�
= �6x5 + 24x3 � 24x
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Expressing the eight rules in Leibniz�s di¤erential notation
gives

Rule 1 :
d
dx
A = 0

Rule 2 :
d
dx
[A+ f (x)] =

d
dx
f (x)

Rule 3 :
d
dx
[Af (x)] = A

d
dx
f (x)

Rule 4 :
d
dx
(xa) = axa�1

Rule 5 :
d
dx
[f (x)� g(x)] = d

dx
f (x)� d

dx
g(x)
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Rule 6 :
d
dx
[f (x) � g(x)] =

�
d
dx
f (x)

�
� g(x) + f (x) �

�
d
dx
g(x)

�
Rule 7 :

d
dx

�
f (x)
g(x)

�
=

� d
dx f (x)

�
� g(x)� f (x) �

� d
dx g(x)

�
g(x)2

Rule 8 :
d
dx
f (g (x)) =

d
dg (x)

f (g (x)) � d
dx
g (x)
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4.4 Higher-Order Derivatives

The derivate f 0 of a function y = f (x) is called the �rst
derivate of f .

If f 0 is also di¤erentiable, then we can di¤erentiate f 0 in turn.

The result is called the second order derivative and it is
written as f 00 or y 00.

De�nition
f 00(x) is the second order derivative of f evaluated at the
particular point x .
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f 00 or y 00 can be written in the di¤erential notation as

d
dx

�
d
dx
f (x)

�
or more simply as

d2f (x)
dx2

or
d2y
dx2

159 / 358



Mathematics for Economists

4. Di¤erentiation

4.4. Higher-Order Derivatives

Example

The �rst derivative of

f (x) = 2x5 � 3x3 + 2x

is
f 0(x) = 10x4 � 9x2 + 2

Therefore, the second order derivative is

f 00(x) = 40x3 � 18x
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Let I denote some interval on the real line.

The second order derivative f 00(x) is the derivative of f 0(x).
Therefore

f 00(x) � 0 on I () f 0 is increasing on I

f 00(x) � 0 on I () f 0 is decreasing on I

The consequences are illustrated in the following �gure.
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Figure 4-5
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Suppose that f is continuous in the interval I and twice
di¤erentiable in the interior of I .

De�nition

f 00(x) � 0 for all x in I () f is convex on I

f 00(x) � 0 for all x in I () f is concave on I

If I is the real line, the interval is not mentioned explicitly (�f
is convex�or �f is concave�).

One can further distinguish between increasing convex and
decreasing convex and also between increasing concave and
decreasing concave (see next �gure).
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4.4. Higher-Order Derivatives

Figure 4-6
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4.4. Higher-Order Derivatives

Let y = f (x). The derivate of f 00 is called the third-order
derivative and is denoted by

f 000 or y 000 or
d3

dx3
f (x)

Correspondingly, the nth derivative of f is denoted by

f (n) or y (n) or
dn

dxn
f (x)
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4.5 Derivative of the Exponential Function

The derivative of a function f was de�ned by

f 0(x0) = lim
∆x!0

f (x0 + ∆x)� f (x0)
∆x

For the natural exponential function f (x) = ex this de�nition
gives (note that ex0 is a constant):

f 0(x0) = lim
∆x!0

ex0+∆x � ex0
∆x

= lim
∆x!0

ex0e∆x � ex0
∆x

= lim
∆x!0

ex0
�
e∆x � 1

�
∆x

= ex0 lim
∆x!0

e∆x � 1
∆x

166 / 358



Mathematics for Economists

4. Di¤erentiation

4.5. Derivative of the Exponential Function

It can be shown that

lim
∆x!0

e∆x � 1
∆x

= 1

Therefore,
f 0(x0) = ex0 � 1 = ex0

Rule of Di¤erentiation
Rule 9:

f (x) = ex ) f 0(x) = ex

The derivative of f (x) = ex is equal to the function itself.

Since
f (x) = ex > 0

the same is true for the derivative f 0(x).
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Rule 9 can be combined with the chain rule (rule 8):

f (x) = eg (x ) ) f 0(x) = eg (x )g 0(x)

Example

The derivative of

f (x) = xpeax (with p and a being constants)

is (exploiting the product rule and the chain rule)

f 0(x) = pxp�1eax + xpeaxa

= pxp�1eax + xp�1x1eaxa

= xp�1eax (p + ax)
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The derivative of
f (x) = ax

with a being some positive constant can be computed by
exploiting rule 9.

Using (40) and (42), we get

f (x) = ax =
�
e ln a

�x
= e(ln a)x

Therefore, the chain rule gives

f 0(x) = e(ln a)x ln a = ax ln a (46)

Note that for a = e the derivative simpli�es to f 0(x) = ex .

Therefore, (46) is a generalisation of rule 9.
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Example

The derivative of

f (x) = x23x = x
�
23
�x
= x8x

is, using the product rule and (46),

f 0(x) = 8x + x8x ln 8

= 8x (1+ x ln 8)
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4.6 Derivative of the Natural Logarithmic Function

The natural logarithmic function is

g(x) = ln x

Due to (2) it is equivalent to

eg (x ) = e ln x

and, using (42), to
eg (x ) = x (47)

The left and right-hand sides of this equation can be
considered as two functions of x , namely h(x) = eg (x ) and
k(x) = x . At all values of x these two functions have the
same value (that is, their graphs are identical).
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Therefore, also the derivatives, h0(x) and k 0(x), have the
same value.

Di¤erentiating both sides of (47) with respect to x gives

eg (x )g 0(x) = 1 (48)

Making use of (47), (48) can be written in the form

g 0(x) =
1
x

giving rise to the following rule:

Rule of Di¤erentiation

Rule 10: f (x) = ln x ) f 0(x) = 1
x
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Combining rule 10 and the chain rule gives

f (x) = ln g(x) ) f 0(x) =
1

g(x)
g 0(x) =

g 0(x)
g(x)

Example

The derivative of
f (x) = ln(1� x)

is (for all x < 1)

f 0(x) =
1

1� x (�1) =
1

x � 1
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For di¤erentiating the function

f (x) = xx

neither the power rule (it requires the exponent to be a
constant) nor the rule for exponential functions (it requires
the base to be a constant) can be applied.
Taking natural logarithms of each side gives

ln f (x) = ln xx

and therefore
ln f (x) = x ln x

Di¤erentiating both sides with respect to x gives

1
f (x)

f 0(x) = ln x + x
1
x
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4.6. Derivative of the Natural Logarithmic Function

Noting that f (x) = xx gives

1
xx
f 0(x) = ln x + 1

and multiplying both sides by xx yields

f 0(x) = xx (ln x + 1)
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5 Single-Variable Optimization
5.1 Introduction

The points in the domain of f where f (x) reaches a maximum
or a minimum are called extreme points or optimal points.

Every extreme point (optimal point) is either a maximum
point or a minimum point (exception: f (x) = a with a being
a constant).

De�nition
If f (x) has the domain D, then

c 2 D is a max. point for f (x) , f (x) � f (c) for all x 2 D
d 2 D is a min. point for f (x) , f (x) � f (d) for all x 2 D

176 / 358



Mathematics for Economists

5. Single-Variable Optimization

5.1. Introduction

If in the de�nition a strict inequality applies, then we speak of
a strict maximum point or a strict minimum point.

If c is a maximum point, then f (c) is called the maximum
value.

If d is a minimum point, then f (d) is called the minimum
value.

If c is a maximum point of the function f , then it is a
minimum point of the function �f .
Therefore, a maximization problem can always be converted
into a minimization problem, and vice versa.
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5.1. Introduction

Figure 5-1
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5.1. Introduction

Except for the boundary points of the domain D, every point
in D is an interior point.

If f is a di¤erentiable function that has a maximum or
minimum at an interior point c 2 D, then the tangent line to
its graph must be horizontal at that point.

When the tangent line is horizontal, the corresponding point c
is called a stationary point.

Rule (First-Order Condition)

Suppose that a function f is di¤erentiable in an interval I and that
c is an interior point of I . For x = c to be a maximum point for f
in I , a necessary condition is that it is a stationary point for f :

f 0(c) = 0 (�rst order condition)
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5.1. Introduction

Figure 5-2 illustrates the meaning of the �rst-order condition.

The two stationary points c and d are extreme points.

However, the �rst-order condition says nothing about those
points of a function that are not di¤erentiable.

In Figure 5-3 no stationary point exists.

Points a and b are not interior points.

The points b and d are extreme points, even though they are
not di¤erentiable.
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5.1. Introduction

Figure 5-2
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5.1. Introduction

Figure 5-3
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5.1. Introduction

The �rst-order condition merely states a necessary condition
for an interior extreme point of a di¤erentiable function.

Figure 5-4 illustrates that the condition is not su¢ cient.

It shows three stationary points: x0, x1, and x2.

Neither of these points is an extreme point.

At the stationary point x0 the function f has a local maximum
(a local extreme point).

At x1 it has a local minimum (another local extreme point).

x2 is not a local extreme point.
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5.1. Introduction

Figure 5-4
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5.2 Simple Tests for Extreme Points

Studying the sign of the derivative of a function f can help to
�nd its maximum or minimum points.

De�nition (First-Derivative Test)

If f 0(x) � 0 for x � c and f 0(x) � 0 for x � c , then x = c is a
maximum point for f .

If f 0(x) � 0 for x � d and f 0(x) � 0 for x � d , then x = d is a
minimum point for f .
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5.2. Simple Tests for Extreme Points

Figure 5-5
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5.2. Simple Tests for Extreme Points

Example

The concentration of a drug in the bloodstream t hours after
injection is given by the formula

c(t) =
t

t2 + 4

For �nding the time of maximum concentration c(t) must be
di¤erentiated with respect to t:

c 0(t) =
1 �
�
t2 + 4

�
� t � 2t

(t2 + 4)2
=

4� t2

(t2 + 4)2
=
(2� t) (2+ t)
(t2 + 4)2

For t � 0, the term (2� t) alone determines the algebraic sign of
the fraction. If t � 2, then c 0(t) � 0, whereas if t � 2, then
c 0(t) � 0. Therefore t = 2 is a maximum.
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Recall that

f 00(x) � 0 for all x in I () f is convex on I

f 00(x) � 0 for all x in I () f is concave on I

The �rst-derivative test is also useful for concave and convex
functions.

Rule

Suppose f is a concave (convex) function in an interval I . If c is a
stationary point for f in the interior of I , then c is a maximum
(minimum) point for f in I .
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5.2. Simple Tests for Extreme Points

Figure 5-6
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5.3 The Extreme Value Theorem

Recall that stationary points are not necesserily extreme
points (Figure 5-4) and that extreme points are not
necessarily stationary points (Figure 5-3).

The following theorem gives a su¢ cient condition for the
existence of a minimum and a maximum.

Rule (Extreme Value Theorem)

Suppose that f is a continuous function over a closed and bounded
interval [a, b]. Then there exists a point d in [a, b] where f has a
minimum, and a point c in [a, b] where f has a maximum, so that

f (d) � f (x) � f (c) for all x in [a, b]
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5.3. The Extreme Value Theorem

Figure 5-7
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5.3. The Extreme Value Theorem

Every extreme point must belong to one of the following three
di¤erent sets:

(a) interior points in I where f 0(x) = 0 (stationary
points)

(b) end points of I (if included in I )

(c) interior points in I where f 0 does not exist.

Points satisfying any one of these three conditions will be
called candidate extreme points.
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5.3. The Extreme Value Theorem

In economics we usually work with functions that are
di¤erentiable everywhere. This rules out extreme points of
type (c).

Rule
Therefore, the following procedure can be applied to �nd the
extreme points:

1 Find all stationary points of f in (a, b).
2 Evaluate f at the end points a and b and also at all stationary
points.

3 The largest function value found in step 2 is the maximum
value, and the smallest function value is the minimum value of
f in [a, b].
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5.4 Local Extreme Points

So far the chapter discussed global optimization problems,
that is, all points in the domain were considered without
exception.

In Figure 5-8 c1, c2, and b are local maximum points and a,
d1, and d2 are local minimum points.

Point d1 is the global minimum, point b the global maximum.

The approach to the analysis of global extreme points can be
largely adapted to local extreme points. Instead of the domain
D only the neighbourhood of a local extreme point must be
considered.
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Figure 5-8
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5.5 In�ection Points

Points at which a function changes from being convex to
being concave, or vice versa, are called in�ection points.

De�nition
The point c is called an in�ection point for the function f if there
exists an interval (a, b) about c such that:

(a) f 00(x) � 0 in (a, c) and f 00(x) � 0 in (c , b),
or

(b) f 00(x) � 0 in (a, c) and f 00(x) � 0 in (c , b)

If c is an in�ection point, then we refer to the point (c , f (c))
as an in�ection point on the graph of f .
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5.5. In�ection Points

Figure 5-9
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5.5. In�ection Points

Rule (Test for In�ection Point)

Let f be a function with a continuous second derivative in an
interval I , and let c be an interior point in I .

(a) If c is an in�ection point for f , then f 00(c) = 0.

(b) If f 00(c) = 0 and f 00 changes sign at c , then c is an
in�ection point for f .

Part (a) says that f 00(c) = 0 is a necessary condition for an
in�ection point at c .

However, it is not a su¢ cient condition. Part (b) says that
also a change of the sign of f

00
is required.
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5.5. In�ection Points

Example

The function
f (x) = x4

has the �rst derivative
f 0(x) = 4x3

and the second-order derivative

f 00(x) = 12x2

Therefore
f 00(0) = 0

but f 00(x) does not change sign at x = 0.
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5.5. In�ection Points

Figure 5-10
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5.5. In�ection Points

Example

The cubic function

f (x) =
1
9
x3 � 1

6
x2 � 2

3
x + 1

has the �rst derivative

f 0(x) =
1
3
x2 � 1

3
x � 2

3

and the second-order derivative

f 00(x) =
2
3
x � 1

3
=
2
3

�
x � 1

2

�
Therefore f 00 (1/2) = 0 and f 00(x) � 0 for x � 1/2 and f 00(x) � 0
for x � 1/2. Hence, x = 1/2 is an in�ection point for f .
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5.5. In�ection Points

Figure 5-11
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6 Functions of Many Variables
6.1 Functions of Two Variables

For many economic applications functions with more than one
independent (or exogenous) variable are necessary.
With two independent variables x and y the domain D is not
a subset of the x-line but a subset of the x-y -plane.

De�nition
A function f of two variables x and y with domain D is a rule that
assigns a speci�ed number f (x , y) to each point (x , y) in D.

Often the value of f at (x , y) is denoted by z , so z = f (x , y).
z is the dependent (or endogenous) variable.
Unless otherwise stated, the domain of a function de�ned by a
formula is the largest domain in which the formula gives a
meaningful and unique value.
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Example

The Cobb-Douglas function (with two independent variables) is
de�ned as

f (x , y) = Axayb

with A, a, and b being constants. It is often used to describe a
production process in which the inputs x and y are transformed
into output z = f (x , y). What happens to the output z when both
inputs x and y are doubled? A doubling of x and y leads to

f (2x , 2y) = A (2x)a (2y)b = A2a2bxayb

= 2a+bAxayb = 2a+b f (x , y)

If a+ b = 1, then a doubling of both inputs x and y leads to a
doubling of output z .
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Example (continued)

More generally, the Cobb-Douglas function yields

f (tx , ty) = A (tx)a (ty)b = Atatbxayb

= ta+bAxayb = ta+b f (x , y)

For example, if a+ b = 0.7, then the equation implies that a
10%-increase in inputs (t = 1.1) increases output by

1.10.7f (x , y)� 10.7f (x , y) =
�
1.10.7 � 1

�
f (x , y) = 0.068993 f (x , y)

This is a 6.8993% increase in output.
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De�nition (Homogeneous Functions)

A function f (x , y) with the property

f (tx , ty) = tq f (x , y) (49)

is called a homogeneous function of degree q.
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6.2 Partial Derivatives with Two Variables

For a function y = f (x) the derivative was denoted by

dy
dx

or f 0(x)

measuring the function�s rate of change as x changes, that is,
the number of units that y changes as x changes by one unit.

For a function z = f (x , y) one may also want to know the
function�s rate of change as one of the independent variables
changes and the other independent variable is kept constant.
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Example

Consider again the Cobb-Douglas function

f (x , y) = Axayb

Changing input x (by ∆x) and keeping input y constant changes
output by

f (x + ∆x , y)� f (x , y) = A (x + ∆x)a yb � Axayb

= Ayb ((x + ∆x)a � xa)

This says that output increases by Ayb ((x + ∆x)a � xa) units
when x is increased by ∆x units while y is kept constant.
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De�nition
If z = f (x , y), then

(i) ∂z
∂x denotes the derivative of f (x , y) with respect to
x when y is held constant;

(ii) ∂z
∂y denotes the derivative of f (x , y) with respect to

y when x is held constant.
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The derivatives
∂z
∂x

and
∂z
∂y

are denoted as the partial derivatives of the function
z = f (x , y).

De�nition
The partial derivatives of the function z = f (x , y) at point (x0, y0)
are given by the formulas

∂z
∂x

= lim
∆x!0

f (x0 + ∆x , y0)� f (x0, y0)
∆x

∂z
∂y

= lim
∆y!0

f (x0, y0 + ∆y)� f (x0, y0)
∆y
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To �nd ∂z/∂x , we can think of y as a constant and can
di¤erentiate f (x , y) with respect to x as if f were a function
only of x .

Therefore, the ordinary rules of di¤erentiation can be applied.

Example

The partial derivatives of

z = x3y + x2y2 + x + y2 (50)

are
∂z
∂x

= 3x2y + 2xy2 + 1

∂z
∂y

= x3 + 2x2y + 2y
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Example

The partial derivatives of

z =
xy

x2 + y2

are (applying the quotient rule)

∂z
∂x

=
y
�
x2 + y2

�
� xy2x

(x2 + y2)2
=
y
�
y2 � x2

�
(x2 + y2)2

∂z
∂y

=
x
�
x2 � y2

�
(x2 + y2)2
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Some of the most common alternative forms of notation for
partial derivatives are

∂z
∂x

=
∂f
∂x
=

∂f (x , y)
∂x

= z 0x = f
0
x (x , y) = f

0
1 (x , y)

∂z
∂y

=
∂f
∂y
=

∂f (x , y)
∂y

= z 0y = f
0
y (x , y) = f

0
2 (x , y)

The variants with f (x , y) are better suited when we want to
emphasize the point (x , y) at which the partial derivative is
evaluated.
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If z = f (x , y), then ∂z/∂x and ∂z/∂y are called �rst-order
partial derivatives.

De�nition
Di¤erentiating ∂z/∂x with respect to x and y generates the
second-order partial derivatives

∂

∂x

�
∂z
∂x

�
=

∂2z
∂x2

and
∂

∂y

�
∂z
∂x

�
=

∂2z
∂x∂y

In the same way, di¤erentiating ∂z/∂y with respect to x and y
generates the second-order partial derivatives

∂

∂x

�
∂z
∂y

�
=

∂2z
∂y∂x

and
∂

∂y

�
∂z
∂y

�
=

∂2z
∂y2
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Example

The �rst-order partial derivatives of the function (50) were

∂z
∂x
= 3x2y + 2xy2 + 1 and

∂z
∂y
= x3 + 2x2y + 2y

The second-order partial derivatives are

∂2z
∂x2

= 6xy + 2y2 and
∂2z

∂x∂y
= 3x2 + 4xy

∂2z
∂y∂x

= 3x2 + 4xy and
∂2z
∂y2

= 2x2 + 2
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For most functions f (x , y) it is true that

∂2z
∂x∂y

=
∂2z

∂y∂x

Some of the most common alternative forms of notation for
second-order partial derivatives are

∂2z
∂x2

=
∂2f
∂x2

= f 00xx (x , y) = f
00
11(x , y)

∂2f
∂x∂y

=
∂2f

∂x∂y
= f 00xy (x , y) = f

00
12(x , y)

Also partial derivatives of higher order can be de�ned.
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6.3 Geometric Representation

A function z = f (x , y) has a graph which forms a surface in
three-dimensional space.

This space has an x-axis, an y -axis, and a z-axis.

These axes are mutually orthogonal (a 90-degree angle
between each of them) �see Figure 6-1.

The arrows point in the positive direction.

Any point in (three-dimensional) space is represented by
ordered triples of real numbers (x , y , z).

Figure 6-1 shows the point P = (x0, y0, z0).

Figure 6-2 shows the point P = (�2, 3,�4).
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Figure 6-1
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Figure 6-2
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6.3. Geometric Representation

The equation z = 0 is satis�ed by all points in the coordinate
plane spanned by the x-axis and the y -axis. This is called the
x-y -plane.

The x-y -plane is usually thought of as the horizontal plane
and the z-axis passes vertically through this plane.

The x-y -plane divides the space into two half-spaces, one
representing all points with z > 0 (above the x-y -plane) and
the other one representing all points with z < 0 (below the
x-y -plane).

The domain of a function f (x , y) can be viewed as a subset of
the x-y -plane.
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6.3. Geometric Representation

Suppose z = f (x , y) is de�ned over a domain D in the
x-y -plane.

The graph of function f is the set of all points (x , y , f (x , y))
obtained by letting (x , y) �run through� the whole of D.

If f is a �nice� function, its graph will be a connected surface
in the space, like the graph in Figure 6-3.

The point P = (x0, y0, f (x0, y0)) on the surface is obtained by
letting f (x0, y0) be the �height�of f at (x0, y0).
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Figure 6-3
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Sometimes a three-dimensional relationship must be
represented in two-dimensional space.

For this purpose, topographical maps use level curves or
contours connecting points on the map that represent places
with the same elevation level.

Also for an arbitrary function z = f (x , y) such level curves
can be drawn.

A level curve corresponding to level z = c is obtained by the
intersection of the plane z = c and the graph of f .

In Figure 6-4 the function z = f (x , y) represents a cone
(indicated by the red arch) and the plane z = c is indicated
by the red framed rectangle.
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Figure 6-4
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This level curve consists of points satisfying the equation

f (x , y) = c

Finally, the level curve is projected on the x-y -plane.

This procedure can be done for di¤erent levels.

One obtains a set of level curves projected on the x-y -plane.

Example

Figure 6-5 shows the graph and the level curves corresponding to
the function z = x2 + y2.
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Figure 6-5
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Example

Suppose that the output Y of a �rm is produced by the inputs
capital K and labour L by the following Cobb-Douglas production
function:

F (K , L) = AK aLb

with a+ b < 1 and A > 0. Figure 6-6 shows the graph near the
origin and the corresponding level curves. In the context of
production functions, level curves are called isoquants.
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Figure 6-6
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Figure 6-7 depicts the graph of some function z = f (x , y).
Keeping y0 �xed, gives the points on the graph that lie on
curve Ky .
Keeping instead x0 �xed, gives the points on the graph that
lie on curve Kx .
Keeping y0 and x0 �xed, gives point P.
The partial derivative

∂f (x0, y0)
∂x

is the derivative of z = f (x , y0) with respect to x at the point
x = x0, and is therefore the slope of the tangent line ly to the
curve Ky at x = x0.
This is the �slope of the graph in point P when looking in the
direction parallel to the positive x-axis�. It is negative.
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Figure 6-7
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Increasing x above x0, the partial derivative

∂f (x , y0)
∂x

decreases (its absolute value increases).

Therefore, the second-order partial derivative in point x = x0
is negative:

∂2f (x0, y0)
∂x2

< 0

The �rst- and second-order partial derivatives parallel to the
y -axis are

∂f (x0, y0)
∂y

> 0 and
∂2f (x0, y0)

∂y2
< 0
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6.4 A Simple Chain Rule

Suppose that
z = F (x , y)

where x and y both are functions of a variable t, with

x = f (t) , y = g(t)

Substituting for x and y in z = F (x , y) gives the composite
function

z = F (f (t), g(t))

The derivative dz/dt measures the rate of change of z with
respect to t.
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Rule (Chain Rule for One �Basic�Variable)

When z = F (x , y) with x = f (t) and y = g(t), then

dz
dt
=

∂z
∂x
dx
dt
+

∂z
∂y
dy
dt

This derivative is called the total derivative of z with respect
to t.

It is the sum of two contributions:

1 contribution of x : ∂z
∂x
dx
dt

2 contribution of y : ∂z
∂y
dy
dt
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Example

The partial derivatives of

z = F (x , y) = x2 + y3 with x = t2 and y = 2t

are
∂z
∂x
= 2x and

∂z
∂y
= 3y2

Furthermore
dx
dt
= 2t and

dy
dt
= 2

So the total derivative is

dz
dt
= 2x � 2t + 3y2 � 2 = 4tx + 6y2 = 4t3 + 24t2
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Example (continued)

We can verify the chain rule by substituting x = t2 and y = 2t in
the formula for F (x , y) and then di¤erentiating with respect to t:

z = x2 + y3 =
�
t2
�2
+ (2t)3 = t4 + 8t3

and therefore
dz
dt
= 4t3 + 24t2
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Example

Consider the Cobb-Douglas agricultural production function

Y = F (K , L,T ) = AK aLbT c

where Y is the size of the harvest, K is capital input, L is labour
input, and T is land input. Suppose that K , L, and T are all
functions of time t (only one �basic variable�). Then the change in
output per unit of time is

dY
dt

=
∂Y
∂K

dK
dt
+

∂Y
∂L
dL
dt
+

∂Y
∂T

dT
dt

= aAK a�1LbT c
dK
dt
+ bAK aLb�1T c

dL
dt
+ cAK aLbT c�1

dT
dt

= a
Y
K
dK
dt
+ b

Y
L
dL
dt
+ c

Y
T
dT
dt
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Example (continued)

Dividing both sides by Y gives

dY /dt
Y

= a
dK/dt
K

+ b
dL/dt
L

+ c
dT/dt
T

This is the relative rate of change (percentage change) of output
per unit of time.
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Suppose that
z = F (x , y)

where x and y both are functions of two variables t and s,
with

x = f (t, s) , y = g(t, s)

Substituting for x and y in z = F (x , y) gives the composite
function

z = F (f (t, s), g(t, s))

The partial derivative ∂z/∂t measures the rate of change of z
with respect to t, keeping s �xed.

The partial derivative ∂z/∂s measures the rate of change of z
with respect to s, keeping t �xed.
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Rule (Chain Rule for Two �Basic�Variables)

When z = F (x , y) with x = f (t, s) and y = g(t, s), then

∂z
∂t

=
∂z
∂x

∂x
∂t
+

∂z
∂y

∂y
∂t

∂z
∂s

=
∂z
∂x

∂x
∂s
+

∂z
∂y

∂y
∂s
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6.4. A Simple Chain Rule

Example

The partial derivatives of

z = F (x , y) = x2 + 2y2 with x = t � s2 and y = ts

are
∂z
∂x
= 2x and

∂z
∂y
= 4y

Furthermore

∂x
∂t
= 1,

∂x
∂s
= �2s, ∂y

∂t
= s,

∂y
∂s
= t
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Example (continued)

Therefore

∂z
∂t

= 2x � 1+ 4y � s = 2
�
t � s2

�
+ 4ts2

= 2t � 2s2 + 4ts2
∂z
∂s

= 2x � (�2s) + 4y � t = �4
�
t � s2

�
s + 4t2s

= �4ts + 4s3 + 4t2s
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6.4. A Simple Chain Rule

Suppose that
z = F (x1, ..., xn)

where x1, ..., xn are functions of the variables t1, ..., tm , with

x1 = f1(t1, ..., tm), ... , xn = fn(t1, ..., tm)

Substituting for x1, ..., xn in z = F (x1, ..., xn) gives the
composite function

z = F (f1(t1, ..., tm), ..., fn(t1, ..., tm))

The partial derivative ∂z/∂tj measures the rate of change of z
with respect to tj , keeping all basic variables ti with i 6= j
�xed.
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Rule (Chain Rule for Many �Basic�Variables)

When z = F (x1, ..., xn) with

x1 = f1(t1, ..., tm), ... , xn = fn(t1, ..., tm)

then

∂z
∂tj

=
∂z
∂x1

∂x1
∂tj

+
∂z
∂x2

∂x2
∂tj

+ ...+
∂z
∂xn

∂xn
∂tj

j = 1, 2, ...,m
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7 Multivariable Optimization
7.1 Introduction

Figure 7-1 shows on the left hand side the di¤erence between
an interior and a boundary point of some set (domain) S .

A set is called open if it consists only of interior points.

If the set contains all its boundary points, it is called a closed
set.
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7.1. Introduction

Figure 7-1
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7.1. Introduction

The concepts discussed in the context of functions with one
independent variable can be applied also in the context of two
independent variables.

Again, we distinguish between

local and global extreme points (maxima and minima)
interior and boundary (or end) points
stationary and non-stationary points.

We start with local extreme points (Section 7.2). Global
extreme points are discussed in Section 7.3.

246 / 358



Mathematics for Economists

7. Multivariable Optimization

7.2. Local Extreme Points

7.2 Local Extreme Points

De�nition (Stationary Points)

Consider the di¤erentiable function z = f (x , y) de�ned on a set
(or domain) S . An interior point (x0, y0) of S is a stationary point,
if the point satis�es the two equations

∂f (x0, y0)
∂x

= 0,
∂f (x0, y0)

∂y
= 0 . (51)

In Figure 7-1 (�think of it as part of the Himalaya�), there are
three stationary points: P, R, and Q.
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Figure 7-2
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De�nition
The point (x0, y0) is said to be a local maximum point of f in set
S if f (x , y) � f (x0, y0) for all pairs (x , y) in S that lie su¢ ciently
close to (x0, y0).

By �su¢ ciently close�one should think of a �small� circle
with centre (x0, y0).

Points P and Q are local maxima.

Only point P is a global maximum.

Point R is a so-called saddle point. This is not an extreme
point (more details later).
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Every extreme point of a function f (x , y) must belong to one
of the following three di¤erent sets:

(a) an interior point of S that is stationary

(b) boundary points of S (if included in S)

(c) interior points in S where ∂f /∂x or ∂f /∂y does
not exist.

The following analysis concentrates on variant (a).
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Rule (Necessary Condition for a Maximum or Minimum)

A twice di¤erentiable function z = f (x , y) can have a local
extreme point (maximum or minimum) at an interior point (x0, y0)
of S only if this point is a stationary point.

Therefore, the equations (51) are called �rst-order conditions
(or FOC�s) of a maximum or minimum.

In Figure 7-3, f attains its largest value (its maximum) at an
interior point (x0, y0) of S .

In Figure 7-4, f attains its smallest value (its minimum) at an
interior point (x0, y0) of S .
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Figure 7-3
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Figure 7-4
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Example

The stationary points of the function

f (x , y) = �2x2 � 2xy � 2y2 + 36x + 42y � 158

must satisfy the �rst-order conditions

∂f
∂x

= �4x � 2y + 36 = 0
∂f
∂y

= �2x � 4y + 42 = 0

Multiplying the �rst condition by �1/2 and adding it to the
second condition yields:
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Example (continued)

y � 18� 4y + 42 = 0

24 = 3y

y = 8

Inserting this result in in the �rst condition gives

�4x � 2 � 8+ 36 = 0

20 = 4x

x = 5

This is the only pair of numbers which satis�es both equations.
Therefore, (x , y) = (5, 8) is the only candidate for a local (and
global) maximum or minimum.
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Every local extreme point in the interior of set S must be
stationary.

However, not every stationary point in the interior of S is an
extreme point.

The saddle point R of Figure 7-2 was an example.

De�nition
A saddle point (x0, y0) is a stationary point with the property that
there exist points (x , y) arbitrarily close to (x0, y0) with
f (x , y) < f (x0, y0), and there also exist such points with
f (x , y) > f (x0, y0).

Figure 7.5 shows another example. This is the graph of the
function f (x , y) = x2 � y2.
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Figure 7-5
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Example

The �rst-order derivatives of the function f (x , y) = x2 � y2 are

∂f
∂x
= 2x and

∂f
∂y
= �2y

Therefore (0, 0) is a stationary point. Moreover, f (0, 0) = 0 and
for points in the neighbourhood of (0, 0) the function f (x , 0) takes
positive values and the function f (0, y) takes negative values.
Therefore, (0, 0) is a saddle point.

Stationary points of a function are either

local maximum points,
local minimum points,
or saddle points.
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For deciding whether a stationary point is a maximum,
minimum, or saddle point, we must study the two direct
second-order partial derivatives

∂2f
∂x2

and
∂2f
∂y2

(52)

and the two cross second-order partial derivatives

∂2f
∂x∂y

and
∂2f

∂y∂x
(53)
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Rule (Test for Local Extrema)

Suppose f (x , y) is a twice di¤erentiable function in a domain S ,
and let (x0, y0) be an interior stationary point of S .

(a) If
∂2f
∂y2

∂2f
∂x2

�
�

∂2f
∂x∂y

�2
< 0

then (x0, y0) is a saddle point.

(b) If
∂2f
∂y2

∂2f
∂x2

�
�

∂2f
∂x∂y

�2
= 0

then (x0, y0) could be a local maximum, a local
minimum, or a saddle point.
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Rule (continued)

(c) If

∂2f
∂y2

∂2f
∂x2

�
�

∂2f
∂x∂y

�2
> 0 and

∂2f
∂x2

< 0

(54)
then (x0, y0) is a (strict) local maximum point [Note
that (54) automatically implies that ∂2f /∂y2 < 0].

(d) If

∂2f
∂y2

∂2f
∂x2

�
�

∂2f
∂x∂y

�2
> 0 and

∂2f
∂x2

> 0

then (x0, y0) is a (strict) local minimum point.
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Example

The �rst-order conditions of the former example

f (x , y) = �2x2 � 2xy � 2y2 + 36x + 42y � 158

were

∂f
∂x
= �4x � 2y + 36 = 0 and

∂f
∂y
= �2x � 4y + 42 = 0

leading to the stationary point (x , y) = (5, 8). The second-order
derivatives of all points (x , y) are

∂2f
∂x2

= �4, ∂2f
∂y2

� 4, ∂2f
∂x∂y

= �2 and
∂2f

∂y∂x
� 2
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Example (continued)

Since
∂2f
∂x2

� ∂2f
∂y2

�
�

∂2f
∂x∂y

�2
= 16� 4 = 12 � 0

and
∂2f
∂x2

= �4 < 0, ∂2f
∂y2

= �4 < 0

the stationary point (x , y) = (5, 8) is a maximum.
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7.3 Global Extreme Points

At most one of the local extreme points is a global maximum
and at most one of the local extreme points is a global
minimum.

De�nition (Convex Set)
A set S in the x-y -plane is convex if, for each pair of points P and
Q in S , all the line segment between P and Q lies in S .

The set S in Figure 7-3 is convex.

For deciding whether a di¤erentiable function f (x) was
concave or convex we studied the second-order derivatives.
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For deciding whether a di¤erentiable function z = f (x , y) is
concave or convex we must study the two direct second-order
partial derivatives

∂2f
∂x2

and
∂2f
∂y2

and the two cross second-order partial derivatives

∂2f
∂x∂y

and
∂2f

∂y∂x
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De�nition (Concave or Convex Function)

A twice di¤erentiable function z = f (x , y) is denoted as concave,
if it satis�es throughout a convex set S the conditions

∂2f
∂x2

� 0, ∂2f
∂y2

� 0, and
∂2f
∂x2

� ∂2f
∂y2

�
�

∂2f
∂x∂y

�2
� 0,

and it is denoted as convex, if it satis�es throughout a convex set
S the conditions

∂2f
∂x2

� 0, ∂2f
∂y2

� 0, and
∂2f
∂x2

� ∂2f
∂y2

�
�

∂2f
∂x∂y

�2
� 0.
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Figure 7-3 shows a function f (x , y) that is concave in S and
Figure 7-4 a function that is convex.

Rule (Su¢ cient Conditions for a Maximum or Minimum)

Suppose that (x0, y0) is an interior stationary point for function
f (x , y) de�ned in a convex set S .

The point (x0, y0) is a (global) maximum point for f (x , y) in
S , if f (x , y) is concave.

The point (x0, y0) is a (global) minimum point for f (x , y) in
S , if f (x , y) is convex.
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Example

In the previous example,

f (x , y) = �2x2 � 2xy � 2y2 + 36x + 42y � 158

we had
∂2f
∂x2

� ∂2f
∂y2

�
�

∂2f
∂x∂y

�2
= 16� 4 = 12 � 0

and
∂2f
∂x2

= �4 < 0, ∂2f
∂y2

= �4 < 0

Therefore, the function is concave and the stationary point
(x , y) = (5, 8) is a maximum.
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8 Constrained Optimization
8.1 Introduction

Consider a consumer who chooses how much of the income m
to spend on a good x whose price is p, and how much to
leave for expenditure y on other goods.
The consumer faces the budget constraint

px + y = m

Suppose that the preferences are represented by the utility
function

u(x , y)

In mathematical terms, the consumer�s constrained
maximization problem can be expressed as

max u(x , y) subject to px + y = m
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This simple problem can be transformed into an unconstrained
maximization problem.

Replace in u(x , y) the variable y by m� px and then
maximize this new function

h(x) = u(x ,m� px)

with respect to x .
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8.1. Introduction

Example (Consumer Theory)

Suppose that the utility function is

u (x , y) = xy (55)

and the budget constraint

2x + y = 100 (56)

Solving the budget constraint for y gives

y = 100� 2x

Inserting in the utility function (55) gives

u (x , 100� 2x) = x (100� 2x)
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8.1. Introduction

Example (continued)

Di¤erentiating this condition with respect to x gives the �rst-order
condition

(100� 2x) + x(�2) = 0
Solving for x gives

x = 25

and therefore,
y = 100� 2 � 25 = 50

Notice that u00(x) = �4 for all x . Therefore, x = 25 is a
maximum.
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However, this substitution method is sometimes di¢ cult or
even impossible.

In such cases the Lagrange multiplier method is widely used in
economics.
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8.2 The Lagrange Multiplier Method

Suppose that a function f (x , y) is to be maximized, where x
and y are restricted to satisfy

g(x , y) = c (57)

This can be written as

max f (x , y) subject to g(x , y)� c = 0 (58)

The problem is illustrated in Figure 8.1 for some concave
function f (x , y) and some nonlinear constraint g(x , y) = c .
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Figure 8-1
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The left hand side diagram shows that the unrestricted
maximum is at point A.

However, the constraint (red and dotted black line in the
x-y -plane) implies that only the (x , y)-points on the dotted
black line are relevant.

The restricted maximum value is at point B.

The right hand side shows the same problem with level curves
and the constraint again as a red line.

Only the x-y -combinations on this red line are available.

The highest level curve is reached in point B 0 which
corresponds to point B in the left hand diagram.

276 / 358



Mathematics for Economists

8. Constrained Optimization

8.2. The Lagrange Multiplier Method

The Lagrange multiplier method proceeds in three steps.

Rule

(i) The Lagrange multiplier method introduces a
Lagrange multiplier, often denoted by λ, and de�nes
the Lagrangian L by

L (x , y) = f (x , y)� λ (g (x , y)� c)

The Lagrange multiplier λ should be considered as a
constant.
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Rule (continued)

(ii) Di¤erentiate L with respect to x and y , and equate
the partial derivatives to 0:

∂L (x , y)
∂x

=
∂f (x , y)

∂x
� λ

∂g (x , y)
∂x

= 0 (59)

∂L (x , y)
∂y

=
∂f (x , y)

∂y
� λ

∂g (x , y)
∂y

= 0 (60)

(iii) Solve the equations (59) and (60) and the constraint
(57) simultaneously for the three unknowns x , y , and
λ. These triples (x , y ,λ) are the solution candidates,
at least one of which solves the problem.

The conditions (59), (60), and (57) are called the �rst-order
conditions for problem (58).

278 / 358



Mathematics for Economists

8. Constrained Optimization

8.2. The Lagrange Multiplier Method

Example (Consumer Theory)

Consider again the utility function (55) and the budget constraint
(56). The Lagrangian is

L (x , y) = xy � λ (2x + y � 100)

The �rst order conditions are

∂L (x , y)
∂x

= y � λ2 =0 (61)

∂L (x , y)
∂y

= x � λ =0 (62)

2x + y � 100 =0 (63)
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Example (continued)

(61) and (62) imply that

y = 2λ

x = λ

Inserting these results in (63) gives

2λ+ 2λ = 100

and therefore

λ = 25, x = 25, and y = 50

These are the same results as those derived with the unconstrained
maximization.
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Using in the Lagrangian +λ instead of �λ does not change
the results for x and y . Only the sign of λ changes.

Example (Consumer Theory)

Consider again the previous example and use the Lagrangian

L (x , y) = xy + λ (2x + y � 100)

The �rst order conditions are

∂L (x , y)
∂x

= y + λ2 =0 (64)

∂L (x , y)
∂y

= x + λ =0 (65)

2x + y � 100 =0 (66)
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Example (continued)

(64) and (65) imply that

y = �2λ

x = �λ

Inserting these results in (66) gives

�2λ+�2λ = 100

and therefore

λ = �25, x = 25, and y = 50

These are the same results as those derived with �λ in the
Lagrangian.
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Example (Production Theory)

A �rm intends to produce 30 units of output as cheaply as
possible. By using K units of capital and L units of labour, it can
produce

p
K + L units of output. Suppose the price of capital is 1

euro and the price of labour is 20 euro. The �rm�s problem is

min (K + 20L) subject to
p
K + L = 30 (67)

The Lagrangian is

L (K , L) = K + 20L� λ
�
K 1/2 + L� 30

�
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Example (continued)

The �rst-order conditions are

∂L (K , L)
∂K

= 1� λ(1/2)K�(1/2) = 0 (68)

∂L (K , L)
∂L

= 20� λ = 0 (69)

K 1/2 + L� 30 = 0 (70)

(69) gives
λ = 20 (71)

Inserted in (68) yields

1 =
20

2
p
K
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Example (continued)

Therefore, p
K = 10 (72)

(72) implies that K = 100. Inserting (72) in (70) gives

L = 20

The associated cost is

1 �K + 20 � L = 1 � 100+ 20 � 20 = 500
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Example (Consumer Theory)

A consumer who has a Cobb-Douglas utility function
u(x , y) = Axayb faces the budget constraint px + qy = m, where
A, a, b, p, and q are positive constants. The consumer�s problem is

maxAxayb subject to px + qy = m

The Lagrangian is

L (x , y) = Axayb � λ (px + qy �m)

Therefore, the �rst-order conditions are

∂L (x , y) /∂x = Aaxa�1yb � λp =0 (73)

∂L (x , y) /∂y = Axabyb�1 � λq =0 (74)

px + qy �m =0 (75)
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Example (continued)

Solving (73) and (74) for λ yields

λ =
Axayb�1y

p
=
Aaxa�1yb�1y

p

λ =
Axa�1xyb

q
=
Axa�1xbyb�1

q

Setting the right hand sides equal and cancelling the common
factor Axa�1yb�1 gives

ay
p
=
xb
q

and therefore

qy = px
b
a
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Example (continued)

Inserting this result in (75) yields

px + px
b
a
= m

Rearranging gives
px =

a
a+ b

m

Solving for x yields the following �demand function�

x =
a

a+ b
m � 1

p
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Example (continued)

Inserting
px = qy

a
b

in (75) gives

qy
a
b
+ qy = m

qy =
b

a+ b
m

and therefore the �demand function�

y =
b

a+ b
m � 1

q
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Example (continued)

Suppose that A = 10, a = 0.4, b = 0.8, p = 2, q = 4, and
m = 1200. That is, the utility function is u(x , y) = 10x0.4y0.8and
the budget constraint is 2x + 4y = 1200. Then our previous
results yield the expenditure on x ,

2x =
a

a+ b
m =

0.4
1.2
1200 = 400 ,

and on y ,

4y =
b

a+ b
m =

0.8
1.2
1200 = 800 .

Therefore, the utility maximizing consumption quantities
(demands) are x = 200 and y = 200.
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8.3 Interpretation of the Lagrange Multiplier

Consider the maximization problem

max f (x , y) subject to g(x , y)� c = 0

Rule

In a maximization problem with f 0x > 0 and f
0
y > 0, the Lagrange

multiplier λ indicates the change in the maximum value of f (x , y)
when the constraint g(x , y)� c = 0 is relaxed (strengthened) by
one unit, that is, when c is increased (decreased) by one unit.
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Consider the minimization problem

min f (x , y) subject to g(x , y)� c = 0

Rule

In a minimization problem with f 0x > 0 and f
0
y > 0, the Lagrange

multiplier λ indicates the change in the minimum value of f (x , y)
when the constraint g(x , y)� c = 0 is strengthened (relaxed) by
one unit, that is, when c is increased (decreased) by one unit.
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Example (Production Theory)

In a previous example, the problem (67) and the corresponding
Lagrangian

L (K , L) = K + 20L� λ
�
K 1/2 + L� 30

�
was considered. The solution was K = 100, L = 20, and the
resulting cost was 500. What is the change in the minimum cost if,
instead of 30 units, 31 units are produced (constraint is
strengthened)? The new constraint is

K 1/2 + L = 31

Again, (69) yields λ = 20 and (68) yields K 1/2 = 10. Therefore,
K = 100 and L = 21. This implies that the cost increases by one
labour unit, that is, by 20 euro. Notice that λ = 20!
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8.4 Several Solution Candidates

The �rst-order conditions are necessary conditions for a
solution that satis�es the restriction and is in the interior of
the domain of (x , y).

For determining whether the solution is a maximum or a
minimum, some ad hoc methods often help.

These methods are also useful when several solution
candidates exist.
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Example

The Langrangian associated with the problem

max(min) f (x , y) = x2 + y2

subject to g(x , y) = x2 + xy + y2 = 3

is
L(x , y) = x2 + y2 � λ

�
x2 + xy + y2 � 3

�
and the �rst-order conditions are

∂L (x , y)
∂x

= 2x � λ (2x + y) = 0 (76)

∂L (x , y)
∂y

= 2y � λ (x + 2y) = 0 (77)

x2 + xy + y2 � 3 = 0 (78)
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Example (continued)

For y = �2x , (76) yields x = 0, but (78) yields

x2 + x(�2x) + (2x)2 � 3 = x2 � 2x2 + 4x2 � 3 = 3x2 � 3 = 0

and therefore, x = �1. However, this is a contradiction to x = 0.
Therefore y = �2x is not a solution.
Solving (76) for λ yields

λ =
2x

2x + y
(provided y 6= �2x)

Inserting this value in (77) gives

2y � 2x
2x + y

(x + 2y) = 0

2y (2x + y) = 2x (x + 2y)

y2 = x2
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Example (continued)

Therefore we get
y = �x

Suppose y = x . Then (78) yields x2 = 1, so x = 1 or x = �1.
This gives the two solution candidates (x , y) = (1, 1) and
(x , y) = (�1,�1), with λ = 2/3.

Suppose y = �x . Then (78) yields x2 = 3, so x =
p
3 or

x = �
p
3. This gives the two solution candidates

(x , y) = (
p
3,�

p
3) and (x , y) = (�

p
3,
p
3), with λ = 2.
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Example (continued)

This leaves the four solutions

f (1, 1) = f (�1,�1) = 2

and
f (
p
3,�

p
3) = f (�

p
3,
p
3) = 6

Graphically, f (x , y) is a �bowl standing�on the origin and the
constraint g(x , y) = c is an ellipse around the origin. The points
furthest away are the maximum points. Here, these are the points
(
p
3,�

p
3) and (�

p
3,
p
3). The points closest to the origin are

the minimum points. Here, these are the points (1, 1) and
(�1,�1), see Figure 8.2.
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Figure 8-2
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8.5 More Than One Constraint

Suppose that the maximization problem is

max f (x1, ..., xn) subject to

8><>:
g1(x1, ..., xn) = c1
...
gm(x1, ..., xn) = cm

With each constraint a separate Lagrange multiplier
(λ1, ...,λm) is associated.

The corresponding Lagrangian is

L (x1, ..., xn) = f (x1, ..., xn)�
m

∑
j=1

λj (gj (x1, ..., xn)� cj )
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The solution can be derived from the n+m �rst-order
conditions:

∂L (x1, ..., xn)
∂x1

=
∂f (x1, ..., xn)

∂x1
�

m

∑
j=1

λj
∂gj (x1, ..., xn)

∂x1
= 0

...
∂L (x1, ..., xn)

∂xn
=

∂f (x1, ..., xn)
∂xn

�
m

∑
j=1

λj
∂gj (x1, ..., xn)

∂xn
= 0

g1(x1, ..., xn) = c1
...

gm(x1, ..., xn) = cm
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Example

The Lagrangian of the problem

min f (x , y , z) = x2+ y2+ z2 subject to
�
x + 2y + z = 30
2x � y � 3z = 10

is

L(x , y , z) = x2 + y2 + z2

�λ1 (x + 2y + z � 30)
�λ2 (2x � y � 3z � 10)
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Example

The associated �rst-order conditions are

∂L (x , y , z)
∂x

= 2x � λ1 � 2λ2 = 0 (79)

∂L (x , y , z)
∂y

= 2y � 2λ1 + λ2 = 0 (80)

∂L (x , y , z)
∂z

= 2z � λ1 + 3λ2 = 0 (81)

x + 2y + z � 30 = 0 (82)

2x � y � 3z � 10 = 0 (83)

Solving (79) for λ1 yields

λ1 = 2x � 2λ2 (84)
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Example (continued)

Inserting this value in (80) gives

2y � 2 (2x � 2λ2) + λ2 = 0

5λ2 = 4x � 2y

λ2 =
4x � 2y
5

(85)

Inserting this solution in (84) gives

λ1 = 2x � 2
4x � 2y
5

=
2x + 4y
5

(86)
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Example (continued)

Inserting the expressions for λ1 and λ2 into (81) gives

2z � 2x + 4y
5

+ 3
4x � 2y
5

= 0

2z + 2x � 2y = 0

z + x � y = 0 (87)

(87) gives
y = z + x (88)

Using this result in (82) yields

3y � 30 = 0

y = 10 (89)
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Example (continued)

Then (88) implies that
z = 10� x (90)

Inserting (89) and (90) in (83) gives

2x � 10� 3 (10� x)� 10 = 0

�50+ 5x = 0

x = 10 (91)

Inserting this result in (90) yields

z = 0
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Example (continued)

Inserting the results for x , y , and z in (85) and (86) gives

λ2 =
4 � 10� 2 � 10

5
= 4

λ1 =
2 � 10+ 4 � 10

5
= 12
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Example (continued)

An easier alternative method to solve this particular problem is to
reduce it to a one-variable optimization problem. The constraints
are

x + 2y + z = 30 (92)

2x � y � 3z = 10 (93)

Multiplying (92) by 2 and then subtracting (93) from the resulting
condition yields

(2x + 4y + 2z)� (2x � y � 3z) = 60� 10
5y + 5z = 50

y = 10� z (94)
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Example (continued)

Inserting this result in (93) gives

2x � (10� z)� 3z = 10

2z = 2x � 20
z = x � 10 (95)

Inserting (95) in (94) gives

y = 10� (x � 10) = 20� x (96)

Inserting (95) and (96) in f (x , y , z) gives

h(x) = x2 + (20� x)2 + (x � 10)2

= 3x2 � 60x + 500
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Example (continued)

The �rst-order condition is

h0(x) = 6x � 60 = 0
x = 10

The second-order derivative is

h00(x) = 6

Therefore, h(x) is convex and x = 10 is a minimum. Inserting
x = 10 in (95) and (96) yields z = 0 and y = 10. This is the same
solution as in the constrained optimization.
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9 Matrix Algebra
9.1 Basic Concepts

This chapter covers Section 8.5 (without 8.5.6, 8.5.7, and 8.5.9) of
the textbook Ökonometrie - eine Einführung (Auer, 2016).

De�nition (Matrix)
The matrix A

is a rectangular array of real numbers aij
(i = 1, 2, ...,Z ; j = 1, 2, ...,S)

that has Z rows and S columns, and therefore, Z � S elements

A =

26664
a11 a12 � � � a1S
a21 a22 � � � a2S
...

...
. . .

...
aZ 1 aZ 2 � � � aZS

37775
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The matrix A is called a matrix of order (Z � S) or simply a
(Z � S)-matrix.
A real number can be interpreted as a (1� 1)-matrix.
Such a matrix is called a scalar.

A matrix with only one row is a row vector:

a =
�
a1 a2 � � �

�
A matrix with only one column is a column vector:

b =

264 b1b2
...

375
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A quadratic matrix is a matrix with Z = S .

The elements a11, a22...aZZ are called the main diagonal of a
quadratic matrix:

A =

26664
a11 a12 � � � a1Z
a21 a22 � � � a2Z
...

...
. . .

...
aZ 1 aZ 2 � � � aZZ

37775

313 / 358



Mathematics for Economists

9. Matrix Algebra

9.1. Basic Concepts

If for all elements of a quadratic matrix it is true that
aij = aji , then we speak of a symmetric matrix:

A =

2664
a e f g
e b h i
f h c j
g i j d

3775
A diagonal matrix is a special case of a symmetric matrix. All
its elements except those of the main diagonal are 0:

A =

2664
a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

3775
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A diagonal matrix with a11 = a22 = ... = aZZ is a scalar
matrix:

A =

2664
3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

3775
A scalar matrix with a11 = a22 = ... = aZZ = 1 is an identity
matrix:

A =

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 = I4
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When all the elements below the main diagonal are 0, then
this is an upper triangular matrix:

A =

24 1 7 2
0 3 9
0 0 5

35
When all elements above the main diagonal are 0, then this is
a lower triangular matrix.
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A matrix consisting only of zeros is called a zero matrix:

A =

24 0 0 0
0 0 0
0 0 0

35 = 03
A column vector of zeros is denoted by

a =

24 00
0

35 = o
A row vector of zeros is denoted by

b =
�
0 0 0

�
= o0
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De�nition (Transposition)
The transposition of a matrix is the transformation of a
(S � Z )-matrix into a (Z � S)-matrix by exchanging the rows
with the columns.

Example

A =
�
a b c
d e f

�
) A0 =

24 a d
b e
c f

35
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Rule

(A0)0 = A

Also vectors can be transposed:

a =
�
a b c

�
) a0 =

24 a
b
c

35
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9.2 Computing with Matrices

Two matrices A and B are identical (A = B), if they are of
the same order and if aij = bij (i = 1, 2, ...,Z ; j = 1, 2, ...,S).

De�nition (Summation)

The summation (and subtraction) of two matrices is elementwise
and requires that the two matrices are of identical order:

A+B =

26664
a11 + b11 a12 + b12 � � � a1S + b1S
a21 + b21 a22 + b22 � � � a2S + b2S

...
...

. . .
...

aZ 1 + bZ 1 aZ 2 + bZ 2 � � � aZS + bZS

37775
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Rule

A+ 0 = A
A+B = B+A
A0 +B0 = (A+B)0

Analogous rules apply to the subtraction of matrices.

Also three matrices A, B, and C of the same order can be
added. Furthermore,

(A+B) +C = A+ (B+C)
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Example

The following matrices are given:

A =
�
4 3
1 2

�
B =

�
�1 2
4 4

�
C =

�
1 0
0 1

�
Computing

A�B0 + 2C
gives �

4 3
1 2

�
�
�
�1 4
2 4

�
+

�
2 0
0 2

�
=

�
7 �1
�1 0

�
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De�nition (Scalar Multiplication)
In a scalar multiplication each element aij of a matrix A is
multiplied by the scalar λ:

λA = Aλ =

26664
λa11 λa12 � � � λa1S
λa21 λa22 � � � λa2S
...

...
. . .

...
λaZ 1 λaZ 2 � � � λaZS

37775
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Example

The following matrix is given:

A =
�
4 3
1 2

�
A scalar multiplication by λ = 7 yields

7A =
�
7 � 4 7 � 3
7 � 1 7 � 2

�
=

�
28 21
7 14

�
The scalar multiplication A7 gives the same result.
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De�nition (Inner Product)

The inner product of the row vector a0 and the column vector b
(each with Z elements) is:

a0b =a1b1 + a2b2 + ...+ aZ bZ =
Z

∑
i=1
aibi

The result of an inner product is always a scalar.
The mechanics of calculation: Suppose that Z = 3. Then

a0b
b1
b2
b3

a1 a2 a3 a1b1 + a2b2 + a3b3
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Example

The following vectors are given:

c =

24 4
�2
3

35 d =

24 12
2

35
Computing c0d gives

c0d
1
2
2

4 �2 3 4 � 1+ (�2) � 2+ 3 � 2 = 6
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The multiplication of matrices requires that the number of
columns of the �rst matrix is identical to the number of rows
of the second matrix.

Let

A =

�
a11 a12
a21 a22

�
B =

�
b11 b12 b13
b21 b22 b23

�
and

C = AB
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De�nition
The element cij of matrix C = AB is the inner product of row i of
matrix A and column j of matrix B:

B

A C

=

b11 b12 b13
b21 b22 b23

a11 a12 c11 c12 c13
a21 a22 c21 c22 c23

=

b11 b12 b13
b21 b22 b23

a11 a12 a11b11+a12b21 a11b12+a12b22 a11b13+a12b23
a21 a22 a21b11+a22b21 a21b12+a22b22 a21b13+a22b23
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Example

The following two matrices are given:

A =
�
1 3 2
5 6 7

�
B =

244 7
5 8
6 9

35
Calculating C = AB gives the following (2� 2)-matrix:

C 4 7
5 8
6 9

1 3 2 31 49
5 6 7 92 146
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Example

Again, the following two vectors (matrices) are given:

c =

24 4
�2
3

35 d =

24 12
2

35
In a previous example c0d was computed. Now cd0 is computed:

cd0 1 2 2
4 4 8 8

�2 �2 �4 �4
3 3 6 6
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The sequence of multiplication is important.

Right-sided multiplication of matrix A by matrix B yields AB
(if the matrices are of coherent orders).

Left-sided multiplication of matrix A by matrix B yields BA
(if the matrices are of coherent orders).

In general,
AB 6= BA
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9.2. Computing with Matrices

Example

The following two matrices are given:

A =
�
1 3
5 6

�
B =

�
1 0
1 2

�
Calculating C = AB and D = BA gives the following
(2� 2)-matrices:

C 1 0
1 2

1 3 4 6
5 6 11 12

D 1 3
5 6

1 0 1 3
1 2 11 15
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Rule

Consider a (Z � S)-matrix A. Then

AIS = A
IZA = A
A0S = 0
0ZA = 0
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Example

The following three matrices are given:

A =
�
1 3
5 6

�
I2 =

�
1 0
0 1

�
02 =

�
0 0
0 0

�
Calculating C = AI2 and D = 02A gives the following
(2� 2)-matrices:

C 1 0
0 1

1 3 1 3
5 6 5 6

D 1 3
5 6

0 0 0 0
0 0 0 0
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Rule
If for the matrices A, B, C, and D the respective computations are
admissable, then

(AB)C = A (BC)
(A+B)C = AC+BC
A (B+C) = AB+AC

(A+B) (C+D) = AC+AD+BC+BD
(AB)0 = B0A0

(ABC)0 = C0B0A0
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Rule

Let λ denote a scalar. Then,

λAB = AλB = ABλ

De�nition (Idempotent Matrix)
A quadratic matrix A for which

AA = A

is denoted as idempotent

The identity matrix IZ is an example for an idempotent
matrix.
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Example

The multiplication I2I2 gives the following result:

1 0
0 1

1 0 1 0
0 1 0 1
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9.3 Rank and Inversion

Let λ1,λ2, ...,λS denote real numbers.

De�nition (Linear Dependence)
The vectors a1, a2, ..., aS are linearly dependent, when

λ1a1 + λ2a2 + ...+ λSaS = o , where at least one λi 6= 0

Otherwise, the vectors are linearly independent.

338 / 358



Mathematics for Economists

9. Matrix Algebra

9.3. Rank and Inversion

Example

The vectors of the matrix

A =

24 4 0 2
0 �2 �1
0 2 1

35
are linearly dependent, because for λ1 = 1, λ2 = 1, and λ3 = �2
one gets

1 �

24 40
0

35+ 1 �
24 0
�2
2

35� 2 �
24 2
�1
1

35 =
24 00
0

35
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The column rank of a matrix A is the maximum number of
linearly independent columns.

The row rank of a matrix A is the maximum number of
linearly independent rows.

Column rank and row rank are always identical.

Therefore, one simply speaks of the rank of matrix A:
rank(A):

Rule

rank(A) � min(Z ,S)

If
rank(A) = min(Z ,S)

then the matrix has full rank.
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Rule

rank(A0) = rank(A)
rank(A0A) = rank(AA0) = rank(A)
rank(IZ ) = Z

De�nition (Regular and Singular)
A quadratic matrix with full rank is denoted as a regular matrix. If
the quadratic matrix does not have full rank it is a singular matrix.
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De�nition (Inverse)

To each regular (Z � Z )-matrix A a matrix A�1 exists that is
characterized by the following property:

AA�1 = A�1A = IZ

The matrix A�1 is called the inverse of A.

Rules
If matrix A is not regular, it does not have an inverse.
The inverse of a regular matrix A is also regular.
Furthermore, �

A�1
��1

= A
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Example

The following two matrices are given:

A =
�
1 0
1 2

�
B =

�
1 0

�0.5 0.5

�
Calculating C = AB gives the following (2� 2)-matrix:

C 1 0
�0.5 0.5

1 0 1 0
1 2 0 1

Therefore, C = I2. This implies that B is the inverse of A:
B = A�1.
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Example (continued)

Note that reversing the order of multiplication, D = BA, gives
again

D 1 0
1 2

1 0 1 0
�0.5 �0.5 0 1

Therefore, A is the inverse of B: A = B�1. This is a general
result. If B = A�1, then also A = B�1, and vice versa.
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Rules
Computational rules for inverse matrices:�

A�1
�0

=
�
A0
��1

(λA)�1 = λ�1A�1

As a consequence,h�
A0A

��1i0
=
h�
A0A

�0i�1
=
h�
A0
�
A0
�0�i�1

=
�
A0A

��1
Rules
Suppose that A, B, and C are three arbitrary regular
(Z � Z )-matrices. In such a case:

(AB)�1 = B�1A�1 and (ABC)�1 = C�1B�1A�1
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9.4 De�nite and Semide�nite Matrices

Which of the two matrices

B =
�
4 0
3 4

�
and C =

�
2 3
0 3

�
has a �larger value�?

The di¤erence between the two matrices is

A = B�C =
�
2 �3
3 1

�
(97)

Therefore, no de�nite answer seems possible.
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A general form of weighting of matrix A is the quadratic form

b0Ab = [b1 b2]
�
2 �3
3 1

� �
b1
b2

�
=

�
2b1 + 3b2 �3b1 + b2

� � b1
b2

�
= (2b1 + 3b2)b1 + (�3b1 + b2)b2
= 2b1b1 + b2b2 + 3b2b1 � 3b1b2 (98)

= 2b1b1 + b2b2 (99)

(98) shows that each element aij of matrix A receives a
weight. For example element a21(= 3) is weighted by b2b1.
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In the numerical example (97), the weighted sum (98)
simpli�es to expression (99).

This expression is for all arbitrary values of b1 and b2 always
positive (except for b1 = b2 = 0).

In other words, regardless of the values of b1 and b2, the
quadratic form b0Ab yields for the numerical example (97),
that is, for the weighted sum (98), always a positive number.

Therefore, matrix A is considered as �positive�and, in
comparing matrices B and C, matrix B is considered as
�larger� than C.
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For some general quadratic (S � S)-matrix A, the following
de�nition can be given:

De�nition
The quadratic form of the quadratic (S � S)-matrix A is

b0Ab =
S

∑
i=1

S

∑
j=1
aijbibj (100)

where b0 = [b1 b2 ... bS ].

Equation (100) is obtained from:
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b0Ab =
�
b1 b2 � � � bS

�
26664
a11b1 + a12b2 + ...+ a1SbS
a21b1 + a22b2 + ...+ a2SbS

...
aS1b1 + aS2b2 + ...+ aSSbS

37775
= b1(a11b1 + a12b2 + ...+ a1SbS )

+ b2(a21b1 + a22b2 + ...+ a2SbS )
...

+ bS (aS1b1 + aS2b2 + ...+ aSSbS )

=
S

∑
i=1
bi (ai1b1 + ai2b2 + ...+ aiSbS )

=
S

∑
i=1
bi

S

∑
j=1
aijbj =

S

∑
i=1

S

∑
j=1
aijbibj .
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De�nition (De�niteness)
If

b0Ab > 0, matrix A is called positive de�nite
b0Ab < 0, matrix A is called negative de�nite

If

b0Ab � 0, matrix A positive semide�nite
b0Ab � 0, matrix A negative semide�nite
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Rules

Let A be an arbitrary (Z � S)-matrix with rank(A) = S :

A0A is always positive de�nite

Let A be a positive de�nite matrix. Then

A�1 is also positive de�nite

For every positive de�nite (S � S)-matrix C:

rank(C) = S
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9.5 Di¤erentiation and Gradient

Let a0 = [a1 a2 ... aS ] be a row vector with S elements and let
b = [b1 b2 ... bS ]0 be a column vector with S elements.
Their inner product is

a0b = a1b1 + a2b2 + ...+ aSbS =
S

∑
i=1
aibi

The inner product�s partial derivative with respect to b1 is

∂(a0b)
∂b1

= a1

Correspondingly,
∂(a0b)

∂bS
= aS
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De�nition (Gradient)
The gradient collects all partial derivatives in a single column
vector:

∂(a0b)
∂b

=

26664
∂(a0b)/∂b1
∂(a0b)/∂b2

...
∂(a0b)/∂bS

37775 =
26664
a1
a2
...
aS

37775 = a

Since
a0b = b0a

one obtains
∂(b0a)

∂b
= a
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Consider the row vector b0 = [b1 b2 ... bS ] and the symmetric
(S � S)-matrix A. The partial derivative of the quadratic
form b0Ab with respect to b1 is

∂(b0Ab)
∂b1

= (a11b1+a12b2+...+a1SbS )+b1a11+b2a21+b3a31+...+bSaS1

= 2a11b1 + (a21+a12) b2 + (a31+a13) b3 + ...+ (aS1+a1S ) bS

Since A is symmetric, we have aij = aji , and therefore

∂(b0Ab)
∂b1

= 2a11b1 + 2a12b2 + 2a13b3 + ...+ 2a1SbS

= 2
S

∑
i=1
a1ibi
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Analogous results one obtains for b2, b3 etc., resulting in the
gradient

∂(b0Ab)
∂b

= 2

26664
∑S
i=1 a1ibi

∑S
i=1 a2ibi
...

∑S
i=1 aSibi

37775

= 2

26664
a11 a12 � � � a1S
a21 a22 � � � a2S
...

...
. . .

...
aS1 aS2 � � � aSS

37775
26664
b1
b2
...
bS

37775
= 2Ab
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Example

Consider the quadratic form of the symmetric Matrix A:

b0Ab = [b1 b2]
�
2 3
3 1

� �
b1
b2

�
= 2b1b1 + b2b2 + 3b2b1 + 3b1b2
= 2b1b1 + b2b2 + 6b1b2

The �rst order partial derivatives with respect to b1 and b2 are

∂(b0Ab)
∂b1

= 4b1 + 6b2

∂(b0Ab)
∂b2

= 2b2 + 6b1 = 6b1 + 2b2
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Example (continued)

Therefore, the gradient is

∂(b0Ab)
∂b

=

�
4b1 + 6b2
6b1 + 2b2

�
=

�
4 6
6 2

� �
b1
b2

�
= 2

�
2 3
3 1

� �
b1
b2

�
= 2Ab
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