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Abstract

This paper analyzes the distortions of health insurers’ benefit packages due to ad-
verse selection when there is imperfect competition. Usingthe (conditional and mixed)
logit model for a theoretical analysis of market equilibriaunder adverse selection, for
the case of two risk types the following main results are derived: For intermediate lev-
els of competition, the benefit packages of both risk types are distorted in the separat-
ing equilibrium. If the level of competition decreases, thedistortion decreases for the
low risk type, but increases for the high risk type; in addition, the number of insurers
offering the benefit package for the high risk type decreases. If the level of competi-
tion is low enough, a pooling equilibrium emerges, which generally differs from the
Wilson-equilibrium. It is shown that these results have important implications for risk
adjustment: For intermediate levels of competition, risk adjustment can be ineffective
or even decrease welfare if it is not reasonably precise.
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∗Universität Trier, Universitätsring 15, 54286 Trier, Germany; e-mail: lorenzn@uni-trier.de; phone: 0049-
651-2012624. I thank Friedrich Breyer, Mathias Kifmann, Dominik Sachs and Esther Schuch and seminar
participants at the HCHE (Hamburg) for helpful comments andsuggestions.



1 Introduction

Adverse selection has long been recognized as a potentiallyserious problem for insurance
markets in general, and health insurance markets in particular.1 If individuals differ in their
expected medical cost, but health insurers are not allowed to charge an individual-specific
premium, this creates incentives to distort the benefit package, so that the medical services
offered are attractive for some individuals, but not for others. Insurers who respond to these
incentives are said to perform indirect risk selection: they exploit adverse selection to in-
fluence the risk structure of their insured. Several empirical studies have shown that these
distortions exist and can be severe.2 Because many health insurance markets, especially in
Europe, but also in the U.S., are characterized by communityrating, the number of individ-
uals affected by these distortions is likely to be substantial.

Theoretical studies analyzing these distortions have usually considered the case of perfect
competition, see, e.g., the highly influential study of Glazer and McGuire (2000). Health
insurance markets may, however, not always be perfectly competitive. For the U.S., Dafny
(2010) has demonstrated that in some markets, health insurers have a considerable degree of
market power.3 For the European context, Schut et al. (2003) and Tamm et al. (2007) have
shown that price elasticities of demand are low and that the number of individuals switching
insurers is smaller than what would have to be expected in a perfectly competitive market.
Some health insurance markets are rather imperfectly competitive.

This paper analyzes the interaction of these two phenomena –adverse selection and imper-
fect competition – with a special focus on the distortions ofthe benefit packages offered.
For health insurances markets, this interaction so far has only been examined for the fol-
lowing two settings: In the first one, an arbitrary number of risk types is considered, but
a pooling equilibrium is assumed, so that all insurers offerthe same contract, see Frank
et al. (2000). We relax this assumption and show that whethera separating or a pooling
equilibrium emerges depends on the level of competition.

In the second setting, a separating equilibrium for the caseof two risk types is analyzed.
Imperfect competition is captured with a Hotelling-model,where each insurer offers two
contracts (so that the incentive compatibility condition is satisfied); see, e.g., Olivella and
Vera-Hernandez (2007).4 This second class of models allows for sorting into different con-
tracts, but also implies a strong asymmetry of demand responses which in some health
insurance markets may not apply: Consider a group of individuals holding a contract from
a particular insurer. A new contract, yielding slightly higher utility than the contract they
currently hold, would attract all these individuals, if offered by the same insurer, but only
a small share of them, if offered by a different insurer. For some health insurance settings,
this is a reasonable assumption and captures the behavior ofthe insured well. One example
is a fee-for-service setting, where contracts differ mainly in the deductibles and coinsurance

1See Cutler and Zeckhauser (2000) and Breyer et al. (2011).
2See Frank et al. (2000), Cao and McGuire (2003) and Ellis and McGuire (2007). For the distinction

between direct and indirect risk selection, see Breyer et al. (2011), p. 729; for an overview of risk selection, see
van de Ven and Ellis (2000).

3See also Cebul et al. (2011); for the Medigap market, see Maestas et al. (2009) and Starc (2013).
4See also Biglaiser and Ma (2003), Jack (2006) and Bijlsma et al. (2011).
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rates. Insured will easily switch to a different contract ofthe same insurer if it yields higher
utility, but – being not perfectly informed about whether other insurers reimburse bills as
timely and at the same level of generosity – may hesitate to switch to another insurer if the
benefit package itself is only slightly superior.

In some health insurance settings, however, insurers do notspecify reimbursement rates,
but offer benefit packages of medical services, which may differ in the drug formularies, the
physician networks, the hospitals that can be attended or the disease management programs
that are implemented. In this case, from the perspective of an individual it will not make
much of a difference, wether a new contract with, say a different physician network, is
offered by the same insurer or by a different insurer. For these health insurance settings, it is
important to relax the assumption of a strong demand asymmetry, and we do so by analysing
a model where each insurer offers only one contract, so that this asymmetry cannot occur.5

To keep the analysis simple, we consider the case of two risk types. If each insurer of-
fers only one contract, but there are two risk types, a meaningful model that is supposed
to also capture a separating equilibrium must comprise morethan two insurers. Therefore,
a Hotelling-model is not appropriate. This is why we consider a discrete choice model,
namely, the (conditional and mixed) logit model.6 The logit model has been extensively
used in empirical analyzes of health insurance choice.7 In this paper we suggest that it is
also a very useful model for a theoretical analysis of marketequilibria under adverse se-
lection when there is imperfect competition: It can captureany number of insurers, allows
to endogenize whether a separating or a pooling equilibriumemerges, and – by introduc-
ing the concept of ‘indifference curve areas’ – has a graphical representation that provides
an intuitive understanding of the economic forces driving the additional distortions under
imperfect competition. It shows that of the two parameters that influence the level of compe-
tition – the number of insurers and individuals’ responsiveness to differences in the benefit
package – the latter is more important than the former. Finally, it captures the fact that some
individuals ‘make mistakes’ when choosing their health insurance contract, e.g., because of
inertia or information problems.8

For a very high level of competition, the discrete choice model replicates the results of a
model under perfect competition, where an efficient benefit package is offered for the high
risk typeH, and an inefficient one for the low risk typeL (Rothschild and Stiglitz 1976);
see Figure 1, where we present – schematically – the distortions under perfect and imperfect

5One could also relax the assumption in a setting where each insurer offers more than one contracts. This
would complicate the model because each insurer would then have to take into account the consequences of
changing one contract on the demand of its other contracts. If the number of insurers is large, this effect will
be small, but if the number of insurers is small, it may not be negligible. However, all the distortions we derive
would also occur in this setting.

6Olivella and Vera-Hernandez (2010) have analyzed a different extension of the Hotelling-model, the spokes
model of Chen and Riordan (2007). They show that when each insurer can offer two contracts, a pooling
equilibrium does not exist; also, an equilibrium where eachinsurer offers only one contract (but contracts differ
by insurer) does not exist either: At least one insurer offers both contracts so that the incentive compatibility
constraint is satisfied. This implies the strong demand asymmetry which does not apply to the setting we
analyze.

7See, e.g., Feldman et al. (1989), Royalty and Solomon (1999), Harris et al. (2002), Keane (2004) and
Ericson and Starc (2012).

8See Handel and Kolstad (2013) and Sinaiko and Hirth (2011)) for empirical evidence.
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competition.m∗ represents the efficient benefit package. Under perfect competition, which
is depicted at the beginning of the abscissa, we havemH = m∗ andmL < m∗.

perfect
competition

high level of
competition

intermediate level
of competition

low level of
competition

(lower) level of
competition

m∗

mWI

mH

mL

level of benefit
packagem number of in-

surers offering
mH decreases,
if competition
decreases

Figure 1: Distortions of the benefit packages under perfect and imperfect competition.m∗

denotes the efficient level,mWI the Wilson-equilibrium.

With imperfect competition, we can distinguish three levels of competition: For high levels
of competition,mH is always at the efficient level, while, initially,mL decreases if the level
of competition goes down.

For intermediate levels of competition, bothmH andmL are distorted. If the level of
competition goes down,mH decreases andmL increases. In addition, the number of in-
surers offering the benefit package for the high risk type decreases, until, for a low level
of competition, the pooling equilibrium emerges. For the pooling equilibrium, if the level
of competition goes down,m increases, so it coincides with the Wilson-equilibriummWI

only for one particular level of competition.9

These results show that imperfect competition has a direct effect on the distortions of the
benefit packages offered. The famous result of no distortionat the top clearly does not hold
in general under imperfect competition: For intermediate levels of competition, both bene-
fit packages are distorted in a separating equilibrium. Thisimplies that the most generous
generous benefit package offered in a health insurance market may be a (severely) biased
indicator of the efficient level of medical services; this may contribute to explain why a
number of recent empirical studies have found the welfare losses caused by adverse selec-
tion to be surprisingly small.10 However, these studies have estimated the welfare losses
due to inefficient pricing of agivenset of benefit packages, but as explicitly stated by Einav,
Finkelstein, and Levin (2010), the welfare losses due to an inefficient set of benefit pack-
ages may be much larger, and we show, how these inefficienciesdepend on the level of
competition.

In the second part of this paper we show that the economic forces driving these results

9If mWI is very low, it may occur that all pooling equilibria of the discrete choice model are abovemWI .
10See Einav, Finkelstein, and Cullen (2010), Bundorf et al. (2012) and Handel (2013).
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have important implications for risk adjustment: For intermediate levels of competition, a
risk adjustment scheme that is imprecise and only partiallycompensates insurers for the
cost differences of different risk types may be ineffectiveor even increase distortions; at
such levels of competition, risk adjustment only increaseswelfare if the cost differences
are reduced by a considerable amount. This contrasts with the case of either high or low
levels of competition, where risk adjustment always increases welfare, even if transfers
only compensate cost differences to a small degree. With these results we add to the small
literature that analyzes the negative side effects of risk adjustment.11

The remainder of this paper is organized in a way so that an intuitive understanding of
the economic forces driving the results can be provided. We begin with the case that risk
types are observable in Section 2: We introduce the discretechoice model in Section 2.1
and determine the equilibrium if there is one risk type in Section 2.2; we present an intu-
itive graphical representation of this logit model in Section 2.3 by introducing the concept
of ‘indifference curve areas’ and briefly discuss the case oftwo observable risk types in
Section 2.4.

We then analyze the case that risk types are unobservable – orthat risk types are observable
but community rating is imposed by regulation – in Section 3:12 We derive the separating
equilibrium in Section 3.1 and show, how it depends on the level of competition in Sec-
tion 3.2. The pooling equilibrium is discussed in Section 3.3. We comment on the welfare
effects of different levels of competition for both the separating and the pooling equilibrium
in Section 3.4 and provide an example in Section 3.5.

We consider the implications of our results for risk adjustment in Section 4. Using the
example introduced in Section 3.5, we first show that welfaremay decrease if a risk adjust-
ment scheme becomes more precise (Section 4.1). We then explain why such a decrease
can only occur in a separating equilibrium (Section 4.2), but not in a pooling equilibrium
(Section 4.3).

Finally, some of the assumptions of the model are discussed in Section 5, and Section 6
concludes.

2 The discrete choice model

2.1 Basic model

We consider a setting as in Frank et al. (2000), where each individual may suffer from
S different illnesses. In case an illnesss is developed, utility changes byvs(ms), where
ms is the medical services (measured in monetary terms) provided by the insurer;vs(ms)
is increasing at a decreasing rate, i.e.v′s(ms) > 0 andv′′s (ms) < 0. The individual has

11See Brown et al. (2012) who show that for the U.S., the improvement of the risk adjustment scheme
used for Medicaid has increased the incentive to enroll certain subgroups of individuals which are now even
more ‘overpriced’ than before the reform; this increases health insurers’ wasteful expenditures to attract these
individuals.

12Throughout the paper we will refer to this case by ‘unobservable risk type’; regarding the distortions we
analyze it is of course identical to the setting ‘observablerisk type under community rating’.
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incomey and has to pay a premium̃R. Utility is given by

u = y − R̃+

S∑

s=1

psvs(ms),

whereps is the probability for illnesss. The efficient level of medical services for each
illness is implicitly defined byv′s(m

∗
s) = 1.

Insurers maximize profits by deciding which levels of medical services to offer and which
premium to charge.13 It is straightforward to show that for all illnessess for which the
probabilityps is identical across individuals, insurers will offer the efficient level of medical
services. Distortions only arise for those illnesses for which there is heterogeneity in risk.

To keep the model simple, we analyze the case where probabilities differ for only one of the
illnesses, for which we assume two risk typesr = H,L, with pH > pL. Since insurers will
offer all the other medical services at the efficient level, we can skip these other illnesses
(and incomey) to simplify the notation, and write utility as

u = prv(m)−R. (1)

We consider, however, the full model to be that in addition tom, insurers also offer these
other medical services (at the efficient level) and charge a premiumR̃ that differs fromR

by the expected cost of these other illnesses. The distortions ofm that we describe should
thus be considered to apply to a specific illness like, e.g., diabetes (or an illness category,
like mental illnesses) rather than the overall level of medical services.14

There aren insurersj, each offering a contract{mj , Rj}. Within a discrete choice model,
individuals’ utility as given by (1) is augmented by an insurer specific utility component
εij , that comprises all the influences on the choice of an insurerthat are independent ofm
andR.15 The utility of an individuali (being of risk typer) when choosing an insurerj
therefore is

ui(m
j , Rj) = prv(mj)−Rj + εij . (2)

We assumeεij to be i.i.d. extreme value, so that the logit model arises, but later show that
the main results also hold for other distributional assumptions.

The level of competition is determined by the variance ofεij , Var(εij) = σ2 π2

6 :16 If σ is
large,εij assumes large positive and negative values, so the additional utility component is
important; then competition with respect to different benefit packages is low: If an insurer
raises its premium or lowers the level of medical services, only a few of its insured will
switch to another insurer. Because insurers are not close substitutes, each insurer has a

13We discuss the case that the premium is set by a regulator in Section 5.3.
14Regarding the overall level of medical services it would certainly be more appropriate to assume a con-

tinuous distribution, but for an illness like diabetes or depression, the most important distinction is whether an
individual is chronically ill (pH = 1) or not (pL rather small).

15εij thus may capture, e.g., perceived friendliness of personnel, location, or, which insurer was recom-
mended by family and friends, but it may also be unfounded andtherefore represent decision mistakes.

16Note that it is common to state the variance ofεij as a multiple ofπ
2

6
for the extreme value distribution,

see Train (2009, p. 24).
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considerable degree of market power. If, on the other hand,σ is small,εij only has a small
influence on the decision of which insurer to choose, so competition is high. Withσ = 0, the
model encompasses the case of perfect competition.17 Forσ > 0, the level of competition
of course also increases in the total number of insurers,n.18

2.2 The Equilibrium with one risk type

Denote the utility component that does not depend onεij by19

V j = pv(mj)−Rj . (3)

Each individual chooses the insurer that offers the highestoverall level of utility, including
εij . Individual i will therefore choose insurerk if

V k + εik > V l + εil ∀ l 6= k.

For εij distributed i.i.d. extreme value with varianceVar(εij) = σ2 π2

6 , the probability of
individual i choosing insurerk is given by20

Prob(i choosesk) =
e

V k

σ

∑
j e

V j

σ

. (4)

The mass of individuals is normalized to one, so that expression (4) also represents insurer
k’s market share, which we denote byP k. Assuming profit maximization, the objective of
insurerk is to maximizeπk = P kπk

i , whereπk
i = Rk − pmk denotes insurerk’s profit per

individual.

It will turn out much easier to derive the main results for thecase of unobservable risk types
if we reformulate the insurer’s objective in terms of{mj , V j} instead of{mj , Rj}. Graphi-
cally, in anm-R-diagram, each insurerj chooses an indifference curveIV

j
associated with

the utility levelV j , and a level of medical servicesmj along this indifference curve.

Using (3) to substitute forRk, we therefore state insurerk’s objective as

max
mk,V k

πk = P kπk
i =

e
V k

σ

∑
j e

V j

σ

(
pv(mk)− V k − pmk

)
. (5)

A convenient property of the market shareP k, which simplifies the derivation of the results,
is that its derivative can be expressed in terms ofP k itself in a simple way:

∂P k

∂V k
=

P k(1− P k)

σ
. (6)

17Note that the parameterσ has a similar impact on the degree of market power insurers have as the para-
metert, the transportation cost, in a Hotelling-model.

18We analyze the effect of different numbers of insurers, but do not endogenizen. However, this could easily
be done by assuming fixed costs of setting up a new health insurance.

19Because in this section we consider the case of only one risk type, we replacepr by p.
20See Train (2009, p. 40).
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Using (6), the FOCs for the insurer’s objective (5) are givenby

∂πk

∂mk
= P k

[
pv′(mk)− p

]
= 0 (7)

∂πk

∂V k
=

P k(1− P k)

σ
πk
i − P k = 0. (8)

Condition (7) requiresv′(mk) = 1, somk is chosen efficiently. Condition (8) shows the two
countervailing effects of increasingV k: The share of individuals choosingk increases by
P k(1−P k) 1

σ
; weighting byπk

i captures the additional profit. On the other hand, increasing
V k implies reducingRk (and therebyπk

i ) by the same amount; this applies to the share of
individuals choosingk, P k, capturing the loss in profit. For these two effects to cancelout,
we have to haveπk

i = σ
1−P k .

It can be shown that the only equilibrium is a symmetric one, where all insurers choose the
same level of utilityV j = Ṽ ∀j. Since, in this case,P k = 1

n
, in equilibrium profit per

individual is
πk
i =

n

n− 1
σ, (9)

and total profit per insurer is

πk =
σ

n− 1
. (10)

As is to be expected, more competition leads to lower profits:both, profit per individual,
πk
i , and total profit per insurer,πk, increase inσ and decrease inn.

If σ is small, offering a higher utility level yields a large increase in the share of individuals,
because individuals are responsive even to small differences in contracts. This raises the
incentive to offer a higher utility level, thereby reducingprofits in equilibrium.

If n is large, each insurer’s market share is small. Offering a higher utility level then attracts
individuals from a large ‘external’ market share1 − P k. This again raises the incentive to
offer higher utility levels, lowering profits. We refer to this as the ‘more competition due to
a larger external market share’-effect. This effect plays an important role when risk types
are unobservable.

Note that this external market share1 − P k is confined to the interval[0.5, 1[. The effect
of the total number of insurers on profits is therefore ratherlimited: Increasing this number
from n = 2 to n → ∞ only cuts profit per individualπk

i in half, see condition (9). In
contrast, the effect ofσ on profit per individual is not bounded. In that sense,σ is the more
important variable to capture large differences in the level of competition.

2.3 Graphical representation of the equilibrium with one risk type

We will now present the solution graphically in somewhat greater detail than necessary for
this basic model, because it greatly facilitates the derivation of the results for the case of
unobservable risk types.
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As P k denotes the share of all individuals choosing insurerk, it can be considered a distri-
bution functionP k(V k). In equilibrium, when all the other insurers offer the same level of
utility Ṽ , we have

P k = P k(V k|σ, Ṽ ) =
e

V k

σ

e
V k

σ + (n− 1)e
Ṽ
σ

. (11)

The shape of this distribution function and of the corresponding densityP k(1 − P k) 1
σ

is
shown in Figure 2.
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Figure 2: Distribution functionP k(V k|σ, Ṽ ) and density functionP k(1−P k) 1
σ

with n = 2

andṼ = 1 for different values ofσ

We can depict this distribution functionP k in them-R-diagram that shows the equilibrium
where all insurers offer{m∗, Ṽ } by drawing a shaded area around theI Ṽ -indifference curve
representing the corresponding densityP k(1 − P k) 1

σ
, see Figure 3; the different levels of

darkness of this shaded area are a measure of the level of thisdensity.21

If one insurerk charges a higher premium and thereby offers a utility levelV k < Ṽ , the
corresponding indifference curveIV

k
lies aboveI Ṽ , see Figure 3 again. As contractA

is above the shaded area, bothP k and the corresponding density are zero.22 Increasing
utility V k then moves contractA (along the linem = m∗) into the shaded area, which
increasesP k and decreasesπk

i . These two effects cancel out when contractA lies on the

I Ṽ -indifference curve. IncreasingV k even further then increasesP k beyond1
n

, and as soon
as contractA is below the shaded area,P k = 1.

For the following reason, this shaded area could be referredto as an ‘indifference curve
area’: Consider the case thatn = 2, so that there is only one other insurerj that offersṼ .
Insurerk, to be chosen by individuali, has to offer a utility level

V k > V j + (εij − εik).

21As a technical detail, note that forn = 2, the maximum of this density is atV k = Ṽ , but forn > 2, it is

atV k > Ṽ . Therefore the ‘center’ of the shaded area is at theI Ṽ -indifference curve forn = 2, and somewhat
below it forn > 2. To simplify the exposition in the graphs, we will always draw the center of the shaded area
at Ṽ .

22In Figure 2, contractA could be, e.g., atV k = 0.1. Of course, strictly speaking,P k > 0 ∀ V k, see (11),
but above the shaded area, bothP k and the densityP k(1−P k) 1

σ
are extremely small and almost equal to zero.
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n−1σ
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n−1σ

m∗

R

m

Figure 3: Equilibrium contract{m∗, pm∗ + n
n−1σ} in the discrete choice model with

one risk type. The shaded area around the indifference curveI Ṽ represents the density
P k(1− P k) 1

σ
of the distribution functionP k.

For some individuals,εij − εik > 0, so the indifference curves insurerk must offer to make

these individuals indifferent between the two insurers arebelow theI Ṽ -indifference curve;
if εij − εik < 0, it suffices to offer an indifference curve aboveI Ṽ . From the perspective of
insurerk the shaded area therefore also represents the whole set of all indifference curves,
i.e., an ‘indifference curve area’.23

There are two effects ifσ increases: First, the iso-profit line associated with the equilibrium
contract is shifted upwards. Secondly, it is straightforward to show that the distribution
functionP k as stated in (11) increases forV k < Ṽ and decreases forV k > Ṽ ; it becomes
less steep atV k = Ṽ , so the density decreases aroundṼ (see Figure 2). Ifσ increases, the
distribution function is spread out (over a wider range), which can be depicted in Figure 3
by drawing a wider (and lighter) shaded area around the indifference curveI Ṽ .

Finally note that if insurerk moves its contract along theIV
k
-indifference curve,P k does

not change, regardless of whetherIV
k

is above, within or below the shaded area. This is
because the distance betweenIV

k
andI Ṽ in theR-direction is the same for all levels ofm.

TheIV
k
-indifference curve is therefore also an iso-P k-curve.

2.4 The equilibrium with two observable risk types

We now turn to the case that there are two risk types,r = H,L, with pH > pL; the share of
L-types isλ. We denote the insurers offering a contract for theL-types as insurers of type
A, and insurers offering a contract for theH-types as insurers of typeB.24 The number of

23If there is more than one other insurer, the argument is the same if εij is replaced bymaxj 6=kεij .
24The following Section 3.1 will make clear why do not index insurers byL andH .
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insurers isnA andnB respectively, withnA + nB = n.

It follows immediately from what we derived for the case of one observable risk type that, in
equilibrium, all insurers will offer the efficient level of medical servicesmA = mB = m∗,
but premiums will differ according to risk type. Because insurers can decide whether to be
of typeA or typeB, total profits per insurer have to be the same for both types ofinsurers,
i.e.πA = πB. These profits are given by

πA = λ
σ

nA − 1
and πB = (1− λ)

σ

nB − 1
, (12)

and are equal for

nA = λn+ (1− 2λ) and nB = (1− λ)n− (1− 2λ). (13)

Of course,nA andnB have to be integer numbers, so that the expressions given in (13) are
only an approximation to the true value.25 As it is not important for the derivation of our
main results, we do not elaborate on whethernA as given by (13) has to be rounded up or
off.

However, the requirement ofnA andnB to be integer can, for some parameter settings,
cause an equilibrium not to exist: For some values ofnA andnB, it may be profitable for an
insurer of typeB to enter the market for theL-types and become an insurer of typeA; but
after the new ‘equilibrium’ has been attained, whereπA

i is decreased andπB
i increased, the

same insurer may then find it profitable to become of typeB again. Following Newhouse
(1996), assuming a small fixed cost of setting up a new contract (in this case for switching
from one insurer type to the other) then stabilizes the equilibrium.26

As is apparent from condition (13),nA andnB do not depend onσ, the level of competition.
This, however, is different for the case of unobservable risk types.

3 Two unobservable risk types

Under perfect competition, for the separating equilibriumto exist, the share ofL-types must
be below a critical level (Rothschild and Stiglitz 1976). The same applies for this discrete
choice model if the level of competition is high (or intermediate). In this case, the argument
for the non-existence of an equilibrium is the same as under perfect competition: If the
share ofL-types is too large, the ‘separating equilibrium’ can be destroyed by offering a
contract that would be chosen by both risk types and yield a higher profit than either of
the two contracts in the ‘separating equilibrium’. Such a ‘pooling equilibrium’ can then be
destroyed by offering a contract chosen only by theL-types.

25Note that according to (13), the share of insurers of typeA equals the share ofL-types only ifλ = 1

2
. For

λ < 1

2
, we havenA > λn. This is because withλ < 1

2
, there will be fewer insurers of typeA than of typeB,

(nA < nB), so the market served by insurers of typeA will be less competitive. This, c.p., causes profits per
individual to be higher in the smaller market, which inducesa somewhat higher number of insurers to become
of typeA than given byλn.

26In the large number of simulations where we determined the equilibrium values explicitly, the problem of
non-existence of an equilibrium only occurred for a small fraction of parameter combinations.
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This is different if the level of competition is low; in this case, the pooling equilibrium is
stable and emerges irrespective of the level ofλ.27 Table 1 summarizes which equilibria
occur.

Table 1: Type of equilibrium for different levels of competition and different shares of low
risk types.

perfect competition high/intermediate level of comp. low level of competition

(σ = 0) (σ small/intermediate) (σ large)

λ low enough separating equilibrium separating equilibrium pooling equilibrium

λ too high no equilibrium no equilibrium pooling equilibrium

In the following Section 3.1, where we want to analyze the separating equilibrium, we
therefore assume bothλ andσ to be low enough so that this equilibrium exists. We begin
with the case of a very low level ofσ, so that overall profits are small and the contract
designated for theL-types yields a negative profit when chosen by anH-type. The effects
of an increase inσ are then derived in Section 3.2 and the pooling equilibrium is discussed
in Section 3.3.

3.1 The separating equilibrium for a low level ofσ

If the risk type is unobservable, a contract offered by insurer A (or B) may be chosen by
both risk types.28 Therefore, for both types of insurers, risk type specific utility levels,
probabilities and profits have to be defined.

For insurerA, the utility level associated with a contract{mA, RA} depends on the risk
typer = L,H according to

V A
r = prv(mA)−RA.

The probability that an individual of risk typer chooses insurerA is given by

PA
r =

e
V A
r
σ

e
V A
r
σ +

∑
j 6=A e

V
j
r
σ

. (14)

Finally, type specific profits in terms ofV A
L andmA are

πA
r = pLv(mA)− V A

L − prmA. (15)

V B
r , PB

r andπB
r are defined equivalently.

We formulate the objective of insurerA in terms ofV A
L andmA, and expressV A

H as

V A
H = V A

L + (pH − pL)v(mA). (16)

27We explain why this is the case in Section 3.3.3.
28In the following we will often use the term ‘insurerA’ instead of ‘one of the insurers of typeA.’
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Using these definitions, insurerA’s objective can be stated as

max
V A
L
,mA

πA = λPA
L πA

L + (1− λ)PA
HπA

H , (17)

with FOCs

∂πA

∂V A
L

= λ

[
PA
L (1− PA

L )

σ
πA
L − PA

L

]
+ (1− λ)

[
PA
H (1− PA

H )

σ
πA
H − PA

H

]
= 0 (18)

∂πA

∂mA
= λPA

L

[
pLv′(mA)− pL

]
+ (1− λ)PA

H

[
pLv′(mA)− pH

]
(19)

+(1− λ)
PA
H (1− PA

H )

σ
(pH − pL)v′(mA)πA

H = 0,

and likewise for insurerB.29 In addition, we have to haveπA = πB, i.e.

λPA
L πA

L + (1− λ)PA
HπA

H = λPB
L πB

L + (1− λ)PB
H πB

H . (20)

In equilibrium, when all insurers of typeA offer the same contract for theL-types, and all
insurers of typeB offer the same contract for theH-types, we have

PA
L =

e
V A
L
σ

nAe
V A
L
σ + nBe

V B
L
σ

. (21)

The other market shares,PA
H , PB

L andPB
H , are defined accordingly.

We will first present the separating equilibrium graphically and then show how the solution
can be derived from the four FOCs and the profit equality constraint.

With unobservable risk types and perfect competition, in Figure 4, the equilibrium consists
of contractB, chosen by theH-types, and contractA1, chosen by theL-types.30 However,
as the shaded area around theIV

B
H -indifference curve shows, under imperfect competition,

insurerA would find a considerable share ofH-types choosing contractA1.31 Therefore,
contractA1 has to be shifted outside the shaded area.

Assume, that it is shifted (along the iso-πA
L -line) toA2, where (almost) none of theH-types

choose this contract. But then insurerA could move its contract along theIV
A
L -indifference

curve to the right: This would leave the number ofL-types choosing this insurer unaffected
(see the definition ofPA

L in (14)), but increase profits perL-type,πA
L , because the slope of

theIV
A
L -indifference curve is larger than the slope of the iso-πA

L -lines for all contracts with
mA < m∗. It would also increase the number of theH-types choosing insurerA; however,
since the densityPA

H (1 − PA
H ) 1

σ
is (almost) zero at contractA2, at the boundary of the

shaded area this effect is of second order. There is a third effect when moving alongIV
A
L :

Depending on whether the slope of theIV
A
L -indifference curve is smaller or larger than the

29As insurerB offers a contract for theH-types, we formulate its objective in terms ofV B
H , (notV B

L ).
30In this case, the iso-profit lines would of course start at theorigin, asσ = 0.
31Here, the shaded area represents the density of the distribution functionPA

H (V A
H ) = PA

H (V A
L ,mA), or the

‘indifference curve area’ of theH-types from the perspective of an insurer of typeA.
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m

nB

nB−1
σ

R

mA

A3

B

A1

A2

IV
B
H

IV
A
L

m∗

Figure 4: Separating equilibrium with two unobservable risk types. ContractsB andA3 are
offered. The casenA = nB, i.e.λ = 0.5, is depicted; fornA 6= nB, the iso-profit lines start
at different points on the ordinate.

slope of the iso-profit lines for theH-types,pH , this will increase or decrease profit per
H-type,πA

H .

InsurerA will therefore move its contract along theIV
A
L -indifference curve until these three

effects – the increase ofπA
L , the increase ofPA

H , and the change ofπA
H – cancel out, which

will be at a contract as indicated byA3.

In equilibrium, a small share ofH-types chooses contractA. This contrasts with the contract
offered by insurerB: As contractB is far away from the shaded area that can be drawn
around theIV

A
L -indifference curve, none of theL-types choose contractB.32 As there is

no interference of theL-types, contractB is at the efficient level, as in the case of perfect
competition.

Result 1. In the separating equilibrium, ifσ is small, then only the benefit package for the
L-types is distorted:mA < m∗ andmB = m∗. A small share of theH-types chooses the
contract designated for theL-types, but none of theL-types choose the contract designated
for theH-types:PA

H > 0 andPB
L = 0.

In the remainder of this section we show how these results arereflected in the FOCs. We
begin with insurerB: With PB

L = 0, the FOC with respect tomB simplifies tov′(mB) = 1,

somB = m∗. For the FOC with respect toV B
H , we haveπB

H =
PB
H

1−PB
H

σ. For insurerB,

both FOCs are identical to the case that risk types are observable.

This is different for insurerA: If PA
H was equal to zero, condition (19) would simplify

to v′(mA) = 1, so we would havemA = m∗. This, together with the lower premium,
would induce at least some of theH-types to choose insurerA, a contradiction toPA

H =

32The shaded area around theIV
A
L -indifference curve represents the density ofPB

L (V B
L ) = PB

L (V B
H ,mB).
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0, so PA
H > 0. With PA

H > 0, condition (19) is violated forv′(mA) = 1, because
both [pLv′(mA) − pL] andπA

H (in the second and third summand) are negative; therefore,
v′(mA) > 1, somA < m∗.

The FOC with respect toV A
L , condition (18), would simplify toπA

L =
PA
L

1−PA
L

σ for PA
H = 0.

However, withPA
H > 0, the second bracket is negative becauseπA

H < 0; therefore,πA
L

has to be larger than for the case ofPA
H = 0, so the equilibrium contractA3 is above the

iso-profit line as shown in Figure 4.

As in this section we consider the case thatσ is very small,PA
H will be close to zero, because

the densityPA
H (1 − PA

H ) 1
σ

will already be large for a small value ofPA
H .33 Therefore,A3

will only be slightly above the iso-profit line as shown in Figure 4. AsπA
L is almost not

affected by the very low share of high risks, the number of insurers of typeA and typeB,
nA andnB, will then not be different from the case when risk types are observable. This,
however, changes asσ increases.

3.2 The dependence of the separating equilibrium on the level of competition

So far, the equilibrium under imperfect competition looks rather similar to the case of per-
fect competition. We will now show that this only holds for high levels of competition. In
the following Section 3.2.1, we analyze the effects of a decrease in competition due to an
increase inσ; we discuss a decrease of competition due to a decrease ofn in Section 3.2.2.

3.2.1 The dependence of the separating equilibrium onσ

In Section 2.2 it was shown that an increase inσ increases profits, as insurers reduce the
utility levels they offer by increasing the premium, which shifts the iso-profit line associated
with the equilibrium upwards. The same applies in this separating equilibrium. However,
because of the following additional effects, the increase in premiums alone does not yet
constitute the new equilibrium:

Effect onmA

If σ increases, the shaded area around theIV
B
H -indifference curve becomes wider; contract

A3, if not moved, would be closer to the center of this area (relative to its boundaries), so
PA
H would increase.34 To avoid being chosen by these additionalH-types, which incur a

negative profit, insurerA has to reducemA. On the other hand, there is the countervailing
effect that as premiums increase, insuring an additionalH-type now causes a smaller loss,
which creates an incentive to increasemA.

For a general utility functionv(·), the aggregate of these two effects onmA for a particular
level of σ is indeterminate. However, ifσ is very small,PA

H is close to zero, whileπA
H is

33This also follows immediately from condition (19), which, if σ is close to zero, can only be satisfied for
PA
H close to zero.

34This also follows directly form the definition ofPA
H , which increases inσ for all valuesV A

H < V B
H .
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far below zero. The relative increase ofPA
H then outweighs the relative increase ofπA

H , and
mA decreases.35 Graphically, in Figure 4, ifσ = 0, the shaded area corresponds to the
IV

B
H -indifference curve; ifσ becomes larger than zero, the shaded area becomes wider than

the indifference curve, and contractA has to be shifted to the left, irrespective of any effect
onπA

H .36

If σ increases,πA
H increases and gets closer to zero. As the loss incurred by theH-types

approaches zero (and eventually even becomes a profit), the incentive to avoid being chosen
by theH-types is greatly reduced (and eventually vanishes), so that at some point, insurer
A increasesmA.

Effect onPA
H

The share ofH-types choosing insurerA increases inσ. The proof is given in Appendix A.1;
here, we only provide a brief intuitive explanation: If, (because of the wider shaded area),
mA was reduced to a level so thatPA

H was the same as before the increase inσ, there would
then be an incentive to increasemA, and therebyPA

H , for three reasons: First, because of
the lower value ofmA, v′(mA) is increased; withPA

H at the same level as before, condition
(18) is not satisfied anymore andmA has to be increased. Secondly, ifPA

H is at the same
level as before, the densityPA

H (1 − PA
H ) 1

σ
is now lower (due to the larger value ofσ), so

that moving along theIV
A
L -indifference curve does not attract as manyH-types as before.

Thirdly, πA
H is increased, so attracting an additionalH-type now causes a smaller loss.

Effect onnA

If σ increases, profits increase faster for type-A insurers than for type-B insurers, so that
at some point it will be profitable for one of the type-B insurers to switch and to become a
type-A insurer. The proof can be found in Appendix A.2; here again, we only provide an
intuitive explanation: We just showed thatPA

H increases inσ, so the number of individuals
choosing any of the type-B insurers decreases. This is the first effect reducing total profits
of type-B insurers relative to type-A insurers.

In addition, as the number of individuals choosing the type-A insurers increases, for the
type-B insurers there is the ‘more competition due to a larger external market share’-effect,
which, as we saw in Section 2.2, decreases profits per individual. Due to these two effects,
πB increases at a lower rate thanπA, so that at some level ofσ, the first of the type-B-
insurers finds it profitable to become an insurer of typeA, andnA increases. Ifσ increases
further, the second type-B insurer switches, and so on, until at some level ofσ the last of
the type-B insurers becomes a type-A insurer, and the pooling equilibrium emerges.37

35It is straightforward to show that withmA held fixed, bothPA
H and the densityPA

H (1− PA
H ) 1

σ
increase in

σ for σ close to zero;v′(·) then has to be increased, so that condition (19) is still satisfied.
36Note that the decrease ofmA is not necessarily confined to a small interval ofσ close to zero, but can occur

for a wide range ofσ, see Section 3.5.
37Note that a single insurer of typeB can not charge an excessively high premium, because this insurer would

lose its insured to the insurers of typeA.
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Effect onmB

We finally discuss why for intermediate levels of competition, contractB is distorted. Ifσ
increases, the shaded areas around both indifference curves get wider. At some level ofσ,
the shaded area around the indifference curve of theL-types,IV

A
L , becomes so wide that it

‘reaches’ contractB, so that a small share of theL-types chooses contractB (see Figure 5,
where only the shaded area around theIV

A
L -indifference curve is drawn). It will then be

profitable for insurerB to move its contract along theIV
B
H -indifference curve and reduce

mB . This leaves the share of theH-types choosing this insurer unaffected, but increases the
share of theL-types, (as the iso-PB

L -curves have a lower slope than theIV
B
H -indifference

curve), thereby increasing profits. Of course, this also reduces profits perH-type,πB
H , but at

(or close to) the efficient level ofm, this effect is of second order.38 The larger the density
PB
L (1 − PB

L ) 1
σ

around contractB, the larger the distortion of this contract. Therefore,

as long as the widening of the shaded area around theIV
A
L -indifference curve leads to an

increase of the density at contractB, the distortion will increase inσ.

m

R

mA

B0

B1

IV
B
H

IV
A
L

m∗

Figure 5: Separating equilibrium with two unobservable risk types andσ large: ContractB
distorted fromB0 toB1.

Comparing the effects of a decrease in competition onmA andmB , there is an asymmetry
in that an increase inσ changesmA even for low values ofσ, while the effect onmB only
arises above some threshold level ofσ, at which the shaded area aroundIV

A
L ‘reaches’

contractB.

Result 2. In the separating equilibrium,mA first decreases and then increases inσ. For
intermediate levels ofσ, both benefit packages are distorted:mA < mB < m∗; in addition,
a share of both risk types chooses the contract designated for the other risk type:PA

H > 0
and PB

L > 0. The number of insurers offering the contract designated for the L-types
increases inσ.

38Of course, strictly speaking,mB is always distorted, asPB
L is always larger than zero. However, for low

levels ofσ, PB
L is so close to zero, that the distortion ofmB is negligible. In the example we present in

Section 3.5,PB
L is on the order of10−30 for low levels ofσ.
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3.2.2 The dependence of the separating equilibrium on the total number of insurers

If the total number of insurersn increases,nA andnB increase proportionally forλ = 1
2 ,

and almost proportionally forλ 6= 1
2 . Accordingly, all market shares decrease (about) pro-

portionally, which leaves condition (19) unchanged. Also,there is no widening of the
shaded areas around the indifference curves;39 there is only an effect on on profits: Ifn
increases, profits per individual go down. This increases the loss caused by anH-type, so
the incentive to avoid theH-types increases. This is reflected in condition (18) wheremA

has to be decreased whenπA
H decreases. Therefore,mA decreases inn.

Result 3. In the separating equilibrium, the distortion of the benefitpackage of the low risk
type increases in the total number of insurers:∂mA

∂n
< 0.

3.3 The pooling equilibrium

3.3.1 The dependence of the pooling equilibrium on the levelof competition

As has been shown in Section 3.2.1, ifσ increases, the number of insurers of typeA goes
up. At some point, the last insurer of typeB becomes an insurer of typeA, and a pooling
equilibrium occurs.40 Using the fact that in this casenB = 0 andPA

L = PA
H = 1

nA , where
nA = n, condition (18), the FOC with respect toV A

L , simplifies to

λπA
L + (1− λ)πA

H =
nσ

n− 1
. (22)

Solving forπA
H and substituting in (19), the FOC with respect tomA, we have

[
1−

λ(1− λ)(pH − pL)2

nσ
n−1p

mA

]
v′(mA) = 1. (23)

Because the fraction in (23) is positive, it is immediately apparent thatv′(mA) > 1, so that
mA is distorted downward. As is to be expected, the distortion increases in the difference
pH−pL. Also, it decreases inσ and increases inn: The distortion in the pooling equilibrium
is less severe if the market is less competitive.

Result 4. In the pooling equilibrium, the distortion increases in thelevel of competition:
∂mA

∂n
< 0 and ∂mA

∂σ
> 0.

3.3.2 Comparison of the pooling equilibrium with the Wilson-equilibrium

In general, this pooling equilibrium does not coincide withthe Wilson-equilibrium (Wilson
1977), which consists of the contract on the pooling zero-profit line that maximizes the util-

39The distribution functionP k depends on the utility levels offered by the other insurers only via the aggre-

gate
∑

j 6=k
e

V
k

σ . If this aggregate increases (e.g., due to an increase inn), this shifts the distribution function
to the right (in Figure 2), but does not change its shape.

40To keep the notation simple, we do not introduce an additional index for the pooling equilibrium but denote
all insurers to be of typeA.
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ity of theL-types.41 We will denote this contract, as it would not be the Wilson-equilibrium
if the share ofL-types was low enough for the separating Rothschild-Stiglitz-equilibrium
to exist, simply as the Wilson-contract.

Formally, for the Wilson-contract,m satisfiespLv′(mWI) = p. Using conditions (22) and
(23), it is straightforward to show that for the discrete choice model, this requiresπA

H = 0,
see Appendix A.3. Of course, if profits for theH-types are zero,H-types do not play a
role when choosing the optimal contract on the iso-profit line, so insurers will maximize the
utility of the L-types (to have as manyL-types as possible).

However, ifπA
H < 0, it will be profitable to reducemA belowmWI : this will only have

a second order effect on the utility of theL-types, but a first order effect of reducing the
number ofH-types. In this case,mA < mWI . If, on the other hand,πA

H > 0, then having
moreH-types increases profits, so insurers will raisem abovemWI .

Result 5. The pooling equilibrium only coincides with the Wilson-contract if profit perH-
type is zero:mA T mWI for πA

H T 0.

3.3.3 Stability of the pooling equilibrium

From a technical perspective, this result shows that in a Rothschild-Stiglitz model, a pooling
equilibrium as a Nash-equilibrium in pure strategies can exist if there is imperfect compe-
tition. The pooling equilibrium can therefore be rationalized without imposing Wilson-
foresight, a concept that has been criticized by Rothschildand Stiglitz (1997).

Newhouse (1996) had already identified a reason for a poolingequilibrium to exist, fixed
costs of setting up a new contract: If trying to attract theL-types with a new contract causes
high costs, the pooling equilibrium is stable.

Here, the pooling equilibrium is stable for a different reason: Offering a contract between
the indifference curves of the two risk types would, under perfect competition, only attract
all theL-types and thereby destroy the pooling equilibrium. Here, if σ is large, a contract
close to the pooling equilibrium attracts bothL- andH-types, where, due to the large in-
fluence of the utility componentεij that is independent of the benefit-premium-bundle, the
relative share of theL-types in this new contract is not much larger than in the pooling
equilibrium. To only attract theL-types, the new contract would have to be far away from
the pooling equilibrium, so that it is on the same indifference curve of theL-types, but
outside (i.e. above) the shaded area of theH-types. Such a contract would be associated
with a much lower premium, and thereby not provide a higher profit than the contract of the
pooling equilibrium.

41It is common to refer to the Wilson-equilibrium whenever – because the share of theL-types is too large –
the separating Rothschild-Stiglitz-equilibrium does notexist; see Zweifel et al. (2009, p. 178). Of course, we
only compare the level ofm, and not premiums.
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3.4 Welfare effects of different levels of competition

In this model, welfareW is given as the sum of expected surplus generated by the consump-
tion ofm,

W =
∑

i

Si =
∑

i

(
piv(mi)− pimi

)
, (24)

with mi being the level of medical services consumed by individuali. Of course, the pre-
miumR does not appear in (24), as it is only a transfer from the insured to the insurer.

From what has been derived in the previous sections it follows that the welfare effects of a
decrease in competition for the separating equilibrium areambiguous, while for the pooling
equilibrium, welfare increases.

For the separating equilibrium, welfare decreases inσ if σ is close to zero, becausemA de-
creases andPA

H increases, so that a larger number of individuals chooses the benefit package
that is more distorted. For intermediate levels ofσ, the welfare effects of an increase inσ
are indeterminate: On the one hand,mA increases, but on the other handmB decreases and
PA
H andnA increase. The welfare effects of a decrease in competition due to a decrease in

the total number of insurers are indeterminate as well. It was shown that asn decreases,
mA increases, because the loss associated with theH-types decreases as competition goes
down. But for the same reasonPA

H increases, creating a countervailing effect on welfare.

For the pooling equilibrium, on the other hand, as competition goes down, welfare unam-
biguously increases, see condition (23); this holds for both the increase inσ and the decrease
in n.

Result 6. For very high levels of competition, welfare decreases inσ: ∂W
∂σ

< 0 for σ close
to zero. For low levels of competition, (so that a pooling equilibrium emerges), welfare
decreases in the level of competition:∂W

∂σ
> 0 and ∂W

∂n
< 0 for nB = 0.

3.5 Example

We finally illustrate the results with an example, for which we assumen = 10, pL = 0.2,
pH = 1, λ = 0.5 andv(m) = ln(m), so that the efficient level of medical services is
m∗ = 1 and one of the risk types is chronically ill. The equilibriumvalues for different
levels ofσ are shown in Table 2; the Rothschild-Stiglitz-equilibriumcan be found in the
first, the Wilson-contract in the last row.

Under imperfect competition,mA first decreases and then increases inσ; in addition,nA

increases, until the pooling equilibrium is reached atσ = 0.19.42

Even for the lowest level ofσ, some of theH-types choose contractA; the share ofH-types
among all insured choosing an insurer of typeA then steadily increases inσ. On the other
hand, none of theL-types choose an insurer of typeB until the shaded area around theIV

A
L -

indifference curve reaches contractB; this occurs atσ = 0.08, where also the distortion of

42In this example, in all pooling equilibria,mA is above the level of the Wilson-contract. For higher levels
of pL, e.g.,pL = 0.4, in some of the pooling equilibriamA < mWI .
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Table 2: Example I withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, n = 10, for different
values ofσ. The first row (RS) contains the Rotschild-Stiglitz-equilibrium, the last row
(WI) the ‘Wilson’-contract.

σ nA nB mA mB A’s share B’s share W

of H-types ofL-types

RS - - .398 1.00 0.0% 0.0% -.632

.01 5 5 .377 1.00 0.5% 0.0% -.636

.02 5 5 .364 1.00 1.2% 0.0% -.640

.04 5 5 .346 1.00 2.8% 0.0% -.647

.06 5 5 .337 1.00 5.1% 0.0% -.654

.08 5 5 .334 .998 7.9% 0.1% -.662

.10 6 4 .324 .994 12.5% 0.1% -.677

.15 7 3 .362 .940 29.7% 1.4% -.717

.17 8 2 .395 .884 39.2% 3.4% -.736

.18 9 1 .418 .847 45.4% 5.0% -.749

.19 pooling .442 - 50.0% - -.755

.25 pooling .510 - 50.0% - -.710

WI pooling .333 - 50.0% - -.859

mB sets in. Ifσ increases further,mB decreases and is way below the efficient level for
σ = 0.18.

Regarding welfare, we find that it decreases inσ in the separating equilibrium for all levels
of σ (and not just ifσ is close to zero)), and, of course, increases inσ for the pooling
equilibrium.

4 Implications for risk adjustment

We now discuss the implications of the results derived so farfor risk adjustment. In partic-
ular, we show that the welfare effects of introducing or improving a risk adjustment scheme
(RAS) critically depend on the level of competition: For lowand high levels of compe-
tition, a RAS that becomes more precise unambiguously increases welfare; however, for
intermediate levels of competition, welfare may initiallyremain constant or even decrease.

We will not model explicitly which risk adjusters are used inthe RAS, or which economet-
ric method is applied to estimate the payments. What is important for our model is that
whenever a RAS becomes more precise, it reduces the cost difference between the two risk
types to a larger extent. A RAS can be improved by, e.g., usingmore and more risk ad-
justers, like hospital stays, or diagnostic information, which are more informative signals
for the risk type than just demographic information. A regulator may also apply the formula
for optimal risk adjustment developed by Glazer and McGuire(2000). In all cases, the cost
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difference between risk types will be reduced, and with a perfect RAS, this difference is
eliminated completely.

We will model the RAS in the easiest way possible: Each insurer receives a payment of
RAH for anH-type, and has to payRAL for anL-type. For the RAS to break even, we
have to have

λRAL = (1− λ)RAH .

SettingRAH to some levelRA, this requiresRAL = 1−λ
λ

RA. In this way, the RAS can be
expressed with only one parameter,RA. AsRA increases, the RAS becomes more precise.

We will first present an example to show how the welfare effects of increasingRA depend
on the level of competition. We then explain why for intermediate levels of competition
welfare may decrease inRA in the separating equilibrium (Section 4.2), but not in the
pooling equilibrium (Section 4.3).

4.1 Example

We present the same example as in Section 3.5, withv(m) = ln(m), pL = 0.2, pH = 1
andλ = 0.5, and show the impact on welfare by increasingRA = RAH = RAL from 0
to 0.4, at which level the cost difference between theL-type and theH-type is eliminated
completely. Results are shown for 10 and 20 insurers (see Figure 6(a) and (b) respectively),
for different levels of competition:σ = 0.01 (very competitive),σ = 0.10, σ = 0.12 and
σ = 0.14 (intermediate levels of competition), and for the lowest level of σ for which the
pooling equilibrium emerges:σ = 0.19 for 10 insurers, andσ = 0.20 for 20 insurers.

The equilibrium values for the level of medical servicesmA andmB and the number of
insurersnA andnB for one of the cases (n = 20 andσ = 0.12) can be found in Table 4 in
Appendix A.4. Here, we only plot the equilibrium levels of welfare as a function ofRA for
these five different values ofσ. The highest level of welfare for this example is 0.6, which
occurs when all individuals receivem∗ = 1.

Figure 6: Example III withpL = 0.2, pH = 1, λ = 0.5 and different levels ofσ. Welfare
W is depicted as a function ofRA, with RA increasing from 0 to 0.40.
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As can be seen, forσ = 0.01 andσ = 0.19, (or σ = 0.20 in case ofn = 20 insurers),
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welfare increases monotonously inRA.43 However, for intermediate levels of competition,
welfare stays about constant or even decreases as long asRA is below the threshold level,
at which the pooling equilibrium is reached; only above thislevel, does welfare increases
in RA.44 For the case of 20 insurers andσ = 0.10, this threshold level is as high as
RA = 0.17: Although the RAS reduces the cost difference between the two risk types by
more than 40%, there is no increase in welfare.

For intermediate levels of competition welfare initially does not increase inRA because the
RAS not only reduces a distortion (by increasingmA), but also introduces or exacerbates
two other distortions: As we show in the following section, the share ofH-types choosing
the benefit package designated for theL-types increases inRA; in addition, the distortion
of the benefit package for theH-types becomes more severe (mB decreases).

This contrasts with the case of either a low or a high level of competition, where these
additional distortions do not occur (or are so small that they are negligible); for these levels
of competition, welfare increases inRA.

4.2 Risk adjustment in the separating equilibrium

Taking into account the payments of the RAS, type specific profits for insurerA are

πA
L = pLv(mA)− V A

L −
1− λ

λ
RA− pLmA (25)

πA
H = pLv(mA)− V A

L +RA− pHmA. (26)

The FOCs for insurerA’s objective are therefore identical to (18) and (19), but with πA
L and

πA
H now defined by (25) and (26). The same applies to insurerB.

For insurerB, from the FOC with respect tomB it follows that for low values ofσ (so
thatPB

L = 0), we havev′(mB) = 1, as before. From the FOC with respect toV B
H , we

haveπB
H = nB

nB−1
σ, again as before. IfRA is increased, so that insurerB receives a larger

subsidy for eachH-type, premiums are reduced (and utilityV B
H increased) by the same

amount, so thatπB
H stays constant. For insurerB, we can therefore depict an increase in

RA by a decrease inRB of equal size: In Figure 7, the contract offered is shifted fromB0

to B1; accordingly, there is a downward shift of the corresponding iso-profit line and the
indifference curve.45

There is an opposite effect on the premium of insurers of typeA: asRA increases, this, c.p.,
increases the premiumRA (and reducesV A

L ) byRAL = 1−λ
λ

RA, shifting the iso-profit line

43Forσ = 0.01, there is a small decrease in welfare for some high level ofRA; this is because at this level
of RA there is a switch from the separating to the pooling equilibrium.

44Note that for these intermediate levels of competition, there is usually one level ofRA for which an
equilibrium does not exist: As we already mentioned in Section 2.4, for one of the candidate equilibria
(mA, V A

L ,mB , V B
H ), one of the insurers of typeB has an incentive to become an insurer of typeA; in the

candidate equilibrium for these new levels ofnA andnB , an insurer of typeA then has an incentive to become
an insurer of typeB. In Figure 6 we plot the higher of the two levels of welfare of the two candidate equilibria
to present the case where the RAS is more successful in improving welfare.

45In Figure 7, the case of a very low level ofσ is depicted, so that the two shaded areas do not overlap and
can be distinguished.
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upwards. Similar to the case of an increase ofσ in Section 3.2.1, this does not yet constitute
the new equilibrium; there will also be an effect onmA.

m

R

∆RA

∆RA

∆RA

mA
1mA

0 m∗

A0

A1

B0

B1

IV
B
H

I Ṽ
B
H

Figure 7: Equilibrium without and with (imprecise) risk adjustment; the caseRAL = RAH ,
i.e.λ = 0.5, is depicted.

As can be seen from Figure 7, due to the downward shift of theIV
B
H -indifference curve

(to I Ṽ
B
H ), and the upward shift of the iso-profit line of insurerA, offering a contract with

the same level ofmA reduces the share ofH-types choosing contractA. This also follows
immediately from the definition ofPA

H , which decreases asV A
H decreases andV B

H increases.

This decrease inPA
H creates an incentive to increasemA, which can also be seen from the

FOC with respect tomA: rearranging terms, condition (19) reads as

v′(mA)− 1 +
1− λ

λ

PA
H

PA
L

[
v′(mA)−

pH

pL

]
+

1− λ

λ

PA
H

PA
L

1− PA
H

σ

pH − pL

pL
πA
Hv′(mA) = 0.

(27)

As PA
H is reduced,mA has to be increased, so that this condition is satisfied again. In

addition, due to the payments of the RAS for theH-types,πA
H is increased, which – in an

equivalent manner as for the case of an increase inσ in Section 3.2.1 – creates a second
incentive to increasemA. AsmA unambiguously increases, this, c.p., leads to an increase
in welfare.

The effect onPA
H , however, is ambiguous: Assume thatmA is increased to a level so that

PA
H is the same as before. At that point, it is not clear whether there is an incentive to

increasemA, and therebyPA
H , even further or not. On the one hand,πA

H is increased, but
on the other hand,v′(mA) has already been decreased, so for a general utility function, it
is indeterminate whether (27) is positive or negative. However, as the effect ofRA onπA

H

is linear, while the effect onv′ is decreasing, it is likely thatPA
H increases inRA, if RA is

large.46

46In the large number of examples for which we derived the equilibrium for a particular utility function
explicitly, PA

H always increased inRA even from the beginning (RA = 0).
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The increase inPA
H , if it occurs, captures the first effect that reduces welfare: EachH-type

choosing contractA instead of contractB induces a loss of welfare, becausemA < mB. In
addition, ifPA

H increases, we have the same effects on profits as already described in Sec-
tion 3.2.1: Due to the loss of individuals, competition among insurers of typeB increases,
which reduces profits per individual; together with the smaller market share, total profit per
insurer of typeB decreases. At some point, one of the type-B insurers will switch and
become a type-A insurer. This is the second negative effect on welfare: Eachinsurer that
switches to become an insurer of typeA incurs a welfare loss, as all its insured receivemA

instead ofmB .47

There is a third negative effect on welfare that occurs regardless of whetherPA
H increases

or not: We saw that asRA increases, this shifts theIV
B
H -indifference curve downwards,

and theIV
A
L -indifference curve upwards, so the distance between thesetwo indifference

curves decreases atm∗. This will, in similar manner as described in Section 3.2.1,lead to
a distortion ofmB below the efficient level, as soon as the shaded area around the IV

A
L -

indifference curve ‘reaches’ contractB.

Result 7. A RAS that becomes more precise reduces the distortion of thelevel of medical
services for theL-types in a separating equilibrium:∂m

A

∂RA
> 0.

However, a RAS that becomes more precise may also decrease welfare because (i)PB
H may

decrease, (ii)nB may decrease, and(iii), at some level ofRA, mB decreases below the
efficient level.

Whether these three countervailing effects are significant, or only reduce the effectiveness
of the improvement of the RAS, of course depends on the specific utility function.

It also depends on the level ofσ: If σ is small, the shaded area around theIV
B
H -indifference

curve will be small. In this case, the densityPA
H (1 − PA

H ) 1
σ

will already be large whenPA
H

is still small, so for small values ofσ the first countervailing effect is greatly reduced. As
PA
H is small, the difference in profitsπA − πB is small (see Appendix A.2), so that none

of the insurers of typeB switch to become of typeA; then the second countervailing effect
does not exist. Thirdly, ifσ is small, the shaded area around theIV

A
L -indifference curve will

be narrow, so it will not ‘reach’ contractB until RA is close to the level, at which the cost
difference between the two risk types is eliminated completely; for small and intermediate
levels ofRA, the third countervailing effect does not exist either. Therefore, ifσ is small
(andRA not too large), welfare increases as a RAS becomes more precise.

4.3 Risk adjustment in the pooling equilibrium

For the pooling equilibrium, the FOC with respect tomA simplifies to
[
1−

(1− λ)(pH − pL)[λ(pH − pL)mA −RA]
nσ
n−1p

]
v′(mA) = 1. (28)

47Of course, when this insurer switches and becomes a type-A insurer, a large share of theH-types of this
insurer will choose another insurer of typeB; but those with a high preference for this particular insurer (high
εij ) will stay with this insurer, causing the welfare loss.
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With RA = 0, i.e. without risk adjustment, we have condition (23) from Section 3.3. As
RA increases, the fraction in (28) decreases, somA increases; withRA = λ(pH − pL)m∗,
the distortion is eliminated. Forλ = 1

2 , as soon asRA equals half the difference in expected
costs between the two risk types, the cost difference vanishes, becauseRA both has to be
paid by the insurer for anL-type, and is paid to the insurer for anH-type.

Result 8. For the pooling equilibrium, an increase inRA unambiguously decreases the
distortion of the benefit package and increases welfare:∂mA

∂RA
> 0 and ∂W

∂RA
> 0

5 Discussion

In this section, we briefly discuss some of the assumptions ofour model and how they may
affect the results that have been derived.

5.1 Distributional assumption for εij

The model has been explicitly solved only under the assumption thatεij is i.i.d. extreme
value, but we think that the results also hold for different distributional assumptions. Be-
cause the main effects could also be explained graphically,the results should be similar as
long as the shaded areas around the indifference curves represent a unimodal density.

For a large number of examples, we determined the equilibrium under various other dis-
tributional assumptions forεij and always found the results to be very similar.48 Table 3
presents the equilibrium values of the example of Section 3.5 for three distributional as-
sumptions ofεij other than the extreme value: the normal, the triangular andthe uniform
distribution.49 Even with a uniform distribution forεij , the density represented by the
shaded area is unimodal; (e.g., this density would be triangular forn = 2).

For low values ofσ (see the upper part of Table 3 withnA = nB = 5), the differences are
very small: For all four distributions,mA decreases inσ, whilemB remains at the efficient
level. AlsoPA

H , the share ofH-types choosing one of the insurers of typeA, is very similar
for all four distributions.

As σ increases so thatnA increases, two differences emerge: First, the levels ofσ at which
nA increases are not identical for the four distributions, seethe lower part of Table 3, where
always the smallest value ofσ after an increase innA is presented. E.g., the lowest level
of σ so thatnA = 6 is 0.10 for the extreme value distribution; it is somewhat higher at
0.14 and0.15 for the normal and the triangular distribution, and considerably higher for the
uniform distribution at 0.21. However, this difference does not seem to be important.

Secondly, the distortion ofmB is much smaller for the other three distributions. This is
because for a given level ofσ, the shaded area around the indifference curves is widest for
the extreme value distribution; as this distribution has fatter tails, the shaded area around the
IV

A
L -indifference curve ‘reaches’ contractB for a lower level ofσ than is the case for the
48The Gauss code is available from the author upon request.
49Note that for all four distributions, the variance is given asVar(εij) = σ2 π2

6
.
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Table 3: Example I withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, n = 10 for different
distributional assumptions

extreme value normal triangular uniform

nA nB σ mA mB σ mA mB σ mA mB σ mA mB

5 5 .01 .377 1.00 .01 .384 1.00 .01 .386 1.00 .01 .387 1.00

5 5 .02 .364 1.00 .02 .373 1.00 .02 .376 1.00 .02 .377 1.00

5 5 .04 .346 1.00 .04 .358 1.00 .04 .360 1.00 .04 .363 1.00

5 5 .06 .337 1.00 .06 .346 1.00 .06 .349 1.00 .06 .351 1.00

5 5 .08 .334 .998 .08 .340 1.00 .08 .340 1.00 .08 .343 1.00

6 4 .10 .324 .994 .14 .330 1.00 .15 .332 1.00 .21 .351 .996

7 3 .15 .362 .940 .18 .355 .994 .19 .361 .999 .28 .363 .981

8 2 .17 .395 .884 .20 .380 .982 .21 .380 .997 .33 .389 .954

9 1 .18 .418 .847 .22 .403 .973 .23 .406 .993 .38 .406 .940

pooling .19 .442 .442 .23 .421 .421 .24 .416 .416 .42 .423 .423

other distributions. In technical terms, the (excess) kurtosis is largest for the extreme value
distribution: kev = 2.4; it is considerably smaller for the normal (kn = 0.0), the triangular
(ktr = −0.6) and the uniform distribution (ku = −1.2). The higher the kurtosis, the higher
the distortion ofmB (for a given level ofσ).

On the other hand, the levels ofmA are very similar for the four distributions, as is the
level ofm when the pooling equilibrium is reached. Also, for each of the four distributions,
welfare decreases inσ for the separating equilibrium, and increases inσ for the pooling
equilibrium.

5.2 Conditional Logit vs. Nested Logit

At first glance, it may appear as if for an individual who chooses an insurer of typeA,
another type-A insurer is a closer substitute than a type-B insurer, so that a nested logit
model may seem more appropriate than the simple conditionallogit that we considered.

From the perspective of an econometrician, this is certainly true, because, a priori, it cannot
be ruled out there there are also some unobserved factors that are more alike among type-
A insurers than between type-A and type-B insurers. Therefore, the econometrician will
simply test whether a nested logit model applies.

Here, however, we want to explicitly analyse the effects that arise due to the differences
in the benefit packages. Assuming, in addition, that there are also some unobserved fac-
tors which are equal among the type-A insurers, i.e. assuming some non i.i.d.-error term
structure, would only obscure the effects we are interestedin.

Regarding the IIA assumption that is implied by the logit model, the famous red bus-blue
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bus problem50 does not occur in our setting, because we explicitly model two different risk
types.51 Consider, e.g., the case ofλ = 0.5 and four insurers: Withσ small enough, two
insurers will be of typeA, each covering half of theL-types, and a small share of theH-
types, say 1% (i.e. 0.5% of the entire market); the other two insurers will be of typeB, each
covering about half of theH-types. Each insurer of typeA will therefore cover 25.5% of
the entire market, and each insurer of typeB 24.5%. If we now add two more insurers of
typeA, these four type-A insurers will not cover two thirds of the entire market, as inthe
red bus-blue bus example. Instead, allL-types are evenly distributed among the four type-A

insurers; in addition, the third and fourth type-A insurer will cover about the same share of
H-types as the first and the second type-A insurer (1% of theH-types, or 0.5% of the entire
market). Therefore, each insurer of typeA will cover about14 ·50%+0.5% = 13%, and the
aggregate market share of all type-A insurers will only increase from 51% to about 52%.

5.3 Premium set by regulator

We formulated the model inm-R-space, and not inm1-m2-space withR set by a regulator,
as was the setting of Glazer and McGuire (2000). We did this tonot obscure the welfare
effects of different levels of competition. Ifσ increases, profits go up, so a regulator would
have to increaseR. However, as we saw in Section 3.2.1, for the case of unobservable risk
types, profits for the two types of insurers increase at different rates. Therefore, it is not
clear at which rate the regulator would have to increaseR to not affect welfare.

Nevertheless, all results regarding the distortions of thebenefit packages are easily trans-
ferred intom1-m2-space. There, a distortion always consists of a too low level of m1 (if
s = 1 is the illness for which there is heterogeneity in risk) and atoo high level ofm2,
see Glazer and McGuire (2000). The shaded areas would then have to be drawn around the
indifference curves inm1-m2-space, but the arguments for the different effects would be
the same.

6 Conclusion

We have analyzed the interaction of imperfect competition and adverse selection in health
insurance markets. Within a discrete choice setting which endogenises whether a separat-
ing or a pooling equilibrium emerges, the following main results have been derived: In a
separating equilibrium, for intermediate levels of competition, both benefit packages are
distorted. As the level of competition decreases, the distortion decreases for the low risk
type, but increases for the high risk type; in addition, the number of insurers offering the
contract for the high risk type decreases, until a pooling equilibrium is reached. The pooling
equilibrium may be below, at, or above the ‘Wilson’-contract.

We also showed that although each individual has the same tendency to ‘make mistakes’ by
not choosing the contract that is most favorable in terms of medical services and premium,

50See Train (2009, p. 46).
51Because there is more than one risk type, the model is actually a (rather degenerate) mixed logit, see Train

(2009), Chapter 6.
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in equilibrium there is an asymmetry in that it is primarily the high risk which choose the
‘wrong’ contract.

Finally, we showed that under imperfect competition there is no clear-cut distinction be-
tween the separating and the pooling equilibrium: for intermediate levels of competition,
each of the two contracts of the separating equilibrium is chosen by both risk types. If the
level of competition decreases, these ‘two pooling contracts of the separating equilibrium’
become more alike, until for a low enough level of competition the pooling equilibrium with
only one contract emerges.

We also determined the implications of imperfect competition on the effectiveness of a
risk adjustment scheme. For intermediate levels of competition we identified three welfare
decreasing effects that can occur if an imprecise RAS is onlyimproved to a small degree. If
these effects are of economic importance, it is even more important for a regulator to use a
RAS that reduces the cost differences between risk types to alarge degree, so that one can
be confident that the RAS creates the positive welfare effects it is implemented for.

The theoretical model we presented complements a number of very recent empirical studies
which analyze adverse selection in health insurance markets with a focus on inefficient
pricing of agivenset of benefit packages. These studies have found that the welfare losses
caused by inefficient pricing are surprisingly low.52 However, as explicitly stated by Einav,
Finkelstein, and Levin (2010), the welfare losses due to an inefficient set of benefit packages
may be much larger than the welfare losses due to inefficient pricing. Our model focuses on
these inefficiencies caused by the distortions of the benefitpackages. We showed that even
the most generous benefit package offered may not represent the efficient level of medical
services, and that too few insurers offer this benefit package. If these additional distortions
exist and are of economic importance, the overall welfare losses caused by adverse selection
may therefore indeed be considerably higher than those onlycaused by inefficient pricing.

52See Einav, Finkelstein, and Cullen (2010), Bundorf et al. (2012) and Handel (2013).
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A Appendix

A.1 Proof that PA
H increases inσ

We will first consider a small, noninfinitesimal increase inσ by ∆σ > 0, which allows
to depict some of the effects graphically; we can then let∆σ become arbitrarily small
(∆σ → 0). A ∼ is used to indicate all variables after the increase ofσ, so, e.g.,̃σ = σ+∆σ.

Denote bySA
L andSB

H the surplus generated bymA andmB for the respective risk type, i.e.

SA
L = pLv(mA)− pLmA and SB

H = pHv(mB)− pHmB . (29)

Using the FOC with respect toV B
H , i.e.πB

H = σ
1−PB

H

, andπB
H = SB

H − V B
H , we have

V B
H = SB

H −
σ

1− PB
H

. (30)

Since for low levels ofσ, mB = m∗, and therefore does not depend onσ, we have

S̃B
H = SB

H , so ∆SB
H = 0.

If PB
H did not change,∆V B

H would be given by

∆V B
H = −

∆σ

1− PB
H

. (31)

In Figure 8, this decrease ofV B
H is depicted by the movement of insurerB’s contract from

B0 toB1.

For insurerA, rewrite the FOCs with respect toV A
L andmA as

λ

[
PA
L (1− PA

L )

σ
πA
L − PA

L

]
+(1−λ)

[
PA
H (1− PA

H )

σ
πA
H − PA

H

]
= 0 (32)

[
λpLPA

L + (1− λ)pLPA
H + (1− λ)(pH − pL)

PA
H (1− PA

H )πA
H

σ

]
v′(mA) (33)

= λpLPA
L +(1−λ)pHPA

H .

For insurerA, condition (33) can be considered as implicitly defining a functionmA(V A
L ),

which for each level ofV A
L determines the optimal level ofmA. Likewise, condition (32)

implicitly defines a functionV A
L (mA). The loci of these two curves of course pass through

A0, the contract offered by insurerA before the increase ofσ.

With contractA0, insurerA will have a certain share ofH-types,PA
H . The set of all the

benefit-premium-bundles with which insurerA attracts this share ofH-types constitutes
the iso-PA

H -curve; it has the same shape as theIV
B
H -indifference curve, shifted upwards; see

Figure 8.
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Figure 8: Equilibrium for two different values ofσ

If σ increases,V B
H is reduced; this shifts theIV

B
H -curve upwards, and with it the iso-PA

H -
curve. The distance between the two iso-PA

H -curves is larger than the distance between the
two IV

B
H -curves, because asσ increases, the shaded area around the indifference curves

becomes wider. To leavePA
H unchanged, insurerA would have to offer a contract on the

new iso-PA
H -curve, which is denoted byPA

H (σ̃) in Figure 8.

It is now argued that the new contract chosen by insurerA will be to the right of this new
iso-PA

H -curve, so that in equilibriumPA
H increases. To do so, it will be shown that the locus

of the functionm̃A(Ṽ A
L ), implicitly defined by (33) withσ increased, is partly to the right

of the new iso-PA
H -curve, and that the new contract is exactly on this part ofm̃A(Ṽ A

L ).

Consider first, that insurerA offers contractA1, which is on the same iso-πA
H -line as con-

tractA0. With A1, in (33) all variables except formA andσ are at the same level as before.
Becauseσ has been increased, which increases the bracket, and because mA has been re-
duced, which increasesv′(mA), the left hand side of condition (33) is now larger than the
right hand side; therefore,mA has to be increased, which increasesPA

H .

Consider now, instead, contractA2, which has been chosen so that
π̃A
H

σ̃
=

πA
H

σ
. At A2,

the bracket on the LHS of (33) attains the same value as beforethe increase ofσ. At all
points on the new iso-PA

H -curve aboveA2, the bracket is larger than before. In addition, for
m̃A < mA, we havev′(m̃A) > v′(mA). Therefore, for all points on the new iso-PA

H -curve
betweenA2 andA3, the LHS of (33) is larger than the RHS, somA has to be increased,
which increasesPA

H . Condition (33) could only be satisfied for a point belowA2, or above
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A3. If such a point belowA2 or aboveA3 did not exist, the locus of the functioñmA(Ṽ A
L )

would always be to the right of the new iso-PA
H -curve; in this case, it follows immediately,

thatPA
H is increased. We therefore consider the case that these points do exist.

Assume first, condition (33) is satisfied for a point belowA2. At such a point, we would

have
π̃A
H

σ̃
<

πA
H

σ
. Condition (32) then requires

π̃A
L

σ̃
>

πA
L

σ
, which impliesπ̃A

L > πA
L . However,

for all points belowA2, we havẽπA
L < πA

L . Therefore, at such a point belowA2, V A
L is too

high, and has to be reduced.

Assume now, that condition (33) is satisfied for a contractA4 aboveA3, see Figure 8.53 At
A4, ∆mA > 0 and∆V A

L < 0. UsingV A
L = V A

H − (pH − pL)v(mA), we have

∆V A
L = ∆V A

H − (pH − pL)v′(m̂A)∆mA, (34)

for somem̂A ∈ [mA,mA +∆mA]. SincePA
H can be rewritten as

PA
H =

1

nA + nBe
V B
H

−V A
H

σ

, (35)

for PA
H to be identical for both levels ofσ, we have to have

V B
H − V A

H

σ
=

Ṽ B
H − Ṽ A

H

σ̃
=

V B
H +∆V B

H − (V A
H +∆V A

H )

σ +∆σ
. (36)

Solving for∆V A
H yields

∆V A
H = ∆V B

H − (V B
H − V A

H )
∆σ

σ
. (37)

Using condition (35),
V B
H

−V A
H

σ
can be expressed in terms ofPA

H as,

V B
H − V A

H

σ
= ln

(
1

nBPA
H

−
nA

nB

)
. (38)

Substituting in condition (37) yields

∆V A
H = −

∆σ

1− PB
H

− ln

(
1

nBPA
H

−
nA

nB

)
∆σ, (39)

so that for∆V A
L we have

∆V A
L = −

∆σ

1− PB
H

− ln

(
1

nBPA
H

−
nA

nB

)
∆σ − (pH − pL)v′(m̂A)∆mA. (40)

Rewrite condition (32) as
[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

]
(SA

L − V A
L ) (41)

53Note that contractA4 has to be belowA5, the contract associated with the efficient level of care: Ifboth
A5 andB1 were offered, almost allL-types would chooseB1.
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−(1− λ)PA
H (1− PA

H )(pH − pL)mA − [λPA
L + (1− λ)PA

H ]σ = 0.

Denote byF (σ) the LHS of (41) evaluated atσ, and likewise forF (σ̃). If, atA4, F (σ̃) > 0,
π̃A
L is too large and has to be reduced, i.e.Ṽ A

L has to be increased. SinceF (σ) = 0, Ṽ A
L has

to be increased ifF (σ̃)− F (σ) > 0. This difference is given by

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

]
(∆SA

L−∆V A
L ) (42)

−(1−λ)PA
H (1−PA

H )(pH −pL)∆mA− [λPA
L +(1−λ)PA

H ]∆σ = 0,

with
∆SA

L = pL[v′(m̂A)− 1]∆mA, (43)

wherem̂A is defined as above. Substituting (40) and (43) in (42), we have

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

] [
pL(v′(m̂A)− 1)∆mA +

∆σ

1− PB
H

(44)

+ ln

(
1

nBPA
H

−
nA

nB

)
∆σ + (pH − pL)v′(m̂A)∆mA

]

−(1−λ)PA
H (1−PA

H )(pH −pL)∆mA− [λPA
L +(1−λ)PA

H ]∆σ.

Sincev′ > 1, expression (44) is larger than

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

] [ ∆σ

1− PB
H

+ ln

(
1

nBPA
H

−
nA

nB

)
∆σ

]
(45)

−[λPA
L + (1− λ)PA

H ]∆σ.

SolvingnAPA
H + nBPB

H = 1 for PB
H and substituting in (45), expression (45) is positive if

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

] [
1 +

(
1−

1

nB
+

nA

nB
PA
H

)
ln

(
1

nBPA
H

−
nA

nB

)]

−
[
λPA

L + (1− λ)PA
H

](
1−

1

nB
+

nA

nB
PA
H

)
> 0.

As can be shown numerically, this condition is always satisfied for any values ofPA
H , PA

L ,
λ, nA andnB as long asPA

H < 0.6PB
H andλ > 0.08. Unless the share ofL-types is very

low, this condition is therefore satisfied for all reasonable values ofPA
H .

If there exists a pointA4 aboveA3, so that (33) is satisfied, condition (32) is violated in a
way, so thatV A

L has to be increased. Therefore, the crossing of the two curves m̃A(Ṽ A
L )

andṼ A
L (m̃A) occurs to the right of the new iso-PA

H -curve, soPA
H (σ̃) > PA

H (σ).
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A.2 Proof that nA increases inσ

In this section it is shown that ifσ increases, the difference in profitsπA − πB at some
point becomes large enough, so that it is profitable for a type-B insurer to become a type-A

insurer. To do so, it is shown thatπ
B

σ
decreases (with a lower bound of zero), whileπA

σ
does

not fall below the level whenPA
H = 0.

For πB

σ
we have

πB

σ
= (1− λ)PB

H

πB
H

σ
. (46)

Solving the FOC

(1− λ)PB
H

[
(1− PB

H )
πB
H

σ
− 1

]
= 0

for
πB
H

σ
and substituting in (46), we have

πB

σ
= (1− λ)

PB
H

1− PB
H

, (47)

so πB

σ
decreases asPB

H decreases, with a lower bound of zero, i.e.

πB

σ

∣∣∣∣
PB
H
→0

→ 0. (48)

For insurerA, usingπA
H = πA

L − (pH − pL)mA, we have

πA

σ
=

[
λPA

L + (1− λ)PA
H

] πA
L

σ
− (1− λ)PA

H (pH − pL)
mA

σ
. (49)

Solving

∂πA

∂V A
L

=

[
λ
PA
L (1− PA

L )

σ
+ (1− λ)

PA
H (1− PA

H )

σ

]
πA
L (50)

−[λPA
L + (1− λ)PA

H ]− (1− λ)
PA
H (1 − PA

H )

σ
(pH − pL)mA

for
πA
L

σ
, and substituting in (49) yields

πA

σ
=

(λPA
L + (1− λ)PA

H )2

λPA
L (1−PA

L ) + (1−λ)PA
H (1−PA

H )
+

(1−λ)λ(pH−pL)PA
L PA

H (PA
L −PA

H )

λPA
L (1−PA

L ) + (1−λ)PA
H (1−PA

H )

mA

σ
.

(51)

This expression has to be compared withπA

σ
for PA

H → 0, (i.e. forσ → 0), where

πA

σ

∣∣∣∣
PA
H
→0

→ λ
PA
H

1− PA
H

. (52)
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Note that in this case we haveπ
A

σ
→ λ nA

1−nA , wherenA andnB is set so thatπA = πB.

It is straightforward to show that for the first fraction of (51),

(λPA
L + (1− λ)PA

H )2

λPA
L (1− PA

L ) + (1− λ)PA
H (1− PA

H )
> λ

PA
L

1− PA
L

. (53)

The second fraction of (51) is positive sincePA
L > PA

H . It can be concluded thatπ
A

σ

∣∣∣
PA
H
>0

is bounded from below byλ PA
H

1−PA
H

> 0, see (52), whileπ
B

σ
decreases inPB

H , approaching

zero asPB
H → 0, see (48). Therefore, ifPB

H is small enough,πA − πB is large enough, so
that it is profitable for one of the type-B insurers to become a type-A insurer.

A.3 Comparison of the pooling equilibrium and the ‘Wilson’-contract

Solving condition (22)

RA − pmA =
nσ

n− 1
(54)

for RA and substituting inπA
H yields

πA
H = RA − pHmA =

nσ

n− 1
− (pH − p)mA. (55)

Substituting the condition for the ‘Wilson’-contract,v′(mWI) = p

pL
, in (23), we have

[
1−

λ(1− λ)(pH − pL)2

nσ
n−1p

mA

]
p

pL
= 1. (56)

Solving formA,

mA =
(p − pL) nσ

n−1

λ(1− λ)(pH − pL)2
, (57)

and substituting in (55) then yieldsπA
H = 0. Therefore the pooling equilibrium coincides

with the ‘Wilson’-contract forπA
H = 0.
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A.4 Example with risk adjustment

Table 4: Example III withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, n = 20 and risk
adjustment.

∑
SH denotes the sum of expected surplus for theH-types,

∑
SL the sum of

expected surplus for theL-types, with welfareW the weighted average of these two sums:
W = λ

∑
SL + (1 − λ)

∑
SH . For the pooling equilibrium, all insurers are denoted as

being of typeA.

RA nA nB mA mB PA
L PA

H PB
L PB

H

∑
PA
L

∑
PA
H

∑
SH

∑
SL W

.00 12 8 .328 .981 .0831 .0157 .00036 .1014 .997 .189 -1.0838 -.2883 -.6860

.01 12 8 .340 .978 .0831 .0170 .00042 .0995 .997 .204 -1.0856 -.2836 -.6846

.02 12 8 .352 .975 .0830 .0183 .00050 .0975 .996 .220 -1.0874 -.2788 -.6831

.03 12 8 .365 .970 .0829 .0198 .00059 .0952 .995 .238 -1.0890 -.2741 -.6815

.04 13 7 .375 .971 .0766 .0217 .00063 .1025 .996 .283 -1.1009 -.2709 -.6859

.05 13 7 .390 .965 .0765 .0236 .00076 .0990 .995 .307 -1.1022 -.2660 -.6841

.06 13 7 .406 .958 .0764 .0255 .00093 .0954 .993 .332 -1.1028 -.2612 -.6820

.07 14 6 .420 .957 .0710 .0286 .00102 .0998 .994 .401 -1.1158 -.2571 -.6865

.08 14 6 .438 .946 .0709 .0307 .00128 .0950 .992 .430 -1.1144 -.2524 -.6834

.09 15 5 .455 .942 .0662 .0344 .00146 .0968 .993 .516 -1.1257 -.2480 -.6869

.10 16 4 .475 .935 .0621 .0383 .00172 .0969 .993 .613 -1.1352 -.2436 -.6894

.11 17 3 .496 .925 .0585 .0420 .00209 .0954 .994 .714 -1.1416 -.2392 -.6904

.12 18 2 .517 .909 .0553 .0452 .00265 .0928 .995 .814 -1.1445 -.2351 -.6898

.13 pooling .542 .542 .0500 .0500 - - 1.00 1.00 -1.1545 -.2309 -.6927

.14 pooling .559 .559 .0500 .0500 - - 1.00 1.00 -1.1407 -.2281 -.6844

.15 pooling .576 .576 .0500 .0500 - - 1.00 1.00 -1.1277 -.2255 -.6766

.20 pooling .661 .661 .0500 .0500 - - 1.00 1.00 -1.0751 -.2150 -.6451

.25 pooling .746 .746 .0500 .0500 - - 1.00 1.00 -1.0392 -.2078 -.6235

.30 pooling .830 .830 .0500 .0500 - - 1.00 1.00 -1.0163 -.2033 -.6098

.35 pooling .915 .915 .0500 .0500 - - 1.00 1.00 -1.0038 -.2008 -.6023

.40 pooling 1.00 1.00 .0500 .0500 - - 1.00 1.00 -1.0000 -.2000 -.6000
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