
Advanced Methodology for European Laeken Indicators

Deliverables 10.3

R packages plus manual

Version: 2011

Matthias Templ, Andreas Alfons, Peter Filzmoser, Monique Graf,

Beat Hulliger, Jan-Philipp Kolb, Risto Lehtonen, Ralf Münnich,

Desislava Nedyalkova, Tobias Schoch, Ari Veijanen, Stefan Zins

The project FP7–SSH–2007–217322 AMELI is supported by European Commission
funding from the Seventh Framework Programme for Research.

http://ameli.surveystatistics.net/

http://ameli.surveystatistics.net/

II

Contributors to Deliverable 10.3

Chapter 1: Matthias Templ, Andreas Alfons, Monique Graf, Beat Hulliger, Risto Leh-
tonen, Tobias Schoch, Ari Veijanen, Stefan Zins.

Chapter 2: Andreas Alfons, Matthias Templ, Peter Filzmoser.

Chapter 3: Andreas Alfons, Matthias Templ, Peter Filzmoser.

Chapter 4: Matthias Templ, Andreas Alfons.

Chapter 5: Matthias Templ, Andreas Alfons.

Chapter 6: Andreas Alfons, Matthias Templ, Peter Filzmoser, Josef Holzer.

Chapter 7: Matthias Templ, Andreas Alfons.

Appendix A1: Andreas Alfons.

Appendix A2: Andreas Alfons, Stefan Kraft.

Appendix A3: Matthias Templ, Andreas Alfons, Alexander Kowarik.

Appendix A4: Andreas Alfons, Josef Holzer, Matthias Templ.

Appendix A5: Monique Graf, Desislava Nedyalkova.

Appendix A6: Beat Hulliger, Tobias Schoch.

Appendix A7: Beat Hulliger, Tobias Schoch.

Appendix A8: Beat Hulliger, Tobias Schoch.

Appendix A9: Tobias Schoch

Main responsibility

The AMELI Team

Evaluators

Internal expert: General Assembly

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Aim and objectives of deliverable
10.3

This final report will comprise the computer codes. The codes are splited into several
R-packages. In addition specific R code published in the annex of Deliverable 7.1. (Hul-
liger et al., 2011a) and other deliverables such as Deliverable 2.2 (Lehtonen et al.,
2011).

This deliverable is designed to be an enhancement to the usual R documentation manuals
that are included in the appendix additionally. Such R documentation manuals are the
proposed way for documenting R packages by using well-structured help files written in the
R documentation (Rd) format. These R-help files are structured into sections explaining
the paramters of the function their usage and includes some details on the implementation
of the corresponding functions. Typically, the help files contain code in two sections: usage
and examples.

However, the Rd file format was designed for documentation of single R objects (such
as functions, data sets, methods, classes, . . .). It is not intended for demonstrating the
interaction of multiple functions in a package (Leisch, 2003). For this task the concept
of package vignettes is designed. A package vignette is a document explaining parts or
all of the functionality of a package in a more informal way than the strict format of refe-
rence help pages. We use the concept of package vignettes to show the application of the
developed R code to the EU-SILC data. A package vignette consists of (and is generated
from) R-code and LATEX source code. This code is open-source and it is available in the
inst/doc directory of the corresponding package.

The package vignettes in this deliverable concentrate to show applications of the packages
to EU-SILC data. Potential users of the packages should easily see how the functions are
applied to complex estimation purposes and exploring and visualization of the results.

The deliverable is stuctured as follows. A brief description of all packages is provided in
Chapter 1. Package vignettes are available for the simFrame, the simPopulation, the
VIM and the laeken package and included as chapters 2–7 of this deliverable. Further
details about the functions applied in the vignettes are provided in the appendix where
all function arguments as well as code for further examples are listed in form of traditional
R packages manuals.

AMELI-WP10-D10.3

Contents

1 References and description of R packages 3
1.1 SimFrame . 3
1.2 SimPopulation . 3
1.3 VIM . 4
1.4 laeken . 4
1.5 GB2 . 5
1.6 Robust non-parametric QSR estimation . 5
1.7 MODI . 5
1.8 rsae: Robust Small Area Estimation . 5
1.9 Specific R-Code . 6

1.9.1 Work Package 2 . 6
1.9.2 Work Package 3 . 6
1.9.3 Work Package 4 . 6
1.9.4 Work Package 8 . 7

Bibliography 12

2 Applications of Statistical Simulation Using simFrame 17
2.1 Introduction . 17
2.2 Application of different simulation designs to EU-SILC 18

2.2.1 Basic simulation design . 19
2.2.2 Using stratified sampling . 19
2.2.3 Adding contamination . 21
2.2.4 Performing simulations separately on different domains 22
2.2.5 Using multiple contamination levels 24
2.2.6 Inserting missing values . 26
2.2.7 Parallel computing . 28

2.3 Conclusions . 30

3 Simulation of EU-SILC Population Data Using simPopulation 33
3.1 Introduction . 33
3.2 Wrapper function for EU-SILC . 34
3.3 Step by step instructions and diagnostics 35
3.4 Conclusions . 42

4 An application of VIM to EU-SILC data 43
4.1 The graphical user interface of VIM . 43

4.1.1 Handling data . 43
4.1.2 Selecting variables . 45
4.1.3 Selecting plots . 45

AMELI-WP10-D10.3

VI Contents

4.2 An application to EU-SILC data . 45
4.2.1 Univariate plots . 47
4.2.2 Bivariate plots . 48
4.2.3 Multivariate plots . 48
4.2.4 Other plots . 50

4.3 Fine tuning . 51
4.4 Interactive features . 51
4.5 Summary . 52

5 Standard Methods for Social Exclusion Indicators in package laeken 55
5.1 Introduction . 55
5.2 Basic design of the package . 57

5.2.1 Class structure . 58
5.3 Calculation of the equivalized disposable income 59
5.4 Weighted median and quantile estimation 61
5.5 Indicators on social exclusion and poverty 62

5.5.1 At-risk-at-poverty rate . 63
5.5.2 Quintile share ratio . 65
5.5.3 Relative median at-risk-of-poverty gap (by age and gender) 66
5.5.4 Gini coefficient . 68

5.6 Extracting information using the subset() method 69
5.7 Conclusions . 70

6 Robust Pareto Tail Modeling with package laeken. 73
6.1 Introduction . 73
6.2 Social exclusion indicators . 74

6.2.1 Quintile share ratio (QSR) . 75
6.2.2 Gini coefficient . 75

6.3 The Pareto distribution . 76
6.4 Finding the threshold . 77

6.4.1 Van Kerm’s rule of thumb . 78
6.4.2 Pareto quantile plot . 78
6.4.3 Mean excess plot . 79

6.5 Estimation of the shape parameter . 81
6.5.1 Hill estimator . 82
6.5.2 Weighted maximum likelihood estimator 82
6.5.3 Integrated squared error estimator 84
6.5.4 Partial density component estimator 85

6.6 Estimation of the indicators using Pareto tail modeling 85
6.7 Conclusions . 87

7 Variance Estimation of Indicators using package laeken 91
7.1 Introduction . 91
7.2 General wrapper function for variance estimation 92
7.3 Naive bootstrap . 93
7.4 Calibrated bootstrap . 95
7.5 Conclusions . 97

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Contents 1

A1. simFrame Manual 100

A2. simPopulation Manual 216

A3. VIM Manual 250

A4. laeken Manual 309

A5. GB2 Manual 372

A6. Robust Horvitz-Thompson Estimation (RHT) 400

A7. BQSR, TQSR and MQSR 415

A8. MODI: Mulivariate Outlier Detection and Imputation 420

A9. rsae: Robust Small Area Estimation 435

AMELI-WP10-D10.3

Chapter 1

References and description of R
packages

1.1 SimFrame

In order to simplify using common guidelines in simulation experiments, a software frame-
work has been developed in the R package simFrame (Alfons et al., 2010b). It allows the
use a wide range of simulation designs with a minimal effort of programming. In addition,
the object-oriented implementation provides clear interfaces for further extensions.

Simulation studies in research projects such as AMELI require a precise outline. If dif-
ferent partners use, e.g., different contamination or missing data models, the results may
be incomparable. A software framework for statistical simulation may thus contribute
its share to avoid such problems. For this purpose, the R package simFrame (Alfons
et al., 2010b) has been developed. The object-oriented implementation with S4 classes
and methods (Chambers, 1998, 2008) gives maximum control over input and output and
provides clear interfaces for user-defined extensions. Moreover, the framework allows a
wide range of simulation designs to be used with only a little programming.

One of the main goals of the AMELI project is to improve the methodology for the
indicators on social exclusion and poverty under typical data problems such as outliers
and missing data. The package simFrame therefore allows to add certain proportions of
outliers or non-response. In addition, depending on the structure of the simulation results,
an appropriate plot method is selected automatically.

While the simFrame paper is published in Alfons et al. (2010b) and the basic structure
is also outlined in Alfons et al. (2011a), a vignette shows the application of the package
for EU-SILC. This package vignette is included in the Appendix (see also Alfons et al.,
2010a).

1.2 SimPopulation

One aim of the AMELI project was to investigate robust estimation of the Laeken Indi-
cators. For this purpose, Alfons et al. (2011d) developed a data generation framework,
which is implemented in the R package simPopulation (Alfons and Kraft, 2010; Al-
fons et al., 2011d). Based on Austrian EU-SILC sample data, the synthetic population

AMELI-WP10-D10.3

4 CHAPTER 1. REFERENCES AND DESCRIPTION OF R PACKAGES

AAT-SILC was generated with this framework (see Alfons et al., 2011b). AAT-SILC
was designed to resemble a representative country. A further objective was that the po-
pulation data should not contain any large outliers, as these are included in the samples
during the simulations for full control over the amount of outliers (see Alfons et al.,
2011a).

While the simPopulation is published in Alfons et al. (2011d), a package vignette in
the appendix shows the application of the package.

1.3 VIM

Imputation of item non-responses in complex surveys has an effect on the final estimates
of the indicators. One aim of the AMELI project was to develope robust methods for
estimation (see Hulliger et al., 2011b) and to visualize the structure of microdata (see
Templ et al., 2011a). Package VIM (Templ et al., 2011b) allows to explore the data with
missing values and learn about the structure of the missing values. Visualisation methods
such as modified parallel coordinate plots, mosaic plots, scatterplot matrices, etc., have
to be modified to deal with missing values and to show their structure.

EM-based regression imputation algorithms are mainly used to impute missing values
automatically, i.e. such methods are very helpful in hand of subject matter specialists who
are not statistical experts. Since data virtually always comes with outlying observations,
robust methods for statistical estimation of missing values should be used here. The
implemented algorithm (see Templ et al., 2011c) again is able to deal with all data
challenges like representative and non-representative outliers and a mixture of different
distributed variables, for example.

The free and open-source R package VIM provides a graphical user interface for users
having no experience with R.

More about VIM is shown in Templ et al. (2011a) and in the package vignette in the
appendix.

1.4 laeken

One aim of the AMELI project was on estimation of social inclusion indicators. The
methodology of estimating these indicators is implemented in package laeken (Alfons
et al., 2011c). The package contains a subset of synthetically generated data for the
European Union Statistics on Income and Living Conditions (EU-SILC), which is used in
the code examples throughout the package. The package has an object-oriented design
and different classes and subclasses are introduced.

In addition, robust semiparametric estimation (see Hulliger et al., 2011b) of social
exclusion indicators is available. Special emphasis is thereby given to income inequality
indicators, as the standard estimates for these indicators are highly influenced by outliers
in the upper tail of the income distribution. This influence can be reduced by modeling
the upper tail with a Pareto distribution in a robust manner.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

1.5 GB2 5

Moreover, variance estimation methods are implemented in the package. To be more pre-
cise, it describes a general framework for estimating variance and confidence intervals of
indicators under complex sampling designs. Currently, the package is focused on boots-
trap approaches. While the naive bootstrap does not modify the weights of the bootstrap
samples, a calibrated version allows to calibrate each bootstrap sample on auxiliary in-
formation before deriving the bootstrap replicate estimate.

The package vignettes are included in the appendix.

1.5 GB2

Package GB2 (Graf and Nedyalkova, 2010) implements the methods described in Graf
et al. (2011, Chapters 1-4). For the Generalized Beta distribution of the second kind
(GB2) - density, distribution function, quantiles, moments are provided. Functions for
the full log-likelihood, the profile log-likelihood and the scores are given. Formulae for
various Laeken indicators under the GB2 are implemented. Package GB2 performs pseudo
maximum likelihood estimation and non-linear least squares estimation of the model pa-
rameters and computes the design based variance of the parameters and the indicators by
linearization. It provides various plots for the visualization and analysis of the results.

1.6 Robust non-parametric QSR estimation

The rqsr package is an implementation of the robust, non-parametric QSR estimators.
Namely, it enables the user to compute TQSR, SQSR, BQSR, and MQSR. In addition, it
includes a device to compute variance estimates for all variants of the robustified QSR.
See Appendix for more details.

1.7 MODI

The modi package contains functions for robust multivariate outlier detection and impu-
tation. The following detection methods are implemented: BACON-EEM, TRC, GIMCD, and
Epidemic Algorithm. All algorithms can cope with both missing values and complex
survey samples. Once the data have been processed by outlier-detection methods, one
considers (robustly) imputing for the missing values and the declared outliers. The im-
plemented imputation methods are Gaussian imputation (based on robustly estimated
location and scatter), Nearest Neighbor Imputation, and Reverse Epidemic Algo-

rithm. See Appendix for more details.

1.8 rsae: Robust Small Area Estimation

The rsae package offers a general framework to robustly estimate area-level- and unit-level
small area estimation (SAE) models. Once a particular model has been set up, it can be

AMELI-WP10-D10.3

6 CHAPTER 1. REFERENCES AND DESCRIPTION OF R PACKAGES

fitted by various robust methods (and also maximum likelihood). The rsae consists of two
fitting modes: “default mode” and “safe mode”. The latter involves a high-breakdown-
point regression estimator initialization and uses several numerical checks whether the
iteration-specific estimates behave well. Currently, only Huber-type M -estimation is im-
plemented. This method has assured super-linear convergence (given that (1) the amount
of contamination is strictly below the breakdown point and (2) the model is properly spe-
cified). The high-breakdown-point S-estimator for mixed-level models will be included in
the next release. Once the parameters of the Gaussian core model have been robustly
estimated, we consider robustly predicting the random effects and the small-area means.
Further, the package is shipped with several useful utility functions. See Appendix for
more details.

1.9 Specific R-Code

1.9.1 Work Package 2

R functions have been programmed for small area estimation (SAE) of indicators on
poverty and social exlusion. The indicators include at-risk-of poverty rate, the Gini co-
efficient, relative median at-risk-of poverty gap and quintile share ratio (S20/S80 ratio).
Design-based estimators include direct estimators that do not use auxiliary data. The
more advanced indirect model-assisted, model-based and composite estimators use auxi-
liary data at unit level or at aggregated level and generalized linear mixed models. We
have fitted most of the mixed models with R functions nlme and glmer (package lme4).
In addition, R function multinom of package nnet has been used. Technical description
of SAE methodology is in Lehtonen et al. (2011). Annex 1 (Manual of R codes) of
Lehtonen et al. (2011) includes a more detailed description of R codes. The R program
codes can be found in separate AMELI deliverable files.

1.9.2 Work Package 3

Variance estimation with the linearized variance estimators, was done with the help of
the survey package (cf. Tille and Matei, 2011), the definition of the necessary sur-

vey.design objects can be found in Hulliger et al. (2011a, section 9). The functions
used to compute both point and variance estimates for the linearized estimators are given
in the appendix of Hulliger et al. (2011a) (see R Functions for Computing Point and
Variance Estimates).

1.9.3 Work Package 4

Specific code for outlier detection of semi-continuous variables can be found in Todorov
(2011) (Todorov et al., 2011, see also) and in Meraner (2010). Todorov et al. (2011)
was written in a collaborative manner with UNIDO, the latter one, Meraner (2010),
was written within the AMELI project where also details can be found in Hulliger et al.
(2011b).

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

1.9 Specific R-Code 7

1.9.4 Work Package 8

Code for mapping and projection of coordinates are descibed in Deliverable 8.2 (Templ
et al., 2011a).

Package sparktable (Kowarik et al., 2010) includes methods to generate scalable gra-
phical tables including various types of sparklines for publication in web and in publica-
tions. It is mainly developed by Statistics Austria but with minor contribution from the
AMELI team.

R code for checkerplots and further visualisation tools will be made soon available as a R
package.

AMELI-WP10-D10.3

Bibliography

Alfons, A., Burgard, J. P., Filzmoser, P., Hulliger, B., Kolb, J.-P., Kraft, S.,
Münnich, R., Schoch, T. and Templ, M. (2011a): The AMELI Simulation Study.
Research Project Report WP6 – D6.1, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Alfons, A., Filzmoser, P., Hulliger, B., Kolb, J.-P., Kraft, S., Münnich, R.
and Templ, M. (2011b): Synthetic Data Generation of SILC Data. Research Project
Report WP6 – D6.2, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Alfons, A., Holzer, J. and Templ, M. (2011c): laeken: Estimation of indicators on
social exclusion and poverty. R package version 0.3.
URL http://CRAN.R-project.org/package=laeken

Alfons, A. and Kraft, S. (2010): simPopulation: Simulation of synthetic populations
for surveys based on sample data. R package version 0.2.1.
URL http://CRAN.R-project.org/package=simPopulation

Alfons, A., Kraft, S., Templ, M. and Filzmoser, P. (2011d): Simulation of close-to-
reality population data for household surveys with application to EU-SILC. Statistical
Methods & Applications, DOI 10.1007/s10260-011-0163-2, to appear.
URL http://dx.doi.org/10.1007/s10260-011-0163-2

Alfons, A., Templ, M. and Filzmoser, P. (2010a): Applications of Statistical Simu-
lation in the Case of EU-SILC: Using the R Package simFrame. Journal of Statistical
Software, 37 (3), p. 17, supplementary paper.
URL http://www.jstatsoft.org/v37/i03/

Alfons, A., Templ, M. and Filzmoser, P. (2010b): An object-oriented framework for
statistical simulation: The R package simFrame. Journal of Statistical Software, 37 (3),
pp. 1–36.
URL http://www.jstatsoft.org/v37/i03/

Chambers, J. (1998): Programming with Data. New York: Springer, ISBN
0-387-98503-4.

Chambers, J. (2008): Software for Data Analysis: Programming with R. New York:
Springer, ISBN 978-0-387-75935-7.

Graf, M. and Nedyalkova, D. (2010): GB2: Generalized Beta Distribution of the
Second Kind: properties, likelihood, estimation. R package version 1.0.
URL http://CRAN.R-project.org/package=GB2

AMELI-WP10-D10.3

http://ameli.surveystatistics.net
http://ameli.surveystatistics.net
http://CRAN.R-project.org/package=laeken
http://CRAN.R-project.org/package=simPopulation
http://dx.doi.org/10.1007/s10260-011-0163-2
http://www.jstatsoft.org/v37/i03/
http://www.jstatsoft.org/v37/i03/
http://CRAN.R-project.org/package=GB2

10 Bibliography

Graf, M., Nedyalkova, D., Münnich, R., Seger, J. and Zins, S. (2011): Parametric
Estimation of Income Distributions and Indicators of Poverty and Social Exclusion.
Research Project Report WP2 – D2.1, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Hulliger, B., Alfons, A., Bruch, C., Filzmoser, P., Graf, M., Kolb, J.-P., Lehto-
nen, R., Lussmann, D., Meraner, A., Münnich, R., Nedyalkova, D., Schoch,
T., Templ, M., Valaste, M., Veijanen, A. and Zins, S. (2011a): Report on the Si-
mulation Results. Research Project Report WP7 – D7.1, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Hulliger, B., Alfons, A., Filzmoser, P., Meraner, A., Schoch, T. and Templ, M.
(2011b): Robust Methodology for Laeken Indicators. Research Project Report WP4 –
D4.2, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Kowarik, A., Meindl, B. and Zechner, S. (2010): sparkTable: Sparklines and gra-
phical tables for tex and html. R package version 0.1.3.
URL http://CRAN.R-project.org/package=sparkTable

Lehtonen, R., Veijanen, A., Myrskylä, M. and Valaste, M. (2011): Small Area
Estimation of Indicators on Poverty and Social Exclusion. Research Project Report
WP2 – D2.2, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Leisch, F. (2003): Sweave, Part II: Package Vignettes. R News, 3 (2), pp. 21–24.
URL http://CRAN.R-project.org/doc/Rnews/

Meraner, A. (2010): Outlier Detection for Semi-continuous Variables. Diplomarbeit,
Institut f. Statistik und Wahrscheinlichkeitstheorie, Technische Universität, Wien.

Templ, M., Alfons, A., Filzmoser, P., Hulliger, B. and Lussmann, D. (2011a): Vi-
sualisation Tools. Research Project Report WP8 – D8.2, FP7-SSH-2007-217322 AMELI.
URL http://ameli.surveystatistics.net

Templ, M., Alfons, A. and Kowarik, A. (2011b): VIM: Visualization and Imputation
of Missing Values. R package version 2.0.1.
URL http://CRAN.R-project.org/package=VIM

Templ, M., Kowarik, A. and Filzmoser, P. (2011c): Iterative stepwise regression
imputation using standard and robust methods. Computational Statistics & Data Ana-
lysis, 55 (10), pp. 2793 – 2806, ISSN 0167-9473, doi:DOI:10.1016/j.csda.2011.04.012.
URL http://www.sciencedirect.com/science/article/pii/S0167947311001411

Tille, Y. and Matei, A. (2011): sampling: Survey Sampling. R package version 2.4.
URL http://CRAN.R-project.org/package=sampling

Todorov, V. (2011): rrcovNA: Scalable Robust Estimators with High Breakdown Point
for Incomplete Data. R package version 0.4-02.
URL http://CRAN.R-project.org/package=rrcovNA

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net
http://ameli.surveystatistics.net
http://ameli.surveystatistics.net
http://CRAN.R-project.org/package=sparkTable
http://ameli.surveystatistics.net
http://CRAN.R-project.org/doc/Rnews/
http://ameli.surveystatistics.net
http://CRAN.R-project.org/package=VIM
http://www.sciencedirect.com/science/article/pii/S0167947311001411
http://CRAN.R-project.org/package=sampling
http://CRAN.R-project.org/package=rrcovNA
http://ameli.surveystatistics.net/

Bibliography 11

Todorov, V., Templ, M. and Filzmoser, P. (2011): Detection of multivariate outliers
in business survey data with incomplete information. Advances in Data Analysis and
Classification, 5, pp. 37–56, ISSN 1862-5347, doi:10.1007/s11634-010-0075-2.
URL http://dx.doi.org/10.1007/s11634-010-0075-2

AMELI-WP10-D10.3

http://dx.doi.org/10.1007/s11634-010-0075-2

Chapter 2

Applications of Statistical Simulation
Using simFrame

Abstract: This chapter demonstrates the use of simFrame for various simulation designs
in a practical application with EU-SILC data. It presents the full functionality of the
framework regarding sampling designs, contamination models, missing data mechanisms
and performing simulations separately on different domains. Due to the use of control
objects, switching from one simulation design to another requires only minimal changes in
the code. Using bespoke R code, on the other hand, changing the code to switch between
simulation designs would require much greater effort. Furthermore, parallel computing
with simFrame is demonstrated.

Keywords: R, statistical simulation, EU-SILC

2.1 Introduction

This is a supplementary paper to “An Object-Oriented Framework for Statistical Simu-
lation: The R Package simFrame” (Alfons et al., 2010d) and demonstrates the use of
simFrame (Alfons, 2011) in R (R Development Core Team, 2010) for various simula-
tion designs in a practical application. It extends the example for design-based simulation
in Alfons et al. (2010d) (Example 6.1). Different simulation designs in terms of sam-
pling, contamination and missing data are thereby investigated to present the strengths
of the framework.

Note that the paper is supplementary material and is supposed to be read after studying
Alfons et al. (2010d). It does not give a detailed discussion about the motivation for the
framework, nor does it describe the design or implementation of the package. Instead it
is focused on showing its full functionality for design-based simulation in additional code
examples with brief explanations. However, model-based simulation is not considered
here.

The European Union Statistics on Income and Living Conditions (EU-SILC) is panel
survey conducted in EU member states and other European countries and serves as basis
for measuring risk-of-poverty and social cohesion in Europe. An important indicator
calculated from this survey is the Gini coefficient, which is a well-known measure of

AMELI-WP10-D10.3

14
CHAPTER 2. APPLICATIONS OF STATISTICAL SIMULATION USING

SIMFRAME

inequality. In the following examples, the standard estimation method (EU-SILC, 2004)
is compared to two semiparametric methods under different simulation designs. The two
semiparametric approaches are based on fitting a Pareto distribution (e.g., Kleiber and
Kotz, 2003) to the upper tail of the data. In the first approach, the classical Hill estimator
(Hill, 1975) is used to estimate the shape parameter of the Pareto distribution, while
the second uses the robust partial density component (PDC) estimator (Vandewalle
et al., 2007). All these methods are implemented in the R package laeken (Alfons et al.,
2010a). For a more detailed discussion on Pareto tail modeling in the case of the Gini
coefficient and a related measure of inequality, the reader is referred to Alfons et al.
(2010e).

The example data set of simFrame is used as population data throughout the paper. It
consists of 58 654 observations from 25 000 households and was synthetically generated
from Austrian EU-SILC survey data from 2006 using the data simulation methodology
by Alfons et al. (2010b), which is implemented R package simPopulation (Alfons and
Kraft, 2010).

2.2 Application of different simulation designs to

EU-SILC

First, the required packages and the data set need to be loaded.

R> library("simFrame")

R> library("laeken")

R> data("eusilcP")

Then, the function to be run in every iteration is defined. Its argument k determines
the number of households whose income is modeled by a Pareto distribution. Since the
Gini coefficient is calculated based on an equivalized household income, all individuals of
a household in the upper tail receive the same value.

R> sim <- function(x, k) {

+ x <- x[!is.na(x$eqIncome),]

+ g <- gini(x$eqIncome, x$.weight)$value

+ eqIncHill <- fitPareto(x$eqIncome, k = k, method = "thetaHill",

+ groups = x$hid)

+ gHill <- gini(eqIncHill, x$.weight)$value

+ eqIncPDC <- fitPareto(x$eqIncome, k = k, method = "thetaPDC",

+ groups = x$hid)

+ gPDC <- gini(eqIncPDC, x$.weight)$value

+ c(standard = g, Hill = gHill, PDC = gPDC)

+ }

This function is used in the following examples, which are designed to exhibit the strengths
of the framework. In order to change from one simulation design to another, all there is
to do is to define or modify control objects and supply them to the function runSimula-

tion().

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2.2 Application of different simulation designs to EU-SILC 15

2.2.1 Basic simulation design

In this basic simulation design, 100 samples of 1500 households are drawn using simple
random sampling. Note that the setup() function is not used to permanently store the
samples in an object. This is simply not necessary, since the population is rather small and
the sampling method is straightforward. Furthermore, the Pareto distribution is fitted to
the 175 households with the largest equivalized income.

R> set.seed(12345)

R> sc <- SampleControl(grouping = "hid", size = 1500, k = 100)

R> results <- runSimulation(eusilcP, sc, fun = sim, k = 175)

In order to inspect the simulation results, methods for several frequently used generic
functions are implemented. Besides head(), tail() and summary() methods, a method
for computing summary statistics with aggregate() is available. By default, the mean
is used as summary statistic. Moreover, the plot() method selects a suitable graphical
representation of the simulation results automatically. A reference line for the true value
can thereby be added as well.

R> head(results)

Run Sample standard Hill PDC

1 1 1 26.56793 26.48025 25.66614

2 2 2 26.98203 27.73124 26.39318

3 3 3 27.07081 27.11886 25.52524

4 4 4 26.86841 27.70216 25.71355

5 5 5 26.43215 26.49267 25.64191

6 6 6 26.96175 27.13876 27.17536

R> aggregate(results)

standard Hill PDC

26.65621 26.79016 26.89564

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

Figure 2.1 shows the resulting box plots of the simulation results for the basic simulation
design. While the PDC estimator comes with larger variability, all three methods are on
average quite close to the true population value. This is also an indication that the choice
of the number of households for fitting the Pareto distribution is suitable.

2.2.2 Using stratified sampling

The most frequently used sampling designs in official statistics are implemented in simFrame.
In order to switch to another sampling design, only the corresponding control object needs
to be changed. In this example, stratified sampling by region is performed. The sample
sizes for the different strata are specified by using a vector for the slot size of the control
object.

AMELI-WP10-D10.3

16
CHAPTER 2. APPLICATIONS OF STATISTICAL SIMULATION USING

SIMFRAME

standard

Hill

PDC

26 28 30 32

●

●

●

●●

● ●

Figure 2.1: Simulation results for the basic simulation design.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> results <- runSimulation(eusilcP, sc, fun = sim, k = 175)

As before, the simulation results are inspected with head() and aggregate(). A plot of
the simulation results is produced as well.

R> head(results)

Run Sample standard Hill PDC

1 1 1 27.08652 27.22293 27.66753

2 2 2 26.80670 27.35874 25.93378

3 3 3 26.68113 27.03964 26.60062

4 4 4 25.84734 26.52346 25.18298

5 5 5 26.05449 26.26848 26.60331

6 6 6 26.98439 27.01396 26.48090

R> aggregate(results)

standard Hill PDC

26.71792 26.85375 26.86248

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

Figure 2.2 contains the plot of the simulation results for the simulation design with stra-
tified sampling. The results are very similar to those from the basic simulation design
with simple random sampling. On average, all three investigated methods are quite close
to the true population value.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2.2 Application of different simulation designs to EU-SILC 17

standard

Hill

PDC

25 26 27 28 29 30

●

●

●

●

● ●●

Figure 2.2: Simulation results for the simulation design with stratified sampling.

2.2.3 Adding contamination

When evaluating robust methods in simulation studies, contamination needs to be added
to the data to study the influence of these outliers on the robust estimators and their
classical counterparts. In simFrame, contamination is specified by defining a control
object. Various contamination models are thereby implemented in the framework. Keep
in mind that the term contamination is used in a technical sense here (see Alfons et al.,
2010d,c, for an exact definition) and that contamination is modeled as a two step process
(see also Béguin and Hulliger, 2008; Hulliger and Schoch, 2009). In this example,
0.5% of the households are selected to be contaminated using simple random sampling.
The equivalized income of the selected households is then drawn from a normal distribution
with mean µ = 500 000 and standard deviation σ = 10 000.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ fun = sim, k = 175)

The head(), aggregate() and plot() methods are again used to take a look at the
simulation results. Note that a column is added that indicates the contamination level
used.

R> head(results)

Run Sample Epsilon standard Hill PDC

1 1 1 0.005 32.71453 29.12110 27.03731

AMELI-WP10-D10.3

18
CHAPTER 2. APPLICATIONS OF STATISTICAL SIMULATION USING

SIMFRAME

standard

Hill

PDC

25 30 35 40

●

●

●

●

● ●●●

●

Figure 2.3: Simulation results for the simulation design with stratified sampling and
contamination.

2 2 2 0.005 34.22065 31.62709 26.24857

3 3 3 0.005 33.56878 28.49760 28.00937

4 4 4 0.005 35.26346 29.57160 26.25621

5 5 5 0.005 33.79720 29.15945 25.61514

6 6 6 0.005 34.72069 28.58610 27.22342

R> aggregate(results)

Epsilon standard Hill PDC

1 0.005 34.88922 30.26179 27.02093

R> tv <- gini(eusilcP$eqIncome)$value

R> plot(results, true = tv)

In Figure 2.3, the resulting box plots are presented. The figure shows that such a small
amount of contamination is enough to completely corrupt the standard estimation of
the Gini coefficient. Using the classical Hill estimator to fit the Pareto distribution is
still highly influenced by the outliers, whereas the PDC estimator leads to very accurate
results.

2.2.4 Performing simulations separately on different domains

Data sets from official statistics typically contain strong heterogeneities, therefore indi-
cators are usually computed for subsets of the data as well. Hence it is often of interest
to investigate the behavior of indicators on different subsets in simulation studies. In
simFrame, this can be done by simply specifying the design argument of the function
runSimulation(). In the case of extending the example from the previous section, the

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2.2 Application of different simulation designs to EU-SILC 19

framework then splits the samples, inserts contamination into each subset and calls the
supplied function for these subsets automatically. With bespoke R code, the user would
need to take care of this with a loop-like structure such as a for loop or a function from
the apply family.

In the following example, the simulations are performed separately for each gender. It
should be noted that the value of k for the Pareto distribution is thus changed to 125.
This is the same as Example 6.1 from Alfons et al. (2010d), except that a control object
for sampling is supplied to runSimulation() instead of setting up the samples beforehand
and storing them in an object.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = 0.005,

+ grouping = "hid", dots = list(mean = 5e+05, sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ design = "gender", fun = sim, k = 125)

Below, the results are inspected using head() and aggregate(). The aggregate() me-
thod thereby computes the summary statistic for each subset automatically. Also the
plot() method displays the results for the different subsets in different panels by taking
advantage of the lattice system (Sarkar, 2008, 2010). In order to compute the true
values for each subset, the function simSapply() is used.

R> head(results)

Run Sample Epsilon gender standard Hill PDC

1 1 1 0.005 male 34.58446 29.96658 26.61415

2 1 1 0.005 female 38.82356 33.93700 28.82045

3 2 2 0.005 male 34.34853 29.09325 27.66380

4 2 2 0.005 female 36.38429 30.06097 27.42663

5 3 3 0.005 male 33.39992 30.54211 23.96698

6 3 3 0.005 female 35.12883 30.51336 26.06518

R> aggregate(results)

Epsilon gender standard Hill PDC

1 0.005 male 33.18580 29.00265 26.21119

2 0.005 female 35.61341 31.28984 27.69054

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

The resulting plots are shown in Figure 2.4, which is the same as Figure 2 in Alfons
et al. (2010d). Clearly, the PDC estimator leads to excellent results for both subsets,
while the two classical approaches are in both cases highly influenced by the outliers.

AMELI-WP10-D10.3

20
CHAPTER 2. APPLICATIONS OF STATISTICAL SIMULATION USING

SIMFRAME

standard

Hill

PDC

25 30 35 40

●

●

●

●

●●●

●●●●●●

male

25 30 35 40

●

●

●

●

●

●

female

Figure 2.4: Simulation results for the simulation design with stratified sampling, conta-
mination and performing the simulations separately for each gender.

2.2.5 Using multiple contamination levels

To get a more complete picture of the behavior of robust methods, more than one le-
vel of contamination is typically investigated in simulation studies. The only necessary
modification of the code is to use a vector of contamination levels as the slot epsilon

of the contamination control object. In this example, the contamination level is varied
from 0% to 1% in steps of 0.25%. With bespoke R code, the user would have to add
another loop-like structure to the code and collect the results in a suitable data structure.
In simFrame, this is handled internally by the framework.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 100)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.0025, 0.005, 0.0075, 0.01), dots = list(mean = 5e+05,

+ sd = 10000))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ design = "gender", fun = sim, k = 125)

The simulation results are inspected as usual. Note that the aggregate() method in this
case returns values for each combination of contamination level and gender.

R> head(results)

Run Sample Epsilon gender standard Hill PDC

1 1 1 0.0000 male 26.58067 26.50425 26.35969

2 1 1 0.0000 female 27.43355 27.03526 28.16992

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2.2 Application of different simulation designs to EU-SILC 21

Epsilon

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male

0.000 0.002 0.004 0.006 0.008 0.010

female

standard
Hill
PDC

Figure 2.5: Simulation results for the simulation design with stratified sampling, mul-
tiple contamination levels and performing the simulations separately for each
gender.

3 2 1 0.0025 male 31.63593 29.23365 27.12430

4 2 1 0.0025 female 31.43540 27.77698 26.85896

5 3 1 0.0050 male 33.35950 31.07040 25.97415

6 3 1 0.0050 female 35.68710 34.03560 29.11359

R> aggregate(results)

Epsilon gender standard Hill PDC

1 0.0000 male 25.94937 26.00769 25.85311

2 0.0025 male 30.44448 27.70155 26.01033

3 0.0050 male 33.54929 29.13202 26.16786

4 0.0075 male 36.76641 31.32342 26.49026

5 0.0100 male 39.42281 33.67944 26.53749

6 0.0000 female 27.30171 27.49442 27.41323

7 0.0025 female 31.68505 29.13643 27.61790

8 0.0050 female 35.49976 30.92128 27.91607

9 0.0075 female 38.51819 33.08778 28.09784

10 0.0100 female 41.47137 35.32935 27.97407

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

If multiple contamination levels are used in a simulation study, the plot() method for the
simulation results no longer produces box plots. Instead, the average results are plotted
against the corresponding contamination levels, as shown in Figure 2.5. The plots show
how the classical estimators move away from the references line as the contamination level
increases, while the values obtained with the PDC estimator remain quite accurate.

AMELI-WP10-D10.3

22
CHAPTER 2. APPLICATIONS OF STATISTICAL SIMULATION USING

SIMFRAME

2.2.6 Inserting missing values

Survey data almost always contain a considerable amount of missing values. In close-
to-reality simulation studies, the variability due to missing data therefore needs to be
considered. Three types of missing data mechanisms are commonly distinguished in the
literature (e.g., Little and Rubin, 2002): missing completely at random (MCAR), mis-
sing at random (MAR) and missing not at random (MNAR). All three missing data
mechanisms are implemented in the framework.

In the following example, missing values are inserted into the equivalized household income
of non-contaminated households with MCAR, i.e., the households whose values are going
to be set to NA are selected using simple random sampling. In order to compare the scenario
without missing values to a scenario with missing values, the missing value rates 0%
and 5% are used. In the latter case, the missing values are simply disregarded for fitting
the Pareto distribution and estimating the Gini coefficient. Furthermore, the number
of samples is reduced to 50 and only the contamination levels 0%, 0.5% and 1% are
investigated to keep the computation time of this motivational example low.

With simFrame, only a control object for missing data needs to be defined and supplied
to runSimulation(), the rest is done automatically by the framework. To apply these
changes to a simulation study implemented with bespoke R code, yet another loop-like
structure for the different missing value rates as well as changes in the data structure for
the simulation results would be necessary.

R> set.seed(12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 50)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.005, 0.01), dots = list(mean = 5e+05, sd = 10000))

R> nc <- NAControl(target = "eqIncome", NArate = c(0, 0.05))

R> results <- runSimulation(eusilcP, sc, contControl = cc,

+ NAControl = nc, design = "gender", fun = sim, k = 125)

As always, the head(), aggregate() and plot() methods are used to take a look at the
simulation results. It should be noted that a column is added to the results that indicates
the missing value rate used and that aggregate() in this example returns a value for
each combination of contamination level, missing value rate and gender.

R> head(results)

Run Sample Epsilon NArate gender standard Hill PDC

1 1 1 0.000 0.00 male 26.58067 27.00998 26.26273

2 1 1 0.000 0.00 female 27.43355 27.92305 26.69034

3 2 1 0.000 0.05 male 26.62313 26.54198 26.01043

4 2 1 0.000 0.05 female 27.51209 26.83574 27.25464

5 3 1 0.005 0.00 male 33.71363 28.44824 26.46635

6 3 1 0.005 0.00 female 35.47508 28.48208 27.70783

R> aggregate(results)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2.2 Application of different simulation designs to EU-SILC 23

Epsilon

25

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male
NArate = 0

female
NArate = 0

male
NArate = 0.05

0.000 0.002 0.004 0.006 0.008 0.010

25

30

35

40

female
NArate = 0.05

standard
Hill
PDC

Figure 2.6: Simulation results for the simulation design with stratified sampling, multiple
contamination levels, multiple missing value rates and performing the simula-
tions separately for each gender.

Epsilon NArate gender standard Hill PDC

1 0.000 0.00 male 25.89948 25.99777 25.74944

2 0.005 0.00 male 33.52791 29.30477 26.14659

3 0.010 0.00 male 39.45422 32.74672 26.64929

4 0.000 0.05 male 25.88434 25.87824 25.80541

5 0.005 0.05 male 33.87975 29.60079 26.18759

6 0.010 0.05 male 39.99526 33.44462 26.31274

7 0.000 0.00 female 27.17769 27.30586 27.19275

8 0.005 0.00 female 35.46414 31.37099 27.98622

9 0.010 0.00 female 41.28625 35.22113 28.19677

10 0.000 0.05 female 27.16026 27.37710 27.20892

11 0.005 0.05 female 35.85305 31.56317 27.80455

12 0.010 0.05 female 41.86453 35.44025 27.98948

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

If multiple contamination levels and multiple missing value rates are used in the simulation
study, conditional plots are produced by the plot() method for the simulation results.
Figure 2.6 shows the resulting plots for this example. The bottom panels illustrate the

AMELI-WP10-D10.3

24
CHAPTER 2. APPLICATIONS OF STATISTICAL SIMULATION USING

SIMFRAME

scenario without missing values, while the scenario with 5% missing values is displayed
in the top panels. In this case, there is not much of a difference in the results for the two
scenarios.

2.2.7 Parallel computing

Statistical simulation is an embarrassingly parallel procedure, hence parallel computing
can drastically reduce the computational costs. In simFrame, parallel computing is imple-
mented using snow (Rossini et al., 2007; Tierney et al., 2008). Only minimal additional
programming effort due to the use of snow is required to adapt the code from the previous
example: to initialize the computer cluster, to ensure that all packages and objects are
available on each worker process, to use the function clusterRunSimulation() instead
of runSimulation() and to stop the computer cluster after the simulations. In addition,
random number streams (e.g., L’Ecuyer et al., 2002; Sevcikova and Rossini, 2009)
should be used instead of the built-in random number generator.

R> cl <- makeCluster(4, type = "SOCK")

R> clusterEvalQ(cl, {

+ library("simFrame")

+ library("laeken")

+ data("eusilcP")

+ })

R> clusterSetupRNG(cl, seed = 12345)

R> sc <- SampleControl(design = "region", grouping = "hid",

+ size = c(75, 250, 250, 125, 200, 225, 125, 150, 100),

+ k = 50)

R> cc <- DCARContControl(target = "eqIncome", epsilon = c(0,

+ 0.005, 0.01), dots = list(mean = 5e+05, sd = 10000))

R> nc <- NAControl(target = "eqIncome", NArate = c(0, 0.05))

R> clusterExport(cl, c("sc", "cc", "nc", "sim"))

R> results <- clusterRunSimulation(cl, eusilcP, sc, contControl = cc,

+ NAControl = nc, design = "gender", fun = sim, k = 125)

R> stopCluster(cl)

When the parallel computations are finished and the simulation results are obtained, they
can be inspected as usual.

R> head(results)

Run Sample Epsilon NArate gender standard Hill PDC

1 1 1 0.000 0.00 male 26.20067 27.02017 23.66565

2 1 1 0.000 0.00 female 28.79194 29.23548 27.12933

3 2 1 0.000 0.05 male 26.19328 24.91570 24.07906

4 2 1 0.000 0.05 female 28.86860 27.38585 27.80012

5 3 1 0.005 0.00 male 34.46084 31.74470 24.87023

6 3 1 0.005 0.00 female 36.27429 32.14269 28.06137

R> aggregate(results)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2.2 Application of different simulation designs to EU-SILC 25

Epsilon

30

35

40

0.000 0.002 0.004 0.006 0.008 0.010

male
NArate = 0

female
NArate = 0

male
NArate = 0.05

0.000 0.002 0.004 0.006 0.008 0.010

30

35

40

female
NArate = 0.05

standard
Hill
PDC

Figure 2.7: Simulation results obtained by parallel computing for the simulation design
with stratified sampling, multiple contamination levels, multiple missing value
rates and performing the simulations separately for each gender.

Epsilon NArate gender standard Hill PDC

1 0.000 0.00 male 25.89996 25.98977 25.86451

2 0.005 0.00 male 33.56743 29.36361 26.39515

3 0.010 0.00 male 39.40362 33.05926 26.68715

4 0.000 0.05 male 25.87909 25.86055 26.00109

5 0.005 0.05 male 33.94829 29.65456 26.32813

6 0.010 0.05 male 39.95535 33.24853 26.78947

7 0.000 0.00 female 27.38636 27.52210 27.48816

8 0.005 0.00 female 35.52688 31.30099 28.03385

9 0.010 0.00 female 41.35311 35.81549 28.67901

10 0.000 0.05 female 27.38459 27.51825 27.54063

11 0.005 0.05 female 35.87991 31.74678 28.18308

12 0.010 0.05 female 41.89804 36.21921 28.41367

R> tv <- simSapply(eusilcP, "gender", function(x) gini(x$eqIncome)$value)

R> plot(results, true = tv)

Figure 4.9 shows the simulation results obtained with parallel computing. The plots are,
of course, very similar to the plots for the previous example in Figure 2.6, since the design
of the simulation studies is the same.

AMELI-WP10-D10.3

26 Bibliography

2.3 Conclusions

In this paper, the use of the R package simFrame for different simulation designs has been
demonstrated in a practical application. The full functionality of the framework for design-
based simulation has been presented in various code examples. These examples showed
that the framework allows researchers to make use of a wide range of simulation designs
with only a few lines of code. In order to switch from one simulation design to another, only
control objects need to be defined or modified. Even moving from basic to highly complex
designs therefore requires only minimal changes to the code. With bespoke R code, such
modifications would often need a considerable amount of programming. Furthermore,
parallel computing with simFrame can easily be done based on package snow.

Besides the functionality for carrying out simulation studies, methods for several fre-
quently used generic functions are available for inspecting or summarizing the simulation
results. Most notably, a suitable plot method of the simulation results is selected auto-
matically depending on their structure.

Due to this flexibility, simFrame is widely applicable for gaining insight into the quality
of statistical methods and is a valuable addition to a researcher’s toolbox.

Bibliography

Alfons, A. (2011): simFrame: Simulation Framework. R package version 0.4.1.
URL http://CRAN.R-project.org/package=simFrame

Alfons, A., Holzer, J. and Templ, M. (2010a): laeken: Laeken Indicators for Mea-
suring Social Cohesion. R package version 0.1.3.
URL http://CRAN.R-project.org/package=laeken

Alfons, A. and Kraft, S. (2010): simPopulation: Simulation of Synthetic Populations
for Surveys based on Sample Data. R package version 0.2.
URL http://CRAN.R-project.org/package=simPopulation

Alfons, A., Kraft, S., Templ, M. and Filzmoser, P. (2010b): Simulation of
Synthetic Population Data for Household Surveys with Application to EU-SILC.
Research Report CS-2010-1, Department of Statistics and Probability Theory, Vienna
University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.

pdf

Alfons, A., Templ, M. and Filzmoser, P. (2010c): Contamination Models in the
R Package simFrame for Statistical Simulation. Aivazian, S., Filzmoser, P. and
Kharin, Y. (editors) Computer Data Analysis and Modeling: Complex Stochastic
Data and Systems, vol. 2, pp. 178–181, Minsk, ISBN 978-985-476-848-9.

Alfons, A., Templ, M. and Filzmoser, P. (2010d): An Object-Oriented Framework
for Statistical Simulation: The R Package simFrame. Journal of Statistical Software,
37 (3), pp. 1–36.
URL http://www.jstatsoft.org/v37/i03/

© http://ameli.surveystatistics.net/ - 2011

http://CRAN.R-project.org/package=simFrame
http://CRAN.R-project.org/package=laeken
http://CRAN.R-project.org/package=simPopulation
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://www.jstatsoft.org/v37/i03/
http://ameli.surveystatistics.net/

Bibliography 27

Alfons, A., Templ, M., Filzmoser, P. and Holzer, J. (2010e): A Comparison of
Robust Methods for Pareto Tail Modeling in the Case of Laeken Indicators. Borgelt,
C., González-Rodŕıguez, G., Trutschnig, W., Lubiano, M., Gil, M., Grzegor-
zewski, P. and Hryniewicz, O. (editors) Combining Soft Computing and Statistical
Methods in Data Analysis, Advances in Intelligent and Soft Computing, vol. 77, pp.
17–24, Heidelberg: Springer-Verlag, ISBN 978-3-642-14745-6.

Béguin, C. and Hulliger, B. (2008): The BACON-EEM Algorithm for Multivariate
Outlier Detection in Incomplete Survey Data. Survey Methodology, 34 (1), pp. 91–103.

EU-SILC (2004): Common Cross-Sectional EU Indicators based on EU-SILC; the Gen-
der Pay Gap. EU-SILC 131-rev/04, Working group on Statistics on Income and Living
Conditions (EU-SILC), Eurostat, Luxembourg.

Hill, B. (1975): A Simple General Approach to Inference about the Tail of a Distribution.
The Annals of Statistics, 3 (5), pp. 1163–1174.

Hulliger, B. and Schoch, T. (2009): Robust Multivariate Imputation with Survey Data.
57th Session of the International Statistical Institute, Durban.

Kleiber, C. and Kotz, S. (2003): Statistical Size Distributions in Economics and
Actuarial Sciences. Hoboken: John Wiley & Sons, ISBN 0-471-15064-9.

L’Ecuyer, P., Simard, R., Chen, E. and Kelton, W. (2002): An Object-Oriented
Random-Number Package with Many Long Streams and Substreams. Operations Re-
search, 50 (6), pp. 1073–1075.

Little, R. and Rubin, D. (2002): Statistical Analysis with Missing Data. New York:
John Wiley & Sons, 2nd ed., ISBN 0-471-18386-5.

R Development Core Team (2010): R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Rossini, A., Tierney, L. and Li, N. (2007): Simple Parallel Statistical Computing in
R. Journal of Computational and Graphical Statistics, 16 (2), pp. 399–420.

Sarkar, D. (2008): Lattice: Multivariate Data Visualization with R. New York:
Springer-Verlag, ISBN 978-0-387-75968-5.

Sarkar, D. (2010): lattice: Lattice Graphics. R package version 0.19-13.
URL http://CRAN.R-project.org/package=lattice

Sevcikova, H. and Rossini, T. (2009): rlecuyer: R Interface to RNG with Multiple
Streams. R package version 0.3-1.
URL http://CRAN.R-project.org/package=rlecuyer

Tierney, L., Rossini, A., Li, N. and Sevcikova, H. (2008): snow: Simple Network
of Workstations. R package version 0.3-3.
URL http://CRAN.R-project.org/package=snow

AMELI-WP10-D10.3

http://www.R-project.org
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=rlecuyer
http://CRAN.R-project.org/package=snow

28 Bibliography

Vandewalle, B., Beirlant, J., Christmann, A. and Hubert, M. (2007): A Robust
Estimator for the Tail Index of Pareto-Type Distributions. Computational Statistics &
Data Analysis, 51 (12), pp. 6252–6268.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Chapter 3

Simulation of EU-SILC Population
Data Using simPopulation

Abstract: This vignette demonstrates the use of simPopulation for simulating popula-
tion data in an application to the EU-SILC example data from the package. It presents
a wrapper function tailored specifically towards EU-SILC data for convenience and ease
of use, as well as detailed instructions for performing each of the four involved data gene-
ration steps separately. In addition, the generation of diagnostic plots for the simulated
population data is illustrated.

Keywords: R, synthetic data, simulation, survey statistics, EU-SILC

3.1 Introduction

This package vignette is a companion to Alfons et al. (2010) that shows how the proposed
framework for the simulation of population data can be applied in R (R Development
Core Team, 2010) using the package simPopulation (Alfons and Kraft, 2010). The
data simulation framework consists of four steps:

1. Setup of the household structure

2. Simulation of categorical variables

3. Simulation of (semi-)continuous variables

4. Splitting (semi-)continuous variables into components

Note that this vignette does not motivate, describe or evaluate the statistical methodology
of the framework. Instead it is focused on the R code to generate synthetic population
data and produce diagnostic plots. For details on the statistical methodology, the reader
is referred to Alfons et al. (2010).

The European Union Statistics on Income and Living Conditions (EU-SILC) is panel
survey conducted in European countries and serves as data basis for the estimation social
inclusion indicators in Europe. EU-SILC data are highly complex and contain detailed
information on the income of the sampled individuals and households. More information
on EU-SILC can be found in Eurostat (2004).

AMELI-WP10-D10.3

30
CHAPTER 3. SIMULATION OF EU-SILC POPULATION DATA USING

SIMPOPULATION

In Alfons et al. (2010), three methods for the simulation of the net income of the
individuals in the population are proposed and analyzed:

MP Multinomial logistic regression models with random draws from the resulting ca-
tegories. For the categories corresponding to the upper tail, the values are drawn
from a (truncated) generalized Pareto distribution, for the other categories from a
uniform distribution.

TR Two-step regression models with trimming and random draws from the residuals.

TN Two-step regression models with trimming and random draws from a normal distri-
bution.

The first two steps of the analysis, namely the simulation of the household structure and
additional categorical variables, are performed in exactly the same manner for the three
scenarios. While the simulation of the income components is carried out with the same
parameter settings, the results of course depend on the simulated net income.

It is important to note that the original Austrian EU-SILC sample provided by Statis-
tics Austria and used in Alfons et al. (2010) is confidential, hence the results presented
there cannot be reproduced in this vignette. Nevertheless, the code for such an analysis
is presented here using the example data from the package, which has been synthetically
generated itself. In fact, this example data set is a sample drawn from one of the popula-
tions generated in Alfons et al. (2010). However, the sample weights have been modified
such that the size of the resulting populations is about 1% of the real Austrian population
in order to keep the computation time low. Table 3.1 lists the variables of the example
data used in the code examples.

With the following commands, the package and the example data are loaded. Furthermore,
the numeric value stored in seed will be used as seed for the random number generator
in the examples to make the results reproducible.

R> library("simPopulation")

R> data("eusilcS")

R> seed <- 1234

The rest of this vignette is organized as follows. Section 3.2 illustrates the use of a conve-
nient wrapper function for the generation of EU-SILC population data. In Section 3.3,
detailed instructions are given for each step in the data generation process as well as for
the generation of diagnostic plots. The final Section 3.4 concludes.

3.2 Wrapper function for EU-SILC

A convenient way of generating synthetic EU-SILC population data is provided by the
wrapper function simEUSILC(), which performs the four steps of the data simulation
procedure at once. For each step, the names of the variables to be simulated can be
supplied. However, the default values for the respective arguments are given by the
variables names used in Alfons et al. (2010). Since the same names are used in the
example data, the complex procedures for the three different methods can be carried out
with very simple commands.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

3.3 Step by step instructions and diagnostics 31

Table 3.1: Variables of the EU-SILC example data in simPopulation.

Variable Name Type

Region db040 Categorical 9 levels
Household size hsize Categorical 9 levels
Age age Categorical
Gender rb090 Categorical 2 levels
Economic status pl030 Categorical 7 levels
Citizenship pb220a Categorical 3 levels
Personal net income netIncome Semi-continuous
Employee cash or near cash income py010n Semi-continuous
Cash benefits or losses from self-employment py050n Semi-continuous
Unemployment benefits py090n Semi-continuous
Old-age benefits py100n Semi-continuous
Survivor’s benefits py110n Semi-continuous
Sickness benefits py120n Semi-continuous
Disability benefits py130n Semi-continuous
Education-related allowances py140n Semi-continuous
Household sample weights db090 Continuous
Personal sample weights rb050 Continuous

R> eusilcMP <- simEUSILC(eusilcS, upper = 2e+05, equidist = FALSE,

+ seed = seed)

R> eusilcTR <- simEUSILC(eusilcS, method = "twostep", seed = seed)

R> eusilcTN <- simEUSILC(eusilcS, method = "twostep", residuals = FALSE,

+ seed = seed)

Note that the default is to use the MP procedure. An upper bound for the net income
is supplied using the argument upper, while the argument equidist is set to FALSE

so that the breakpoints for the discretization of the net income are given by quantiles
with non-equidistant probabilities as described in Alfons et al. (2010). The twostep
regression approaches are performed by setting method = ’twostep’, in which case the
logical argument residuals specifies whether variability should be added by random
draws from the residuals (TR method, the default) or from a normal distribution (TN
method). In both cases, the default trimming parameter alpha = 0.01 is used.

The synthetic populations generated with the wrapper function are not further evaluated
here, instead a detailed illustration of each step along with diagnostic plots is provided in
the following section.

3.3 Step by step instructions and diagnostics

As for the wrapper function simEUSILC(), the variable names of the example data set are
used as default values for the corresponding arguments of the functions for the different
steps of the procedure. Nevertheless, in order to demonstrate how these arguments are

AMELI-WP10-D10.3

32
CHAPTER 3. SIMULATION OF EU-SILC POPULATION DATA USING

SIMPOPULATION

used, the names of the involved variables are always supplied in the commands shown in
this section.

The first step of the analysis is to set up the basic household structure using the function
simStructure(). Note that a variable named ’hsize’ giving the household sizes is
generated automatically in this example, but the name of the corresponding variable
in the sample data can also be specified as an argument. Furthermore, the argument
additional specifies the variables that define the household structure in addition to the
household size (in this case age and gender).

R> eusilcP <- simStructure(eusilcS, hid = "db030", w = "db090",

+ strata = "db040", additional = c("age", "rb090"))

For the rest of the procedure, combined age categories are used for the individuals in order
to reduce the computation time of the statistical models.

R> breaks <- c(min(eusilcS$age), seq(15, 80, 5), max(eusilcS$age))

R> eusilcS$ageCat <- as.character(cut(eusilcS$age, breaks = breaks,

+ include.lowest = TRUE))

R> eusilcP$ageCat <- as.character(cut(eusilcP$age, breaks = breaks,

+ include.lowest = TRUE))

Additional categorical variables are then simulated using the function simCategorical().
The argument basic thereby specifies the already generated variables for the basic house-
hold structure (age category, gender and household size), while additional specifies the
variables to be simulated in this step (economic status and citizenship).

R> basic <- c("ageCat", "rb090", "hsize")

R> eusilcP <- simCategorical(eusilcS, eusilcP, w = "rb050", strata = "db040",

+ basic = basic, additional = c("pl030", "pb220a"))

Mosaic plots are available as graphical diagnostic tools for checking whether the structures
of categorical variables are reflected in the synthetic population. They are implemented
in the function spMosaic() based on the package vcd (Meyer et al., 2006, 2010), which
contains extensive functionality for customization.

With the following commands, mosaic plots for the variables gender, region and household
size are created (see Figure 3.1, top). The function labeling_border() from package vcd
is thereby used to set shorter labels for the different regions and to display more meaningful
labels for the variables.

R> abb <- c("B", "LA", "Vi", "C", "St", "UA", "Sa", "T", "Vo")

R> nam <- c(rb090 = "Gender", db040 = "Region", hsize = "Household size")

R> lab <- labeling_border(set_labels = list(db040 = abb),

+ set_varnames = nam)

R> spMosaic(c("rb090", "db040", "hsize"), "rb050", eusilcS,

+ eusilcP, labeling = lab)

In addition, mosaic plots for the variables gender, economic status and citizenship are
produced (see Figure 3.1, bottom). Also in this case, labeling_border() is used for
some fine tuning. In particular, the categories of citizenship are abbreviated and again
more meaningful labels for the variables are set.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

3.3 Step by step instructions and diagnostics 33

Data = Sample

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Population

●

●
● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ●

●
●

Region

G
en

de
r

H
ou

se
ho

ld
 s

iz
e

fe
m

al
e

98
76

5
4

3
2

1

m
al

e

B LA Vi C St UA Sa T Vo

98
76

5
4

3
2

1

Data = Sample

●

Economic status

G
en

de
r

C
iti

ze
ns

hi
p

fe
m

al
e

O
E

A

m
al

e

1 2 3 4 5 67

O
E

A
Data = Population

Economic status
G

en
de

r

C
iti

ze
ns

hi
p

fe
m

al
e

O
E

A

m
al

e
1 2 3 4 5 67

O
E

A

Figure 3.1: Top: Mosaic plots of gender, region and household size. Bottom: Mosaic plots
of gender, economic status and citizenship.

R> nam <- c(rb090 = "Gender", pl030 = "Economic status",

+ pb220a = "Citizenship")

R> lab <- labeling_border(abbreviate = c(FALSE, FALSE, TRUE),

+ set_varnames = nam)

R> spMosaic(c("rb090", "pl030", "pb220a"), "rb050", eusilcS,

+ eusilcP, labeling = lab)

Next, the function simContinuous() is used to simulate the net income according to
the three proposed methods. The same parameter settings as in Section 3.2 are thereby
used for each of the methods. In any case, the argument basic specifies the predictor
variables (age category, gender, household size, economic status and citizenship), while
the argument additional specifies the variable to be simulated.

Note that the current state of the random number generator is stored beforehand so that
the different methods can all be started with the same seed. Furthermore, the random
seed after each of the methods has finished is stored so that the simulation of the income
components can later on continue from there.

AMELI-WP10-D10.3

34
CHAPTER 3. SIMULATION OF EU-SILC POPULATION DATA USING

SIMPOPULATION

R> seedP <- .Random.seed

R> basic <- c(basic, "pl030", "pb220a")

R> eusilcMP <- simContinuous(eusilcS, eusilcP, w = "rb050",

+ strata = "db040", basic = basic, additional = "netIncome",

+ upper = 2e+05, equidist = FALSE, seed = seedP)

R> seedMP <- .Random.seed

R> eusilcTR <- simContinuous(eusilcS, eusilcP, w = "rb050",

+ strata = "db040", basic = basic, additional = "netIncome",

+ method = "lm", seed = seedP)

R> seedTR <- .Random.seed

R> eusilcTN <- simContinuous(eusilcS, eusilcP, w = "rb050",

+ strata = "db040", basic = basic, additional = "netIncome",

+ method = "lm", residuals = FALSE, seed = seedP)

R> seedTN <- .Random.seed

Two functions are available as diagnostic tools for (semi-)continuous variables: spCdf-

plot() for comparing the cumlative distribution functions, and spBwplot() for compa-
risons with box-and-whisker plots. Both are implemented based on the package lattice

(Sarkar, 2008, 2010).

The following commands are used to produce the two plots in Figure 3.2. For better visi-
bility of the differences in the main parts of the cumulative distribution functions, only the
parts between 0 and the weighted 99% quantile of the sample are plotted (see Figure 3.2,
left). Furthermore, the box-and-whisker plots by default do not display any points outside
the extremes of the whiskers (see Figure 3.2, right). This is because population data are
typically very large, which almost always would result in a large number of observations
ouside the whiskers. Also note that a list containing the three populations is supplied as
the argument dataP of the plot functions.

R> subset <- which(eusilcS[, "netIncome"] > 0)

R> q <- quantileWt(eusilcS[subset, "netIncome"], eusilcS[subset,

+ "rb050"], probs = 0.99)

R> listP <- list(MP = eusilcMP, TR = eusilcTR, TN = eusilcTN)

R> spCdfplot("netIncome", "rb050", dataS = eusilcS, dataP = listP,

+ xlim = c(0, q))

R> spBwplot("netIncome", "rb050", dataS = eusilcS, dataP = listP,

+ pch = "|")

One of the main requirements in the simulation of population data is that heterogeneities
between subgroups are reflected (see Alfons et al., 2010). Since spCdfplot() and spBw-

plot() are based on lattice, this can easily be checked by producing conditional plots.
With the following commands, the box-and-whisker plots in Figure 3.3 are produced. The
conditioning variables gender (top left), citizenship (top right), region (bottom left) and
economic status (bottom right) are thereby used. For finetuning, the layout of the panels
is specified with the layout argument provided by the lattice framework.

R> spBwplot("netIncome", "rb050", "rb090", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 2))

R> spBwplot("netIncome", "rb050", "pb220a", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 3))

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

3.3 Step by step instructions and diagnostics 35

Sample

MP

TR

TN

0 10000 20000 30000 40000

Figure 3.2: Left : Cumulative distribution functions of personal net income. For better
visibility, the plot shows only the main parts of the data. Right: Box plots
of personal net income. Points outside the extremes of the whiskers are not
plotted.

R> spBwplot("netIncome", "rb050", "db040", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 9))

R> spBwplot("netIncome", "rb050", "pl030", dataS = eusilcS,

+ dataP = listP, pch = "|", layout = c(1, 7))

The last step of the analysis is to simulate the income components. This is done ba-
sed on resampling of fractions conditional on net income category and economic status.
Therefore, the net income categories need to be constructed first. With the function
getBreaks(), default breakpoints based on quantiles are computed. In this example, the
argument upper is set to Inf to avoid problems with different maximum values in the
three synthetic populations, and the argument equidist is set to FALSE such that non-
equidistant probabilities as described in Alfons et al. (2010) are used for the calculation
of the quantiles.

R> breaks <- getBreaks(eusilcS$netIncome, eusilcS$rb050,

+ upper = Inf, equidist = FALSE)

R> eusilcS$netIncomeCat <- getCat(eusilcS$netIncome, breaks)

R> eusilcMP$netIncomeCat <- getCat(eusilcMP$netIncome, breaks)

R> eusilcTR$netIncomeCat <- getCat(eusilcTR$netIncome, breaks)

R> eusilcTN$netIncomeCat <- getCat(eusilcTN$netIncome, breaks)

Once the net income categories are constructed, the income components are simulated
using the function simComponents(). The arguments total, components and condi-

tional thereby specify the variable to be split, the variables containing the components,
and the conditioning variables, respectively. In addition, for each of the three popula-
tions the seed of the random number generator is set to the corresponding state after the
simulation of the net income.

R> components <- c("py010n", "py050n", "py090n", "py100n",

+ "py110n", "py120n", "py130n", "py140n")

AMELI-WP10-D10.3

36
CHAPTER 3. SIMULATION OF EU-SILC POPULATION DATA USING

SIMPOPULATION

Sample

MP

TR

TN

0 10000 20000 30000 40000 50000

male

Sample

MP

TR

TN

female

Sample
MP
TR
TN

0 10000 20000 30000 40000

AT
Sample

MP
TR
TN

EU
Sample

MP
TR
TN

Other

Sample
MP
TR
TN

0 10000 20000 30000 40000 50000

Burgenland
Sample

MP
TR
TN

Carinthia
Sample

MP
TR
TN

Lower Austria
Sample

MP
TR
TN

Salzburg
Sample

MP
TR
TN

Styria
Sample

MP
TR
TN

Tyrol
Sample

MP
TR
TN

Upper Austria
Sample

MP
TR
TN

Vienna
Sample

MP
TR
TN

Vorarlberg

Sample

MP

TR

TN

0 10000 20000 30000 40000 50000

1

Sample

MP

TR

TN

2

Sample

MP

TR

TN

3

Sample

MP

TR

TN

4

Sample

MP

TR

TN

5

Sample

MP

TR

TN

6

Sample

MP

TR

TN

7

Figure 3.3: Box plots of personal net income split by gender (top left), citizenship (top
right), region (bottom left) and economic status (bottom right). Points outside
the extremes of the whiskers are not plotted.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

3.3 Step by step instructions and diagnostics 37

Sample

MP

TR

TN

−10000 0 10000 20000 30000 40000 50000

py010n py050n

Sample

MP

TR

TN

py090n py100n

Sample

MP

TR

TN

py110n py120n

Sample

MP

TR

TN

py130n

−10000 0 10000 20000 30000 40000 50000

py140n

Figure 3.4: Box plots of the income components. Points outside the extremes of the
whiskers are not plotted.

R> eusilcMP <- simComponents(eusilcS, eusilcMP, w = "rb050",

+ total = "netIncome", components = components,

+ conditional = c("netIncomeCat", "pl030"), seed = seedMP)

R> eusilcTR <- simComponents(eusilcS, eusilcTR, w = "rb050",

+ total = "netIncome", components = components,

+ conditional = c("netIncomeCat", "pl030"), seed = seedTR)

R> eusilcTN <- simComponents(eusilcS, eusilcTN, w = "rb050",

+ total = "netIncome", components = components,

+ conditional = c("netIncomeCat", "pl030"), seed = seedTN)

Finally, diagnostic box-and-whisker plots of the income components are produced with
the function spBwplot(). Since the box widths correspond to the ratio of non-zero obser-
vations to the total number of observed values and most of the components contain large
proportions of zeros, a minimum box width is specified using the argument minRatio.
Figure 3.4 contains the resulting plots.

R> listP <- list(MP = eusilcMP, TR = eusilcTR, TN = eusilcTN)

R> spBwplot(components, "rb050", dataS = eusilcS, dataP = listP,

+ pch = "|", minRatio = 0.2, layout = c(2, 4))

AMELI-WP10-D10.3

38 Bibliography

3.4 Conclusions

In this vignette, the use of simPopulation for simulating population data has been de-
monstrated in an application to the EU-SILC example data from the package. Both the
simulation of synthetic population data and the generation of diagnostic plots have been
illustrated in a similar analysis as in Alfons et al. (2010).

The code examples show that the functions are easy to use and that the arguments have
sensible default values. Nevertheless, the behavior of the functions is highly customizable.
In particular the functions for the diagnostic plots benefit from the implementations based
on the packages vcd and lattice.

Bibliography

Alfons, A. and Kraft, S. (2010): simPopulation: Simulation of Synthetic Populations
for Surveys based on Sample Data. R package version 0.2.1.
URL http://CRAN.R-project.org/package=simPopulation

Alfons, A., Kraft, S., Templ, M. and Filzmoser, P. (2010): Simulation of Synthetic
Population Data for Household Surveys with Application to EU-SILC. Research Report
CS-2010-1, Department of Statistics and Probability Theory, Vienna University of
Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.

pdf

Eurostat (2004): Description of Target Variables: Cross-sectional and Longitudinal.
EU-SILC 065/04, Eurostat, Luxembourg.

Meyer, D., Zeileis, A. and Hornik, K. (2006): The strucplot Framework: Visua-
lizing Multi-way Contingency Tables with vcd. Journal of Statistical Software, 17 (3),
pp. 1–48.

Meyer, D., Zeileis, A. and Hornik, K. (2010): vcd: Visualizing Categorical Data. R
package version 1.2-9.
URL http://CRAN.R-project.org/package=vcd

R Development Core Team (2010): R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Sarkar, D. (2008): Lattice: Multivariate Data Visualization with R. New York: Springer,
ISBN 978-0-387-75968-5.

Sarkar, D. (2010): lattice: Lattice Graphics. R package version 0.19-13.
URL http://CRAN.R-project.org/package=lattice

© http://ameli.surveystatistics.net/ - 2011

http://CRAN.R-project.org/package=simPopulation
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2010-1complete.pdf
http://CRAN.R-project.org/package=vcd
http://www.R-project.org
http://CRAN.R-project.org/package=lattice
http://ameli.surveystatistics.net/

Chapter 4

An application of VIM to EU-SILC
data

Abstract: Package VIM allows to explore and to analyze the structure of missing values
in data, as well as to produce high-quality graphics for publications. This paper illustrates
an application of VIM to a highly complex data set – the European Statistics on Income
and Living Conditions (EU-SILC).

Keywords: Missing Values Exploration, Visualization, R

4.1 The graphical user interface of VIM

The graphical user interface (GUI) has been developed using the R package tcltk (R
Development Core Team, 2009) and allows easy handling of the functions included
in package VIM. Figure 4.1 shows the GUI, which pops up automatically after loading the
package.

> library(VIM)

If the GUI has been closed, it can be reopened with the following command. All selections
and settings from the last session are thereby recovered.

> vmGUImenu()

For visualization, the most important menus are the Data, the Visualization and the
Options menus.

4.1.1 Handling data

The Data menu allows to select a data frame from the R workspace (see Figure 4.2). In
addition, a data set in .RData format can be imported from the file system into the R
workspace, which is then loaded into the GUI directly.

AMELI-WP10-D10.3

40 CHAPTER 4. AN APPLICATION OF VIM TO EU-SILC DATA

Figure 4.1: The VIM GUI and the Data menu.

Figure 4.2: The dialog for data selection.

Transformations of variables are available via Data→ Transform Variables. The trans-
formed variables are thereby appended to the data set in use. Commonly used transforma-
tions in official statistics are available, e.g., the Box-Cox transformation (Box and Cox,
1964) and the log-transformation as an important special case of the Box-Cox transforma-
tion. In addition, several other transformations that are frequently used for compositional
data (Aitchison, 1986) are implemented. Background maps and coordinates for spatial
data can be selected in the Data menu as well.

Functionality to scale variables, on the other hand, is offered in the upper right frame of
the GUI. Note that scaling is performed on-the-fly, i.e., the scaled variables are simply
passed to the underlying plot functions, they are not permanently stored.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4.2 An application to EU-SILC data 41

Figure 4.3: Variable selection with the VIM GUI.

4.1.2 Selecting variables

After a data set has been chosen, variables can be selected in the main dialog (see Fi-
gure 4.3). An important feature is that the variables will be used in the same order as
they were selected, which is especially useful for parallel coordinate plots.

Variables for highlighting are distinguished from the plot variables and can be selected
separately (see the lower left frame in Figure 4.3). If more than one variable chosen for
highlighting, it is possible to select whether observations with missing values in any or in
all of these variables should be highlighted (see in the lower right frame in Figure 4.3).

4.1.3 Selecting plots

A plot method can be selected from the Visualization menu. Note that plots that are
not applicable with the selected variables are disabled, e.g., if only one plot variable is
selected, multivariate plots are not available.

4.2 An application to EU-SILC data

In this section, some of the visualization tools are illustrated on the public use sample of
the Austrian EU-SILC data from 2004 (Statistics Austria, 2007), which can be obtai-
ned from Statistics Austria (see Table 4.1 for an explanation of the variables used here).
This well-known and complex data set is mainly used for measuring risk-of-poverty and
social cohesion in Europe, and for monitoring the Lisbon 2010 strategy of the European
Union. The raw data set contains a high amount of missing values, which are imputed
with model-based and donor-based imputation methods before public release (Statistics
Austria, 2006). Since a high amount of missing values are not MCAR, the variables to

AMELI-WP10-D10.3

42 CHAPTER 4. AN APPLICATION OF VIM TO EU-SILC DATA

Table 4.1: Explanation of the used variables from the EU-SILC data set.

name meaning
age Age
R007000 Occupation
P033000 Years of employment
py010n Employee cash or near cash income
py035n Contributions to individual private pension plans
py050n Cash benefits or losses from self-employment
py070n Values of goods produced by own-consumption
py080n Pension from individual private plans
py090n Unemployment benefits
py100n Old-age benefits
py110n Survivors’ benefits
py120n Sickness benefits
py130n Disability benefits
py140n Education-related allowances

be included for imputation need to be selected carefully. This problem can be solved with
our proposed visualization tools.

> incvars <- c(paste("py", c("010", "035", "050", "070", "080",

+ "090", "100", "110", "120", "130", "140"), "n", sep=""))

> eusilcNA[, incvars] <- log10(eusilcNA[, incvars] + 1)

First of all, it may be of interest how many missing values are contained in each variable.
Even more interesting, missing values may frequently occur in certain combinations of
variables. This can easily investigated by selecting variables of interest (see Figure 4.3)
and by clicking on Visualization → Aggregate Missings. If one prefers the command
line language of R, the the plot in Figure 4.4 can be created by invoking:

> aggr(eusilcNA[, incvars], numbers=TRUE, prop = c(TRUE, FALSE))

Here eusilcNA denotes the data frame in use (see also Figure 4.2). The barplot on the
left hand side shows the proportion of missing values in each of the selected variables. On
the right hand side, all existing combinations of missing and non-missing values in the
observations are visualized. A red rectangle indicates missingness in the corresponding
variable, a blue rectangle represents available data. In addition, the frequencies of the
different combinations are represented by a small bar plot and by numbers. Variables
may be sorted by the number of missing values and combinations by the frequency of
occurrence to give more power to finding the structure of missing values. For example, the
top row in Figure 4.4 (right) represents the combination with missing values in variables
py010n (employee cash or near cash income), py035n (contributions to individual private
pension plans) and py090n (unemployment benefits), and observed values in the remaining
variables, which appears only once in the data.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4.2 An application to EU-SILC data 43

P
ro

po
rt

io
n

of
 m

is
si

ng
s

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

py
01

0n

py
03

5n

py
05

0n

py
07

0n

py
08

0n

py
09

0n

py
10

0n

py
11

0n

py
12

0n

py
13

0n

py
14

0n

C
om

bi
na

tio
ns

py
01

0n

py
03

5n

py
05

0n

py
07

0n

py
08

0n

py
09

0n

py
10

0n

py
11

0n

py
12

0n

py
13

0n

py
14

0n

3827
425
119
53
48
32
23
13
11
11
9
8
6
5
4
4
3
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1

Figure 4.4: Aggregation plot of the income components in the public use sample of the
Austrian EU-SILC data from 2004. Left : barplot of the proportions of missing
values in each of the income components. Right : all existing combinations of
missing (red) and non-missing (blue) values in the observations. The frequen-
cies of the combinations are visualized by small horizontal bars.

The plot reveals an exceptionally high number of missing values in variable py010n. The
combination with variable py035n still contains 32 missing values. Note that it is possible
to display proportions of missing values and combinations rather than absolute numbers.

4.2.1 Univariate plots

When only one variable is selected, only plots emphasized in Figure 4.5 can be applied.
Standard univariate plots, such as barplots and spine plots for categorical variables and
histograms, spinograms and different types of boxplots for continuous variables, have been
adapted to display information about missing values.

For example, it may be of interest to display the distribution of years of employment,
with missing values in py010n (employee cash or near cash income) highlighted. A spino-
gram (Hofmann and Theus, 2005) can easily be generated by clicking Visualization

→ Spinogram with Missings. Alternatively, the output shown in Figure 4.6 can be
produced with the following command:

> spineMiss(eusilcNA[, c("P033000", "py010n")])

Figure 4.6 indicates that the probability of missingness in py010n depends on the years
of employment.

AMELI-WP10-D10.3

44 CHAPTER 4. AN APPLICATION OF VIM TO EU-SILC DATA

Figure 4.5: Univariate Plots supported by the VIM GUI.

4.2.2 Bivariate plots

For bivariate data, different kinds of scatterplots are implemented. Figure 4.7 lists the
plots applicable when two variables are selected. Multivariate plots are also highlighted
because they can be used in the bivariate case, too.

Figure 4.8 shows a scatterplot with information about the univariate distributions and
missingness of the variables in the plot margins (Visualization → Marginplot). The
boxplots in red indicate observations with missing values in the other variable. It is clearly
visible that the amount of missingness in py010n (employee cash or near cash income) is
less for older people. Note that semi-transparent colors are used to prevent overplotting.
The figure can also be produced with the command line interface of R, using the following
command:

> marginplot(eusilcNA[, c("age", "py010n")], alpha = 0.6)

4.2.3 Multivariate plots

Parallel coordinate plots (Wegman, 1990) are very powerful for displaying multivariate
relationships in data. A natural way of displaying information about missing data is to
highlight observations according to missingness in a certain variable or a combination of
variables. However, plotting variables with missing values results in disconnected lines,
making it impossible to trace the respective observations across the graph. As a remedy,
missing values may be represented by a point above the corresponding coordinate axis,
which is separated from the main plot by a small gap and a horizontal line (see Figure 4.9).
Connected lines can then be drawn for all observations.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4.2 An application to EU-SILC data 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P033000

m
is

si
ng

/o
bs

er
ve

d
in

 p
y0

10
n

0 5 10 15 20 25 35

m
is

si
ng

Figure 4.6: Spinogram of P033000 (years of employment) with color coding for missing
(red) and available (blue) data in py010n (employee cash or near cash income).

Such parallel coordinate plots can be genereated by clicking Visualization → Parallel

Coordinate Plot with Missings in the GUI or by using the function parcoordMiss()

on the command line. The example in Figure 4.9 can be produced with:

> parcoordMiss(eusilcNA[, c("age", "P033000", "py010n", "py035n",

+ "py050n")], plotvars = 1:4, highlight = 5, alpha = 0.2)

A data frame containing all variables of interest needs to supplied as the first argument,
the variables to be plotted are given by argument plotvars, and the variables to be used
for highlighting are specified by argument highlight.

Due to the large number of lines, a very low alpha value (i.e., very high transparancy)
is used in Figure 4.9 to prevent overplotting. Missing values in py050n occur mainly
for middle-aged people. Moreover, observations with missing values in py050n behave in
an entire different way for the variables py010n (employee cash or near cash income) and
py035n (contributions to individual private pension plans) than the main part of the data.

The matrix plot is an even more powerful multivariate plot. It visualizes all cells of the
data matrix by (small) rectangles. In the example in Figure 4.10, red rectangles are

AMELI-WP10-D10.3

46 CHAPTER 4. AN APPLICATION OF VIM TO EU-SILC DATA

Figure 4.7: Bivariate plots (as well as multivariate plots) available in the VIM GUI.

drawn for missing values, and a greyscale is used for the available data. To determine the
grey level, the variables are first scaled to the interval [0, 1]. Small values are assigned a
light grey and high values a dark grey (0 corresponds to white, 1 to black). In addition,
the observations can be sorted by the magnitude of a selected variable, which can also
be done interactively by clicking in the corresponding column of the plot. Using the
GUI, a matrix plot can be produced by clicking Visualization → Matrix Plot. The
example in Figure 4.10 can also be created on the command line by invoking the following
command:

> matrixplot(eusilcNA[, c("age", "R007000", incvars)],

+ sortby = "R007000")

Figure 4.10 shows a matrix plot of age, R007000 (occupation) and the transformed income
components, sorted by variable R007000 (occupation). It is clearly visible that missing
values in most income components depend on the occupation of the corresponding person.
Thus the missing data mechanism was found to be MAR for these variables, which should
be considered when applying imputation methods.

4.2.4 Other plots

Various other plots are availabe in the package and can also be created with the GUI
(see Figures 4.5 and 4.7). For spatial data, mapping is supported if a background map is
provided by the user, e.g., as a shape file, data frame or list of coordinates.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4.3 Fine tuning 47

●●

494

00

20 30 40 50 60 70 80

0
1

2
3

4
5

age

py
01

0n

Figure 4.8: Scatterplot of age and transformed py010n (employee cash or near cash in-
come) with information about missing values in the plot margins.

4.3 Fine tuning

In the Preferences dialog from the Options menu (click Options→ Preferences), which
is displayed in Figure 4.11, the colors and alpha channel to be used in the plots can be
set. In addition, it contains an option to embed multivariate plots in Tcl/Tk windows.
This is useful if the number of observations and/or variables is large, because scrollbars
allow to move from one part of the plot to another.

4.4 Interactive features

Many interactive features are implemented in the plot functions in order to allow easy
modification of the plots.

When variables are selected for highlighting in univariate plots such as histograms, bar-
plots, spine plots or spinograms, it is possible to switch between the variables. Clicking in
the right plot margin of a histogram, for example, corresponds with creating a histogram

AMELI-WP10-D10.3

48 CHAPTER 4. AN APPLICATION OF VIM TO EU-SILC DATA

ag
e

P
03

30
00

py
01

0n

py
03

5n

Figure 4.9: Parallel coordinate plot of age, P033000 (years of employment), transformed
py010n (employee cash or near cash income) and transformed py035n (contri-
butions to individual private pension plans), with color coding for missing
(red) and available (blue) data in variable py050n (cash benefits or losses
from self-employment).

(or barplot) for the next variable, and clicking in the left margin switches to the previous
variable. This interactive feature is particularly usedful for parallel boxplots, as it allows
to view all possible p(p− 1) combinations with p− 1 clicks, where p denotes the number
of variables.

For multivariate plots (scatterplot matrix and parallel coordinate plot), variables for high-
lighting can be selected and deselected interactively, by clicking in a diagonal panel of the
scatterplot matrix or on a coordinate axis in the parallel coordinate plot. Information
about the current selection is printed on the R-console.

The matrixplot is particulary powerful if the observations are sorted by a specific variable
(see Figure 4.10). This can be done by clicking on the corresponding column.

4.5 Summary

We showed that the visualization of missing values is extremely simple with package VIM,
either by using the GUI or by typing code on the R command line. With the visualization
techniques in VIM, it is possible to gain insight into the data and to understand the
structure of missing values. The latter is absolutely necessary when dealing with missing
values, e.g., before imputation is performed.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Bibliography 49

ag
e

R
00

70
00

py
01

0n

py
03

5n

py
05

0n

py
07

0n

py
08

0n

py
09

0n

py
10

0n

py
11

0n

py
12

0n

py
13

0n

py
14

0n

0
10

00
20

00
30

00
40

00

In
de

x

Figure 4.10: Matrixplot of age, R007000 (occupation) and the transformed income com-
ponents, sorted by variable R007000 (occupation).

Bibliography

Aitchison, J. (1986): The Statistical Analysis of Compositional Data. Wiley, New York.

Box, G. and Cox, D. (1964): An Analysis of Transformations. Journal of the Royal
Statistical Society, Series B, 26, pp. 211–252.

Hofmann, H. and Theus, M. (2005): Interactive graphics for visualizing conditional
distributions, unpublished manuscript.

R Development Core Team (2009): R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Statistics Austria (2006): Einkommen, Armut und Lebensbedingungen 2004, Ergeb-
nisse aus EU-SILC 2004. In German. ISBN 3-902479-59-0.

AMELI-WP10-D10.3

http://www.R-project.org

50 Bibliography

Figure 4.11: The Preferences dialog of the VIM GUI.

Statistics Austria (2007): EU-SILC 2004. Erläuterungen: Mikrodaten-Subsample für
externe Nutzer. In German.

Wegman, E. (1990): Hyperdimensional data analysis using parallel coordinates. Journal
of the American Statistical Association, 85 (411), pp. 664–675.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Chapter 5

Standard Methods for Social
Exclusion Indicators in package
laeken

Abstract This vignette demonstrates the use of the R package laeken for standard
point estimation of indicators on social exclusion and poverty according to the definitions
by Eurostat. The package contains synthetically generated data for the European Union
Statistics on Income and Living Conditions (EU-SILC), which is used in the code examples
throughout the paper. Furthermore, the basic object-oriented design of the package is
discussed. Even though the paper is focused on showing the functionality of package
laeken, it also provides a brief mathematical description of the implemented indicators.

Keywords: Social inclusion indicators, software, R

5.1 Introduction

The European Union Statistics on Income and Living Conditions (EU-SILC) is a panel
survey conducted in EU member states and other European countries, and serves as basis
for measuring risk-of-poverty and social cohesion in Europe. A short overview of the 11
most important indicators on social exclusion and poverty according to Eurostat (2004)
is given in the following.

Primary indicators

1. At-risk-of-poverty rate (after social transfers)

2. At-risk-of-poverty rate by age and gender

3. At-risk-of-poverty rate by most frequent activity status and gender

4. At-risk-of-poverty rate by household type

5. At-risk-of-poverty rate by accommodation tenure status

6. At-risk-of-poverty rate by work intensity of the household

AMELI-WP10-D10.3

52
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

7. At-risk-of-poverty threshold (illustrative values)

8. Inequality of income distribution: S80/S20 income quintile share ratio

9. At-persistent-risk-of-poverty rate by age and gender (60% median)

10. Relative median at-risk-of-poverty gap, by age and gender

Secondary indicators

11. Dispersion around the at-risk-of-poverty threshold

12. At-risk-of-poverty rate anchored at a moment in time

13. At-risk-of-poverty rate before social transfers by age and gender

14. Inequality of income distribution: Gini coefficient

15. At-persistent-risk-of-poverty rate, by age and gender (50% median)

Other indicators

16. Mean equivalized disposable income

17. The gender pay gap

Note that especially the Gini coefficient is very well studied due to its importance in
many fields of research.

The add-on package laeken (Alfons et al., 2011a) aims is to bring functionality for the
estimation of indicators on social exclusion and poverty to the statistical environment
R (R Development Core Team, 2011). In the examples in this vignette, standard
estimates for the most important indicators are computed according to the Eurostat defi-
nitions (Eurostat, 2004, 2009). More sophisticated methods that are less influenced by
outliers are described in vignette laeken-pareto (Alfons et al., 2011c), while the ba-
sic framework for variance estimation is discussed in vignette laeken-variance (Templ
and Alfons, 2011). Those documents can be viewed from within R with the following
commands:

R> vignette("laeken-pareto")

R> vignette("laeken-variance")

The example data set of package laeken, which is called eusilc and consists of 14 827
observations from 6 000 households, is used throughout the paper. It was synthetically
generated from Austrian EU-SILC survey data from 2006 using the data simulation
methodology proposed by Alfons et al. (2011b) and implemented in the R package
simPopulation (Alfons and Kraft, 2010). The first three observations of the synthe-
tic data set eusilc are printed below.

R> library("laeken")

R> data("eusilc")

R> head(eusilc, 3)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.2 Basic design of the package 53

db030 hsize db040 rb030 age rb090 pl030 pb220a py010n py050n py090n py100n

1 1 3 Tyrol 101 34 female 2 AT 9756.25 0 0 0

2 1 3 Tyrol 102 39 male 1 Other 12471.60 0 0 0

3 1 3 Tyrol 103 2 male <NA> <NA> NA NA NA NA

py110n py120n py130n py140n hy040n hy050n hy070n hy080n hy090n hy110n hy130n

1 0 0 0 0 4273.9 2428.11 0 0 33.39 0 0

2 0 0 0 0 4273.9 2428.11 0 0 33.39 0 0

3 NA NA NA NA 4273.9 2428.11 0 0 33.39 0 0

hy145n eqSS eqIncome db090 rb050

1 0 1.8 16090.69 504.5696 504.5696

2 0 1.8 16090.69 504.5696 504.5696

3 0 1.8 16090.69 504.5696 504.5696

Only a few of the large number of variables in the original survey are included in the
example data set. The variable names are rather cryptic codes, but these are the stan-
dardized names used by the statistical agencies. Furthermore, the variables hsize (hou-
sehold size), age, eqSS (equivalized household size) and eqIncome (equivalized disposable
income) are not included in the standardized format of EU-SILC data, but have been deri-
ved from other variables for convenience. Moreover, some very sparse income components
were not included in the the generation of this synthetic data set. Thus the equivalized
household income is computed from the available income components.

For the remainder of the paper, the variable eqIncome (equivalized disposable income) is
of main interest. Other variables are in some cases used to break down the data in order
to evaluate the indicators on the resulting subsets.

It is important to note that EU-SILC data are in practice conducted through complex sam-
pling designs with different inclusion probabilities for the observations in the population,
which results in different weights for the observations in the sample. Furthermore, cali-
bration is typically performed for non-response adjustment of these initial design weights.
Therefore, the sample weights have to be considered for all estimates, otherwise biased
results are obtained.

The rest of the paper is organized as follows. Section 5.2 briefly illustrates the basic object-
oriented design of the package. The calculation of the equivalized household size and the
equivalized disposable income is then described in Section 5.3. Afterwards, Section 5.4
introduces the Eurostat definitions of the weighted median and weighted quantiles, which
are required for the estimation of some of the indicators. In Section 5.5, a mathematical
description of the most important indicators on social exclusion and poverty is given and
their estimation with package laeken is demonstrated. Section 5.6 discusses a useful
subsetting method, and Section 7.5 concludes.

5.2 Basic design of the package

The implementation of the package follows an object-oriented design using S3 classes
(Chambers and Hastie, 1992). Its aim is to provide functionality for point and va-
riance estimation of Laeken indicators with a single command, even for different years
and domains. Currently, the following indicators are available in the R package laeken:

AMELI-WP10-D10.3

54
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

� At-risk-of-poverty rate: function arpr()

� Quintile share ratio: function qsr()

� Relative median at-risk-of-poverty gap: function rmpg()

� Dispersion around the at-risk-of-poverty threshold : also function arpr()

� Gini coefficient : function gini()

Note that the implementation strictly follows the Eurostat definitions (Eurostat, 2004,
2009).

5.2.1 Class structure

In this section, the class structure of package laeken is briefly discussed. Section 5.2.1
describes the basic class ’indicator’, while the different subclasses for the specific indi-
cators are listed in Section 5.2.1.

Class ’indicator’

The basic class ’indicator’ acts as the superclass for all classes in the package corres-
ponding to specific indicators. It consists of the following components:

value: A numeric vector containing the point estimate(s).

valueByStratum: A data.frame containing the point estimates by stratum.

varMethod: A character string specifying the type of variance estimation used.

var: A numeric vector containing the variance estimate(s).

varByStratum: A data.frame containing the variance estimates by stratum.

ci: A numeric vector or matrix containing the confidence interval(s).

ciByStratum: A data.frame containing the confidence intervals by stratum.

alpha: The confidence level is given by 1−alpha.

years: A numeric vector containing the different years of the survey.

strata: A character vector containing the different strata of the breakdown.

These list components are inherited by each indicator in the package. One of the most
important features of laeken is that indicators can be evaluated for different years and
domains. The latter of which can be regions (e.g., NUTS2), but also any other breakdown
given by a categorical variable (see the examples in Section 5.5).

In any case, the advantage of the object-oriented implementation is the possibility of
sharing code among the indicators. To give an example, the following methods for the
basic class ’indicator’ are implemented in the package:

R> methods(class = "indicator")

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.3 Calculation of the equivalized disposable income 55

[1] bootVar.indicator* print.indicator* subset.indicator*

Non-visible functions are asterisked

The print() and subset() methods are called by their respective generic functions if an
object inheriting from class ’indicator’ is supplied. While the print() method defines
the output of objects inheriting from class ’indicator’ shown on the R console, the
subset() method allows to extract subsets of an object inheriting from class ’indicator’
and is discussed in detail in Section 5.6. Furthermore, the function is.indicator() is
available to test whether an object is of class ’indicator’.

Additional classes

For the specific indicators on social exclusion and poverty, the following classes are im-
plemented in package laeken:

� Class ’arpr’ with the following additional components:

p: The percentage of the weighted median used for the at-risk-of-poverty threshold.

threshold: The at-risk-of-poverty threshold(s).

� Class ’qsr’ with no additional components.

� Class ’rmpg’ with the following additional components:

threshold: The at-risk-of-poverty threshold(s).

� Class ’gini’ with no additional components.

All these classes are subclasses of the basic class ’indicator’ and therefore inherit all its
components and methods. In addition, functions to test whether an object is a member of
one of these subclasses are implemented. Similarly to is.indicator(), these are called
is.foo(), where foo is the name of the respective class (e.g., is.arpr()).

5.3 Calculation of the equivalized disposable income

For each person, the equivalized disposable income is defined as the total household dis-
posable income divided by the equivalized household size. It follows that each person in
the same household receives the same equivalized disposable income.

The total disposable income of a household is calculated by adding together the personal
income received by all of the household members plus the income received at the household
level. The equivalized household size is defined according to the modified OECD scale,
which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14 or
over, and 0.3 to household members aged less than 14 (Eurostat, 2004, 2009).

In practice, the equivalized disposable income needs to be computed from the income
components included in EU-SILC for the estimation of the indicators on social exclusion
and poverty. Therefore, this section outlines how to perform this step with package

AMELI-WP10-D10.3

56
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

laeken, even though the variable eqIncome containing the equivalized disposable income
is already available in the example data set eusilc. Note that not all variables that are
required for an exact computation of the equivalized income are included in the synthetic
example data. However, the functions of the package can be applied in exactly the same
manner to real EU-SILC data.

First, the equivalized household size according to the modified OECD scale needs to be
computed. This can be done with the function eqSS(), which requires the household ID
and the age of the individuals as arguments. In the example data, household ID and
age are stored in the variables db030 and age, respectively. It should be noted that
the variable age is not in the standardized format of EU-SILC data and needs to be
calculated from the data beforehand. Nevertheless, these computations are very simple
and are therefore not shown here (for details, see Eurostat, 2009). The following two
lines of code calculate the equivalized household size, add it to the data set, and print the
first eight observations of the variables involved.

R> eusilc$eqSS <- eqSS("db030", "age", data = eusilc)

R> head(eusilc[, c("db030", "age", "eqSS")], 8)

db030 age eqSS

1 1 34 1.8

2 1 39 1.8

3 1 2 1.8

4 2 38 2.1

5 2 43 2.1

6 2 11 2.1

7 2 9 2.1

8 3 26 1.0

Then the equivalized disposable income can be computed with the function eqInc(). It
requires the following information to be supplied: the household ID, the household income
components to be added and subtracted, respectively, the personal income components
to be added and subtracted, respectively, as well as the equivalized household size. With
the following commands, the equivalized disposable income is calculated and added to the
data set, after which the first eight observations of the important variables in this context
are printed.

R> hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n",

+ "hy110n")

R> hminus <- c("hy130n", "hy145n")

R> pplus <- c("py010n", "py050n", "py090n", "py100n", "py110n",

+ "py120n", "py130n", "py140n")

R> eusilc$eqIncome <- eqInc("db030", hplus, hminus, pplus, character(),

+ "eqSS", data = eusilc)

R> head(eusilc[, c("db030", "eqSS", "eqIncome")], 8)

db030 eqSS eqIncome

1 1 1.8 16090.69

2 1 1.8 16090.69

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.4 Weighted median and quantile estimation 57

3 1 1.8 16090.69

4 2 2.1 27076.24

5 2 2.1 27076.24

6 2 2.1 27076.24

7 2 2.1 27076.24

8 3 1.0 19659.53

Note that the net income is considered in this example, therefore no personal income
component needs to be subtracted (see Eurostat, 2004, 2009). This is reflected in the
call to eqInc() by the use of an empty character vector character() for the corresponding
argument.

5.4 Weighted median and quantile estimation

Some of the indicators on social exclusion and poverty require the estimation of the median
income or other quantiles of the income distribution. Hence functions that strictly follow
the definitions according to Eurostat (2004, 2009) are implemented in package laeken.
They are used internally for the estimation of the respective indicators, but can also be
called by the user directly.

In the analysis of income distributions, the median income is typically of higher interest
than the arithmetic mean. This is because income distributions commonly are strongly
right-skewed with a heavy tail of representative outliers (correctly measured units that are
not unique to the population) and nonrepresentative outliers (either measurement errors
or correct observations that can be considered unique in the population). Therefore, the
center of the distribution is more reliably estimated by a weighted median than by a
weighted mean, as the latter is highly influenced by extreme values.

In mathematical terms, quantiles are defined as qp := F−1(p), where F is the distribution
function on the population level and 0 ≤ p ≤ 1. The median as an important special case
is given by p = 0.5. For the following definitions, let n be the number of observations in the
sample, let x := (x1, . . . , xn)′ denote the equivalized disposable income with x1 ≤ . . . ≤ xn,
and let w := (wi, . . . , wn)′ be the corresponding personal sample weights. Weighted
quantiles for the estimation of the population values according to Eurostat (2004, 2009)
are then given by

q̂p = q̂p(x,w) :=

{
1
2
(xj + xj+1), if

∑j
i=1wi = p

∑n
i=1wi,

xj+1, if
∑j

i=1wi < p
∑n

i=1wi <
∑j+1

i=1 wi.
(5.1)

This definition of weighted quantiles is available in laeken through the function weigh-

tedQuantile(). The following command computes the weighed 20% quantile, the weigh-
ted median, and the weighted 80% quantile. In the context of social exclusion indicators,
these are of most importance.

R> weightedQuantile(eusilc$eqIncome, eusilc$rb050,

+ probs = c(0.2, 0.5, 0.8))

AMELI-WP10-D10.3

58
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

[1] 12212.60 18098.73 25997.65

For the important special case of the weighted median, the function weightedMedian()

is available for convenience.

R> weightedMedian(eusilc$eqIncome, eusilc$rb050)

[1] 18098.73

In addition, the functions incMedian() and incQuintile() are more tailored towards
application in the case of indicators on social exclusion and poverty and provide a similar
interface as the functions for the indicators (see Section 5.5). In particular, they allow to
supply an additional variable to be used as tie-breakers for sorting, and to compute the
weighted median and income quintiles, respectively, for several years of the survey. With
the following lines of code, the median income as well as the 1st and 4th income quintile
(i.e., the weighted 20% and 80% quantiles) are estimated.

R> incMedian("eqIncome", weights = "rb050", data = eusilc)

[1] 18098.73

R> incQuintile("eqIncome", weights = "rb050", k = c(1, 4), data = eusilc)

1 4

12212.60 25997.65

5.5 Indicators on social exclusion and poverty

In this section, the most important indicators on social exclusion and poverty are described
in detail. Furthermore, the functionality of package laeken to estimate these indicators
is demonstrated.

It should be noted that all functions for the implemented indicators provide a very similar
interface. Most importantly, it is possible to compute estimates for several years of the
survey and different subdomains with a single command. Furthermore, the functions allow
to supply an additional variable to be used as tie-breakers for sorting. However, not all of
the implemented functionality is shown in this vignette. For a complete description of the
functions and their arguments, the reader is referred to the corresponding R help pages.

In addition, only point estimation of the indicators on social exclusion and poverty is
illustrated here, statistical significance of these estimates is not discussed. The func-
tionality for variance estimation of the indicators is described in the package vignette
laeken-variance (Templ and Alfons, 2011).

For the following definitions of the estimators according to Eurostat (2004, 2009), let
x := (x1, . . . , xn)′ be the equivalized disposable income with x1 ≤ . . . ≤ xn and let w :=
(wi, . . . , wn)′ be the corresponding personal sample weights, where n denotes the number
of observations. Furthermore, define the following index sets for a certain threshold t:

I<t := {i ∈ {1, . . . , n} : xi < t}, (5.2)

I≤t := {i ∈ {1, . . . , n} : xi ≤ t}, (5.3)

I>t := {i ∈ {1, . . . , n} : xi > t}. (5.4)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.5 Indicators on social exclusion and poverty 59

5.5.1 At-risk-at-poverty rate

In order to define the at-risk-of-poverty rate (ARPR), the at-risk-of-poverty threshold
(ARPT) needs to be introduced first, which is set at 60% of the national median equi-
valized disposable income. Then the at-risk-at-poverty rate is defined as the proportion
of persons with an equivalized disposable income below the at-risk-at-poverty threshold
(Eurostat, 2004, 2009). In a more mathematical notation, the at-risk-at-poverty rate is
defined as

ARPR := P (x < 0.6 · q0.5) · 100, (5.5)

where q0.5 := F−1(0.5) denotes the population median (50% quantile) and F is the distri-
bution function of the equivalized income on the population level.

For the estimation of the at-risk-at-poverty rate from a sample, the sample weights need
to be taken into account. First, the at-risk-at-poverty threshold is estimated by

ÂRPT = 0.6 · q̂0.5, (5.6)

where q̂0.5 is the weighted median as defined in Equation (6.1). Then the at-risk-at-poverty
rate can be estimated by

ÂRPR :=

∑
i∈I

<ÂRPT
wi

∑n
i=1wi

· 100, (5.7)

where I
<ÂRPT

is an index set of persons with an equivalized disposable income below the
estimated at-risk-of-poverty threshold as defined in Equation (5.2).

In package laeken, the functions arpt() and arpr() are implemented for the estima-
tion of the at-risk-of-poverty threshold and the at-risk-of-poverty rate. Whenever sample
weights are available in the data, they should be supplied as the weights argument. Even
though arpt() is called internally by arpr(), it can also be called by the user directly.

R> arpt("eqIncome", weights = "rb050", data = eusilc)

[1] 10859.24

R> arpr("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 14.44422

Threshold:

[1] 10859.24

It is also possible to use these functions for the estimation of the indicator dispersion
around the at-risk-of-poverty threshold, which is defined as the proportion of persons with
an equivalized disposable income below 40%, 50% and 70% of the national weighted
median equivalized disposable income. The proportion of the median equivalized income
to be used can thereby be adjusted via the argument p.

AMELI-WP10-D10.3

60
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

R> arpr("eqIncome", weights = "rb050", p = 0.4, data = eusilc)

Value:

[1] 4.766885

Threshold:

[1] 7239.49

R> arpr("eqIncome", weights = "rb050", p = 0.5, data = eusilc)

Value:

[1] 7.988134

Threshold:

[1] 9049.363

R> arpr("eqIncome", weights = "rb050", p = 0.7, data = eusilc)

Value:

[1] 21.85638

Threshold:

[1] 12669.11

In order to compute estimates for different subdomains, a breakdown variable simply
needs to be supplied as the breakdown argument. Note that in this case the same overall
at-risk-of-poverty threshold is used for all subdomains (see Eurostat, 2004, 2009). The
following command computes the overall estimate, as well as estimates for all NUTS2
regions.

R> arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc)

Value:

[1] 14.44422

Value by stratum:

stratum value

1 Burgenland 19.53984

2 Carinthia 13.08627

3 Lower Austria 13.84362

4 Salzburg 13.78734

5 Styria 14.37464

6 Tyrol 15.30819

7 Upper Austria 10.88977

8 Vienna 17.23468

9 Vorarlberg 16.53731

Threshold:

[1] 10859.24

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.5 Indicators on social exclusion and poverty 61

However, any kind of breakdown can be supplied, e.g., the breakdowns defined by Eu-
rostat (2004, 2009). With the following lines of code, a breakdown variable with all
possible combinations of age categories and gender is defined and added to the data set,
before it is used to compute estimates for the corresponding domains.

R> ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right = FALSE)

R> eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep = ":")

R> arpr("eqIncome", weights = "rb050", breakdown = "breakdown",

+ data = eusilc)

Value:

[1] 14.44422

Value by stratum:

stratum value

1 [-1,16):female 18.948125

2 [-1,16):male 17.973597

3 [16,25):female 16.703016

4 [16,25):male 16.156673

5 [25,50):female 15.220300

6 [25,50):male 9.638359

7 [50,65):female 12.941125

8 [50,65):male 8.221154

9 [65,Inf):female 21.252184

10 [65,Inf):male 12.046903

Threshold:

[1] 10859.24

Clearly, the results are even more heterogeneous than for the breakdown into NUTS2
regions.

5.5.2 Quintile share ratio

The income quintile share ratio (QSR) is defined as the ratio of the sum of the equivalized
disposable income received by the 20% of the population with the highest equivalized dis-
posable income to that received by the 20% of the population with the lowest equivalized
disposable income (Eurostat, 2004, 2009).

For the estimation of the quintile share ratio from a sample, let q̂0.2 and q̂0.8 denote the
weighted 20% and 80% quantiles, respectively, as defined in Equation (6.1). Using index
sets I≤q̂0.2 and I>q̂0.8 as defined in Equations (5.3) and (5.4), respectively, the quintile share
ratio is estimated by

Q̂SR :=

∑
i∈I>q̂0.8

wixi∑
i∈I≤q̂0.2

wixi
. (5.8)

AMELI-WP10-D10.3

62
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

With package laeken, the quintile share ratio can be estimated using the function qsr().
As for the at-risk-of-poverty rate, sample weights can be supplied via the weights argu-
ment.

R> qsr("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 3.971415

Computing estimates for different subdomains is again possible by specifying the break-

down argument. In the following example, estimates for each NUTS2 region are computed
in addition to the overall estimate.

R> qsr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc)

Value:

[1] 3.971415

Value by stratum:

stratum value

1 Burgenland 5.073746

2 Carinthia 3.590037

3 Lower Austria 3.845026

4 Salzburg 3.829411

5 Styria 3.472333

6 Tyrol 3.628731

7 Upper Austria 3.675467

8 Vienna 4.705347

9 Vorarlberg 4.525096

Nevertheless, it should be noted that the quintile share ratio is highly influenced by out-
liers (see Hulliger and Schoch, 2009; Alfons et al., 2010). Since the upper tail of
income distributions virtually always contains nonrepresentative outliers, robust estima-
tors of the quintile share ratio should preferably be used. Thus robust semi-parametric
methods based on Pareto tail modeling are implemented in package laeken as well. Their
application is discussed in vignette laeken-pareto (Alfons et al., 2011c).

5.5.3 Relative median at-risk-of-poverty gap (by age and
gender)

The relative median at-risk-of-poverty gap (RMPG) is defined as the difference between
the median equivalized disposable income of persons below the at-risk-of-poverty threshold
and the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-
poverty threshold (Eurostat, 2004, 2009).

For the estimation of the relative median at-risk-of-poverty gap from a sample, let ÂRPT
be the estimated at-risk-of-poverty threshold according to Equation (5.6), and let I

<ÂRPT

be an index set of persons with an equivalized disposable income below the estimated

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.5 Indicators on social exclusion and poverty 63

at-risk-of-poverty threshold as defined in Equation (5.2). Using this index set, define
x
<ÂRPT

:= (xi)i∈I
<ÂRPT

and w
<ÂRPT

:= (wi)i∈I
<ÂRPT

. Furthermore, let q̂0.5(x<ÂRPT ,w<ÂRPT
)

be the corresponding weighted median according to the definition in Equation (6.1). Then
the relative median at-risk-of-poverty gap is estimated by

R̂MPG =
ÂRPT − q̂0.5(x<ÂRPT ,w<ÂRPT

)

ÂRPT
· 100. (5.9)

In package laeken, the function rmpg() is implemented for the estimation of the relative
median at-risk-of-poverty gap. If available in the data, sample weights should be supplied
as the weights argument. Note that the function arpt() for the estimation of the at-
risk-of-poverty threshold is called internally (cf. function arpr() for the at-risk-of-poverty
rate in Section 5.5.1).

R> rmpg("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 18.92860

Threshold:

[1] 10859.24

Estimates for different subdomains can be computed by making use of the breakdown

argument. With the following command, the overall estimate and estimates for all NUTS2
regions are computed.

R> rmpg("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc)

Value:

[1] 18.92860

Value by stratum:

stratum value

1 Burgenland 12.32438

2 Carinthia 13.12787

3 Lower Austria 17.48023

4 Salzburg 28.89533

5 Styria 15.53486

6 Tyrol 19.58447

7 Upper Austria 19.47177

8 Vienna 23.35608

9 Vorarlberg 26.96706

Threshold:

[1] 10859.24

For the relative median at-risk-of-poverty gap, the breakdown by age and gender is of
particular interest. In the following example, a breakdown variable with all possible com-
binations of age categories and gender is defined and added to the data set. Afterwards,
estimates for the corresponding domains are computed.

AMELI-WP10-D10.3

64
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

R> ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right = FALSE)

R> eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep = ":")

R> rmpg("eqIncome", weights = "rb050", breakdown = "breakdown",

+ data = eusilc)

Value:

[1] 18.92860

Value by stratum:

stratum value

1 [-1,16):female 19.05696

2 [-1,16):male 19.05696

3 [16,25):female 32.93985

4 [16,25):male 23.70534

5 [25,50):female 20.78422

6 [25,50):male 18.19213

7 [50,65):female 21.34382

8 [50,65):male 18.92860

9 [65,Inf):female 14.48597

10 [65,Inf):male 15.34966

Threshold:

[1] 10859.24

5.5.4 Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the population
arranged according to the level of equivalized disposable income, to the cumulative share
of the equivalized total disposable income received by them (Eurostat, 2004, 2009).

For the estimation of the Gini coefficient from a sample, the sample weights need to be
taken into account. In mathematical terms, the Gini coefficient is estimated by

Ĝini := 100




2
∑n

i=1

(
wixi

∑i
j=1wj

)
−∑n

i=1w
2
i xi

(
∑n

i=1wi)
∑n

i=1 (wixi)
− 1


 . (5.10)

The function gini() is available in laeken to estimate the Gini coefficient. As for the
other indicators, sample weights can be specified with the weights argument.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 26.48962

Using the breakdown argument in the following command, estimates for the NUTS2
regions are computed in addition to the overall estimate.

R> gini("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

5.6 Extracting information using the subset() method 65

Value:

[1] 26.48962

Value by stratum:

stratum value

1 Burgenland 32.05489

2 Carinthia 25.49448

3 Lower Austria 25.93737

4 Salzburg 25.01652

5 Styria 23.71190

6 Tyrol 25.24881

7 Upper Austria 25.49202

8 Vienna 28.94944

9 Vorarlberg 28.74120

Since outliers have a strong influence on the Gini coefficient, robust estimators are pre-
ferred to the standard estimation described above (see Alfons et al., 2010). Vignette
laeken-pareto (Alfons et al., 2011c) describes how to apply the robust semi-parametric
methods implemented in package laeken.

5.6 Extracting information using the subset()

method

If estimates of an indicator have been computed for several subdomains, it may sometimes
be desired to extract the results for some domains of particular interest. In package
laeken, this is implemented by taking advantage of the object-oriented design of the
package. Each of the functions for the indicators described in Section 5.5 returns an
object belonging to a class of the same name as the respective function, e.g., function
arpr() returns an object of class ’arpr’. All these classes thereby inherit from the basic
class ’indicator’ (see Section 5.2).

R> a <- arpr("eqIncome", weights = "rb050", breakdown = "db040",

+ data = eusilc)

R> print(a)

Value:

[1] 14.44422

Value by stratum:

stratum value

1 Burgenland 19.53984

2 Carinthia 13.08627

3 Lower Austria 13.84362

4 Salzburg 13.78734

5 Styria 14.37464

6 Tyrol 15.30819

AMELI-WP10-D10.3

66
CHAPTER 5. STANDARD METHODS FOR SOCIAL EXCLUSION

INDICATORS IN PACKAGE LAEKEN

7 Upper Austria 10.88977

8 Vienna 17.23468

9 Vorarlberg 16.53731

Threshold:

[1] 10859.24

R> is.arpr(a)

[1] TRUE

R> is.indicator(a)

[1] TRUE

R> class(a)

[1] "arpr" "indicator"

To extract a subset of results from such an object, a subset() method for the class
’indicator’ is implemented in laeken. The method subset.indicator() is hidden
from the user and is called internally by the generic function subset() whenever an
object of class ’indicator’ is supplied. In the following example, the estimates of the
at-risk-of-poverty rate for the regions Lower Austria and Vienna are extracted from the
object computed above.

R> subset(a, strata = c("Lower Austria", "Vienna"))

Value:

[1] 14.44422

Value by stratum:

stratum value

3 Lower Austria 13.84362

8 Vienna 17.23468

Threshold:

[1] 10859.24

5.7 Conclusions

This vignette demonstrates the use of package laeken for point estimation of the European
Union indicators on social exclusion and poverty. Since the description of the indicators
in Eurostat (2004, 2009) is weak from a mathematical point of view, a more precise
notation is given in this paper. Currently, the most important indicators are implemented
in laeken. Their estimation is made easy with the package, as it is even possible to
compute estimates for several years and different subdomains with a single command.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Bibliography 67

Concerning the inequality indicators quintile share ratio and Gini coefficient, it is clearly
visible from their definitions that the standard estimators are highly influenced by outliers
(see also Hulliger and Schoch, 2009; Alfons et al., 2010). Therefore, robust semi-
parametric methods are implemented in laeken as well. These are described in vignette
laeken-pareto (Alfons et al., 2011c), while variance and confidence interval estimation
for the indicators on social exclusion and poverty with package laeken is treated in
vignette laeken-variance (Templ and Alfons, 2011).

Bibliography

Alfons, A., Holzer, J. and Templ, M. (2011a): laeken: Laeken indicators for mea-
suring social cohesion. R package version 0.2.2.
URL http://CRAN.R-project.org/package=laeken

Alfons, A. and Kraft, S. (2010): simPopulation: Simulation of synthetic populations
for surveys based on sample data. R package version 0.2.1.
URL http://CRAN.R-project.org/package=simPopulation

Alfons, A., Kraft, S., Templ, M. and Filzmoser, P. (2011b): Simulation of close-to-
reality population data for household surveys with application to EU-SILC. Statistical
Methods & Applications, pp. 1–25, DOI 10.1007/s10260-011-0163-2.
URL http://dx.doi.org/10.1007/s10260-011-0163-2

Alfons, A., Templ, M., Filzmoser, P. and Holzer, J. (2010): A comparison of ro-
bust methods for Pareto tail modeling in the case of Laeken indicators. Borgelt, C.,
González-Rodŕıguez, G., Trutschnig, W., Lubiano, M., Gil, M., Grzegor-
zewski, P. and Hryniewicz, O. (editors) Combining Soft Computing and Statistical
Methods in Data Analysis, Advances in Intelligent and Soft Computing, vol. 77, pp.
17–24, Heidelberg: Springer, ISBN 978-3-642-14745-6.

Alfons, A., Templ, M., Filzmoser, P. and Holzer, J. (2011c): Robust Pareto
Tail Modeling for the Estimation of Social Inclusion Indicators using the R Package
laeken. Research Report CS-2011-2, Department of Statistics and Probability Theory,
Vienna University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-2complete.

pdf

Chambers, J. and Hastie, T. (1992): Statistical Models in S. London: Chapman &
Hall, ISBN 9780412830402.

Eurostat (2004): Common cross-sectional EU indicators based on EU-SILC; the gender
pay gap. EU-SILC 131-rev/04, Unit D-2: Living conditions and social protection, Di-
rectorate D: Single Market, Employment and Social statistics, Eurostat, Luxembourg.

Eurostat (2009): Algorithms to compute social inclusion indicators based on EU-SILC
and adopted under the Open Method of Coordination (OMC). Doc. LC-ILC/39/09/EN-
rev.1, Unit F-3: Living conditions and social protection, Directorate F: Social and
information society statistics, Eurostat, Luxembourg.

AMELI-WP10-D10.3

http://CRAN.R-project.org/package=laeken
http://CRAN.R-project.org/package=simPopulation
http://dx.doi.org/10.1007/s10260-011-0163-2
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-2complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-2complete.pdf

68 Bibliography

Hulliger, B. and Schoch, T. (2009): Robustification of the quintile share ratio. New
Techniques and Technologies for Statistics, Brussels.

R Development Core Team (2011): R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Templ, M. and Alfons, A. (2011): Variance Estimation of Social Inclusion Indicators
using the R Package laeken. Research Report CS-2011-3, Department of Statistics
and Probability Theory, Vienna University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-3complete.

pdf

© http://ameli.surveystatistics.net/ - 2011

http://www.R-project.org
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-3complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-3complete.pdf
http://ameli.surveystatistics.net/

Chapter 6

Robust Pareto Tail Modeling with
package laeken.

Abstract In this vignette, robust semiparametric estimation of social exclusion indica-
tors using the R package laeken is discussed. Special emphasis is thereby given to income
inequality indicators, as the standard estimates for these indicators are highly influenced
by outliers in the upper tail of the income distribution. This influence can be reduced by
modeling the upper tail with a Pareto distribution in a robust manner. While the focus of
the paper is to demonstrate the functionality of laeken beyond the standard estimation
techniques, a brief mathematical description of the implemented procedures is given as
well.

6.1 Introduction

From a robustness point of view, the standard estimators for some of the social exclusion
indicators defined by Eurostat (2004, 2009) are problematic. In particular the income
inequality indicators quintile share ratio (QSR) and Gini coefficient suffer from a lack of
robustness. Consider, e.g., the QSR, which is estimated as the ratio of estimated totals
or means (see Section 6.2.1 for an exact definition). It is well known that the classical
estimates for totals or means have a breakdown point of 0, meaning that even a single
outlier can distort the results to an arbitrary extent. In fact, the influence of a single
observation in the upper tail of the income distribution on the estimation of the QSR is
linear and therefore unbounded. For practical purposes, the standard QSR estimator thus
cannot be recommended in many situations (cf. Hulliger and Schoch, 2009). It is also
important to note that the behavior of the Gini coefficient is similar to the behavior of
the QSR.

The data basis for the estimation of the social exclusion indicators according to Euro-
stat (2004, 2009) is the European Union Statistics on Income and Living Conditions
(EU-SILC), which is an annual panel survey conducted in EU member states and other
European countries. On the one hand, EU-SILC data typically contain a considerable
amount of representative outliers in the upper tail of the income distribution, i.e., cor-
rect observations that behave differently from the main part of the data, but that are
not unique in the population and hence need to be considered for computing estimates
of the indicators. On the other hand, EU-SILC data frequently contain some even more

AMELI-WP10-D10.3

70
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

extreme nonrepresentative outliers, i.e., observations that are either incorrect or can be
considered unique in the population. Consequently, such nonrepresentative outliers need
to be excluded from the estimation process or downweighted.

As a remedy, the upper tail of the income distribution may be modeled with a Pareto
distribution in order to recalibrate the sample weights or use fitted income values for ob-
servations in the upper tail when estimating the indicators (see Section 6.6). Nevertheless,
classical estimators for the parameters of the Pareto distribution are highly influenced by
the nonrepresentative outliers themselves. Using robust methods reduces the influence on
fitting the Pareto distribution to the representative outliers and therefore on the estima-
tion of the indicators.

Rather than evaluating these methods, the paper concentrates on showing how they can
be applied in the statistical environment R (R Development Core Team, 2011) with
the add-on package laeken (Alfons et al., 2011a). The basic design of the package,
as well as standard estimation of the social exclusion indicators is discussed in detail
in vignette laeken-standard (Templ and Alfons, 2011a). Furthermore, the general
framework for variance estimation is illustrated in vignette laeken-variance (Templ
and Alfons, 2011b). Those documents can be viewed from within R with the following
commands:

R> vignette("laeken-standard")

R> vignette("laeken-variance")

Throughout the paper, the example data from package laeken is used. The data set is
called eusilc and consists of 14 827 observations from 6 000 households. In addition, it
was synthetically generated from Austrian EU-SILC survey data from 2006 using the data
simulation methodology proposed by Alfons et al. (2011b) and implemented in the R
package simPopulation (Alfons and Kraft, 2010). More information on the example
data can be found in vignette laeken-standard or in the corresponding R help page.

R> library("laeken")

R> data("eusilc")

The rest of the paper is organized as follows. Section 6.2 gives a mathematical description
of the Eurostat definitions of the social exclusion indicators QSR and Gini coefficient. In
Section 6.3, the Pareto distribution is briefly discussed. Section 6.4 discusses a rule of
thumb for estimating the threshold for the upper tail of the distribution, and illustrates
graphical methods for exploring the data in order to find the threshold. Classical and
robust estimators for the shape parameter of the Pareto distribution are described in
Section 6.5. How to use Pareto tail modeling to estimate the social exclusion indicators
is then shown in Section 6.6. Finally, Section 7.5 concludes.

6.2 Social exclusion indicators

This paper is focused on the inequality indicators quintile share ratio (QSR) and Gini
coefficient, which are both highly influenced by outliers in the upper tail of the distribution.
Note that for the estimation of the social exclusion indicators, each person in a household

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.2 Social exclusion indicators 71

is assigned the same eqivalized disposable income. See vignette laeken-standard (Templ
and Alfons, 2011a) for the computation of the equivalized disposable income with the
R package laeken.

For the following definitions, let x := (x1, . . . , xn)′ be the equivalized disposable income
with x1 ≤ . . . ≤ xn and let w := (wi, . . . , wn)′ be the corresponding personal sample
weights, where n denotes the number of observations.

6.2.1 Quintile share ratio (QSR)

The income quintile share ratio (QSR) is defined as the ratio of the sum of the equivalized
disposable income received by the 20% of the population with the highest equivalized dis-
posable income to that received by the 20% of the population with the lowest equivalized
disposable income (Eurostat, 2004, 2009).

For the estimation of the quintile share ratio from a sample, let q̂0.2 and q̂0.8 denote the
weighted 20% and 80% quantiles, respectively. With 0 ≤ p ≤ 1, these weighted quantiles
are given by

q̂p = q̂p(x,w) :=

{
1
2
(xj + xj+1), if

∑j
i=1wi = p

∑n
i=1wi,

xj+1, if
∑j

i=1wi < p
∑n

i=1wi <
∑j+1

i=1 wi.
(6.1)

Using index sets I≤q̂0.2 := {i ∈ {1, . . . , n} : xi ≤ q̂0.2} and I>q̂0.8 := {i ∈ {1, . . . , n} : xi > q̂0.8},
the quintile share ratio is estimated by

Q̂SR :=

∑
i∈I>q̂0.8

wixi∑
i∈I≤q̂0.2

wixi
. (6.2)

With package laeken, the quintile share ratio can be estimated using the function qsr().
Sample weights can thereby be supplied via the weights argument.

R> qsr("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 3.971415

6.2.2 Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the population
arranged according to the level of equivalized disposable income, to the cumulative share
of the equivalized total disposable income received by them (Eurostat, 2004, 2009).

For the estimation of the Gini coefficient from a sample, the sample weights need to be
taken into account. In mathematical terms, the Gini coefficient is estimated by

Ĝini := 100




2
∑n

i=1

(
wixi

∑i
j=1wj

)
−∑n

i=1w
2
i xi

(
∑n

i=1wi)
∑n

i=1 (wixi)
− 1


 . (6.3)

AMELI-WP10-D10.3

72
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

The function gini() is available in laeken to estimate the Gini coefficient. As before,
sample weights can be specified with the weights argument.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 26.48962

6.3 The Pareto distribution

The Pareto distribution is well studied in the literature and is defined in terms of its
cumulative distribution function

Fθ(x) = 1−
(
x

x0

)−θ
, x ≥ x0, (6.4)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter (Kleiber and
Kotz, 2003). Furthermore, its density function is given by

fθ(x) =
θxθ0
xθ+1

, x ≥ x0. (6.5)

Figure 6.1 visualizes the Pareto probability density function with scale parameter x0 = 1
and different values of the shape parameter θ. Clearly, the Pareto distribution is a highly
right-skewed distribution with a heavy tail. It is therefore reasonable to assume that a
random variable following a Pareto distribution contains extreme values. The effect of
changing the shape parameter θ is visible in the probability mass at the scale parameter
x0: the higher θ, the higher the probability mass at x0.

1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

f(
x)

θ = 1
θ = 2
θ = 3

Figure 6.1: Pareto probability density functions with parameters x0 = 1 and θ = 1, 2, 3.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.4 Finding the threshold 73

In Pareto tail modeling, the cumulative distribution function on the whole range of x is
modeled as

F (x) =

{
G(x), if x ≤ x0,
G(x0) + (1−G(x0))Fθ(x), if x > x0,

(6.6)

where G is an unknown distribution function (Dupuis and Victoria-Feser, 2006).

Let n be the number of observations and let x = (x1, . . . , xn)′ denote the observed values
with x1 ≤ . . . ≤ xn. In addition, let k be the number of observations to be used for tail
modeling. In this scenario, the threshold x0 is estimated by

x̂0 := xn−k. (6.7)

If an estimate x̂0 for the scale parameter of the Pareto distribution has been obtained, k
is given by the number of observations larger than x̂0. Thus estimating x0 and k directly
corresponds with each other.

In the remainder of this package vignette, the equivalized disposable income of the EU-
SILC example data is of main interest. Consequently, the Pareto distribution will be
modeled at the household level rather than the individual level. Moreover, the focus
of this vignette is on robust estimation of the social exclusion indicators. Hence the
equivalized disposable income of the household with the largest income is replaced by a
large outlier.

R> hID <- eusilc$db030[which.max(eusilc$eqIncome)]

R> eusilc[eusilc$db030 == hID, "eqIncome"] <- 1e+07

Since the aim is to model a Pareto distribution at the household level, the following
command creates a data set that contains only the equivalized disposable income and the
sample weights on the household level. This data set will be used in Sections 6.4 and 6.5
to estimate the parameters of the Pareto distribution.

R> eusilcH <- eusilc[!duplicated(eusilc$db030), c("eqIncome", "db090")]

6.4 Finding the threshold

The aim of the methods presented in this sections is to find the threshold x0 for modeling
the Pareto distribution. Several methods for the estimation of the threshold x0 or the
number of observations k in the tail have been proposed in the literature, but those
proposals typically do not consider sample weights.

Beirlant et al. (1996b,a) developed a procedure that analytically determines the optimal
choice of k for the Hill estimator of the shape parameter (Hill, 1975, see also Section 6.5.1
of this paper) by minimizing the asymptotic mean squared error (AMSE). In package
laeken, this approach is implemented in the function minAMSE(). However, the procedure
is designed for the non-robust Hill estimator and is therefore not further discussed in this
paper. Furthermore, Danielsson et al. (2001) proposed a bootstrap method to find the
optimal k for the Hill estimator with respect to the AMSE, which has less analytical

AMELI-WP10-D10.3

74
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

requirements than the approach by Beirlant et al. (1996b,a). Please note that this
method is not robust either and that it is currently not available in package laeken. A
robust prediction error criterion for choosing the number of observations k in the tail
and estimating the shape parameter θ was developed by Dupuis and Victoria-Feser
(2006). Nevertheless, our implementation of this robust criterion was unstable and is
therefore not included in laeken.

In any case, Holzer (2009) concludes that graphical methods for finding the threshold
outperform those analytical approaches in the case of EU-SILC data. While this section
is thus focused graphical methods, a simple rule of thumb designed specifically for the
equivalized disposable income in EU-SILC data is described in the following as well.

6.4.1 Van Kerm’s rule of thumb

Van Kerm (2007) presented a formula that is more of a rule of thumb for the threshold
of the equivalized disposable income in EU-SILC data. Is is given by

x̂0 := min(max(2.5x̄, q0.98), q0.97), (6.8)

where x̄ is the weighted mean, and q0.98 and q0.97 are weighted quantiles as defined in
Equation (6.1).

In package laeken, the function paretoScale() provides functionality for computing the
threshold with van Kerm’s rule of thumb. The argument w is available to supply sample
weights.

R> ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090)

R> ts

Threshold: 48459.43

Number of observations in the tail: 119

It should be noted that the function returns an object of class ’paretoScale’, which
consists of a component x0 for the threshold (scale parameter) and a component k for
the number of observations in the tail of the distribution, i.e., that are larger than the
threshold.

6.4.2 Pareto quantile plot

The Pareto quantile plot is a graphical method for inspecting the parameters of a Pareto
distribution. For the case without sample weights, it is described in detail in Beirlant
et al. (1996b).

If the Pareto model holds, there exists a linear relationship between the lograrithms of
the observed values and the quantiles of the standard exponential distribution, since the
logarithm of a Pareto distributed random variable follows an exponential distribution.
Hence the logarithms of the observed values, log(xi), i = 1, . . . , n, are plotted against the
theoretical quantiles.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.4 Finding the threshold 75

In the case without sample weights, the theoretical quantiles of the standard exponential
distribution are given by

− log

(
1− i

n+ 1

)
, i = 1, . . . , n, (6.9)

i.e., by dividing the range into n + 1 equally sized subsets and using the resulting n
inner gridpoints as probabilities for the quantiles. If the data contain sample weights,
the range of the exponential distribution needs to be divided according to the weights of
the n observations. The Pareto quantile plot is thus generalized by using the theoretical
quantiles

− log

(
1−

∑i
j=1wj∑n
j=1wj

n

n+ 1

)
, i = 1, . . . , n, (6.10)

where the correction factor n
n+1

ensures that the quantiles reduce to (6.9) if all sample
weights are equal.

If the tail of the data follows a Pareto distribution, those observations form almost a
straight line. The leftmost point of a fitted line can thus be used as an estimate of the
threshold x0, the scale parameter. All values starting from the point after the threshold
may be modeled by a Pareto distribution, but this point cannot be determined exactly.
Furthermore, the slope of the fitted line is in turn an estimate of 1

θ
, the reciprocal of the

shape parameter.

Figure 6.2 displays the Pareto quantile plot for the example data eusilc on the household
level with the largest observation replaced by an outlier. The plot is generated using the
function paretoQPlot(), which allows to supply sample weights via the argument w. In
addition, the threshold can be selected interactively by clicking on a data point. Infor-
mation on the selected threshold is then printed on the R console. When the interactive
selection is terminated, which is typically done by a secondary mouse click, the selected
threshold is returned as an object of class ’paretoScale’.

Another advantage of the Pareto quantile plot is also illustrated in Figure 6.2. Nonrepre-
sentative outliers such as the large income introduced into the example data in Section 6.3,
i.e., extreme observations in the upper tail that deviate from the Pareto model, are clearly
visible.

6.4.3 Mean excess plot

The mean excess plot is another graphical method for inspecting the threshold for Pareto
tail modeling, but it does not provide information on the shape parameter. It is based on
the excess function

e(x0) := E(x− x0|x > x0), x0 ≥ 0. (6.11)

A detailed description for the case without sample weights can be found in Borkovec
and Klüppelberg (2000).

AMELI-WP10-D10.3

76
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

R> paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090)

Figure 6.2: Pareto Quantile plot for the example data eusilc on the household level with
the largest observation replaced by an outlier.

For the following definition of the mean excess plot, keep in mind that the observations are
sorted such that x1 ≤ . . . ≤ xn. For each observation xi, i = 1, . . . , bn−√nc, the empirical
excess function en is computed. In the case without sample weights, the expectation in
Equation (6.11) is replaced by the arithmetic mean, and the empirical excess function is
given by

en(xi) :=
1

n− i
n∑

j=i+1

(xj − xi), i = 1, . . . , bn−√nc. (6.12)

The values of the empirical excess function en(xi) are then plotted against the correspon-
ding xi, i = 1, . . . , bn−√nc. If sample weights are available in the data, the mean excess
plot is simply generalized by using the weighted mean for the empirical excess function:

en(xi) :=
1∑n

j=i+1wj

n∑

j=i+1

wj(xj − xi), i = 1, . . . , bn−√nc. (6.13)

If the tail of the data follows a Pareto distribution, those observations show a positive
linear trend. The leftmost point of a fitted line can thus be used as an estimate of the

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.5 Estimation of the shape parameter 77

R> meanExcessPlot(eusilcH$eqIncome, w = eusilcH$db090)

Figure 6.3: Mean excess plot for the example data eusilc on the household level with the
largest observation replaced by an outlier.

threshold x0, the scale parameter. As for the Pareto quantile plot, a disadvantage of the
mean excess plot is that the threshold cannot be determined exactly.

Figure 6.3 shows the mean excess plot for the example data eusilc on the household level
with the largest observation replaced by an outlier. The function meanExcessPlot() is
thereby used to produce the plot. Sample weights can be supplied via the argument w.
Interactive selection of the threshold works just like for the Pareto quantile plot. Again,
the selected threshold is returned as an object of class ’paretoScale’.

6.5 Estimation of the shape parameter

This section is focused on methods for estimating the shape parameter θ once the threshold
x0 is fixed. It should be noted that none of the original proposals takes sample weights
into account. Most estimators presented in the following were therefore adjusted for the
case of sample weights.

AMELI-WP10-D10.3

78
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

6.5.1 Hill estimator

The maximum likelihood estimator for the shape parameter of the Pareto distribution
was introduced by Hill (1975) and is referred to as the Hill estimator. If the data do not
contain sample weights, it is given by

θ̂Hill =
k∑k

i=1 log xn−k+i − k log xn−k
. (6.14)

In the case of sample weights, the weighted Hill (wHill) estimator is given by generalizing
Equation (6.14) to

θ̂wHill =

∑k
i=1wn−k+i∑k

i=1wn−k+i (log xn−k+i − log xn−k)
. (6.15)

Package laeken provides the function thetaHill() to compute the Hill estimator. It
requires to specify either the number of observations in the tail via the argument k, or
the threshold via the argument x0. Furthermore, the argument w can be used to supply
sample weights. In the following example, the shape parameter is estimated using the
largest observations (first command) and the threshold (second command) as computed
with van Kerm’s rule of thumb in Section 6.4.1.

R> thetaHill(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 3.437979

R> thetaHill(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 3.437979

6.5.2 Weighted maximum likelihood estimator

The weighted maximum likelihood (WML) estimator (Dupuis and Morgenthaler,
2002; Dupuis and Victoria-Feser, 2006) falls into the class of M-estimators and is
given by the solution θ̂ of

k∑

i=1

Ψ(xn−k+i, θ) = 0 (6.16)

with

Ψ(x, θ) := u(x, θ)
∂

∂θ
log f(x, θ) = u(x, θ)

(
1

θ
− log

x

x0

)
, (6.17)

where u(x, θ) is a weight function with values in [0, 1]. In the implementation in package
laeken, a Huber type weight function is used by default, as proposed by Dupuis and
Victoria-Feser (2006). Let the logarithms of the relative excesses be denoted by

zi := log

(
xn−k+i
xn−k

)
, i = 1, . . . , k. (6.18)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.5 Estimation of the shape parameter 79

In the Pareto model, these can be predicted by

ẑi := −1

θ
log

(
k + 1− i
k + 1

)
, i = 1, . . . , k. (6.19)

The variance of zi is given by

σ 2
i :=

i∑

j=1

1

θ2(k − i+ j)2
, i = 1, . . . , k. (6.20)

Using the standardized residuals

ri :=
zi − ẑi
σi

, (6.21)

the Huber type weight function with tuning constant c is defined as

u(xn−k+i, θ) :=

{
1, if |ri| ≤ c,
c
|ri| , if |ri| > c.

(6.22)

For this choice of weight function, the bias of θ̂ is approximated by

B̂(θ̂) = −
∑k

i=1

(
ui

∂
∂θ

log fi
)
|θ̂ (Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1))∑k

i=1

(
∂
∂θ
ui

∂
∂θ

log fi + ui
∂2

∂θ2
log fi

)
|θ̂ (Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1))

, (6.23)

where ui := u(xn−k+i, θ) and fi := f(xn−k+i, θ). This term is used to obtain a bias-
corrected estimator

θ̃ := θ̂ − B̂(θ̂). (6.24)

For details and proofs of the above statements, as well as for information on a probability-
based weight function u(x, θ), the reader is referred to Dupuis and Morgenthaler
(2002) and Dupuis and Victoria-Feser (2006). However, note the WML estimator
does not consider sample weights. An adjustment of the estimator to take sample weights
into account is currently not available due to its complexity. For sampling designs that
lead to equal sample weights, the WML estimator may still be useful, though.

The function thetaWML() is available in laeken to compute the WML estimator. Again,
either the argument k or x0 needs to be used to specify the number of observations in the
tail or the threshold. Since the sample weights in the example data are not equal, the
following example is only included to demonstrate the use of the function.

R> thetaWML(eusilcH$eqIncome, k = ts$k)

[1] 4.226204

R> thetaWML(eusilcH$eqIncome, x0 = ts$x0)

[1] 4.226204

AMELI-WP10-D10.3

80
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

6.5.3 Integrated squared error estimator

For the integrated squared error (ISE) estimator (Vandewalle et al., 2007), the Pareto
distribution is modeled in terms of the relative excesses

yi :=
xn−k+i
xn−k

, i = 1, . . . , k. (6.25)

The density function of the Pareto distribution for the relative excesses is approximated
by

fθ(y) = θy−(1+θ). (6.26)

The ISE estimator is then given by minimizing the integrated squared error criterion
(Terrell, 1990):

θ̂ = arg min
θ

[∫
f 2
θ (y)dy − 2E(fθ(Y))

]
. (6.27)

If there are no sample weights in the data, the mean is used as an unbiased estimator of
E(fθ(Y)) in order to obtain the ISE estimate

θ̂ISE = arg min
θ

[∫
f 2
θ (y)dy − 2

k

k∑

i=1

fθ(yi)

]
. (6.28)

See Vandewalle et al. (2007) for more information on the ISE estimator for the case
without sample weights.

If sample weights are available in the data, the mean in Equation (6.28) is simply replaced
by a weighted mean to obtain the weighted integrated squared error (wISE) estimator:

θ̂wISE = arg min
θ

[∫
f 2
θ (y)dy − 2∑k

i=1wn−k+i

k∑

i=1

wn−k+ifθ(yi)

]
. (6.29)

With package laeken, the ISE estimator can be computed using the function thetaISE().
The arguments k and x0 are available to specify either the number of observations in the
tail or the threshold, and sample weights can be supplied via the argument w.

R> thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 3.993801

R> thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 3.993801

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.6 Estimation of the indicators using Pareto tail modeling 81

6.5.4 Partial density component estimator

For the partial density component (PDC) estimator Vandewalle et al. (2007) minimizes
the integrated squared error criterion using an incomplete density mixture model ufθ. If
the data do not contain sample weights, the PDC estimator in is thus given by

θ̂PDC = arg min
θ

[
u2
∫
f 2
θ (y)dy − 2u

k

k∑

i=1

fθ(yi)

]
. (6.30)

The parameter u can be interpreted as a measure of the uncontaminated part of the
sample and is estimated by

û =
1
k

∑k
i=1 fθ̂(yi)∫
f 2
θ̂
(y)dy

. (6.31)

See Vandewalle et al. (2007) and references therein for more information on the PDC
estimator for the case without sample weights.

Taking sample weights into account, the weighted partial density component (wPDC)
estimator is obtained by generalizing Equations (6.30) and (6.31) to

θ̂wPDC = arg min
θ

[
u2
∫
f 2
θ (y)dy − 2u∑k

i=1wn−k+i

k∑

i=1

wn−k+ifθ(yi)

]
, (6.32)

û =

1∑k
i=1 wn−k+i

∑k
i=1wn−k+ifθ̂(yi)∫

f 2
θ̂
(y)dy

. (6.33)

The function thetaPDC() is implemented in package laeken to compute the PDC estima-
tor. As for the other estimators, it is necessary to specify either the number of observations
in the tail via the argument k, or the threshold via the argument x0. Sample weights can
be supplied using the argument w.

R> thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 4.132596

R> thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 4.132596

6.6 Estimation of the indicators using Pareto tail

modeling

Three approaches based on Pareto tail modeling for reducing the influence of outliers on
the social exclusion indicators are implemented in the R package laeken:

AMELI-WP10-D10.3

82
CHAPTER 6. ROBUST PARETO TAIL MODELING WITH PACKAGE

LAEKEN.

Calibration for nonrepresentative outliers (CN): Values larger than a certain quan-
tile of the fitted distribution are declared as nonrepresentative outliers. Since these
are considered to be unique to the population data, the sample weights of the cor-
responding observations are set to 1 and the weights of the remaining observations
are adjusted accordingly by calibration.

Replacement of nonrepresentative outliers (RN): Values larger than a certain quan-
tile of the fitted distribution are declared as nonrepresentative outliers. Only these
nonrepresentative outliers are replaced by values drawn from the fitted distribution,
thereby preserving the order of the original values.

Replacement of the tail (RT): All values above the threshold are replaced by values
drawn from the fitted distribution. The order of the original values is preserved.

An evaluation of the RT approach by means of a simulation study can be found in Alfons
et al. (2010).

Keep in mind that the largest observation in the example data eusilc was replaced by a
large outlier in Section 6.3. With the following command, the Gini coefficient is estimated
according to the Eurostat definition to show that even a single outlier can completely
distort the results for the standard estimation (see Section 6.2.2 for the original value).

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 29.24333

For Pareto tail modeling, the function paretoTail() is implemented in laeken. It re-
turns an object of class ’paretoTail’, which contains all the necessary information for
further analysis using the three approaches described above. Note that the household
IDs are supplied via the argument groups such that the Pareto distribution is fitted on
the household level rather than the individual level. In addition, the PDC is used by de-
fault to estimate the shape parameter. Other estimators can be specified via the method

argument.

R> fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090,

+ groups = eusilc$db030)

The function reweightOut() is available for semiparametric estimation with the CN
approach. It returns a vector of the recalibrated weights. In this example, regional
information is used as auxiliary variables for calibration. The function calibVars()

thereby transforms a factor into a matrix of binary variables, as required by the calibration
function calibWeights(), which is called internally. These recalibrated weights are then
simply used to estimate the Gini coefficient with function gini().

R> w <- reweightOut(fit, calibVars(eusilc$db040))

R> gini(eusilc$eqIncome, w)

Value:

[1] 26.45973

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6.7 Conclusions 83

For the RN approach, the function replaceOut() is implemented. Since values are drawn
from the fitted distribution to replace the observations flagged as outliers, the seed of the
random number generator is set first for reproducibility of the results. The returned vector
of incomes is then supplied to gini() to estimate the Gini coefficient.

R> set.seed(1234)

R> eqIncome <- replaceOut(fit)

R> gini(eqIncome, weights = eusilc$rb050)

Value:

[1] 26.46924

Similarly, the function replaceTail() is available for the RT approach. Again, the seed
of the random number generator is set beforehand.

R> set.seed(1234)

R> eqIncome <- replaceTail(fit)

R> gini(eqIncome, weights = eusilc$rb050)

Value:

[1] 26.64921

It should be noted that replaceTail() can also be used for the RN approach by set-
ting the argument all to FALSE. In fact, replaceOut(x, ...) is a simple wrapper for
replaceTail(x, all = FALSE, ...).

In any case, the estimates for the semiparametric approaches based on Pareto tail mo-
deling are very close to the original value before the outlier has been introduced (see
Section 6.2.2), whereas the standard estimation is corrupted by the outlier. Furthermore,
the estimation of other indicators such as the quintile share ratio (see Section 6.2.1) using
the semiparametric approaches is straightforward and hence not shown here.

6.7 Conclusions

This vignette shows the functionality of package laeken for robust semiparametric es-
timation of social exclusion indicators based on Pareto tail modeling. Most notably, it
demonstrates that the functions are easy to use and that the implementation follows an
object-oriented design. While the focus of the paper lies on the use of the package, a
mathematical description of the methods is given as well.

Furthermore, it is shown that the standard estimation of the inequality indicators can be
corrupted by a single outlier, thus underlining the need for robust alternatives. Three ap-
proaches for robust semiparametric estimation based on Pareto tail modeling are thereby
implemented such that the corresponding functions share a common interface for ease of
use.

AMELI-WP10-D10.3

84 Bibliography

Bibliography

Alfons, A., Holzer, J. and Templ, M. (2011a): laeken: Laeken indicators for mea-
suring social cohesion. R package version 0.2.2.
URL http://CRAN.R-project.org/package=laeken

Alfons, A. and Kraft, S. (2010): simPopulation: Simulation of synthetic populations
for surveys based on sample data. R package version 0.2.1.
URL http://CRAN.R-project.org/package=simPopulation

Alfons, A., Kraft, S., Templ, M. and Filzmoser, P. (2011b): Simulation of close-to-
reality population data for household surveys with application to EU-SILC. Statistical
Methods & Applications, pp. 1–25, DOI 10.1007/s10260-011-0163-2.
URL http://dx.doi.org/10.1007/s10260-011-0163-2

Alfons, A., Templ, M., Filzmoser, P. and Holzer, J. (2010): A comparison of ro-
bust methods for Pareto tail modeling in the case of Laeken indicators. Borgelt, C.,
González-Rodŕıguez, G., Trutschnig, W., Lubiano, M., Gil, M., Grzegor-
zewski, P. and Hryniewicz, O. (editors) Combining Soft Computing and Statistical
Methods in Data Analysis, Advances in Intelligent and Soft Computing, vol. 77, pp.
17–24, Heidelberg: Springer, ISBN 978-3-642-14745-6.

Beirlant, J., Vynckier, P. and Teugels, J. (1996a): Excess functions and estimation
of the extreme-value index. Bernoulli, 2 (4), pp. 293–318.

Beirlant, J., Vynckier, P. and Teugels, J. (1996b): Tail index estimation, Pareto
quantile plots, and regression diagnostics. Journal of the American Statistical Associa-
tion, 31 (436), pp. 1659–1667.

Borkovec, M. and Klüppelberg, C. (2000): Extremwerttheorie für Finanzzeitreihen
– ein unverzichtbares Werkzeug im Risikomanagement. Johanning, L. and Rudolph,
B. (editors) Handbuch Risikomanagement, pp. 219–241, Bad Soden: Uhlenbruch, ISBN
3933207150.

Danielsson, J., de Haan, L., Peng, L. and de Vries, C. (2001): Using a bootstrap
method to choose the sample fraction in tail index estimation. Journal of Multivariate
Analysis, 76 (2), pp. 226–248.

Dupuis, D. and Morgenthaler, S. (2002): Robust weighted likelihood estimators with
an application to bivariate extreme value problems. The Canadian Journal of Statistics,
30 (1), pp. 17–36.

Dupuis, D. and Victoria-Feser, M.-P. (2006): A robust prediction error criterion for
Pareto modelling of upper tails. The Canadian Journal of Statistics, 34 (4), pp. 639–658.

Eurostat (2004): Common cross-sectional EU indicators based on EU-SILC; the gender
pay gap. EU-SILC 131-rev/04, Unit D-2: Living conditions and social protection, Di-
rectorate D: Single Market, Employment and Social statistics, Eurostat, Luxembourg.

© http://ameli.surveystatistics.net/ - 2011

http://CRAN.R-project.org/package=laeken
http://CRAN.R-project.org/package=simPopulation
http://dx.doi.org/10.1007/s10260-011-0163-2
http://ameli.surveystatistics.net/

Bibliography 85

Eurostat (2009): Algorithms to compute social inclusion indicators based on EU-SILC
and adopted under the Open Method of Coordination (OMC). Doc. LC-ILC/39/09/EN-
rev.1, Unit F-3: Living conditions and social protection, Directorate F: Social and
information society statistics, Eurostat, Luxembourg.

Hill, B. (1975): A simple general approach to inference about the tail of a distribution.
The Annals of Statistics, 3 (5), pp. 1163–1174.

Holzer, J. (2009): Robust methods for the estimation of selected Laeken indicators.
Diploma thesis, Department of Statistics and Probability Theory, Vienna University of
Technology, Vienna, Austria.

Hulliger, B. and Schoch, T. (2009): Robustification of the quintile share ratio. New
Techniques and Technologies for Statistics, Brussels.

Kleiber, C. and Kotz, S. (2003): Statistical Size Distributions in Economics and
Actuarial Sciences. Hoboken: John Wiley & Sons, ISBN 0-471-15064-9.

R Development Core Team (2011): R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Templ, M. and Alfons, A. (2011a): Standard Methods for Point Estimation of
Social Inclusion Indicators using the R Package laeken. Research Report CS-2011-1,
Department of Statistics and Probability Theory, Vienna University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-1complete.

pdf

Templ, M. and Alfons, A. (2011b): Variance Estimation of Social Inclusion Indicators
using the R Package laeken. Research Report CS-2011-3, Department of Statistics
and Probability Theory, Vienna University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-3complete.

pdf

Terrell, G. (1990): Linear density estimates. Proceedings of the Statistical Computing
Section, pp. 297–302, American Statistical Association.

Van Kerm, P. (2007): Extreme incomes and the estimation of poverty and inequality
indicators from EU-SILC. IRISS Working Paper Series 2007-01, CEPS/INSTEAD.

Vandewalle, B., Beirlant, J., Christmann, A. and Hubert, M. (2007): A robust
estimator for the tail index of Pareto-type distributions. Computational Statistics &
Data Analysis, 51 (12), pp. 6252–6268.

AMELI-WP10-D10.3

http://www.R-project.org
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-3complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-3complete.pdf

Chapter 7

Variance Estimation of Indicators
using package laeken

Abstract This vignette illustrates the application of variance estimation procedures to
indicators on social exclusion and poverty using the R package laeken. To be more pre-
cise, it describes a general framework for estimating variance and confidence intervals of
indicators under complex sampling designs. Currently, the package is focused on boots-
trap approaches. While the naive bootstrap does not modify the weights of the bootstrap
samples, a calibrated version allows to calibrate each bootstrap sample on auxiliary in-
formation before deriving the bootstrap replicate estimate.

Keywords: Variance estimation, software, R

7.1 Introduction

When point estimates of indicators are computed from samples, it is important to also
obtain variance estimates and confidence intervals in order to account for variability due
to sampling. Other sources of variability such as data editing or imputation may need to
be considered as well, but this is not further discussed in this paper. While this vignette
targets the topic of variance and confidence interval estimation for the indicators on social
exclusion and poverty according to Eurostat (2004, 2009), the aim is not to describe
and evaluate the different approaches that have been proposed to date. Instead, the aim
is to present the functionality for the statistical environment R (R Development Core
Team, 2011) implemented in the add-on package laeken (Alfons et al., 2011a).

It should be noted that the basic design of the package, as well as standard point estimation
of the indicators on social exclusion and poverty, is discussed in detail in vignette laeken-
standard (Templ and Alfons, 2011). In addition, vignette laeken-pareto (Alfons
et al., 2011c) presents more sophisticated methods for point estimation of the indicators,
which are less influenced by outliers. Those documents can be viewed from within R with
the following commands:

R> vignette("laeken-standard")

R> vignette("laeken-pareto")

AMELI-WP10-D10.3

88
CHAPTER 7. VARIANCE ESTIMATION OF INDICATORS USING

PACKAGE LAEKEN

The data basis for the estimation of the indicators on social exclusion and poverty is
the European Union Statistics on Income and Living Conditions (EU-SILC), which is an
annual panel survey conducted in EU member states and other European countries. Pa-
ckage laeken provides the synthetic example data eusilc consisting of 14 827 observations
from 6 000 households. Furthermore, the data were generated from Austrian EU-SILC
survey data from 2006 using the data simulation methodology proposed by Alfons et al.
(2011b) and implemented in the R package simPopulation (Alfons and Kraft, 2010).
The data set eusilc is used in the code examples throughout the paper.

R> library("laeken")

R> data("eusilc")

The rest of the paper is organized as follows. Section 7.2 presents the general wrapper
function for estimating variance and confidence intervals of indicators in package laeken.
The naive and calibrated bootstrap approaches are discussed in Sections 7.3 and 7.4,
respectively. Section 7.5 concludes.

7.2 General wrapper function for variance estimation

The function variance() provides a flexible framework for estimating the variance and
confidence intervals of indicators such as the at-risk-of-poverty rate, the Gini coefficient,
the quintile share ratio and the relative median at-risk-of-poverty gap. For a mathematical
description and details on the implementation of these indicators in the R package laeken,
the reader is referred to vignette laeken-standard (Templ and Alfons, 2011). In
any case, variance() acts as a general wrapper function for computing variance and
confidence interval estimates of indicators on social exclusion and poverty with package
laeken. The arguments of function variance() are shown in the following:

R> args(variance)

function (inc, weights = NULL, years = NULL, breakdown = NULL,

design = NULL, data = NULL, indicator, alpha = 0.05, na.rm = FALSE,

type = "bootstrap", gender = NULL, method = "mean", ...)

NULL

All these arguments are fully described in the R help page of function variance(). The
most important arguments are:

inc: the income vector.

weights: an optional vector of sample weights.

breakdown: an optional vector giving different domains in which variances and confi-
dence intervals should be computed.

design: an optional vector or factor giving different strata for stratified sampling designs.

data: an optional data.frame. If supplied, each of the above arguments should be speci-
fied as a character string or an integer or logical vector specifying the corresponding
column.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

7.3 Naive bootstrap 89

indicator: an object inheriting from the class ’indicator’ that contains the point es-
timates of the indicator, such as ’arpr’ for the at-risk-of-poverty rate, ’qsr’ for
the quintile share ratio, ’rmpg’ for the relative median at-risk-of-poverty gap, or
’gini’ for the Gini coefficient.

type: a character string specifying the type of variance estimation to be used. Currently,
only ’bootstrap’ is implemented for variance estimation based on bootstrap re-
sampling.

In the following sections, two bootstrap methods for estimating the variance and confi-
dence intervals of point estimates for complex survey data are described. Furthermore,
their application using the function variance() from package laeken is demonstrated.

7.3 Naive bootstrap

Let X := (x1, . . . ,xn)′ denote a survey sample with n observations and p variables. Then
the naive bootstrap algorithm for estimating the variance and confidence interval of an
indicator can be summarized as follows:

1. Draw R independent bootstrap samples X∗
1, . . . ,X

∗
R from X.

2. Compute the bootstrap replicate estimates θ̂∗r := θ̂(X∗
r) for each bootstrap sample

X∗
r, r = 1, . . . , R, where θ̂ denotes an estimator for a certain indicator of interest.

Of course the sample weights always need to be considered for the computation of
the bootstrap replicate estimates.

3. Estimate the variance V (θ̂) by the variance of the R bootstrap replicate estimates:

V̂ (θ̂) :=
1

R− 1

R∑

r=1

(
θ̂∗r −

1

R

R∑

s=1

θ̂∗s

)2

. (7.1)

4. Estimate the confidence interval at confidence level 1 − α by one of the following
methods (for details, see Davison and Hinkley, 1997):

Percentile method:
[
θ̂∗((R+1)α

2
), θ̂
∗
((R+1)(1−α

2
))

]
, as suggested by Efron and Tib-

shirani (1993).

Normal approximation: θ̂ ± z1−α
2
· V̂ (θ̂)1/2 with z1−α

2
= Φ−1(1− α

2
).

Basic bootstrap method:
[
2θ̂ − θ̂∗((R+1)(1−α

2
)), 2θ̂ − θ̂∗((R+1)α

2
)

]
.

For the percentile and the basic bootstrap method, θ̂∗(1) ≤ . . . ≤ θ̂∗(R) denote the
order statistics of the bootstrap replicate estimates.

In the following example, the variance and confidence interval of the at-risk-of-poverty rate
are estimated with the naive bootstrap procedure. The output of function variance() is
an object of the same class as the point estimate supplied as the indicator argument, but
with additional components for the variance and confidence interval. In addition to the

AMELI-WP10-D10.3

90
CHAPTER 7. VARIANCE ESTIMATION OF INDICATORS USING

PACKAGE LAEKEN

point estimate, the income and the sample weights need to be supplied. Furthermore, a
stratified sampling design can be considered by specifying the design argument, in which
case observations are resampled separately within the strata. To ensure reproducibility
of the results, the seed of the random number generator is set.

R> a <- arpr("eqIncome", weights = "rb050", data = eusilc)

R> variance("eqIncome", weights = "rb050", design = "db040", data = eusilc,

+ indicator = a, bootType = "naive", seed = 123)

Value:

[1] 14.44422

Variance:

[1] 0.0920564

Confidence interval:

lower upper

13.87663 15.19417

Threshold:

[1] 10859.24

One of the most convenient features of package laeken is that indicators can be evaluated
for different subdomains using a single command. This also holds for variance estimation.
Using the breakdown argument, the example below produces variance and confidence
interval estimates for each NUTS2 region in addition to the overall values.

R> b <- arpr("eqIncome", weights = "rb050", breakdown = "db040",

+ data = eusilc)

R> variance("eqIncome", weights = "rb050", breakdown = "db040",

+ design = "db040", data = eusilc, indicator = b, bootType = "naive",

+ seed = 123)

Value:

[1] 14.44422

Variance:

[1] 0.0920564

Confidence interval:

lower upper

13.87663 15.19417

Value by stratum:

stratum value

1 Burgenland 19.53984

2 Carinthia 13.08627

3 Lower Austria 13.84362

4 Salzburg 13.78734

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

7.4 Calibrated bootstrap 91

5 Styria 14.37464

6 Tyrol 15.30819

7 Upper Austria 10.88977

8 Vienna 17.23468

9 Vorarlberg 16.53731

Variance by stratum:

stratum var

1 Burgenland 3.5105237

2 Carinthia 1.4133369

3 Lower Austria 0.4456053

4 Salzburg 1.2937926

5 Styria 0.4615967

6 Tyrol 1.0299617

7 Upper Austria 0.3785766

8 Vienna 0.6384621

9 Vorarlberg 1.7601223

Confidence interval by stratum:

stratum lower upper

1 Burgenland 16.072806 23.63099

2 Carinthia 10.640776 15.23716

3 Lower Austria 12.196265 15.17182

4 Salzburg 11.913708 16.13315

5 Styria 13.020339 15.89730

6 Tyrol 13.084487 17.51124

7 Upper Austria 9.960467 12.54200

8 Vienna 15.712609 18.96003

9 Vorarlberg 13.604720 19.23431

Threshold:

[1] 10859.24

It should be noted that the workhorse function bootVar() is called internally by va-

riance() for bootstrap variance and confidence interval estimation. The function boot-

Var() could also be called directly by the user in exactly the same manner. Moreover,
variance and confidence interval estimation for any other indicator implemented in package
laeken is straightforward—the application using function variance() or bootVar() re-
mains the same.

7.4 Calibrated bootstrap

Rao and Wu (1988) showed that the naive bootstrap is biased when used in the complex
survey context. They propose to increase the variance estimate in the h-th stratum by
a factor of nh−1

nh
(if the bootstrap sample is of the same size). In addition, they describe

AMELI-WP10-D10.3

92
CHAPTER 7. VARIANCE ESTIMATION OF INDICATORS USING

PACKAGE LAEKEN

extensions to sampling without replacement, unequal probability sampling, and two-stage
cluster sampling with equal probabilities and without replacement.

Deville and Särndal (1992) and Deville et al. (1993) provide a general description
on how to calibrate sample weights to account for known population totals. The naive
bootstrap does not include the recalibration of bootstrap samples in order to fit known
population totals and therefore is, strictly formulated, not suitable for many practical
applications. However, even though a bias might be introduced, the naive bootstrap
works well in many situations and is faster to compute than the calibrated version. Hence
it is a popular method often used in practice.

In real-world data, the inclusion probabilities for observations in the population are in ge-
neral not all equal, resulting in different design weights for the observations in the sample.
Furthermore, the initial design weights are in practice often adjusted by calibration, e.g.,
to account for non-response or so that certain known population totals can be precisely
estimated from the survey sample. To give a simplified example, if the population sizes
in different regions are known, the sample weights may be calibrated so that the Horvitz-
Thompson estimates (Horvitz and Thompson, 1952) of the population sizes equal the
known true values. However, when bootstrap samples are drawn from survey data, re-
sampling observations has the effect that such known population totals can no longer be
precisely estimated. As a remedy, the sample weights of each bootstrap sample should be
calibrated.

The calibrated version of the bootstrap thus results in more precise variance and confidence
interval estimation, but comes with higher computational costs than the naive approach.
In any case, the calibrated bootstrap algorithm is obtained by adding the following step
between Steps 1 and 2 of the naive bootstrap algorithm from Section 7.3:

1b. Calibrate the sample weights for each bootstrap sample X∗
r, r = 1, . . . , R. Gene-

ralized raking procedures are thereby used for calibration: either a multiplicative
method known as raking, an additive method or a logit method (see Deville and
Särndal, 1992; Deville et al., 1993).

The function call to variance() for the calibrated bootstrap is very similar to its coun-
terpart for the naive bootstrap. A matrix of auxiliary calibration variables needs to be
supplied via the argument aux. In addition, the argument totals can be used to sup-
ply the corresponding population totals. If the totals argument is omitted, as in the
following example, the population totals are computed from the sample weights of the
original sample. This follows the assumption that those weights are already calibrated on
the supplied auxiliary variables.

R> variance("eqIncome", weights = "rb050", design = "db040", data = eusilc,

+ indicator = a, X = calibVars(eusilc$db040), seed = 123)

Value:

[1] 14.44422

Variance:

[1] 0.09165169

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

7.5 Conclusions 93

Confidence interval:

lower upper

13.87817 15.19303

Threshold:

[1] 10859.24

Note that the function calibVars() transforms a factor into a matrix of binary variables,
as required by the calibration function calibWeights(), which is called internally. While
the default is to use raking for calibration, other methods can be specified via the method

argument.

7.5 Conclusions

Both bootstrap procedures for variance and confidence interval estimation of indicators
on social exclusion and poverty currently implemented in the R package laeken have their
strengths. While the naive bootstrap is faster to compute, the calibrated bootstrap in
general leads to more precise results. The implementation of other procedures such as
linearization techniques (Kovačević and Binder, 1997; Deville, 1999; Hulliger and
Münnich, 2006; Osier, 2009) or the delete-a-group jackknife (Kott, 2001) is future
work.

Furthermore, Alfons et al. (2009) demonstrated how the variance of indicators computed
from data with imputed values may be underestimated in bootstrap procedures, depending
on the indicator itself and the imputation procedure used. They proposed to use the
method described in Little and Rubin (2002), which consists of drawing bootstrap
samples from the original data with missing values, and to impute the missing data for each
bootstrap sample before computing the corresponding bootstrap replicate estimate. Of
course, this results in an additional increase of the computation time. The implementation
of this procedure in package laeken is future work. It should also be noted that multiple
imputation is a further possibility to consider the additional uncertainty from imputation
when estimating the variance of an indicator (see Little and Rubin, 2002).

Bibliography

Alfons, A., Holzer, J. and Templ, M. (2011a): laeken: Laeken indicators for mea-
suring social cohesion. R package version 0.2.2.
URL http://CRAN.R-project.org/package=laeken

Alfons, A. and Kraft, S. (2010): simPopulation: Simulation of synthetic populations
for surveys based on sample data. R package version 0.2.1.
URL http://CRAN.R-project.org/package=simPopulation

Alfons, A., Kraft, S., Templ, M. and Filzmoser, P. (2011b): Simulation of close-to-
reality population data for household surveys with application to EU-SILC. Statistical

AMELI-WP10-D10.3

http://CRAN.R-project.org/package=laeken
http://CRAN.R-project.org/package=simPopulation

94 Bibliography

Methods & Applications, pp. 1–25, DOI 10.1007/s10260-011-0163-2.
URL http://dx.doi.org/10.1007/s10260-011-0163-2

Alfons, A., Templ, M. and Filzmoser, P. (2009): On the influence of imputation
methods on Laeken indicators: simulations and recommendations. UNECE Worksession
on Statistical Data Editing, Neuchâtel, Switzerland.

Alfons, A., Templ, M., Filzmoser, P. and Holzer, J. (2011c): Robust Pareto
Tail Modeling for the Estimation of Social Inclusion Indicators using the R Package
laeken. Research Report CS-2011-2, Department of Statistics and Probability Theory,
Vienna University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-2complete.

pdf

Davison, A. and Hinkley, D. (1997): Bootstrap Methods and their Applications.
Cambridge University Press, ISBN 0 521 57471 4.

Deville, J.-C. (1999): Variance estimation for complex statistics and estimators: Li-
nearization and residual techniques. Survey Methodology, 25 (2), pp. 193–203.

Deville, J.-C. and Särndal, C.-E. (1992): Calibration estimators in survey sampling.
Journal of the American Statistical Association, 87 (418), pp. 376–382.

Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993): Generalized raking procedures
in survey sampling. Journal of the American Statistical Association, 88 (423), pp. 1013–
1020.

Efron, B. and Tibshirani, R. (1993): An Introduction to the Bootstrap. New York:
Chapman & Hall, ISBN 0-412-04231-2.

Eurostat (2004): Common cross-sectional EU indicators based on EU-SILC; the gender
pay gap. EU-SILC 131-rev/04, Unit D-2: Living conditions and social protection, Di-
rectorate D: Single Market, Employment and Social statistics, Eurostat, Luxembourg.

Eurostat (2009): Algorithms to compute social inclusion indicators based on EU-SILC
and adopted under the Open Method of Coordination (OMC). Doc. LC-ILC/39/09/EN-
rev.1, Unit F-3: Living conditions and social protection, Directorate F: Social and
information society statistics, Eurostat, Luxembourg.

Horvitz, D. and Thompson, D. (1952): A generalization of sampling without replace-
ment from a finite universe. Journal of the American Statistical Association, 47 (260),
pp. 663–685.

Hulliger, B. and Münnich, R. (2006): Variance estimation for complex surveys in
the presence of outliers. Proceedings of the Section on Survey Research Methods, pp.
3153–3156, American Statistical Association.

Kott, P. (2001): The delete-a-group jackknife. Journal of Official Statistics, 17 (4), pp.
521–526.

Kovačević, M. and Binder, D. (1997): Variance estimation for measures for income
inequality and polarization – The estimating equations approach. Journal of Official
Statistics, 13 (1), pp. 41–58.

© http://ameli.surveystatistics.net/ - 2011

http://dx.doi.org/10.1007/s10260-011-0163-2
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-2complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-2complete.pdf
http://ameli.surveystatistics.net/

Bibliography 95

Little, R. and Rubin, D. (2002): Statistical Analysis with Missing Data. New York:
John Wiley & Sons, 2nd ed., ISBN 0-471-18386-5.

Osier, G. (2009): Variance estimation for complex indicators of poverty and inequality
using linearization techniques. Survey Research Methods, 3 (3), pp. 167–195.

R Development Core Team (2011): R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-
07-0.
URL http://www.R-project.org

Rao, J. and Wu, C. (1988): Resampling inference with complex survey data. Journal of
the American Statistical Association, 83 (401), pp. 231–241.

Templ, M. and Alfons, A. (2011): Standard Methods for Point Estimation of
Social Inclusion Indicators using the R Package laeken. Research Report CS-2011-1,
Department of Statistics and Probability Theory, Vienna University of Technology.
URL http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-1complete.

pdf

AMELI-WP10-D10.3

http://www.R-project.org
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-1complete.pdf
http://www.statistik.tuwien.ac.at/forschung/CS/CS-2011-1complete.pdf

Package ‘simFrame’
March 21, 2011

Version 0.4.1

Date 2011-03-21

Title Simulation framework

Author Andreas Alfons

Maintainer Andreas Alfons <alfons@statistik.tuwien.ac.at>

Depends R (>= 2.10.0), Rcpp (>= 0.8.6), lattice, snow

Imports lattice, methods, stats, stats4, utils

Suggests laeken, mvtnorm, robCompositions, sampling

LinkingTo Rcpp

SystemRequirements GNU make

Description A general framework for statistical simulation.

License GPL (>= 2)

LazyLoad yes

Repository CRAN

Date/Publication 2011-03-21 18:23:42

R topics documented:
simFrame-package . 3
accessors . 5
aggregate-methods . 12
BasicVector-class . 14
clusterRunSimulation . 16
clusterSetup . 20
contaminate . 23
ContControl . 25

1

96 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2 R topics documented:

ContControl-class . 27
DARContControl-class . 28
DataControl-class . 30
DCARContControl-class . 32
draw . 34
eusilcP . 36
generate . 38
head-methods . 39
inclusionProb . 41
length-methods . 42
NAControl-class . 43
NumericMatrix-class . 45
OptBasicVector-class . 46
OptCall-class . 47
OptCharacter-class . 47
OptContControl-class . 48
OptDataControl-class . 49
OptNAControl-class . 49
OptNumeric-class . 50
OptSampleControl-class . 51
plot-methods . 51
runSimulation . 53
SampleControl-class . 57
SampleSetup-class . 59
sampling . 61
setNA . 63
setup . 65
simApply . 67
simBwplot . 69
SimControl-class . 71
simDensityplot . 75
SimResults-class . 77
simSample . 80
simXyplot . 81
Strata-class . 84
stratify . 86
stratify-utilities . 87
summary-methods . 89
SummarySampleSetup-class . 90
tail-methods . 92
TwoStageControl-class . 94
VirtualContControl-class . 97
VirtualDataControl-class . 98
VirtualNAControl-class . 99
VirtualSampleControl-class . 101

Index 103

97

AMELI-WP10-D10.3

simFrame-package 3

simFrame-package Simulation framework

Description

A general framework for statistical simulation.

Details

Package: simFrame
Version: 0.4.1
Date: 2011-03-21
Depends: R (>= 2.10.0), Rcpp (>= 0.8.6), lattice, snow
Imports: lattice, methods, stats, stats4, utils
Suggests: laeken, mvtnorm, robCompositions, sampling
LinkingTo: Rcpp
SystemRequirements: GNU make
License: GPL (>= 2)
LazyLoad: yes

Index:

BasicVector-class Class "BasicVector"
ContControl Create contamination control objects
ContControl-class Class "ContControl"
DARContControl-class Class "DARContControl"
DCARContControl-class Class "DCARContControl"
DataControl-class Class "DataControl"
NAControl-class Class "NAControl"
NumericMatrix-class Class "NumericMatrix"
OptBasicVector-class Class "OptBasicVector"
OptCall-class Class "OptCall"
OptCharacter-class Class "OptCharacter"
OptContControl-class Class "OptContControl"
OptDataControl-class Class "OptDataControl"
OptNAControl-class Class "OptNAControl"
OptNumeric-class Class "OptNumeric"
OptSampleControl-class

Class "OptSampleControl"
SampleControl-class Class "SampleControl"
SampleSetup-class Class "SampleSetup"
SimControl-class Class "SimControl"
SimResults-class Class "SimResults"
Strata-class Class "Strata"
SummarySampleSetup-class

98 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4 simFrame-package

Class "SummarySampleSetup"
TwoStageControl-class Class "TwoStageControl"
VirtualContControl-class

Class "VirtualContControl"
VirtualDataControl-class

Class "VirtualDataControl"
VirtualNAControl-class

Class "VirtualNAControl"
VirtualSampleControl-class

Class "VirtualSampleControl"
aggregate-methods Method for aggregating simulation results
clusterRunSimulation Run a simulation experiment on a snow cluster
clusterSetup Set up multiple samples on a snow cluster
contaminate Contaminate data
draw Draw a sample
eusilcP Synthetic EU-SILC data
generate Generate data
getAdd Accessor and mutator functions for objects
getStrataLegend Utility functions for stratifying data
head-methods Methods for returning the first parts of an

object
inclusionProb Inclusion probabilities
length-methods Methods for getting the length of an object
plot-methods Plot simulation results
runSimulation Run a simulation experiment
setNA Set missing values
setup Set up multiple samples
simApply Apply a function to subsets
simBwplot Box-and-whisker plots
simDensityplot Kernel density plots
simFrame-package Simulation framework
simSample Set up multiple samples
simXyplot X-Y plots
srs Random sampling
stratify Stratify data
summary-methods Methods for producing a summary of an object
tail-methods Methods for returning the last parts of an

object

Further information is available in the following vignettes:

simFrame-eusilc Applications of Statistical Simulation in the Case of EU-SILC: Using the R Package simFrame (source, pdf)
simFrame-intro An Object-Oriented Framework for Statistical Simulation: The R Package simFrame (source, pdf)

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.

99

AMELI-WP10-D10.3

accessors 5

Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

Maintainer: Andreas Alfons, <alfons@statistik.tuwien.ac.at>

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

accessors Accessor and mutator functions for objects

Description

Get values of slots of objects via accessor functions and set values via mutator functions. If no
mutator methods are available, the slots of the corresponding objects are not supposed to be changed
by the user.

Usage

getAdd(x)

getAux(x)
setAux(x, aux)

getCall(x)

getCollect(x)
setCollect(x, collect)

getColnames(x)
setColnames(x, colnames)

getContControl(x)
setContControl(x, contControl)

getControl(x)

getDataControl(x)

getDesign(x)
setDesign(x, design)

100 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6 accessors

getDistribution(x)
setDistribution(x, distribution)

getDots(x, ...)
setDots(x, dots, ...)

S4 method for signature 'TwoStageControl'
getDots(x, stage = NULL)
S4 method for signature 'TwoStageControl'
setDots(x, dots, stage = NULL)

getEpsilon(x)
setEpsilon(x, epsilon)

getFun(x, ...)
setFun(x, fun, ...)

S4 method for signature 'TwoStageControl'
getFun(x, stage = NULL)
S4 method for signature 'TwoStageControl'
setFun(x, fun, stage = NULL)

getGrouping(x)
setGrouping(x, grouping)

getIndices(x)

getIntoContamination(x)
setIntoContamination(x, intoContamination)

getK(x)
setK(x, k)

getLegend(x)

getNAControl(x)
setNAControl(x, NAControl)

getNArate(x)
setNArate(x, NArate)

getNr(x)

getNrep(x)

getProb(x, ...)
setProb(x, prob, ...)

101

AMELI-WP10-D10.3

accessors 7

S4 method for signature 'TwoStageControl'
getProb(x, stage = NULL)
S4 method for signature 'TwoStageControl'
setProb(x, prob, stage = NULL)

getSAE(x)
setSAE(x, SAE)

getSampleControl(x)

getSeed(x)

getSize(x, ...)
setSize(x, size, ...)

S4 method for signature 'TwoStageControl'
getSize(x, stage = NULL)
S4 method for signature 'TwoStageControl'
setSize(x, size, stage = NULL)

getSplit(x)

getTarget(x)
setTarget(x, target)

getValues(x)

Arguments

x an object.

aux a character string specifying an auxiliary variable (see "ContControl" and
"NAControl").

collect a logical indicating whether groups should be collected after sampling individ-
uals or sampled directly (see "SampleControl").

colnames a character vector specifying column names (see "DataControl").

contControl an object of class "ContControl" (see "SimControl").

design a character vector specifying columns to be used for stratification (see "SampleControl",
"TwoStageControl" and "SimControl").

distribution a function generating data (see "DataControl" and "DCARContControl").

dots additional arguments to be passed to a function (see "DataControl", "DARContControl",
"DCARContControl", "SampleControl", "TwoStageControl" and
"SimControl").

epsilon a numeric vector giving contamination levels (see "VirtualContControl").

fun a function (see "DARContControl", "SampleControl", "TwoStageControl"
and "SimControl").

102 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

8 accessors

grouping a character string specifying a grouping variable (see "ContControl", "NAControl",
"SampleControl" and "TwoStageControl").

intoContamination
a logical indicating whether missing values should also be inserted into contam-
inated observations (see "NAControl").

k a single positive integer giving the number of samples to be set up (see "VirtualSampleControl").

NAControl an object of class "NAControl" (see "SimControl").

NArate a numeric vector or matrix giving missing value rates (see "VirtualNAControl").

prob a numeric vector giving probability weights (see "SampleControl" and
"TwoStageControl").

SAE a logical indicating whether small area estimation will be used in the simulation
experiment (see "SimControl").

size a non-negative integer or a vector of non-negative integers (see "DataControl",
"SampleControl" and "TwoStageControl").

stage optional integer; for certain slots of "TwoStageControl", this allows to
access or modify only the list component for the specified stage. Use 1 for the
first stage and 2 for the second stage.

target a character vector specifying target columns (see "VirtualContControl"
and "VirtualNAControl").

... only used to allow for the stage argument in accessor and mutator methods
for "TwoStageControl". Otherwise no additional arguments are available.

Value

For accessor functions, the corresponding slot of x is returned.

For mutator functions, the corresponding slot of x is replaced.

Methods for function getAdd

signature(x = "SimResults")

Methods for functions getAux and setAux

signature(x = "ContControl")

signature(x = "NAControl")

Methods for function getCall

signature(x = "SampleSetup")

signature(x = "SimResults")

signature(x = "Strata")

Methods for functions getCollect and setCollect

signature(x = "SampleControl")

103

AMELI-WP10-D10.3

accessors 9

Methods for function getColnames

signature(x = "DataControl")

signature(x = "SimResults")

Methods for function setColnames

signature(x = "DataControl")

Methods for functions getContControl and setContControl

signature(x = "SimControl")

Methods for function getControl

signature(x = "SampleSetup")

signature(x = "SimResults")

Methods for function getDataControl

signature(x = "SimResults")

Methods for function getDesign

signature(x = "SampleControl")

signature(x = "TwoStageControl")

signature(x = "SimControl")

signature(x = "SimResults")

signature(x = "Strata")

Methods for function setDesign

signature(x = "SampleControl")

signature(x = "TwoStageControl")

signature(x = "SimControl")

Methods for functions getDistribution and setDistribution

signature(x = "DataControl")

signature(x = "DCARContControl")

Methods for functions getDots and setDots

signature(x = "DataControl")

signature(x = "DARContControl")

signature(x = "DCARContControl")

signature(x = "SampleControl")

signature(x = "TwoStageControl")

signature(x = "SimControl")

104 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

10 accessors

Methods for function getEpsilon

signature(x = "SimResults")

signature(x = "VirtualContControl")

Methods for function setEpsilon

signature(x = "VirtualContControl")

Methods for functions getFun and setFun

signature(x = "DARContControl")

signature(x = "SampleControl")

signature(x = "TwoStageControl")

signature(x = "SimControl")

Methods for functions getGrouping and setGrouping

signature(x = "ContControl")

signature(x = "NAControl")

signature(x = "SampleControl")

signature(x = "TwoStageControl")

Methods for function getIndices

signature(x = "SampleSetup")

Methods for functions getIntoContamination and setIntoContamination

signature(x = "NAControl")

Methods for functions getK and setK

signature(x = "VirtualSampleControl")

Methods for function getLegend

signature(x = "Strata")

Methods for functions getNAControl and setNAControl

signature(x = "SimControl")

Methods for function getNArate

signature(x = "SimResults")

signature(x = "VirtualNAControl")

105

AMELI-WP10-D10.3

accessors 11

Methods for function setNArate

signature(x = "VirtualNAControl")

Methods for function getNr

signature(x = "Strata")

Methods for function getNrep

signature(x = "SimResults")

Methods for function getProb

signature(x = "SampleControl")

signature(x = "TwoStageControl")

signature(x = "SampleSetup")

Methods for function setProb

signature(x = "SampleControl")

signature(x = "TwoStageControl")

Methods for functions getSAE and setSAE

signature(x = "SimControl")

Methods for function getSampleControl

signature(x = "SimResults")

Methods for function getSeed

signature(x = "SampleSetup")

signature(x = "SimResults")

Methods for function getSize

signature(x = "DataControl")

signature(x = "SampleControl")

signature(x = "TwoStageControl")

signature(x = "Strata")

signature(x = "SummarySampleSetup")

Methods for function setSize

signature(x = "DataControl")

signature(x = "SampleControl")

signature(x = "TwoStageControl")

106 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

12 aggregate-methods

Methods for function getSplit

signature(x = "Strata")

Methods for functions getTarget and setTarget

signature(x = "VirtualContControl")

signature(x = "VirtualNAControl")

Methods for function getValues

signature(x = "SimResults")

signature(x = "Strata")

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

Examples

nc <- NAControl(NArate = 0.05)
getNArate(nc)

setNArate(nc, c(0.01, 0.03, 0.05, 0.07, 0.09))
getNArate(nc)

aggregate-methods Method for aggregating simulation results

Description

Aggregate simulation results, i.e, split the data into subsets if applicable and compute summary
statistics.

Usage

S4 method for signature 'SimResults'
aggregate(x, select = NULL, FUN = mean, ...)

107

AMELI-WP10-D10.3

aggregate-methods 13

Arguments

x the simulation results to be aggregated, i.e., an object of class "SimResults".

select a character vector specifying the columns to be aggregated. It must be a subset
of the colnames slot of x, which is the default.

FUN a scalar function to compute the summary statistics (defaults to mean).

... additional arguments to be passed down to aggregate or apply.

Value

If contamination or missing values have been inserted or the simulations have been split into differ-
ent domains, a data.frame is returned, otherwise a vector.

Details

If contamination or missing values have been inserted or the simulations have been split into differ-
ent domains, aggregate is called to compute the summary statistics for the respective subsets.

Otherwise, apply is called to compute the summary statistics for each column specified by select.

Methods

x = "SimResults" aggregate simulation results.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

aggregate, apply, "SimResults"

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs
sim <- function(x) {

108 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

14 BasicVector-class

c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))
}

run simulation
results <- runSimulation(eusilcP,

sc, contControl = cc, fun = sim)

aggregate
aggregate(results) # means of results
aggregate(results, FUN = sd) # standard deviations of results

model-based simulation
set.seed(12345) # for reproducibility

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

run simulation
results <- runSimulation(dc, nrep = 50,

contControl = cc, design = "group", fun = sim)

aggregate
aggregate(results) # means of results
aggregate(results, FUN = sd) # standard deviations of results

BasicVector-class Class "BasicVector"

Description

Virtual class used internally for convenience.

109

AMELI-WP10-D10.3

BasicVector-class 15

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "OptBasicVector", directly.

Methods

getStrataLegend signature(x = "data.frame", design = "BasicVector"):
get a data.frame describing the strata.

getStrataSplit signature(x = "data.frame", design = "BasicVector"):
get a list in which each element contains the indices of the observations belonging to the cor-
responding stratum.

getStrataTable signature(x = "data.frame", design = "BasicVector"):
get a data.frame describing the strata and containing the stratum sizes.

getStratumSizes signature(x = "data.frame", design = "BasicVector"):
get the stratum sizes.

getStratumValues signature(x = "data.frame", design = "BasicVector",
split = "missing"): get the stratum number for each observation.

getStratumValues signature(x = "data.frame", design = "BasicVector",
split = "list"): get the stratum number for each observation.

simApply signature(x = "data.frame", design = "BasicVector", fun = "function"):
apply a function to subsets.

simSapply signature(x = "data.frame", design = "BasicVector", fun =
"function"): apply a function to subsets.

stratify signature(x = "data.frame", design = "BasicVector"): stratify
data.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

Examples

showClass("BasicVector")

110 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

16 clusterRunSimulation

clusterRunSimulation
Run a simulation experiment on a snow cluster

Description

Generic function for running a simulation experiment on a snow cluster.

Usage

clusterRunSimulation(cl, x, setup, nrep, control,
contControl = NULL, NAControl = NULL,
design = character(), fun, ...,
SAE = FALSE)

Arguments

cl a snow cluster.

x a data.frame (for design-based simulation or simulation based on real data)
or a control object for data generation inheriting from "VirtualDataControl"
(for model-based simulation or mixed simulation designs).

setup an object of class "SampleSetup", containing previously set up samples, or a
control class for setting up samples inheriting from "VirtualSampleControl".

nrep a non-negative integer giving the number of repetitions of the simulation ex-
periment (for model-based simulation, mixed simulation designs or simulation
based on real data).

control a control object of class "SimControl"

contControl an object of a class inheriting from "VirtualContControl", controlling
contamination in the simulation experiment.

NAControl an object of a class inheriting from "VirtualNAControl", controlling the
insertion of missing values in the simulation experiment.

design a character vector specifying variables (columns) to be used for splitting the
data into domains. The simulations, including contamination and the insertion
of missing values (unless SAE=TRUE), are then performed on every domain.

fun a function to be applied in each simulation run.

... for runSimulation, additional arguments to be passed to fun. For runSim,
arguments to be passed to runSimulation.

SAE a logical indicating whether small area estimation will be used in the simulation
experiment.

111

AMELI-WP10-D10.3

clusterRunSimulation 17

Details

Statistical simulation is embarrassingly parallel, hence computational performance can be increased
by parallel computing. In simFrame, parallel computing is implemented using the package snow.
Note that all objects and packages required for the computations (including simFrame) need to be
made available on every worker process.

In order to prevent problems with random numbers and to ensure reproducibility, random number
streams should be used. In R, the packages rlecuyer and rsprng are available for creating
random number streams, which are supported by snow via the function clusterSetupRNG.

There are some requirements for slot fun of the control object control. The function must return
a numeric vector, or a list with the two components values (a numeric vector) and add (additional
results of any class, e.g., statistical models). Note that the latter is computationally slightly more
expensive. A data.frame is passed to fun in every simulation run. The corresponding argument
must be called x. If comparisons with the original data need to be made, e.g., for evaluating the
quality of imputation methods, the function should have an argument called orig. If different
domains are used in the simulation, the indices of the current domain can be passed to the function
via an argument called domain.

For small area estimation, the following points have to be kept in mind. The slot design of
control for splitting the data must be supplied and the slot SAE must be set to TRUE. However,
the data are not actually split into the specified domains. Instead, the whole data set (sample) is
passed to fun. Also contamination and missing values are added to the whole data (sample). Last,
but not least, the function must have a domain argument so that the current domain can be extracted
from the whole data (sample).

In every simulation run, fun is evaluated using try. Hence no results are lost if computations fail
in any of the simulation runs.

Value

An object of class "SimResults".

Methods

cl = "ANY", x = "ANY", setup = "ANY", nrep = "ANY", control = "missing"
convenience wrapper that allows the slots of control to be supplied as arguments

cl = "ANY", x = "data.frame", setup = "missing", nrep = "numeric", control = "SimControl"
run a simulation experiment based on real data with repetitions on a snow cluster.

cl = "ANY", x = "data.frame", setup = "SampleSetup", nrep = "missing", control = "SimControl"
run a design-based simulation experiment with previously set up samples on a snow cluster.

cl = "ANY", x = "data.frame", setup = "VirtualSampleControl", nrep = "missing", control = "SimControl"
run a design-based simulation experiment on a snow cluster.

cl = "ANY", x = "VirtualDataControl", setup = "missing", nrep = "numeric", control = "SimControl"
run a model-based simulation experiment with repetitions on a snow cluster.

cl = "ANY", x = "VirtualDataControl", setup = "VirtualSampleControl", nrep = "numeric", control = "SimControl"
run a simulation experiment using a mixed simulation design with repetitions on a snow clus-
ter.

112 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

18 clusterRunSimulation

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

L’Ecuyer, P., Simard, R., Chen E and Kelton, W. (2002) An Object-Oriented Random-Number
Package with Many Long Streams and Substreams. Operations Research, 50(6), 1073–1075.

Mascagni, M. and Srinivasan, A. (2000) Algorithm 806: SPRNG: A Scalable Library for Pseudo-
random Number Generation. ACM Transactions on Mathematical Software, 26(3), 436–461.

Rossini, A., Tierney L. and Li, N. (2007) Simple Parallel Statistical Computing in R. Journal of
Computational and Graphical Statistics, 16(2), 399–420.

Tierney, L., Rossini, A. and Li, N. (2009) snow: A Parallel Computing Framework for the R
System. International Journal of Parallel Programming, 37(1), 78–90.

See Also

makeCluster, clusterSetupRNG, runSimulation, "SimControl", "SimResults",
simBwplot, simDensityplot, simXyplot

Examples

Not run:
these examples requires at least dual core processor

design-based simulation
data(eusilcP) #load data

start snow cluster
cl <- makeCluster(2, type = "SOCK")

load package and data on workers
clusterEvalQ(cl, {

library(simFrame)
data(eusilcP)

})

set up random number stream
clusterSetupRNG(cl, seed = "12345")

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs

113

AMELI-WP10-D10.3

clusterRunSimulation 19

sim <- function(x) {
c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))

}

export objects to workers
clusterExport(cl, c("sc", "cc", "sim"))

run simulation on snow cluster
results <- clusterRunSimulation(cl, eusilcP,

sc, contControl = cc, fun = sim)

stop snow cluster
stopCluster(cl)

explore results
head(results)
aggregate(results)
tv <- mean(eusilcP$eqIncome) # true population mean
plot(results, true = tv)

model-based simulation

start snow cluster
cl <- makeCluster(2, type = "SOCK")

load package on workers
clusterEvalQ(cl, library(simFrame))

set up random number stream
clusterSetupRNG(cl, seed = "12345")

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

114 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

20 clusterSetup

export objects to workers
clusterExport(cl, c("rgnorm", "means", "dc", "cc", "sim"))

run simulation on snow cluster
results <- clusterRunSimulation(cl, dc, nrep = 100,

contControl = cc, design = "group", fun = sim)

stop snow cluster
stopCluster(cl)

explore results
head(results)
aggregate(results)
plot(results, true = means)

End(Not run)

clusterSetup Set up multiple samples on a snow cluster

Description

Generic function for setting up multiple samples on a snow cluster.

Usage

clusterSetup(cl, x, control, ...)

S4 method for signature 'ANY,data.frame,SampleControl'
clusterSetup(cl, x, control)

Arguments

cl a snow cluster.

x the data.frame to sample from.

control a control object inheriting from the virtual class "VirtualSampleControl"
or a character string specifying such a control class (the default being "SampleControl").

... if control is a character string or missing, the slots of the control object may
be supplied as additional arguments. See "SampleControl" for details on
the slots.

Details

A fundamental design principle of the framework in the case of design-based simulation studies is
that the sampling procedure is separated from the simulation procedure. Two main advantages arise
from setting up all samples in advance.

115

AMELI-WP10-D10.3

clusterSetup 21

First, the repeated sampling reduces overall computation time dramatically in certain situations,
since computer-intensive tasks like stratification need to be performed only once. This is particu-
larly relevant for large population data. In close-to-reality simulation studies carried out in research
projects in survey statistics, often up to 10000 samples are drawn from a population of millions of
individuals with stratified sampling designs. For such large data sets, stratification takes a consider-
able amount of time and is a very memory-intensive task. If the samples are taken on-the-fly, i.e., in
every simulation run one sample is drawn, the function to take the stratified sample would typically
split the population into the different strata in each of the 10000 simulation runs. If all samples are
drawn in advance, on the other hand, the population data need to be split only once and all 10000
samples can be taken from the respective strata together.

Second, the samples can be stored permanently, which simplifies the reproduction of simulation re-
sults and may help to maximize comparability of results obtained by different partners in a research
project. In particular, this is useful for large population data, when complex sampling techniques
may be very time-consuming. In research projects involving different partners, usually different
groups investigate different kinds of estimators. If the two groups use not only the same population
data, but also the same previously set up samples, their results are highly comparable.

The computational performance of setting up multiple samples can be increased by parallel com-
puting. In simFrame, parallel computing is implemented using the package snow. Note that
all objects and packages required for the computations (including simFrame) need to be made
available on every worker process.

In order to prevent problems with random numbers and to ensure reproducibility, random number
streams should be used. In R, the packages rlecuyer and rsprng are available for creating
random number streams, which are supported by snow via the function clusterSetupRNG.

The control class "SampleControl" is highly flexible and allows stratified sampling as well as
sampling of whole groups rather than individuals with a specified sampling method. Hence it is of-
ten sufficient to implement the desired sampling method for the simple non-stratified case to extend
the existing framework. See "SampleControl" for some restrictions on the argument names of
such a function, which should return a vector containing the indices of the sampled observations.

Nevertheless, for very complex sampling procedures, it is possible to define a control class "MySampleControl"
extending "VirtualSampleControl", and the corresponding method clusterSetup(cl,
x, control) with signature ’ANY, data.frame, MySampleControl’. In order to op-
timize computational performance, it is necessary to efficiently set up multiple samples. Thereby
the slot k of "VirtualSampleControl" needs to be used to control the number of samples,
and the resulting object must be of class "SampleSetup".

Value

An object of class "SampleSetup".

Methods

cl = "ANY", x = "data.frame", control = "character" set up multiple sam-
ples on a snow cluster using a control class specified by the character string control. The
slots of the control object may be supplied as additional arguments.

cl = "ANY", x = "data.frame", control = "missing" set up multiple samples
on a snow cluster using a control object of class "SampleControl". Its slots may be
supplied as additional arguments.

116 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

22 clusterSetup

cl = "ANY", x = "data.frame", control = "SampleControl" set up multiple
samples on a snow cluster as defined by the control object control.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

L’Ecuyer, P., Simard, R., Chen E and Kelton, W. (2002) An Object-Oriented Random-Number
Package with Many Long Streams and Substreams. Operations Research, 50(6), 1073–1075.

Mascagni, M. and Srinivasan, A. (2000) Algorithm 806: SPRNG: A Scalable Library for Pseudo-
random Number Generation. ACM Transactions on Mathematical Software, 26(3), 436–461.

Rossini, A., Tierney L. and Li, N. (2007) Simple Parallel Statistical Computing in R. Journal of
Computational and Graphical Statistics, 16(2), 399–420.

Tierney, L., Rossini, A. and Li, N. (2009) snow: A Parallel Computing Framework for the R
System. International Journal of Parallel Programming, 37(1), 78–90.

See Also

makeCluster, clusterSetupRNG, setup, draw, "SampleControl", "TwoStageControl",
"VirtualSampleControl", "SampleSetup"

Examples

Not run:
these examples require at least dual core processor

load data
data(eusilcP)

start snow cluster
cl <- makeCluster(2, type = "SOCK")

load package and data on workers
clusterEvalQ(cl, {

library(simFrame)
data(eusilcP)

})

simple random sampling
srss <- clusterSetup(cl, eusilcP, size = 20, k = 4)
summary(srss)
draw(eusilcP[, c("id", "eqIncome")], srss, i = 1)

group sampling
gss <- clusterSetup(cl, eusilcP, grouping = "hid", size = 10, k = 4)

117

AMELI-WP10-D10.3

contaminate 23

summary(gss)
draw(eusilcP[, c("hid", "id", "eqIncome")], gss, i = 2)

stratified simple random sampling
ssrss <- clusterSetup(cl, eusilcP, design = "region",

size = c(2, 5, 5, 3, 4, 5, 3, 5, 2), k = 4)
summary(ssrss)
draw(eusilcP[, c("id", "region", "eqIncome")], ssrss, i = 3)

stratified group sampling
sgss <- clusterSetup(cl, eusilcP, design = "region",

grouping = "hid", size = c(2, 5, 5, 3, 4, 5, 3, 5, 2), k = 4)
summary(sgss)
draw(eusilcP[, c("hid", "id", "region", "eqIncome")], sgss, i = 4)

stop snow cluster
stopCluster(cl)

End(Not run)

contaminate Contaminate data

Description

Generic function for contaminating data.

Usage

contaminate(x, control, ...)

S4 method for signature 'data.frame,ContControl'
contaminate(x, control, i)

Arguments

x the data to be contaminated.

control a control object of a class inheriting from the virtual class "VirtualContControl"
or a character string specifying such a control class (the default being "DCARContControl").

i an integer giving the element of the slot epsilon of control to be used as
contamination level.

... if control is a character string or missing, the slots of the control object
may be supplied as additional arguments. See "DCARContControl" and
"DARContControl" for details on the slots.

118 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

24 contaminate

Details

With the control classes implemented in simFrame, contamination is modeled as a two-step pro-
cess. The first step is to select observations to be contaminated, the second is to model the distribu-
tion of the outliers.

In order to extend the framework by a user-defined control class "MyContControl" (which must
extend "VirtualContControl"), a method contaminate(x, control, i) with sig-
nature ’data.frame, MyContControl’ needs to be implemented. In case the contaminated
observations need to be identified at a later stage of the simulation, e.g., if conflicts with insert-
ing missing values should be avoided, a logical indicator variable ".contaminated" should be
added to the returned data set.

Value

A data.frame containing the contaminated data. In addition, the column ".contaminated",
which consists of logicals indicating the contaminated observations, is added to the data.frame.

Methods

x = "data.frame", control = "character" contaminate data using a control class
specified by the character string control. The slots of the control object may be supplied as
additional arguments.

x = "data.frame", control = "ContControl" contaminate data as defined by the
control object control.

x = "data.frame", control = "missing" contaminate data using a control object of
class "ContControl". Its slots may be supplied as additional arguments.

Note

Since version 0.3, contaminate no longer checks if the auxiliary variable with probability
weights are numeric and contain only finite positive values (sample still throws an error in these
cases). This has been removed to improve computational performance in simulation studies.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

Alfons, A., Templ, M. and Filzmoser, P. (2010) Contamination Models in the R Package simFrame
for Statistical Simulation. In Aivazian, S., Filzmoser, P. and Kharin, Y. (editors) Computer Data
Analysis and Modeling: Complex Stochastic Data and Systems, volume 2, 178–181. Minsk. ISBN
978-985-476-848-9.

Béguin, C. and Hulliger, B. (2008) The BACON-EEM Algorithm for Multivariate Outlier Detection
in Incomplete Survey Data. Survey Methodology, 34(1), 91–103.

119

AMELI-WP10-D10.3

ContControl 25

Hulliger, B. and Schoch, T. (2009) Robust Multivariate Imputation with Survey Data. 57th Session
of the International Statistical Institute, Durban.

See Also

"DCARContControl", "DARContControl", "ContControl", "VirtualContControl"

Examples

distributed completely at random
data(eusilcP)
sam <- draw(eusilcP[, c("id", "eqIncome")], size = 20)

using a control object
dcarc <- ContControl(target = "eqIncome", epsilon = 0.05,

dots = list(mean = 5e+05, sd = 10000), type = "DCAR")
contaminate(sam, dcarc)

supply slots of control object as arguments
contaminate(sam, target = "eqIncome", epsilon = 0.05,

dots = list(mean = 5e+05, sd = 10000))

distributed at random
require(mvtnorm)
mean <- rep(0, 2)
sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
foo <- generate(size = 10, distribution = rmvnorm,

dots = list(mean = mean, sigma = sigma))

using a control object
darc <- DARContControl(target = "V2",

epsilon = 0.2, fun = function(x) x * 100)
contaminate(foo, darc)

supply slots of control object as arguments
contaminate(foo, "DARContControl", target = "V2",

epsilon = 0.2, fun = function(x) x * 100)

ContControl Create contamination control objects

Description

Create objects of a class inheriting from "ContControl".

Usage

ContControl(..., type = c("DCAR", "DAR"))

120 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

26 ContControl

Arguments

... arguments passed to new("DCARContControl", ...) or new("DARContControl",
...), as determined by type.

type a character string specifying whether a control object of class "DCARContControl"
or "DARContControl" should be created.

Value

If type = "DCAR", an object of class "DCARContControl".

If type = "DAR", an object of class "DARContControl".

Note

This constructor exists mainly for back compatibility with early draft versions of simFrame.

Author(s)

Andreas Alfons

See Also

"DCARContControl", "DARContControl", "ContControl"

Examples

distributed completely at random
data(eusilcP)
sam <- draw(eusilcP[, c("id", "eqIncome")], size = 20)
dcarc <- ContControl(target = "eqIncome", epsilon = 0.05,

dots = list(mean = 5e+05, sd = 10000), type = "DCAR")
contaminate(sam, dcarc)

distributed at random
require(mvtnorm)
mean <- rep(0, 2)
sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
foo <- generate(size = 10, distribution = rmvnorm,

dots = list(mean = mean, sigma = sigma))
darc <- ContControl(target = "V2", epsilon = 0.2,

fun = function(x) x * 100, type = "DAR")
contaminate(foo, darc)

121

AMELI-WP10-D10.3

ContControl-class 27

ContControl-class Class "ContControl"

Description

Virtual class for controlling contamination in a simulation experiment (used internally).

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

target: Object of class "OptCharacter"; a character vector specifying specifying the vari-
ables (columns) to be contaminated, or NULL to contaminate all variables (except the addi-
tional ones generated internally).

epsilon: Object of class "numeric" giving the contamination levels.

grouping: Object of class "character" specifying a grouping variable (column) to be used
for contaminating whole groups rather than individual observations.

aux: Object of class "character" specifying an auxiliary variable (column) whose values are
used as probability weights for selecting the items (observations or groups) to be contami-
nated.

Extends

Class "VirtualContControl", directly. Class "OptContControl", by class "VirtualCon-
tControl", distance 2.

Accessor and mutator methods

In addition to the accessor and mutator methods for the slots inherited from "VirtualContControl",
the following are available:

getGrouping signature(x = "ContControl"): get slot grouping.

setGrouping signature(x = "ContControl"): set slot grouping.

getAux signature(x = "ContControl"): get slot aux.

setAux signature(x = "ContControl"): set slot aux.

Methods

In addition to the methods inherited from "VirtualContControl", the following are available:

contaminate signature(x = "data.frame", control = "ContControl"): con-
taminate data.

show signature(object = "ContControl"): print the object on the R console.

122 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

28 DARContControl-class

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Note

The slot groupingwas named group prior to version 0.2. Renaming the slot was necessary since
accessor and mutator functions were introduced in this version and a function named getGroup
already exists.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"DCARContControl", "DARContControl", "VirtualContControl", contaminate

Examples

showClass("ContControl")

DARContControl-class
Class "DARContControl"

Description

Class for controlling contamination in a simulation experiment. The values of the contaminated
observations will be distributed at random (DAR), i.e., they will depend on on the original values.

Objects from the Class

Objects can be created by calls of the form new("DARContControl", ...), DARContControl(...)
or ContControl(..., type="DAR").

123

AMELI-WP10-D10.3

DARContControl-class 29

Slots

target: Object of class "OptCharacter"; a character vector specifying specifying the vari-
ables (columns) to be contaminated, or NULL to contaminate all variables (except the addi-
tional ones generated internally).

epsilon: Object of class "numeric" giving the contamination levels.

grouping: Object of class "character" specifying a grouping variable (column) to be used
for contaminating whole groups rather than individual observations.

aux: Object of class "character" specifying an auxiliary variable (column) whose values are
used as probability weights for selecting the items (observations or groups) to be contami-
nated.

fun: Object of class "function" generating the values of the contamination data. The original
values of the observations to be contaminated will be passed as its first argument. Furthermore,
it should return an object that can be coerced to a data.frame, containing the contamination
data.

dots: Object of class "list" containing additional arguments to be passed to fun.

Extends

Class "ContControl", directly. Class "VirtualContControl", by class "ContControl",
distance 2. Class "OptContControl", by class "ContControl", distance 3.

Details

With this control class, contamination is modeled as a two-step process. The first step is to select
observations to be contaminated, the second is to model the distribution of the outliers. In this
case, the original values will be modified by the function given by slot fun, i.e., values of the
contaminated observations will depend on on the original values.

Accessor and mutator methods

In addition to the accessor and mutator methods for the slots inherited from "ContControl", the
following are available:

getFun signature(x = "DARContControl"): get slot fun.

setFun signature(x = "DARContControl"): set slot fun.

getDots signature(x = "DARContControl"): get slot dots.

setDots signature(x = "DARContControl"): set slot dots.

Methods

Methods are inherited from "ContControl".

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

124 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

30 DataControl-class

Note

The slot groupingwas named group prior to version 0.2. Renaming the slot was necessary since
accessor and mutator functions were introduced in this version and a function named getGroup
already exists.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

Alfons, A., Templ, M. and Filzmoser, P. (2010) Contamination Models in the R Package simFrame
for Statistical Simulation. In Aivazian, S., Filzmoser, P. and Kharin, Y. (editors) Computer Data
Analysis and Modeling: Complex Stochastic Data and Systems, volume 2, 178–181. Minsk. ISBN
978-985-476-848-9.

Béguin, C. and Hulliger, B. (2008) The BACON-EEM Algorithm for Multivariate Outlier Detection
in Incomplete Survey Data. Survey Methodology, 34(1), 91–103.

Hulliger, B. and Schoch, T. (2009) Robust Multivariate Imputation with Survey Data. 57th Session
of the International Statistical Institute, Durban.

See Also

"DCARContControl", "ContControl", "VirtualContControl", contaminate

Examples

require(mvtnorm)
mean <- rep(0, 2)
sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
foo <- generate(size = 10, distribution = rmvnorm,

dots = list(mean = mean, sigma = sigma))
cc <- DARContControl(target = "V2",

epsilon = 0.2, fun = function(x) x * 100)
contaminate(foo, cc)

DataControl-class Class "DataControl"

Description

Class for controlling model-based generation of data.

Objects from the Class

Objects can be created by calls of the form new("DataControl", ...) or DataControl(...).

125

AMELI-WP10-D10.3

DataControl-class 31

Slots

size: Object of class "numeric" giving the number of observations to be generated.

distribution: Object of class "function" generating the data, e.g., rnorm (the default)
or rmvnorm. It should take a positive integer as its first argument, giving the number of
observations to be generated, and return an object that can be coerced to a data.frame.

dots: Object of class "list" containing additional arguments to be passed to distribution.

colnames: Object of class "OptCharacter" ; a character vector to be used as column names
for the generated data.frame, or NULL.

Extends

Class "VirtualDataControl", directly. Class "OptDataControl", by class "VirtualDat-
aControl", distance 2.

Accessor and mutator methods

getSize signature(x = "DataControl"): get slot size.

setSize signature(x = "DataControl"): set slot size.

getDistribution signature(x = "DataControl"): get slot distribution.

setDistribution signature(x = "DataControl"): set slot distribution.

getDots signature(x = "DataControl"): get slot dots.

setDots signature(x = "DataControl"): set slot dots.

getColnames signature(x = "DataControl"): get slot colnames.

setColnames signature(x = "DataControl"): set slot colnames.

Methods

In addition to the methods inherited from "VirtualDataControl", the following are available:

generate signature(control = "DataControl"): generate data.

show signature(object = "DataControl"): print the object on the R console.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

126 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

32 DCARContControl-class

See Also

"VirtualDataControl", generate

Examples

require(mvtnorm)
mean <- rep(0, 2)
sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
dc <- DataControl(size = 10, distribution = rmvnorm,

dots = list(mean = mean, sigma = sigma))
generate(dc)

DCARContControl-class
Class "DCARContControl"

Description

Class for controlling contamination in a simulation experiment. The values of the contaminated
observations will be distributed completely at random (DCAR), i.e., they will not depend on on the
original values.

Objects from the Class

Objects can be created by calls of the form new("DCARContControl", ...), DCARContControl(...)
or ContControl(..., type="DCAR") (the latter exists mainly for back compatibility with
early draft versions of simFrame).

Slots

target: Object of class "OptCharacter"; a character vector specifying specifying the vari-
ables (columns) to be contaminated, or NULL to contaminate all variables (except the addi-
tional ones generated internally).

epsilon: Object of class "numeric" giving the contamination levels.

grouping: Object of class "character" specifying a grouping variable (column) to be used
for contaminating whole groups rather than individual observations (the same values are used
for all observations in the same group).

aux: Object of class "character" specifying an auxiliary variable (column) whose values are
used as probability weights for selecting the items (observations or groups) to be contami-
nated.

distribution: Object of class "function" generating the values of the contamination data,
e.g., rnorm (the default) or rmvnorm. It should take a non-negative integer as its first argu-
ment, giving the number of items to be created, and return an object that can be coerced to a
data.frame, containing the contamination data.

dots: Object of class "list" containing additional arguments to be passed to distribution.

127

AMELI-WP10-D10.3

DCARContControl-class 33

Extends

Class "ContControl", directly. Class "VirtualContControl", by class "ContControl",
distance 2. Class "OptContControl", by class "ContControl", distance 3.

Details

With this control class, contamination is modeled as a two-step process. The first step is to select
observations to be contaminated, the second is to model the distribution of the outliers. In this case,
the values of the contaminated observations will be generated by the function given by slot fun
and will not depend on on the original values.

Accessor and mutator methods

In addition to the accessor and mutator methods for the slots inherited from "ContControl", the
following are available:

getDistribution signature(x = "DCARContControl"): get slot distribution.

setDistribution signature(x = "DCARContControl"): set slot distribution.

getDots signature(x = "DCARContControl"): get slot dots.

setDots signature(x = "DCARContControl"): set slot dots.

Methods

Methods are inherited from "ContControl".

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Note

The slot groupingwas named group prior to version 0.2. Renaming the slot was necessary since
accessor and mutator functions were introduced in this version and a function named getGroup
already exists.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

Alfons, A., Templ, M. and Filzmoser, P. (2010) Contamination Models in the R Package simFrame
for Statistical Simulation. In Aivazian, S., Filzmoser, P. and Kharin, Y. (editors) Computer Data

128 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

34 draw

Analysis and Modeling: Complex Stochastic Data and Systems, volume 2, 178–181. Minsk. ISBN
978-985-476-848-9.

Béguin, C. and Hulliger, B. (2008) The BACON-EEM Algorithm for Multivariate Outlier Detection
in Incomplete Survey Data. Survey Methodology, 34(1), 91–103.

Hulliger, B. and Schoch, T. (2009) Robust Multivariate Imputation with Survey Data. 57th Session
of the International Statistical Institute, Durban.

See Also

"DARContControl", "ContControl", "VirtualContControl", contaminate

Examples

data(eusilcP)
sam <- draw(eusilcP[, c("id", "eqIncome")], size = 20)
cc <- DCARContControl(target = "eqIncome", epsilon = 0.05,

dots = list(mean = 5e+05, sd = 10000))
contaminate(sam, cc)

draw Draw a sample

Description

Generic function for drawing a sample.

Usage

draw(x, setup, ...)

S4 method for signature 'data.frame,SampleSetup'
draw(x, setup, i = 1)

S4 method for signature 'data.frame,VirtualSampleControl'
draw(x, setup)

Arguments

x the data to sample from.

setup an object of class "SampleSetup" containing previously set up samples, a
control object inheriting from the virtual class "VirtualSampleControl"
or a character string specifying such a control class (the default being "SampleControl").

i an integer specifying which one of the previously set up samples should be
drawn.

... if setup is a character string or missing, the slots of the control object may be
supplied as additional arguments. See "SampleControl" for details on the
slots.

129

AMELI-WP10-D10.3

draw 35

Value

A data.frame containing the sampled observations. In addition, the column ".weight",
which consists of the sample weights, is added to the data.frame.

Methods

x = "data.frame", setup = "character" draw a sample using a control class speci-
fied by the character string setup. The slots of the control object may be supplied as addi-
tional arguments.

x = "data.frame", setup = "missing" draw a sample using a control object of class
"SampleControl". Its slots may be supplied as additional arguments.

x = "data.frame", setup = "SampleSetup" draw a previously set up sample.

x = "data.frame", setup = "VirtualSampleControl" draw a sample using a con-
trol object inheriting from the virtual class "VirtualSampleControl".

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

setup, "SampleSetup", "SampleControl", "TwoStageControl", "VirtualSampleControl"

Examples

load data
data(eusilcP)

simple random sampling
draw(eusilcP[, c("id", "eqIncome")], size = 20)

group sampling
draw(eusilcP[, c("hid", "id", "eqIncome")],

grouping = "hid", size = 10)

stratified simple random sampling
draw(eusilcP[, c("id", "region", "eqIncome")],

design = "region", size = c(2, 5, 5, 3, 4, 5, 3, 5, 2))

stratified group sampling
draw(eusilcP[, c("hid", "id", "region", "eqIncome")],

design = "region", grouping = "hid",
size = c(2, 5, 5, 3, 4, 5, 3, 5, 2))

130 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

36 eusilcP

eusilcP Synthetic EU-SILC data

Description

This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on
Income and Living Conditions) data.

Usage

data(eusilcP)

Format

A data.frame with 58 654 observations on the following 28 variables:

hid integer; the household ID.

region factor; the federal state in which the household is located (levels Burgenland, Carinthia,
Lower Austria, Salzburg, Styria, Tyrol, Upper Austria, Vienna and Vorarlberg).

hsize integer; the number of persons in the household.

eqsize numeric; the equivalized household size according to the modified OECD scale.

eqIncome numeric; a simplified version of the equivalized household income.

pid integer; the personal ID.

id the household ID combined with the personal ID. The first five digits represent the household
ID, the last two digits the personal ID (both with leading zeros).

age integer; the person’s age.

gender factor; the person’s gender (levels male and female).

ecoStat factor; the person’s economic status (levels 1 = working full time, 2 = working part
time, 3 = unemployed, 4 = pupil, student, further training or unpaid work experience or in
compulsory military or community service, 5 = in retirement or early retirement or has given
up business, 6 = permanently disabled or/and unfit to work or other inactive person, 7 =
fulfilling domestic tasks and care responsibilities).

citizenship factor; the person’s citizenship (levels AT, EU and Other).

py010n numeric; employee cash or near cash income (net).

py050n numeric; cash benefits or losses from self-employment (net).

py090n numeric; unemployment benefits (net).

py100n numeric; old-age benefits (net).

py110n numeric; survivor’s benefits (net).

py120n numeric; sickness benefits (net).

py130n numeric; disability benefits (net).

py140n numeric; education-related allowances (net).

131

AMELI-WP10-D10.3

eusilcP 37

hy040n numeric; income from rental of a property or land (net).

hy050n numeric; family/children related allowances (net).

hy070n numeric; housing allowances (net).

hy080n numeric; regular inter-household cash transfer received (net).

hy090n numeric; interest, dividends, profit from capital investments in unincorporated business
(net).

hy110n numeric; income received by people aged under 16 (net).

hy130n numeric; regular inter-household cash transfer paid (net).

hy145n numeric; repayments/receipts for tax adjustment (net).

main logical; indicates the main income holder (i.e., the person with the highest income) of each
household.

Details

The data set is used as population data in some of the examples in package simFrame. Note that
it is included for illustrative purposes only. It consists of 25 000 households, hence it does not
represent the true population sizes of Austria and its regions.

Only a few of the large number of variables in the original survey are included in this example data
set. Some variable names are different from the standardized names used by the statistical agencies,
as the latter are rather cryptic codes. Furthermore, the variables hsize, eqsize, eqIncome and
age are not included in the standardized format of EU-SILC data, but have been derived from other
variables for convenience. Moreover, some very sparse income components were not included in
the the generation of this synthetic data set. Thus the equivalized household income is computed
from the available income components.

Source

This is a synthetic data set based on Austrian EU-SILC data from 2006. The original sample was
provided by Statistics Austria.

References

Eurostat (2004) Description of target variables: Cross-sectional and longitudinal. EU-SILC 065/04,
Eurostat.

Examples

data(eusilcP)
summary(eusilcP)

strata <- stratify(eusilcP, c("region", "gender"))
summary(strata)

132 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

38 generate

generate Generate data

Description

Generic function for generating data based on a (distribution) model.

Usage

generate(control, ...)

S4 method for signature 'DataControl'
generate(control)

Arguments

control a control object inheriting from the virtual class "VirtualDataControl"
or a character string specifying such a control class (the default being "DataControl").

... if control is a character string or missing, the slots of the control object may
be supplied as additional arguments. See "DataControl" for details on the
slots.

Details

The control class "DataControl" is quite simple but general. For user-defined data gener-
ation, it often suffices to implement a function and use it as the distribution slot in the
"DataControl" object. See "DataControl" for some requirements for such a function.

However, if more specialized data generation models are required, the framework can be extended
by defining a control class "MyDataControl" extending "VirtualDataControl" and the
corresponding method generate(control) with signature ’MyDataControl’. If, e.g., a
specific distribution or mixture of distributions is frequently used in simulation experiments, a dis-
tinct control class may be more convenient for the user.

Value

A data.frame.

Methods

control = "character" generate data using a control class specified by the character string
control. The slots of the control object may be supplied as additional arguments.

control = "missing" generate data using a control object of class "DataControl". Its
slots may be supplied as additional arguments.

control = "DataControl" generate data as defined by the control object control.

133

AMELI-WP10-D10.3

head-methods 39

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"DataControl", "VirtualDataControl"

Examples

require(mvtnorm)
mean <- rep(0, 2)
sigma <- matrix(c(1, 0.5, 0.5, 1), 2, 2)

using a control object
dc <- DataControl(size = 10, distribution = rmvnorm,

dots = list(mean = mean, sigma = sigma))
generate(dc)

supply slots of control object as arguments
generate(size = 10, distribution = rmvnorm,

dots = list(mean = mean, sigma = sigma))

head-methods Methods for returning the first parts of an object

Description

Return the first parts of an object.

Usage

S4 method for signature 'SampleSetup'
head(x, k = 6, n = 6, ...)

S4 method for signature 'SimControl'
head(x)

S4 method for signature 'SimResults'
head(x, ...)

S4 method for signature 'Strata'
head(x, ...)

134 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

40 head-methods

S4 method for signature 'VirtualContControl'
head(x)

S4 method for signature 'VirtualDataControl'
head(x)

S4 method for signature 'VirtualNAControl'
head(x)

S4 method for signature 'VirtualSampleControl'
head(x)

Arguments

x an object.

k for objects of class "SampleSetup", the number of set up samples to be kept
in the resulting object.

n for objects of class "SampleSetup", the number of indices to be kept in each
of the set up samples in the resulting object.

... additional arguments to be passed down to methods.

Value

An object of the same class as x, but in general smaller. See the “Methods” section below for
details.

Methods

signature(x = "SampleSetup") returns the first parts of set up samples. The first n in-
dices of each of the first k set up samples are kept.

signature(x = "SimControl") currently returns the object itself.

signature(x = "SimResults") returns the first parts of simulation results. The method
of head for the data.frame in slot values is thereby called.

signature(x = "Strata") returns the first parts of strata information. The method of
head for the vector in slot values is thereby called and the slots split and size are
adapted accordingly.

signature(x = "VirtualContControl") currently returns the object itself.

signature(x = "VirtualDataControl") currently returns the object itself.

signature(x = "VirtualNAControl") currently returns the object itself.

signature(x = "VirtualSampleControl") currently returns the object itself.

Author(s)

Andreas Alfons

135

AMELI-WP10-D10.3

inclusionProb 41

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

head, "SampleSetup", "SimResults", "Strata"

Examples

load data
data(eusilcP)

class "SampleSetup"
set up samples using group sampling
set <- setup(eusilcP, grouping = "hid", size = 1000, k = 50)
summary(set)
get the first 10 indices of each of the first 5 samples
head(set, k = 5, n = 10)

class "Strata"
set up samples using group sampling
strata <- stratify(eusilcP, "region")
summary(strata)
get strata information for the first 10 observations
head(strata, 10)

inclusionProb Inclusion probabilities

Description

Get the first-order inclusion probabilities from a vector of probability weights.

Usage

inclusionProb(prob, size)

Arguments

prob a numeric vector of non-negative probability weights.

size a non-negative integer giving the sample size.

Value

A numeric vector of the first-order inclusion probabilities.

136 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

42 length-methods

Note

This is a faster C implementation of inclusionprobabilities from package sampling.

Author(s)

Andreas Alfons

See Also

setup, "SampleSetup"

Examples

pweights <- sample(1:5, 25, replace = TRUE)
inclusionProb(pweights, 10)

length-methods Methods for getting the length of an object

Description

Get the length of an object.

Usage

S4 method for signature 'SampleSetup'
length(x)

S4 method for signature 'VirtualContControl'
length(x)

S4 method for signature 'VirtualNAControl'
length(x)

S4 method for signature 'VirtualSampleControl'
length(x)

Arguments

x an object.

Value

An integer giving the length of the object. See the “Methods” section below for details.

137

AMELI-WP10-D10.3

NAControl-class 43

Methods

signature(x = "SampleSetup") get the number of set up samples.

signature(x = "VirtualContControl") get the number of contamination levels to be
used.

signature(x = "VirtualNAControl") get the number of missing value rates to be used
(the length in case of a vector in slot NArate or the number of rows in case of a matrix).

signature(x = "VirtualSampleControl") get the number of samples to be set up.

Author(s)

Andreas Alfons

See Also

length

Examples

load data
data(eusilcP)

class "SampleSetup"
set up samples using group sampling
set <- setup(eusilcP, grouping = "hid", size = 1000, k = 50)
summary(set)
length(set)

class "ContControl"
cc <- ContControl(target = "eqIncome",

epsilon = c(0, 0.0025, 0.005, 0.0075, 0.01),
dots = list(mean = 5e+05, sd = 10000))

length(cc)

class "NAControl"
nc <- NAControl(target = "eqIncome", NArate = c(0.1, 0.2, 0.3))
length(nc)

NAControl-class Class "NAControl"

Description

Class for controlling the insertion of missing values in a simulation experiment.

Objects from the Class

Objects can be created by calls of the form new("NAControl", ...) or NAControl(...).

138 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

44 NAControl-class

Slots

target: Object of class "OptCharacter"; a character vector specifying the variables (columns)
in which missing values should be inserted, or NULL to insert missing values in all variables
(except the additional ones generated internally).

NArate: Object of class "NumericMatrix" giving the missing value rates, which may be
selected individually for the target variables. In case of a vector, the same missing value rates
are used for all target variables. In case of a matrix, on the other hand, the missing value rates
to be used for each target variable are given by the respective column.

grouping: Object of class "character" specifying a grouping variable (column) to be used
for setting whole groups to NA rather than individual values.

aux: Object of class "character" specifying auxiliary variables (columns) whose values are
used as probability weights for selecting the values to be set to NA in the respective target
variables. If only one variable (column) is specified, it is used for all target variables.

intoContamination: Object of class "logical" indicating whether missing values should
also be inserted into contaminated observations. The default is to insert missing values only
into non-contaminated observations.

Extends

Class "VirtualNAControl", directly. Class "OptNAControl", by class "VirtualNACon-
trol", distance 2.

Accessor and mutator methods

In addition to the accessor and mutator methods for the slots inherited from "VirtualNAControl",
the following are available:

getGrouping signature(x = "NAControl"): get slot grouping.

setGrouping signature(x = "NAControl"): set slot grouping.

getAux signature(x = "NAControl"): get slot aux.

setAux signature(x = "NAControl"): set slot aux.

getIntoContamination signature(x = "NAControl"): get slot intoContamination.

setIntoContamination signature(x = "NAControl"): set slot intoContamination.

Methods

In addition to the methods inherited from "VirtualNAControl", the following are available:

setNA signature(x = "data.frame", control = "NAControl"): set missing val-
ues.

show signature(object = "NAControl"): print the object on the R console.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

139

AMELI-WP10-D10.3

NumericMatrix-class 45

Note

Since version 0.3, this control class now allows to specify an auxiliary variable with probability
weights for each target variable.

The slot groupingwas named group prior to version 0.2. Renaming the slot was necessary since
accessor and mutator functions were introduced in this version and a function named getGroup
already exists.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"VirtualNAControl", setNA

Examples

data(eusilcP)
eusilcP$age[eusilcP$age < 0] <- 0 # this actually occurs
sam <- draw(eusilcP[, c("id", "age", "eqIncome")], size = 20)

missing completely at random
mcarc <- NAControl(target = "eqIncome", NArate = 0.2)
setNA(sam, mcarc)

missing at random
marc <- NAControl(target = "eqIncome", NArate = 0.2, aux = "age")
setNA(sam, marc)

missing not at random
mnarc <- NAControl(target = "eqIncome",

NArate = 0.2, aux = "eqIncome")
setNA(sam, mnarc)

NumericMatrix-class
Class "NumericMatrix"

Description

Virtual class used internally for convenience.

140 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

46 OptBasicVector-class

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "NumericMatrix" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

Examples

showClass("NumericMatrix")

OptBasicVector-class
Class "OptBasicVector"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptBasicVector" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

141

AMELI-WP10-D10.3

OptCall-class 47

See Also

"SampleControl"

Examples

showClass("OptBasicVector")

OptCall-class Class "OptCall"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptCall" in the signature.

Author(s)

Andreas Alfons

Examples

showClass("OptCall")

OptCharacter-class Class "OptCharacter"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptCharacter" in the signature.

142 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

48 OptContControl-class

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

Examples

showClass("OptCharacter")

OptContControl-class
Class "OptContControl"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptContControl" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

See Also

"SimControl"

Examples

showClass("OptContControl")

143

AMELI-WP10-D10.3

OptDataControl-class 49

OptDataControl-class
Class "OptDataControl"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptDataControl" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

See Also

"SimResults"

Examples

showClass("OptDataControl")

OptNAControl-class Class "OptNAControl"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

144 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

50 OptNumeric-class

Methods

No methods defined with class "OptNAControl" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

See Also

"SimControl"

Examples

showClass("OptNAControl")

OptNumeric-class Class "OptNumeric"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptNumeric" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

Examples

showClass("OptNumeric")

145

AMELI-WP10-D10.3

OptSampleControl-class 51

OptSampleControl-class
Class "OptSampleControl"

Description

Virtual class used internally for convenience.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "OptSampleControl" in the signature.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

See Also

"SimResults"

Examples

showClass("OptSampleControl")

plot-methods Plot simulation results

Description

Plot simulation results. A suitable plot function is selected automatically, depending on the structure
of the results.

Usage

S4 method for signature 'SimResults,missing'
plot(x, y , ...)

146 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

52 plot-methods

Arguments

x the simulation results.

y not used.

... further arguments to be passed to the selected plot function.

Value

An object of class "trellis". The update method can be used to update components of the
object and the print method (usually called by default) will plot it on an appropriate plotting
device.

Details

The results of simulation experiments with at most one contamination level and at most one missing
value rate are visualized by (conditional) box-and-whisker plots. For simulations involving different
contamination levels or missing value rates, the average results are plotted against the contamination
levels or missing value rates.

Methods

x = "SimResults", y = "missing" plot simulation results.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

simBwplot, simDensityplot, simXyplot, "SimResults"

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs
sim <- function(x) {

c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))

147

AMELI-WP10-D10.3

runSimulation 53

}

run simulation
results <- runSimulation(eusilcP,

sc, contControl = cc, fun = sim)

plot results
tv <- mean(eusilcP$eqIncome) # true population mean
plot(results, true = tv)

model-based simulation
set.seed(12345) # for reproducibility

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

run simulation
results <- runSimulation(dc, nrep = 50,

contControl = cc, design = "group", fun = sim)

plot results
plot(results, true = means)

runSimulation Run a simulation experiment

Description

Generic function for running a simulation experiment.

148 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

54 runSimulation

Usage

runSimulation(x, setup, nrep, control, contControl = NULL,
NAControl = NULL, design = character(), fun, ...,
SAE = FALSE)

runSim(...)

Arguments

x a data.frame (for design-based simulation or simulation based on real data)
or a control object for data generation inheriting from "VirtualDataControl"
(for model-based simulation or mixed simulation designs).

setup an object of class "SampleSetup", containing previously set up samples, or a
control class for setting up samples inheriting from "VirtualSampleControl".

nrep a non-negative integer giving the number of repetitions of the simulation ex-
periment (for model-based simulation, mixed simulation designs or simulation
based on real data).

control a control object of class "SimControl"

contControl an object of a class inheriting from "VirtualContControl", controlling
contamination in the simulation experiment.

NAControl an object of a class inheriting from "VirtualNAControl", controlling the
insertion of missing values in the simulation experiment.

design a character vector specifying variables (columns) to be used for splitting the
data into domains. The simulations, including contamination and the insertion
of missing values (unless SAE=TRUE), are then performed on every domain.

fun a function to be applied in each simulation run.

... for runSimulation, additional arguments to be passed to fun. For runSim,
arguments to be passed to runSimulation.

SAE a logical indicating whether small area estimation will be used in the simulation
experiment.

Details

For convenience, the slots of control may be supplied as arguments.

There are some requirements for slot fun of the control object control. The function must return
a numeric vector, or a list with the two components values (a numeric vector) and add (additional
results of any class, e.g., statistical models). Note that the latter is computationally slightly more
expensive. A data.frame is passed to fun in every simulation run. The corresponding argument
must be called x. If comparisons with the original data need to be made, e.g., for evaluating the
quality of imputation methods, the function should have an argument called orig. If different
domains are used in the simulation, the indices of the current domain can be passed to the function
via an argument called domain.

For small area estimation, the following points have to be kept in mind. The design for splitting
the data must be supplied and SAEmust be set to TRUE. However, the data are not actually split into
the specified domains. Instead, the whole data set (sample) is passed to fun. Also contamination

149

AMELI-WP10-D10.3

runSimulation 55

and missing values are added to the whole data (sample). Last, but not least, the function must have
a domain argument so that the current domain can be extracted from the whole data (sample).

In every simulation run, fun is evaluated using try. Hence no results are lost if computations fail
in any of the simulation runs.

runSim is a wrapper for runSimulation.

Value

An object of class "SimResults".

Methods

x = "ANY", setup = "ANY", nrep = "ANY", control = "missing" convenience
wrapper that allows the slots of control to be supplied as arguments

x = "data.frame", setup = "missing", nrep = "missing", control = "SimControl"
run a simulation experiment based on real data without repetitions (probably useless, but for
completeness).

x = "data.frame", setup = "missing", nrep = "numeric", control = "SimControl"
run a simulation experiment based on real data with repetitions.

x = "data.frame", setup = "SampleSetup", nrep = "missing", control = "SimControl"
run a design-based simulation experiment with previously set up samples.

x = "data.frame", setup = "VirtualSampleControl", nrep = "missing", control = "SimControl"
run a design-based simulation experiment.

x = "VirtualDataControl", setup = "missing", nrep = "missing", control = "SimControl"
run a model-based simulation experiment without repetitions (probably useless, but for com-
pleteness).

x = "VirtualDataControl", setup = "missing", nrep = "numeric", control = "SimControl"
run a model-based simulation experiment with repetitions.

x = "VirtualDataControl", setup = "VirtualSampleControl", nrep = "missing", control = "SimControl"
run a simulation experiment using a mixed simulation design without repetitions (probably
useless, but for completeness).

x = "VirtualDataControl", setup = "VirtualSampleControl", nrep = "numeric", control = "SimControl"
run a simulation experiment using a mixed simulation design with repetitions.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"SimControl", "SimResults", simBwplot, simDensityplot, simXyplot

150 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

56 runSimulation

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs
sim <- function(x) {

c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))
}

run simulation and explore results
results <- runSimulation(eusilcP,

sc, contControl = cc, fun = sim)
head(results)
aggregate(results)
tv <- mean(eusilcP$eqIncome) # true population mean
plot(results, true = tv)

model-based simulation
set.seed(12345) # for reproducibility

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

run simulation and explore results
results <- runSimulation(dc, nrep = 50,

contControl = cc, design = "group", fun = sim)
head(results)

151

AMELI-WP10-D10.3

SampleControl-class 57

aggregate(results)
plot(results, true = means)

SampleControl-class
Class "SampleControl"

Description

Class for controlling the setup of samples.

Objects from the Class

Objects can be created by calls of the form new("SampleControl", ...) or SampleControl(...).

Slots

design: Object of class "BasicVector" specifying variables (columns) to be used for strati-
fied sampling.

grouping: Object of class "BasicVector" specifying a grouping variable (column) to be
used for sampling whole groups rather than individual observations.

collect: Object of class "logical"; if a grouping variable is specified and this is FALSE
(which is the default value), groups are sampled directly. If grouping variable is specified
and this is TRUE, individuals are sampled in a first step. In a second step, all individuals that
belong to the same group as any of the sampled individuals are collected and added to the
sample. If no grouping variable is specified, this is ignored.

fun: Object of class "function" to be used for sampling (defaults to srs). It should return a
vector containing the indices of the sampled items (observations or groups).

size: Object of class "OptNumeric"; an optional non-negative integer giving the number of
items (observations or groups) to sample. In case of stratified sampling, a vector of non-
negative integers, each giving the number of items to sample from the corresponding stratum,
may be supplied.

prob: Object of class "OptBasicVector"; an optional numeric vector giving the probability
weights, or a character string or logical vector specifying a variable (column) that contains the
probability weights.

dots: Object of class "list" containing additional arguments to be passed to fun.

k: Object of class "numeric"; a single positive integer giving the number of samples to be set
up.

Details

There are some restrictions on the argument names of the function supplied to fun. If it needs
population data as input, the corresponding argument should be called x and should expect a
data.frame. If the sampling method only needs the population size as input, the argument
should be called N. Note that fun is not expected to have both x and N as arguments, and that the

152 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

58 SampleControl-class

latter is much faster for stratified sampling or group sampling. Furthermore, if the function has argu-
ments for sample size and probability weights, they should be called size and prob, respectively.
Note that a function with prob as its only argument is perfectly valid (for probability proportional
to size sampling). Further arguments of fun may be supplied as a list via the slot dots.

Extends

Class "VirtualSampleControl", directly. Class "OptSampleControl", by class "Virtu-
alSampleControl", distance 2.

Accessor and mutator methods

In addition to the accessor and mutator methods for the slots inherited from "VirtualSampleControl",
the following are available:

getDesign signature(x = "SampleControl"): get slot design.

setDesign signature(x = "SampleControl"): set slot design.

getGrouping signature(x = "SampleControl"): get slot grouping.

setGrouping signature(x = "SampleControl"): set slot grouping.

getCollect signature(x = "SampleControl"): get slot collect.

setCollect signature(x = "SampleControl"): set slot collect.

getFun signature(x = "SampleControl"): get slot fun.

setFun signature(x = "SampleControl"): set slot fun.

getSize signature(x = "SampleControl"): get slot size.

setSize signature(x = "SampleControl"): set slot size.

getProb signature(x = "SampleControl"): get slot prob.

setProb signature(x = "SampleControl"): set slot prob.

getDots signature(x = "SampleControl"): get slot dots.

setDots signature(x = "SampleControl"): set slot dots.

Methods

In addition to the methods inherited from "VirtualSampleControl", the following are avail-
able:

clusterSetup signature(cl = "ANY", x = "data.frame", control = "SampleControl"):
set up multiple samples on a snow cluster.

setup signature(x = "data.frame", control = "SampleControl"): set up mul-
tiple samples.

show signature(object = "SampleControl"): print the object on the R console.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

153

AMELI-WP10-D10.3

SampleSetup-class 59

Note

The slots grouping and fun were named group and method, respectively, prior to version
0.2. Renaming the slots was necessary since accessor and mutator functions were introduced in this
version and functions named getGroup, getMethod and setMethod already exist.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"VirtualSampleControl", "TwoStageControl", "SampleSetup", setup, draw

Examples

data(eusilcP)

simple random sampling
srsc <- SampleControl(size = 20)
draw(eusilcP[, c("id", "eqIncome")], srsc)

group sampling
gsc <- SampleControl(grouping = "hid", size = 10)
draw(eusilcP[, c("hid", "hid", "eqIncome")], gsc)

stratified simple random sampling
ssrsc <- SampleControl(design = "region",

size = c(2, 5, 5, 3, 4, 5, 3, 5, 2))
draw(eusilcP[, c("id", "region", "eqIncome")], ssrsc)

stratified group sampling
sgsc <- SampleControl(design = "region", grouping = "hid",

size = c(2, 5, 5, 3, 4, 5, 3, 5, 2))
draw(eusilcP[, c("hid", "id", "region", "eqIncome")], sgsc)

SampleSetup-class Class "SampleSetup"

Description

Class for set up samples.

154 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

60 SampleSetup-class

Objects from the Class

Objects can be created by calls of the form new("SampleSetup", ...) or SampleSetup(...).

However, objects are expected to be created by the function setup or clusterSetup, these
constructor functions are not supposed to be called by the user.

Slots

indices: Object of class "list"; each list element contains the indices of the sampled obser-
vations.

prob: Object of class "numeric" giving the inclusion probabilities.

control: Object of class "VirtualSampleControl"; the control object used to set up the
samples.

seed: Object of class "list" containing the seeds of the random number generator before and
after setting up the samples, respectively (for replication purposes).

call: Object of class "SimCall"; the function call used to set up the samples, or NULL.

Accessor methods

getIndices signature(x = "SampleSetup"): get slot indices.

getProb signature(x = "SampleSetup"): get slot prob.

getControl signature(x = "SampleSetup"): get slot control.

getSeed signature(x = "SampleSetup"): get slot seed.

getCall signature(x = "SampleSetup"): get slot call.

Methods

clusterRunSimulation signature(cl = "ANY", x = "data.frame", setup =
"SampleSetup", nrep = "missing", control = "SimControl"): run a sim-
ulation experiment on a snow cluster.

draw signature(x = "data.frame", setup = "SampleSetup"): draw a sample.

head signature(x = "SampleSetup"): returns the first parts of set up samples.

length signature(x = "SampleSetup"): get the number of set up samples.

runSimulation signature(x = "data.frame", setup = "SampleSetup", nrep
= "missing", control = "SimControl"): run a simulation experiment.

show signature(object = "SampleSetup"): print set up samples on the R console.

summary signature(object = "SampleSetup"): produce a summary of set up sam-
ples.

tail signature(x = "SampleSetup"): returns the last parts of set up samples.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

155

AMELI-WP10-D10.3

sampling 61

Note

There are no mutator methods available since the slots are not supposed to be changed by the user.

Furthermore, the slot seed was added in version 0.2, and the slot control was added in version
0.3. Since the control object used to set up the samples is now stored, the redundant slots design,
grouping, collect and fun were removed. This has been done as preparation for additional
control classes for sampling, which will be introduced in future versions.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"SampleControl", "TwoStageControl", "VirtualSampleControl", setup, draw

Examples

showClass("SampleSetup")

sampling Random sampling

Description

Functions for random sampling.

Usage

srs(N, size, replace = FALSE)

ups(N, size, prob, replace = FALSE)

brewer(prob, eps = 1e-06)

midzuno(prob, eps = 1e-06)

tille(prob, eps = 1e-06)

156 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

62 sampling

Arguments

N a non-negative integer giving the number of observations from which to sample.

size a non-negative integer giving the number of observations to sample.

prob for ups, a numeric vector giving the probability weights (see sample). For
tille and midzuno, a vector of inclusion probabilities (see inclusionProb).

replace a logical indicating whether sampling should be performed with or without re-
placement.

eps a numeric control value giving the desired accuracy.

Details

srs and ups are wrappers for simple random sampling and unequal probability sampling, respec-
tively. Both functions make use of sample.

brewer, midzuno and tille perform Brewer’s, Midzuno’s and Tillé’s method, respectively,
for unequal probability sampling without replacement and fixed sample size.

Value

An integer vector giving the indices of the sampled observations.

Note

brewer, midzuno and tille are faster C implementations of UPbrewer, UPmidzuno and
UPtille, respectively, from package sampling.

Author(s)

Andreas Alfons

References

Brewer, K. (1975), A simple procedure for sampling π pswor, Australian Journal of Statistics, 17(3),
166-172.

Midzuno, H. (1952) On the sampling system with probability proportional to sum of size. Annals
of the Institute of Statistical Mathematics, 3(2), 99–107.

Tillé, Y. (1996) An elimination procedure of unequal probability sampling without replacement.
Biometrika, 83(1), 238–241.

Deville, J.-C. and Tillé, Y. (1998) Unequal probability sampling without replacement through a
splitting method. Biometrika, 85(1), 89–101.

See Also

"SampleControl", "TwoStageControl", setup, inclusionProb, sample, UPbrewer,
UPmidzuno, UPtille

157

AMELI-WP10-D10.3

setNA 63

Examples

simple random sampling
without replacement
srs(10, 5)
with replacement
srs(5, 10, replace = TRUE)

unequal probability sampling
without replacement
ups(10, 5, prob = 1:10)
with replacement
ups(5, 10, prob = 1:5, replace = TRUE)

Brewer, Midzuno and Tille sampling
define inclusion probabilities
prob <- c(0.2,0.7,0.8,0.5,0.4,0.4)
Brewer sampling
brewer(prob)
Midzuno sampling
midzuno(prob)
Tille sampling
tille(prob)

setNA Set missing values

Description

Generic function for inserting missing values into data.

Usage

setNA(x, control, ...)

S4 method for signature 'data.frame,NAControl'
setNA(x, control, i)

Arguments

x the data in which missing values should be inserted.

control a control object inheriting from the virtual class "VirtualNAControl" or a
character string specifying such a control class (the default being "NAControl").

i an integer giving the element or row of the slot NArate of control to be
used as missing value rate(s).

... if control is a character string or missing, the slots of the control object may
be supplied as additional arguments. See "NAControl" for details on the
slots.

158 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

64 setNA

Details

In order to extend the framework by a user-defined control class "MyNAControl" (which must
extend "VirtualNAControl"), a method setNA(x, control, i)with signature ’data.frame,
MyNAControl’ needs to be implemented.

Value

A data.frame containing the data with missing values.

Methods

x = "data.frame", control = "character" set missing values using a control class
specified by the character string control. The slots of the control object may be supplied as
additional arguments.

x = "data.frame", control = "missing" set missing values using a control object
of class "NAControl". Its slots may be supplied as additional arguments.

x = "data.frame", control = "NAControl" set missing values as defined by the con-
trol object control.

Note

Since version 0.3, setNA no longer checks if auxiliary variable(s) with probability weights are
numeric and contain only finite positive values (sample still throws an error in these cases). This
has been removed to improve computational performance in simulation studies.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"NAControl", "VirtualNAControl"

Examples

data(eusilcP)
eusilcP$age[eusilcP$age < 0] <- 0 # this actually occurs
sam <- draw(eusilcP[, c("id", "age", "eqIncome")], size = 20)

using control objects
missing completely at random
mcarc <- NAControl(target = "eqIncome", NArate = 0.2)
setNA(sam, mcarc)

159

AMELI-WP10-D10.3

setup 65

missing at random
marc <- NAControl(target = "eqIncome", NArate = 0.2, aux = "age")
setNA(sam, marc)

missing not at random
mnarc <- NAControl(target = "eqIncome",

NArate = 0.2, aux = "eqIncome")
setNA(sam, mnarc)

supply slots of control object as arguments
missing completely at random
setNA(sam, target = "eqIncome", NArate = 0.2)

missing at random
setNA(sam, target = "eqIncome", NArate = 0.2, aux = "age")

missing not at random
setNA(sam, target = "eqIncome", NArate = 0.2, aux = "eqIncome")

setup Set up multiple samples

Description

Generic function for setting up multiple samples.

Usage

setup(x, control, ...)

S4 method for signature 'data.frame,SampleControl'
setup(x, control)

Arguments

x the data to sample from.

control a control object inheriting from the virtual class "VirtualSampleControl"
or a character string specifying such a control class (the default being "SampleControl").

... if control is a character string or missing, the slots of the control object may
be supplied as additional arguments. See "SampleControl" for details on
the slots.

160 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

66 setup

Details

A fundamental design principle of the framework in the case of design-based simulation studies is
that the sampling procedure is separated from the simulation procedure. Two main advantages arise
from setting up all samples in advance.

First, the repeated sampling reduces overall computation time dramatically in certain situations,
since computer-intensive tasks like stratification need to be performed only once. This is particu-
larly relevant for large population data. In close-to-reality simulation studies carried out in research
projects in survey statistics, often up to 10000 samples are drawn from a population of millions of
individuals with stratified sampling designs. For such large data sets, stratification takes a consider-
able amount of time and is a very memory-intensive task. If the samples are taken on-the-fly, i.e., in
every simulation run one sample is drawn, the function to take the stratified sample would typically
split the population into the different strata in each of the 10000 simulation runs. If all samples are
drawn in advance, on the other hand, the population data need to be split only once and all 10000
samples can be taken from the respective strata together.

Second, the samples can be stored permanently, which simplifies the reproduction of simulation re-
sults and may help to maximize comparability of results obtained by different partners in a research
project. In particular, this is useful for large population data, when complex sampling techniques
may be very time-consuming. In research projects involving different partners, usually different
groups investigate different kinds of estimators. If the two groups use not only the same population
data, but also the same previously set up samples, their results are highly comparable.

The control class "SampleControl" is highly flexible and allows stratified sampling as well as
sampling of whole groups rather than individuals with a specified sampling method. Hence it is of-
ten sufficient to implement the desired sampling method for the simple non-stratified case to extend
the existing framework. See "SampleControl" for some restrictions on the argument names of
such a function, which should return a vector containing the indices of the sampled observations.

Nevertheless, for very complex sampling procedures, it is possible to define a control class "MySampleControl"
extending "VirtualSampleControl", and the corresponding method setup(x, control)
with signature ’data.frame, MySampleControl’. In order to optimize computational per-
formance, it is necessary to efficiently set up multiple samples. Thereby the slot k of "VirtualSampleControl"
needs to be used to control the number of samples, and the resulting object must be of class
"SampleSetup".

Value

An object of class "SampleSetup".

Methods

x = "data.frame", control = "character" set up multiple samples using a control
class specified by the character string control. The slots of the control object may be
supplied as additional arguments.

x = "data.frame", control = "missing" set up multiple samples using a control ob-
ject of class "SampleControl". Its slots may be supplied as additional arguments.

x = "data.frame", control = "SampleControl" set up multiple samples as defined
by the control object control.

161

AMELI-WP10-D10.3

simApply 67

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

simSample, draw, "SampleControl", "TwoStageControl", "VirtualSampleControl",
"SampleSetup"

Examples

data(eusilcP)

simple random sampling
srss <- setup(eusilcP, size = 20, k = 4)
summary(srss)
draw(eusilcP[, c("id", "eqIncome")], srss, i = 1)

group sampling
gss <- setup(eusilcP, grouping = "hid", size = 10, k = 4)
summary(gss)
draw(eusilcP[, c("hid", "id", "eqIncome")], gss, i = 2)

stratified simple random sampling
ssrss <- setup(eusilcP, design = "region",

size = c(2, 5, 5, 3, 4, 5, 3, 5, 2), k = 4)
summary(ssrss)
draw(eusilcP[, c("id", "region", "eqIncome")], ssrss, i = 3)

stratified group sampling
sgss <- setup(eusilcP, design = "region",

grouping = "hid", size = c(2, 5, 5, 3, 4, 5, 3, 5, 2), k = 4)
summary(sgss)
draw(eusilcP[, c("hid", "id", "region", "eqIncome")], sgss, i = 4)

simApply Apply a function to subsets

Description

Generic functions for applying a function to subsets of a data set.

162 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

68 simApply

Usage

simApply(x, design, fun, ...)

simSapply(x, design, fun, ..., simplify = TRUE)

Arguments

x the data.frame to be subsetted.

design a character, logical or numeric vector specifying the variables (columns) used
for subsetting.

fun a function to be applied to the subsets.

simplify a logical indicating whether the results should be simplified to a vector or matrix
(if possible).

... additional arguments to be passed to fun.

Value

For simApply a data.frame.

For simSapply, a list, vector or matrix (see sapply).

Methods for function simApply

x = "data.frame", design = "BasicVector", fun = "function" apply a func-
tion to subsets given by the variables (columns) in design.

x = "data.frame", design = "Strata", fun = "function" apply a function to
subsets given by design.

Methods for function simSapply

x = "data.frame", design = "BasicVector", fun = "function" apply a func-
tion to subsets given by the variables (columns) in design.

x = "data.frame", design = "Strata", fun = "function" apply a function to
subsets given by design.

Author(s)

Andreas Alfons

See Also

sapply

163

AMELI-WP10-D10.3

simBwplot 69

Examples

data(eusilcP)
eusilcP <- eusilcP[, c("region", "gender", "eqIncome")]

returns data.frame
simApply(eusilcP, c("region", "gender"),

function(x) median(x$eqIncome))

returns vector
simSapply(eusilcP, c("region", "gender"),

function(x) median(x$eqIncome))

simBwplot Box-and-whisker plots

Description

Generic function for producing box-and-whisker plots.

Usage

simBwplot(x, ...)

S4 method for signature 'SimResults'
simBwplot(x, true = NULL, epsilon, NArate, select, ...)

Arguments

x the object to be plotted. For plotting simulation results, this must be an object
of class "SimResults".

true a numeric vector giving the true values. If supplied, reference lines are drawn in
the corresponding panels.

epsilon a numeric vector specifying contamination levels. If supplied, the values corre-
sponding to these contamination levels are extracted from the simulation results
and plotted.

NArate a numeric vector specifying missing value rates. If supplied, the values corre-
sponding to these missing value rates are extracted from the simulation results
and plotted.

select a character vector specifying the columns to be plotted. It must be a subset of
the colnames slot of x, which is the default.

... additional arguments to be passed down to methods and eventually to bwplot.

Details

For simulation results with multiple contamination levels or missing value rates, conditional box-
and-whisker plots are produced.

164 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

70 simBwplot

Value

An object of class "trellis". The update method can be used to update components of the
object and the print method (usually called by default) will plot it on an appropriate plotting
device.

Methods

x = "SimResults" produce box-and-whisker plots of simulation results.

Note

Functionality for producing conditional box-and-whisker plots was added in version 0.2. Prior to
that, the function gave an error message if simulation results with multiple contamination levels or
missing value rates were supplied.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

simDensityplot, simXyplot, bwplot, "SimResults"

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs
sim <- function(x) {

c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))
}

run simulation
results <- runSimulation(eusilcP,

sc, contControl = cc, fun = sim)

plot results
tv <- mean(eusilcP$eqIncome) # true population mean

165

AMELI-WP10-D10.3

SimControl-class 71

simBwplot(results, true = tv)

model-based simulation
set.seed(12345) # for reproducibility

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

run simulation
results <- runSimulation(dc, nrep = 50,

contControl = cc, design = "group", fun = sim)

plot results
simBwplot(results, true = means)

SimControl-class Class "SimControl"

Description

Class for controlling how simulation runs are performed.

Objects from the Class

Objects can be created by calls of the form new("SimControl", ...) or SimControl(...).

Slots

contControl: Object of class "OptContControl"; a control object for contamination, or
NULL.

166 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

72 SimControl-class

NAControl: Object of class "OptNAControl"; a control object for inserting missing values,
or NULL.

design: Object of class "character" specifying variables (columns) to be used for splitting
the data into domains. The simulations, including contamination and the insertion of missing
values (unless SAE=TRUE), are then performed on every domain.

fun: Object of class "function" to be applied in each simulation run.

dots: Object of class "list" containing additional arguments to be passed to fun.

SAE: Object of class "logical" indicating whether small area estimation will be used in the
simulation experiment.

Details

There are some requirements for fun. It must return a numeric vector, or a list with the two
components values (a numeric vector) and add (additional results of any class, e.g., statistical
models). Note that the latter is computationally slightly more expensive. A data.frame is passed
to fun in every simulation run. The corresponding argument must be called x. If comparisons with
the original data need to be made, e.g., for evaluating the quality of imputation methods, the function
should have an argument called orig. If different domains are used in the simulation, the indices
of the current domain can be passed to the function via an argument called domain.

For small area estimation, the following points have to be kept in mind. The design for splitting
the data must be supplied and SAEmust be set to TRUE. However, the data are not actually split into
the specified domains. Instead, the whole data set (sample) is passed to fun. Also contamination
and missing values are added to the whole data (sample). Last, but not least, the function must have
a domain argument so that the current domain can be extracted from the whole data (sample).

In every simulation run, fun is evaluated using try. Hence no results are lost if computations fail
in any of the simulation runs.

Accessor and mutator methods

getContControl signature(x = "SimControl"): get slot ContControl.

setContControl signature(x = "SimControl"): set slot ContControl.

getNAControl signature(x = "SimControl"): get slot NAControl.

setNAControl signature(x = "SimControl"): set slot NAControl.

getDesign signature(x = "SimControl"): get slot design.

setDesign signature(x = "SimControl"): set slot design.

getFun signature(x = "SimControl"): get slot fun.

setFun signature(x = "SimControl"): set slot fun.

getDots signature(x = "SimControl"): get slot dots.

setDots signature(x = "SimControl"): set slot dots.

getSAE signature(x = "SimControl"): get slot SAE.

setSAE signature(x = "SimControl"): set slot SAE.

167

AMELI-WP10-D10.3

SimControl-class 73

Methods

clusterRunSimulation signature(cl = "ANY", x = "data.frame", setup =
"missing", nrep = "numeric", control = "SimControl"): run a simula-
tion experiment on a snow cluster.

clusterRunSimulation signature(cl = "ANY", x = "data.frame", setup =
"VirtualSampleControl", nrep = "missing", control = "SimControl"):
run a simulation experiment on a snow cluster.

clusterRunSimulation signature(cl = "ANY", x = "data.frame", setup =
"SampleSetup", nrep = "missing", control = "SimControl"): run a sim-
ulation experiment on a snow cluster.

clusterRunSimulation signature(cl = "ANY", x = "VirtualDataControl",
setup = "missing", nrep = "numeric", control = "SimControl"): run
a simulation experiment on a snow cluster.

clusterRunSimulation signature(cl = "ANY", x = "VirtualDataControl",
setup = "VirtualSampleControl", nrep = "numeric", control = "SimControl"):
run a simulation experiment on a snow cluster.

head signature(x = "SimControl"): currently returns the object itself.

runSimulation signature(x = "data.frame", setup = "VirtualSampleControl",
nrep = "missing", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "data.frame", setup = "SampleSetup", nrep
= "missing", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "data.frame", setup = "missing", nrep =
"numeric", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "data.frame", setup = "missing", nrep =
"missing", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "missing",
nrep = "numeric", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "missing",
nrep = "missing", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "VirtualSampleControl",
nrep = "numeric", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "VirtualSampleControl",
nrep = "missing", control = "SimControl"): run a simulation experiment.

show signature(object = "SimControl"): print the object on the R console.

summary signature(object = "SimControl"): currently returns the object itself.

tail signature(x = "SimControl"): currently returns the object itself.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

168 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

74 SimControl-class

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

runSimulation, "SimResults"

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs
sim <- function(x) {

c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))
}

combine these to "SimControl" object and run simulation
ctrl <- SimControl(contControl = cc, fun = sim)
results <- runSimulation(eusilcP, sc, control = ctrl)

explore results
head(results)
aggregate(results)
tv <- mean(eusilcP$eqIncome) # true population mean
plot(results, true = tv)

model-based simulation
set.seed(12345) # for reproducibility

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)

169

AMELI-WP10-D10.3

simDensityplot 75

dc <- DataControl(size = 500, distribution = rgnorm,
dots = list(means = means))

cc <- DCARContControl(target = "value",
epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

combine these to "SimControl" object and run simulation
ctrl <- SimControl(contControl = cc, design = "group", fun = sim)
results <- runSimulation(dc, nrep = 50, control = ctrl)

explore results
head(results)
aggregate(results)
plot(results, true = means)

simDensityplot Kernel density plots

Description

Generic function for producing kernel density plots.

Usage

simDensityplot(x, ...)

S4 method for signature 'SimResults'
simDensityplot(x, true = NULL, epsilon, NArate, select, ...)

Arguments

x the object to be plotted. For plotting simulation results, this must be an object
of class "SimResults".

true a numeric vector giving the true values. If supplied, reference lines are drawn in
the corresponding panels.

epsilon a numeric vector specifying contamination levels. If supplied, the values corre-
sponding to these contamination levels are extracted from the simulation results
and plotted.

NArate a numeric vector specifying missing value rates. If supplied, the values corre-
sponding to these missing value rates are extracted from the simulation results
and plotted.

170 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

76 simDensityplot

select a character vector specifying the columns to be plotted. It must be a subset of
the colnames slot of x, which is the default.

... additional arguments to be passed down to methods and eventually to densityplot.

Details

For simulation results with multiple contamination levels or missing value rates, conditional kernel
density plots are produced.

Value

An object of class "trellis". The update method can be used to update components of the
object and the print method (usually called by default) will plot it on an appropriate plotting
device.

Methods

x = "SimResults" produce kernel density plots of simulation results.

Note

Functionality for producing conditional kernel density plots was added in version 0.2. Prior to
that, the function gave an error message if simulation results with multiple contamination levels or
missing value rates were supplied.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

simBwplot, simXyplot, densityplot, "SimResults"

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome", epsilon = 0.02,

fun = function(x) x * 25)

function for simulation runs

171

AMELI-WP10-D10.3

SimResults-class 77

sim <- function(x) {
c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.02))

}

run simulation
results <- runSimulation(eusilcP,

sc, contControl = cc, fun = sim)

plot results
tv <- mean(eusilcP$eqIncome) # true population mean
simDensityplot(results, true = tv)

model-based simulation
set.seed(12345) # for reproducibility

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = 0.02, dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.02),
median = median(x$value))

}

run simulation
results <- runSimulation(dc, nrep = 50,

contControl = cc, design = "group", fun = sim)

plot results
simDensityplot(results, true = means)

SimResults-class Class "SimResults"

Description

Class for simulation results.

172 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

78 SimResults-class

Objects from the Class

Objects can be created by calls of the form new("SimResults", ...) or SimResults(...).

However, objects are expected to be created by the function runSimulation or clusterRunSimulation,
these constructor functions are not supposed to be called by the user.

Slots

values: Object of class "data.frame" containing the simulation results.
add: Object of class "list" containing additional simulation results, e.g., statistical models.
design: Object of class "character" giving the variables (columns) defining the domains

used in the simulation experiment.
colnames: Object of class "character" giving the names of the columns of values that

contain the actual simulation results.
epsilon: Object of class "numeric" containing the contamination levels used in the simulation

experiment.
NArate: Object of class "NumericMatrix" containing the missing value rates used in the

simulation experiment.
dataControl: Object of class "OptDataControl"; the control object used for data genera-

tion in model-based simulation, or NULL.
sampleControl: Object of class "OptSampleControl"; the control object used for sam-

pling in design-based simulation, or NULL.
nrep: Object of class "numeric" giving the number of repetitions of the simulation experiment

(for model-based simulation or simulation based on real data).
control: Object of class "SimControl"; the control object used for running the simulations.
seed: Object of class "list" containing the seeds of the random number generator before and

after the simulation experiment, respectively (for replication of the results).
call: Object of class "SimCall"; the function call used to run the simulation experiment, or

NULL.

Accessor methods

getValues signature(x = "SimResults"): get slot values.
getAdd signature(x = "SimResults"): get slot add.
getDesign signature(x = "SimResults"): get slot design.
getColnames signature(x = "SimResults"): get slot colnames.
getEpsilon signature(x = "SimResults"): get slot epsilon.
getNArate signature(x = "SimResults"): get slot NArate.
getDataControl signature(x = "SimResults"): get slot dataControl.
getSampleControl signature(x = "SimResults"): get slot sampleControl.
getNrep signature(x = "SimResults"): get slot nrep.
getControl signature(x = "SimResults"): get slot control.
getSeed signature(x = "SimResults"): get slot seed.
getCall signature(x = "SimResults"): get slot call.

173

AMELI-WP10-D10.3

SimResults-class 79

Methods

aggregate signature(x = "SimResults"): aggregate simulation results.

head signature(x = "SimResults"): returns the first parts of simulation results.

plot signature(x = "SimResults", y = "missing"): selects a suitable graphical
representation of the simulation results automatically.

show signature(object = "SimResults"): print simulation results on the R console.

simBwplot signature(x = "SimResults"): conditional box-and-whisker plot of simu-
lation results.

simDensityplot signature(x = "SimResults"): conditional kernel density plot of
simulation results.

simXyplot signature(x = "SimResults"): conditional x-y plot of simulation results.

summary signature(x = "SimResults"): produce a summary of simulation results.

tail signature(x = "SimResults"): returns the last parts of simulation results.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Note

There are no mutator methods available since the slots are not supposed to be changed by the user.

Furthermore, the slots dataControl, sampleControl, nrep and control were added in
version 0.3.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

runSimulation, simBwplot, simDensityplot, simXyplot

Examples

showClass("SimResults")

174 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

80 simSample

simSample Set up multiple samples

Description

A convenience wrapper for setting up multiple samples using setupwith control class SampleControl.

Usage

simSample(x, design = character(), grouping = character(),
collect = FALSE, fun = srs, size = NULL,
prob = NULL, ..., k = 1)

Arguments

x the data.frame to sample from.

design a character, logical or numeric vector specifying variables (columns) to be used
for stratified sampling.

grouping a character string, single integer or logical vector specifying a grouping variable
(column) to be used for sampling whole groups rather than individual observa-
tions.

collect logical; if a grouping variable is specified and this is FALSE (which is the default
value), groups are sampled directly. If grouping variable is specified and this is
TRUE, individuals are sampled in a first step. In a second step, all individuals
that belong to the same group as any of the sampled individuals are collected
and added to the sample. If no grouping variable is specified, this is ignored.

fun a function to be used for sampling (defaults to srs). It should return a vector
containing the indices of the sampled items (observations or groups).

size an optional non-negative integer giving the number of items (observations or
groups) to sample. For stratified sampling, a vector of non-negative integers,
each giving the number of items to sample from the corresponding stratum.

prob an optional numeric vector giving the probability weights, or a character string
or logical vector specifying a variable (column) that contains the probability
weights.

... additional arguments to be passed to fun.

k a single positive integer giving the number of samples to be set up.

Details

There are some restrictions on the argument names of the function supplied to fun. If it needs
population data as input, the corresponding argument should be called x and should expect a
data.frame. If the sampling method only needs the population size as input, the argument
should be called N. Note that fun is not expected to have both x and N as arguments, and that the
latter is much faster for stratified sampling or group sampling. Furthermore, if the function has argu-
ments for sample size and probability weights, they should be called size and prob, respectively.

175

AMELI-WP10-D10.3

simXyplot 81

Note that a function with prob as its only argument is perfectly valid (for probability proportional
to size sampling). Further arguments of fun may be passed directly via the . . . argument.

Value

An object of class "SampleSetup".

Author(s)

Andreas Alfons

See Also

setup, "SampleControl", "SampleSetup"

Examples

data(eusilcP)

simple random sampling
srss <- simSample(eusilcP, size = 20, k = 4)
summary(srss)
draw(eusilcP[, c("id", "eqIncome")], srss, i = 1)

group sampling
gss <- simSample(eusilcP, grouping = "hid", size = 10, k = 4)
summary(gss)
draw(eusilcP[, c("hid", "id", "eqIncome")], gss, i = 2)

stratified simple random sampling
ssrss <- simSample(eusilcP, design = "region",

size = c(2, 5, 5, 3, 4, 5, 3, 5, 2), k = 4)
summary(ssrss)
draw(eusilcP[, c("id", "region", "eqIncome")], ssrss, i = 3)

stratified group sampling
sgss <- simSample(eusilcP, design = "region",

grouping = "hid", size = c(2, 5, 5, 3, 4, 5, 3, 5, 2), k = 4)
summary(sgss)
draw(eusilcP[, c("hid", "id", "region", "eqIncome")], sgss, i = 4)

simXyplot X-Y plots

Description

Generic function for producing x-y plots. For simulation results, the average results are plotted
against the corresponding contamination levels or missing value rates.

176 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

82 simXyplot

Usage

simXyplot(x, ...)

S4 method for signature 'SimResults'
simXyplot(x, true = NULL, epsilon, NArate,

select, cond = c("Epsilon", "NArate"),
average = c("mean", "median"), ...)

Arguments

x the object to be plotted. For plotting simulation results, this must be an object
of class "SimResults".

true a numeric vector giving the true values. If supplied, reference lines are drawn in
the corresponding panels.

epsilon a numeric vector specifying contamination levels. If supplied, the values corre-
sponding to these contamination levels are extracted from the simulation results
and plotted.

NArate a numeric vector specifying missing value rates. If supplied, the values corre-
sponding to these missing value rates are extracted from the simulation results
and plotted.

select a character vector specifying the columns to be plotted. It must be a subset of
the colnames slot of x, which is the default.

cond a character string; for simulation results with multiple contamination levels and
multiple missing value rates, this specifies the column of the simulation results
to be used for producing conditional x-y plots. If "Epsilon", conditional plots
are produced for the different contamination levels. If "NArate", conditional
plots are produced for the different missing value rates. The default is to use
whichever results in less plots.

average a character string specifying how the averages should be computed. Possible
values are "mean" for the mean (the default) or "median" for the median.

... additional arguments to be passed down to methods and eventually to xyplot.

Details

For simulation results with multiple contamination levels and multiple missing value rates, condi-
tional x-y plots are produced, as specified by cond.

Value

An object of class "trellis". The update method can be used to update components of the
object and the print method (usually called by default) will plot it on an appropriate plotting
device.

Methods

x = "SimResults" produce x-y plots of simulation results.

177

AMELI-WP10-D10.3

simXyplot 83

Note

Functionality for producing conditional x-y plots (including the argument cond) was added in
version 0.2. Prior to that, the function gave an error message if simulation results with multiple
contamination levels and multiple missing value rates were supplied.

The argument average that specifies how the averages are computed was added in version 0.1.2.
Prior to that, the mean has always been used.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

simBwplot, simDensityplot, xyplot, "SimResults"

Examples

design-based simulation
set.seed(12345) # for reproducibility
data(eusilcP) # load data

control objects for sampling and contamination
sc <- SampleControl(size = 500, k = 50)
cc <- DARContControl(target = "eqIncome",

epsilon = seq(0, 0.05, by = 0.01),
fun = function(x) x * 25)

function for simulation runs
sim <- function(x) {

c(mean = mean(x$eqIncome), trimmed = mean(x$eqIncome, 0.05))
}

run simulation
results <- runSimulation(eusilcP,

sc, contControl = cc, fun = sim)

plot results
tv <- mean(eusilcP$eqIncome) # true population mean
simXyplot(results, true = tv)

model-based simulation
set.seed(12345) # for reproducibility

178 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

84 Strata-class

function for generating data
rgnorm <- function(n, means) {

group <- sample(1:2, n, replace=TRUE)
data.frame(group=group, value=rnorm(n) + means[group])

}

control objects for data generation and contamination
means <- c(0, 0.25)
dc <- DataControl(size = 500, distribution = rgnorm,

dots = list(means = means))
cc <- DCARContControl(target = "value",

epsilon = seq(0, 0.05, by = 0.01),
dots = list(mean = 15))

function for simulation runs
sim <- function(x) {

c(mean = mean(x$value),
trimmed = mean(x$value, trim = 0.05),
median = median(x$value))

}

run simulation
results <- runSimulation(dc, nrep = 50,

contControl = cc, design = "group", fun = sim)

plot results
simXyplot(results, true = means)

Strata-class Class "Strata"

Description

Class containing strata information for a data set.

Objects from the Class

Objects can be created by calls of the form new("Strata", ...) or Strata(...).

However, objects are expected to be created by the function stratify, these constructor functions
are not supposed to be called by the user.

Slots

values: Object of class "integer" giving the stratum number for each observation.

split: Object of class "list"; each list element contains the indices of the observations be-
longing to the corresponding stratum.

design: Object of class "character" giving the variables (columns) defining the strata.

nr: Object of class "integer" giving the stratum numbers.

179

AMELI-WP10-D10.3

Strata-class 85

legend: Object of class "data.frame" describing the strata.

size: Object of class "numeric" giving the stratum sizes.

call: Object of class "OptCall"; the function call used to stratify the data, or NULL.

Accessor methods

getValues signature(x = "Strata"): get slot values.

getSplit signature(x = "Strata"): get slot split.

getDesign signature(x = "Strata"): get slot design.

getNr signature(x = "Strata"): get slot nr.

getLegend signature(x = "Strata"): get slot legend.

getSize signature(x = "Strata"): get slot size.

getCall signature(x = "Strata"): get slot call.

Methods

head signature(x = "Strata"): returns the first parts of strata information.

show signature(object = "Strata"): print strata information on the R console.

simApply signature(x = "data.frame", design = "Strata", fun = "function"):
apply a function to subsets.

simSapply signature(x = "data.frame", design = "Strata", fun = "function"):
apply a function to subsets.

summary signature(object = "Strata"): produce a summary of strata information.

tail signature(x = "Strata"): returns the last parts of strata information.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Note

There are no mutator methods available since the slots are not supposed to be changed by the user.

Author(s)

Andreas Alfons

See Also

stratify

Examples

showClass("Strata")

180 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

86 stratify

stratify Stratify data

Description

Generic function for stratifying data.

Usage

stratify(x, design)

Arguments

x the data.frame to be stratified.

design a character, logical or numeric vector specifying the variables (columns) to be
used for stratification.

Value

An object of class "Strata".

Methods

x = "data.frame", design = "BasicVector" stratify data according to the variables
(columns) given by design.

Author(s)

Andreas Alfons

See Also

"Strata"

Examples

data(eusilcP)
strata <- stratify(eusilcP, c("region", "gender"))
summary(strata)

181

AMELI-WP10-D10.3

stratify-utilities 87

stratify-utilities Utility functions for stratifying data

Description

Generic utility functions for stratifying data. These are useful if not all the information of class
"Strata" is necessary.

Usage

getStrataLegend(x, design)

getStrataSplit(x, design, USE.NAMES = TRUE)

getStrataTable(x, design)

getStratumSizes(x, design, USE.NAMES = TRUE)

getStratumValues(x, design, split)

Arguments

x the data.frame to be stratified. For getStratumSizes, it is also possible
to supply a list in which each list element contains the indices of the observations
belonging to the corresponding stratum (as returned by getStrataSplit).

design a character, logical or numeric vector specifying the variables (columns) to be
used for stratification.

USE.NAMES a logical indicating whether information about the strata should be used as
names for the result.

split an optional list in which each list element contains the indices of the observa-
tions belonging to the corresponding stratum (as returned by getStrataSplit).

Value

For getStrataLegend, a data.frame describing the strata.

For getStrataSplit, a list in which each element contains the indices of the observations
belonging to the corresponding stratum.

For getStrataTable, a data.frame describing the strata and containing the stratum sizes.

For getStratumSizes, a numeric vector of the stratum sizes.

For getStratumValues, a numeric vector giving the stratum number for each observation.

Methods for function getStrataLegend

x = "data.frame", design = "BasicVector" get a data.frame describing the strata, according
to the variables specified by design.

182 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

88 stratify-utilities

Methods for function getStrataSplit

x = "data.frame", design = "BasicVector" get a list in which each element contains the indices
of the observations belonging to the corresponding stratum, according to the variables speci-
fied by design.

Methods for function getStrataTable

x = "data.frame", design = "BasicVector" get a data.frame describing the strata and con-
taining the stratum sizes, according to the variables specified by design.

Methods for function getStratumSizes

x = "list", design = "missing" get the stratum sizes for a list in which each list element con-
tains the indices of the observations belonging to the corresponding stratum (as returned by
getStrataSplit).

x = "data.frame", design = "BasicVector" get the stratum sizes of a data set, according to the
variables specified by design.

Methods for function getStratumValues

x = "data.frame", design = "BasicVector", split = "list" get the stratum number for each obser-
vation, according to the variables specified by design. A previously computed list in which
each list element contains the indices of the observations belonging to the corresponding stra-
tum (as returned by getStrataSplit) speeds things up a bit.

x = "data.frame", design = "BasicVector", split = "missing" get the stratum number for each
observation, according to the variables specified by design.

Author(s)

Andreas Alfons

See Also

stratify, Strata

Examples

data(eusilcP)

all data
getStrataLegend(eusilcP, c("region", "gender"))
getStrataTable(eusilcP, c("region", "gender"))
getStratumSizes(eusilcP, c("region", "gender"))

small sample
sam <- draw(eusilcP, size = 25)
getStrataSplit(sam, "gender")
getStratumValues(sam, "gender")

183

AMELI-WP10-D10.3

summary-methods 89

summary-methods Methods for producing a summary of an object

Description

Produce a summary an object.

Usage

S4 method for signature 'SampleSetup'
summary(object)

S4 method for signature 'SimControl'
summary(object)

S4 method for signature 'SimResults'
summary(object, ...)

S4 method for signature 'Strata'
summary(object)

S4 method for signature 'VirtualContControl'
summary(object)

S4 method for signature 'VirtualDataControl'
summary(object)

S4 method for signature 'VirtualNAControl'
summary(object)

S4 method for signature 'VirtualSampleControl'
summary(object)

Arguments

object an object.

... additional arguments to be passed down to methods.

Value

The form of the resulting object depends on the class of the argument object. See the “Methods”
section below for details.

Methods

signature(x = "SampleSetup") returns an object of class SummarySampleSetup, which
contains information on the size of each of the set up samples.

184 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

90 SummarySampleSetup-class

signature(x = "SimControl") currently returns the object itself.

signature(x = "SimResults") produces a summary of the simulation results by calling
the method of summary for the data.frame in slot values.

signature(x = "Strata") returns a data.frame containing the size of each stratum.

signature(x = "VirtualContControl") currently returns the object itself.

signature(x = "VirtualDataControl") currently returns the object itself.

signature(x = "VirtualNAControl") currently returns the object itself.

signature(x = "VirtualSampleControl") currently returns the object itself.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

summary, "SampleSetup", "SummarySampleSetup", "SimResults", "Strata"

Examples

load data
data(eusilcP)

class "SampleSetup"
set up samples using group sampling
set <- setup(eusilcP, grouping = "hid", size = 1000, k = 50)
summary(set)

class "Strata"
set up samples using group sampling
strata <- stratify(eusilcP, "region")
summary(strata)

SummarySampleSetup-class
Class "SummarySampleSetup"

Description

Class containing a summary of set up samples.

185

AMELI-WP10-D10.3

SummarySampleSetup-class 91

Objects from the Class

Objects can be created by calls of the form new("SummarySampleSetup", ...) or SummarySampleSetup(...).

However, objects are expected to be created by the summary method for class "SampleSetup",
these constructor functions are not supposed to be called by the user.

Slots

size: Object of class "numeric" giving the size of each of the set up samples.

Accessor methods

getSize signature(x = "SummarySampleSetup"): get slot size.

Methods

show signature(object = "SummarySampleSetup"): print a summary of set up sam-
ples on the R console.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Note

There are no mutator methods available since the slots are not supposed to be changed by the user.

Author(s)

Andreas Alfons

See Also

"SampleSetup", summary

Examples

showClass("SummarySampleSetup")

186 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

92 tail-methods

tail-methods Methods for returning the last parts of an object

Description

Return the last parts of an object.

Usage

S4 method for signature 'SampleSetup'
tail(x, k = 6, n = 6, ...)

S4 method for signature 'SimControl'
tail(x)

S4 method for signature 'SimResults'
tail(x, ...)

S4 method for signature 'Strata'
tail(x, ...)

S4 method for signature 'VirtualContControl'
tail(x)

S4 method for signature 'VirtualDataControl'
tail(x)

S4 method for signature 'VirtualNAControl'
tail(x)

S4 method for signature 'VirtualSampleControl'
tail(x)

Arguments

x an object.

k for objects of class "SampleSetup", the number of set up samples to be kept
in the resulting object.

n for objects of class "SampleSetup", the number of indices to be kept in each
of the set up samples in the resulting object.

... additional arguments to be passed down to methods.

Value

An object of the same class as x, but in general smaller. See the “Methods” section below for
details.

187

AMELI-WP10-D10.3

tail-methods 93

Methods

signature(x = "SampleSetup") returns the last parts of set up samples. The last n in-
dices of each of the last k set up samples are kept.

signature(x = "SimControl") currently returns the object itself.

signature(x = "SimResults") returns the last parts of simulation results. The method of
tail for the data.frame in slot values is thereby called.

signature(x = "Strata") returns the last parts of strata information. The method of tail
for the vector in slot values is thereby called and the slots split and size are adapted
accordingly.

signature(x = "VirtualContControl") currently returns the object itself.

signature(x = "VirtualDataControl") currently returns the object itself.

signature(x = "VirtualNAControl") currently returns the object itself.

signature(x = "VirtualSampleControl") currently returns the object itself.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

tail, "SampleSetup", "SimResults", "Strata"

Examples

load data
data(eusilcP)

class "SampleSetup"
set up samples using group sampling
set <- setup(eusilcP, grouping = "hid", size = 1000, k = 50)
summary(set)
get the last 10 indices of each of the last 5 samples
tail(set, k = 5, n = 10)

class "Strata"
set up samples using group sampling
strata <- stratify(eusilcP, "region")
summary(strata)
get strata information for the last 10 observations
tail(strata, 10)

188 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

94 TwoStageControl-class

TwoStageControl-class
Class "TwoStageControl"

Description

Class for controlling the setup of samples using a two-stage procedure.

Usage

TwoStageControl(..., fun1 = srs, fun2 = srs, size1 = NULL,
size2 = NULL, prob1 = NULL, prob2 = NULL,
dots1 = list(), dots2 = list())

Arguments

... the slots for the new object (see below).

fun1 the function to be used for sampling in the first stage (the first list component of
slot fun).

fun2 the function to be used for sampling in the second stage (the second list compo-
nent of slot fun).

size1 the number of PSUs to sample in the first stage (the first list component of slot
size).

size2 the number of items to sample in the second stage (the second list component of
slot size).

prob1 the probability weights for the first stage (the first list component of slot prob).

prob2 the probability weights for the second stage (the second list component of slot
prob).

dots1 additional arguments to be passed to the function for sampling in the first stage
(the first list component of slot dots).

dots2 additional arguments to be passed to the function for sampling in the second
stage (the second list component of slot dots).

Objects from the Class

Objects can be created by calls of the form new("TwoStageControl", ...) or via the
constructor TwoStageControl.

Slots

design: Object of class "BasicVector" specifying variables (columns) to be used for strati-
fied sampling in the first stage.

grouping: Object of class "BasicVector" specifying grouping variables (columns) to be
used for sampling primary sampling units (PSUs) and secondary sampling units (SSUs), re-
spectively.

189

AMELI-WP10-D10.3

TwoStageControl-class 95

fun: Object of class "list"; a list of length two containing the functions to be used for sampling
in the first and second stage, respectively (defaults to srs for both stages). The functions
should return a vector containing the indices of the sampled items.

size: Object of class "list"; a list of length two, where each component contains an optional
non-negative integer giving the number of items to sample in the first and second stage, re-
spectively. In case of stratified sampling in the first stage, a vector of non-negative integers,
each giving the number of PSUs to sample from the corresponding stratum, may be supplied.
For the second stage, a vector of non-negative integers giving the number of items to sample
from each PSU may be used.

prob: Object of class "list"; a list of length two, where each component gives optional prob-
ability weights for the first and second stage, respectively. Each component may thereby be
a numerical vector, or a character string or integer vector specifying a variable (column) that
contains the probability weights.

dots: Object of class "list"; a list of length two, where each component is again a list contain-
ing additional arguments to be passed to the corresponding function for sampling in fun.

k: Object of class "numeric"; a single positive integer giving the number of samples to be set
up.

Details

There are some restrictions on the argument names of the functions for sampling in fun. If the
sampling method needs population data as input, the corresponding argument should be called x
and should expect a data.frame. If it only needs the population size as input, the argument
should be called N. Note that the function is not expected to have both x and N as arguments, and
that the latter is typically much faster. Furthermore, if the function has arguments for sample size
and probability weights, they should be called size and prob, respectively. Note that a function
with prob as its only argument is perfectly valid (for probability proportional to size sampling).
Further arguments may be supplied as a list via the slot dots.

Extends

Class "VirtualSampleControl", directly. Class "OptSampleControl", by class "Virtu-
alSampleControl", distance 2.

Accessor and mutator methods

In addition to the accessor and mutator methods for the slots inherited from "VirtualSampleControl",
the following are available:

getDesign signature(x = "TwoStageControl"): get slot design.

setDesign signature(x = "TwoStageControl"): set slot design.

getGrouping signature(x = "TwoStageControl"): get slot grouping.

setGrouping signature(x = "TwoStageControl"): set slot grouping.

getCollect signature(x = "TwoStageControl"): get slot collect.

setCollect signature(x = "TwoStageControl"): set slot collect.

getFun signature(x = "TwoStageControl"): get slot fun.

190 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

96 TwoStageControl-class

setFun signature(x = "TwoStageControl"): set slot fun.

getSize signature(x = "TwoStageControl"): get slot size.

setSize signature(x = "TwoStageControl"): set slot size.

getProb signature(x = "TwoStageControl"): get slot prob.

setProb signature(x = "TwoStageControl"): set slot prob.

getDots signature(x = "TwoStageControl"): get slot dots.

setDots signature(x = "TwoStageControl"): set slot dots.

Methods

In addition to the methods inherited from "VirtualSampleControl", the following are avail-
able:

clusterSetup signature(cl = "ANY", x = "data.frame", control = "TwoStageControl"):
set up multiple samples on a snow cluster.

setup signature(x = "data.frame", control = "TwoStageControl"): set up
multiple samples.

show signature(object = "TwoStageControl"): print the object on the R console.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

See Also

"VirtualSampleControl", "SampleControl", "SampleSetup", setup, draw

Examples

showClass("TwoStageControl")

191

AMELI-WP10-D10.3

VirtualContControl-class 97

VirtualContControl-class
Class "VirtualContControl"

Description

Virtual superclass for controlling contamination in a simulation experiment.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

target: Object of class "OptCharacter"; a character vector specifying specifying the vari-
ables (columns) to be contaminated, or NULL to contaminate all variables (except the addi-
tional ones generated internally).

epsilon: Object of class "numeric" giving the contamination levels.

Extends

Class "OptContControl", directly.

Accessor and mutator methods

getTarget signature(x = "VirtualContControl"): get slot target.

setTarget signature(x = "VirtualContControl"): set slot target.

getEpsilon signature(x = "VirtualContControl"): get slot epsilon.

setEpsilon signature(x = "VirtualContControl"): set slot epsilon.

Methods

head signature(x = "VirtualContControl"): currently returns the object itself.

length signature(x = "VirtualContControl"): get the number of contamination
levels to be used.

show signature(object = "VirtualContControl"): print the object on the R con-
sole.

summary signature(object = "VirtualContControl"): currently returns the ob-
ject itself.

tail signature(x = "VirtualContControl"): currently returns the object itself.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

192 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

98 VirtualDataControl-class

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"DCARContControl", "DARContControl", "ContControl", contaminate

Examples

showClass("VirtualContControl")

VirtualDataControl-class
Class "VirtualDataControl"

Description

Virtual superclass for controlling model-based generation of data.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "OptDataControl", directly.

Methods

clusterRunSimulation signature(cl = "ANY", x = "VirtualDataControl",
setup = "missing", nrep = "numeric", control = "SimControl"): run
a simulation experiment on a snow cluster.

clusterRunSimulation signature(cl = "ANY", x = "VirtualDataControl",
setup = "VirtualSampleControl", nrep = "numeric", control = "SimControl"):
run a simulation experiment on a snow cluster.

head signature(x = "VirtualContControl"): currently returns the object itself.

runSimulation signature(x = "VirtualDataControl", setup = "missing",
nrep = "numeric", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "missing",
nrep = "missing", control = "SimControl"): run a simulation experiment.

193

AMELI-WP10-D10.3

VirtualNAControl-class 99

runSimulation signature(x = "VirtualDataControl", setup = "VirtualSampleControl",
nrep = "numeric", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "VirtualSampleControl",
nrep = "missing", control = "SimControl"): run a simulation experiment.

summary signature(object = "VirtualContControl"): currently returns the ob-
ject itself.

tail signature(x = "VirtualContControl"): currently returns the object itself.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"DataControl", generate

Examples

showClass("VirtualDataControl")

VirtualNAControl-class
Class "VirtualNAControl"

Description

Virtual superclass for controlling the insertion of missing values in a simulation experiment.

Objects from the Class

A virtual Class: No objects may be created from it.

194 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

100 VirtualNAControl-class

Slots

target: Object of class "OptCharacter"; a character vector specifying the variables (columns)
in which missing values should be inserted, or NULL to insert missing values in all variables
(except the additional ones generated internally).

NArate: Object of class "NumericMatrix" giving the missing value rates, which may be
selected individually for the target variables. In case of a vector, the same missing value rates
are used for all target variables. In case of a matrix, on the other hand, the missing value rates
to be used for each target variable are given by the respective column.

Extends

Class "OptNAControl", directly.

Accessor and mutator methods

getTarget signature(x = "VirtualNAControl"): get slot target.

setTarget signature(x = "VirtualNAControl"): set slot target.

getNArate signature(x = "VirtualNAControl"): get slot NArate.

setNArate signature(x = "VirtualNAControl"): set slot NArate.

Methods

head signature(x = "VirtualNAControl"): currently returns the object itself.

length signature(x = "VirtualNAControl"): get the number of missing value rates
to be used (the length in case of a vector or the number of rows in case of a matrix).

show signature(object = "VirtualNAControl"): print the object on the R console.

summary signature(object = "VirtualNAControl"): currently returns the object
itself.

tail signature(x = "VirtualNAControl"): currently returns the object itself.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

195

AMELI-WP10-D10.3

VirtualSampleControl-class 101

See Also

"NAControl", setNA

Examples

showClass("VirtualNAControl")

VirtualSampleControl-class
Class "VirtualSampleControl"

Description

Virtual superclass for controlling the setup of samples.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

k: Object of class "numeric", a single positive integer giving the number of samples to be set
up.

Extends

Class "OptSampleControl", directly.

Accessor and mutator methods

getK signature(x = "VirtualSampleControl"): get slot k.

setK signature(x = "VirtualSampleControl"): set slot k.

Methods

clusterRunSimulation signature(cl = "ANY", x = "data.frame", setup =
"VirtualSampleControl", nrep = "missing", control = "SimControl"):
run a simulation experiment on a snow cluster.

clusterRunSimulation signature(cl = "ANY", x = "VirtualDataControl",
setup = "VirtualSampleControl", nrep = "numeric", control = "SimControl"):
run a simulation experiment on a snow cluster.

draw signature(x = "data.frame", setup = "VirtualSampleControl"): draw
a sample.

head signature(x = "VirtualSampleControl"): currently returns the object itself.

length signature(x = "VirtualSampleControl"): get the number of samples to be
set up.

196 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

102 VirtualSampleControl-class

runSimulation signature(x = "data.frame", setup = "VirtualSampleControl",
nrep = "missing", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "VirtualSampleControl",
nrep = "numeric", control = "SimControl"): run a simulation experiment.

runSimulation signature(x = "VirtualDataControl", setup = "VirtualSampleControl",
nrep = "missing", control = "SimControl"): run a simulation experiment.

show signature(object = "VirtualSampleControl"): print the object on the R
console.

summary signature(object = "VirtualSampleControl"): currently returns the ob-
ject itself.

tail signature(x = "VirtualSampleControl"): currently returns the object itself.

UML class diagram

A slightly simplified UML class diagram of the framework can be found in Figure 1 of the package
vignette An Object-Oriented Framework for Statistical Simulation: The R Package simFrame.
Use vignette("simFrame-intro") to view this vignette.

Author(s)

Andreas Alfons

References

Alfons, A., Templ, M. and Filzmoser, P. (2010) An Object-Oriented Framework for Statistical Sim-
ulation: The R Package simFrame. Journal of Statistical Software, 37(3), 1–36. URL http:
//www.jstatsoft.org/v37/i03/.

See Also

"SampleControl", "TwoStageControl", "SampleSetup", setup, draw

Examples

showClass("VirtualSampleControl")

197

AMELI-WP10-D10.3

Index

∗Topic attribute
length-methods, 42

∗Topic category
aggregate-methods, 12

∗Topic classes
accessors, 5
BasicVector-class, 14
ContControl, 25
ContControl-class, 27
DARContControl-class, 28
DataControl-class, 30
DCARContControl-class, 32
NAControl-class, 43
NumericMatrix-class, 45
OptBasicVector-class, 46
OptCall-class, 47
OptCharacter-class, 47
OptContControl-class, 48
OptDataControl-class, 49
OptNAControl-class, 49
OptNumeric-class, 50
OptSampleControl-class, 51
SampleControl-class, 57
SampleSetup-class, 59
SimControl-class, 71
SimResults-class, 77
Strata-class, 84
SummarySampleSetup-class, 90
TwoStageControl-class, 94
VirtualContControl-class, 97
VirtualDataControl-class, 98
VirtualNAControl-class, 99
VirtualSampleControl-class,

101
∗Topic datasets

eusilcP, 36
∗Topic design

clusterRunSimulation, 16
runSimulation, 53

∗Topic distribution
clusterSetup, 20
draw, 34
generate, 38
inclusionProb, 41
sampling, 61
setup, 65
simSample, 80

∗Topic hplot
plot-methods, 51
simBwplot, 69
simDensityplot, 75
simXyplot, 81

∗Topic iteration
simApply, 67

∗Topic manip
contaminate, 23
head-methods, 39
setNA, 63
stratify, 86
stratify-utilities, 87
tail-methods, 92

∗Topic methods
accessors, 5
aggregate-methods, 12
clusterRunSimulation, 16
clusterSetup, 20
contaminate, 23
draw, 34
generate, 38
head-methods, 39
length-methods, 42
plot-methods, 51
runSimulation, 53
setNA, 63
setup, 65
simApply, 67
simBwplot, 69
simDensityplot, 75

103

198 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

104 INDEX

simXyplot, 81
stratify, 86
stratify-utilities, 87
summary-methods, 89
tail-methods, 92

∗Topic package
simFrame-package, 3

∗Topic survey
inclusionProb, 41

accessors, 5
aggregate, 13
aggregate,SimResults-method

(aggregate-methods), 12
aggregate-methods, 12
apply, 13

BasicVector-class, 14
Basicvector-class

(BasicVector-class), 14
basicVector-class

(BasicVector-class), 14
basicvector-class

(BasicVector-class), 14
brewer (sampling), 61
bwplot, 69, 70

ClusterRunSimulation
(clusterRunSimulation), 16

ClusterRunsimulation
(clusterRunSimulation), 16

ClusterrunSimulation
(clusterRunSimulation), 16

Clusterrunsimulation
(clusterRunSimulation), 16

clusterRunSimulation, 16, 78
clusterRunsimulation

(clusterRunSimulation), 16
clusterrunSimulation

(clusterRunSimulation), 16
clusterrunsimulation

(clusterRunSimulation), 16
clusterRunSimulation,ANY,ANY,ANY,ANY,missing-method

(clusterRunSimulation), 16
clusterRunSimulation,ANY,data.frame,missing,numeric,SimControl-method

(clusterRunSimulation), 16
clusterRunSimulation,ANY,data.frame,SampleSetup,missing,SimControl-method

(clusterRunSimulation), 16

clusterRunSimulation,ANY,data.frame,VirtualSampleControl,missing,SimControl-method
(clusterRunSimulation), 16

clusterRunSimulation,ANY,VirtualDataControl,missing,numeric,SimControl-method
(clusterRunSimulation), 16

clusterRunSimulation,ANY,VirtualDataControl,VirtualSampleControl,numeric,SimControl-method
(clusterRunSimulation), 16

clusterRunSimulation-methods
(clusterRunSimulation), 16

ClusterSetup (clusterSetup), 20
Clustersetup (clusterSetup), 20
clusterSetup, 20, 60
clustersetup (clusterSetup), 20
clusterSetup,ANY,data.frame,character-method

(clusterSetup), 20
clusterSetup,ANY,data.frame,missing-method

(clusterSetup), 20
clusterSetup,ANY,data.frame,SampleControl-method

(clusterSetup), 20
clusterSetup,ANY,data.frame,TwoStageControl-method

(clusterSetup), 20
clusterSetup-methods

(clusterSetup), 20
clusterSetupRNG, 18, 22
contaminate, 23, 28, 30, 34, 98
contaminate,data.frame,character-method

(contaminate), 23
contaminate,data.frame,ContControl-method

(contaminate), 23
contaminate,data.frame,missing-method

(contaminate), 23
contaminate-methods

(contaminate), 23
ContControl, 7, 8, 25, 25, 26, 29, 30, 33,

34, 98
Contcontrol (ContControl), 25
contControl (ContControl), 25
contcontrol (ContControl), 25
ContControl-class, 27
Contcontrol-class

(ContControl-class), 27
contControl-class

(ContControl-class), 27
contcontrol-class

(ContControl-class), 27

DARContControl, 7, 23, 25, 26, 28, 34, 98
DARContControl

(DARContControl-class), 28

199

AMELI-WP10-D10.3

INDEX 105

DARContcontrol
(DARContControl-class), 28

DARcontControl
(DARContControl-class), 28

DARcontcontrol
(DARContControl-class), 28

darContcontrol
(DARContControl-class), 28

darcontControl
(DARContControl-class), 28

darcontcontrol
(DARContControl-class), 28

DARContControl-class, 28
DARContcontrol-class

(DARContControl-class), 28
DARcontControl-class

(DARContControl-class), 28
DARcontcontrol-class

(DARContControl-class), 28
darContcontrol-class

(DARContControl-class), 28
darcontControl-class

(DARContControl-class), 28
darcontcontrol-class

(DARContControl-class), 28
DataControl, 7, 8, 38, 39, 99
DataControl (DataControl-class),

30
Datacontrol (DataControl-class),

30
dataControl (DataControl-class),

30
datacontrol (DataControl-class),

30
DataControl-class, 30
Datacontrol-class

(DataControl-class), 30
dataControl-class

(DataControl-class), 30
datacontrol-class

(DataControl-class), 30
DCARContControl, 7, 23, 25, 26, 28, 30, 98
DCARContControl

(DCARContControl-class), 32
DCARContcontrol

(DCARContControl-class), 32
DCARcontControl

(DCARContControl-class), 32

DCARcontcontrol
(DCARContControl-class), 32

dcarContcontrol
(DCARContControl-class), 32

dcarcontControl
(DCARContControl-class), 32

dcarcontcontrol
(DCARContControl-class), 32

DCARContControl-class, 32
DCARContcontrol-class

(DCARContControl-class), 32
DCARcontControl-class

(DCARContControl-class), 32
DCARcontcontrol-class

(DCARContControl-class), 32
dcarContcontrol-class

(DCARContControl-class), 32
dcarcontControl-class

(DCARContControl-class), 32
dcarcontcontrol-class

(DCARContControl-class), 32
densityplot, 76
draw, 22, 34, 59, 61, 67, 96, 102
draw,data.frame,character-method

(draw), 34
draw,data.frame,missing-method

(draw), 34
draw,data.frame,SampleSetup-method

(draw), 34
draw,data.frame,VirtualSampleControl-method

(draw), 34
draw-methods (draw), 34

eusilcP, 36
eusilcp (eusilcP), 36

generate, 32, 38, 99
generate,character-method

(generate), 38
generate,DataControl-method

(generate), 38
generate,missing-method

(generate), 38
generate-methods (generate), 38
getAdd (accessors), 5
getAdd,SimResults-method

(SimResults-class), 77
getAdd-methods (accessors), 5
getAux (accessors), 5

200 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

106 INDEX

getAux,ContControl-method
(ContControl-class), 27

getAux,NAControl-method
(NAControl-class), 43

getAux-methods (accessors), 5
getCall (accessors), 5
getCall,SampleSetup-method

(SampleSetup-class), 59
getCall,SimResults-method

(SimResults-class), 77
getCall,Strata-method

(Strata-class), 84
getCall-methods (accessors), 5
getCollect (accessors), 5
getCollect,SampleControl-method

(SampleControl-class), 57
getCollect-methods (accessors), 5
getColnames (accessors), 5
getColnames,DataControl-method

(DataControl-class), 30
getColnames,SimResults-method

(SimResults-class), 77
getColnames-methods (accessors), 5
getContControl (accessors), 5
getContControl,SimControl-method

(SimControl-class), 71
getContControl-methods

(accessors), 5
getControl (accessors), 5
getControl,SampleSetup-method

(SampleSetup-class), 59
getControl,SimResults-method

(SimResults-class), 77
getControl-methods (accessors), 5
getDataControl (accessors), 5
getDataControl,SimResults-method

(SimResults-class), 77
getDataControl-methods

(accessors), 5
getDesign (accessors), 5
getDesign,SampleControl-method

(SampleControl-class), 57
getDesign,SimControl-method

(SimControl-class), 71
getDesign,SimResults-method

(SimResults-class), 77
getDesign,Strata-method

(Strata-class), 84

getDesign,TwoStageControl-method
(TwoStageControl-class), 94

getDesign-methods (accessors), 5
getDistribution (accessors), 5
getDistribution,DataControl-method

(DataControl-class), 30
getDistribution,DCARContControl-method

(DCARContControl-class), 32
getDistribution-methods

(accessors), 5
getDots (accessors), 5
getDots,DARContControl-method

(DARContControl-class), 28
getDots,DataControl-method

(DataControl-class), 30
getDots,DCARContControl-method

(DCARContControl-class), 32
getDots,SampleControl-method

(SampleControl-class), 57
getDots,SimControl-method

(SimControl-class), 71
getDots,TwoStageControl-method

(accessors), 5
getDots-methods (accessors), 5
getEpsilon (accessors), 5
getEpsilon,SimResults-method

(SimResults-class), 77
getEpsilon,VirtualContControl-method

(VirtualContControl-class),
97

getEpsilon-methods (accessors), 5
getFun (accessors), 5
getFun,DARContControl-method

(DARContControl-class), 28
getFun,SampleControl-method

(SampleControl-class), 57
getFun,SimControl-method

(SimControl-class), 71
getFun,TwoStageControl-method

(accessors), 5
getFun-methods (accessors), 5
getGrouping (accessors), 5
getGrouping,ContControl-method

(ContControl-class), 27
getGrouping,NAControl-method

(NAControl-class), 43
getGrouping,SampleControl-method

(SampleControl-class), 57

201

AMELI-WP10-D10.3

INDEX 107

getGrouping,TwoStageControl-method
(TwoStageControl-class), 94

getGrouping-methods (accessors), 5
getIndices (accessors), 5
getIndices,SampleSetup-method

(SampleSetup-class), 59
getIndices-methods (accessors), 5
getIntoContamination (accessors),

5
getIntoContamination,NAControl-method

(NAControl-class), 43
getIntoContamination-methods

(accessors), 5
getK (accessors), 5
getK,VirtualSampleControl-method

(VirtualSampleControl-class),
101

getK-methods (accessors), 5
getLegend (accessors), 5
getLegend,Strata-method

(Strata-class), 84
getLegend-methods (accessors), 5
getNAControl (accessors), 5
getNAControl,SimControl-method

(SimControl-class), 71
getNAControl-methods (accessors),

5
getNArate (accessors), 5
getNArate,SimResults-method

(SimResults-class), 77
getNArate,VirtualNAControl-method

(VirtualNAControl-class),
99

getNArate-methods (accessors), 5
getNr (accessors), 5
getNr,Strata-method

(Strata-class), 84
getNr-methods (accessors), 5
getNrep (accessors), 5
getNrep,SimResults-method

(SimResults-class), 77
getNrep-methods (accessors), 5
getProb (accessors), 5
getProb,SampleControl-method

(SampleControl-class), 57
getProb,SampleSetup-method

(SampleSetup-class), 59
getProb,TwoStageControl-method

(accessors), 5
getProb-methods (accessors), 5
getSAE (accessors), 5
getSAE,SimControl-method

(SimControl-class), 71
getSAE-methods (accessors), 5
getSampleControl (accessors), 5
getSampleControl,SimResults-method

(SimResults-class), 77
getSampleControl-methods

(accessors), 5
getSeed (accessors), 5
getSeed,SampleSetup-method

(SampleSetup-class), 59
getSeed,SimResults-method

(SimResults-class), 77
getSeed-methods (accessors), 5
getSize (accessors), 5
getSize,DataControl-method

(DataControl-class), 30
getSize,SampleControl-method

(SampleControl-class), 57
getSize,Strata-method

(Strata-class), 84
getSize,SummarySampleSetup-method

(SummarySampleSetup-class),
90

getSize,TwoStageControl-method
(accessors), 5

getSize-methods (accessors), 5
getSplit (accessors), 5
getSplit,Strata-method

(Strata-class), 84
getSplit-methods (accessors), 5
getStrataLegend

(stratify-utilities), 87
getStrataLegend,data.frame,BasicVector-method

(stratify-utilities), 87
getStrataLegend-methods

(stratify-utilities), 87
getStrataSplit

(stratify-utilities), 87
getStrataSplit,data.frame,BasicVector-method

(stratify-utilities), 87
getStrataSplit-methods

(stratify-utilities), 87
getStrataTable

(stratify-utilities), 87

202 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

108 INDEX

getStrataTable,data.frame,BasicVector-method
(stratify-utilities), 87

getStrataTable-methods
(stratify-utilities), 87

getStratumSizes
(stratify-utilities), 87

getStratumSizes,data.frame,BasicVector-method
(stratify-utilities), 87

getStratumSizes,list,missing-method
(stratify-utilities), 87

getStratumSizes-methods
(stratify-utilities), 87

getStratumValues
(stratify-utilities), 87

getStratumValues,data.frame,BasicVector,list-method
(stratify-utilities), 87

getStratumValues,data.frame,BasicVector,missing-method
(stratify-utilities), 87

getStratumValues-methods
(stratify-utilities), 87

getTarget (accessors), 5
getTarget,VirtualContControl-method

(VirtualContControl-class),
97

getTarget,VirtualNAControl-method
(VirtualNAControl-class),
99

getTarget-methods (accessors), 5
getValues (accessors), 5
getValues,SimResults-method

(SimResults-class), 77
getValues,Strata-method

(Strata-class), 84
getValues-methods (accessors), 5

head, 40, 41
head,SampleSetup-method

(head-methods), 39
head,SimControl-method

(head-methods), 39
head,SimResults-method

(head-methods), 39
head,Strata-method

(head-methods), 39
head,VirtualContControl-method

(head-methods), 39
head,VirtualDataControl-method

(head-methods), 39

head,VirtualNAControl-method
(head-methods), 39

head,VirtualSampleControl-method
(head-methods), 39

head-methods, 39

InclusionProb (inclusionProb), 41
inclusionProb, 41, 62
inclusionprob (inclusionProb), 41
inclusionprobabilities, 42

length, 43
length,SampleSetup-method

(length-methods), 42
length,VirtualContControl-method

(length-methods), 42
length,VirtualNAControl-method

(length-methods), 42
length,VirtualSampleControl-method

(length-methods), 42
length-methods, 42

makeCluster, 18, 22
midzuno (sampling), 61

NAControl, 7, 8, 63, 64, 101
NAControl (NAControl-class), 43
NAcontrol (NAControl-class), 43
naControl (NAControl-class), 43
nacontrol (NAControl-class), 43
NAControl-class, 43
NAcontrol-class

(NAControl-class), 43
naControl-class

(NAControl-class), 43
nacontrol-class

(NAControl-class), 43
NumericMatrix-class, 45
Numericmatrix-class

(NumericMatrix-class), 45
numericMatrix-class

(NumericMatrix-class), 45
numericmatrix-class

(NumericMatrix-class), 45

OptBasicVector, 15
OptBasicVector-class, 46
OptBasicvector-class

(OptBasicVector-class), 46

203

AMELI-WP10-D10.3

INDEX 109

OptbasicVector-class
(OptBasicVector-class), 46

optBasicVector-class
(OptBasicVector-class), 46

optBasicvector-class
(OptBasicVector-class), 46

optbasicVector-class
(OptBasicVector-class), 46

optbasicvector-class
(OptBasicVector-class), 46

OptCall-class, 47
Optcall-class (OptCall-class), 47
optCall-class (OptCall-class), 47
optcall-class (OptCall-class), 47
OptCharacter-class, 47
Optcharacter-class

(OptCharacter-class), 47
optCharacter-class

(OptCharacter-class), 47
optcharacter-class

(OptCharacter-class), 47
OptContControl, 27, 29, 33, 97
OptContControl-class, 48
OptContcontrol-class

(OptContControl-class), 48
OptcontControl-class

(OptContControl-class), 48
Optcontcontrol-class

(OptContControl-class), 48
optContControl-class

(OptContControl-class), 48
optContcontrol-class

(OptContControl-class), 48
optcontControl-class

(OptContControl-class), 48
optcontcontrol-class

(OptContControl-class), 48
OptDataControl, 31, 98
OptDataControl-class, 49
OptDatacontrol-class

(OptDataControl-class), 49
OptdataControl-class

(OptDataControl-class), 49
Optdatacontrol-class

(OptDataControl-class), 49
optDataControl-class

(OptDataControl-class), 49
optDatacontrol-class

(OptDataControl-class), 49
optdataControl-class

(OptDataControl-class), 49
optdatacontrol-class

(OptDataControl-class), 49
OptNAControl, 44, 100
OptNAControl-class, 49
OptNAcontrol-class

(OptNAControl-class), 49
OptnaControl-class

(OptNAControl-class), 49
Optnacontrol-class

(OptNAControl-class), 49
optNAControl-class

(OptNAControl-class), 49
optNAcontrol-class

(OptNAControl-class), 49
optnaControl-class

(OptNAControl-class), 49
optnacontrol-class

(OptNAControl-class), 49
OptNumeric-class, 50
Optnumeric-class

(OptNumeric-class), 50
optNumeric-class

(OptNumeric-class), 50
optnumeric-class

(OptNumeric-class), 50
OptSampleControl, 58, 95, 101
OptSampleControl-class, 51
OptSamplecontrol-class

(OptSampleControl-class),
51

OptsampleControl-class
(OptSampleControl-class),
51

Optsamplecontrol-class
(OptSampleControl-class),
51

optSampleControl-class
(OptSampleControl-class),
51

optSamplecontrol-class
(OptSampleControl-class),
51

optsampleControl-class
(OptSampleControl-class),
51

204 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

110 INDEX

optsamplecontrol-class
(OptSampleControl-class),
51

Optsbasicvector-class
(OptBasicVector-class), 46

plot,SimResults,missing-method
(plot-methods), 51

plot-methods, 51
print, 52, 70, 76, 82

rmvnorm, 31, 32
rnorm, 31, 32
runSim (runSimulation), 53
RunSimulation (runSimulation), 53
Runsimulation (runSimulation), 53
runSimulation, 18, 53, 74, 78, 79
runsimulation (runSimulation), 53
runSimulation,ANY,ANY,ANY,missing-method

(runSimulation), 53
runSimulation,data.frame,missing,missing,SimControl-method

(runSimulation), 53
runSimulation,data.frame,missing,numeric,SimControl-method

(runSimulation), 53
runSimulation,data.frame,SampleSetup,missing,SimControl-method

(runSimulation), 53
runSimulation,data.frame,VirtualSampleControl,missing,SimControl-method

(runSimulation), 53
runSimulation,VirtualDataControl,missing,missing,SimControl-method

(runSimulation), 53
runSimulation,VirtualDataControl,missing,numeric,SimControl-method

(runSimulation), 53
runSimulation,VirtualDataControl,VirtualSampleControl,missing,SimControl-method

(runSimulation), 53
runSimulation,VirtualDataControl,VirtualSampleControl,numeric,SimControl-method

(runSimulation), 53
RunSimulation-methods

(runSimulation), 53
Runsimulation-methods

(runSimulation), 53
runSimulation-methods

(runSimulation), 53
runsimulation-methods

(runSimulation), 53

sample, 24, 62, 64
SampleControl, 7, 8, 20–22, 34, 35, 47,

61, 62, 65–67, 80, 81, 96, 102

SampleControl
(SampleControl-class), 57

Samplecontrol
(SampleControl-class), 57

sampleControl
(SampleControl-class), 57

samplecontrol
(SampleControl-class), 57

SampleControl-class, 57
Samplecontrol-class

(SampleControl-class), 57
sampleControl-class

(SampleControl-class), 57
samplecontrol-class

(SampleControl-class), 57
SampleSetup, 21, 22, 35, 41, 42, 59, 66, 67,

81, 90, 91, 93, 96, 102
SampleSetup (SampleSetup-class),

59
Samplesetup (SampleSetup-class),

59
sampleSetup (SampleSetup-class),

59
samplesetup (SampleSetup-class),

59
SampleSetup-class, 59
Samplesetup-class

(SampleSetup-class), 59
sampleSetup-class

(SampleSetup-class), 59
samplesetup-class

(SampleSetup-class), 59
sampling, 61
sapply, 68
setAux (accessors), 5
setAux,ContControl-method

(ContControl-class), 27
setAux,NAControl-method

(NAControl-class), 43
setAux-methods (accessors), 5
setCollect (accessors), 5
setCollect,SampleControl-method

(SampleControl-class), 57
setCollect-methods (accessors), 5
setColnames (accessors), 5
setColnames,DataControl-method

(DataControl-class), 30
setColnames-methods (accessors), 5

205

AMELI-WP10-D10.3

INDEX 111

setContControl (accessors), 5
setContControl,SimControl-method

(SimControl-class), 71
setContControl-methods

(accessors), 5
setDesign (accessors), 5
setDesign,SampleControl-method

(SampleControl-class), 57
setDesign,SimControl-method

(SimControl-class), 71
setDesign,TwoStageControl-method

(TwoStageControl-class), 94
setDesign-methods (accessors), 5
setDistribution (accessors), 5
setDistribution,DataControl-method

(DataControl-class), 30
setDistribution,DCARContControl-method

(DCARContControl-class), 32
setDistribution-methods

(accessors), 5
setDots (accessors), 5
setDots,DARContControl-method

(DARContControl-class), 28
setDots,DataControl-method

(DataControl-class), 30
setDots,DCARContControl-method

(DCARContControl-class), 32
setDots,SampleControl-method

(SampleControl-class), 57
setDots,SimControl-method

(SimControl-class), 71
setDots,TwoStageControl-method

(accessors), 5
setDots-methods (accessors), 5
setEpsilon (accessors), 5
setEpsilon,VirtualContControl-method

(VirtualContControl-class),
97

setEpsilon-methods (accessors), 5
setFun (accessors), 5
setFun,DARContControl-method

(DARContControl-class), 28
setFun,SampleControl-method

(SampleControl-class), 57
setFun,SimControl-method

(SimControl-class), 71
setFun,TwoStageControl-method

(accessors), 5

setFun-methods (accessors), 5
setGrouping (accessors), 5
setGrouping,ContControl-method

(ContControl-class), 27
setGrouping,NAControl-method

(NAControl-class), 43
setGrouping,SampleControl-method

(SampleControl-class), 57
setGrouping,TwoStageControl-method

(TwoStageControl-class), 94
setGrouping-methods (accessors), 5
setIntoContamination (accessors),

5
setIntoContamination,NAControl-method

(NAControl-class), 43
setIntoContamination-methods

(accessors), 5
setK (accessors), 5
setK,VirtualSampleControl-method

(VirtualSampleControl-class),
101

setK-methods (accessors), 5
SetNA (setNA), 63
Setna (setNA), 63
setNA, 45, 63, 101
setna (setNA), 63
setNA,data.frame,character-method

(setNA), 63
setNA,data.frame,missing-method

(setNA), 63
setNA,data.frame,NAControl-method

(setNA), 63
SetNA-methods (setNA), 63
Setna-methods (setNA), 63
setNA-methods (setNA), 63
setna-methods (setNA), 63
setNAControl (accessors), 5
setNAControl,SimControl-method

(SimControl-class), 71
setNAControl-methods (accessors),

5
setNArate (accessors), 5
setNArate,VirtualNAControl-method

(VirtualNAControl-class),
99

setNArate-methods (accessors), 5
setProb (accessors), 5
setProb,SampleControl-method

206 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

112 INDEX

(SampleControl-class), 57
setProb,TwoStageControl-method

(accessors), 5
setProb-methods (accessors), 5
setSAE (accessors), 5
setSAE,SimControl-method

(SimControl-class), 71
setSAE-methods (accessors), 5
setSize (accessors), 5
setSize,DataControl-method

(DataControl-class), 30
setSize,SampleControl-method

(SampleControl-class), 57
setSize,TwoStageControl-method

(accessors), 5
setSize-methods (accessors), 5
setTarget (accessors), 5
setTarget,VirtualContControl-method

(VirtualContControl-class),
97

setTarget,VirtualNAControl-method
(VirtualNAControl-class),
99

setTarget-methods (accessors), 5
setup, 22, 35, 42, 59–62, 65, 80, 81, 96, 102
setup,data.frame,character-method

(setup), 65
setup,data.frame,missing-method

(setup), 65
setup,data.frame,SampleControl-method

(setup), 65
setup,data.frame,TwoStageControl-method

(setup), 65
setup-methods (setup), 65
show,ContControl-method

(ContControl-class), 27
show,DataControl-method

(DataControl-class), 30
show,NAControl-method

(NAControl-class), 43
show,SampleControl-method

(SampleControl-class), 57
show,SampleSetup-method

(SampleSetup-class), 59
show,SimControl-method

(SimControl-class), 71
show,SimResults-method

(SimResults-class), 77

show,Strata-method
(Strata-class), 84

show,SummarySampleSetup-method
(SummarySampleSetup-class),
90

show,TwoStageControl-method
(TwoStageControl-class), 94

show,VirtualContControl-method
(VirtualContControl-class),
97

show,VirtualNAControl-method
(VirtualNAControl-class),
99

show,VirtualSampleControl-method
(VirtualSampleControl-class),
101

SimApply (simApply), 67
Simapply (simApply), 67
simApply, 67
simapply (simApply), 67
simApply,data.frame,BasicVector,function-method

(simApply), 67
simApply,data.frame,Strata,function-method

(simApply), 67
SimApply-methods (simApply), 67
Simapply-methods (simApply), 67
simApply-methods (simApply), 67
simapply-methods (simApply), 67
SimBwplot (simBwplot), 69
simBwplot, 18, 52, 55, 69, 76, 79, 83
simbwplot (simBwplot), 69
simBwplot,SimResults-method

(simBwplot), 69
SimBwplot-methods (simBwplot), 69
simBwplot-methods (simBwplot), 69
simbwplot-methods (simBwplot), 69
SimControl, 7, 8, 18, 48, 50, 55
SimControl (SimControl-class), 71
Simcontrol (SimControl-class), 71
simControl (SimControl-class), 71
simcontrol (SimControl-class), 71
SimControl-class, 71
Simcontrol-class

(SimControl-class), 71
simControl-class

(SimControl-class), 71
simcontrol-class

(SimControl-class), 71

207

AMELI-WP10-D10.3

INDEX 113

SimDensityplot (simDensityplot),
75

Simdensityplot (simDensityplot),
75

simDensityplot, 18, 52, 55, 70, 75, 79, 83
simdensityplot (simDensityplot),

75
simDensityplot,SimResults-method

(simDensityplot), 75
SimDensityplot-methods

(simDensityplot), 75
Simdensityplot-methods

(simDensityplot), 75
simDensityplot-methods

(simDensityplot), 75
simdensityplot-methods

(simDensityplot), 75
SimFrame (simFrame-package), 3
Simframe (simFrame-package), 3
simFrame (simFrame-package), 3
simframe (simFrame-package), 3
SimFrame-package

(simFrame-package), 3
Simframe-package

(simFrame-package), 3
simFrame-package, 3
simframe-package

(simFrame-package), 3
SimResults, 13, 18, 41, 49, 51, 52, 55, 70,

74, 76, 83, 90, 93
SimResults (SimResults-class), 77
Simresults (SimResults-class), 77
simResults (SimResults-class), 77
simresults (SimResults-class), 77
SimResults-class, 77
Simresults-class

(SimResults-class), 77
simResults-class

(SimResults-class), 77
simresults-class

(SimResults-class), 77
SimSample (simSample), 80
Simsample (simSample), 80
simSample, 67, 80
simsample (simSample), 80
SimSapply (simApply), 67
Simsapply (simApply), 67
simSapply (simApply), 67

simsapply (simApply), 67
simSapply,data.frame,BasicVector,function-method

(simApply), 67
simSapply,data.frame,Strata,function-method

(simApply), 67
SimSapply-methods (simApply), 67
Simsapply-methods (simApply), 67
simSapply-methods (simApply), 67
simsapply-methods (simApply), 67
SimXyplot (simXyplot), 81
Simxyplot (simXyplot), 81
simXyplot, 18, 52, 55, 70, 76, 79, 81
simxyplot (simXyplot), 81
simXyplot,SimResults-method

(simXyplot), 81
SimXyplot-methods (simXyplot), 81
Simxyplot-methods (simXyplot), 81
simXyplot-methods (simXyplot), 81
simxyplot-methods (simXyplot), 81
srs, 57, 80, 95
srs (sampling), 61
Strata, 41, 86, 88, 90, 93
Strata (Strata-class), 84
strata (Strata-class), 84
Strata-class, 84
strata-class (Strata-class), 84
stratify, 84, 85, 86, 88
stratify,data.frame,BasicVector-method

(stratify), 86
stratify-methods (stratify), 86
stratify-utilities, 87
summary, 90, 91
summary,SampleSetup-method

(summary-methods), 89
summary,SimControl-method

(summary-methods), 89
summary,SimResults-method

(summary-methods), 89
summary,Strata-method

(summary-methods), 89
summary,VirtualContControl-method

(summary-methods), 89
summary,VirtualDataControl-method

(summary-methods), 89
summary,VirtualNAControl-method

(summary-methods), 89
summary,VirtualSampleControl-method

(summary-methods), 89

208 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

114 INDEX

summary-methods, 89
SummarySampleSetup, 90
SummarySampleSetup

(SummarySampleSetup-class),
90

SummarySamplesetup
(SummarySampleSetup-class),
90

SummarysampleSetup
(SummarySampleSetup-class),
90

Summarysamplesetup
(SummarySampleSetup-class),
90

summarySampleSetup
(SummarySampleSetup-class),
90

summarySamplesetup
(SummarySampleSetup-class),
90

summarysampleSetup
(SummarySampleSetup-class),
90

summarysamplesetup
(SummarySampleSetup-class),
90

SummarySampleSetup-class, 90
SummarySamplesetup-class

(SummarySampleSetup-class),
90

SummarysampleSetup-class
(SummarySampleSetup-class),
90

Summarysamplesetup-class
(SummarySampleSetup-class),
90

summarySampleSetup-class
(SummarySampleSetup-class),
90

summarySamplesetup-class
(SummarySampleSetup-class),
90

summarysampleSetup-class
(SummarySampleSetup-class),
90

summarysamplesetup-class
(SummarySampleSetup-class),
90

tail, 93
tail,SampleSetup-method

(tail-methods), 92
tail,SimControl-method

(tail-methods), 92
tail,SimResults-method

(tail-methods), 92
tail,Strata-method

(tail-methods), 92
tail,VirtualContControl-method

(tail-methods), 92
tail,VirtualDataControl-method

(tail-methods), 92
tail,VirtualNAControl-method

(tail-methods), 92
tail,VirtualSampleControl-method

(tail-methods), 92
tail-methods, 92
tille (sampling), 61
TwoStageControl, 7, 8, 22, 35, 59, 61, 62,

67, 102
TwoStageControl

(TwoStageControl-class), 94
TwoStagecontrol

(TwoStageControl-class), 94
TwostageControl

(TwoStageControl-class), 94
Twostagecontrol

(TwoStageControl-class), 94
twoStageControl

(TwoStageControl-class), 94
twoStagecontrol

(TwoStageControl-class), 94
twostageControl

(TwoStageControl-class), 94
twostagecontrol

(TwoStageControl-class), 94
TwoStageControl-class, 94
TwoStagecontrol-class

(TwoStageControl-class), 94
TwostageControl-class

(TwoStageControl-class), 94
Twostagecontrol-class

(TwoStageControl-class), 94
twoStageControl-class

(TwoStageControl-class), 94
twoStagecontrol-class

(TwoStageControl-class), 94

209

AMELI-WP10-D10.3

INDEX 115

twostageControl-class
(TwoStageControl-class), 94

twostagecontrol-class
(TwoStageControl-class), 94

UPbrewer, 62
update, 52, 70, 76, 82
UPmidzuno, 62
ups (sampling), 61
UPtille, 62

VirtualContControl, 7, 8, 24, 25,
27–30, 33, 34

VirtualContControl-class, 97
VirtualContcontrol-class

(VirtualContControl-class),
97

VirtualcontControl-class
(VirtualContControl-class),
97

Virtualcontcontrol-class
(VirtualContControl-class),
97

virtualContControl-class
(VirtualContControl-class),
97

virtualContcontrol-class
(VirtualContControl-class),
97

virtualcontControl-class
(VirtualContControl-class),
97

virtualcontcontrol-class
(VirtualContControl-class),
97

VirtualDataControl, 31, 32, 38, 39
VirtualDataControl-class, 98
VirtualDatacontrol-class

(VirtualDataControl-class),
98

VirtualdataControl-class
(VirtualDataControl-class),
98

Virtualdatacontrol-class
(VirtualDataControl-class),
98

virtualDataControl-class
(VirtualDataControl-class),
98

virtualDatacontrol-class
(VirtualDataControl-class),
98

virtualdataControl-class
(VirtualDataControl-class),
98

virtualdatacontrol-class
(VirtualDataControl-class),
98

VirtualNAControl, 8, 44, 45, 64
VirtualNAControl-class, 99
VirtualNAcontrol-class

(VirtualNAControl-class),
99

VirtualnaControl-class
(VirtualNAControl-class),
99

Virtualnacontrol-class
(VirtualNAControl-class),
99

virtualNAControl-class
(VirtualNAControl-class),
99

virtualNAcontrol-class
(VirtualNAControl-class),
99

virtualnaControl-class
(VirtualNAControl-class),
99

virtualnacontrol-class
(VirtualNAControl-class),
99

VirtualSampleControl, 8, 21, 22, 35,
58, 59, 61, 66, 67, 95, 96

VirtualSampleControl-class, 101
VirtualSamplecontrol-class

(VirtualSampleControl-class),
101

VirtualsampleControl-class
(VirtualSampleControl-class),
101

Virtualsamplecontrol-class
(VirtualSampleControl-class),
101

virtualSampleControl-class
(VirtualSampleControl-class),
101

virtualSamplecontrol-class

210 A1. simFrame Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

116 INDEX

(VirtualSampleControl-class),
101

virtualsampleControl-class
(VirtualSampleControl-class),
101

virtualsamplecontrol-class
(VirtualSampleControl-class),
101

xyplot, 82, 83

211

AMELI-WP10-D10.3

Package ‘simPopulation’
October 19, 2010

Type Package

Title Simulation of synthetic populations for surveys based on sample data

Version 0.2.1

Date 2010-10-19

Author Andreas Alfons and Stefan Kraft

Maintainer Andreas Alfons <alfons@statistik.tuwien.ac.at>

Depends R(>= 2.7.1), nnet, POT, lattice, vcd

Imports lattice, vcd

Description Simulate populations for surveys based on sample data with special application to
EU-SILC.

License GPL (>= 2)

LazyLoad yes

Repository CRAN

Date/Publication 2010-10-19 10:00:39

R topics documented:
simPopulation-package . 2
contingencyWt . 3
eusilcS . 5
getBreaks . 6
getCat . 8
quantileWt . 9
simCategorical . 10
simComponents . 11
simContinuous . 13
simEUSILC . 17

1

212 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2 simPopulation-package

simStructure . 20
spBwplot . 21
spBwplotStats . 23
spCdf . 24
spCdfplot . 25
spMosaic . 27
spTable . 28
tableWt . 30
utils . 31

Index 33

simPopulation-package
Simulation of synthetic populations for surveys based on sample data

Description

Simulate populations for surveys based on sample data with special application to EU-SILC.

Details

Package: simPopulation
Type: Package
Version: 0.2.1
Date: 2010-10-19
Depends: R(>= 2.7.1), nnet, POT, lattice, vcd
Imports: lattice, vcd
License: GPL (>= 2)
LazyLoad: yes

Index:

contingencyWt Weighted contingency coefficients
eusilcS Synthetic EU-SILC survey data
getBreaks Compute breakpoints for categorizing

(semi-)continuous variables
getCat Categorize (semi-)continuous variables
meanWt Weighted mean, variance, covariance matrix and

correlation matrix
quantileWt Weighted sample quantiles
simCategorical Simulate categorical variables of population

data
simComponents Simulate components of continuous variables of

population data
simContinuous Simulate continuous variables of population

213

AMELI-WP10-D10.3

contingencyWt 3

data
simEUSILC Simulate EU-SILC population data
simPopulation-package Simulation of synthetic populations for surveys

based on sample data
simStructure Simulate the household structure of population

data
spBwplot Weighted box plots
spBwplotStats Weighted box plot statistics
spCdf (Weighted empirical) cumulative distribution

function
spCdfplot Plot (weighted empirical) cumulative

distribution functions
spMosaic Mosaic plots of expected and realized

population sizes
spTable Cross tabulations of expected and realized

population sizes
tableWt Weighted cross tabulation

Further information is available in the following vignettes:

simPopulation-eusilc Simulation of EU-SILC Population Data: Using the R Package simPopulation (source, pdf)

Author(s)

Andreas Alfons and Stefan Kraft

Maintainer: Andreas Alfons <alfons@statistik.tuwien.ac.at>

contingencyWt Weighted contingency coefficients

Description

Compute (weighted) pairwise contingency coefficients.

Usage

contingencyWt(x, ...)

Default S3 method:
contingencyWt(x, y, weights = NULL, ...)

S3 method for class 'matrix':
contingencyWt(x, weights = NULL, ...)

S3 method for class 'data.frame':
contingencyWt(x, weights = NULL, ...)

214 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4 contingencyWt

Arguments

x for the default method, a vector that can be interpreted as factor. For the matrix
and data.frame methods, the columns should be interpretable as factors.

y a vector that can be interpreted as factor.

weights an optional numeric vector containing sample weights.

... for the generic function, arguments to be passed down to the methods, otherwise
ignored.

Details

The function tableWt is used for the computation of the corresponding pairwise contingency
tables.

Value

For the default method, the (weighted) contingency coefficient of x and y.

For the matrix and data.framemethod, a matrix of (weighted) pairwise contingency coefficients
for all combinations of columns. Elements below the diagonal are NA.

Author(s)

Andreas Alfons and Stefan Kraft

References

Kendall, M.G. and Stuart, A. (1967) The Advanced Theory of Statistics, Volume 2: Inference and
Relationship. Charles Griffin & Co Ltd, London, 2nd edition.

See Also

tableWt

Examples

data(eusilcS)

default method
contingencyWt(eusilcS$pl030, eusilcS$pb220a, weights = eusilcS$rb050)

data.frame method
basic <- c("age", "rb090", "hsize", "pl030", "pb220a")
contingencyWt(eusilcS[, basic], weights = eusilcS$rb050)

215

AMELI-WP10-D10.3

eusilcS 5

eusilcS Synthetic EU-SILC survey data

Description

This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on
Income and Living Conditions) data.

Usage

data(eusilcS)

Format

A data frame with 11725 observations on the following 18 variables.

db030 integer; the household ID.

hsize integer; the number of persons in the household.

db040 factor; the federal state in which the household is located (levels Burgenland, Carinthia,
Lower Austria, Salzburg, Styria, Tyrol, Upper Austria, Vienna and Vorarlberg).

age integer; the person’s age.

rb090 factor; the person’s gender (levels male and female).

pl030 factor; the person’s economic status (levels 1 = working full time, 2 = working part time, 3
= unemployed, 4 = pupil, student, further training or unpaid work experience or in compulsory
military or community service, 5 = in retirement or early retirement or has given up business,
6 = permanently disabled or/and unfit to work or other inactive person, 7 = fulfilling domestic
tasks and care responsibilities).

pb220a factor; the person’s citizenship (levels AT, EU and Other).

netIncome numeric; the personal net income.

py010n numeric; employee cash or near cash income (net).

py050n numeric; cash benefits or losses from self-employment (net).

py090n numeric; unemployment benefits (net).

py100n numeric; old-age benefits (net).

py110n numeric; survivor’s benefits (net).

py120n numeric; sickness benefits (net).

py130n numeric; disability benefits (net).

py140n numeric; education-related allowances (net).

db090 numeric; the household sample weights.

rb050 numeric; the personal sample weights.

216 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6 getBreaks

Details

The data set consists of 4641 households and is used as sample data in some of the examples in
package simPopulation. Note that it is included for illustrative purposes only. The sample
weights do not reflect the true population sizes of Austria and its regions. The resulting population
data is about 100 times smaller than the real population size to save computation time.

Only a few of the large number of variables in the original survey are included in this example
data set. The variable names are rather cryptic codes, but these are the standardized names used
by the statistical agencies. Furthermore, the variables hsize, age and netIncome are not in-
cluded in the standardized format of EU-SILC data, but have been derived from other variables for
convenience.

Source

This is a synthetic data set based on Austrian EU-SILC data from 2006. The original sample was
provided by Statistics Austria.

References

Eurostat (2004) Description of target variables: Cross-sectional and longitudinal. EU-SILC 065/04,
Eurostat.

Examples

data(eusilcS)
summary(eusilcS)

getBreaks Compute breakpoints for categorizing (semi-)continuous variables

Description

Compute breakpoints for categorizing continuous or semi-continuous variables using (weighted)
quantiles. This is a utility function that is useful for writing custom wrapper functions such as
simEUSILC.

Usage

getBreaks(x, weights = NULL, zeros = TRUE,
lower = NULL, upper = NULL, equidist = TRUE)

Arguments

x a numeric vector to be categorized.

weights an optional numeric vector containing sample weights.

zeros a logical indicating whether x is semi-continuous, i.e., contains a considerable
amount of zeros. See “Details” on how this affects the behavior of the function.

217

AMELI-WP10-D10.3

getBreaks 7

lower, upper optional numeric values specifying lower and upper bounds other than minimum
and maximum of x, respectively.

equidist a logical indicating whether the (positive) breakpoints should be equidistant or
whether there should be refinements in the lower and upper tail (see “Details”).

Details

If equidist is TRUE, the behavior is as follows. If zeros is TRUE as well, the 0%, 10%,
. . . , 90% quantiles of the negative values and the 10%, 20%, . . . , 100% of the positive values are
computed. These quantiles are then used as breakpoints together with 0. If zeros is not TRUE, on
the other hand, the 0%, 10%, . . . , 100% quantiles of all values are used.

If equidist is not TRUE, the behavior is as follows. If zeros is not TRUE, the 1%, 5%, 10%,
20%, 40%, 60%, 80%, 90%, 95% and 99% quantiles of all values are used for the inner part of the
data (instead of the equidistant 10%, . . . , 90% quantiles). If zeros is TRUE, these quantiles are
only used for the positive values while the quantiles of the negative values remain equidistant.

Note that duplicated values among the quantiles are discarded and that the minimum and maximum
are replaced with lower and upper, respectively, if these are specified.

The (weighted) quantiles are computed with the function quantileWt.

Value

A numeric vector of breakpoints.

Author(s)

Andreas Alfons

See Also

getCat, quantileWt

Examples

data(eusilcS)

semi-continuous variable, positive breakpoints equidistant
getBreaks(eusilcS$netIncome, weights=eusilcS$rb050)

semi-continuous variable, positive breakpoints not equidistant
getBreaks(eusilcS$netIncome, weights=eusilcS$rb050,

equidist = FALSE)

218 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

8 getCat

getCat Categorize (semi-)continuous variables

Description

Categorize continuous or semi-continuous variables. This is a utility function that is useful for
writing custom wrapper functions such as simEUSILC.

Usage

getCat(x, breaks, zeros = TRUE, right = FALSE)

Arguments

x a numeric vector to be categorized.
breaks a numeric vector of two or more breakpoints.
zeros a logical indicating whether x is semi-continuous, i.e., contains a considerable

amount of zeros. See “Details” on how this affects the behavior of the function.
right logical; if zeros is not TRUE, this indicates whether the intervals should be

closed on the right (and open on the left) or vice versa.

Details

If zeros is TRUE, 0 is added to the breakpoints and treated as its own factor level. Consequently,
intervals for negative values are left-closed and right-open, whereas intervals for positive values are
left-open and right-closed.

Value

A factor containing the categories.

Author(s)

Andreas Alfons

See Also

getBreaks, cut

Examples

data(eusilcS)

semi-continuous variable
breaks <- getBreaks(eusilcS$netIncome,

weights=eusilcS$rb050, equidist = FALSE)
netIncomeCat <- getCat(eusilcS$netIncome, breaks)
summary(netIncomeCat)

219

AMELI-WP10-D10.3

quantileWt 9

quantileWt Weighted sample quantiles

Description

Compute quantiles taking into account sample weights.

Usage

quantileWt(x, weights = NULL, probs = seq(0, 1, 0.25), na.rm = TRUE)

Arguments

x a numeric vector.

weights an optional numeric vector containing sample weights.

probs a numeric vector of probabilities with values in [0, 1].

na.rm a logical indicating whether any NA or NaN values should be removed from x
before the quantiles are computed. Note that the default is TRUE, contrary to
the function quantile.

Details

If weights are not specified then quantile(x, probs, na.rm=na.rm, names=FALSE,
type=1) is used for the computation.

Note probabilities outside [0, 1] cause an error.

Value

A vector of the (weighted) sample quantiles.

Author(s)

Stefan Kraft

A basic version of this function was provided by Cedric Beguin and Beat Hulliger.

See Also

quantile

Examples

data(eusilcS)
quantileWt(eusilcS$netIncome, weights=eusilcS$rb050)

220 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

10 simCategorical

simCategorical Simulate categorical variables of population data

Description

Simulate categorical variables of population data. The household structure of the population data
needs to be simulated beforehand.

Usage

simCategorical(dataS, dataP, w = "rb050", strata = "db040",
basic, additional = c("pl030", "pb220a"),
method = c("multinom", "distribution"),
maxit = 500, MaxNWts = 1500, seed)

Arguments

dataS a data.frame containing household survey data.

dataP a data.frame containing the simulated population household structure.

w a character string specifying the column of dataS that contains the (personal)
sample weights.

strata a character string specifying the columns of dataS and dataP, respectively,
that define strata. The values are simulated for each stratum separately. Note
that this is currently a required argument and only one stratification variable is
supported.

basic a character vector specifying the columns of dataS and dataP, respectively,
that define the household structure, typically age, gender and household size.
The default value is c("age", "rb090", "hsize") if method is "multinom",
and c("age", "rb090") if method is "distribution".

additional a character vector specifying additional categorical variables of dataS that
should be simulated for the population data.

method a character string specifying the method to be used for simulating the additional
categorical variables. Accepted values are "multinom" (estimation of the
conditional probabilities using multinomial log-linear models and random draws
from the resulting distributions), or "distribution" (random draws from
the observed conditional distributions of their multivariate realizations).

maxit, MaxNWts
control parameters to be passed to multinom and nnet. See the help file for
nnet.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

221

AMELI-WP10-D10.3

simComponents 11

Value

A data.frame containing the simulated population data including the categorical variables spec-
ified by additional.

Note

The basic household structure needs to be simulated beforehand with the function simStructure.

Author(s)

Andreas Alfons and Stefan Kraft

See Also

simStructure, simContinuous, simComponents, simEUSILC

Examples

Not run:

these take some time and are not run automatically
copy & paste to the R command line

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
eusilcP <- simStructure(eusilcS)
eusilcP <- simCategorical(eusilcS, eusilcP)
summary(eusilcP)

End(Not run)

simComponents Simulate components of continuous variables of population data

Description

Simulate components of continuous variables of population data by resampling fractions from sur-
vey data. The continuous variable to be split and any categorical conditioning variables need to be
simulated beforehand.

Usage

simComponents(dataS, dataP, w = "rb050", total = "netIncome",
components = c("py010n", "py050n", "py090n",
"py100n", "py110n", "py120n", "py130n", "py140n"),

conditional = c(getCatName(total), "pl030"),
replaceEmpty = c("sequential", "min"), seed)

222 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

12 simComponents

Arguments

dataS a data.frame containing household survey data.

dataP a data.frame containing the simulated population data.

w a character string specifying the column of dataS that contains the (personal)
sample weights, which are used as probability weights for resampling.

total a character string specifying the continuous variable of dataP that should be
split into components. Currently, only one variable can be split at a time.

components a character vector specifying the components in dataS that should be simulated
for the population data.

conditional an optional character vector specifying categorical contitioning variables for re-
sampling. The fractions occurring in dataS are then drawn from the respective
subsets defined by these variables.

replaceEmpty a character string; if conditional specifies at least two conditioning vari-
ables, this determines how replacement cells for empty subsets in the sample
are obtained. If "sequential", the conditioning variables are browsed se-
quentially such that replacement cells have the same value in one conditioning
variable and minimum Manhattan distance in the other conditioning variables. If
no such cells exist, replacement cells with minimum overall Manhattan distance
are selected. The latter is always done if this is "min" or only one conditioning
variable is used.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

Value

A data.frame containing the simulated population data including the components of the contin-
uous variable specified by total.

Note

The basic household structure, any categorical conditioning variables and the continuous variable to
be split need to be simulated beforehand with the functions simStructure, simCategorical
and simContinuous.

Author(s)

Stefan Kraft and Andreas Alfons

See Also

simStructure, simCategorical, simContinuous, simEUSILC

223

AMELI-WP10-D10.3

simContinuous 13

Examples

Not run:

these take some time and are not run automatically
copy & paste to the R command line

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
eusilcP <- simStructure(eusilcS)
eusilcP <- simCategorical(eusilcS, eusilcP)
basic <- c("age", "rb090", "hsize", "pl030", "pb220a")
eusilcP <- simContinuous(eusilcS, eusilcP,

basic = basic, upper = 200000, equidist = FALSE)
categorize net income for use as conditioning variable
breaks <- getBreaks(eusilcS$netIncome, eusilcS$rb050,

upper=Inf, equidist = FALSE)
eusilcS$netIncomeCat <- getCat(eusilcS$netIncome, breaks)
eusilcP$netIncomeCat <- getCat(eusilcP$netIncome, breaks)
simulate net income components
eusilcP <- simComponents(eusilcS, eusilcP)
summary(eusilcP)

End(Not run)

simContinuous Simulate continuous variables of population data

Description

Simulate continuous variables of population data using multinomial log-linear models combined
with random draws from the resulting categories or (two-step) regression models combined with
random error terms. The household structure of the population data and any other categorical pre-
dictors need to be simulated beforehand.

Usage

simContinuous(dataS, dataP, w = "rb050", strata = "db040",
basic = c("age", "rb090", "hsize"),
additional = "netIncome",
method = c("multinom", "lm"), zeros = TRUE,
breaks = NULL, lower = NULL, upper = NULL,
equidist = TRUE, gpd = TRUE, threshold = NULL,
est = "moments", censor = NULL, log = TRUE,
const = NULL, alpha = 0.01, residuals = TRUE,
keep = TRUE, maxit = 500, MaxNWts = 1500,
tol = .Machine$double.eps^0.5, seed)

224 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

14 simContinuous

Arguments

dataS a data.frame containing household survey data.

dataP a data.frame containing the simulated population data. Household structure
and any other categorical predictors need to be simulated beforehand.

w a character string specifying the column of dataS that contains the (personal)
sample weights.

strata a character string specifying the columns of dataS and dataP, respectively,
that define strata. The regression models are computed for each stratum sepa-
rately. Note that this is currently a required argument and only one stratification
variable is supported.

basic a character vector specifying the columns of dataS and dataP, respectively,
that define the household structure and any other categorical predictors, such as
age, gender and household size.

additional a character string specifying the additional continuous variable of dataS that
should be simulated for the population data. Currently, only one additional vari-
able can be simulated at a time.

method a character string specifying the method to be used for simulating the continuous
variable. Accepted values are "multinom", for using multinomial log-linear
models combined with random draws from the resulting ategories, and "lm",
for using (two-step) regression models combined with random error terms.

zeros a logical indicating whether the variable specified by additional is semi-
continuous, i.e., contains a considerable amount of zeros. If TRUE and method
is "multinom", a separate factor level for zeros in the response is used. If
TRUE and method is "lm", a two-step model is applied. The first step thereby
uses a log-linear or multinomial log-linear model (see “Details”).

breaks an optional numeric vector; if multinomial models are computed, this can be
used to supply two or more breakpoints for categorizing the variable specified by
additional. If NULL, breakpoints are computed using weighted quantiles.

lower, upper optional numeric values; if multinomial models are computed and breaks is
NULL, these can be used to specify lower and upper bounds other than minimum
and maximum, respectively. Note that if method is "multinom" and gpd is
TRUE (see below), upper defaults to Inf.

equidist logical; if method is "multinom" and breaks is NULL, this indicates whether
the (positive) default breakpoints should be equidistant or whether there should
be refinements in the lower and upper tail (see getBreaks).

gpd logical; if method is "multinom", this indicates whether the upper tail of the
variable specified by additional should be simulated by random draws from
a (truncated) generalized Pareto distribution rather than a uniform distribution.

threshold a numeric value; if method is "multinom", values for categories above
threshold are drawn from a (truncated) generalized Pareto distribution.

est a character string; if method is "multinom", the estimator to be used to fit
the generalized Pareto distribution (see fitgpd).

censor an optional named list of data.frames; if multinomial models are computed,
this can be used to account for structural zeros. The names of the list components

225

AMELI-WP10-D10.3

simContinuous 15

specify the categories that should be censored. For each of these categories, a
data.frame containing levels of the predictor variables can be supplied. The
probability of the specified categories is set to 0 for the respective predictor
levels. Currently, this is only implemented for more than two categories in the
response.

log logical; if method is "lm", this indicates whether the linear model should
be fitted to the logarithms of the variable specified by additional. The pre-
dicted values are then back-transformed with the exponential function. See “De-
tails” for more information.

const numeric; if method is "lm" and log is TRUE, this gives a constant to be added
before log transformation.

alpha numeric; if method is "lm", this gives trimming parameters for the sam-
ple data. Trimming is thereby done with respect to the variable specified by
additional. If a numeric vector of length two is supplied, the first element
gives the trimming proportion for the lower part and the second element the
trimming proportion for the upper part. If a single numeric is supplied, it is used
for both. With NULL, trimming is suppressed.

residuals logical; if method is "lm", this indicates whether the random error terms
should be obtained by draws from the residuals. If FALSE, they are drawn from
a normal distribution (median and MAD of the residuals are used as parameters).

keep logical; if multinomial models are computed, this indicates whether the simu-
lated categories should be stored as a variable in the resulting population data. If
TRUE, the corresponding column name is given by additional with postfix
"Cat".

maxit, MaxNWts
control parameters to be passed to multinom and nnet. See the help file for
nnet.

tol if method is "lm", a small positive numeric value or NULL. When fitting a log-
linear model within a stratum, factor levels may not exist in the sample but are
likely to exist in the population. However, the coefficient for such factor levels
will be 0. Therefore, coefficients smaller than tol in absolute value are replaced
by coefficients from an auxiliary model that is fit to the whole sample. If NULL,
no auxiliary log-linear model is computed and no coefficients are replaced.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

Details

If method is "lm", the behavior for two-step models is described in the following.

If zeros is TRUE and log is not TRUE or the variable specified by additional does not contain
negative values, a log-linear model is used to predict whether an observation is zero or not. Then a
linear model is used to predict the non-zero values.

If zeros is TRUE, log is TRUE and const is specified, again a log-linear model is used to predict
whether an observation is zero or not. In the linear model to predict the non-zero values, const is
added to the variable specified by additional before the logarithms are taken.

226 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

16 simContinuous

If zeros is TRUE, log is TRUE, const is NULL and there are negative values, a multinomial log-
linear model is used to predict negative, zero and positive observations. Categories for the negative
values are thereby defined by breaks. In the second step, a linear model is used to predict the
positive values and negative values are drawn from uniform distributions in the respective classes.

If zeros is FALSE, log is TRUE and const is NULL, a two-step model is used if there are non-
positive values in the variable specified by additional. Whether a log-linear or a multinomial
log-linear model is used depends on the number of categories to be used for the non-positive values,
as defined by breaks. Again, positive values are then predicted with a linear model and non-
positive values are drawn from uniform distributions.

Value

A data.frame containing the simulated population data including the continuous variable spec-
ified by additional.

Note

The basic household structure and any other categorical predictors need to be simulated beforehand
with the functions simStructure and simCategorical, respectively.

Author(s)

Original code by Stefan Kraft, redesign and generalizations by Andreas Alfons.

See Also

simStructure, simCategorical, simComponents, simEUSILC

Examples

Not run:

these take some time and are not run automatically
copy & paste to the R command line

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
eusilcP <- simStructure(eusilcS)
eusilcP <- simCategorical(eusilcS, eusilcP)
basic <- c("age", "rb090", "hsize", "pl030", "pb220a")

multinomial model with random draws
eusilcM <- simContinuous(eusilcS, eusilcP,

basic = basic, upper = 200000, equidist = FALSE)
summary(eusilcM)

two-step regression
eusilcT <- simContinuous(eusilcS, eusilcP,

basic = basic, method = "lm")
summary(eusilcT)

227

AMELI-WP10-D10.3

simEUSILC 17

End(Not run)

simEUSILC Simulate EU-SILC population data

Description

Simulate population data for the European Statistics on Income and Living Conditions (EU-SILC).

Usage

simEUSILC(dataS, hid = "db030", wh = "db090", wp = "rb050",
hsize = NULL, strata = "db040", pid = NULL, age = "age",
gender = "rb090", categorizeAge = TRUE, breaksAge = NULL,
categorical = c("pl030", "pb220a"),
income = "netIncome", method = c("multinom", "twostep"),
breaks = NULL, lower = NULL, upper = NULL,
equidist = TRUE, gpd = TRUE, threshold = NULL,
est = "moments", const = NULL, alpha = 0.01,
residuals = TRUE,
components = c("py010n", "py050n", "py090n",
"py100n", "py110n", "py120n", "py130n", "py140n"),

conditional = c(getCatName(income), "pl030"),
keep = TRUE, maxit = 500, MaxNWts = 1500,
tol = .Machine$double.eps^0.5, seed)

Arguments

dataS a data.frame containing EU-SILC survey data.

hid a character string specifying the column of dataS that contains the household
ID.

wh a character string specifying the column of dataS that contains the household
sample weights.

wp a character string specifying the column of dataS that contains the personal
sample weights.

hsize an optional character string specifying a column of dataS that contains the
household size. If NULL, the household sizes are computed.

strata a character string specifying the column of dataS that define strata. Note that
this is currently a required argument and only one stratification variable is sup-
ported.

pid an optional character string specifying a column of dataS that contains the
personal ID.

age a character string specifying the column of dataS that contains the age of the
persons (to be used for setting up the household structure).

228 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

18 simEUSILC

gender a character string specifying the column of dataS that contains the gender of
the persons (to be used for setting up the household structure).

categorizeAge
a logical indicating whether age categories should be used for simulating addi-
tional categorical and continuous variables to decrease computation time.

breaksAge numeric; if categorizeAge is TRUE, an optional vector of two or more
breakpoints for constructing age categories, otherwise ignored.

categorical a character vector specifying additional categorical variables of dataS that
should be simulated for the population data.

income a character string specifying the variable of dataS that contains the personal
income (to be simulated for the population data).

method a character string specifying the method to be used for simulating personal in-
come. Accepted values are "multinom" (for using multinomial log-linear
models combined with random draws from the resulting ategories) and "twostep"
(for using two-step regression models combined with random error terms).

breaks if method is "multinom", an optional numeric vector of two or more break-
points for categorizing the personal income. If missing, breakpoints are com-
puted using weighted quantiles.

lower, upper numeric values; if method is "multinom" and breaks is NULL, these can
be used to specify lower and upper bounds other than minimum and maximum,
respectively. Note that if gpd is TRUE (see below), upper defaults to Inf.

equidist logical; if method is "multinom" and breaks is NULL, this indicates whether
the (positive) default breakpoints should be equidistant or whether there should
be refinements in the lower and upper tail (see getBreaks).

gpd logical; if method is "multinom", this indicates whether the upper tail of
the personal income should be simulated by random draws from a (truncated)
generalized Pareto distribution rather than a uniform distribution.

threshold a numeric value; if method is "multinom", values for categories above
threshold are drawn from a (truncated) generalized Pareto distribution.

est a character string; if method is "multinom", the estimator to be used to fit
the generalized Pareto distribution (see fitgpd).

const numeric; if method is "twostep", this gives a constant to be added before
log transformation.

alpha numeric; if method is "twostep", this gives trimming parameters for the
sample data. Trimming is thereby done with respect to the variable specified by
additional. If a numeric vector of length two is supplied, the first element
gives the trimming proportion for the lower part and the second element the
trimming proportion for the upper part. If a single numeric is supplied, it is used
for both. With NULL, trimming is suppressed.

residuals logical; if method is "twostep", this indicates whether the random error
terms should be obtained by draws from the residuals. If FALSE, they are drawn
from a normal distribution (median and MAD of the residuals are used as pa-
rameters).

components a character vector specifying the income components in dataS (to be simulated
for the population data).

229

AMELI-WP10-D10.3

simEUSILC 19

conditional an optional character vector specifying categorical contitioning variables for re-
sampling of the income components. The fractions occurring in dataS are then
drawn from the respective subsets defined by these variables.

keep a logical indicating whether variables computed internally in the procedure (such
as the original IDs of the corresponding households in the underlying sample,
age categories or income categories) should be stored in the resulting population
data.

maxit, MaxNWts
control parameters to be passed to multinom and nnet. See the help file for
nnet.

tol if method is "twostep", a small positive numeric value or NULL (see simContinuous).

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

Value

A data.frame containing the simulated EU-SILC population data.

Note

This is a wrapper calling simStructure, simCategorical, simContinuous and simComponents.

Author(s)

Andreas Alfons and Stefan Kraft

See Also

simStructure, simCategorical, simContinuous, simComponents

Examples

Not run:

these take some time and are not run automatically
copy & paste to the R command line

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data

multinomial model with random draws
eusilcM <- simEUSILC(eusilcS, upper = 200000, equidist = FALSE)
summary(eusilcM)

two-step regression
eusilcT <- simEUSILC(eusilcS, method = "twostep")
summary(eusilcT)

End(Not run)

230 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

20 simStructure

simStructure Simulate the household structure of population data

Description

Simulate basic categorical variables that define the household structure (typically household ID, age
and gender) of population data by resampling from survey data.

Usage

simStructure(dataS, hid = "db030", w = "db090",
hsize = NULL, strata = "db040", pid = NULL,
additional = c("age", "rb090"),
method = c("direct", "multinom", "distribution"),
keep = TRUE, seed)

Arguments

dataS a data.frame containing household survey data.
hid a character string specifying the column of dataS that contains the household

ID.
w a character string specifying the column of dataS that contains the (household)

sample weights, which are used as probability weights for resampling.
hsize an optional character string specifying a column of dataS that contains the

household size. If NULL, the household sizes are computed.
strata a character string specifying the column of dataS that define strata. Note that

this is currently a required argument and only one stratification variable is sup-
ported.

pid an optional character string specifying a column of dataS that contains the
personal ID.

additional a character vector specifying additional categorical variables of dataS that de-
fine the household structure, typically age and gender.

method a character string specifying the method to be used for simulating the household
sizes. Accepted values are "direct" (estimation of the population totals for
each combination of stratum and household size using the Horvitz-Thompson
estimator), "multinom" (estimation of the conditional probabilities within the
strata using a multinomial log-linear model and random draws from the resulting
distributions), or "distribution" (random draws from the observed condi-
tional distributions within the strata).

keep a logical indicating whether the original IDs of the corresponding households in
the underlying sample should be stored as a variable in the resulting population
data. If TRUE, the corresponding column name is given by hid with postfix
"Sample".

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

231

AMELI-WP10-D10.3

spBwplot 21

Value

A data.frame containing the simulated population household structure.

Note

The function sample is used, which gives results incompatible with those from R < 2.2.0 and
produces a warning the first time this happens in a session.

Author(s)

Andreas Alfons and Stefan Kraft

See Also

simCategorical, simContinuous, simComponents, simEUSILC

Examples

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
eusilcP <- simStructure(eusilcS)
summary(eusilcP)

spBwplot Weighted box plots

Description

Produce box-and-whisker plots of continuous or semi-continuous variables, possibly broken down
according to conditioning variables and taking into account sample weights.

Usage

spBwplot(x, ...)

Default S3 method:
spBwplot(x, weights = NULL, cond = NULL, dataS, dataP = NULL,

horizontal = TRUE, coef = 1.5, zeros = TRUE,
minRatio = NULL, do.out = FALSE, ...)

Arguments

x for the default method (currently the only method implemented), a character
vector specifying the columns of dataS and dataP to be plotted.

weights a character string specifying the column of dataS that contains the (personal)
sample weights.

cond an optional character vector specifying conditioning variables.

232 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

22 spBwplot

dataS a data.frame containing household survey data.

dataP optional; a data.frame containing simulated population data or a list of such
data.frames.

horizontal a logical indicating whether the boxes should be horizontal or vertical.

coef a numeric value that determines the extension of the whiskers.

zeros a logical indicating whether the variables specified by x are semi-continuous,
i.e., contain a considerable amount of zeros. If TRUE, the box widths correspond
to the proportion of non-zero data points and the (weighted) box plot statistics
are computed for these non-zero data points only.

minRatio a numeric value in (0, 1]; if zeros is TRUE, the boxes may become unreadable
for a large proportion of zeros. In such a case, this can be used to specify a
minimum ratio for the box widths. Variable box widths for semi-continuous
variables can be suppressed by setting this value to 1.

do.out a logical indicating whether data points that lie beyond the extremes of the
whiskers should be plotted. Note that this is FALSE by default.

... for the generic function, further arguments to be passed down to methods. For
the default method, further arguments to be passed to bwplot.

Details

Missing values are ignored for producing box plots.

Value

An object of class "trellis", as returned by bwplot.

Note

A formula interface may be added in the future.

Author(s)

Andreas Alfons

See Also

spBwplotStats, bwplot

Examples

Not run:

these take some time and are not run automatically
copy & paste to the R command line

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
multinomial model with random draws

233

AMELI-WP10-D10.3

spBwplotStats 23

eusilcM <- simEUSILC(eusilcS, upper = 200000, equidist = FALSE)
two-step regression
eusilcT <- simEUSILC(eusilcS, method = "twostep")
plot results by gender
spBwplot("netIncome", "rb050", "rb090", dataS = eusilcS,

dataP = list(M = eusilcM, T = eusilcT), layout = c(1, 2))

End(Not run)

spBwplotStats Weighted box plot statistics

Description

Compute the statistics necessary for producing box-and-whisker plots of continuous or semi-continuous
variables, taking into account sample weights.

Usage

spBwplotStats(x, weights = NULL, coef = 1.5,
zeros = TRUE, do.out = TRUE)

Arguments

x a numeric vector.

weights an optional numeric vector containing sample weights.

coef a numeric value that determines the extension of the whiskers.

zeros a logical indicating whether the variable specified by additional is semi-
continuous, i.e., contains a considerable amount of zeros. If TRUE, the (weighted)
box plot statistics are computed for the non-zero data points only and the number
of zeros is returned, too.

do.out a logical indicating whether data points that lie beyond the extremes of the
whiskers should be returned.

Details

The function quantileWt is used for the computation of (weighted) quantiles. The median is
computed together with the first and the third quartile, which form the box. If range is positive,
the whiskers extend to the most extreme data points that have a distance to the box of no more
than coef times the interquartile range. For coef = 0, the whiskers mark the minimum and the
maximum of the sample, whereas a negative value causes an error.

234 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

24 spCdf

Value

A list of class "spBwplotStats" with the following components:

stats A vector of length 5 containing the (weighted) statistics for the construction of
a box plot.

n if weights is NULL, the number of non-missing and, if zeros is TRUE, non-
zero data points. Otherwise the sum of the weights of the corresponding points.

nzero if zeros is TRUE and weights is NULL, the number of zeros. If zeros
is TRUE and weights is not NULL, the sum of the weights of the zeros. If
zeros is not TRUE, this is NULL.

out if do.out, the values of any data points that lie beyond the extremes of the
whiskers.

Author(s)

Stefan Kraft and Andreas Alfons

See Also

spBwplot, for producing (weighted) box plots of continuous or semi-continuous variables.

quantileWt for the computation of (weighted) sample quantiles.

boxplot.stats for the unweighted statistics for box plots (not considering semi-continuous
variables).

Examples

data(eusilcS)

semi-continuous variable
spBwplotStats(eusilcS$netIncome,

weights=eusilcS$rb050, do.out = FALSE)

spCdf (Weighted empirical) cumulative distribution function

Description

Compute a (weighted empirical) cumulative distribution function for survey or population data. For
survey data, sample weights are taken into account.

Usage

spCdf(x, weights = NULL, approx = FALSE, n = 10000)

235

AMELI-WP10-D10.3

spCdfplot 25

Arguments

x a numeric vector.

weights an optional numeric vector containing sample weights.

approx a logical indicating whether an approximation of the cumulative distribution
function should be computed.

n a single integer value; if approx is TRUE, this specifies the number of points
at which the approximation takes place (see approx).

Details

Sample weights are taken into account by adjusting the step height. To be precise, the weighted step
height for an observation is defined as its weight divided by the sum of all weights (wi/

∑n
j=1 wj).

If requested, the approximation is performed using the function approx.

Value

A list of class "spCdf" with the following components:

x a numeric vector containing the x-coordinates.

y a numeric vector containing the y-coordinates.

approx a logical indicating whether the coordinates represent an approximation.

Author(s)

Andreas Alfons and Stefan Kraft

See Also

spCdfplot, ecdf, approx

Examples

data(eusilcS)
cdfS <- spCdf(eusilcS$netIncome, weights = eusilcS$rb050)
plot(cdfS, type="s")

spCdfplot Plot (weighted empirical) cumulative distribution functions

Description

Plot (weighted empirical) cumulative distribution functions for survey and population data, possibly
broken down according to conditioning variables. For survey data, sample weights are taken into
account.

236 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

26 spCdfplot

Usage

spCdfplot(x, ...)

Default S3 method:
spCdfplot(x, weights = NULL, cond = NULL, dataS, dataP = NULL,

approx = NULL, n = 10000, bounds = TRUE, ...)

Arguments

x for the default method (currently the only method implemented), a character
vector specifying the columns of dataS and dataP to be plotted.

weights a character string specifying the column of dataS that contains the (personal)
sample weights.

cond an optional character vector specifying conditioning variables.

dataS a data.frame containing household survey data.

dataP optional; a data.frame containing simulated population data or a list of such
data.frames.

approx logicals indicating whether approximations of the cumulative distribution func-
tions should be computed. The default is to use FALSE for the survey data and
TRUE for any population data. If no population data are supplied, a single log-
ical should be used. On the other hand, if any population data are supplied, the
behavior is as follows. If a single logical is supplied, it is used for the population
data and FALSE is used for the survey data. If a vector of length two is supplied,
the first value is used for the survey data and the second for the population data.
Note that if multiple populations are supplied, the same value is used for all of
them.

n integers specifying the number of points at which the approximations for the
respective data sets take place (see approx). If a single value is supplied, it is
used wherever approx is TRUE. If a vector of length two and any population
data are supplied, the first value is used for the survey data and the second for
the population data (in case the corresponding values of approx are TRUE).
Note that if multiple populations are supplied, the same value is used for all of
them.

bounds a logical indicating whether vertical lines should be drawn at 0 and 1 (the bounds
for cumulative distribution functions).

... for the generic function, further arguments to be passed down to methods. For
the default method, further arguments to be passed to xyplot.

Details

Sample weights are taken into account by adjusting the step height. To be precise, the weighted step
height for an observation is defined as its weight divided by the sum of all weights (wi/

∑n
j=1 wj).

Value

An object of class "trellis", as returned by xyplot.

237

AMELI-WP10-D10.3

spMosaic 27

Note

A formula interface may be added in the future.

Author(s)

Andreas Alfons

See Also

spCdf, xyplot

Examples

Not run:

these take some time and are not run automatically
copy & paste to the R command line

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
multinomial model with random draws
eusilcM <- simEUSILC(eusilcS, upper = 200000, equidist = FALSE)
two-step regression
eusilcT <- simEUSILC(eusilcS, method = "twostep")
plot results by gender
spCdfplot("netIncome", "rb050", "rb090", dataS = eusilcS,

dataP = list(M = eusilcM, T = eusilcT), layout = c(1, 2))

End(Not run)

spMosaic Mosaic plots of expected and realized population sizes

Description

Create mosaic plots of expected (i.e., estimated) and realized (i.e., simulated) population sizes.

Usage

spMosaic(x, ...)

Default S3 method:
spMosaic(x, weights = NULL, dataS, dataP, ...)

238 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

28 spTable

Arguments

x for the default method, an optional character vector specifying the columns of
dataS and dataP to be cross tabulated and plotted. Otherwise, an object of
class "spTable".

weights either a numeric vector containing the (personal) sample weights, or a character
string specifying the corresponding column of dataS.

dataS a data.frame containing household survey data.

dataP a data.frame containing simulated population data.

... further arguments to be passed to cotabplot.

Details

The two tables of expected and realized population sizes are combined into a single table, with an
additional contitioning variable indicating expected and realized values. A conditional plot of this
table is then produced using cotabplot.

Note

A formula interface may be added in the future.

Author(s)

Andreas Alfons

See Also

spTable, cotabplot

Examples

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
eusilcP <- simStructure(eusilcS)
abb <- c("B","LA","Vi","C","St","UA","Sa","T","Vo")
spMosaic(c("rb090", "db040", "hsize"), "rb050", eusilcS, eusilcP,

labeling=labeling_border(abbreviate=c(db040=TRUE)))

spTable Cross tabulations of expected and realized population sizes

Description

Compute contingency tables of expected (i.e., estimated) and realized (i.e., simulated) population
sizes. The expected values are obtained with the Horvitz-Thompson estimator.

239

AMELI-WP10-D10.3

spTable 29

Usage

spTable(dataS, dataP, select = NULL, weights = NULL)

S3 method for class 'formula':
spTable(dataS, dataP, select, weights = NULL)

Arguments

dataS a data.frame containing household survey data.

dataP a data.frame containing simulated population data.

select for the formula method, a formula specifying the variables to be used for cross
tabulation. For the default method, an optional character vector defining the
columns of dataS and dataP to be used.

weights either a numeric vector containing the (personal) sample weights, or the name
of the corresponding column of dataS (for the default method, the name must
be a character string).

Details

The contingency tables are computed with tableWt.

Value

A list of class "spTable" with the following components:

expected the contingency table estimated from the survey data.

realized the contingency table computed from the simulated population data.

Note

The class of the argument select determines the method to be dispatched, not the class of the
first argument.

Author(s)

Andreas Alfons

See Also

spMosaic, tableWt

Examples

set.seed(1234) # for reproducibility
data(eusilcS) # load sample data
eusilcP <- simStructure(eusilcS)
spTable(eusilcS, eusilcP, select = ~ rb090 + db040, weights = rb050)

240 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

30 tableWt

tableWt Weighted cross tabulation

Description

Compute contingency tables taking into account sample weights.

Usage

tableWt(x, weights = NULL, useNA = c("no", "ifany", "always"))

Arguments

x a vector that can be interpreted as a factor, or a matrix or data.frame whose
columns can be interpreted as factors.

weights an optional numeric vector containing sample weights.

useNA a logical indicating whether to include extra NA levels in the table.

Details

For each combination of the variables in x, the weighted number of occurence is computed as the
sum of the corresponding sample weights. If weights are not specified, the function table is
applied.

Value

The (weighted) contingency table as an object of class table, an array of integer values.

Author(s)

Andreas Alfons and Stefan Kraft

See Also

table, contingencyWt

Examples

data(eusilcS)
tableWt(eusilcS[, c("hsize", "db040")], weights = eusilcS$rb050)
tableWt(eusilcS[, c("rb090", "pb220a")], weights = eusilcS$rb050,

useNA = "ifany")

241

AMELI-WP10-D10.3

utils 31

utils Weighted mean, variance, covariance matrix and correlation matrix

Description

Compute mean, variance, covariance matrix and correlation matrix, taking into account sample
weights.

Usage

meanWt(x, weights, na.rm = TRUE)

varWt(x, weights, na.rm = TRUE)

covWt(x, ...)

Default S3 method:
covWt(x, y, weights, ...)

S3 method for class 'matrix':
covWt(x, weights, ...)

S3 method for class 'data.frame':
covWt(x, weights, ...)

corWt(x, ...)

Default S3 method:
corWt(x, y, weights, ...)

S3 method for class 'matrix':
corWt(x, weights, ...)

S3 method for class 'data.frame':
corWt(x, weights, ...)

Arguments

x for meanWt and varWt, a numeric vector. For covWt and corWt, a numeric
vector, matrix or data.frame.

y a numeric vector. If missing, this defaults to x.
weights an optional numeric vector containing sample weights.
na.rm a logical indicating whether any NA or NaN values should be removed from x

before computation. Note that the default is TRUE.
... for the generic functions covWt and corWt, additional arguments to be passed

to methods. Additional arguments not included in the definition of the methods
are ignored.

242 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

32 utils

Details

meanWt is a simple wrapper that calls mean(x, na.rm=na.rm) if weights is missing and
weighted.mean(x, w=weights, na.rm=na.rm) otherwise.

varWt calls var(x, na.rm=na.rm) if weights is missing.

covWt and corWt always remove missing values pairwise and call cov and cor, respectively, if
weights is missing.

Value

For meanWt, the (weighted) mean.

For varWt, the (weighted) variance.

For covWt, the (weighted) covariance matrix or, for the default method, the (weighted) covariance.

For corWt, the (weighted) correlation matrix or, for the default method, the (weighted) correlation
coefficient.

Author(s)

Stefan Kraft and Andreas Alfons

See Also

mean, weighted.mean, var, cov, cor

Examples

data(eusilcS)
meanWt(eusilcS$netIncome, weights=eusilcS$rb050)
sqrt(varWt(eusilcS$netIncome, weights=eusilcS$rb050))

243

AMELI-WP10-D10.3

Index

∗Topic array
utils, 30

∗Topic category
contingencyWt, 3
tableWt, 29

∗Topic datagen
simCategorical, 9
simComponents, 10
simContinuous, 12
simEUSILC, 16
simStructure, 19

∗Topic datasets
eusilcS, 4

∗Topic dplot
spBwplotStats, 22
spCdf, 23
spTable, 27

∗Topic hplot
spBwplot, 20
spCdfplot, 24
spMosaic, 26

∗Topic manip
getBreaks, 6
getCat, 7

∗Topic multivariate
utils, 30

∗Topic package
simPopulation-package, 1

∗Topic univar
quantileWt, 8
utils, 30

approx, 24, 25

boxplot.stats, 23
bwplot, 21

contingencyWt, 3, 29
cor, 31
corWt (utils), 30

cotabplot, 27
cov, 31
covWt (utils), 30
cut, 8

ecdf, 24
eusilcS, 4

factor, 7
fitgpd, 13, 17

getBreaks, 6, 8, 13, 17
getCat, 7, 7

mean, 31
meanWt (utils), 30
multinom, 10, 14, 18

nnet, 10, 14, 18

quantile, 8, 9
quantileWt, 6, 7, 8, 22, 23

sample, 20
simCategorical, 9, 11, 12, 15, 18, 20
simComponents, 10, 10, 15, 18, 20
simContinuous, 10, 11, 12, 12, 18, 20
simEUSILC, 6, 7, 10, 12, 15, 16, 20
simPopulation

(simPopulation-package), 1
simPopulation-package, 1
simStructure, 10–12, 15, 18, 19
spBwplot, 20, 23
spBwplotStats, 21, 22
spCdf, 23, 26
spCdfplot, 24, 24
spMosaic, 26, 28
spTable, 27, 27

table, 29
tableWt, 3, 4, 28, 29

33

244 A2. simPopulation Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

34 INDEX

utils, 30

var, 31
varWt (utils), 30

weighted.mean, 31

xyplot, 25, 26

245

AMELI-WP10-D10.3

Package ‘VIM’
May 5, 2011

Version 2.0.1

Date 2011-05-05

Title Visualization and Imputation of Missing Values

Author Matthias Templ, Andreas Alfons, Alexander Kowarik

Maintainer Matthias Templ <templ@tuwien.ac.at>

Depends R (>= 2.10),e1071,car, colorspace, nnet, robustbase, tcltk,tkrplot, sp, vcd, Rcpp

Imports car, colorspace, grDevices, robustbase, stats, tcltk, sp,utils, vcd

Description This package introduces new tools for the visualization of
missing values in R, which can be used for exploring the data
and the structure of the missing values. Depending on this
structure, they may help to identify the mechanism generating
the missings. A graphical user interface allows an easy
handling of the implemented plot methods.

License GPL (>= 2)

URL http://cran.r-project.org/package=VIM

Repository CRAN

Date/Publication 2011-05-05 10:56:52

R topics documented:
VIM-package . 2
aggr . 3
alphablend . 6
barMiss . 6
bgmap . 8
chorizonDL . 9
colormapMiss . 13
colSequence . 15

1

246 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2 VIM-package

count . 17
growdotMiss . 17
histMiss . 19
hotdeck . 22
initialise . 23
irmi . 23
kNN . 25
kola.background . 27
mapMiss . 27
marginmatrix . 29
marginplot . 30
matrixplot . 32
mosaicMiss . 34
pairsVIM . 35
parcoordMiss . 37
pbox . 39
prepare . 41
print.aggr . 43
print.summary.aggr . 44
rugNA . 44
SBS5242 . 45
scattJitt . 46
scattmatrixMiss . 47
scattMiss . 49
sleep . 51
spineMiss . 52
summary.aggr . 54
tao . 55
vmGUImenu . 56

Index 58

VIM-package Visualization and Imputation of Missing Values

Description

This package introduces new tools for the visualization of missing values in R, which can be used
for exploring the data and the structure of the missing values. Depending on this structure, they
may help to identify the mechanism generating the missing values. This knowledge is necessary for
selecting an appropriate imputation method in order to reliably estimate the missing values. Thus
the visualization tools should be applied before imputation.

Detecting missing values mechanisms is usually done by statistical tests or models. Visualization of
missing values can support the test decision, but also reveals more details about the data structure.
Most notably, statistical requirements for a test can be checked graphically, and problems like out-
liers or skewed data distributions can be discovered. Furthermore, the included plot methods may
also be able to detect missing values mechanisms in the first place.

247

AMELI-WP10-D10.3

aggr 3

A graphical user interface allows an easy handling of the plot methods. In addition, VIM can be
used for data from essentially any field.

Robust imputation methods and diagnstic tools will be included in future versions.

Details

Package: VIM
Type: Package
Version: 1.4
Date: 2010-01-18
License: GPL (>= 2)

Author(s)

Matthias Templ, Andreas Alfons, Alexander Kowarik

Maintainer: Matthias Templ <templ@statistik.tuwien.ac.at>

aggr Aggregations for missing values

Description

Calculate or plot the amount of missing values in each variable and the amount of missing values in
certain combinations of variables.

Usage

aggr(x, plot = TRUE, ...)

S3 method for class 'aggr'
plot(x, col = c("skyblue","red"), bars = TRUE,

numbers = FALSE, prop = TRUE, border = par("fg"),
sortVars = FALSE, sortCombs = TRUE, ylabs = NULL,
axes = TRUE, labels = axes, cex.lab = 1.2,
cex.axis = par("cex"), cex.numbers = par("cex"),
gap = 4, ...)

TKRaggr(x, ..., hscale = NULL, vscale = NULL, TKRpar = list())

248 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4 aggr

Arguments

x a vector, matrix or data.frame.

plot a logical indicating whether the results should be plotted (the default is TRUE).

col a vector of length two giving the colors to be used for observed and missing
data. If only one color is supplied, it is used for missing data and observed data
is transparent.

bars a logical indicating whether a small barplot for the frequencies of the different
combinations should be drawn.

numbers a logical indicating whether the proportion or frequencies of the different com-
binations should be represented by numbers.

prop a logical indicating whether the proportion of missing values and combinations
should be used rather than the total amount.

border the color to be used for the border of the bars and rectangles. Use border=NA
to omit borders.

sortVars a logical indicating whether the variables should be sorted by the number of
missing values.

sortCombs a logical indicating whether the combinations should be sorted by the frequency
of occurrence.

ylabs a character vector of length two giving the y-axis labels for the two plots.

axes a logical indicating whether axes should be drawn.

labels either a logical indicating whether labels should be plotted on the x-axis, or a
character vector giving the labels.

cex.lab the character expansion factor to be used for the axis labels.

cex.axis the character expansion factor to be used for the axis annotation.

cex.numbers the character expansion factor to be used for the proportion or frequencies of the
different combinations

gap a numeric value giving the distance between the two plots in margin lines.

... for aggr and TKRaggr, further arguments and graphical parameters to be
passed to plot.aggr. For plot.aggr, further graphical parameters to be
passed down. par("oma") will be set appropriately unless supplied (see
par).

hscale horizontal scale factor for plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

vscale vertical scale factor for the plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of combinations.

TKRpar a list of graphical parameters to be set for the plot to be embedded in a Tcl/Tk
window (see ‘Details’ and par).

249

AMELI-WP10-D10.3

aggr 5

Details

Often it is of interest how many missing values are contained in each variable. Even more interest-
ing, there may be certain combinations of variables with a high number of missing values.

The barplot on the left hand side shows the number of missing values in each variable. In the aggre-
gation plot on the right hand side, all existing combinations of missing and non-missing values in
the observations are visualized. Available and missing data are color coded as given by col. Addi-
tionally, the proportions or frequencies of the different combinations can be represented by a small
bar plot and numbers. Variables may be sorted by the number of missing values and combinations
by the frequency of occurrence to give more power to finding the structure of missing values.

The graphical parameter oma will be set unless supplied as an argument.

TKRaggr behaves like plot.aggr, but uses tkrplot to embed the plot in a Tcl/Tk window.
This is useful if the number of variables and/or combinations is large, because scrollbars allow to
move from one part of the plot to another.

Value

for aggr, a list of class "aggr" containing the following components:

x the data used.

combinations a character vector representing the combinations of variables.

count the frequencies of these combinations.

percent the percentage of these combinations.

missings a data.frame containing the amount of missing values in each variable.

tabcomb the indicator matrix for the combinations of variables.

Note

Some of the argument names and positions have changed with version 1.3 due to extended func-
tionality and for more consistency with other plot functions in VIM. For back compatibility, the
arguments labs and names.arg can still be supplied to ... and are handled correctly. Never-
theless, they are deprecated and no longer documented. Use ylabs and labels instead.

Author(s)

Andreas Alfons, Matthias Templ

See Also

print.aggr, summary.aggr

Examples

data(sleep, package="VIM")
a <- aggr(sleep)
a
summary(a)

250 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6 barMiss

alphablend Alphablending for colors

Description

Convert colors to semitransparent colors.

Usage

alphablend(col, alpha = NULL, bg = NULL)

Arguments

col a vector specifying colors.
alpha a numeric vector containing the alpha values (between 0 and 1).
bg the background color to be used for alphablending. This can be used as a

workaround for graphics devices that do not support semitransparent colors.

Value

a vector containing the semitransparent colors.

Author(s)

Andreas Alfons

Examples

alphablend("red", 0.6)

barMiss Barplot with information about missing values

Description

Barplot with highlighting of missing values in other variables by splitting each bar into two parts.
Additionally, information about missing values in the variable of interest is shown on the right hand
side.

Usage

barMiss(x, pos = 1, selection = c("any","all"),
col = c("skyblue","red","skyblue4","red4"),
border = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, axes = TRUE,
labels = axes, only.miss = TRUE,
miss.labels = axes, interactive = TRUE, ...)

251

AMELI-WP10-D10.3

barMiss 7

Arguments

x a vector, matrix or data.frame.

pos a numeric value giving the index of the variable of interest. Additional variables
in x are used for highlighting.

selection the selection method for highlighting missing values in multiple additional vari-
ables. Possible values are "any" (highlighting of missing values in any of the
additional variables) and "all" (highlighting of missing values in all of the
additional variables).

col a vector of length four giving the colors to be used. If only one color is supplied,
the bars are transparent and the supplied color is used for highlighting. Else if
two colors are supplied, they are recycled.

border the color to be used for the border of the bars. Use border=NA to omit borders.

main, sub main and sub title.

xlab, ylab axis labels.

axes a logical indicating whether axes should be drawn on the plot.

labels either a logical indicating whether labels should be plotted below each bar, or a
character vector giving the labels.

only.miss logical; if TRUE, the missing values in the variable of interest are visualized by
a single bar. Otherwise, a small barplot is drawn on the right hand side (see
‘Details’).

miss.labels either a logical indicating whether label(s) should be plotted below the bar(s)
on the right hand side, or a character string or vector giving the label(s) (see
‘Details’).

interactive a logical indicating whether variables can be switched interactively (see ‘De-
tails’).

... further graphical parameters to be passed to title and axis.

Details

If more than one variable is supplied, the bars for the variable of interest are split according to
missingness in the additional variables.

If only.miss=TRUE, the missing values in the variable of interest are visualized by one bar on the
right hand side. If additional variables are supplied, this bar is again split into two parts according
to missingness in the additional variables.

Otherwise, a small barplot consisting of two bars is drawn on the right hand side. The first bar
corresponds to observed values in the variable of interest and the second bar to missing values. Since
these two bars are not on the same scale as the main barplot, a second y-axis is plotted on the right
(if axes=TRUE). Each of the two bars are again split into two parts according to missingness in
the additional variables. Note that this display does not make sense if only one variable is supplied,
therefore only.miss is ignored in that case.

If interactive=TRUE, clicking in the left margin of the plot results in switching to the previous
variable and clicking in the right margin results in switching to the next variable. Clicking anywhere
else on the graphics device quits the interactive session. When switching to a continuous variable,
a histogram is plotted rather than a barplot.

252 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

8 bgmap

Value

a numeric vector giving the coordinates of the midpoints of the bars.

Note

Some of the argument names and positions have changed with version 1.3 due to extended func-
tionality and for more consistency with other plot functions in VIM. For back compatibility, the
arguments axisnames, names.arg and names.miss can still be supplied to ... and are
handled correctly. Nevertheless, they are deprecated and no longer documented. Use labels and
miss.labels instead.

Author(s)

Andreas Alfons

See Also

spineMiss, histMiss

Examples

data(sleep, package = "VIM")
x <- sleep[, c("Exp", "Sleep")]
barMiss(x)
barMiss(x, only.miss = FALSE)

bgmap Backgound map

Description

Plot a background map.

Usage

bgmap(map, add=FALSE, ...)

Arguments

map either a matrix or data.frame with two columns, a list with components x
and y, or an object of any class that can be used for maps and provides its own
plot method (e.g., "SpatialPolygons" from package sp). A list of the
previously mentioned types can also be provided.

add a logical indicating whether map should be added to an already existing plot
(the default is FALSE).

... further arguments and graphical parameters to be passed to plot and/or lines.

253

AMELI-WP10-D10.3

chorizonDL 9

Author(s)

Andreas Alfons

See Also

growdotMiss, mapMiss

Examples

data(kola.background, package = "VIM")
bgmap(kola.background)

chorizonDL C-horizon of the Kola data with missing values

Description

This data set is the same as the chorizon data set in package mvoutlier, except that values
below the detection limit are coded as NA.

Usage

data(chorizonDL)

Format

A data frame with 606 observations on the following 110 variables.

*ID a numeric vector

XCOO a numeric vector

YCOO a numeric vector

Ag a numeric vector

Ag_INAA a numeric vector

Al a numeric vector

Al2O3 a numeric vector

As a numeric vector

As_INAA a numeric vector

Au_INAA a numeric vector

B a numeric vector

Ba a numeric vector

Ba_INAA a numeric vector

Be a numeric vector

Bi a numeric vector

254 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

10 chorizonDL

Br_IC a numeric vector

Br_INAA a numeric vector

Ca a numeric vector

Ca_INAA a numeric vector

CaO a numeric vector

Cd a numeric vector

Ce_INAA a numeric vector

Cl_IC a numeric vector

Co a numeric vector

Co_INAA a numeric vector

EC a numeric vector

Cr a numeric vector

Cr_INAA a numeric vector

Cs_INAA a numeric vector

Cu a numeric vector

Eu_INAA a numeric vector

F_IC a numeric vector

Fe a numeric vector

Fe_INAA a numeric vector

Fe2O3 a numeric vector

Hf_INAA a numeric vector

Hg a numeric vector

Hg_INAA a numeric vector

Ir_INAA a numeric vector

K a numeric vector

K2O a numeric vector

La a numeric vector

La_INAA a numeric vector

Li a numeric vector

LOI a numeric vector

Lu_INAA a numeric vector

wt_INAA a numeric vector

Mg a numeric vector

MgO a numeric vector

Mn a numeric vector

MnO a numeric vector

Mo a numeric vector

255

AMELI-WP10-D10.3

chorizonDL 11

Mo_INAA a numeric vector

Na a numeric vector

Na_INAA a numeric vector

Na2O a numeric vector

Nd_INAA a numeric vector

Ni a numeric vector

Ni_INAA a numeric vector

NO3_IC a numeric vector

P a numeric vector

P2O5 a numeric vector

Pb a numeric vector

pH a numeric vector

PO4_IC a numeric vector

Rb a numeric vector

S a numeric vector

Sb a numeric vector

Sb_INAA a numeric vector

Sc a numeric vector

Sc_INAA a numeric vector

Se a numeric vector

Se_INAA a numeric vector

Si a numeric vector

SiO2 a numeric vector

Sm_INAA a numeric vector

Sn_INAA a numeric vector

SO4_IC a numeric vector

Sr a numeric vector

Sr_INAA a numeric vector

SUM_XRF a numeric vector

Ta_INAA a numeric vector

Tb_INAA a numeric vector

Te a numeric vector

Th a numeric vector

Th_INAA a numeric vector

Ti a numeric vector

TiO2 a numeric vector

U_INAA a numeric vector

256 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

12 chorizonDL

V a numeric vector

W_INAA a numeric vector

Y a numeric vector

Yb_INAA a numeric vector

Zn a numeric vector

Zn_INAA a numeric vector

ELEV a numeric vector

*COUN a numeric vector

*ASP a numeric vector

TOPC a numeric vector

LITO a numeric vector

Al_XRF a numeric vector

Ca_XRF a numeric vector

Fe_XRF a numeric vector

K_XRF a numeric vector

Mg_XRF a numeric vector

Mn_XRF a numeric vector

Na_XRF a numeric vector

P_XRF a numeric vector

Si_XRF a numeric vector

Ti_XRF a numeric vector

Note

For a more detailed description of this data set, see chorizon in package mvoutlier.

Source

Kola Project (1993-1998)

References

Reimann, C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008) Statistical Data Analysis Explained:
Applied Environmental Statistics with R. Wiley.

See Also

chorizon

Examples

data(chorizonDL, package = "VIM")
summary(chorizonDL)

257

AMELI-WP10-D10.3

colormapMiss 13

colormapMiss Colored map with information about missing values

Description

Colored map in which the proportion or amount of missing values in each region is coded according
to a continuous or discrete color scheme. The sequential color palette may thereby be computed in
the HCL or the RGB color space.

Usage

colormapMiss(x, region, map, prop = TRUE,
polysRegion = 1:length(x), range = NULL, n = NULL,
col = "red", gamma = 2.2, fixup = TRUE,
coords = NULL, numbers = TRUE, digits = 2,
cex.numbers = 0.8, col.numbers = par("fg"),
legend = TRUE, interactive = TRUE, ...)

colormapMissLegend(xleft, ybottom, xright, ytop, cmap,
n = 1000, horizontal = TRUE, digits = 2,
cex.numbers = 0.8, col.numbers = par("fg"),
...)

Arguments

x a numeric vector.

region a vector or factor of the same length as x giving the regions.

map an object of any class that contains polygons and provides its own plot method
(e.g., "SpatialPolygons" from package sp).

prop a logical indicating whether the proportion of missing values should be used
rather than the total amount.

polysRegion a numeric vector specifying the region that each polygon belongs to.

range a numeric vector of length two specifying the range (minimum and maximum)
of the proportion or amount of missing values to be used for the color scheme.

n for colormapMiss, the number of equally spaced cut-off points for a dis-
cretized color scheme. If this is not a positive integer, a continuous color scheme
is used (the default). In the latter case, the number of rectangles to be drawn in
the legend can be specified in colormapMissLegend. A reasonably large
number makes it appear continuously.

col the color range (start end end) to be used. RGB colors may be specified as
character strings or as objects of class "RGB". HCL colors need to be specified
as objects of class "polarLUV". If only one color is supplied, it is used as end
color, while the start color is taken to be transparent for RGB or white for HCL.

gamma numeric; the display gamma value (see hex).

258 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

14 colormapMiss

fixup a logical indicating whether the colors should be corrected to valid RGB values
(see hex).

coords a matrix or data.frame with two columns giving the coordinates for the la-
bels.

numbers a logical indicating whether the corresponding proportions or numbers of miss-
ing values should be used as labels for the regions.

digits the number of digits to be used in the labels (in case of proportions).

cex.numbers the character expansion factor to be used for the labels.

col.numbers the color to be used for the labels.

legend a logical indicating whether a legend should be plotted.

interactive a logical indicating whether more detailed information about missing values
should be displayed interactively (see ‘Details’).

xleft left x position of the legend.

ybottom bottom y position of the legend.

xright right x position of the legend.

ytop top y position of the legend.

cmap a list as returned by colormapMiss that contains the required information for
the legend.

horizontal a logical indicating whether the legend should be drawn horizontally or verti-
cally.

... further arguments to be passed to plot.

Details

The proportion or amount of missing values in x of each region is coded according to a continuous
or discrete color scheme in the color range defined by col. In addition, the proportions or numbers
can be shown as labels in the regions.

If interactive is TRUE, clicking in a region displays more detailed information about missing
values on the R console. Clicking outside the borders quits the interactive session.

Value

colormapMiss returns a list with the following components:

nmiss a numeric vector containing the number of missing values in each region.

nobs a numeric vector containing the number of observations in each region.

pmiss a numeric vector containing the proportion of missing values in each region.

prop a logical indicating whether the proportion of missing values have been used
rather than the total amount.

range the range of the proportion or amount of missing values corresponding to the
color range.

n either a positive integer giving the number of equally spaced cut-off points for a
discretized color scheme, or NULL for a continuous color scheme.

259

AMELI-WP10-D10.3

colSequence 15

start the start color of the color scheme.

end the end color of the color scheme.

space a character string giving the color space (either "rgb" for RGB colors or
"hcl" for HCL colors).

gamma numeric; the display gamma value (see hex).

fixup a logical indicating whether the colors have been corrected to valid RGB values
(see hex).

Note

Some of the argument names and positions have changed with versions 1.3 and 1.4 due to extended
functionality and for more consistency with other plot functions in VIM. For back compatibility,
the arguments cex.text and col.text can still be supplied to ... and are handled cor-
rectly. Nevertheless, they are deprecated and no longer documented. Use cex.numbers and
col.numbers instead.

Author(s)

Andreas Alfons

See Also

colSequence, growdotMiss, mapMiss

colSequence HCL and RGB color sequences

Description

Compute color sequences by linear interpolation based on a continuous color scheme between cer-
tain start and end colors. Color sequences may thereby be computed in the HCL or RGB color
space.

Usage

colSequence(p, start, end, space = c("hcl", "rgb"), ...)

colSequenceHCL(p, start, end, gamma = 2.2, fixup = TRUE, ...)

colSequenceRGB(p, start, end, gamma = 2.2, fixup = TRUE, ...)

260 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

16 colSequence

Arguments

p a numeric vector in
[0, 1]

giving values to be used for interpolation between the start and end color (0
corresponds to the start color, 1 to the end color).

start, end the start and end color, respectively. For HCL colors, each can be supplied as a
vector of length three (hue, chroma, luminance) or an object of class "polarLUV".
For RGB colors, each can be supplied as a character string, a vector of length
three (red, green, blue) or an object of class "RGB".

space character string; if start and end are both numeric, this determines whether
they refer to HCL or RGB values. Possible values are "hcl" (for the HCL
space) or "rgb" (for the RGB space).

gamma numeric; the display gamma value (see hex).

fixup a logical indicating whether the colors should be corrected to valid RGB values
(see hex).

... for colSequence, additional arguments to be passed to colSequenceHCL
or colSequenceRGB. For colSequenceHCL and colSequenceRGB, ad-
ditional arguments to be passed to hex.

Value

A character vector containing hexadecimal strings of the form "#RRGGBB".

Author(s)

Andreas Alfons

References

Zeileis, A., Hornik, K., Murrell, P. (2009) Escaping RGBland: Selecting colors for statistical graph-
ics. Computational Statistics & Data Analysis, 53 (9), 1259–1270.

See Also

hex, sequential_hcl

Examples

p <- c(0, 0.3, 0.55, 0.8, 1)

HCL colors
colSequence(p, c(0, 0, 100), c(0, 100, 50))
colSequence(p, polarLUV(L=90, C=30, H=90), c(0, 100, 50))

RGB colors
colSequence(p, c(1, 1, 1), c(1, 0, 0), space="rgb")
colSequence(p, RGB(1, 1, 0), "red")

261

AMELI-WP10-D10.3

count 17

count Count number of infinite or missing values

Description

Count the number of infinite or missing values in a vector.

Usage

countInf(x)

countNA(x)

Arguments

x a vector.

Value

countInf returns the number of infinite values in x.

countNA returns the number of missing values in x.

Author(s)

Andreas Alfons

Examples

data(sleep, package="VIM")
countInf(log(sleep$Dream))
countNA(sleep$Dream)

growdotMiss Growing dot map with information about missing values

Description

Map with dots whose sizes correspond to the values in a certain variable. Observations with missing
values in additional variables are highlighted.

262 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

18 growdotMiss

Usage

growdotMiss(x, coords, map, pos=1, selection = c("any","all"),
log = FALSE, col = c("skyblue","red","skyblue4","red4"),
border = par("bg"), alpha = NULL, scale = NULL,
size = NULL, exp = c(0, 0.95, 0.05),
col.map = grey(0.5), legend = TRUE,
legtitle = "Legend", cex.legtitle = par("cex"),
cex.legtext = par("cex"), ncircles = 6, ndigits = 1,
interactive = TRUE, ...)

bubbleMiss(...)

Arguments

x a vector, matrix or data.frame.

coords a matrix or data.frame with two columns giving the spatial coordinates of
the observations.

map a background map to be passed to bgmap.

pos a numeric value giving the index of the variable determining the dot sizes.

selection the selection method for highlighting missing values in multiple additional vari-
ables. Possible values are "any" (highlighting of missing values in any of the
additional variables) and "all" (highlighting of missing values in all of the
additional variables).

log a logical indicating whether the variable given by pos should be log-transformed.

col a vector of length four giving the colors to be used in the plot. If only one color
is supplied, it is used for the borders of non-highlighted dots and the surface area
of highlighted dots. Else if two colors are supplied, they are recycled.

border a vector of length four giving the colors to be used for the borders of the growing
dots. Use NA to omit borders.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

scale scaling factor of the map.

size a vector of length two giving the sizes for the smallest and largest dots.

exp a vector of length three giving the factors that define the shape of the exponential
function (see ‘Details’).

col.map the color to be used for the background map.

legend a logical indicating whether a legend should be plotted.

legtitle the title for the legend.

cex.legtitle the character expansion factor to be used for the title of the legend.

cex.legtext the character expansion factor to be used in the legend.

ncircles the number of circles displayed in the legend.

ndigits the number of digits displayed in the legend. Note that \ this is just a suggestion
(see format).

263

AMELI-WP10-D10.3

histMiss 19

interactive a logical indicating whether information about certain observations can be dis-
played interactively (see ‘Details’).

... for growdotMiss, further arguments and graphical parameters to be passed to
bgmap. For bubbleMiss, the arguments to be passed to growdotMiss.

Details

The smallest dots correspond to the 10% quantile and the largest dots to the 99% quantile. In
between, the dots grow exponentially, with exp defining the shape of the exponential function.
Missings in the variable of interest will be drawn as rectangles.

If interactive=TRUE, detailed information for an observation can be printed on the console by
clicking on the corresponding point. Clicking in a region that does not contain any points quits the
interactive session.

Note

The function was renamed to growdotMiss in version 1.3. bubbleMiss is a (deprecated)
wrapper for growdotMiss for back compatibility with older versions. However, due to extended
functionality, some of the argument positions have changed.

The code is based on bubbleFIN from package StatDA.

Author(s)

Andreas Alfons

See Also

bgmap, mapMiss, colormapMiss

Examples

data(chorizonDL, package = "VIM")
data(kola.background, package = "VIM")
x <- chorizonDL[, c("Ca","As", "Bi")]
coo <- chorizonDL[, c("XCOO", "YCOO")]
growdotMiss(x, coo, kola.background, border = "white")

histMiss Histogram with information about missing values

Description

Histogram with highlighting of missing values in other variables by splitting each bin into two parts.
Additionally, information about missing values in the variable of interest is shown on the right hand
side.

264 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

20 histMiss

Usage

histMiss(x, pos = 1, selection = c("any","all"),
breaks = "Sturges", right = TRUE,
col = c("skyblue","red","skyblue4","red4"),
border = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, axes = TRUE,
only.miss = TRUE, miss.labels = axes,
interactive = TRUE, ...)

Arguments

x a vector, matrix or data.frame.

pos a numeric value giving the index of the variable of interest. Additional variables
in x are used for highlighting.

selection the selection method for highlighting missing values in multiple additional vari-
ables. Possible values are "any" (highlighting of missing values in any of the
additional variables) and "all" (highlighting of missing values in all of the
additional variables).

breaks either a character string naming an algorithm to compute the breakpoints (see
hist), or a numeric value giving the number of cells.

right logical; if TRUE, the histogram cells are right-closed (left-open) intervals.

col a vector of length four giving the colors to be used. If only one color is supplied,
the bars are transparent and the supplied color is used for highlighting. Else if
two colors are supplied, they are recycled.

border the color to be used for the border of the cells. Use border=NA to omit borders.

main, sub main and sub title.

xlab, ylab axis labels.

axes a logical indicating whether axes should be drawn on the plot.

only.miss logical; if TRUE, the missing values in the first variable are visualized by a single
bar. Otherwise, a small barplot is drawn on the right hand side (see ‘Details’).

miss.labels either a logical indicating whether label(s) should be plotted below the bar(s)
on the right hand side, or a character string or vector giving the label(s) (see
‘Details’).

interactive a logical indicating whether the variables can be switched interactively (see ‘De-
tails’).

... further graphical parameters to be passed to title and axis.

Details

If more than one variable is supplied, the bins for the variable of interest will be split according to
missingness in the additional variables.

If only.miss=TRUE, the missing values in the variable of interest are visualized by one bar on the
right hand side. If additional variables are supplied, this bar is again split into two parts according
to missingness in the additional variables.

265

AMELI-WP10-D10.3

histMiss 21

Otherwise, a small barplot consisting of two bars is drawn on the right hand side. The first bar
corresponds to observed values in the variable of interest and the second bar to missing values. Since
these two bars are not on the same scale as the main barplot, a second y-axis is plotted on the right
(if axes=TRUE). Each of the two bars are again split into two parts according to missingness in
the additional variables. Note that this display does not make sense if only one variable is supplied,
therefore only.miss is ignored in that case.

If interactive=TRUE, clicking in the left margin of the plot results in switching to the previous
variable and clicking in the right margin results in switching to the next variable. Clicking anywhere
else on the graphics device quits the interactive session. When switching to a categorical variable,
a barplot is produced rather than a histogram.

Value

a list with the following components:

breaks the breakpoints.

counts the number of observations in each cell.

missings the number of highlighted observations in each cell.

mids the cell midpoints.

Note

Some of the argument names and positions have changed with version 1.3 due to extended func-
tionality and for more consistency with other plot functions in VIM. For back compatibility, the
arguments axisnames and names.miss can still be supplied to ... and are handled correctly.
Nevertheless, they are deprecated and no longer documented. Use miss.labels instead.

Author(s)

Andreas Alfons, Matthias Templ

See Also

spineMiss, barMiss

Examples

data(tao, package = "VIM")
x <- tao[, c("Air.Temp", "Humidity")]
histMiss(x)
histMiss(x, only.miss = FALSE)

266 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

22 hotdeck

hotdeck Hot-Deck Imputation

Description

Implementation of the popular Sequential, Random (within a domain) hot-deck algorithm for im-
putation.

Usage

hotdeck(data, variable=colnames(data), ord_var=NULL,domain_var=NULL,
makeNA=NULL,NAcond=NULL,impNA=TRUE,donorcond=NULL,
imp_var=TRUE,imp_suffix="imp")

Arguments

data data.frame or matrix

variable variables where missing values should be imputed

ord_var variables for sorting the data set before imputation

domain_var variables for building domains and impute within these domains

makeNA vector of values, that should be converted to NA

NAcond a condition for imputing a NA

impNA TRUE/FALSE whether NA should be imputed

donorcond condition for the donors e.g. ">5"

imp_var TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be
created show the imputation status

imp_suffix suffix for the TRUE/FALSE variables showing the imputation status

Value

the imputed data set.

Author(s)

Alexander Kowarik

Examples

data(sleep)
sleepI <- hotdeck(sleep)
sleepI2 <- hotdeck(sleep,ord_var="BodyWgt",domain_var="Pred")

267

AMELI-WP10-D10.3

initialise 23

initialise Initialization of missing values

Description

Rough estimation of missing values in a vector according to its type.

Usage

initialise(x)

Arguments

x a vector.

Details

Missing values are imputed with the mean for vectors of class "numeric", with the median
for vectors of class "integer", and with the mode for vectors of class "factor". Hence,
x should be prepared in the following way: assign class "numeric" to numeric vectors, assign
class "integer" to ordinal vectors, and assign class "factor" to nominal or binary vectors.

Value

the initialized vector.

Note

The function is used internally by some imputation algorithms.

Author(s)

Matthias Templ, modifications by Andreas Alfons

irmi Iterative robust model-based imputation (IRMI)

Description

In each step of the iteration, one variable is used as a response variable and the remaining variables
serve as the regressors.

268 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

24 irmi

Usage

irmi(x, eps=5, maxit=100, mixed=NULL, count=NULL, step=FALSE,
robust=FALSE, takeAll=TRUE,
noise=TRUE, noise.factor=1, force=FALSE,
robMethod="MM", force.mixed=TRUE, mi=1,
addMixedFactors=FALSE, trace=FALSE)

Arguments

x data.frame or matrix

eps threshold for convergency

maxit maximum number of iterations

mixed column index of the semi-continuous variables

count column index of count variables

step a stepwise model selection is applied when the parameter is set to TRUE

robust if TRUE, robust regression methods will be applied

takeAll takes information of (initialised) missings in the response as well for regression
imputation.

noise irmi has the option to add a random error term to the imputed values, this creates
the possibility for multiple imputation. The error term has mean 0 and variance
corresponding to the variance of the regression residuals.

noise.factor amount of noise.

force if TRUE, the algorithm tries to find a solution in any case, possible by using
different robust methods automatically.

robMethod regression method when the response is continuous.

force.mixed if TRUE, the algorithm tries to find a solution in any case, possible by using
different robust methods automatically.

addMixedFactors
if factor variables for the mixed variables should be created for the regression
models

mi number of multiple imputations.

trace Additional information about the iterations when trace equals TRUE.

Details

The method works sequentially and iterative. The method can deal with a mixture of continuous,
semi-continuous, ordinal and nominal variables including outliers.

A full description of the method will be uploaded soon in form of a package vignette.

Value

the imputed data set.

269

AMELI-WP10-D10.3

kNN 25

Author(s)

Matthias Templ, Alexander Kowarik

See Also

mi

Examples

data(sleep)
irmi(sleep)

kNN k-Nearest Neighbour Imputation

Description

k-Nearest Neighbour Imputation based on a variation of the Gower Distance for numerical, cate-
gorical, ordered and semi-continous variables.

Usage

kNN(data, variable=colnames(data), metric=NULL, k=5, dist_var=colnames(data),weights=NULL,
numFun = median, catFun=maxCat,
makeNA=NULL,NAcond=NULL, impNA=TRUE, donorcond=NULL,mixed=vector(),trace=FALSE,
imp_var=TRUE,imp_suffix="imp",addRandom=FALSE)

sampleCat(x)
maxCat(x)
gowerD(data.x, data.y = data.x, weights=NULL,numerical,factors,orders,mixed,levOrders)
which.minN(x,n)

Arguments

data data.frame or matrix

variable variables where missing values should be imputed

metric metric to be used for calculating the distances between

k number of Nearest Neighbours used

dist_var names or variables to be used for distance calculation

weights weights for the variables for distance calculation

numFun function for aggregating the k Nearest Neighbours in the case of a numerical
variable

catFun function for aggregating the k Nearest Neighbours in the case of a categorical
variable

makeNA vector of values, that should be converted to NA

270 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

26 kNN

NAcond a condition for imputing a NA

impNA TRUE/FALSE whether NA should be imputed

donorcond condition for the donors e.g. ">5"

trace TRUE/FALSE if additional information about the imputation process should be
printed

imp_var TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be
created show the imputation status

imp_suffix suffix for the TRUE/FALSE variables showing the imputation status

addRandom TRUE/FALSE if an additional random variable should be added for distance
calculation

x factor or character vector / numerical vector for which.minN

data.x data frame or matrix

data.y data frame or matrix

numerical names of numerical variables

factors names of factors

orders names of ordered variables

mixed names of mixed variables

levOrders list of the ordered levels for each factor

n number of ordered smallest values

Details

The function sampleCat samples with probabilites corresponding to the occurrence of the level
in the NNs. The function maxCat chooses the level with the most occurrences and random if
the maximum is not unique. The function gowerD is used by kNN to compute the distances for
numerical, factor ordered and semi-continous variables. The function which.minN is used by kNN.

Value

the imputed data set.

Author(s)

Alexander Kowarik

Examples

data(sleep)
kNN(sleep)

271

AMELI-WP10-D10.3

kola.background 27

kola.background Background map for the Kola project data

Description

Coordinates of the Kola background map.

Usage

data(kola.background)

Source

Kola Project (1993-1998)

References

Reimann, C., Filzmoser, P., Garrett, R.G. and Dutter, R. (2008) Statistical Data Analysis Explained:
Applied Environmental Statistics with R. Wiley, 2008.

Examples

data(kola.background, package = "VIM")
bgmap(kola.background)

mapMiss Map with information about missing values

Description

Map of observed and missing values.

Usage

mapMiss(x, coords, map, selection = c("any","all"),
col = c("skyblue","red"), alpha = NULL,
pch = c(19,15), col.map = grey(0.5), legend = TRUE,
interactive = TRUE, ...)

272 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

28 mapMiss

Arguments

x a vector, matrix or data.frame.

coords a data.frame or matrix with two columns giving the spatial coordinates of
the observations.

map a background map to be passed to bgmap.

selection the selection method for displaying missing values in the map. Possible values
are "any" (display missing values in any variable) and "all" (display missing
values in all variables).

col a vector of length two giving the colors to be used for observed and missing
values. If a single color is supplied, it is used for both.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

pch a vector of length two giving the plot characters to be used for observed and
missing values. If a single plot character is supplied, it will be used for both.

col.map the color to be used for the background map.

legend a logical indicating whether a legend should be plotted.

interactive a logical indicating whether information about selected observations can be dis-
played interactively (see ‘Details’).

... further graphical parameters to be passed to bgmap and points.

Details

If interactive=TRUE, detailed information for an observation can be printed on the console by
clicking on the corresponding point. Clicking in a region that does not contain any points quits the
interactive session.

Author(s)

Matthias Templ, Andreas Alfons

See Also

bgmap, bubbleMiss, colormapMiss

Examples

data(chorizonDL, package = "VIM")
data(kola.background, package = "VIM")
x <- chorizonDL[, c("As", "Bi")]
coo <- chorizonDL[, c("XCOO", "YCOO")]
mapMiss(x, coo, kola.background)

273

AMELI-WP10-D10.3

marginmatrix 29

marginmatrix Marginplot Matrix

Description

Create a scatterplot matrix with information about missing values in the plot margins of each panel.

Usage

marginmatrix(x, col = c("skyblue","red","red4"),
alpha = NULL, ...)

TKRmarginmatrix(x, col = c("skyblue","red","red4"),
alpha = NULL, ..., hscale = NULL,
vscale = NULL, TKRpar = list())

Arguments

x a matrix or data.frame.
col a vector of length three giving the colors to be used in the marginplots in the

off-diagonal panels. The first color is used for the scatterplot and the boxplots
for the available data, the second color for the univariate scatterplots and box-
plots for the missing values in one variable, and the third color for the frequency
of missing values in both variables (see ‘Details’). If only one color is sup-
plied, it is used for the bivariate and univariate scatterplots and the boxplots for
missing values in one variable, whereas the boxplots for the available data are
transparent. Else if two colors are supplied, the second one is recycled.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

... further arguments and graphical parameters to be passed to pairsVIM and
marginplot. par("oma") will be set appropriately unless supplied (see
par).

hscale horizontal scale factor for plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

vscale vertical scale factor for the plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

TKRpar a list of graphical parameters to be set for the plot to be embedded in a Tcl/Tk
window (see ‘Details’ and par).

Details

marginmatrix uses pairsVIM with a panel function based on marginplot.

The graphical parameter oma will be set unless supplied as an argument.

TKRmarginmatrix behaves like marginmatrix, but uses tkrplot to embed the plot in a
Tcl/Tk window. This is useful if the number of variables is large, because scrollbars allow to move
from one part of the plot to another.

274 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

30 marginplot

Author(s)

Andreas Alfons

See Also

marginplot, pairsVIM, scattmatrixMiss

Examples

data(sleep, package = "VIM")
x <- sleep[, 1:5]
x[,c(1,2,4)] <- log10(x[,c(1,2,4)])
marginmatrix(x)

marginplot Scatterplot with additional information in the margins

Description

In addition to a standard scatterplot, information about missing values is shown in the plot margins.

Usage

marginplot(x, col = c("skyblue","red","red4"),
alpha = NULL, pch = c(1,16), cex = par("cex"),
numbers = TRUE, cex.numbers = par("cex"),
zeros = FALSE, xlim = NULL, ylim = NULL,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes, ...)

Arguments

x a matrix or data.frame with two columns.

col a vector of length three giving the colors to be used in the plot. The first color is
used for the scatterplot and the boxplots for the available data, the second color
for the univariate scatterplots and boxplots for the missing values in one variable,
and the third color for the frequency of missing values in both variables (see
‘Details’). If only one color is supplied, it is used for the bivariate and univariate
scatterplots and the boxplots for missing values in one variable, whereas the
boxplots for the available data are transparent. Else if two colors are supplied,
the second one is recycled.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

pch a vector of length two giving the plot symbols to be used for the scatterplot and
the univariate scatterplots. If a single plot character is supplied, it is used for the
scatterplot and the default value will be used for the univariate scatterplots (see
‘Details’).

275

AMELI-WP10-D10.3

marginplot 31

cex the character expansion factor to be used for the bivariate and univariate scatter-
plots.

numbers a logical indicating whether the frequencies of missing values should be dis-
played in the lower left of the plot (see ‘Details’).

cex.numbers the character expansion factor to be used for the frequencies of the missing val-
ues.

zeros a logical vector of length two indicating whether the variables are semi-continuous,
i.e., contain a considerable amount of zeros. If TRUE, only the non-zero observa-
tions are used for drawing the respective boxplot. If a single logical is supplied,
it is recycled.

xlim, ylim axis limits.

main, sub main and sub title.

xlab, ylab axis labels.

ann a logical indicating whether plot annotation (main, sub, xlab, ylab) should
be displayed.

axes a logical indicating whether both axes should be drawn on the plot. Use graphi-
cal parameter "xaxt" or "yaxt" to suppress only one of the axes.

frame.plot a logical indicating whether a box should be drawn around the plot.

... further graphical parameters to be passed down (see par).

Details

Boxplots for available and missing data, as well as univariate scatterplots for missing values in one
variable are shown in the plot margins.

Furthermore, the frequencies of the missing values can be displayed by a number (lower left of the
plot). The number in the lower left corner is the number of observations that are missing in both
variables.

Note

Some of the argument names and positions have changed with versions 1.3 and 1.4 due to extended
functionality and for more consistency with other plot functions in VIM. For back compatibility,
the argument cex.text can still be supplied to ... and is handled correctly. Nevertheless, it is
deprecated and no longer documented. Use cex.numbers instead.

Author(s)

Andreas Alfons, Matthias Templ

See Also

scattMiss

276 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

32 matrixplot

Examples

data(tao, package = "VIM")
marginplot(tao[,c("Air.Temp", "Humidity")])
data(chorizonDL, package = "VIM")
marginplot(log10(chorizonDL[,c("CaO", "Bi")]))

matrixplot Matrix plot

Description

Create a matrix plot, in which all cells of a data matrix are visualized by rectangles. Available
data is coded according to a continuous color scheme, while missing data is visualized by a clearly
distinguishable color.

Usage

matrixplot(x, sortby = NULL, col = "red", gamma = 2.2,
fixup = TRUE, xlim = NULL, ylim = NULL, main = NULL,
sub = NULL, xlab = NULL, ylab = NULL,
axes = TRUE, labels = axes, xpd = NULL,
interactive = TRUE, ...)

TKRmatrixplot(x, ..., hscale = NULL,
vscale = NULL, TKRpar = list())

iimagMiss(x, sortby = NULL, col = "red", main = NULL,
sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, axes = TRUE,
xaxlabels = NULL, las = 3, interactive = TRUE,
...)

Arguments

x a matrix or data.frame.

sortby a numeric or character value specifying the variable to sort the data matrix by,
or NULL to plot without sorting.

col the colors to be used in the plot. RGB colors may be specified as character
strings or as objects of class "RGB". HCL colors need to be specified as objects
of class "polarLUV". If only one color is supplied, it is used for missing data
and a greyscale is used for available data. If two colors are supplied, the first
is used as end color for the available data, while the start color is taken to be
transparent for RGB or white for HCL. Missing data is visualized by the second
color in this case. If three colors are supplied, the first is used as start color and
the second as end color for the available data, while the third color is used for
missing data.

277

AMELI-WP10-D10.3

matrixplot 33

gamma numeric; the display gamma value (see hex).

fixup a logical indicating whether the colors should be corrected to valid RGB values
(see hex).

xlim, ylim axis limits.

main, sub main and sub title.

xlab, ylab axis labels.

axes a logical indicating whether axes should be drawn on the plot.

labels either a logical indicating whether labels should be plotted below each column,
or a character vector giving the labels.

xpd a logical indicating whether the rectangles should be allowed to go outside the
plot region. If NULL, it defaults to TRUE unless axis limits are specified.

interactive a logical indicating whether a variable to be used for sorting can be selected
interactively (see ‘Details’).

xaxlabels a character vector containing the labels for the columns. If NULL, the column
names of x will be used.

las the style of axis labels (see par).

... for matrixplot and iimagMiss, further graphical parameters to be passed
to plot.window, title and axis. For TKRmatrixplot, further argu-
ments to be passed to matrixplot.

hscale horizontal scale factor for plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

vscale vertical scale factor for the plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of observations.

TKRpar a list of graphical parameters to be set for the plot to be embedded in a Tcl/Tk
window (see ‘Details’ and par).

Details

In a matrix plot, all cells of a data matrix are visualized by rectangles. Available data is coded
according to a continuous color scheme. To compute the colors via interpolation, the variables are
first scaled to the interval

[0, 1]

. Missing values can then be visualized by a clearly distinguishable color. It is thereby possible
to use colors in the HCL or RGB color space. A simple way of visualizing the magnitude of the
available data is to apply a greyscale, which has the advantage that missing values can easily be
distinguished by using a color such as red. Note that -Inf and Inf are always assigned the begin
and end color, respectively, of the continuous color scheme.

Additionally, the observations can be sorted by the magnitude of a selected variable. If interactive
is TRUE, clicking in a column redraws the plot with observations sorted by the corresponding vari-
able. Clicking anywhere outside the plot region quits the interactive session.

TKRmatrixplot behaves like matrixplot, but uses tkrplot to embed the plot in a Tcl/Tk
window. This is useful if the number of observations and/or variables is large, because scrollbars
allow to move from one part of the plot to another.

278 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

34 mosaicMiss

Note

This is a much more powerful extension to the function imagmiss in the former CRAN package
dprep.

iimagMiss is deprecated and may be omitted in future versions of VIM. Use matrixplot
instead.

Author(s)

Andreas Alfons, Matthias Templ

Examples

data(sleep, package = "VIM")
x <- sleep[, -(8:10)]
x[,c(1,2,4,6,7)] <- log10(x[,c(1,2,4,6,7)])
matrixplot(x, sortby = "BrainWgt")

mosaicMiss Mosaic plot with information about missing values

Description

Create a mosaic plot with information about missing values.

Usage

mosaicMiss(x, highlight = NULL, selection = c("any", "all"),
plotvars = NULL, col = c("skyblue", "red"),
labels = NULL, miss.labels = TRUE, ...)

Arguments

x a matrix or data.frame.

highlight a vector giving the variables to be used for highlighting. If NULL (the default),
all variables are used for highlighting.

selection the selection method for highlighting missing values in multiple highlight vari-
ables. Possible values are "any" (highlighting of missing values in any of the
highlight variables) and "all" (highlighting of missing values in all of the
highlight variables).

plotvars a vector giving the categorical variables to be plotted. If NULL (the default), all
variables are plotted.

col a vector of length two giving the colors to be used for observed and missing
data. If only one color is supplied, the tiles corresponding to observed data are
transparent and the supplied color is used for highlighting.

labels a list of arguments for the labeling function labeling_border.

279

AMELI-WP10-D10.3

pairsVIM 35

miss.labels either a logical indicating whether labels should be plotted for observed and
missing (highlighted) data, or a character vector giving the labels.

... additional arguments to be passed to mosaic.

Details

Mosaic plots are graphical representations of multi-way contingency tables. The frequencies of the
different cells are visualized by area-proportional rectangles (tiles). Additional tiles are be used
to display the frequencies of missing values. Furthermore, missing values in a certain variable or
combination of variables can be highlighted in order to explore their structure.

Value

An object of class "structable" is returned invisibly.

Note

This function uses the highly flexible strucplot framework of package vcd.

Author(s)

Andreas Alfons

References

Meyer, D., Zeileis, A. and Hornik, K. (2006) The strucplot framework: Visualizing multi-way
contingency tables with vcd. Journal of Statistical Software, 17 (3), 1–48.

See Also

spineMiss, mosaic

Examples

data(sleep, package = "VIM")
mosaicMiss(sleep, highlight = 4,

plotvars = 8:10, miss.labels = FALSE)

pairsVIM Scatterplot Matrices

Description

Create a scatterplot matrix.

280 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

36 pairsVIM

Usage

pairsVIM(x, ..., main = NULL, sub = NULL, panel = points,
lower = panel, upper = panel, diagonal = NULL,
labels = TRUE, pos.labels = NULL, cex.labels = NULL,
font.labels = par("font"), layout = c("matrix","graph"),
gap = 1)

Arguments

x a matrix or data.frame.

main, sub main and sub title.

panel a function(x, y, ...), which is used to plot the contents of each off-
diagonal panel of the display.

... further arguments and graphical parameters to be passed down. par("oma")
will be set appropriately unless supplied (see par).

lower, upper separate panel functions to be used below and above the diagonal, respectively.

diagonal optional function(x, ...) to be applied on the diagonal panels.

labels either a logical indicating whether labels should be plotted in the diagonal pan-
els, or a character vector giving the labels.

pos.labels the vertical position of the labels in the diagonal panels.

cex.labels the character expansion factor to be used for the labels.

font.labels the font to be used for the labels.

layout a character string giving the layout of the scatterplot matrix. Possible values are
"matrix" (a matrix-like layout with the first row on top) and "graph" (a
graph-like layout with the first row at the bottom).

gap a numeric value giving the distance between the panels in margin lines.

Details

This function is the workhorse for marginmatrix and scattmatrixMiss.

The graphical parameter oma will be set unless supplied as an argument.

A panel function should not attempt to start a new plot, since the coordinate system for each panel
is set up by pairsVIM.

Note

The code is based on pairs. Starting with version 1.4, infinite values are no longer removed before
passing the x and y vectors to the panel functions.

Author(s)

Andreas Alfons

See Also

marginmatrix, scattmatrixMiss

281

AMELI-WP10-D10.3

parcoordMiss 37

Examples

data(sleep, package = "VIM")
x <- sleep[, -(8:10)]
x[,c(1,2,4,6,7)] <- log10(x[,c(1,2,4,6,7)])
pairsVIM(x)

parcoordMiss Parallel coordinate plot with information about missing values

Description

Parallel coordinate plot with adjustments for missing values. Missing values in the plotted variables
may be represented by a point above the corresponding coordinate axis to prevent disconnected
lines. In addition, observations with missing values in selected variables may be highlighted.

Usage

parcoordMiss(x, highlight = NULL, selection = c("any","all"),
plotvars = NULL, plotNA = TRUE,
col = c("skyblue","red","skyblue4","red4"),
alpha = NULL, lty = par("lty"), xlim = NULL,
ylim = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, labels = TRUE,
xpd = NULL, interactive = TRUE, ...)

TKRparcoordMiss(x, highlight = NULL, selection = c("any","all"),
plotvars = NULL, plotNA = TRUE,
col = c("skyblue","red","skyblue4","red4"),
alpha = NULL, ..., hscale = NULL, vscale = 1,
TKRpar = list())

Arguments

x a matrix or data.frame.
highlight a vector giving the variables to be used for highlighting. If NULL (the default),

all variables are used for highlighting.
selection the selection method for highlighting missing values in multiple highlight vari-

ables. Possible values are "any" (highlighting of missing values in any of the
highlight variables) and "all" (highlighting of missing values in all of the
highlight variables).

plotvars a vector giving the variables to be plotted. If NULL (the default), all variables
are plotted.

col if plotNA is TRUE, a vector of length four giving the colors to be used for
observations with different combinations of observed and missing values in the
plot variables and highlight variables (vectors of length one or two are recy-
cled). Otherwise, a vector of length two giving the colors for non-highlighted
and highlighted observations (if a single color is supplied, it is used for both).

282 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

38 parcoordMiss

plotNA a logical indicating whether missing values in the plot variables should be rep-
resented by a point above the corresponding coordinate axis to prevent discon-
nected lines.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

lty if plotNA is TRUE, a vector of length four giving the line types to be used for
observations with different combinations of observed and missing values in the
plot variables and highlight variables (vectors of length one or two are recycled).
Otherwise, a vector of length two giving the line types for non-highlighted and
highlighted observations (if a single line type is supplied, it is used for both).

xlim, ylim axis limits.

main, sub main and sub title.

xlab, ylab axis labels.

labels either a logical indicating whether labels should be plotted below each coordi-
nate axis, or a character vector giving the labels.

xpd a logical indicating whether the lines should be allowed to go outside the plot
region. If NULL, it defaults to TRUE unless axis limits are specified.

interactive a logical indicating whether interactive features should be enabled (see ‘De-
tails’).

... for parcoordMiss, further graphical parameters to be passed down (see par).
For TKRparcoordMiss, further arguments to be passed to parcoordMiss.

hscale horizontal scale factor for plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

vscale vertical scale factor for the plot to be embedded in a Tcl/Tk window (see ‘De-
tails’).

TKRpar a list of graphical parameters to be set for the plot to be embedded in a Tcl/Tk
window (see ‘Details’ and par).

Details

In parallel coordinate plots, the variables are represented by parallel axes. Each observation of the
scaled data is shown as a line. Observations with missing values in selected variables may thereby be
highlighted. However, plotting variables with missing values results in disconnected lines, making
it impossible to trace the respective observations across the graph. As a remedy, missing values
may be represented by a point above the corresponding coordinate axis, which is separated from the
main plot by a small gap and a horizontal line, as determined by plotNA. Connected lines can then
be drawn for all observations. Nevertheless, a caveat of this display is that it may draw attention
away from the main relationships between the variables.

If interactive is TRUE, it is possible switch between this display and the standard display
without the separate level for missing values by clicking in the top margin of the plot. In addition,
the variables to be used for highlighting can be selected interactively. Observations with missing
values in any or in all of the selected variables are highlighted (as determined by selection).
A variable can be added to the selection by clicking on a coordinate axis. If a variable is already
selected, clicking on its coordinate axis removes it from the selection. Clicking anywhere outside
the plot region (except the top margin, if missing values exist) quits the interactive session.

283

AMELI-WP10-D10.3

pbox 39

TKRparcoordMiss behaves like parcoordMiss, but uses tkrplot to embed the plot in a
Tcl/Tk window. This is useful if the number of variables is large, because scrollbars allow to move
from one part of the plot to another.

Note

Some of the argument names and positions have changed with versions 1.3 and 1.4 due to extended
functionality and for more consistency with other plot functions in VIM. For back compatibility,
the arguments colcomb and xaxlabels can still be supplied to ... and are handled correctly.
Nevertheless, they are deprecated and no longer documented. Use highlight and labels
instead.

Author(s)

Andreas Alfons, Matthias Templ

References

Wegman, E. J. (1990) Hyperdimensional data analysis using parallel coordinates. Journal of the
American Statistical Association 85 (411), 664–675.

See Also

pbox

Examples

data(chorizonDL, package = "VIM")
parcoordMiss(chorizonDL[,c(15,101:110)],

plotvars=2:11, interactive = FALSE)
legend("top", col = c("skyblue", "red"), lwd = c(1,1),

legend = c("observed in Bi", "missing in Bi"))

pbox Parallel boxplots with information about missing values

Description

Boxplot of one variable of interest plus information about missing values in other variables.

Usage

pbox(x, pos = 1, selection = c("none","any","all"),
col = c("skyblue","red","red4"), numbers = TRUE,
cex.numbers = par("cex"), xlim = NULL, ylim = NULL,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
axes = TRUE, frame.plot = axes, labels = axes,
interactive = TRUE, ...)

284 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

40 pbox

TKRpbox(x, pos = 1, ..., hscale = NULL,
vscale = 1, TKRpar = list())

Arguments

x a vector, matrix or data.frame.

pos a numeric value giving the index of the variable of interest. Additional variables
in x are used for grouping according to missingness.

selection the selection method for grouping according to missingness in multiple addi-
tional variables. Possible values are "none" (grouping according to missing-
ness in every other variable that contains missing values), "any" (grouping ac-
cording to missingness in any of the additional variables) and "all" (grouping
according to missingness in all of the additional variables).

col a vector of length three giving the colors to be used in the plot. The first two
colors are used for the boxplots of the available and missing data, respectively,
and the third color for the frequencies of missing values in both variables (see
‘Details’). If only one color is supplied, it is used for the boxplots for missing
data, whereas the boxplots for the available data are transparent. Else if two
colors are supplied, the second one is recycled.

numbers a logical indicating whether the frequencies of missing values should be dis-
played (see ‘Details’).

cex.numbers the character expansion factor to be used for the frequencies of the missing val-
ues.

xlim, ylim axis limits.

main, sub main and sub title.

xlab, ylab axis labels.

axes a logical indicating whether axes should be drawn on the plot.

frame.plot a logical indicating whether a box should be drawn around the plot.

labels either a logical indicating whether labels should be plotted below each box, or a
character vector giving the labels.

interactive a logical indicating whether variables can be switched interactively (see ‘De-
tails’).

... for pbox, further arguments and graphical parameters to be passed to boxplot
and other functions. For TKRpbox, further arguments to be passed to pbox.

hscale horizontal scale factor for plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of boxes to be drawn.

vscale vertical scale factor for the plot to be embedded in a Tcl/Tk window (see ‘De-
tails’).

TKRpar a list of graphical parameters to be set for the plot to be embedded in a Tcl/Tk
window (see ‘Details’ and par).

285

AMELI-WP10-D10.3

prepare 41

Details

This plot consists of several boxplots. First, a standard boxplot of the variable of interest is pro-
duced. Second, boxplots grouped by observed and missing values according to selection are
produced for the variable of interest.

Additionally, the frequencies of the missing values can be represented by numbers. If so, the first
line corresponds to the observed values of the variable of interest and their distribution in the dif-
ferent groups, the second line to the missing values.

If interactive=TRUE, clicking in the left margin of the plot results in switching to the previous
variable and clicking in the right margin results in switching to the next variable. Clicking anywhere
else on the graphics device quits the interactive session.

TKRpbox behaves like pbox with selection="none", but uses tkrplot to embed the plot
in a Tcl/Tk window. This is useful for drawing a large number of parallel boxes, because scrollbars
allow to move from one part of the plot to another.

Value

a list as returned by boxplot.

Note

Some of the argument names and positions have changed with version 1.3 due to extended func-
tionality and for more consistency with other plot functions in VIM. For back compatibility, the
arguments names and cex.text can still be supplied to ... and are handled correctly. Never-
theless, they are deprecated and no longer documented. Use labels and cex.numbers instead.

Author(s)

Andreas Alfons, Matthias Templ

See Also

parcoordMiss

Examples

data(chorizonDL, package = "VIM")
pbox(log(chorizonDL[, c(4,5,8,10,11,16:17,19,25,29,37,38,40)]))

prepare Transformation and standardization

Description

This function is used by the VIM GUI for transformation and standardization of the data.

286 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

42 prepare

Usage

prepare(x, scaling = c("none","classical","MCD","robust","onestep"),
transformation = c("none","minus","reciprocal","logarithm",

"exponential","boxcox","clr","ilr","alr"),
alpha = NULL, powers = NULL, start = 0, alrVar)

Arguments

x a vector, matrix or data.frame.

scaling the scaling to be applied to the data. Possible values are "none", "classical",
MCD, "robust" and "onestep".

transformation
the transformation of the data. Possible values are "none", "minus", "reciprocal",
"logarithm", "exponential", "boxcox", "clr", "ilr" and "alr".

alpha a numeric parameter controlling the size of the subset for the MCD (if scaling="MCD").
See covMcd.

powers a numeric vector giving the powers to be used in the Box-Cox transformation
(if transformation="boxcox"). If NULL, the powers are calculated with
function box.cox.powers.

start a constant to be added prior to Box-Cox transformation (if transformation="boxcox").

alrVar variable to be used as denominator in the additive logratio transformation (if
transformation="alr").

Details

Transformation:

"none": no transformation is used.

"logarithm": compute the the logarithm (to the base 10).

"boxcox": apply a Box-Cox transformation. Powers may be specified or calculated with the
function box.cox.powers.

Standardization:

"none": no standardization is used.

"classical": apply a z-Transformation on each variable by using function scale.

"robust": apply a robustified z-Transformation by using median and MAD.

Value

Transformed and standardized data.

Author(s)

Matthias Templ, modifications by Andreas Alfons

See Also

scale, box.cox.powers

287

AMELI-WP10-D10.3

print.aggr 43

Examples

data(sleep, package = "VIM")
x <- sleep[, c("BodyWgt", "BrainWgt")]
prepare(x, scaling = "robust", transformation = "logarithm")

print.aggr Print method for objects of class aggr

Description

Print method for objects of class "aggr".

Usage

S3 method for class 'aggr'
print(x, digits = NULL, ...)

Arguments

x an object of class "aggr".

digits the minimum number of significant digits to be used (see print.default).

... further arguments (currently ignored).

Author(s)

Matthias Templ, modifications by Andreas Alfons

See Also

aggr

Examples

data(sleep, package = "VIM")
a <- aggr(sleep, plot=FALSE)
a

288 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

44 rugNA

print.summary.aggr Print method for objects of class summary.aggr

Description

Print method for objects of class "summary.aggr".

Usage

S3 method for class 'summary.aggr'
print(x, ...)

Arguments

x an object of class "summary.aggr".

... further arguments (currently ignored).

Author(s)

Andreas Alfons

See Also

summary.aggr, aggr

Examples

data(sleep, package = "VIM")
s <- summary(aggr(sleep, plot=FALSE))
s

rugNA Rug representation of missing values

Description

Add a rug representation of missing values in only one of the variables to scatterplots.

Usage

rugNA(x, y, ticksize = NULL, side = 1,
col = "red", alpha = NULL, lwd = 0.5, ...)

289

AMELI-WP10-D10.3

SBS5242 45

Arguments

x, y numeric vectors.
ticksize the length of the ticks. Positive lengths give inward ticks.
side an integer giving the side of the plot to draw the rug representation.
col the color to be used for the ticks.
alpha the alpha value (between 0 and 1).
lwd the line width to be used for the ticks.
... further arguments to be passed to Axis.

Details

If side is 1 or 3, the rug representation consists of values available in x but missing in y. Else if
side is 2 or 4, it consists of values available in y but missing in x.

Author(s)

Andreas Alfons

Examples

data(tao, package = "VIM")
x <- tao[, "Air.Temp"]
y <- tao[, "Humidity"]
plot(x, y)
rugNA(x, y, side = 1)
rugNA(x, y, side = 2)

SBS5242 Synthetic subset of the Austrian structural business statistics data

Description

Synthetic subset of the Austrian structural business statistics (SBS) data, namely NACE code 52.42
(retail sale of clothing).

Usage

data(SBS5242)

Details

The Austrian SBS data set consists of more than 320.000 enterprises. Available raw (unedited) data
set: 21669 observations in 90 variables, structured according NACE revision 1.1 with 3891 missing
values.

We investigate 9 variables of NACE 52.42 (retail sale of clothing).

From these confidential raw data set a non-confidential, close-to-reality, synthetic data set was gen-
erated.

290 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

46 scattJitt

Source

http://www.statistik.at

Examples

data(SBS5242)
aggr(SBS5242)

scattJitt Bivariate jitter plot

Description

Create a bivariate jitter plot.

Usage

scattJitt(x, col = c("skyblue","red","red4"), alpha = NULL,
cex = par("cex"), col.line = "lightgrey",
lty = "dashed", lwd = par("lwd"),
numbers = TRUE, cex.numbers = par("cex"),
main = NULL, sub = NULL, xlab = NULL,
ylab = NULL, axes = TRUE, frame.plot = axes,
labels = c("observed","missing"), ...)

Arguments

x a data.frame or matrix with two columns.

col a vector of length three giving the colors to be used in the plot. The first color
will be used for complete observations, the second color for missing values in
only one variable, and the third color for missing values in both variables. If
only one color is supplied, it is used for all. Else if two colors are supplied, the
second one is recycled.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

cex the character expansion factor for the plot characters.

col.line the color for the lines dividing the plot region.

lty the line type for the lines dividing the plot region (see par).

lwd the line width for the lines dividing the plot region.

numbers a logical indicating whether the frequencies of observed/missing values should
be displayed (see ‘Details’).

cex.numbers the character expansion factor to be used for the frequencies of the observed/missing
values.

main, sub main and sub title.

291

AMELI-WP10-D10.3

scattmatrixMiss 47

xlab, ylab axis labels.

axes a logical indicating whether both axes should be drawn on the plot. Use graphi-
cal parameter "xaxt" or "yaxt" to suppress just one of the axes.

frame.plot a logical indicating whether a box should be drawn around the plot.

labels a vector of length two giving the axis labels for the regions for observed/missing
values (see ‘Details’).

... further graphical parameters to be passed down (see par).

Details

The amount of observed/missing values is visualized by jittered points. Thereby the plot region is
divided into up to four regions according to the existence of missing values in one or both variables.
In addition, the amount of observed/missing values can be represented by a number.

Note

Some of the argument names and positions have changed with version 1.3 due to extended func-
tionality and for more consistency with other plot functions in VIM. For back compatibility, the
argument cex.text can still be supplied to ... and is handled correctly. Nevertheless, it is
deprecated and no longer documented. Use cex.numbers instead.

Author(s)

Matthias Templ, modifications by Andreas Alfons

Examples

data(tao, package = "VIM")
scattJitt(tao[, c("Air.Temp", "Humidity")])

scattmatrixMiss Scatterplot matrix with information about missing values

Description

Scatterplot matrix in which observations with missing values in certain variables are highlighted.

Usage

scattmatrixMiss(x, highlight = NULL,
selection = c("any","all"), plotvars = NULL,
col = c("skyblue","red"), alpha = NULL,
pch = c(1,3), lty = par("lty"),
diagonal = c("density","none"),
interactive = TRUE, ...)

TKRscattmatrixMiss(x, highlight = NULL,

292 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

48 scattmatrixMiss

selection = c("any","all"), plotvars = NULL,
col = c("skyblue", "red"), alpha = NULL,
..., hscale = NULL, vscale = NULL,
TKRpar = list())

Arguments

x a matrix or data.frame.

highlight a vector giving the variables to be used for highlighting. If NULL (the default),
all variables are used for highlighting.

selection the selection method for highlighting missing values in multiple highlight vari-
ables. Possible values are "any" (highlighting of missing values in any of the
highlight variables) and "all" (highlighting of missing values in all of the
highlight variables).

plotvars a vector giving the variables to be plotted. If NULL (the default), all variables
are plotted.

col a vector of length two giving the colors to be used in the plot. The second color
will be used for highlighting.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

pch a vector of length two giving the plot characters. The second plot character will
be used for the highlighted observations.

lty a vector of length two giving the line types for the density plots in the diag-
onal panels (if diagonal="density"). The second line type is used for
the highlighted observations. If a single value is supplied, it is used for both
non-highlighted and highlighted observations.

diagonal a character string specifying the plot to be drawn in the diagonal panels. Possi-
ble values are "density" (density plots for non-highlighted and highlighted
observations) and "none".

interactive a logical indicating whether the variables to be used for highlighting can be
selected interactively (see ‘Details’).

... for scattmatrixMiss, further arguments and graphical parameters to be
passed to pairsVIM. par("oma") will be set appropriately unless supplied
(see par). For TKRscattmatrixMiss, further arguments to be passed to
scattmatrixMiss.

hscale horizontal scale factor for plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

vscale vertical scale factor for the plot to be embedded in a Tcl/Tk window (see ‘De-
tails’). The default value depends on the number of variables.

TKRpar a list of graphical parameters to be set for the plot to be embedded in a Tcl/Tk
window (see ‘Details’ and par).

293

AMELI-WP10-D10.3

scattMiss 49

Details

scattmatrixMiss uses pairsVIM with a panel function that allows highlighting of missing
values.

If interactive=TRUE, the variables to be used for highlighting can be selected interactively.
Observations with missing values in any or in all of the selected variables are highlighted (as deter-
mined by selection). A variable can be added to the selection by clicking in a diagonal panel.
If a variable is already selected, clicking on the corresponding diagonal panel removes it from the
selection. Clicking anywhere else quits the interactive session.

The graphical parameter oma will be set unless supplied as an argument.

TKRscattmatrixMiss behaves like scattmatrixMiss, but uses tkrplot to embed the
plot in a Tcl/Tk window. This is useful if the number of variables is large, because scrollbars allow
to move from one part of the plot to another.

Note

Some of the argument names and positions have changed with version 1.3 due to a re-implementation
and for more consistency with other plot functions in VIM. For back compatibility, the argument
colcomb can still be supplied to ... and is handled correctly. Nevertheless, it is deprecated
and no longer documented. Use highlight instead. The arguments smooth, reg.line and
legend.plot are no longer used and ignored if supplied.

Author(s)

Andreas Alfons, Matthias Templ

See Also

pairsVIM, marginmatrix

Examples

data(sleep, package = "VIM")
x <- sleep[, 1:5]
x[,c(1,2,4)] <- log10(x[,c(1,2,4)])
scattmatrixMiss(x, highlight = "Dream")

scattMiss Scatterplot with information about missing values

Description

In addition to a standard scatterplot, lines are plotted for the missing values in one variable.

294 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

50 scattMiss

Usage

scattMiss(x, side = 1, col = c("skyblue","red","lightgrey"),
alpha = NULL, lty = c("dashed","dotted"),
lwd = par("lwd"), quantiles = c(0.5, 0.975),
inEllipse = FALSE, zeros = FALSE, xlim = NULL,
ylim = NULL, main = NULL, sub = NULL, xlab = NULL,
ylab = NULL, interactive = TRUE, ...)

Arguments

x a matrix or data.frame with two columns.

side if side=1, a rug representation and vertical lines are plotted for the missing
values in the second variable; if side=2, a rug representation and horizontal
lines for the missing values in the first variable.

col a vector of length three giving the colors to be used in the plot. The first color is
used for the scatterplot, the second color for the rug representation and the lines,
and the third color for the ellipses (see ‘Details’). If only one color is supplied,
it is used for the scatterplot, the rug representation and the lines, whereas the
default color is used for the ellipses. Else if a vector of length two is supplied,
the default color is used for the ellipses as well.

alpha a numeric value between 0 and 1 giving the level of transparency of the colors,
or NULL. This can be used to prevent overplotting.

lty a vector of length two giving the line types for the lines and ellipses. If a single
value is supplied, it will be used for both.

lwd a vector of length two giving the line widths for the lines and ellipses. If a single
value is supplied, it will be used for both.

quantiles a vector giving the quantiles of the chi-square distribution to be used for the
tolerance ellipses, or NULL to suppress plotting ellipses (see ‘Details’).

inEllipse plot lines only inside the largest ellipse. Ignored if quantiles is NULL.

zeros a logical vector of length two indicating whether the variables are semi-continuous,
i.e., contain a considerable amount of zeros. If TRUE, only the non-zero ob-
servations are used for computing the tolerance ellipses. If a single logical is
supplied, it is recycled. Ignored if quantiles is NULL.

xlim, ylim axis limits.

main, sub main and sub title.

xlab, ylab axis labels.

interactive a logical indicating whether the side argument can be changed interactively
(see ‘Details’).

... further graphical parameters to be passed down (see par).

Details

Information about missing values in one variable is included as vertical or horizontal lines, as de-
termined by the side argument. The lines are thereby drawn at the observed x- or y-value. In

295

AMELI-WP10-D10.3

sleep 51

addition, percentage coverage ellipses can be drawn to give a clue about the shape of the bivariate
data distribution.

If interactiveis TRUE, clicking in the bottom margin redraws the plot with information about
missing values in the first variable and clicking in the left margin redraws the plot with information
about missing values in the second variable. Clicking anywhere else in the plot quits the interactive
session.

Note

The argument zeros has been introduced in version 1.4. As a result, some of the argument posi-
tions have changed.

Author(s)

Andreas Alfons

See Also

marginplot

Examples

data(tao, package = "VIM")
scattMiss(tao[,c("Air.Temp", "Humidity")])

sleep Mammal sleep data

Description

Sleep data with missing values.

Usage

data(sleep)

Format

A data frame with 62 observations on the following 10 variables.

BodyWgt a numeric vector

BrainWgt a numeric vector

NonD a numeric vector

Dream a numeric vector

Sleep a numeric vector

Span a numeric vector

296 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

52 spineMiss

Gest a numeric vector

Pred a numeric vector

Exp a numeric vector

Danger a numeric vector

Source

Allison, T. and Chichetti, D. (1976) Sleep in mammals: ecological and constitutional correlates.
Science 194 (4266), 732–734.

The data set was imported from GGobi.

Examples

data(sleep, package = "VIM")
summary(sleep)
aggr(sleep)

spineMiss Spineplot with information about missing values

Description

Spineplot or spinogram with highlighting of missing values in other variables by splitting each cell
into two parts. Additionally, information about missing values in the variable of interest is shown
on the right hand side.

Usage

spineMiss(x, pos = 1, selection = c("any", "all"),
breaks = "Sturges", right = TRUE,
col = c("skyblue","red","skyblue4","red4"),
border = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, axes = TRUE,
labels = axes, only.miss = TRUE,
miss.labels = axes, interactive = TRUE, ...)

Arguments

x a vector, matrix or data.frame.

pos a numeric value giving the index of the variable of interest. Additional variables
in x are used for highlighting.

selection the selection method for highlighting missing values in multiple additional vari-
ables. Possible values are "any" (highlighting of missing values in any of the
additional variables) and "all" (highlighting of missing values in all of the
additional variables).

297

AMELI-WP10-D10.3

spineMiss 53

breaks if the variable of interest is numeric, breaks controls the breakpoints (see
hist for possible values).

right logical; if TRUE and the variable of interest is numeric, the spinogram cells are
right-closed (left-open) intervals.

col a vector of length four giving the colors to be used. If only one color is supplied,
the bars are transparent and the supplied color is used for highlighting. Else if
two colors are supplied, they are recycled.

border the color to be used for the border of the cells. Use border=NA to omit borders.

main, sub main and sub title.

xlab, ylab axis labels.

axes a logical indicating whether axes should be drawn on the plot.

labels if the variable of interest is categorical, either a logical indicating whether labels
should be plotted below each cell, or a character vector giving the labels. This
is ignored if the variable of interest is numeric.

only.miss logical; if TRUE, the missing values in the variable of interest are also visualized
by a cell in the spineplot or spinogram. Otherwise, a small spineplot is drawn
on the right hand side (see ‘Details’).

miss.labels either a logical indicating whether label(s) should be plotted below the cell(s)
on the right hand side, or a character string or vector giving the label(s) (see
‘Details’).

interactive a logical indicating whether the variables can be switched interactively (see ‘De-
tails’).

... further graphical parameters to be passed to title and axis.

Details

A spineplot is created if the variable of interest is categorial and a spinogram if it is numerical. The
horizontal axis is scaled according to relative frequencies of the categories/classes. If more than one
variable is supplied, the cells are split according to missingness in the additional variables. Thus
the proportion of highlighted observations in each category/class is displayed on the vertical axis.
Since the height of each cell corresponds to the proportion of highlighted observations, it is now
possible to compare the proportions of missing values among the different categories/classes.

If only.miss=TRUE, the missing values in the variable of interest are also visualized by a cell
in the spine plot or spinogram. If additional variables are supplied, this cell is again split into two
parts according to missingness in the additional variables.

Otherwise, a small spineplot that visualizes missing values in the variable of interest is drawn on
the right hand side. The first cell corresponds to observed values and the second cell to missing
values. Each of the two cells is again split into two parts according to missingness in the additional
variables. Note that this display does not make sense if only one variable is supplied, therefore
only.miss is ignored in that case.

If interactive=TRUE, clicking in the left margin of the plot results in switching to the previous
variable and clicking in the right margin results in switching to the next variable. Clicking anywhere
else on the graphics device quits the interactive session.

298 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

54 summary.aggr

Value

a table containing the frequencies corresponding to the cells.

Note

Some of the argument names and positions have changed with version 1.3 due to extended function-
ality and for more consistency with other plot functions in VIM. For back compatibility, the argu-
ments xaxlabels and missaxlabels can still be supplied to ... and are handled correctly.
Nevertheless, they are deprecated and no longer documented. Use labels and miss.labels
instead.

The code is based on the function spineplot by Achim Zeileis.

Author(s)

Andreas Alfons, Matthias Templ

See Also

histMiss, barMiss, mosaicMiss

Examples

data(tao, package = "VIM")
spineMiss(tao[, c("Air.Temp", "Humidity")])
data(sleep, package = "VIM")
spineMiss(sleep[, c("Exp", "Sleep")])

summary.aggr Summary method for objects of class aggr

Description

Summary method for objects of class "aggr".

Usage

S3 method for class 'aggr'
summary(object, ...)

Arguments

object an object of class "aggr".

... further arguments.

299

AMELI-WP10-D10.3

tao 55

Value

a list of class "summary.aggr" containing the following components:

missings a data.frame containing the amount of missing values in each variable.

combinations a data.frame containing a character vector representing the combinations of
variables along with their frequencies and percentages.

Author(s)

Matthias Templ, modifications by Andreas Alfons

See Also

print.summary.aggr, aggr

Examples

data(sleep, package = "VIM")
summary(aggr(sleep, plot=FALSE))

tao Tropical Atmosphere Ocean (TAO) project data

Description

A small subsample of the Tropical Atmosphere Ocean (TAO) project data, derived from the GGOBI
project.

Usage

data(tao)

Format

A data frame with 736 observations on the following 8 variables.

Year a numeric vector

Latitude a numeric vector

Longitude a numeric vector

Sea.Surface.Temp a numeric vector

Air.Temp a numeric vector

Humidity a numeric vector

UWind a numeric vector

VWind a numeric vector

300 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

56 vmGUImenu

Details

All cases recorded for five locations and two time periods.

Source

http://www.pmel.noaa.gov/tao/

Examples

data(tao, package = "VIM")
summary(tao)
aggr(tao)

vmGUImenu GUI for Visualization and Imputation of Missing Values

Description

Graphical user interface for visualization and imputation of missing values.

Usage

vmGUImenu()

Details

The Data menu allows to select a data set from the R workspace or load data into the workspace
from RData files. Furthermore, it can be used to transform variables, which are then appended
to the data set in use. Commonly used transformations in official statistics are available, e.g., the
Box-Cox transformation and the log-transformation as an important special case of the Box-Cox
transformation. In addition, several other transformations that are frequently used for compositional
data are implemented. Background maps and coordinates for spatial data can be selected in the data
menu as well.

After a data set was chosen, variables can be selected in the main menu, along with a method for
scaling. An important feature is that the variables will be used in the same order as they were
selected, which is especially useful for parallel coordinate plots. Variables for highlighting are
distinguished from the plot variables and can be selected separately. For more than one variable
chosen for highlighting, it is possible to select whether observations with missing values in any or
in all of these variables should be highlighted.

A plot method can be selected from the Visualization menu. Note that plots that are not applicable
to the selected variables are disabled, for example, if only one plot variable is selected, multivariate
plots cannot be chosen.

Last, but not least, the Options menu allows to set the colors and alpha channel to be used in the
plots. In addition, it contains an option to embed multivariate plots in Tcl/Tk windows. This
is useful if the number of observations and/or variables is large, because scrollbars allow to move
from one part of the plot to another.

Sections Imputation and Diagonstics are not yet implemented.

301

AMELI-WP10-D10.3

vmGUImenu 57

Author(s)

Andreas Alfons, based on an initial design by Matthias Templ

302 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Index

∗Topic color
alphablend, 6
colSequence, 15
rugNA, 44

∗Topic datasets
chorizonDL, 9
kola.background, 27
SBS5242, 45
sleep, 51
tao, 55

∗Topic hplot
aggr, 3
barMiss, 6
bgmap, 8
colormapMiss, 13
growdotMiss, 17
histMiss, 19
mapMiss, 27
marginmatrix, 29
marginplot, 30
matrixplot, 32
mosaicMiss, 34
pairsVIM, 35
parcoordMiss, 37
pbox, 39
scattJitt, 46
scattmatrixMiss, 47
scattMiss, 49
spineMiss, 52
vmGUImenu, 56

∗Topic manip
hotdeck, 22
initialise, 23
irmi, 23
kNN, 25
prepare, 41

∗Topic multivariate
vmGUImenu, 56

∗Topic package

VIM-package, 2
∗Topic print

print.aggr, 43
print.summary.aggr, 44
summary.aggr, 54

∗Topic utilities
count, 17

aggr, 3, 43, 44, 55
alphablend, 6
Axis, 45
axis, 7, 20, 33, 53

barMiss, 6, 21, 54
bgmap, 8, 18, 19, 28
box.cox.powers, 42
boxplot, 40, 41
bubbleFIN, 19
bubbleMiss, 28
bubbleMiss (growdotMiss), 17

chorizon, 9, 12
chorizonDL, 9
colormapMiss, 13, 19, 28
colormapMissLegend

(colormapMiss), 13
colSequence, 15, 15
colSequenceHCL (colSequence), 15
colSequenceRGB (colSequence), 15
count, 17
countInf (count), 17
countNA (count), 17
covMcd, 42

format, 18

gowerD (kNN), 25
growdotMiss, 9, 15, 17

hex, 13–16, 33
hist, 20, 53

58

303

AMELI-WP10-D10.3

INDEX 59

histMiss, 8, 19, 54
hotdeck, 22

iimagMiss (matrixplot), 32
initialise, 23
irmi, 23

kNN, 25
kola.background, 27

labeling_border, 34
lines, 8

mapMiss, 9, 15, 19, 27
marginmatrix, 29, 36, 49
marginplot, 29, 30, 30, 51
matrixplot, 32
maxCat (kNN), 25
mi, 25
mosaic, 35
mosaicMiss, 34, 54

pairs, 36
pairsVIM, 29, 30, 35, 48, 49
par, 4, 29, 31, 33, 36, 38, 40, 46–48, 50
parcoordMiss, 37, 41
pbox, 39, 39
plot.aggr, 4
plot.aggr (aggr), 3
plot.window, 33
points, 28
polarLUV, 13, 16, 32
prepare, 41
print.aggr, 5, 43
print.default, 43
print.summary.aggr, 44, 55

RGB, 13, 16, 32
rugNA, 44

sampleCat (kNN), 25
SBS5242, 45
scale, 42
scattJitt, 46
scattmatrixMiss, 30, 36, 47
scattMiss, 31, 49
sequential_hcl, 16
sleep, 51
spineMiss, 8, 21, 35, 52
spineplot, 54

summary.aggr, 5, 44, 54

tao, 55
title, 7, 20, 33, 53
TKRaggr (aggr), 3
TKRmarginmatrix (marginmatrix), 29
TKRmatrixplot (matrixplot), 32
TKRparcoordMiss (parcoordMiss), 37
TKRpbox (pbox), 39
tkrplot, 5, 29, 33, 39, 41, 49
TKRscattmatrixMiss

(scattmatrixMiss), 47

VIM (VIM-package), 2
VIM-package, 2
vmGUImenu, 56

which.minN (kNN), 25

304 A3. VIM Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Package ‘laeken’
June 6, 2011

Type Package

Title Estimation of indicators on social exclusion and poverty

Version 0.3

Date 2011-06-06

Author Andreas Alfons, Josef Holzer and Matthias Templ

Maintainer Andreas Alfons <andreas.alfons@econ.kuleuven.be>

Depends boot, MASS

Description Estimation of indicators on social exclusion and poverty,as well as Pareto tail model-
ing for empirical income
distributions (including graphical tools).

License GPL (>= 2)

Repository CRAN

Date/Publication 2011-06-06 18:06:24

R topics documented:
laeken-package . 2
arpr . 4
arpt . 6
bootVar . 7
calibVars . 9
calibWeights . 10
eqInc . 12
eqSS . 13
eusilc . 15
fitPareto . 16
gini . 18
gpg . 20
incMean . 23

1

305

AMELI-WP10-D10.3

2 laeken-package

incMedian . 24
incQuintile . 25
meanExcessPlot . 27
minAMSE . 28
paretoQPlot . 30
paretoScale . 31
paretoTail . 32
qsr . 35
replaceTail . 37
reweightOut . 38
rmpg . 40
shrinkOut . 42
thetaHill . 43
thetaISE . 44
thetaLS . 46
thetaMoment . 47
thetaPDC . 48
thetaQQ . 50
thetaTM . 51
thetaWML . 53
utils . 54
variance . 56
weightedMean . 58
weightedMedian . 59
weightedQuantile . 60

Index 62

laeken-package Estimation of indicators on social exclusion and poverty

Description

Estimation of indicators on social exclusion and poverty, as well as Pareto tail modeling for empir-
ical income distributions (including graphical tools).

Details

Package: laeken
Type: Package
Version: 0.3
Date: 2011-06-06
Depends: boot, MASS
License: GPL (>= 2)

Index:

306 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

laeken-package 3

arpr At-risk-of-poverty rate
arpt At-risk-of-poverty threshold
bootVar Bootstrap variance and confidence intervals of

indicators on social exclusion and poverty
calibVars Construct a matrix of binary variables for

calibration
calibWeights Calibrate sample weights
eqInc Equivalized disposable income
eqSS Equivalized household size
eusilc Synthetic EU-SILC survey data
fitPareto Fit income distribution models with the Pareto

distribution
gini Gini coefficient
gpg Gender pay (wage) gap.
incMean Weighted mean income
incMedian Weighted median income
incQuintile Weighted income quintile
is.indicator Utility functions for indicators on social

exclusion and poverty
laeken-package Estimation of indicators on social exclusion

and poverty
meanExcessPlot Mean excess plot
minAMSE Weighted asymptotic mean squared error (AMSE)

estimator
paretoQPlot Pareto quantile plot
paretoScale Estimate the scale parameter of a Pareto

distribution
paretoTail Pareto tail modeling for income distributions
qsr Quintile share ratio
replaceTail Replace observations under a Pareto model
reweightOut Reweight outliers in the Pareto model
rmpg Relative median at-risk-of-poverty gap
shrinkOut Shrink outliers in the Pareto model
thetaHill Hill estimator
thetaISE Integrated squared error (ISE) estimator
thetaLS Least squares (LS) estimator
thetaMoment Moment estimator
thetaPDC Partial density component (PDC) estimator
thetaQQ QQ-estimator
thetaTM Trimmed mean estimator
thetaWML Weighted maximum likelihood estimator
variance Variance and confidence intervals of indicators

on social exclusion and poverty
weightedMean Weighted mean
weightedMedian Weighted median
weightedQuantile Weighted quantiles

Further information is available in the following vignettes:

307

AMELI-WP10-D10.3

4 arpr

laeken-pareto Robust Pareto Tail Modeling for the Estimation of Indicators on Social Exclusion using the R Package laeken (source, pdf)
laeken-standard Standard Methods for Point Estimation of Indicators on Social Exclusion and Poverty using the R Package laeken (source, pdf)
laeken-variance Variance Estimation of Indicators on Social Exclusion and Poverty using the R Package laeken (source, pdf)

Author(s)

Andreas Alfons, Josef Holzer and Matthias Templ

Maintainer: Andreas Alfons <andreas.alfons@econ.kuleuven.be>

arpr At-risk-of-poverty rate

Description

Estimate the at-risk-of-poverty rate, which is defined as the proportion of persons with equivalized
disposable income below the at-risk-of-poverty threshold.

Usage

arpr(inc, weights = NULL, sort = NULL, years = NULL,
breakdown = NULL, design = NULL, data = NULL, p = 0.6,
var = NULL, alpha = 0.05, na.rm = FALSE, ...)

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value. Note that the same (overall) threshold is used for all strata.

308 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

arpr 5

design optional and only used if var is not NULL; either an integer vector or factor
giving different strata for stratified sampling designs, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding
column of data.

data an optional data.frame.

p a numeric value in [0, 1] giving the percentage of the weighted median to be
used for the at-risk-of-poverty threshold (see arpt).

var a character string specifying the type of variance estimation to be used, or NULL
to omit variance estimation. See variance for possible values.

alpha numeric; if var is not NULL, this gives the significance level to be used for
computing the confidence interval (i.e., the confidence level is 1−alpha).

na.rm a logical indicating whether missing values should be removed.

... if var is not NULL, additional arguments to be passed to variance.

Details

The implementation strictly follows the Eurostat definition.

Value

A list of class "arpr" (which inherits from the class "indicator") with the following compo-
nents:

value a numeric vector containing the overall value(s).
valueByStratum

a data.frame containing the values by stratum, or NULL.

varMethod a character string specifying the type of variance estimation used, or NULL if
variance estimation was omitted.

var a numeric vector containing the variance estimate(s), or NULL.

varByStratum a data.frame containing the variance estimates by stratum, or NULL.

ci a numeric vector or matrix containing the lower and upper endpoints of the
confidence interval(s), or NULL.

ciByStratum a data.frame containing the lower and upper endpoints of the confidence
intervals by stratum, or NULL.

alpha a numeric value giving the significance level used for computing the confidence
interval(s) (i.e., the confidence level is 1−alpha), or NULL.

years a numeric vector containing the different years of the survey.

strata a character vector containing the different strata of the breakdown.

p a numeric giving the percentage of the weighted median used for the at-risk-of-
poverty threshold.

threshold a numeric vector containing the at-risk-of-poverty threshold(s).

Author(s)

Andreas Alfons

309

AMELI-WP10-D10.3

6 arpt

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat, Luxembourg.

See Also

arpt, variance

Examples

data(eusilc)

overall value
arpr("eqIncome", weights = "rb050", data = eusilc)

values by region
arpr("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)

arpt At-risk-of-poverty threshold

Description

Estimate the at-risk-of-poverty threshold. The standard definition is to use 60% of the weighted
median equivalized disposable income.

Usage

arpt(inc, weights = NULL, sort = NULL, years = NULL,
data = NULL, p = 0.6, na.rm = FALSE)

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

310 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

bootVar 7

data an optional data.frame.

p a numeric value in [0, 1] giving the percentage of the weighted median to be
used for the at-risk-of-poverty threshold.

na.rm a logical indicating whether missing values should be removed.

Details

The implementation strictly follows the Eurostat definition.

Value

A numeric vector containing the value(s) of the at-risk-of-poverty threshold is returned.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

arpr, incMedian, weightedMedian

Examples

data(eusilc)
arpt("eqIncome", weights = "rb050", data = eusilc)

bootVar Bootstrap variance and confidence intervals of indicators on social
exclusion and poverty

Description

Compute variance and confidence interval estimates of indicators on social exclusion and poverty
based on bootstrap resampling.

Usage

bootVar(inc, weights = NULL, years = NULL, breakdown = NULL,
design = NULL, data = NULL, indicator, R = 100,
bootType = c("calibrate", "naive"), X, totals = NULL,
ciType = c("perc", "norm", "basic"),
alpha = 0.05, seed = NULL, na.rm = FALSE,
gender = NULL, method = "mean", ...)

311

AMELI-WP10-D10.3

8 bootVar

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value.

design optional; either an integer vector or factor giving different strata for stratified
sampling designs, or (if data is not NULL) a character string, an integer or a
logical vector specifying the corresponding column of data. If supplied, this is
used as strata argument in the call to boot.

data an optional data.frame.

indicator an object inheriting from the class "indicator" that contains the point esti-
mates of the indicator (see arpr, qsr, rmpg or gini).

R a numeric value giving the number of bootstrap replicates..

bootType a character string specifying the type of bootstap to be performed. Possible val-
ues are "calibrate" (for calibration of the sample weights of the resampled
observations in every iteration) and "naive" (for a naive bootstrap without
calibration of the sample weights).

X if bootType is "calibrate", a matrix of calibration variables.

totals numeric; if bootType is "calibrate", this gives the population totals. If
years is NULL, a vector should be supplied, otherwise a matrix in which each
row contains the population totals of the respective year. If this is NULL (the
default), the population totals are computed from the sample weights using the
Horvitz-Thompson estimator.

ciType a character string specifying the type of confidence interval(s) to be computed.
Possible values are "perc", "norm" and "basic" (see boot.ci).

alpha a numeric value giving the significance level to be used for computing the con-
fidence interval(s) (i.e., the confidence level is 1−alpha), or NULL.

seed optional; an integer value to be used as the seed of the random number generator,
or an integer vector containing the state of the random number generator to be
restored.

na.rm a logical indicating whether missing values should be removed.

gender either a numeric vector giving the gender, or (if data is not NULL) a character
string, an integer or a logical vector specifying the corresponding column of
data.

312 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

calibVars 9

method mean or median. If weights are provided, the weighted mean or weighted me-
dian is estimated.

... if bootType is "calibrate", additional arguments to be passed to calibWeights.

Value

An object of the same class as indicator is returned. See arpr, qsr, rmpg or gini for details
on the components.

Note

This function gives reasonable variance estimates for basic sample designs such as simple random
sampling or stratified simple random sampling.

Author(s)

Andreas Alfons

See Also

variance, calibWeights, arpr, qsr, rmpg, gini

Examples

data(eusilc)
a <- arpr("eqIncome", weights = "rb050", data = eusilc)

naive bootstrap
bootVar("eqIncome", weights = "rb050", design = "db040",

data = eusilc, indicator = a, bootType = "naive", seed = 123)

bootstrap with calibration
bootVar("eqIncome", weights = "rb050", design = "db040",

data = eusilc, indicator = a, X = calibVars(eusilc$db040),
seed = 123)

calibVars Construct a matrix of binary variables for calibration

Description

Construct a matrix of binary variables for calibration of sample weights according to known marginal
population totals.

Usage

calibVars(x)

313

AMELI-WP10-D10.3

10 calibWeights

Arguments

x a vector that can be interpreted as factor, or a matrix or data.frame consisting
of such variables.

Value

A matrix of binary variables that indicate membership to the corresponding factor levels.

Author(s)

Andreas Alfons

See Also

calibWeights

Examples

data(eusilc)
default method
aux <- calibVars(eusilc$rb090)
head(aux)
data.frame method
aux <- calibVars(eusilc[, c("db040", "rb090")])
head(aux)

calibWeights Calibrate sample weights

Description

Calibrate sample weights according to known marginal population totals. Based on initial sample
weights, the so-called g-weights are computed by generalized raking procedures.

Usage

calibWeights(X, d, totals, q = NULL,
method = c("raking", "linear", "logit"),
bounds = c(0, 10), maxit = 500, tol = 1e-06,
eps = .Machine$double.eps)

Arguments

X a matrix of binary calibration variables (see calibVars).

d a numeric vector giving the initial sample weights.

totals a numeric vector of population totals corresponding to the calibration variables
in X.

314 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

calibWeights 11

q a numeric vector of positive values accounting for heteroscedasticity. Small
values reduce the variation of the g-weights.

method a character string specifying the calibration method to be used. Possible values
are "linear" for the linear method, "raking" for the multiplicative method
known as raking and "logit" for the logit method.

bounds a numeric vector of length two giving bounds for the g-weights to be used in the
logit method. The first value gives the lower bound (which must be smaller than
or equal to 1) and the second value gives the upper bound (which must be larger
than or equal to 1).

maxit a numeric value giving the maximum number of iterations.

tol the desired accuracy for the iterative procedure.

eps the desired accuracy for computing the Moore-Penrose generalized inverse (see
ginv).

Details

The final sample weights need to be computed by multiplying the resulting g-weights with the initial
sample weights.

Value

A numeric vector containing the g-weights.

Note

This is a faster implementation of parts of calib from package sampling. Note that the default
calibration method is raking and that the truncated linear method is not yet implemented.

Author(s)

Andreas Alfons

References

Deville, J.-C. and Särndal, C.-E. (1992) Calibration estimators in survey sampling. Journal of the
American Statistical Association, 87(418), 376–382.

Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993) Generalized raking procedures in survey sam-
pling. Journal of the American Statistical Association, 88(423), 1013–1020.

See Also

calibVars, bootVar

315

AMELI-WP10-D10.3

12 eqInc

Examples

data(eusilc)
construct auxiliary 0/1 variables for genders
aux <- calibVars(eusilc$rb090)
population totals
totals <- c(3990798, 4191431)
compute g-weights
g <- calibWeights(aux, eusilc$rb050, totals)
compute final weights
weights <- g * eusilc$rb050
summary(weights)

eqInc Equivalized disposable income

Description

Compute the equivalized disposable income from household and personal income variables.

Usage

eqInc(hid, hplus, hminus, pplus, pminus,
eqSS, year = NULL, data = NULL)

Arguments

hid if data=NULL, a vector containing the household ID. Otherwise a character
string specifying the column of data that contains the household ID.

hplus if data=NULL, a data.frame containing the household income components
that have to be added. Otherwise a character vector specifying the columns of
data that contain these income components.

hminus if data=NULL, a data.frame containing the household income components
that have to be subtracted. Otherwise a character vector specifying the columns
of data that contain these income components.

pplus if data=NULL, a data.frame containing the personal income components
that have to be added. Otherwise a character vector specifying the columns of
data that contain these income components.

pminus if data=NULL, a data.frame containing the personal income components
that have to be subtracted. Otherwise a character vector specifying the columns
of data that contain these income components.

eqSS if data=NULL, a vector containing the equivalized household size. Otherwise
a character string specifying the column of data that contains the equivalized
household size. See eqSS for more details.

year if data=NULL, a vector containing the year of the survey. Otherwise a charac-
ter string specifying the column of data that contains the year.

data a data.frame containing EU-SILC survey data, or NULL.

316 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

eqSS 13

Details

All income components should already be imputed, otherwise NAs are simply removed before the
calculations.

Value

A numeric vector containing the equivalized disposable income for every individual in data.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

eqSS

Examples

data(eusilc)

compute a simplified version of the equivalized disposable income
(not all income components are available in the synthetic data)
hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n", "hy110n")
hminus <- c("hy130n", "hy145n")
pplus <- c("py010n", "py050n", "py090n", "py100n",

"py110n", "py120n", "py130n", "py140n")
eqIncome <- eqInc("db030", hplus, hminus,

pplus, character(), "eqSS", data=eusilc)

combine with household ID and equivalized household size
tmp <- cbind(eusilc[, c("db030", "eqSS")], eqIncome)

show the first 8 rows
head(tmp, 8)

eqSS Equivalized household size

Description

Compute the equivalized household size according to the modified OECD scale adopted in 1994.

317

AMELI-WP10-D10.3

14 eqSS

Usage

eqSS(hid, age, year = NULL, data = NULL)

Arguments

hid if data=NULL, a vector containing the household ID. Otherwise a character
string specifying the column of data that contains the household ID.

age if data=NULL, a vector containing the age of the individuals. Otherwise a
character string specifying the column of data that contains the age.

year if data=NULL, a vector containing the year of the survey. Otherwise a charac-
ter string specifying the column of data that contains the year.

data a data.frame containing EU-SILC survey data, or NULL.

Value

A numeric vector containing the equivalized household size for every observation in data.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

eqInc

Examples

data(eusilc)

calculate equivalized household size
eqSS <- eqSS("db030", "age", data=eusilc)

combine with household ID and household size
tmp <- cbind(eusilc[, c("db030", "hsize")], eqSS)

show the first 8 rows
head(tmp, 8)

318 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

eusilc 15

eusilc Synthetic EU-SILC survey data

Description

This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on
Income and Living Conditions) data.

Usage

data(eusilc)

Format

A data frame with 14827 observations on the following 28 variables.

db030 integer; the household ID.

hsize integer; the number of persons in the household.

db040 factor; the federal state in which the household is located (levels Burgenland, Carinthia,
Lower Austria, Salzburg, Styria, Tyrol, Upper Austria, Vienna and Vorarlberg).

rb030 integer; the personal ID.

age integer; the person’s age.

rb090 factor; the person’s gender (levels male and female).

pl030 factor; the person’s economic status (levels 1 = working full time, 2 = working part time, 3
= unemployed, 4 = pupil, student, further training or unpaid work experience or in compulsory
military or community service, 5 = in retirement or early retirement or has given up business,
6 = permanently disabled or/and unfit to work or other inactive person, 7 = fulfilling domestic
tasks and care responsibilities).

pb220a factor; the person’s citizenship (levels AT, EU and Other).

py010n numeric; employee cash or near cash income (net).

py050n numeric; cash benefits or losses from self-employment (net).

py090n numeric; unemployment benefits (net).

py100n numeric; old-age benefits (net).

py110n numeric; survivor’s benefits (net).

py120n numeric; sickness benefits (net).

py130n numeric; disability benefits (net).

py140n numeric; education-related allowances (net).

hy040n numeric; income from rental of a property or land (net).

hy050n numeric; family/children related allowances (net).

hy070n numeric; housing allowances (net).

hy080n numeric; regular inter-household cash transfer received (net).

319

AMELI-WP10-D10.3

16 fitPareto

hy090n numeric; interest, dividends, profit from capital investments in unincorporated business
(net).

hy110n numeric; income received by people aged under 16 (net).

hy130n numeric; regular inter-household cash transfer paid (net).

hy145n numeric; repayments/receipts for tax adjustment (net).

eqSS numeric; the equivalized household size according to the modified OECD scale.

eqIncome numeric; a slightly simplified version of the equivalized household income.

db090 numeric; the household sample weights.

rb050 numeric; the personal sample weights.

Details

The data set consists of 6000 households and is used in the examples of package laeken. Note
that this is a synthetic data set based on original EU-SILC survey data.

Only a few of the large number of variables in the original survey are included in this example
data set. The variable names are rather cryptic codes, but these are the standardized names used
by the statistical agencies. Furthermore, the variables hsize, age, eqSS and eqIncome are not
included in the standardized format of EU-SILC data, but have been derived from other variables
for convenience. Moreover, some very sparse income components were not included in the the
generation of this synthetic data set. Thus the equivalized household income is computed from the
available income components.

Source

This is a synthetic data set based on Austrian EU-SILC data from 2006. The original sample was
provided by Statistics Austria.

References

Eurostat (2004) Description of target variables: Cross-sectional and longitudinal. EU-SILC 065/04,
Eurostat.

Examples

data(eusilc)
summary(eusilc)

fitPareto Fit income distribution models with the Pareto distribution

Description

Fit a Pareto distribution to the upper tail of income data. Since a theoretical distribution is used for
the upper tail, this is a semiparametric approach.

320 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

fitPareto 17

Usage

fitPareto(x, k = NULL, x0 = NULL, method = "thetaPDC",
groups = NULL, w = NULL, ...)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

method either a function or a character string specifying the function to be used to es-
timate the shape parameter of the Pareto distibution, such as thetaPDC (the
default). See “Details” for requirements for such a function and “See also” for
available functions.

groups an optional vector or factor specifying groups of elements of x (e.g., house-
holds). If supplied, each group of observations is expected to have the same
value in x (e.g., household income). Only the values of every first group mem-
ber to appear are used for fitting the Pareto distribution. For each group above
the threshold, every group member is assigned the same value.

w an optional numeric vector giving sample weights.

... addtional arguments to be passed to the specified method.

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

The function supplied to method should take a numeric vector (the observations) as its first argu-
ment. If k is supplied, it will be passed on (in this case, the function is required to have an argument
called k). Similarly, if the threshold x0 is supplied, it will be passed on (in this case, the function
is required to have an argument called x0). As above, only k is passed on if both are supplied. If
the function specified by method can handle sample weights, the corresponding argument should
be called w. Additional arguments are passed via the . . . argument.

Value

A numeric vector with a Pareto distribution fit to the upper tail.

Note

The arguments x0 for the threshold (scale parameter) of the Pareto distribution and w for sample
weights were introduced in version 0.2. This results in slightly different behavior regarding the
function calls to method compared to prior versions.

321

AMELI-WP10-D10.3

18 gini

Author(s)

Andreas Alfons and Josef Holzer

See Also

paretoTail, replaceTail

thetaPDC, thetaWML, thetaHill, thetaISE, thetaLS, thetaMoment, thetaQQ, thetaTM

Examples

data(eusilc)

gini coefficient without Pareto tail modeling
gini("eqIncome", weights = "rb050", data = eusilc)

gini coefficient with Pareto tail modeling

using number of observations in tail
eqIncome <- fitPareto(eusilc$eqIncome, k = 175,

w = eusilc$db090, groups = eusilc$db030)
gini(eqIncome, weights = eusilc$rb050)

using threshold
eqIncome <- fitPareto(eusilc$eqIncome, x0 = 44150,

w = eusilc$db090, groups = eusilc$db030)
gini(eqIncome, weights = eusilc$rb050)

gini Gini coefficient

Description

Estimate the Gini coefficient, which is a measure for inequality.

Usage

gini(inc, weights = NULL, sort = NULL, years = NULL,
breakdown = NULL, design = NULL, data = NULL,
var = NULL, alpha = 0.05, na.rm = FALSE, ...)

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

322 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

gini 19

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value.

design optional and only used if var is not NULL; either an integer vector or factor
giving different strata for stratified sampling designs, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding
column of data.

data an optional data.frame.

var a character string specifying the type of variance estimation to be used, or NULL
to omit variance estimation. See variance for possible values.

alpha numeric; if var is not NULL, this gives the significance level to be used for
computing the confidence interval (i.e., the confidence level is 1−alpha).

na.rm a logical indicating whether missing values should be removed.

... if var is not NULL, additional arguments to be passed to variance.

Details

The implementation strictly follows the Eurostat definition.

Value

A list of class "gini" (which inherits from the class "indicator") with the following compo-
nents:

value a numeric vector containing the overall value(s).
valueByStratum

a data.frame containing the values by stratum, or NULL.

varMethod a character string specifying the type of variance estimation used, or NULL if
variance estimation was omitted.

var a numeric vector containing the variance estimate(s), or NULL.

varByStratum a data.frame containing the variance estimates by stratum, or NULL.

ci a numeric vector or matrix containing the lower and upper endpoints of the
confidence interval(s), or NULL.

323

AMELI-WP10-D10.3

20 gpg

ciByStratum a data.frame containing the lower and upper endpoints of the confidence
intervals by stratum, or NULL.

alpha a numeric value giving the significance level used for computing the confidence
interval(s) (i.e., the confidence level is 1−alpha), or NULL.

years a numeric vector containing the different years of the survey.

strata a character vector containing the different strata of the breakdown.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

variance, qsr

Examples

data(eusilc)

overall value
gini("eqIncome", weights = "rb050", data = eusilc)

values by region
gini("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)

gpg Gender pay (wage) gap.

Description

Estimate the gender pay (wage) gap.

Usage

gpg(inc, gender = NULL, method = c("mean", "median"),
weights = NULL, sort = NULL, years = NULL, breakdown = NULL,
design = NULL, data = NULL, var = NULL, alpha = 0.05,
na.rm = FALSE, ...)

324 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

gpg 21

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

gender either a factor giving the gender, or (if data is not NULL) a character string, an
integer or a logical vector specifying the corresponding column of data.

method a character string specifying the method to be used. Possible values are "mean"
for the mean, and "median" for the median. If weights are provided, the
weighted mean or weighted median is estimated.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value.

design optional and only used if var is not NULL; either an integer vector or factor
giving different strata for stratified sampling designs, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding
column of data.

data an optional data.frame.

var a character string specifying the type of variance estimation to be used, or NULL
to omit variance estimation. See variance for possible values.

alpha numeric; if var is not NULL, this gives the significance level to be used for
computing the confidence interval (i.e., the confidence level is 1−alpha).

na.rm a logical indicating whether missing values should be removed.

... if var is not NULL, additional arguments to be passed to variance.

Details

The implementation strictly follows the Eurostat definition (with default method "mean" and al-
ternative method "median"). If weights are provided, the weighted mean or weighted median is
estimated.

Value

A list of class "gpg" (which inherits from the class "indicator") with the following compo-
nents:

325

AMELI-WP10-D10.3

22 gpg

value a numeric vector containing the overall value(s).
valueByStratum

a data.frame containing the values by stratum, or NULL.

varMethod a character string specifying the type of variance estimation used, or NULL if
variance estimation was omitted.

var a numeric vector containing the variance estimate(s), or NULL.

varByStratum a data.frame containing the variance estimates by stratum, or NULL.

ci a numeric vector or matrix containing the lower and upper endpoints of the
confidence interval(s), or NULL.

ciByStratum a data.frame containing the lower and upper endpoints of the confidence
intervals by stratum, or NULL.

alpha a numeric value giving the significance level used for computing the confidence
interv al(s) (i.e., the confidence level is 1−alpha), or NULL.

years a numeric vector containing the different years of the survey.

strata a character vector containing the different strata of the breakdown.

Author(s)

Matthias Templ and Alexander Haider, using code for breaking down estimation by Andreas Alfons.

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

variance, qsr, gini

Examples

data(eusilc)
clearly, children and elder people may not work in Austria:
eusilc <- eusilc[eusilc$age > 17 & eusilc$age < 66,]
full time workers:
eusilc <- eusilc[eusilc$pl030 == 1,]
employees's cash income:
py010n
eusilc <- eusilc[!is.na(eusilc$py010n),]
for estimation of the GPG, use hourly rates of people
who earn money and NOT just yearly income as done in
the following examples!

median_no_breakdown <- gpg("py010n", "rb090", method = "median",
weights = "rb050", data = eusilc)

mean_no_breakdown <- gpg("py010n", "rb090", method = "mean",
weights = "rb050", data = eusilc)

326 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

incMean 23

variance("py010n", gender = "rb090", method = "median",
weights = "rb050", design = "db040", data = eusilc,
indicator = median_no_breakdown, bootType = "naive",
seed = 123)

variance("py010n", gender = "rb090", method = "mean",
weights = "rb050", design = "db040", data = eusilc,
indicator = mean_no_breakdown, bootType = "naive",
seed = 123)

median_breakdown_area <- gpg("py010n", "rb090",
method = "median", breakdown = "db040",
weights = "rb050", data = eusilc)

variance("py010n", gender = "rb090", method = "median",
breakdown = "db040", weights = "rb050", design = "db040",
data = eusilc, indicator = median_breakdown_area,
bootType = "naive", seed = 123)

mean_breakdown_area <- gpg("py010n", "rb090", method = "mean",
breakdown = "db040", weights = "rb050", data = eusilc)

variance("py010n", gender = "rb090", method = "mean",
breakdown = "db040", weights = "rb050", design = "db040",
data = eusilc, indicator = mean_breakdown_area,
bootType = "naive", seed = 123)

incMean Weighted mean income

Description

Compute the weighted mean income.

Usage

incMean(inc, weights = NULL, years = NULL,
data = NULL, na.rm = FALSE)

Arguments

inc either a numeric vector giving the (equivalized disposable) income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

327

AMELI-WP10-D10.3

24 incMedian

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

data an optional data.frame.

na.rm a logical indicating whether missing values should be removed.

Value

A numeric vector containing the value(s) of the weighted mean income is returned.

Author(s)

Andreas Alfons

See Also

weightedMean

Examples

data(eusilc)
incMean("eqIncome", weights = "rb050", data = eusilc)

incMedian Weighted median income

Description

Compute the weighted median income.

Usage

incMedian(inc, weights = NULL, sort = NULL,
years = NULL, data = NULL, na.rm = FALSE)

Arguments

inc either a numeric vector giving the (equivalized disposable) income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

328 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

incQuintile 25

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

data an optional data.frame.

na.rm a logical indicating whether missing values should be removed.

Details

The implementation strictly follows the Eurostat definition.

Value

A numeric vector containing the value(s) of the weighted median income is returned.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

arpt, weightedMedian

Examples

data(eusilc)
incMedian("eqIncome", weights = "rb050", data = eusilc)

incQuintile Weighted income quintile

Description

Compute weighted income quintiles.

Usage

incQuintile(inc, weights = NULL, sort = NULL, years = NULL,
k = c(1, 4), data = NULL, na.rm = FALSE)

329

AMELI-WP10-D10.3

26 incQuintile

Arguments

inc either a numeric vector giving the (equivalized disposable) income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

k a vector of integers between 0 and 5 specifying the quintiles to be computed (0
gives the minimum, 5 the maximum).

data an optional data.frame.

na.rm a logical indicating whether missing values should be removed.

Details

The implementation strictly follows the Eurostat definition.

Value

A numeric vector (if years is NULL) or matrix (if years is not NULL) containing the values of
the weighted income quintiles specified by k are returned.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

qsr, weightedQuantile

Examples

data(eusilc)
incQuintile("eqIncome", weights = "rb050", data = eusilc)

330 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

meanExcessPlot 27

meanExcessPlot Mean excess plot

Description

The Mean Excess plot is a graphical method for detecting the threshold (scale parameter) of a Pareto
distribution.

Usage

meanExcessPlot(x, w = NULL, probs, interactive = TRUE, ...)

Arguments

x a numeric vector.
w an optional numeric vector giving sample weights.
probs an optional numeric vector of probabilities with values in [0, 1], defining the

quantiles to be plotted. This is useful for large data sets, when it may not be
desirable to plot every single point.

interactive a logical indicating whether the threshold (scale parameter) can be selected in-
teractively by clicking on points. Information on the selected threshold is then
printed on the R console.

... additional arguments to be passed to plot.default.

Details

The corresponding mean excesses are plotted against the values of x (if supplied, only those spec-
ified by probs). If the tail of the data follows a Pareto distribution, these observations show a
positive linear trend. The leftmost point of a fitted line can thus be used as an estimate of the
threshold (scale parameter).

The interactive selection of the threshold (scale parameter) is implemented using identify. For
the usual X11 device, the selection process is thus terminated by pressing any mouse button other
than the first. For the quartz device (on Mac OS X systems), the process is terminated either by
a secondary click (usually second mouse button or Ctrl-click) or by pressing the ESC key.

Value

If interactive is TRUE, the last selection for the threshold is returned invisibly as an object of
class "paretoScale", which consists of the following components:

x0 the selected threshold (scale parameter).
k the number of observations in the tail (i.e., larger than the threshold).

Note

The functionality to account for sample weights and to select the threshold (scale parameter) inter-
actively was introduced in version 0.2.

331

AMELI-WP10-D10.3

28 minAMSE

Author(s)

Andreas Alfons and Josef Holzer

See Also

minAMSE, paretoScale, paretoQPlot, identify

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

with sample weights
meanExcessPlot(eusilc$eqIncome, w = eusilc$db090)

without sample weights
meanExcessPlot(eusilc$eqIncome)

minAMSE Weighted asymptotic mean squared error (AMSE) estimator

Description

Estimate the scale and shape parameters of a Pareto distribution with an iterative procedure based
on minimizing the weighted asymptotic mean squared error (AMSE) of the Hill estimator.

Usage

minAMSE(x, weight = c("Bernoulli", "JASA"),
kmin, kmax, mmax, tol = 0, maxit = 100)

S3 method for class 'minAMSE'
print(x, ...)

Arguments

x for minAMSE, a numeric vector. The print method is called by the generic
function if an object of class "minAMSE" is supplied.

weight a character vector specifying the weighting scheme to be used in the procedure.
If "Bernoulli", the weight functions as described in the Bernoulli paper are
applied. If "JASA", the weight functions as described in the Journal of the
Americal Statistical Association are used.

kmin An optional integer giving the lower bound for finding the optimal number of
observations in the tail. It defaults to [n100], where n denotes the number of
observations in x (see the references).

332 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

minAMSE 29

kmax An optional integer giving the upper bound for finding the optimal number of
observations in the tail (see “Details”).

mmax An optional integer giving the upper bound for finding the optimal number of
observations for computing the nuisance parameter ρ (see “Details” and the ref-
erences).

tol an integer giving the desired tolerance level for finding the optimal number of
observations in the tail.

maxit a positive integer giving the maximum number of iterations.

... additional arguments to be passed to print.default.

Details

The weights used in the weighted AMSE depend on a nuisance parameter ρ. Both the optimal
number of observations in the tail and the nuisance parameter ρ are estimated iteratively using
nonlinear integer minimization. This is currently done by a brute force algorithm, hence it is stronly
recommended to supply upper bounds kmax and mmax.

See the references for more details on the iterative algorithm.

Value

An object of class "minAMSE" containing the following components:

kopt the optimal number of observations in the tail.

x0 the corresponding threshold.

theta the estimated shape parameter of the Pareto distribution.

MSEmin the minimal MSE.

rho the estimated nuisance parameter.

k the examined range for the number of observations in the tail.

MSE the corresponding MSEs.

Author(s)

Josef Holzer and Andreas Alfons

References

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, Pareto quantile plots, and
regression diagnostics. Journal of the American Statistical Association, 91(436), 1659–1667.

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Excess functions and estimation of the extreme-
value index. Bernoulli, 2(4), 293–318.

Dupuis, D.J. and Victoria-Feser, M.-P. (2006) A robust prediction error criterion for Pareto mod-
elling of upper tails. The Canadian Journal of Statistics, 34(4), 639–658.

See Also

thetaHill

333

AMELI-WP10-D10.3

30 paretoQPlot

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
minAMSE(eusilc$eqIncome[!duplicated(eusilc$db030)],

kmin = 50, kmax = 150, mmax = 250)

paretoQPlot Pareto quantile plot

Description

The Pareto quantile plot is a graphical method for inspecting the parameters of a Pareto distribution.

Usage

paretoQPlot(x, w = NULL, xlab = NULL, ylab = NULL,
interactive = TRUE, ...)

Arguments

x a numeric vector.

w an optional numeric vector giving sample weights.

xlab, ylab axis labels.

interactive a logical indicating whether the threshold (scale parameter) can be selected in-
teractively by clicking on points. Information on the selected threshold is then
printed on the R console.

... additional arguments to be passed to plot.default.

Details

If the Pareto model holds, there exists a linear relationship between the lograrithms of the observed
values and the quantiles of the standard exponential distribution, since the logarithm of a Pareto dis-
tributed random variable follows an exponential distribution. Hence the logarithms of the observed
values are plotted against the corresponding theoretical quantiles. If the tail of the data follows a
Pareto distribution, these observations form almost a straight line. The leftmost point of a fitted line
can thus be used as an estimate of the threshold (scale parameter). The slope of the fitted line is in
turn an estimate of 1

θ , the reciprocal of the shape parameter.

The interactive selection of the threshold (scale parameter) is implemented using identify. For
the usual X11 device, the selection process is thus terminated by pressing any mouse button other
than the first. For the quartz device (on Mac OS X systems), the process is terminated either by
a secondary click (usually second mouse button or Ctrl-click) or by pressing the ESC key.

334 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

paretoScale 31

Value

If interactive is TRUE, the last selection for the threshold is returned invisibly as an object of
class "paretoScale", which consists of the following components:

x0 the selected threshold (scale parameter).

k the number of observations in the tail (i.e., larger than the threshold).

Note

The functionality to account for sample weights and to select the threshold (scale parameter) inter-
actively was introduced in version 0.2. Also starting with version 0.2, a logarithmic y-axis is now
used to display the axis labels in the scale of the original values.

Author(s)

Andreas Alfons and Josef Holzer

References

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, Pareto quantile plots, and
regression diagnostics. Journal of the American Statistical Association, 91(436), 1659–1667.

See Also

minAMSE, paretoScale, meanExcessPlot, identify

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

with sample weights
paretoQPlot(eusilc$eqIncome, w = eusilc$db090)

without sample weights
paretoQPlot(eusilc$eqIncome)

paretoScale Estimate the scale parameter of a Pareto distribution

Description

Estimate the scale parameter of a Pareto distribution, i.e., the threshold for Pareto tail modeling.

Usage

paretoScale(x, w = NULL, groups = NULL, method = "vanKerm", na.rm = FALSE)

335

AMELI-WP10-D10.3

32 paretoTail

Arguments

x a numeric vector.

w an optional numeric vector giving sample weights.

groups an optional vector or factor specifying groups of elements of x (e.g., house-
holds). If supplied, each group of observations is expected to have the same
value in x (e.g., household income). Only the values of every first group mem-
ber to appear are used for estimating the threshold (scale parameter).

method a character string specifying the estimation method. If "vanKerm", van Kerm’s
method is used, which is a rule of thumb specifically designed for the equivalized
disposable income in EU-SILC data (currently the only method implemented).

na.rm a logical indicating whether missing values in x should be omitted.

Value

An object of class "paretoScale", which consists of the following components:

x0 the threshold (scale parameter).

k the number of observations in the tail (i.e., larger than the threshold).

Author(s)

Andreas Alfons

References

Van Kerm, P. (2007) Extreme incomes and the estimation of poverty and inequality indicators from
EU-SILC. IRISS Working Paper Series 2007-01, CEPS/INSTEAD.

See Also

minAMSE, paretoQPlot, meanExcessPlot

Examples

data(eusilc)
paretoScale(eusilc$eqIncome, eusilc$db090, groups = eusilc$db030)

paretoTail Pareto tail modeling for income distributions

Description

Fit a Pareto distribution to the upper tail of income data. Since a theoretical distribution is used for
the upper tail, this is a semiparametric approach.

336 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

paretoTail 33

Usage

paretoTail(x, k = NULL, x0 = NULL, method = "thetaPDC",
groups = NULL, w = NULL, alpha = 0.01, ...)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

method either a function or a character string specifying the function to be used to es-
timate the shape parameter of the Pareto distibution, such as thetaPDC (the
default). See “Details” for requirements for such a function and “See also” for
available functions.

groups an optional vector or factor specifying groups of elements of x (e.g., house-
holds). If supplied, each group of observations is expected to have the same
value in x (e.g., household income). Only the values of every first group mem-
ber to appear are used for fitting the Pareto distribution.

w an optional numeric vector giving sample weights.

alpha numeric; values above the theoretical 1−alpha quantile of the fitted Pareto dis-
tribution will be flagged as outliers for further treatment with reweightOut
or replaceOut.

... addtional arguments to be passed to the specified method.

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used.

The function supplied to method should take a numeric vector (the observations) as its first argu-
ment. If k is supplied, it will be passed on (in this case, the function is required to have an argument
called k). Similarly, if the threshold x0 is supplied, it will be passed on (in this case, the function
is required to have an argument called x0). As above, only k is passed on if both are supplied. If
the function specified by method can handle sample weights, the corresponding argument should
be called w. Additional arguments are passed via the . . . argument.

Value

A list of class "paretoTail" with the following components:

x the supplied numeric vector.

k the number of observations in the upper tail to which the Pareto distribution has
been fitted.

groups if supplied, the vector or factor specifying groups of elements.

w if supplied, the numeric vector of sample weights.

337

AMELI-WP10-D10.3

34 paretoTail

method the function used to estimate the shape parameter, or the name of the function.

x0 the scale parameter.

theta the estimated shape parameter.

tail if groups is not NULL, this gives the groups with values larger than the thresh-
old (scale parameter), otherwise the indices of observations in the upper tail.

alpha the tuning parameter alpha used for flagging outliers.

out if groups is not NULL, this gives the groups that are flagged as outliers, other-
wise the indices of the flagged observations.

Author(s)

Andreas Alfons

See Also

reweightOut, shrinkOut, replaceOut, replaceTail, fitPareto

thetaPDC, thetaWML, thetaHill, thetaISE, thetaLS, thetaMoment, thetaQQ, thetaTM

Examples

data(eusilc)

gini coefficient without Pareto tail modeling
gini("eqIncome", weights = "rb050", data = eusilc)

gini coefficient with Pareto tail modeling

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090,

groups = eusilc$db030)

estimate shape parameter
fit <- paretoTail(eusilc$eqIncome, k = ts$k,

w = eusilc$db090, groups = eusilc$db030)

calibration of outliers
w <- reweightOut(fit, calibVars(eusilc$db040))
gini(eusilc$eqIncome, w)

winsorization of outliers
eqIncome <- shrinkOut(fit)
gini(eqIncome, weights = eusilc$rb050)

replacement of outliers
eqIncome <- replaceOut(fit)
gini(eqIncome, weights = eusilc$rb050)

replacement of whole tail

338 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

qsr 35

eqIncome <- replaceTail(fit)
gini(eqIncome, weights = eusilc$rb050)

qsr Quintile share ratio

Description

Estimate the quintile share ratio, which is defined as the ratio of the sum of equivalized disposable
income received by the top 20% to the sum of equivalized disposable income received by the bottom
20%.

Usage

qsr(inc, weights = NULL, sort = NULL, years = NULL,
breakdown = NULL, design = NULL, data = NULL,
var = NULL, alpha = 0.05, na.rm = FALSE, ...)

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value.

design optional and only used if var is not NULL; either an integer vector or factor
giving different strata for stratified sampling designs, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding
column of data.

data an optional data.frame.

var a character string specifying the type of variance estimation to be used, or NULL
to omit variance estimation. See variance for possible values.

339

AMELI-WP10-D10.3

36 qsr

alpha numeric; if var is not NULL, this gives the significance level to be used for
computing the confidence interval (i.e., the confidence level is 1−alpha).

na.rm a logical indicating whether missing values should be removed.

... if var is not NULL, additional arguments to be passed to variance.

Details

The implementation strictly follows the Eurostat definition.

Value

A list of class "qsr" (which inherits from the class "indicator") with the following compo-
nents:

value a numeric vector containing the overall value(s).

valueByStratum
a data.frame containing the values by stratum, or NULL.

varMethod a character string specifying the type of variance estimation used, or NULL if
variance estimation was omitted.

var a numeric vector containing the variance estimate(s), or NULL.

varByStratum a data.frame containing the variance estimates by stratum, or NULL.

ci a numeric vector or matrix containing the lower and upper endpoints of the
confidence interval(s), or NULL.

ciByStratum a data.frame containing the lower and upper endpoints of the confidence
intervals by stratum, or NULL.

alpha a numeric value giving the significance level used for computing the confidence
interval(s) (i.e., the confidence level is 1−alpha), or NULL.

years a numeric vector containing the different years of the survey.

strata a character vector containing the different strata of the breakdown.

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

incQuintile, variance, gini

340 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

replaceTail 37

Examples

data(eusilc)

overall value
qsr("eqIncome", weights = "rb050", data = eusilc)

values by region
qsr("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)

replaceTail Replace observations under a Pareto model

Description

Replace observations under a Pareto model for the upper tail with values drawn from the fitted
distribution.

Usage

replaceTail(x, ...)

S3 method for class 'paretoTail'
replaceTail(x, all = TRUE, ...)

replaceOut(x, ...)

Arguments

x an object of class "paretoTail" (see paretoTail).

all a logical indicating whether all observations in the upper tail should be replaced
or only those flagged as outliers.

... additional arguments to be passed down.

Details

replaceOut(x, ...) is a simple wrapper for replaceTail(x, all = FALSE, ...).

Value

A numeric vector consisting mostly of the original values, but with observations in the upper tail
replaced with values from the fitted Pareto distribution.

Author(s)

Andreas Alfons

341

AMELI-WP10-D10.3

38 reweightOut

See Also

paretoTail, reweightOut, shrinkOut

Examples

data(eusilc)

gini coefficient without Pareto tail modeling
gini("eqIncome", weights = "rb050", data = eusilc)

gini coefficient with Pareto tail modeling

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090,

groups = eusilc$db030)

estimate shape parameter
fit <- paretoTail(eusilc$eqIncome, k = ts$k,

w = eusilc$db090, groups = eusilc$db030)

replacement of outliers
eqIncome <- replaceOut(fit)
gini(eqIncome, weights = eusilc$rb050)

replacement of whole tail
eqIncome <- replaceTail(fit)
gini(eqIncome, weights = eusilc$rb050)

reweightOut Reweight outliers in the Pareto model

Description

Reweight observations that are flagged as outliers in a Pareto model for the upper tail of the distri-
bution.

Usage

reweightOut(x, ...)

S3 method for class 'paretoTail'
reweightOut(x, X, w = NULL, ...)

342 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

reweightOut 39

Arguments

x an object of class "paretoTail" (see paretoTail).

X a matrix of binary calibration variables (see calibVars). This is only used if
x contains sample weights or if w is supplied.

w a numeric vector of sample weights. This is only used if x does not contain
sample weights, i.e., if sample weights were not considered in estimating the
shape parameter of the Pareto distribution.

... additional arguments to be passed down.

Details

If the data contain sample weights, the weights of the outlying observations are set to 1 and the
weights of the remaining observations are calibrated according to auxiliary variables. Otherwise,
weight 0 is assigned to outliers and weight 1 to other observations.

Value

If the data contain sample weights, a numeric containing the recalibrated weights is returned, oth-
erwise a numeric vector assigning weight 0 to outliers and weight 1 to other observations.

Author(s)

Andreas Alfons

See Also

paretoTail, shrinkOut , replaceOut, replaceTail

Examples

data(eusilc)

gini coefficient without Pareto tail modeling
gini("eqIncome", weights = "rb050", data = eusilc)

gini coefficient with Pareto tail modeling
estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090,

groups = eusilc$db030)
estimate shape parameter
fit <- paretoTail(eusilc$eqIncome, k = ts$k,

w = eusilc$db090, groups = eusilc$db030)
calibration of outliers
w <- reweightOut(fit, calibVars(eusilc$db040))
gini(eusilc$eqIncome, w)

343

AMELI-WP10-D10.3

40 rmpg

rmpg Relative median at-risk-of-poverty gap

Description

Estimate the relative median at-risk-of-poverty gap, which is defined as the relative difference be-
tween the median equivalized disposable income of persons below the at-risk-of-poverty thresh-
old and the at-risk-of-poverty threshold itself (expressed as a percentage of the at-risk-of-poverty
threshold).

Usage

rmpg(inc, weights = NULL, sort = NULL, years = NULL,
breakdown = NULL, design = NULL, data = NULL,
var = NULL, alpha = 0.05, na.rm = FALSE, ...)

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

sort optional; either a numeric vector giving the personal IDs to be used as tie-
breakers for sorting, or (if data is not NULL) a character string, an integer
or a logical vector specifying the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value. Note that the same (overall) threshold is used for all strata.

design optional and only used if var is not NULL; either an integer vector or factor
giving different strata for stratified sampling designs, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding
column of data.

data an optional data.frame.
var a character string specifying the type of variance estimation to be used, or NULL

to omit variance estimation. See variance for possible values.
alpha numeric; if var is not NULL, this gives the significance level to be used for

computing the confidence interval (i.e., the confidence level is 1−alpha).
na.rm a logical indicating whether missing values should be removed.
... if var is not NULL, additional arguments to be passed to variance.

344 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

rmpg 41

Details

The implementation strictly follows the Eurostat definition.

Value

A list of class "rmpg" (which inherits from the class "indicator") with the following compo-
nents:

value a numeric vector containing the overall value(s).
valueByStratum

a data.frame containing the values by stratum, or NULL.
varMethod a character string specifying the type of variance estimation used, or NULL if

variance estimation was omitted.
var a numeric vector containing the variance estimate(s), or NULL.
varByStratum a data.frame containing the variance estimates by stratum, or NULL.
ci a numeric vector or matrix containing the lower and upper endpoints of the

confidence interval(s), or NULL.
ciByStratum a data.frame containing the lower and upper endpoints of the confidence

intervals by stratum, or NULL.
alpha a numeric value giving the significance level used for computing the confidence

interval(s) (i.e., the confidence level is 1−alpha), or NULL.
years a numeric vector containing the different years of the survey.
strata a character vector containing the different strata of the breakdown.
threshold a numeric vector containing the at-risk-of-poverty threshold(s).

Author(s)

Andreas Alfons

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

arpt, variance

Examples

data(eusilc)

overall value
rmpg("eqIncome", weights = "rb050", data = eusilc)

values by region
rmpg("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)

345

AMELI-WP10-D10.3

42 shrinkOut

shrinkOut Shrink outliers in the Pareto model

Description

Shrink observations that are flagged as outliers in a Pareto model for the upper tail of the distribution
to the theoretical quantile used for outlier detection.

Usage

shrinkOut(x, ...)

S3 method for class 'paretoTail'
shrinkOut(x, ...)

Arguments

x an object of class "paretoTail" (see paretoTail).

... additional arguments to be passed down (currently ignored as there are no addi-
tional arguments in the only method implemented).

Value

A numeric vector consisting mostly of the original values, but with outlying observations in the
upper tail shrunken to the corresponding theoretical quantile of the fitted Pareto distribution.

Author(s)

Andreas Alfons

See Also

paretoTail, reweightOut, replaceOut, replaceTail

Examples

data(eusilc)

gini coefficient without Pareto tail modeling
gini("eqIncome", weights = "rb050", data = eusilc)

gini coefficient with Pareto tail modeling
estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090,

groups = eusilc$db030)
estimate shape parameter
fit <- paretoTail(eusilc$eqIncome, k = ts$k,

w = eusilc$db090, groups = eusilc$db030)
shrink outliers

346 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

thetaHill 43

eqIncome <- shrinkOut(fit)
gini(eqIncome, weights = eusilc$rb050)

thetaHill Hill estimator

Description

The Hill estimator uses the maximum likelihood principle to estimate the shape parameter of a
Pareto distribution.

Usage

thetaHill(x, k = NULL, x0 = NULL, w = NULL)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

w an optional numeric vector giving sample weights.

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

Value

The estimated shape parameter.

Note

The arguments x0 for the threshold (scale parameter) of the Pareto distribution and w for sample
weights were introduced in version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. The Annals
of Statistics, 3(5), 1163–1174.

347

AMELI-WP10-D10.3

44 thetaISE

See Also

paretoTail, fitPareto, thetaPDC, thetaWML, thetaISE, minAMSE

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaHill(eusilc$eqIncome, k = ts$k, w = eusilc$db090)

using threshold
thetaHill(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090)

thetaISE Integrated squared error (ISE) estimator

Description

The integrated squared error (ISE) estimator estimates the shape parameter of a Pareto distribution
based on the relative excesses of observations above a certain threshold.

Usage

thetaISE(x, k = NULL, x0 = NULL, w = NULL, ...)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

w an optional numeric vector giving sample weights.

... additional arguments to be passed to optimize (see “Details”).

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

348 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

thetaISE 45

The ISE estimator minimizes the integrated squared error (ISE) criterion with a complete density
model. The minimization is carried out using

optimize.

Value

The estimated shape parameter.

Note

The arguments x0 for the threshold (scale parameter) of the Pareto distribution and w for sample
weights were introduced in version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Vandewalle, B., Beirlant, J., Christmann, A., and Hubert, M. (2007) A robust estimator for the tail
index of Pareto-type distributions. Computational Statistics & Data Analysis, 51(12), 6252–6268.

See Also

paretoTail, fitPareto, thetaPDC, thetaHill

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaISE(eusilc$eqIncome, k = ts$k, w = eusilc$db090)

using threshold
thetaISE(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090)

349

AMELI-WP10-D10.3

46 thetaLS

thetaLS Least squares (LS) estimator

Description

Estimate the shape parameter of a Pareto distribution using a least squares (LS) approach.

Usage

thetaLS(x, k = NULL, x0 = NULL)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

Value

The estimated shape parameter.

Note

The argument x0 for the threshold (scale parameter) of the Pareto distribution was introduced in
version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Brazauskas, V. and Serfling, R. (2000) Robust estimation of tail parameters for two-parameter
Pareto and exponential models via generalized quantile statistics. Extremes, 3(3), 231–249.

Brazauskas, V. and Serfling, R. (2000) Robust and efficient estimation of the tail index of a single-
parameter Pareto distribution. North American Actuarial Journal, 4(4), 12–27.

350 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

thetaMoment 47

See Also

paretoTail, fitPareto

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaLS(eusilc$eqIncome, k = ts$k)

using threshold
thetaLS(eusilc$eqIncome, x0 = ts$x0)

thetaMoment Moment estimator

Description

Estimate the shape parameter of a Pareto distribution based on moments.

Usage

thetaMoment(x, k = NULL, x0 = NULL)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

Value

The estimated shape parameter.

351

AMELI-WP10-D10.3

48 thetaPDC

Note

The argument x0 for the threshold (scale parameter) of the Pareto distribution was introduced in
version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989) A moment estimator for the index of an
extreme-value distribution. The Annals of Statistics, 17(4), 1833–1855.

See Also

paretoTail, fitPareto

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaMoment(eusilc$eqIncome, k = ts$k)

using threshold
thetaMoment(eusilc$eqIncome, x0 = ts$x0)

thetaPDC Partial density component (PDC) estimator

Description

The partial density component (PDC) estimator estimates the shape parameter of a Pareto distribu-
tion based on the relative excesses of observations above a certain threshold.

Usage

thetaPDC(x, k = NULL, x0 = NULL, w = NULL, ...)

352 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

thetaPDC 49

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

w an optional numeric vector giving sample weights.

... additional arguments to be passed to optimize (see “Details”).

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

The PDC estimator minimizes the integrated squared error (ISE) criterion with an incomplete den-
sity mixture model. The minimization is carried out using

optimize.

Value

The estimated shape parameter.

Note

The arguments x0 for the threshold (scale parameter) of the Pareto distribution and w for sample
weights were introduced in version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Vandewalle, B., Beirlant, J., Christmann, A., and Hubert, M. (2007) A robust estimator for the tail
index of Pareto-type distributions. Computational Statistics & Data Analysis, 51(12), 6252–6268.

See Also

paretoTail, fitPareto, thetaISE, thetaHill

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

353

AMELI-WP10-D10.3

50 thetaQQ

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaPDC(eusilc$eqIncome, k = ts$k, w = eusilc$db090)

using threshold
thetaPDC(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090)

thetaQQ QQ-estimator

Description

Estimate the shape parameter of a Pareto distribution using a quantile-quantile approach.

Usage

thetaQQ(x, k = NULL, x0 = NULL)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

Value

The estimated shape parameter.

Note

The argument x0 for the threshold (scale parameter) of the Pareto distribution was introduced in
version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

354 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

thetaTM 51

References

Kratz, M.F. and Resnick, S.I. (1996) The QQ-estimator and heavy tails. Stochastic Models, 12(4),
699–724.

See Also

paretoTail, fitPareto

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaQQ(eusilc$eqIncome, k = ts$k)

using threshold
thetaQQ(eusilc$eqIncome, x0 = ts$x0)

thetaTM Trimmed mean estimator

Description

Estimate the shape parameter of a Pareto distribution using a trimmed mean approach.

Usage

thetaTM(x, k = NULL, x0 = NULL, beta = 0.05)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

beta A numeric vector of length two giving the trimming proportions for the lower
and upper end of the tail, respectively. If a single numeric value is supplied, it is
recycled.

355

AMELI-WP10-D10.3

52 thetaTM

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

Value

The estimated shape parameter.

Note

The argument x0 for the threshold (scale parameter) of the Pareto distribution was introduced in
version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Brazauskas, V. and Serfling, R. (2000) Robust estimation of tail parameters for two-parameter
Pareto and exponential models via generalized quantile statistics. Extremes, 3(3), 231–249.

Brazauskas, V. and Serfling, R. (2000) Robust and efficient estimation of the tail index of a single-
parameter Pareto distribution. North American Actuarial Journal, 4(4), 12–27.

See Also

paretoTail, fitPareto

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaTM(eusilc$eqIncome, k = ts$k)

using threshold
thetaTM(eusilc$eqIncome, x0 = ts$x0)

356 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

thetaWML 53

thetaWML Weighted maximum likelihood estimator

Description

Estimate the shape parameter of a Pareto distribution using a weighted maximum likelihood ap-
proach.

Usage

thetaWML(x, k = NULL, x0 = NULL,
weight = c("residuals", "probability"),
const, bias = TRUE, ...)

Arguments

x a numeric vector.

k the number of observations in the upper tail to which the Pareto distribution is
fitted.

x0 the threshold (scale parameter) above which the Pareto distribution is fitted.

weight a character string specifying the weight function to be used. If "residuals"
(the default), the weight function is based on standardized residuals. If "probability",
probability based weighting is used. Partial string matching allows these names
to be abbreviated.

const Tuning constant(s) that control the robustness of the method. If weight="residuals",
a single numeric value is required (the default is 2.5). If weight="probability",
a numeric vector of length two must be supplied (a single numeric value is re-
cycled; the default is 0.005 for both tuning parameters). See the references for
more details.

bias a logical indicating whether bias correction should be applied.

... additional arguments to be passed to uniroot (see “Details”).

Details

The arguments k and x0 of course correspond with each other. If k is supplied, the threshold x0
is estimated with the n− k largest value in x, where n is the number of observations. On the other
hand, if the threshold x0 is supplied, k is given by the number of observations in x larger than x0.
Therefore, either k or x0 needs to be supplied. If both are supplied, only k is used (mainly for back
compatibility).

The weighted maximum likelihood estimator belongs to the class of M-estimators. In order to
obtain the estimate, the root of a certain function needs to be found, which is implemented using
uniroot.

Value

The estimated shape parameter.

357

AMELI-WP10-D10.3

54 utils

Note

The argument x0 for the threshold (scale parameter) of the Pareto distribution was introduced in
version 0.2.

Author(s)

Andreas Alfons and Josef Holzer

References

Dupuis, D.J. and Morgenthaler, S. (2002) Robust weighted likelihood estimators with an application
to bivariate extreme value problems. The Canadian Journal of Statistics, 30(1), 17–36.

Dupuis, D.J. and Victoria-Feser, M.-P. (2006) A robust prediction error criterion for Pareto mod-
elling of upper tails. The Canadian Journal of Statistics, 34(4), 639–658.

See Also

paretoTail, fitPareto

Examples

data(eusilc)
equivalized disposable income is equal for each household
member, therefore only one household member is taken
eusilc <- eusilc[!duplicated(eusilc$db030),]

estimate threshold
ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090)

using number of observations in tail
thetaWML(eusilc$eqIncome, k = ts$k)

using threshold
thetaWML(eusilc$eqIncome, x0 = ts$x0)

utils Utility functions for indicators on social exclusion and poverty

Description

Test for class, print and take subsets of indicators on social exclusion and poverty.

358 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

utils 55

Usage

is.indicator(x)

is.arpr(x)

is.qsr(x)

is.rmpg(x)

is.gini(x)

is.gpg(x)

S3 method for class 'indicator'
print(x, ...)

S3 method for class 'arpr'
print(x, ...)

S3 method for class 'rmpg'
print(x, ...)

S3 method for class 'indicator'
subset(x, years = NULL, strata = NULL, ...)

S3 method for class 'arpr'
subset(x, years = NULL, strata = NULL, ...)

S3 method for class 'rmpg'
subset(x, years = NULL, strata = NULL, ...)

Arguments

x for is.xyz, any object to be tested. The print and subset methods are
called by the generic functions if an object of the respective class is supplied.

years an optional numeric vector giving the years to be extracted.

strata an optional vector giving the strata of the breakdown to be extracted.

... additional arguments to be passed to and from methods.

Value

is.indicator returns TRUE if x inherits from class "indicator" and FALSE otherwise.

is.arpr returns TRUE if x inherits from class "arpr" and FALSE otherwise.

is.qsr returns TRUE if x inherits from class "qsr" and FALSE otherwise.

is.rmpg returns TRUE if x inherits from class "rmpg" and FALSE otherwise.

is.gini returns TRUE if x inherits from class "gini" and FALSE otherwise.

359

AMELI-WP10-D10.3

56 variance

is.gini returns TRUE if x inherits from class "gini" and FALSE otherwise.

print.indicator, print.arpr and print.rmpg return x invisibly.

subset.indicator, subset.arpr and subset.rmpg return a subset of x of the same
class.

See Also

arpr, qsr, rmpg, gini, gpg

Examples

data(eusilc)

at-risk-of-poverty rate
a <- arpr("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)
print(a)
is.arpr(a)
is.indicator(a)
subset(a, strata = c("Lower Austria", "Vienna"))

quintile share ratio
q <- qsr("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)
print(q)
is.qsr(q)
is.indicator(q)
subset(q, strata = c("Lower Austria", "Vienna"))

relative median at-risk-of-poverty gap
r <- rmpg("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)
print(r)
is.rmpg(r)
is.indicator(r)
subset(r, strata = c("Lower Austria", "Vienna"))

Gini coefficient
g <- gini("eqIncome", weights = "rb050",

breakdown = "db040", data = eusilc)
print(g)
is.gini(g)
is.indicator(g)
subset(g, strata = c("Lower Austria", "Vienna"))

variance Variance and confidence intervals of indicators on social exclusion
and poverty

360 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

variance 57

Description

Compute variance and confidence interval estimates of indicators on social exclusion and poverty.

Usage

variance(inc, weights = NULL, years = NULL, breakdown = NULL,
design = NULL, data = NULL, indicator, alpha = 0.05,
na.rm = FALSE, type = "bootstrap", gender = NULL, method = "mean", ...)

Arguments

inc either a numeric vector giving the equivalized disposable income, or (if data
is not NULL) a character string, an integer or a logical vector specifying the
corresponding column of data.

weights optional; either a numeric vector giving the personal sample weights, or (if
data is not NULL) a character string, an integer or a logical vector specify-
ing the corresponding column of data.

years optional; either a numeric vector giving the different years of the survey, or (if
data is not NULL) a character string, an integer or a logical vector specifying
the corresponding column of data. If supplied, values are computed for each
year.

breakdown optional; either a numeric vector giving different strata, or (if data is not NULL)
a character string, an integer or a logical vector specifying the corresponding col-
umn of data. If supplied, the values for each stratum are computed in addition
to the overall value.

design optional; either an integer vector or factor giving different strata for stratified
sampling designs, or (if data is not NULL) a character string, an integer or a
logical vector specifying the corresponding column of data.

data an optional data.frame.

indicator an object inheriting from the class "indicator" that contains the point esti-
mates of the indicator (see arpr, qsr, rmpg or gini).

alpha a numeric value giving the significance level to be used for computing the con-
fidence interval(s) (i.e., the confidence level is 1−alpha), or NULL.

na.rm a logical indicating whether missing values should be removed.

type a character string specifying the type of variance estimation to be used. Cur-
rently, only "bootstrap" is implemented for variance estimation based on
bootstrap resampling (see bootVar).

gender either a numeric vector giving the gender, or (if data is not NULL) a character
string, an integer or a logical vector specifying the corresponding column of
data.

method mean or median. If weights are provided, the weighted mean or weighted me-
dian is estimated.

... additional arguments to be passed to bootVar.

361

AMELI-WP10-D10.3

58 weightedMean

Details

This is a wrapper function for computing variance and confidence interval estimates of indicators
on social exclusion and poverty.

Value

An object of the same class as indicator is returned. See arpr, qsr, rmpg or gini for details
on the components.

Author(s)

Andreas Alfons

See Also

bootVar, arpr, qsr, rmpg, gini

Examples

data(eusilc)
a <- arpr("eqIncome", weights = "rb050", data = eusilc)

naive bootstrap
variance("eqIncome", weights = "rb050", design = "db040",

data = eusilc, indicator = a, bootType = "naive", seed = 123)

bootstrap with calibration
variance("eqIncome", weights = "rb050", design = "db040",

data = eusilc, indicator = a, X = calibVars(eusilc$db040),
seed = 123)

weightedMean Weighted mean

Description

Compute the weighted mean.

Usage

weightedMean(x, weights = NULL, na.rm = FALSE)

Arguments

x a numeric vector.

weights an optional numeric vector giving the sample weights.

na.rm a logical indicating whether missing values in x should be omitted.

362 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

weightedMedian 59

Details

This is a simple wrapper function calling weighted.mean if sample weights are supplied and
mean otherwise.

Value

The weighted mean of values in x is returned.

Author(s)

Andreas Alfons

See Also

incMean

Examples

data(eusilc)
weightedMean(eusilc$eqIncome, eusilc$rb050)

weightedMedian Weighted median

Description

Compute the weighted median (Eurostat definition).

Usage

weightedMedian(x, weights = NULL, sorted = FALSE, na.rm = FALSE)

Arguments

x a numeric vector.

weights an optional numeric vector giving the sample weights.

sorted a logical indicating whether the observations in x are already sorted.

na.rm a logical indicating whether missing values in x should be omitted.

Details

The implementation strictly follows the Eurostat definition.

Value

The weighted median of values in x is returned.

363

AMELI-WP10-D10.3

60 weightedQuantile

Author(s)

Andreas Alfons and Matthias Templ

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

arpt, incMedian, weightedQuantile

Examples

data(eusilc)
weightedMedian(eusilc$eqIncome, eusilc$rb050)

weightedQuantile Weighted quantiles

Description

Compute weighted quantiles (Eurostat definition).

Usage

weightedQuantile(x, weights = NULL, probs = seq(0, 1, 0.25),
sorted = FALSE, na.rm = FALSE)

Arguments

x a numeric vector.

weights an optional numeric vector giving the sample weights.

probs numeric vector of probabilities with values in [0, 1].

sorted a logical indicating whether the observations in x are already sorted.

na.rm a logical indicating whether missing values in x should be omitted.

Details

The implementation strictly follows the Eurostat definition.

Value

A numeric vector containing the weighted quantiles of values in x at probabilities probs is re-
turned. Unlike quantile, this returns an unnamed vector.

364 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

weightedQuantile 61

Author(s)

Andreas Alfons and Matthias Templ

References

Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU
indicators based on EU-SILC; the gender pay gap. EU-SILC 131-rev/04, Eurostat.

See Also

incQuintile, weightedMedian

Examples

data(eusilc)
weightedQuantile(eusilc$eqIncome, eusilc$rb050)

365

AMELI-WP10-D10.3

Index

∗Topic datasets
eusilc, 15

∗Topic hplot
meanExcessPlot, 27
paretoQPlot, 30

∗Topic manip
fitPareto, 16
minAMSE, 28
paretoScale, 31
paretoTail, 32
replaceTail, 37
reweightOut, 38
shrinkOut, 42
thetaHill, 43
thetaISE, 44
thetaLS, 46
thetaMoment, 47
thetaPDC, 48
thetaQQ, 50
thetaTM, 51
thetaWML, 53

∗Topic package
laeken-package, 2

∗Topic survey
arpr, 4
arpt, 6
bootVar, 7
calibVars, 9
calibWeights, 10
eqInc, 12
eqSS, 13
gini, 18
gpg, 20
incMean, 23
incMedian, 24
incQuintile, 25
qsr, 35
rmpg, 40
utils, 54

variance, 56
weightedMean, 58
weightedMedian, 59
weightedQuantile, 60

arpr, 4, 7–9, 56–58
arpt, 5, 6, 6, 25, 41, 60

boot, 8
boot.ci, 8
bootVar, 7, 11, 57, 58

calib, 11
calibVars, 9, 10, 11, 39
calibWeights, 9, 10, 10

eqInc, 12, 14
eqSS, 12, 13, 13
eusilc, 15

fitPareto, 16, 34, 44, 45, 47–49, 51, 52, 54

gini, 8, 9, 18, 22, 36, 56–58
ginv, 11
gpg, 20, 56

identify, 27, 28, 30, 31
incMean, 23, 59
incMedian, 7, 24, 60
incQuintile, 25, 36, 61
is.arpr (utils), 54
is.gini (utils), 54
is.gpg (utils), 54
is.indicator (utils), 54
is.qsr (utils), 54
is.rmpg (utils), 54

laeken (laeken-package), 2
laeken-package, 2

mean, 59

62

366 A4. laeken Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

INDEX 63

meanExcessPlot, 27, 31, 32
minAMSE, 28, 28, 31, 32, 44

optimize, 44, 45, 49

paretoQPlot, 28, 30, 32
paretoScale, 28, 31, 31
paretoTail, 18, 32, 37–39, 42, 44, 45,

47–49, 51, 52, 54
plot.default, 27, 30
print.arpr (utils), 54
print.default, 29
print.indicator (utils), 54
print.minAMSE (minAMSE), 28
print.rmpg (utils), 54

qsr, 8, 9, 20, 22, 26, 35, 56–58
quantile, 60

replaceOut, 33, 34, 39, 42
replaceOut (replaceTail), 37
replaceTail, 18, 34, 37, 39, 42
reweightOut, 33, 34, 38, 38, 42
rmpg, 8, 9, 40, 56–58

shrinkOut, 34, 38, 39, 42
subset.arpr (utils), 54
subset.indicator (utils), 54
subset.rmpg (utils), 54

thetaHill, 18, 29, 34, 43, 45, 49
thetaISE, 18, 34, 44, 44, 49
thetaLS, 18, 34, 46
thetaMoment, 18, 34, 47
thetaPDC, 17, 18, 33, 34, 44, 45, 48
thetaQQ, 18, 34, 50
thetaTM, 18, 34, 51
thetaWML, 18, 34, 44, 53

uniroot, 53
utils, 54

variance, 5, 6, 9, 19–22, 35, 36, 40, 41, 56

weighted.mean, 59
weightedMean, 24, 58
weightedMedian, 7, 25, 59, 61
weightedQuantile, 26, 60, 60

367

AMELI-WP10-D10.3

Package ‘GB2’
January 5, 2011

Version 1.0

Date 2010-12-30

Title Generalized Beta Distribution of the Second Kind: properties, likelihood, estimation.

Author Monique Graf <monique.graf@bfs.admin.ch>, Desislava Nedyalkova
<desislava.nedyalkova@bfs.admin.ch>.

Maintainer Desislava Nedyalkova <desislava.nedyalkova@bfs.admin.ch>

Description GB2 is a simple package that calculates the basic properties of the Generalized Beta
distribution of the second kind - density, distribution function, quantiles, moments. Functions for
the full loglikelihood, the profile loglikelihood and the scores are provided. Formulae for various
Laeken indicators under the GB2 are implemented. It performs maximum likelihood estimation
and non-linear least squares eastimation of the model parameters. It provides various polots for
the vizualization and analysis of the results.

Imports hypergeo, laeken, numDeriv, stats

Suggests simFrame, survey

License GPL (>=2)

R topics documented:
Contindic . 2
Contprof . 3
gb2 . 4
Gini . 5
Indicators . 6
LogDensity . 8
LogLikelihood . 9
MLfitGB2 . 10
MLfullGB2 . 11
MLprofGB2 . 13
Moments . 15
NonlinearFit . 16
PlotsML . 19
ProfLogLikelihood . 20
Thomae . 21
Varest . 22

Index 27

1

368 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

2 Contindic

Contindic Sensitivity Analysis of Laeken Indicators on GB2 Parameters

Description

Produces a contour plot of an indicator.

Usage

contindic.gb2(resol, a, p1, p2, q1, q2, fn, tit, table=FALSE)

Arguments

resol a scalar; number of grid points horizontally and vertically.

a scalar; positive parameter
p1, p2, q1, q2

scalars; p1 and q1 (p2 and q2) are, respectively, the min and max values of
the positive parameters of the Beta distribution p and q.

fn character; the name of the function to be used for the calculation of the values
to be plotted.

tit string; title of the plot.

table boolean; if TRUE, a table containing the values of the function fn at the different
grid points is printed.

Details

An indicator is defined as a function of three parameters. The shape parameter, a, is held fixed.

Value

A contour plot of a given indicator for a fixed value of the shape parameter a.

Author(s)

Monique Graf

See Also

contour (package graphics) for more details on contour plots.

Examples

par(mfrow=c(2,2))
p1 <- 0.3
q1 <- 0.36
p2 <- 1.5
q2 <- 1.5
a1 <- 2.7
a2 <- 9.2
resol <- 11
rangea <- round(seq(a1,a2,length.out=4),digits=1)

369

AMELI-WP10-D10.3

Contprof 3

arpr <- function(a,p,q) 100*arpr.gb2(0.6,a,p,q)
fonc <- "arpr"
for (a in rangea){
contindic.gb2(resol,a,p1,p2,q1,q2,arpr,"At-risk-of-poverty rate",table=TRUE)
}

Contprof Contour Plot of the Profile Log-likelihood of the GB2 Distribution

Description

Produces a contour plot of the profile log-likelihood, which is a function of two parameters only.

Usage

contprof.gb2(z, w=1, resol, low=0.1, high=20)

Arguments

z a numeric vector; in general, the income values.

w a numeric vector of the same length as z; the sampling weights. If not available,
the function should be called only with its first argument (the weights are set to
1).

resol a scalar; number of grid points horizontally and vertically. For better graph
quality, we recommend a value of 100.

low, high scalar; lower and upper factors for scale.

Details

The matrix containing the values to be plotted (NAs are allowed) is of size resol × resol.
The locations of the grid lines at which the values of the profile log-likelihood are measured are
equally-spaced values between low and high multiplied by the initial parameters.

Value

A contour plot of the profile log-likelihood. The initial Fisk estimate is added as point "F".

Author(s)

Monique Graf

See Also

fisk for the Fisk estimate, ProfLogLikelihood for the profile log-likelihood and contour
(package graphics) for more details on contour plots.

370 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

4 gb2

gb2 The Generalized Beta Distribution of the Second Kind

Description

Density, distribution function, quantile function and random generation for the Generalized beta
distribution of the second kind with parameters a, b, p and q.

Usage

dgb2(x, shape1, scale, shape2, shape3)
pgb2(x, shape1, scale, shape2, shape3)
qgb2(prob, shape1, scale, shape2, shape3)
rgb2(n, shape1, scale, shape2, shape3)

Arguments

x vector of quantiles.

shape1 positive parameter.

scale positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

prob vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

Details

The Generalized Beta distribution of the second kind with parameters shape1 = a, scale = b,
shape2 = p and shape3 = q has density

f(x) =
a(x/b)ap−1

bB(p, q)(1 + (x/b)a)p+q

for a > 0, b > 0, p > 0 and q > 0, where B(p, q) is the Beta function (beta). If Z follows a Beta
distribution with parameters p and q and

y =
z

1− z
, then

x = b ∗ y 1
a

follows the GB2 distribution.

Value

dgb2 gives the density, pgb2 the distribution function, qgb2 the quantile function, and rgb2
generates random deviates.

Author(s)

Monique Graf

371

AMELI-WP10-D10.3

Gini 5

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences,
chapter 6. Wiley, Ney York.

McDonald, J. B. (1984) Some generalized functions for the size distribution of income. Economet-
rica, 52, 647–663.

See Also

beta for the Beta function and dbeta for the Beta distribution.

Examples

a <- 3.9
b <- 18873
p <- 0.97
q <- 1.03
x <- qgb2(0.6, a, b, p, q)
y <- dgb2(x, a, b, p, q)

Gini Computation of the Gini Coefficient for the GB2 Distribution and its
Particular Cases.

Description

Computes the Gini coefficient for the GB2 distribution using the function gb2.gini. Computes
the Gini coeficient for the Beta Distribution of the Second Kind, Dagum and Singh-Maddala distri-
butions.

Usage

gini.gb2(shape1, shape2, shape3)
gini.b2(shape2, shape3)
gini.dag(shape1, shape2)
gini.sm(shape1, shape3)

Arguments

shape1 positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

Value

The Gini coefficient.

Author(s)

Monique Graf

372 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

6 Indicators

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences,
chapter 6. Wiley, Ney York.

McDonald, J. B. (1984) Some generalized functions for the size distribution of income. Economet-
rica, 52, 647–663.

See Also

gb2.gini

Indicators Monetary Laeken Indicators under the GB2

Description

Functions to calculate four primary social welfare indicators under the GB2, i.e. the at-risk-of-
poverty threshold, the at-risk-of-poverty rate, the relative median at-risk-of-poverty gap, and the
income quintile share ratio.

Usage

arpt.gb2(prop, shape1, scale, shape2, shape3)
arpr.gb2(prop, shape1, shape2, shape3)
rmpg.gb2(arpr, shape1, shape2, shape3)
qsr.gb2(shape1, shape2, shape3)
main.gb2(prop, shape1, scale, shape2, shape3)
main2.gb2(prop, shape1, scale, shape12, shape13)

Arguments

prop proportion (in general is set to 0.6).

arpr the value of the at-risk-of-poverty rate.

shape1 positive parameter.

scale positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

shape12 the product of the two parameters shape1 and shape2.

shape13 the product of the two parameters shape1 and shape3.

Details

In June 2006, the Social Protection Committee, which is a group of officials of the European Com-
misiion, adopts a set of common indicators for the social protection and social inclusion process.
It consists of a portfolio of 14 overarching indicators (+11 context indicators) meant to reflect the
overarching objectives (a) "social cohesion" and (b) "interaction with the Lisbon strategy for growth
and jobs (launched in 2000) objectives"; and of three strand portfolios for social inclusion, pensions,
and health and long-term care.

The at-risk-of-poverty threshold (or ARPT) is defined as 60% of the median national equivalized
income.

373

AMELI-WP10-D10.3

Indicators 7

The at-risk-of-poverty rate (or ARPR) is defined as the share of persons with an equivalised dispos-
able income below the ARPT.

The relative median at-risk-of-poverty gap (or RMPG) is defined as the difference between the me-
dian equivalised income of persons below the ARPT and the ARPT itself, expressed as a percentage
of the ARPT.

The income quintile share ratio (or QSR) is defined as the ratio of total income received by the
20% of the country’s population with the highest income (top quintile) to that received by the 20<
income (lowest quintile).

Let x0.5 be the median of a GB2 with parameters shape1 = a, scale = b, shape2 = p and
shape3 = q. Then,

ARPT (a, b, p, q) = 0.6x0.5

The ARPR being scale-free, b can be chosen arbitrarily and can be fixed to 1.

The QSR is calculated with the help of the incomplete moments of order 1.

main.gb2 and main2.gb2 return a vector containing the following set of GB2 indicators: the
median, the mean, the ARPR, the RMPG, the QSR and the Gini coefficient. The only difference is
in the input parameters.

Value

arpt.gb2 gives the ARPT, arpr.gb2 the ARPR, rmpg.gb2 the RMPG, and qsr.gb2 cal-
culates the QSR. main.gb2 returns a vector containing the median of the distribution, the mean of
the distribution, the ARPR, the RMPG, the QSR and the Gini coefficient. main2.gb2 produces
the same output as main.gb2.

Author(s)

Monique Graf

References

http://ec.europa.eu/employment_social/spsi/docs/social_inclusion/2008/
indicators_update2008_en.pdf

See Also

qgb2, incompl.gb2

Examples

a <- 3.9
b <- 18873
p <- 0.97
q <- 1.03
ap <- a*p
aq <- a*q

arpt <- arpt.gb2(0.6, a, b, p, q)
arpr <- arpr.gb2(0.6, a, p, q)
rmpg <- rmpg.gb2(arpr, a, p, q)
qsr <- qsr.gb2(a, p, q)

ind1 <- main.gb2(0.6, a, b, p, q)
ind2 <- main2.gb2(0.6, a, b, ap, aq)

374 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

8 LogDensity

LogDensity Log Density of the GB2 Distribution

Description

Calculates the log density of the GB2 distribution for a single value or a vector of values. Calculates
the first- and second-order partial derivatives of the log density evaluated at a single value.

Usage

logf.gb2(x, shape1, scale, shape2, shape3)
dlogf.gb2(xi, shape1, scale, shape2, shape3)
d2logf.gb2(xi, shape1, scale, shape2, shape3)

Arguments

xi a scalar.

x a scalar or a numeric vector.

shape1 positive parameter.

scale positive parameter.

shape2, shape3
positive parameters of the Beta distribution.

Details

We calculate log(f(x, θ)), where f is the GB2 density with parameters shape1 = a, scale = b,
shape2 = p and shape3 = q, θ is the parameter vector. We calculate the first- and second-order
partial derivatives of log(f(x, θ)) with respect to the parameter vector θ.

Value

Depending on the input logf.gb2 gives the log density for a single value or a vector of val-
ues. dlogf.gb2 gives the vector of the four first-order partial derivatives of the log density and
d2logf.gb2 gives the 4× 4 matrix of second-order partial derivatives of the log density.

Author(s)

Desislava Nedyalkova

References

Brazauskas, V. (2002) Fisher information matrix for the Feller-Pareto distribution. Statistics \&
Probability Letters, 59, 159–167.

375

AMELI-WP10-D10.3

LogLikelihood 9

LogLikelihood Full Log-likelihood of the GB2 Distribution

Description

Calculates the log-likelihood, the score functions of the log-likelihood and the Fisher information
matrix based on all four parameters of the GB2 distribution.

Usage

loglp.gb2(x, shape1, scale, shape2, shape3, w=1)
loglh.gb2(x, shape1, scale, shape2, shape3, w=1, hs)
scoresp.gb2(x, shape1, scale, shape2, shape3, w=1)
scoresh.gb2(x, shape1, scale, shape2, shape3, w=1, hs)
info.gb2(shape1, scale, shape2, shape3)

Arguments

x vector of data values.

shape1 positive parameter.

scale positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

w vector of weights.

hs vector of household sizes.

Details

We express the log-likelihood as a weighted mean of log(f), evaluated at the data points, where
f is the GB2 density with parameters shape1 = a, scale = b, shape2 = p and shape3
= q. If the weights are not available, then we suppose that w = 1. loglp.gb2 calculates the
log-likelihood in the case where the data is a sample of persons and loglh.gb2 is adapted for
a sample of households. Idem for the scores, which are obtained as weighted sums of the first
derivatives of log(f) with respect to the GB2 parameters, evaluated at the data points. The Fisher
information matrix of the GB2 was obtained by Brazauskas (2002) and is expressed in terms of the
second derivatives of the log-likelihood with respect to the parameters of the GB2.

Author(s)

Monique Graf

References

Brazauskas, V. (2002) Fisher information matrix for the Feller-Pareto distribution. Statistics \&
Probability Letters, 59, 159–167.

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences,
chapter 6. Wiley, Ney York.

376 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

10 MLfitGB2

MLfitGB2 Fitting the GB2 by the Method of Maximum Likelihood Estimation

Description

Performs maximum likelihood estimation through the general-purpose optimisation function optim
from package stats.

Usage

main.emp(z, w=1)
mlfit.gb2(z, w=1)

Arguments

z a numeric vector; in general, the income values.

w a numeric vector of the same length as z; the sampling weights. If not available,
the function should be called only with its first argument (the weights are set to
1).

Details

The function makes a call to ml.gb2 and profml.gb2. Estimates of the GB2 parameters are
calculated . Also the primary Laeken indicators of the fitted parameters and the empirical estimates
of the indicators (see package laeken) are calculated.

Value

A list containing three different objects. The first is a data frame with the values of the fitted param-
eters for the full log-likelihood and the profile log-likelihood, the values of the two likelihoods, the
values of the estimated indicators under the GB2 and the values of the empirical estimates of the
indicators. The second and third objects are, respectively, the fit using the full log-likelihood and
the fit using the profile log-likelihhod.

Author(s)

Monique Graf and Desislava Nedyalkova

See Also

optim , ml.gb2, profml.gb2

Examples

An example of using the function mlfit.gb2
See also the examples of ml.gb2 and mlprof.gb2

Not run:
library(laeken)
data(eusilc)

Income

377

AMELI-WP10-D10.3

MLfullGB2 11

inc <- as.vector(eusilc$eqIncome)

Weights
w <- eusilc$rb050

Data set
d <- data.frame(inc, w)
d <- d[!is.na(d$inc),]

Truncate at 0
inc <- d$inc[d$inc > 0]
w <- d$w[d$inc > 0]

ML fit
m1 <- mlfit.gb2(inc,w)

Results
m1[[1]]
The fit using the full log-likelihood
m1[[2]]
The fit using the profile log-likelihood
m1[[3]]

ML fit, when no weights are avalable
m2 <- mlfit.gb2(inc)
Results
m2[[1]]

End(Not run)

MLfullGB2 Maximum Likelihood Estimation of the GB2 Based on the Full Log-
likelihood

Description

Two methods of optimization are considered: BFGS and L-BFGS-B (see optim documentation for
more details). Initial values of the parameters to be optimized over (a, b, p and q) are given from the
Fisk distribution, which is a GB2 distribution with p = q = 1. If m and v denote, respectively, the
mean and variance of log(z), then â = π/

√
3 ∗ v and b̂ = exp(m). The function to be maximized

by optim returns the negative of the full log-likelihood and the gradient is equal to the negative of
the scores, respectively for the case of a sample of persons and a sample of households.

Usage

fisk(z, w=1)
fiskh(z, w=1, hs)
ml.gb2(z, w=1, method=1)
mlh.gb2(z, w=1, hs, method=1)

Arguments

z vector of data values.

378 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

12 MLfullGB2

w corresponding weights.

hs vector of household sizes.

method the method to be used for optim. By default, the used method is BFGS. If
method = 2, methods BFGS and L-BFGS-B are used.

Details

Function fisk first calculates the mean and variance of log(z) and returns the initial values of a
and p under the Fisk distribution. Function fiskh first calculates the mean and variance of log(z),
assuming a sample of households, and returns the initial values of a and p under the Fisk distri-
bution. Function ml.gb2 performs maximum likelihood estimation through the general-purpose
optimization function optim from package stats, based on the full log-likelihood calculated
in a sample of persons. Function mlh.gb2 performs maximum likelihood estimation through
the general-purpose optimization function optim from package stats, based on the full log-
likelihood calculated in a sample of households.

Value

A list with 1 or 2 arguments: opt1 output of BFGS fit and opt2 output of L-BFGS fit. Further
values are given by the values of optim.

Author(s)

Monique Graf

References

Graf, M. and Nedyalkova, D. (2010) The Generalized Beta Distribution of the Second Kind as an
Income Distribution: Properties, Likelihood and Estimation. working paper, SFSO.

See Also

optim for the general-purpose optimization

Examples

library(laeken)
data(eusilc)

Income
inc <- as.vector(eusilc$eqIncome)

Weights
w <- eusilc$rb050

Data set
d <- data.frame(inc, w)
d <- d[!is.na(d$inc),]

Truncate at 0
inc <- d$inc[d$inc > 0]
w <- d$w[d$inc > 0]

Fit using the full log-likelihood
fitf <- ml.gb2(inc, w)$opt1

379

AMELI-WP10-D10.3

MLprofGB2 13

Fitted GB2 parameters
af <- fitf$par[1]
bf <- fitf$par[2]
pf <- fitf$par[3]
qf <- fitf$par[4]

Likelihood
flik <- fitf$value

If we want to compare the indicators
Not run:
GB2 indicators
indicf <- round(main.gb2(0.6,af,bf,pf,qf), digits=3)
Empirical indicators
indice <- round(main.emp(inc,w), digits=3)

End(Not run)
Plots
Not run: plotsML.gb2(inc,af,bf,pf,qf,w)

MLprofGB2 Maximum Likelihood Estimation of the GB2 Based on the Profile Log-
likelihood

Description

profml.gb2 performs maximum likelihood estimation based on the profile log-likelihood through
the general-purpose optimization function optim from package stats.

Usage

profml.gb2(z, w=1, method=1)

Arguments

z vector of data values.

w corresponding weights.

method the method to be used for optim. By default, the used method is BFGS. If
method = 2, methods BFGS and L-BFGS-B are used.

Details

Two methods are considered: BFGS and L-BFGS-B (see optim documentation for more de-
tails). Initial values of the parameters to be optimized over (a and b) are given from the Fisk
distribution. The function to be maximized by optim is the negative of the profile log-likelihood
(proflogl.gb2) and the gradient is equal to the negative of the scores (profscores.gb2).

Value

A list with 1 or 2 arguments: opt1 output of BFGS fit and opt2 output of L-BFGS fit. Further
values are given by the values of optim.

380 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

14 MLprofGB2

Author(s)

Monique Graf

References

Graf, M. and Nedyalkova, D. (2010) The Generalized Beta Distribution of the Second Kind as an
Income Distribution: Properties, Likelihood and Estimation. working paper, SFSO.

See Also

optim for the general-purpose optimization and link{ml.gb2} for the full log-likelihood.

Examples

library(laeken)
data(eusilc)

Income
inc <- as.vector(eusilc$eqIncome)

Weights
w <- eusilc$rb050

Data set
d <- data.frame(inc,w)
d <- d[!is.na(d$inc),]

Truncate at 0
inc <- d$inc[d$inc > 0]
w <- d$w[d$inc > 0]

Fit using the profile log-likelihood
fitp <- profml.gb2(inc, w)$opt1

Fitted GB2 parameters
ap <- fitp$par[1]
bp <- fitp$par[2]
pp <- prof.gb2(inc, ap, bp, w)[3]
qp <- prof.gb2(inc, ap, bp, w)[4]

Profile log-likelihood
proflik <- fitp$value

If we want to compare the indicators
Not run:
GB2 indicators
indicp <- round(main.gb2(0.6,ap,bp,pp,qp), digits=3)
Empirical indicators
indice <- round(main.emp(inc,w), digits=3)

End(Not run)

Plots
Not run: plotsML.gb2(inc,ap,bp,pp,qp,w)

381

AMELI-WP10-D10.3

Moments 15

Moments Moments and Other Properties of a GB2 Random Variable

Description

These functions calculate the moments of order k and incomplete moments of order k of a GB2
random variableX as well as the expectation, the variance, the kurtosis and the skewness of log(X).

Usage

moment.gb2(k, shape1, scale, shape2, shape3)
incompl.gb2(x, k, shape1, scale, shape2, shape3)
el.gb2(shape1, scale, shape2, shape3)
vl.gb2(shape1, shape2, shape3)
sl.gb2(shape2, shape3)
kl.gb2(shape2, shape3)

Arguments

x vector of quantiles.

k numeric; order of the moment.

shape1 positive parameter.

scale positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

Details

Let X be a random variable following a GB2 distribution with parameters shape1 = a, scale
= b, shape2 = p and shape3 = q. Moments and incomplete moments of X exist only for
−ap ≤ k ≤ aq. Moments are given by

E(Xk) = bk
Γ(p+ k/a)Γ(q − k/a)

Γ(p)Γ(q)

This expression, when considered a function of k, can be viewed as the moment-generating function
of Y = log(X). Thus, it is useful to compute the moments of log(X), which are needed for
deriving, for instance, the Fisher information matrix of the GB2 distribution. Moments of log(X)
exist for all k.

Value

moment.gb2 gives the moment of order k, incompl.gb2 gives the the incomplete moment of
order k, El.gb2 gives the expectation of log(X), vl.gb2 gives the variance of log(X), sl.gb2
gives the skewness of log(X), kl.gb2 gives the kurtosis of log(X).

Author(s)

Monique Graf

382 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

16 NonlinearFit

References

Kleiber, C. and Kotz, S. (2003) Statistical Size Distributions in Economics and Actuarial Sciences,
chapter 6. Wiley, Ney York.

See Also

gamma for the Gamma function and related functions (digamma, trigamma and psigamma).

Examples

a <- 3.9
b <- 18873
p <- 0.97
q <- 1.03
k <- 2
x <- qgb2(0.6, a, b, p, q)
moment.gb2(k, a, b, p, q)
incompl.gb2(x, k, a, b, p, q)
vl.gb2(a, p, q)
kl.gb2(p, q)

NonlinearFit Fitting the GB2 by Minimizing the Distance Between a Set of Indica-
tors and Their GB2 Expressions

Description

Fitting the parameters of the GB2 distribution by optimizing the squared weighted distance between
a set of empirical indicators and the GB2 indicators using nonlinear least squares (function nls
from package stats).

Usage

nlsfit.gb2(z, w=1)
nlsfit2.gb2(z, w=1, a.fit, b.fit, p.fit, q.fit, cva.fit)

Arguments

z a numeric vector; in general, the income values.

w a numeric vector of the same length as z; the sampling weights. If not available,
the function should be called only with its first argument (the weights are set to
1).

a.fit, b.fit, p.fit, q.fit
fitted parameters, e.g. my maximum likelihood estimation, of the GB2 distribu-
tion.

cva.fit coefficient of variation of the fitted parameter a.fit.

383

AMELI-WP10-D10.3

NonlinearFit 17

Details

We consider the following set of indicators:

A = (median,ARPR,RMPG,QSR,Gini)

and their corresponding GB2 expressions AGB2(a, b, p, q). The nonlinear model that is passed to
nls in the function nlsfit.gb2 is given by:

5∑

i=1

ci (Aempir,i −AGB2,i(a, b, p, q))
2
,

where the weights ci take the differing scales into account. Initial values for the parameters are
taken from the Fisk distribution. Estimates of the GB2 parameters are calculated by using the
generic function coef on the fitted model object. The second function, mod_nlsfit.gb2, fits
the parameters of the GB2 in two consecutive steps. In the first step, we use the set of indicators,
excluding the median, and their corresponding expressions in function of a, ap and aq. The lower
and upper bounds for the algorithm "port" of nls are defined. Starting values are the ML estimates
of the GB2 parameters a, p and q. The bounds for a are defined in function of the coefficient
of variation of the fitted parameter a.fit. ap and aq are bounded so that the constraints for the
existence of the moments of the GB2 distribution and the excess for calculating the Gini coefficient
are fulfilled, i.e. ap ≥ 1 and aq ≥ 2. In the second step, only the the parameter b is estimated,
optimizing the weighted square difference between the empirical median and the GB2 median in
function of the already obtained NLS parameters a, p and q.

Value

nlsfit.gb2 returns a list of two values: 1) a data frame containing the values of the fitted GB2
parameters, the values of the estimated GB2 indicators and the values of the empirical estimates of
the indicators and 2) the fitted object. nlsfit2.gb2 returns a list of three values: 1) a data frame
containing the values of the fitted GB2 parameters, the values of the estimated GB2 indicators and
the values of the empirical estimates of the indicators, 2) the first fitted object and 3) the second
fitted object.

Author(s)

Monique Graf and Desislava Nedyalkova

See Also

nls, Thomae, moment.gb2

Examples

Takes long time to run, as it makes a call to the function ml.gb2
Not run:
library(laeken)
data(eusilc)

Income
inc <- as.vector(eusilc$eqIncome)

Weights
w <- eusilc$rb050

384 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

18 NonlinearFit

Household size
hs <- eusilc$hsize

Data set
d <- data.frame(inc, w, hs)
d <- d[!is.na(d$inc),]

Truncate at 0
d <- d[d$inc > 0,]
inc <- d$inc
w <- d$w

ML fit, full log-likelihood
fitf <- ml.gb2(inc, w)$opt1

Estimated parameters
af <- fitf$par[1]
bf <- fitf$par[2]
pf <- fitf$par[3]
qf <- fitf$par[4]
apf <- af*pf
aqf <- af*qf
gb2.par <- c(af, bf, pf, qf)

GB2 indicators
indicm <- round(main.gb2(0.6,af,bf,pf,qf), digits=3)

Empirical indicators
indice <- round(main.emp(inc,w), digits=3)

NLS fit 1
n1 <- nlsfit.gb2(inc,w)
n1[[1]]

Scores (partial derivatives of the log-likelihood with respect to the GB2 parameters)
scores <- matrix(nrow=length(inc), ncol=4)
for (i in 1:length(inc)){
scores[i,] <- dlogf.gb2(inc[i], af ,bf, pf, qf)
}

Data on households only
dh <- unique(d)
hinc <- dh$inc
hw <- dh$w
hs <- dh$hs

Estimated variance-covariance matrix of af, bf, pf and qf (EVCM)
VSC <- varscore.gb2(hinc,af,bf,pf,qf,hw,hs)
VCMP <- vepar.gb2(hinc,VSC,af,bf,pf,qf,hw,hs)[[1]]

Standard errors of af, bf, ...
se.par <- rep(0,4)
for (i in 1:4){
se.par[i] <- sqrt(VCMP[i,i])
}

Coefficients of variation of the fitted parameters

385

AMELI-WP10-D10.3

PlotsML 19

cv.par <- se.par/gb2.par
cvaf <- cv.par[1]

NLS fit 2
n2 <- nlsfit2.gb2(inc, w, af, bf, pf, qf, cvaf)
n2[[1]]

End(Not run)

PlotsML Cumulative Distribution Plot and Kernel Density Plot for the Fitted
GB2

Description

Function plotsML.gb2 produces two plots. The first is a plot of the empirical cumulative distri-
bution function versus the fitted cumulative distibution function. The second is a plot of the kernel
density versus the fitted GB2 density. Function saveplot saves locally the produced plot.

Usage

plotsML.gb2(z, shape1, scale, shape2, shape3, w=1)
saveplot(name, pathout)

Arguments

z a numeric vector; in general, a vector of income values.

shape1 positive parameter.

scale positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

w a numeric vector of the same length as z; the sampling weights. If not available,
the function should be called only with its first argument (the weights are set to
1).

name a character string specifying the name of the plot.

pathout a character string specifying the path of the folder or device where the plot will
be saved.

Details

The used kernel is "Epanechnikov" (see plot.density).

Author(s)

Monique Graf and Desislava Nedyalkova

386 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

20 ProfLogLikelihood

ProfLogLikelihood Profile Log-likelihood of the GB2 Distribution

Description

Estimation of the parameters shape2 = p and shape3 = q of the GB2 distribution as functions
of shape1= a and scale= b, profile log-likelihood of the GB2 distribution, scores of the profile
log-likelihood.

Usage

prof.gb2(x, shape1, scale, w=1)
proflogl.gb2(x, shape1, scale, w=1)
profscores.gb2(x, shape1, scale, w=1)

Arguments

x vector of data values.

shape1 positive parameter.

scale positive parameter.

w vector of weights.

Details

Using the full log-likelihood equations for the GB2 distribution, the parameters p and q can be
estimated as functions of a and b. These functions are plugged into the log-likelihood expression,
which becomes a function of a and b only. This is obtained by reparametrizing the GB2, i.e. we set
r = p

p+q and s = p+ q. More details can be found in Graf (2009).

Value

prof returns a vector containing the estimates of r, s, p, q as well as two other parameters used in
the calculation of the profile log-likelihood and the scores. proflogl.gb2 returns the value of
the profile log-likelihood and profscores.gb2 returns the vector of the first derivatives of the
profile log-likelihhod with respect to a and b.

Author(s)

Monique Graf and Desislava Nedyalkova

References

Graf, M. (2009) The Log-Likelihood of the Generalized Beta Distribution of the Second Kind.
working paper, SFSO.

387

AMELI-WP10-D10.3

Thomae 21

Thomae Maximum Excess Representation of a Generalized Hypergeometric
Function Using Thomae’s Theorem

Description

Defines Thomae’s arguments from the upper(U) and lower(L) parameters of a 3F2(U,L; 1). Com-
putes the optimal combination leading to the maximum excess. Computes the optimal combination
of Thomae’s arguments and calculates the optimal representation of the 3F2(U,L; 1) using the
genhypergeo_series function from package hypergeo. Computes the Gini coefficient for
the GB2 distribution, using Thomae’s theorem.

Usage

ULg(U, L)
combiopt(g)
Thomae(U, L, lB, tol, maxiter, debug)
gb2.gini(shape1, shape2, shape3, tol=1e-08, maxiter=10000, debug=FALSE)

Arguments

U vector of length 3 giving the upper arguments of the generalized hypergeometric
function 3F2.

L vector of length 2 giving the lower arguments of the generalized hypergeometric
function 3F2.

g vector of Thomae’s permuting arguments.

lB ratio of beta functions (a common factor in the expression of the Gini coefficient
under the GB2).

shape1 positive parameter.
shape2, shape3

positive parameters of the Beta distribution.

tol tolerance with default 0, meaning to iterate until additional terms do not change
the partial sum.

maxiter maximum number of iterations to perform.

debug boolean; if TRUE, returns the list of changes to the partial sum.

Details

More details can be found in Graf (2009).

Value

ULg returns a list containing Thomae’s arguments and the excess, combiopt gives the optimal
combination of Thomae’s arguments (for internal use only), Thomae returns the optimal represen-
tation of the 3F2(U,L; 1), GB2.Gini returns the Gini coefficient under the GB2.

Author(s)

Monique Graf

388 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

22 Varest

References

Graf, M. (2009) An Efficient Algorithm for the Computation of the Gini coefficient of the Gen-
eralized Beta Distribution of the Second Kind. ASA Proceedings of the Joint Statistical Meetings,
4835–4843. American Statistical Association (Alexandria, VA).

In Proceedings of JSM 2009.

McDonald, J. B. (1984) Some generalized functions for the size distribution of income. Economet-
rica, 52, 647–663.

See Also

genhypergeo_series

Varest Variance Estimation of the Parameters of the GB2 Distribution

Description

Calculation of variance estimates of the estimated GB2 parameters and the estimated GB2 indicators
under cluster sampling.

Usage

varscore.gb2(x, shape1, scale, shape2, shape3, w=1, hs)
vepar.gb2(x, Vsc, shape1, scale, shape2, shape3, w=1, hs)
derivind.gb2(shape1, scale, shape2, shape3)
veind.gb2(x, Vpar, shape1, scale, shape2, shape3, w=1, hs)

Arguments

x vector of data values.
shape1 positive parameter.
scale positive parameter.
shape2, shape3

positive parameters of the Beta distribution.
w vector of weights.
hs household size.
Vsc a squared matrix of size the number of parameters, e.g. the estimated design

variance-covariance matrix of the estimated parameters.
Vpar a squared matrix of size the number of parameters. The sandwich variance esti-

mator of the vector of parameters.

Details

We express the log-likelihood as a weighted sum of log(f), evaluated at the data points, where
f is the GB2 density with parameters shape1 = a, scale = b, shape2 = p and shape3
= q. Knowing the first and second derivatives of log(f), and using the sandwich variance esti-
mator (see Freedman (2006)), the calculation of the variance estimates of the GB2 parameters is
straightforward. We know that the GB2 estimates of the Laeken indicators are functions of the GB2
parameters. In this case, the variance estimates of the fitted indicators are obtained using the delta
method. More details can be found in Graf and Nedyalkova (2010).

389

AMELI-WP10-D10.3

Varest 23

Value

varscore.gb2 calculates the middle term of the sandwich variance estimator under simple
random cluster sampling. vepar.gb2 returns a list of two elements: the estimated variance-
covariance matrix of the estimated GB2 parameters and the second partial derivative of the pseudo
log-likelihood function. The function veind.gb2 returns the estimated variance-covariance ma-
trix of the estimated GB2 indicators. derivind.gb2 calculates the numerical derivatives of the
GB2 indicators and is for internal use only.

Author(s)

Monique Graf and Desislava Nedyalkova

References

Davison, A. (2003), Statistical Models. Cambridge University Press.

Freedman, D. A. (2006), On The So-Called "Huber Sandwich Estimator" and "Robust Standard
Errors". The American Statistician, 60, 299–302.

Graf, M. and Nedyalkova, D. (2010), Variance Estimation of the Maximum Likelihood Estimates
of the Parameters of the GB2 Distribution of the Second Kind and of the Laeken Indicators under
Cluster Sampling. Working paper, SFSO.

Pfeffermann, D. and Sverchkov, M. Yu. (2003), Fitting Generalized Linear Models under Informa-
tive Sampling. In, Skinner, C.J. and Chambers, R.L. (eds.). Analysis of Survey Data, chapter 12,
175–195. Wiley, New York.

Examples

An example of variance estimation of the GB2 parameters,
using the dataset "eusilcP" from the R package simFrame.
Takes long time to run

Not run:
library(survey)
library(simFrame)
data(eusilcP)

Draw a sample from eusilcP
1-stage simple random cluster sampling of size 6000 (cluster = household)
directly,
#s <- draw(eusilcP[, c("hid", "hsize", "eqIncome")], grouping = "hid", size = 6000)

or setting up 250 samples, and drawing the first one.
This sample setup can be used for running a simulation.
set.seed(12345)
scs <- setup(eusilcP, grouping = "hid", size = 6000, k = 250)
s <- draw(eusilcP[, c("region", "hid", "hsize", "eqIncome")], scs, i=1)

The number of observations (persons) in eusilcP (58654 persons)
\dontrun{N <- dim(eusilcP)[1]}
The number of households in eusilcP (25000 households)
Nh <- length(unique(eusilcP$hid))

Survey design corresponding to the drawn sample
sdo = svydesign(id=~hid, fpc=rep(Nh,nrow(s)), data=s)
\dontrun{summary(sdo)}

390 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

24 Varest

Truncated sample (truncate at 0)
s <- s[!is.na(s$eqIncome),]
str <- s[s$eqIncome > 0,]
eqInc <- str$eqIncome
w <- str$.weight

Designs for the truncated sample
sdotr <- subset(sdo, eqIncome >0)
sddtr = svydesign(id=~hid, strata=~region, fpc=NULL, weights=~.weight, data=str)
\dontrun{summary(sdotr)}
\dontrun{summary(sddtr)}

Fit by maximum likelihood
fit <- ml.gb2(eqInc,w)$opt1
af <- fit$par[1]
bf <- fit$par[2]
pf <- fit$par[3]
qf <- fit$par[4]
mlik <- -fit$value

Estimated parameters and indicators, empirical indicators
gb2.par <- round(c(af, bf, pf, qf), digits=3)
emp.ind <- main.emp(eqInc, w)
gb2.ind <- main.gb2(0.6, af, bf, pf, qf)

Scores
scores <- matrix(nrow=length(eqInc), ncol=4)
for (i in 1:length(eqInc)){
scores[i,] <- dlogf.gb2(eqInc[i], af, bf, pf, qf)
}

Data on households only
sh <- unique(str)
heqInc <- sh$eqIncome
hw <- sh$.weight
hhs <- sh$hsize
hs <- as.numeric(as.vector(hhs))

Variance of the scores
VSC <- varscore.gb2(heqInc, af, bf, pf, qf, hw, hs)

Variance of the scores using the explicit designs, and package survey
DV1 <- vcov(svytotal(~scores[,1]+scores[,2]+scores[,3]+scores[,4], design=sdotr))
DV2 <- vcov(svytotal(~scores[,1]+scores[,2]+scores[,3]+scores[,4], design=sddtr))

Estimated variance-covariance matrix of the parameteres af, bf, pf and qf
VCMP <- vepar.gb2(heqInc, VSC, af, bf, pf, qf, hw, hs)[[1]]
DVCMP1 <- vepar.gb2(heqInc, DV1, af, bf, pf, qf, hw, hs)[[1]]
DVCMP2 <- vepar.gb2(heqInc, DV2, af, bf, pf, qf, hw, hs)[[1]]

\dontrun{diag(DVCMP1)/diag(VCMP)}
\dontrun{diag(DVCMP2)/diag(VCMP)}
\dontrun{diag(DV1)/diag(VSC)}
\dontrun{diag(DV2)/diag(VSC)}

Standard errors of af, bf, pf and qf

391

AMELI-WP10-D10.3

Varest 25

se.par <- rep(0,4)
for (i in 1:4){
se.par[i] <- sqrt(VCMP[i,i])
}
sed1.par <- rep(0,4)
for (i in 1:4){
sed1.par[i] <- sqrt(DVCMP1[i,i])
}
sed2.par <- rep(0,4)
for (i in 1:4){
sed2.par[i] <- sqrt(DVCMP2[i,i])
}

Estimated variance-covariance matrix of the indicators (VCMI)
VCMI <- veind.gb2(heqInc, VCMP, af, bf, pf, qf, hw, hs)
DVCMI1 <- veind.gb2(heqInc, DVCMP1, af, bf, pf, qf, hw, hs)
DVCMI2 <- veind.gb2(heqInc, DVCMP2, af, bf, pf, qf, hw, hs)

Standard errors and confidence intervals
inCI <- rep(0,6) # empirical indicator in CI
varest.ind <- rep(0,6)
se.ind <- rep(0,6)
lci.ind <- rep(0,6)
uci.ind <- rep(0,6)
for (i in 1:6)
{
varest.ind[i] <- VCMI[i,i]
se.ind[i] <- sqrt(varest.ind[i])
lci.ind[i] <- gb2.ind[i] - 1.96*se.ind[i]
uci.ind[i] <- gb2.ind[i] + 1.96*se.ind[i]
if (lci.ind[i] <= emp.ind[i] & emp.ind[i] <= uci.ind[i]) {inCI[i] = 1}
}

#under the sampling design sdotr
inCId1 <- rep(0,6)
varestd1.ind <- rep(0,6)
sed1.ind <- rep(0,6)
lcid1.ind <- rep(0,6)
ucid1.ind <- rep(0,6)
for (i in 1:6)
{
varestd1.ind[i] <- DVCMI1[i,i]
sed1.ind[i] <- sqrt(varestd1.ind[i])
lcid1.ind[i] <- gb2.ind[i] - 1.96*sed1.ind[i]
ucid1.ind[i] <- gb2.ind[i] + 1.96*sed1.ind[i]
if (lcid1.ind[i] <= emp.ind[i] & emp.ind[i] <= ucid1.ind[i]) {inCId1[i] = 1}
}

#under the sampling design sddtr
inCId2 <- rep(0,6)
varestd2.ind <- rep(0,6)
sed2.ind <- rep(0,6)
lcid2.ind <- rep(0,6)
ucid2.ind <- rep(0,6)
for (i in 1:6)
{
varestd2.ind[i] <- DVCMI2[i,i]

392 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

26 Varest

sed2.ind[i] <- sqrt(varestd2.ind[i])
lcid2.ind[i] <- gb2.ind[i] - 1.96*sed2.ind[i]
ucid2.ind[i] <- gb2.ind[i] + 1.96*sed2.ind[i]
if (lcid2.ind[i] <= emp.ind[i] & emp.ind[i] <= ucid2.ind[i]) {inCId2[i] = 1}
}

#coefficients of variation .par (parameters), .ind (indicators)
cv.par <- se.par/gb2.par
cv.ind <- se.ind/gb2.ind
cvd1.par <- sed1.par/gb2.par
cvd1.ind <- sed1.ind/gb2.ind
cvd2.par <- sed2.par/gb2.par
cvd2.ind <- sed2.ind/gb2.ind

#results
res <- data.frame(am = af, bm = bf, pm = pf, qm = qf, lik = mlik,
median = gb2.ind[[1]], mean = gb2.ind[[2]], ARPR = gb2.ind[[3]], RMPG = gb2.ind[[4]], QSR = gb2.ind[[5]], Gini = gb2.ind[[6]],
emedian = emp.ind[[1]], emean = emp.ind[[2]], eARPR = emp.ind[[3]], eRMPG = emp.ind[[4]], eQSR = emp.ind[[5]], eGini = emp.ind[[6]],
cva = cv.par[1], cvb = cv.par[2], cvp= cv.par[3], cvq = cv.par[4], cvd1a = cvd1.par[1], cvd1b = cvd1.par[2], cvd1p= cvd1.par[3], cvd1q = cvd1.par[4],
cvd2a = cvd2.par[1], cvd2b = cvd2.par[2], cvd2p= cvd2.par[3], cvd2q = cvd2.par[4],
cvmed = cv.ind[[1]], cvmean = cv.ind[[2]], cvARPR = cv.ind[[3]], cvRMPG = cv.ind[[4]], cvQSR = cv.ind[[5]], cvGini = cv.ind[[6]],
cvd1med = cvd1.ind[[1]], cvd1mean = cvd1.ind[[2]], cvd1ARPR = cvd1.ind[[3]], cvd1RMPG = cvd1.ind[[4]], cvd1QSR = cvd1.ind[[5]], cvd1Gini = cvd1.ind[[6]],
cvd2med = cvd2.ind[[1]], cvd2mean = cvd2.ind[[2]], cvd2ARPR = cvd2.ind[[3]], cvd2RMPG = cvd2.ind[[4]], cvd2QSR = cvd2.ind[[5]], cvd2Gini = cvd2.ind[[6]])

res
\dontrun{inCI}

End(Not run)

393

AMELI-WP10-D10.3

Index

∗Topic distribution
Contindic, 1
Contprof, 3
gb2, 4
Gini, 5
Indicators, 6
LogDensity, 8
LogLikelihood, 9
MLfitGB2, 10
MLfullGB2, 11
MLprofGB2, 13
Moments, 15
NonlinearFit, 16
PlotsML, 19
ProfLogLikelihood, 20
Thomae, 21
Varest, 22

arpr.gb2 (Indicators), 6
arpt.gb2 (Indicators), 6

beta, 4, 5

coef, 17
combiopt (Thomae), 21
Contindic, 1
contindic.gb2 (Contindic), 1
contour, 2, 3
Contprof, 3
contprof.gb2 (Contprof), 3

d2logf.gb2 (LogDensity), 8
dbeta, 5
derivind.gb2 (Varest), 22
dgb2 (gb2), 4
dlogf.gb2 (LogDensity), 8

el.gb2 (Moments), 15

fisk, 3
fisk (MLfullGB2), 11
fiskh (MLfullGB2), 11

gamma, 16
gb2, 4

gb2.gini, 5, 6
gb2.gini (Thomae), 21
genhypergeo_series, 22
Gini, 5
gini.b2 (Gini), 5
gini.dag (Gini), 5
gini.gb2 (Gini), 5
gini.sm (Gini), 5

incompl.gb2, 7
incompl.gb2 (Moments), 15
Indicators, 6
info.gb2 (LogLikelihood), 9

kl.gb2 (Moments), 15

LogDensity, 8
logf.gb2 (LogDensity), 8
loglh.gb2 (LogLikelihood), 9
LogLikelihood, 9
loglp.gb2 (LogLikelihood), 9

main.emp (MLfitGB2), 10
main.gb2 (Indicators), 6
main2.gb2 (Indicators), 6
ml.gb2, 10
ml.gb2 (MLfullGB2), 11
mlfit.gb2 (MLfitGB2), 10
MLfitGB2, 10
MLfullGB2, 11
mlh.gb2 (MLfullGB2), 11
MLprofGB2, 13
moment.gb2, 17
moment.gb2 (Moments), 15
Moments, 15

nls, 17
nlsfit.gb2 (NonlinearFit), 16
nlsfit2.gb2 (NonlinearFit), 16
NonlinearFit, 16

optim, 10, 12–14

pgb2 (gb2), 4
plot.density, 19

27

394 A5. GB2 Manual

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

28 INDEX

PlotsML, 19
plotsML.gb2 (PlotsML), 19
prof.gb2 (ProfLogLikelihood), 20
proflogl.gb2, 13
proflogl.gb2 (ProfLogLikelihood),

20
ProfLogLikelihood, 3, 20
profml.gb2, 10
profml.gb2 (MLprofGB2), 13
profscores.gb2, 13
profscores.gb2

(ProfLogLikelihood), 20

qgb2, 7
qgb2 (gb2), 4
qsr.gb2 (Indicators), 6

rgb2 (gb2), 4
rmpg.gb2 (Indicators), 6

saveplot (PlotsML), 19
scoresh.gb2 (LogLikelihood), 9
scoresp.gb2 (LogLikelihood), 9
sl.gb2 (Moments), 15

Thomae, 17, 21

ULg (Thomae), 21

Varest, 22
varscore.gb2 (Varest), 22
veind.gb2 (Varest), 22
vepar.gb2 (Varest), 22
vl.gb2 (Moments), 15

395

AMELI-WP10-D10.3

Manual: Robust Horvitz-Thompson Estimation (RHT)

Beat Hulliger and Tobias Schoch

July 12, 2011

*Contents
msvymean . 2
mer . 5
msvyratio . 7
tsvymean . 9
EA . 11
ER . 14

1

396 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

msvymean Robust M-estimation of the mean for complex samples (robust
Horvitz-Thompson or robust weighted mean)

Description

msvymean computes robust Horvitz-Thompson estimates of the mean or robust weighted
mean estimates for complex samples, using M-estimation. This Package depends on Thomas
Lumley’s survey package.

Usage

S3 method for class 'survey.design':
msvymean(y, design, type=c("rht", "rwm"), na.rm=T, k=3, steps=50,

plot=F, acc=1e-6, quietly=F, psi=huberPsi, exact=F)
S3 method for class 'svystat.rob':
print(object)
S3 method for class 'svystat.rob':
summary(object)
S3 method for class 'plotable':
plot(object)

Arguments

y a formula object (only one variable)

design a survey.design object

type either "rht" for robust Horvitz-Thompson estimator (default), or "rwm" for
robust weighted mean estimator

na.rm Should cases with missing values be dropped? (default TRUE)

k robustness tuning constant

steps maximal number of IRLS iterations (default: 50, i.e. usually fully iterated
estimation)

plot Plot the residuals? (default: FALSE)

acc Numercial convergence criterion (default: 1e-6)

quietly omit return values (default=FALSE)

psi psi function of the class psi_func-class in the robustbase package.

exact if TRUE variance estimates are computed considering the prelimiary scale
estimate (MAD) (FALSE by default; see Details below)

Details

msvymean performs (inverse probability-) weighted M-estimation (by default with huberPsi
function), with each observation being weighted by the inverse of its sampling probability.
The choice of using a robust Horvitz-Thompson estimator (type="rht") or robust weighted
mean estimator (type="rwm") depends on the unterlying survey design (If y is positively cor-
related with the inclusion probabilities a "rht" type estimator should be used, else "rwm").

2

397

AMELI-WP10-D10.3

You may set steps equal to one to get a one-step estimation. Variance estimates are com-
puted as first-order linearization using the design-based estimation facilities in the survey
package.

msvymean allows also the estimation for domains. Use the command subset and a design
subset expression insted of the original survey.design object in msvymean (see examples
for more details).

Note that there are useful rht-utility functions: summary, plot, coef, and vcov (See also
examples).

In case of an asymmetric distribution, the user may choose an asymmetric Huber psi-
function (or any other psi-function of the class psi_func-class in the robustbase package).
This can be done by calling msvymean with asymhuberPsi as additional argument.

Users may set exact=TRUE to compute a linearization variance estimate considering that
the MAD has been used as preliminary scale estimate. However, the estimates may become
very unstable.

Value

Object of class "svystat.rob", which is scalar with a "var" attribute giving the variance,
a "statistic" attribute giving the name of the statistic, a "k" attribute giving the ro-
bustness tuning constant, and a "method" attribute indicating the computation method.
Each M-estimation object has an attributed consisting of the psi function object. In ad-
dition the objects possess further attributes concerning number of observations, number of
NA’s, number of declared outliers, average weight, and several details with regard to the
optimization.

Author(s)

Beat Hulliger and Tobias Schoch

References

Hulliger, B. (1995): Outlier robust Horvitz-Thompson estimators, Survey Methodology 21
(1), pp. 79-87.

Hulliger, B. (1999): Simple and robust estimators for sampling, Proceedings of the Survey
Research Methods Section, American Statistical Association, 1999, pp. 54-63.

See Also

svymean

Examples

load "api" data set from "survey" package (a description of the data set
can be found there)
data(api)
define "survey.design" for stratified sampling
dstrat <- svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
compute a robust Horvitz-Thompson estimate for the mean of the variable
"api00" (Academic Performance Index in 2000)
rht1 <- msvymean(~api00, dstrat, k=1.2)

3

398 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

get a summary of the estimation
summary(rht1)
robust Horvitz-Thompson estimates for a domain of the variable. Here we are
interessted in the robust mean for "api00" for (sch.wide == "Yes"). That is
the average of the academic performance in 2000 only for the schools that
met the school-wide growth target.
msvymean(~api00, subset(dstrat, sch.wide == "Yes"), k=1.2)
plot method
plot(rht1)
to extract the estimate from the object
coef(rht1)
to extract the variance from the object
vcov(rht1)

4

399

AMELI-WP10-D10.3

mer Minimum Estimated Risk M-Estimation

Description

mer searches for the robustness tuning parameter k (for M-estimation) that minimizes
the (inverse-probability weighted) mse. Thus, MER-estimation is a strategy to adaptively
choose optimal robustness tuning. (for L-estimation MER is not yet implemented)

Usage

S3 method for class 'svystat.rob':
mer(object, init = 0.1, box.lo = 1e-04, tol = 1e-04)
S3 method for class 'mer':
summary(object)

Arguments

object an object of the class svystat.rob (i.e. an estimate of msvymean with a
first guess of the robustness tuning parameter k)

init an initial value for the parameters to be optimized over, i.e. of the optimal
k (default 0.1)

box.lo lower bound (box-constraint) on the variables for the L-BFGS-B method (de-
fault 1e-4)

tol numerical tolerance crtierion (delivered to the .irls function)

Details

mer searches for the robustness tuning parameter k (for a M-estimator) that minimizes the
(inverse-probability weighted) mean squared error (mse). The function mer calls optim (in
the stats package) to search for an optimal tuning constant k that minimizes the estimated
risk (mer). Minimization is performed using the L-BFGS-B method (Byrd et al., 1995; No-
cedal and Wright, 2006), i.e. a limited-memory modification of the BFGS quasi-Newton
method. By default the following box-constraints are used: lower=1e-4, upper=inf. Note
that in typical applications, neither the box-constraints nor the inital value for the parame-
ters to be optimized over, need to be adapted. The algorithm usually converges in a couple
of iterations, since it capitalizes (by means of a finite-difference approximation of the gradi-
ent) on the almost quadratic shape of the mse (at least for asymmetric distributions) w.r.t.
the tuning constant.

Important notice: In case of symmetric distributions, mer-estimation tends to choose opti-
mal tuning constants k that are far too large. Sometimes the global minimum of the mse
is at zero. In such a case, smaller k’s (i.e. downweighting a larger amount of observations)
will always reduce the mse and the optimal M-estimator may be, e.g., the median.

Algorithm not converged: If the algorithm has not converged, set the initial value (i.e. init)
of k near the ’true’ k. In addition, you may modify the numeric convergence criterion tol.

Note that there are useful utility functions: summary, coef, and vcov (See also examples).
In addition, there is a plot method assoicated with mer, see plot.

5

400 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Value

Object of the class(es) svystat.rob and mer.

Author(s)

Beat Hulliger and Tobias Schoch

References

Beaumont, J.-F., and Rivest, L.-P. (2009). Dealing with outliers in survey data. Handbook
of Statistics, Sample Surveys: Theory, Methods and Inference, Eds. D. Pfeffermann and
C.R. Rao, Amsterdam:Elsevier BV. Vol. 29, Chapter 16.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound
constrained optimization, SIAM J. Scientific Computing 16, pp. 1190-1208.

Hulliger, B. (1995): Outlier robust Horvitz-Thompson estimators, Survey Methodology 21
(1), pp. 79–87.

Hulliger, B. (1999): Simple and robust estimators for sampling, Proceedings of the Survey
Research Methods Section, American Statistical Association, pp. 54–63.

Nocedal, J. and Wright, S. J. (2006) Numerical Optimization, 2nd. ed. Springer.

Examples

A simple example

m1 <- msvymean(~api00, dstrat, k=0.3)
m1.mer <- mer(m1)
summary(m1.mer)
plot(m1.mer)

6

401

AMELI-WP10-D10.3

msvyratio Robust ratio M-estimation for complex samples

Description

msvyratio computes a robust ratio estimate for complex samples, using M-estimation. This
Package depends on Thomas Lumley’s survey package.

Usage

S3 method for class 'survey.design':
msvyratio(numerator, denominator, design, na.rm = T, k = 3, steps = 50,

plot = F, acc = 1e-06, quietly=FALSE)
S3 method for class 'svystat.rob':
print(object)
S3 method for class 'svystat.rob':
summary(object)
S3 method for class 'plotable':
plot(object)

Arguments

numerator a formula object (only one variable)

denominator a formula object (only one variable)

design a survey.design object

na.rm Should cases with missing values be dropped? (default TRUE)

k robustness tuning constant

steps maximal number of IRLS interations (default: 50, i.e. fully iterated estima-
tion)

plot Plot the residuals? (default: FALSE)

acc Numercial convergence criterion (default: 1e-6)

quietly omit return values (default=FALSE)

Details

msvyratio computes a robust ratio estimate for complex samples, using M-estimation. Vari-
ance estimates are computed as first-order linearization using the design-based estimation
facilities in the survey package.

You may set steps equal to one to obtain an one-step estimation.

msvyratio allows also the estimation for domains. Use the command subset and a design
subset expression insted of the original survey.design object in msvyratio (see examples
for more details).

Note that there are useful rht-utility functions: summary, plot, coef, and vcov (See also
examples).

7

402 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Value

Object of class "svystat.rob", which is scalar with a "var" attribute giving the variance,
a "statistic" attribute giving the name of the statistic, a "k" attribute giving the ro-
bustness tuning constant, and a "method" attribute indicating the computation method. In
addition the objects possess further attributes concerning number of observations, number
of NA’s, number of declared outliers, average weight, and several details with regard to the
optimization.

Author(s)

Beat Hulliger and Tobias Schoch

References

Hulliger, B. (1995): Outlier robust Horvitz-Thompson estimators, Survey Methodology 21
(1), pp. 79-87.

Hulliger, B. (1999): Simple and robust estimators for sampling, Proceedings of the Survey
Research Methods Section, American Statistical Association, 1999, pp. 54-63.

See Also

svyratio

Examples

load "api" data set from "survey" package (a description of the data set
can be found there)
data(api)
define "survey.design" for stratified sampling
dstrat <- svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
compute a robust Horvitz-Thompson estimate for the mean of the variable
"api00" (Academic Performance Index in 2000)
ratio1 <- msvyratio(~api00, ~api99, dstrat, k=1.2)
get a summary of the estimation
summary(ratio1)
robust Horvitz-Thompson estimates for a domain of the variable. Here we are
interessted in the robust mean for "api00" in case of (sch.wide == "Yes").
That is the average of the academic performance in 2000 only for the
schools that met the school-wide growth target.
msvyratio(~api00, ~api99, subset(dstrat, sch.wide == "Yes"), k=1.2)
plot method
plot(ratio1)
to extract the estimate from the object
coef(ratio1)
to extract the variance from the object
vcov(ratio1)

8

403

AMELI-WP10-D10.3

tsvymean Trimmed and winsorized weighted mean for complex samples

Description

tsvymean computes either the trimmed or winsorized weighted mean for complex samples.
This Package depends on Thomas Lumley’s survey package.

Usage

S3 method for class 'survey.design':
tsvymean(y, design, trim=c(0, 1), type=c("trim", "win"), na.rm=T,

quietly=FALSE)
S3 method for class 'svystat.rob':
print(object)
S3 method for class 'svystat.rob':
summary(object)

Arguments

y a formula object (only one variable)

design a survey.design object

trim Range of observations [lo,hi] to be used in the computation of the weighted
mean. The fraction lo of observations is trimmed from the lower end and
the fraction 1-hi is trimmed from the upper end (lo < hi).

type either "trim" for trimming (default), or "win" for winsorization

na.rm Should cases with missing values be dropped? (default TRUE)

quietly omit return values (default=FALSE)

Details

By default trim equals c(0,1) and the regular weighted mean is computed. The variance
estimators are based on first-order linearizations using the design-bases estimation facilities
of the survey package. For reasons of numerical stability, the variance of the winsorized
weighted mean is computed using the variance estimator of the trimmed mean. The variance
estimate of the winsorized weighted mean can be found in the robustness attributes of the
svystat.rob object (i.e. attr(object, "rob")).

tsvymean allows also the estimation for domains. Use the command subset and a design
subset expression insted of the original survey.design object in tsvymean (see examples
for more details).

Note that there are useful rht-utility functions: summary, plot, coef, and vcov (See also
examples).

9

404 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Value

Object of class svystat.rob, which is scalar with a var attribute giving the variance, a
statistic attribute giving the name of the statistic, a k attribute giving the robustness
tuning constant, and a method attribute indicating the computation method. In addition
the objects possess further attributes concerning number of observations, number of NA’s,
number of declared outliers, average weight, and several details with regard to the opti-
mization.

Author(s)

Beat Hulliger and Tobias Schoch

References

Hulliger, B. (1999): Simple and robust estimators for sampling, Proceedings of the Survey
Research Methods Section, American Statistical Association, 1999, pp. 54-63.

See Also

svymean

Examples

load "api" data set from "survey" package (a description of the data set
can be found there)
data(api)
define "survey.design" for stratified sampling
dstrat <- svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
compute a robust Horvitz-Thompson estimate for the mean of the variable
"api00" (Academic Performance Index in 2000)
tm1 <- tsvymean(~api00, dstrat, trim=c(0.01, 0.09), type="trim")
get a summary of the estimation
summary(tm1)
robust estimates for a domain of the variable. Here we are interessted in
the trimmed mean for "api00" in case of (sch.wide == "Yes"). That is the
average of the academic performance in 2000 only for the schools that met
the school-wide growth target.
tsvymean(~api00, subset(dstrat, sch.wide == "Yes"), trim=c(0.01, 0.09),

type="trim")
to extract the estimate from the object use
coef(tm1)
to extract the variance from the object use
vcov(tm1)

10

405

AMELI-WP10-D10.3

EA Epidemic Algorithm for detection of multivariate outliers in incom-
plete survey data.

Description

In EAdet an epidemic is started at a center of the data. The epidemic spreads out and
infects neighbouring points (probabilistically or deterministiaclly). The last points infected
are outliers. After running EAdet an imputation with EAimp may be run. It uses the
distances calculated in EAdet and starts an epidemic at each observation to be imputed
until donors for the missing values are infected. Then a donor is selected randomly.

Usage

EAdet(data, weights, reach = "max", transmission.function = "root",
power = ncol(data), distance.type = "euclidean", global.distances = F,
maxl = 5, plotting = T, monitor = F, prob.quantile = 0.9,
random.start = F, fix.start, threshold = F, deterministic = TRUE,
remove.missobs=FALSE)

EAimp(data, weights , outind=EAdet.i$outind, duration = EAdet.r$duration,
maxl = 5, kdon = 1, monitor = FALSE, threshold = FALSE,
deterministic = TRUE, fixedprop = 0)

Arguments

data a data frame or matrix with the data

weights a vector of positive sampling weights

reach if reach="max" the maximal nearest neighbour distance is used as the basis
for the transmission function, otherwise the weighted (1-(p+1)/n) quantile
of the nearest neighbour distances is used.

transmission.function
form of the transmission function of distance d: "step" is a heaviside func-
tion which jumps to 1 at d0, "linear" is linear between 0 and d0, "power"
is (beta*d+1)^(-p) for p=ncol(data) as default, "root" is the function
1-(1-d/d0)^(1/maxl)

power sets p=power
distance.type

distance type in function dist()
global.distances

if TRUE uses the global distance stored in EA.distances instead, otherwise
calculates the distances freshly

maxl Maximum number of steps without infection

plotting if TRUE the cdf of infection times is plotted

monitor if TRUE verbose output on epidemic

11

406 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

prob.quantile
If mads fail take this quantile absolute deviation

random.start
If TRUE take a starting point at random instead of the spatial median

fix.start Force epidemic to start at a specific observation

threshold Infect all remaining points with infection probability above the threshold
1-0.5^(1/maxl)

deterministic
if TRUE the number of infections is the expected number and the infected
observations are the ones with largest infection probabilities.

remove.missobs
Set remove.missobs to TRUE if completely missing observations should be
discarded. This has to done actively as a safeguard to avoid mismatches
when imputing.

duration The duration of the detection epidemic

outind a boolean vector indicating outliers

kdon The number of donors that should be infected before imputation

fixedprop If TRUE a fixed proportion of observations is infected at each step

Details

The form and parameters of the transmission function should be chosen such that the
infection times have at least a range of 10. The default cutting point to decide on outliers
is the median infection time plus three times the mad of infection times. A better cutpoint
may be chosen by visual inspection of the cdf of infection times.

Value

EAdet with global.distances=F calls the function EA.dist, which stores the counterprob-
abilities of infection in a global variable EA.distances and three parameters (sample spatial
median index, maximal distance to nearest neighbor and transmission distance=reach) in
EA.distances.parameters. For EAdet the result is stored in two global variables: EAdet.r
and EAdet.i. EAdet.r has the following components:

sample.size Number of observations
number.of.variables

Number of variables
n.complete.records

Number of records without missing values
n.usable.records

Number of records with less than half of values missing (unusable observa-
tions are discarded)

medians Component wise medians

mads Component wise mads
prob.quantile

Use this quantile if mads fail, i.e. if one of the mads is 0.
quantile.deviations

Quantile of absolute deviations.

12

407

AMELI-WP10-D10.3

start Starting observation
transmission.function

Input parameter

power Input parameter

min.nn.dist maximal nearest neighbor distance
transmission.distance

d0

threshold Input parameter
distance.type

Input parameter
deterministic

Input parameter
number.infected

Number of infected observations

cutpoint Cutpoint of infection times for outlier definition

outliers Indices of outliers

duration Duration of epidemic
computation.time

Elapsed computation time
initialisation.computation.time

Elapsed compuation time for standardisation and calculation of distance
matrix

EAdet.i contains two vectors of length nrow(data):

infected Indicator of infection
infection.time

Time of infection

EAimp stores the result in two global variables EAimp.r and EAimp.data. The components
of EAimp.r are a subset of the components of EAdet.r and EAimp.data contains the imputed
dataset.

Author(s)

Cédric Béguin and Beat Hulliger

References

Béguin, C., and Hulliger, B. (2004). Multivariate oulier detection in incomplete survey data:
The epidemic algorithm and transformed rank correlations, Journal of the Royal Statistical
Society, A 167(Part 2.), 275–294.

Examples

data(bushfirem,bushfire.weights)
EAdet(bushfirem,bushfire.weights)
EAimp(bushfirem,mon=TRUE,kdon=3)

13

408 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

ER Robust EM-algorithm ER

Description

The ER function is an implementation of the ER-algorithm of Little and Smith (1987).

Usage

ER(data, weights, alpha = 0.01, psi.par = c(2, 1.25), em.steps = 100,
steps.output = F, Estep.output=F)

Arguments

data a data frame or matrix

weights sampling weights

alpha probability for the quantile of the cut-off

psi.par further parameters passed to the psi-function

em.steps number of iteration steps of the EM-algorithm
steps.output

if TRUE verbose output
Estep.output

if TRUE estimators are output at each iteration

Details

The M-step of the EM-algorithm uses a one-step M-estimator.

Value

The output is stored in a global variable ER.r with components:

sample.size
number of observations

number.of.variables
Number of variables

significance.level
alpha

computation.time
Elapsed computation time

good.data Indices of the data in the final good subset

outliers Indices of the outliers

center Final estimate of the center

scatter Final estimate of the covariance matrix

dist Final Mahalanobis distances

robweights Robustness weights in the final EM step

14

409

AMELI-WP10-D10.3

Author(s)

Beat Hulliger

References

Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data, Journal
of the American Statistical Association, 82, 58–68.

See Also

BEM

Examples

data(bushfirem)
data(bushfire.weights)
ER(bushfirem, weights=bushfire.weights,alpha=0.01,steps.output=TRUE)

15

410 A6. Robust Horvitz-Thompson Estimation (RHT)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Manual: BQSR, TQSR, and MQSR

Beat Hulliger and Tobias Schoch

July 12, 2011

*Contents
BQSR . 3
MQSR . 5

1

411

AMELI-WP10-D10.3

BQSR Bias-compensated, Trimmed (robust) Quintile Share Ratio Estima-
tor

Description

BQSR computes robust Horvitz-Thompson quintile share ratio estimates using trimming.
This Package depends on the packages survey and rht.

Usage

BQSR(x, design, lower=0, upper=0)

Arguments

x a formula object (equivalized income)
design a survey.design object
lower parameter for compensation
upper trimming parameter

Details

BQSR performs (inverse probability-) weighted, bias-compensated trimmed quintile share
ratio estimator based on the function tsvymean in the rht package. The influence of outlying
or influential observations in the upper tail of the income distribution on the quintile share
mean of the rich (i.e. numerator of the QSR) is reduced by means of trimming. On the
other hand, the researcher may specify the compensation parameter to adjust the quintile
share mean of the poor (i.e. denominator) in order to minimize the bias that may have
been induced due to trimming. Variance estimates are computed as first-order linearization
using the design-based estimation facilities in the survey package.

Value

Object of class "svystat.rob", which is scalar with a "var" attribute giving the variance,
a "statistic" attribute giving the name of the statistic, a "k" attribute giving the ro-
bustness tuning constant, and a "method" attribute indicating the computation method. In
addition the objects possess further attributes concerning number of observations, number
of NA’s, number of declared outliers, average weight, and several details with regard to the
optimization.

Author(s)

Beat Hulliger and Tobias Schoch

References

Hulliger, B. (1995): Outlier robust Horvitz-Thompson estimators, Survey Methodology 21
(1), pp. 79-87.
Hulliger, B. (1999): Simple and robust estimators for sampling, Proceedings of the Survey
Research Methods Section, American Statistical Association, 1999, pp. 54-63.

2

412 A7. BQSR, TQSR and MQSR

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

See Also

svymean, tsvymean, msvymean, MQSR.

Examples

Pseudo example
BQSR(eqIncome, datsilc2004, 0, 0.01)

3

413

AMELI-WP10-D10.3

MQSR M-Estimation Quintile Share Ratio Estimator

Description

MQSR computes robust Horvitz-Thompson M-Estimation quintile share ratio. This Package
depends on the packages survey and rht.

Usage

BQSR((x, design, k=4)

Arguments

x a formula object (equivalized income)

design a survey.design object

k robustness tuning constant (see huberPsi)

Details

BQSR performs (inverse probability-) weighted M-Estimation quintile share ratio estimator
based on the function msvymean in the rht package. That is, the influence of outlying and
influential observations in the upper tail of the income distribution is reduced. The quintile
share mean of the poor (i.e. denominator) of the QSR is unaffected. Variance estimates
are computed as first-order linearization using the design-based estimation facilities in the
survey package.

Value

Object of class "svystat.rob", which is scalar with a "var" attribute giving the variance,
a "statistic" attribute giving the name of the statistic, a "k" attribute giving the ro-
bustness tuning constant, and a "method" attribute indicating the computation method. In
addition the objects possess further attributes concerning number of observations, number
of NA’s, number of declared outliers, average weight, and several details with regard to the
optimization.

Author(s)

Beat Hulliger and Tobias Schoch

References

Hulliger, B. (1995): Outlier robust Horvitz-Thompson estimators, Survey Methodology 21
(1), pp. 79-87.

Hulliger, B. (1999): Simple and robust estimators for sampling, Proceedings of the Survey
Research Methods Section, American Statistical Association, 1999, pp. 54-63.

4

414 A7. BQSR, TQSR and MQSR

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

See Also

svymean, tsvymean, msvymean, BQSR.

Examples

Pseudo example
MQSR(eqIncome, datsilc2004, k=4)

5

415

AMELI-WP10-D10.3

Manual: Multivariate Outlier Detection and Imputation
(MODI)

Beat Hulliger and Tobias Schoch

July 12, 2011

*Contents
BEM . 2
GIMCD . 5
POEM . 7
TRC . 9
EA . 11
ER . 14

1

416 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

BEM BACON-EEM Algorithm for multivariate outlier detection in in-
complete multivariate survey data

Description

BEM starts from a set of uncontaminated data with possible missing values, applies a
version of the EM-algorithm to estimate the center and scatter of the good data, then
adds (or deletes) observations to the good data which has a Mahalanobis distance below a
threshold. This process iterates until the good data remain stable. Observations not among
the good data are outliers.

Usage

BEM(data, weights, v = 2, c0 = 3, alpha = 0.01, md.type = "m",
em.steps.start = 10, em.steps.loop = 5, better.estimation = F,
steps.output = F)

Arguments

data a matrix or data frame. As usual, rows are observations and columns are
variables.

weights a non-negative and non-zero vector of weights for each observation. Its length
must equal the number of rows of the data. Default is rep(1,nrow(data)).

v an integer indicating the distance for the definition of the starting good
subset: v=1 uses the Mahalanobis distance based on the weighted mean
and covariance, v=2 uses the Euclidean distance from the componentwise
median

c0 the size of initial subset is c0*ncol(data).

alpha a probability indicating the level (1-alpha) of the cutoff quantile for good
observations

md.type Type of Mahalanobis distance: "m" marginal, "c" conditional
em.steps.start

Number of iterations of EM-algorithm for starting good subset
em.steps.loop

Number of iterations of EM-algorithm for good subset
better.estimation

If better.estimation=TRUE then the EM-algorithm for the final good sub-
set iterates em.steps.start more.

steps.output
If TRUE verbose output.

2

417

AMELI-WP10-D10.3

Details

The BACON algorithm with v=1 is not robust but affine equivariant. The threshold for
Mahalanobis distances is a chisquare quantile at (1-alpha). For relatively small data sets
it may be better to choose alpha/n instead.

EM.normal is usually called from BEM. EM.normal is implementing the EM-algorithm in
such a way that part of the calculations can be saved to be reused in the BEM algorithm.

Value

The output is stored in a global variable BEM.r with components:

sample.size
number of observations

number.of.variables
Number of variables

significance.level
alpha

final.basic.subset.size
Size of final good subset

number.of.iterations
Number of iterations of the BACON step

computation.time
Elapsed computation time

good.data Indices of the data in the final good subset

outliers Indices of the outliers

center Final estimate of the center

scatter Final estimate of the covariance matrix

dist Final Mahalanobis distances

Note

BEM uses an adapted version of the EM-algorithm in funkction EM-normal.

Author(s)

Cédric Béguin and Beat Hulliger

References

Béguin, C. and Hulliger, B. (2008) The BACON-EEM Algorithm for Multivariate Outlier
Detection in Incomplete Survey Data, Survey Methodology, Vol. 34, No. 1, pp. 91–103.

Billor, N., Hadi, A.S. and Vellemann, P.F. (2000). BACON: Blocked Adaptative Computationally-
efficient Outlier Nominators, Computational Statistics and Data Analysis, 34(3), 279–298.

Schafer J.L. (2000), Analysis of Incomplete Multivariate Data, Monographs on Statistics
and Applied Probability 72, Chapman & Hall.

3

418 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Examples

Bushfire data set with 20% MCAR
data(bushfirem,bushfire.weights)
BEM(bushfirem,bushfire.weights,alpha=(1-0.01/nrow(bushfirem)))

4

419

AMELI-WP10-D10.3

GIMCD Gaussian imputation followed by MCD

Description

Gaussian imputation uses the classical non-robust mean and covariance estimator and then
imputes predictions under the multivariate normal model. Outliers may be created by this
procedure. Then a high-breakdown robust estimate of the location and scatter with the
Minimum Covariance Determinant algorithm is obtained and finally outliers are determined
based on Mahalanobis distances based on the robust location and scatter.

Usage

GIMCD(data, alpha = 0.05, plotting = FALSE, seed = 234567819)

Arguments

data a data frame or matrix with the data

alpha a threshold value for the cut-off for the outlier Mahalanobis distances

plotting if TRUE plot the Mahalanobis distances

seed random number generator seed

Details

Normal imputation from package norm and MCD from package MASS

Value

Result is stored in a global list GIMCD.r:

center robust center

scatter robust covariance

dist Mahalanobis distances

alpha Quantile for cut-off value

outliers Indices of outliers

Author(s)

Cédric Béguin and Beat Hulliger

References

Béguin, C. and Hulliger, B. (2008) The BACON-EEM Algorithm for Multivariate Outlier
Detection in Incomplete Survey Data, Survey Methodology, Vol. 34, No. 1, pp. 91–103.

See Also

MASS, norm

5

420 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Examples

data(bushfirem)
GIMCD(bushfirem,plotting=TRUE,alpha=0.1)

6

421

AMELI-WP10-D10.3

POEM Nearest Neighbour Imputation with Mahalanobis distance

Description

POEM takes into account missing values, outlier indicators, error indicators and sampling
weights.

Usage

POEM(data, weights, outind, errors, missing.matrix, alpha = 0.5,
beta = 0.5, reweight.out = FALSE, c = 5,
preliminary.mean.imputation = FALSE, verbose=FALSE)

Arguments

data a data frame or matrix with the data

weights sampling weights

outind an indicator vector for the outliers, 1 indicating outlier

errors matrix of indicators for items which failed edits
missing.matrix

the missingness matrix can be given as input. Otherwise it will be recalcu-
lated

alpha scalar giving the weight attributed to an item that is failing

beta minimal overlap to accept a donor
reweight.out

if TRUE the outliers are redefined

c tuning constant when redefining the outliers (cutoff for Mahalanobis dis-
tances)

preliminary.mean.imputation
assume the problematic observation is at the mean of good observations

verbose if TRUE verbose output

Details

POEM assumes that an multivariate outlier detection has been carried out beforehand and
assumes the result is summarized in the vectore outliers. Preliminary mean imputation
is sometimes needed to avoid a non-positive definite covariance estimate. It assumes that
the problematic values of an observation (with errors, outliers or missing) can be replace by
the mean of the rest of the non-problematic observations.

Value

The result is given in two global lists: POEM.r contains the information on POEM and
POEM.i contains the imputed data

7

422 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Author(s)

Cédric Béguin and Beat Hulliger

References

Béguin, C. and Hulliger B., (2002), EUREDIT Workpackage x.2 D4-5.2.1-2.C Develop and
evaluate new methods for statistical outlier detection and outlier robust multivariate impu-
tation,Technical report, EUREDIT 2002.

Examples

data(bushfirem)
data(bushfire.weights)
outliers<-rep(0,nrow(bushfirem))
outliers[31:38]<-1
POEM(bushfirem,bushfire.weights,outliers,prel=TRUE)

8

423

AMELI-WP10-D10.3

TRC Transformed rank correlations for multivariate outlier detection

Description

TRC starts from bivariate Spearman correlations and obtains a positive definite covariance
matrix by back-transforming robust univariate medians and mads of the eigenspace. TRC
can cope with missing values by a regression imputation using the a robust regression on
the best predictor and it takes sampling weights into account.

Usage

TRC(data, weight, overlap = 3, mincor = 0, robust.regression = "rank",
gamma = 0.5, prob.quantile = 0.75, alpha = 0.05, md.type = "m",
output = F)

Arguments

data a data frame or matrix with the data

weight sampling weights

overlap minimum number of jointly observed values for calculating the rank corre-
lation

mincor minimal absolute correlation to impute
robust.regression

type of regression: "irls" is iteratively reweighted least squares M-estimator,
"rank" is based on the rank correlations

gamma minimal number of jointly observed values to impute
prob.quantile

if mads are 0 try this quantile of absolute deviations

alpha (1-alpha) Quantile of F-distribution is used for cut-off

md.type Type of Mahalanobis distance when missing values occur: "m" marginal
(default), "c" conditional

output if TRUE verbose output

Details

TRC is similar to a one-step OGK estimator where the starting covariances are obtained
from rank correlations and an ad hoc missing value imputation plus weighting is provided.

Value

The output of TRC is stored in a global list TRC.r with components:

sample.size
number of observations

number.of.variables
number of variables

9

424 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

number.of.missing.items
number of missing values

significance.level
1-alpha

computation.time
elapsed computation time

medians componentwise medians

mads componentwise mads

center location estimate

scatter covariance estimate
robust.regression

input parameter

md.type input parameter

good.data indices of non-outliers

outliers indices of outliers

dist Mahalanobis distances (with missing values)
dist.with.imputed.values

Mahalanobis distances after ad hoc imputation
var.with.imputed.values

covariance estimate with ad hoc imputations

Author(s)

Cédric Béguin and Beat Hulliger

References

Béguin, C., and Hulliger, B. (2004). Multivariate oulier detection in incomplete survey data:
The epidemic algorithm and transformed rank correlations, Journal of the Royal Statistical
Society, A 167(Part 2.), 275–294.

Examples

data(bushfirem,bushfire.weights)
TRC(bushfirem,weight=bushfire.weights)

10

425

AMELI-WP10-D10.3

EA Epidemic Algorithm for detection of multivariate outliers in incom-
plete survey data.

Description

In EAdet an epidemic is started at a center of the data. The epidemic spreads out and
infects neighbouring points (probabilistically or deterministiaclly). The last points infected
are outliers. After running EAdet an imputation with EAimp may be run. It uses the
distances calculated in EAdet and starts an epidemic at each observation to be imputed
until donors for the missing values are infected. Then a donor is selected randomly.

Usage

EAdet(data, weights, reach = "max", transmission.function = "root",
power = ncol(data), distance.type = "euclidean", global.distances = F,
maxl = 5, plotting = T, monitor = F, prob.quantile = 0.9,
random.start = F, fix.start, threshold = F, deterministic = TRUE,
remove.missobs=FALSE)

EAimp(data, weights , outind=EAdet.i$outind, duration = EAdet.r$duration,
maxl = 5, kdon = 1, monitor = FALSE, threshold = FALSE,
deterministic = TRUE, fixedprop = 0)

Arguments

data a data frame or matrix with the data

weights a vector of positive sampling weights

reach if reach="max" the maximal nearest neighbour distance is used as the basis
for the transmission function, otherwise the weighted (1-(p+1)/n) quantile
of the nearest neighbour distances is used.

transmission.function
form of the transmission function of distance d: "step" is a heaviside func-
tion which jumps to 1 at d0, "linear" is linear between 0 and d0, "power"
is (beta*d+1)^(-p) for p=ncol(data) as default, "root" is the function
1-(1-d/d0)^(1/maxl)

power sets p=power
distance.type

distance type in function dist()
global.distances

if TRUE uses the global distance stored in EA.distances instead, otherwise
calculates the distances freshly

maxl Maximum number of steps without infection

plotting if TRUE the cdf of infection times is plotted

monitor if TRUE verbose output on epidemic

11

426 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

prob.quantile
If mads fail take this quantile absolute deviation

random.start
If TRUE take a starting point at random instead of the spatial median

fix.start Force epidemic to start at a specific observation

threshold Infect all remaining points with infection probability above the threshold
1-0.5^(1/maxl)

deterministic
if TRUE the number of infections is the expected number and the infected
observations are the ones with largest infection probabilities.

remove.missobs
Set remove.missobs to TRUE if completely missing observations should be
discarded. This has to done actively as a safeguard to avoid mismatches
when imputing.

duration The duration of the detection epidemic

outind a boolean vector indicating outliers

kdon The number of donors that should be infected before imputation

fixedprop If TRUE a fixed proportion of observations is infected at each step

Details

The form and parameters of the transmission function should be chosen such that the
infection times have at least a range of 10. The default cutting point to decide on outliers
is the median infection time plus three times the mad of infection times. A better cutpoint
may be chosen by visual inspection of the cdf of infection times.

Value

EAdet with global.distances=F calls the function EA.dist, which stores the counterprob-
abilities of infection in a global variable EA.distances and three parameters (sample spatial
median index, maximal distance to nearest neighbor and transmission distance=reach) in
EA.distances.parameters. For EAdet the result is stored in two global variables: EAdet.r
and EAdet.i. EAdet.r has the following components:

sample.size Number of observations
number.of.variables

Number of variables
n.complete.records

Number of records without missing values
n.usable.records

Number of records with less than half of values missing (unusable observa-
tions are discarded)

medians Component wise medians

mads Component wise mads
prob.quantile

Use this quantile if mads fail, i.e. if one of the mads is 0.
quantile.deviations

Quantile of absolute deviations.

12

427

AMELI-WP10-D10.3

start Starting observation
transmission.function

Input parameter

power Input parameter

min.nn.dist maximal nearest neighbor distance
transmission.distance

d0

threshold Input parameter
distance.type

Input parameter
deterministic

Input parameter
number.infected

Number of infected observations

cutpoint Cutpoint of infection times for outlier definition

outliers Indices of outliers

duration Duration of epidemic
computation.time

Elapsed computation time
initialisation.computation.time

Elapsed compuation time for standardisation and calculation of distance
matrix

EAdet.i contains two vectors of length nrow(data):

infected Indicator of infection
infection.time

Time of infection

EAimp stores the result in two global variables EAimp.r and EAimp.data. The components
of EAimp.r are a subset of the components of EAdet.r and EAimp.data contains the imputed
dataset.

Author(s)

Cédric Béguin and Beat Hulliger

References

Béguin, C., and Hulliger, B. (2004). Multivariate oulier detection in incomplete survey data:
The epidemic algorithm and transformed rank correlations, Journal of the Royal Statistical
Society, A 167(Part 2.), 275–294.

Examples

data(bushfirem,bushfire.weights)
EAdet(bushfirem,bushfire.weights)
EAimp(bushfirem,mon=TRUE,kdon=3)

13

428 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

ER Robust EM-algorithm ER

Description

The ER function is an implementation of the ER-algorithm of Little and Smith (1987).

Usage

ER(data, weights, alpha = 0.01, psi.par = c(2, 1.25), em.steps = 100,
steps.output = F, Estep.output=F)

Arguments

data a data frame or matrix

weights sampling weights

alpha probability for the quantile of the cut-off

psi.par further parameters passed to the psi-function

em.steps number of iteration steps of the EM-algorithm
steps.output

if TRUE verbose output
Estep.output

if TRUE estimators are output at each iteration

Details

The M-step of the EM-algorithm uses a one-step M-estimator.

Value

The output is stored in a global variable ER.r with components:

sample.size
number of observations

number.of.variables
Number of variables

significance.level
alpha

computation.time
Elapsed computation time

good.data Indices of the data in the final good subset

outliers Indices of the outliers

center Final estimate of the center

scatter Final estimate of the covariance matrix

dist Final Mahalanobis distances

robweights Robustness weights in the final EM step

14

429

AMELI-WP10-D10.3

Author(s)

Beat Hulliger

References

Little, R. and P. Smith (1987). Editing and imputation for quantitative survey data, Journal
of the American Statistical Association, 82, 58–68.

See Also

BEM

Examples

data(bushfirem)
data(bushfire.weights)
ER(bushfirem, weights=bushfire.weights,alpha=0.01,steps.output=TRUE)

15

430 A8. MODI: Mulivariate Outlier Detection and Imputation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Package ‘rsae’
July 12, 2011

Type Package

Title Robust Small Area Estimation

Version 0.1-2

Date 2011-07-06

Author Tobias Schoch

Maintainer Tobias Schoch <tobias.schoch@fhnw.ch>

Description Robust Small Area Estimation. Robust Basic Unit- and Area-Level Models

Suggests robustbase, nlme

License GPL (>=2) | FreeBSD

LazyLoad yes

R topics documented:
rsae-package . 1
fitsaemodel . 2
fitsaemodel.control . 4
landsat . 5
makedata . 7
robpredict . 9
sae-internal . 10
saemodel . 11

Index 13

rsae-package Robust Small Area Estimation

Description

Computes robust basic unit- and area-level and predicts area-specific means

Details

1

431

AMELI-WP10-D10.3

2 fitsaemodel

Package: rsae
Type: Package
Version: 0.1-2
Date: 2011-07-06
Suggests: robustbase, nlme
License: GPL (>=2) | FreeBSD
LazyLoad: yes

Implemented methods:

• maximum likelihood (as reference)
• Huber-type M-estimation
• [S-estimation; not released, yet]
• [Simple and robust, minimal-iterative estimation; not released, yet]

How to:
Data analysis with rsae involves the following steps:

1. prepare the data/ set up the model for estimation; see saemodel
2. fit the model by various (robust) methods; see fitsaemodel
3. (robustly) predict the random effects and the area means; see robpredict

Author(s)

Tobias Schoch

Maintainer: Tobias Schoch <tobias.schoch@fhnw.ch>

References

Rao, J.N.K. (2003) Small Area Estimation, New York: John Wiley and Sons.

Richardson, A.M. and A.H. Welsh (1995) Robust restricted maximum likelihood in mixed linear
model, Biometrics 51, pp. 1429-1439.

Schoch, T. (2011) The robust basic unit-level small area model. A simple and fast algorithm for
large datasets, in: Proceedings of the New Technologies and Techniques Conference (NTTS), EU-
ROSTAT, Brussels.

Sinha, S.K. and J.N.K. Rao (2009) Robust small area estimation, Canadian Journal of Statistics 37,
pp. 381-399.

fitsaemodel Fit SAE model using various methods

Description

fitsaemodel is the workhorse function. It estimates SAE models that have been set up by
saemodel (or synthetic data generated by makedata) by various (robust) estimation methods.

432 A9. rsae: Robust Small Area Estimation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

fitsaemodel 3

Usage

fitsaemodel(method, model, ...)

S3 method for class 'fitsaemodel'
print(x, digits=3, ...)
S3 method for class 'fitsaemodel'
summary(object, full=FALSE, digits=3, ...)
S3 method for class 'fitsaemodel'
coef(object, type="both", ...)

Arguments

method character string defining the method to be used; currently, either method="ml"
for (non-robust) maximum likelihood or method="huberm" for Huber-type
M-estimation

model a "saemodel" object (i.e., a SAE model; see saemodel)

x used by the print method

digits used by the print and summary methods; number of decimal places to be
shown

object an object of the class "fitsaemodel"; i.e., a fitted model

full logical, if full=TRUE, the summarymethod shows all it has to show (default:
full=FALSE)

type character string use in the coef method; it can take one of the following possi-
bilities: "both", "ranef", or "fixef". The first reports both, random and
fixed effects (default).

... additional arguments delivered to either fitsaemodel.control

Details

The function fitsaemodel is a wrapper function that calls the algorithm associated with a par-
ticular method. Two methods are currently implemented

• maximum likelihood (method="ml"),

• Huber-type M-estimation (method="huberm").

Maximum likelihood: The call for ML is straightforward: fitsaemodel(method="ml",
model), where model is a SAE model generated by saemodel. Note that ML is not a robust
fitting method.

Huber-type M-estimation: The call for Huber-type M-estimaton (with Huber psi-function) is:
fitsaemodel(method="huberm", model, k), where model is a SAE model gener-
ated by saemodel, and k is the robustness tuning constant of the Huber psi-function.
If your data are supposed to be heavily contaminated (or if the default algorithm did not con-
verge), you may initialize the fitsaemodel alogrithm with a high-breakdown-point estimate.
The rsae package offers two methods to initialize the algorithm, "lts" and "s"; see below.
NOTE, you have to install the robustbase package in order to use these methods. The initializa-
tion methods are called in the fitsaemodel device (as additional argument), using

• init="lts", for fast-LTS regression form robustbase,
• init="s", for a regression S-estimator from robustbase.

433

AMELI-WP10-D10.3

4 fitsaemodel.control

For more details on the methods, you are refered to the documentation of robustbase. In general,
for small to medium datasets, both methods are equivalent. For data with more than 50,000
observations, the S-estimator is considerably faster. (If the "ml" does not converge, you may
initialize it analogously–though, it may be rather inefficient.)

Value

An instance of the class "fitmodel"

Author(s)

Tobias Schoch

References

Schoch, T. (2011) Robust Basic Unit-Level Small Area Model, Working Paper

See Also

fitsaemodel.control

Examples

#generate the synthetic data/model
mymodel <- makedata()
#compute Huber M-estimation type estimates of the model "mymodel"
#robustness tuning constant k = 2
myfittedmodel <- fitsaemodel("huberm", mymodel, k=2)
myfittedmodel
#get a summary of the model
summary(myfittedmodel)

fitsaemodel.control
Tuning parameters of fitsaemodel

Description

This function carries global settings and parameter definitions that are used by fitsaemodel (and
its derivatives). Modifications of the parameters can be delivered as additional arguments in the
fitsaemodel call.

Usage

fitsaemodel.control(niter = 40, iter = c(200, 200),
acc = 1e-05, init="default", ...)

434 A9. rsae: Robust Small Area Estimation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

landsat 5

Arguments

niter integer, defining the maximum number of outer-loop iterations (default: niter=40)

iter integer or vector of size 2, defining the maximum loops of the inner loops (de-
fault: iter=c(200, 200); element 1 refers to beta; element 2 refers to v;
note that d has an implicitly defined maxiter of 100 and cannot be modified)

acc scalar or vector of size 4, defining the numeric tolerance used in the termination
rule of the loops (default: acc=1e-05; the positions of elements in the vec-
tor of size 4 are: 1=acc outer-loop; 2=acc inner-loop beta; 3=acc inner-loop v;
4=acc inner-loop d).

init a character string; specifies by what method the main algorithm is initialized; by
default: init="default"; alternatively, (and provided that the robustbase
package is installed) one may choose a high-breakdown-point initial estimate:
either "lts" (fast LTS regression) or "s" (S-estimate of regression). For datasets
with more than 100,000 observations, the former is rather slow. For more details
on the initializing methods see the documentation of robustbase ("ltsReg"
and "lmrob.S").

... (will be used in the future)

Details

Caution! Modifying the default values of the parameters may result in convergence failure and/or
loss of convergence speed.

Value

(an object used by the robust methods)

Author(s)

Tobias Schoch

See Also

fitsaemodel

landsat LANDSAT data: Prediction of County Crop Areas Using Survey and
Satellite Data

Description

The landsat data.frame is a compilation (by Battese et al., 1988) of survey and satellite data.
It consists of data on segments (primary sampling unit; 1 segement =approx= 250 hectares) under
corn and soybeans for 12 counties in north-central Iowa; see Details, below.

Usage

data(landsat)

435

AMELI-WP10-D10.3

6 landsat

Format

A data frame with 37 observations on the following 10 variables.

SegmentsInCounty a numeric vector; no. of segments per county

SegementID a numeric vector; sample segment identifier (per county)

HACorn a numeric vector; hectares of corn for each sample segment (as reported in the June 1978
Enumerative Survey)

HASoybeans a numeric vector; hectares of soybeans for each sample segment (as reported in the
June 1978 Enumerative Survey)

PixelsCorn a numeric vector; no. of pixels classified as corn for each sample segment (LAND-
SAT readings)

PixelsSoybeans a numeric vector; no. of pixels classified as soybeans for each sample seg-
ment (LANDSAT readings)

MeanPixelsCorn a numeric vector; county mean number of pixels classified as corn

MeanPixelsSoybeans a numeric vector; county mean number of pixels classified as soybeans

outlier a logical vector; flags observation no. 33 as outlier

CountyName a factor with levels (i.e., county names) Cerro Gordo Hamilton Worth Humboldt
Franklin Pocahontas Winnebago Wright Webster Hancock Kossuth Hardin

Details

The landsat data is a compilation (by Battese et al., 1988) of the LANDSAT satellite data from
the U.S. Department of Agriculture (USDA) and the 1978 June Enumerative Survey.

Survey data: The survey data on the areas under corn and soybeans (reported in hectares) in the
37 segments of the 12 counties (north-central Iowa) have been determined by USDA Statistical
Reporting Service staff, who interviewed farm operators. A segment is about 250 hectares.

Satellite data: For the LANDSAT satellite data, information is recorded as "pixels". The USDA
has been engaged in research toward transforming satellite information into good estimates of
crop areas at the individual pixel and segments level. A pixel is about 0.45 hectares. The satellite
(LANDSAT) readings were obtained during August and September 1978.

Data for more than one sample segment are available for several counties (i.e, unbalanced data).

Observations No. 33 has been flaged as outlier (cf., Battese et al. (1988, p. 28).

Source

The data landsat is from Table 1 of Battese et al. (1988, p. 29).

References

Battese, G.E, R.M. Harter, and W.A. Fuller (1988) An Error-Components Model for Prediction of
County Crop Areas Using Survey and Satellite Data, Journal of the American Statistical Association
83, pp. 28–36.

Examples

data(landsat)

436 A9. rsae: Robust Small Area Estimation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

makedata 7

makedata Synthetic data generation for the basic unit-level SAE model (incl. out-
lier contamination)

Description

This function serves for synthetically generating data with area-level variation. It has been written
to test several estimating methods. In addition, one may introduce contamination to the laws of the
model- and/or random effects (see Details, below).

Usage

makedata(seed=1024, intercept=1, beta=1, n=4, g=20, areaID=NULL,
ve=1, ve.contam=41, ve.epsilon=0, vu=1, vu.contam=41,
vu.epsilon=0)

Arguments

seed an integer, defining the set.seed (default seed=1024)

intercept either a scalar as intercept of the fixed-effects model or NULL (default: intercept=1)

beta scalar or vector defining the fixed-effect coefficients (default: beta=1). For
each given coefficient, a vector of realizations is drawn from the standard normal
distribution.

n integer, defining the number of units per area in balanced-data setups (default:
n=4)

g integer, defining the number of areas (default: g=20)

areaID by default areaID=NULL. If one attempts to generate synthetic unbalanced
data, one may call makedata with a vector, the elements of which area iden-
tifiers. This vector should contain a series of (integer valued) area IDs. The
number of areas is set equal to the number unique IDs; see the rsae Vignette
for more details.

ve scalar, defining the model/ residual variance

ve.contam scalar, defining the model variance of the outlier part in a mixture distribu-
tion (Tuckey-Huber-type contamination model). e = (1-h)*N(0, ve) + h*N(0,
ve.contam)

ve.epsilon scalar, defining the relative number of outliers (i.e., epsilon or h in the contami-
nation mixture distribution). Typically, it takes values between 0 and 0.5 (but it
is not restricted to this interval)

vu scalar, defining the (area-level) random-effect variance

vu.contam scalar, defining the (area-level) random-effect variance of the outlier part in the
contamination mixture distribution (cf., ve.contam)

vu.epsilon scalar, defining the relative number of outliers in the contamination mixture dis-
tribution of the (area-level) random effects (cf., ve.epsilon)

437

AMELI-WP10-D10.3

8 makedata

Details

The function makedata generates synthetic datasets that may be used to study the behavior of
different estimating methods. Let yi denote an area-specific ni-vector of the response variable for
the areas i = 1, ..., g. Define a (ni × p)-matrix Xi of realizations from the std. normal distribution,
N(0, 1), and let β denote a p-vector of regression coefficients. Now, the yi are drawn using the
law yi ∼ N(Xiβ, veIi + vuJi) with ve and vu the variances of the model error and random-effect
variance, respectively, and Ii and Ji denoting the identity matrix and matrix of ones, respectively.

In addition, we allow the distribution of the model/residual and area-level random effect to be
contaminated (cf., Stahel and Welsh, 1997). Notably, the laws of ei,j and ui are replaced by the
Tukey-Huber contamination mixture:

• ei,j ∼ (1− εve)N(0, ve) + εveN(0, vεe),

• ui ∼ (1− εvu)N(0, vu) + εvuN(0, vεu),

where εve and εvu regulate the degree of contamination; vεe and vεe define the variance of the con-
tamination part of the mixture distribution.

Four different contamination setups are possible:

• no contamination (i.e., ve.epsilon=vu.epsilon=0),

• contaminated model error (i.e., ve.epsilon!=0 and vu.epsilon=0),

• contaminated random effect (i.e., ve.epsilon=0 and vu.epsilon!=0),

• both are conaminated (i.e., ve.epsilon!=0 and vu.epsilon!=0).

Value

Instance of the class saemodel.

Author(s)

Tobas Schoch

References

Stahel, W.A. and A. Welsh (1997) Approaches to robust estimation in the simplest variance compo-
nents model, Journal of Inference and Statistical Planning 57, pp. 295-319.

Examples

#generate synthetic data
mymodel <- makedata()

438 A9. rsae: Robust Small Area Estimation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

robpredict 9

robpredict Robust prediction of random effects, fixed effects, and area-specific
means

Description

Robust prediction of random effects, fixed effects, and area-specific means. It can predict based on
new, directly delivered, areadata.

Usage

robpredict(fit, k, areadata=NULL)

S3 method for class 'meanssaemodel'
print(x, digits=4, ...)
S3 method for class 'meanssaemodel'
plot(x, y=NULL, sort=NULL, ...)
S3 method for class 'meanssaemodel'
residuals(object, ...)

Arguments

fit a fitted SAE model; object of class fitsaemodel

k robustness tuning constant (of the Huber psi-function) for robust prediction.
Notice that k does not necessarily be the same as the k that has been used in
fitsaemodel.

areadata numeric matrix (typically, with area-level means); the no. of rows must be equal
to the no. of areas; the no. of columns must be equal to the no. of fixed-effects
coefficients (incl. intercept). By default: areadata=NULL, i.e., predictions
are based on those data that have been used to estimate the model.

x object of the class "meanssaemodel"; this argument is only used in the
print method.

digits integer, defining the number of decimal places to be shown in the printmethod
(default: digits=4)

y has no meaning, yet! (default: y=NULL; needs to included in the args list,
because it is part of plot’s generic arg definition)

sort only used in the plot method; if sort="means", the predicted means are
ploted in ascending order (default: sort=NULL); similarly, with sort="fixef"
and sort="ranef" the predicted means are sorted along the fixed effects or
the random effects, respectively

object object of the class fitsaemodel; a fitted model used in the residuals
method.

... not used

Details

Given the robustly estimated SAE model, one considers robustly predicting the random- and fixed
effect (and the final area-specific means). The tuning constant k regulates the degree of robustness
when predicting the random effects.

439

AMELI-WP10-D10.3

10 sae-internal

Value

Instance of the S3 class meanssaemodel

Author(s)

Tobias Schoch

References

Schoch, T. (2011) The robust basic unit-level small area model. A simple and fast algorithm for
large datasets, in: Proceedings of the New Technologies and Techniques Conference (NTTS), EU-
ROSTAT, Brussels.

Examples

#generate the synthetic data/model
mymodel <- makedata()
#compute Huber M-estimation type estimates of the model "mymodel"
#robustness tuning constant k = 2
myfittedmodel <- fitsaemodel("huberm", mymodel, k=2)
myfittedmodel
#get a summary of the model
summary(myfittedmodel)
#robustly predict the random effects and the area-level means.
#Here, we choose the robustness tuning constant k equal to 1.8
mypredictions <- robpredict(myfittedmodel, k=1.8)
mypredictions
#a visual display of the area-specific predictions
plot(mypredictions)

sae-internal Internal functions

Description

These functions are for internal use only.

Author(s)

Tobias Schoch

See Also

rsae-package

440 A9. rsae: Robust Small Area Estimation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

saemodel 11

saemodel Set up a SAE model

Description

saemodel is the workhorse function to set up a model (i.e., an instance of the "saemodel"
class). It is the starting point of every model fitting exercise. Once a model has been initilized/ set
up, we consider estimating its parameter.

Usage

saemodel(formula, area, data, type = "b", na.omit = FALSE)

S3 method for class 'saemodel'
print(x, ...)
S3 method for class 'saemodel'
summary(object, ...)
S3 method for class 'saemodel'
as.matrix(x, ...)

Arguments

formula a two-sided linear formula object describing the fixed-effects part, with the re-
sponse on the RHS of the ~ operator and the terms or regressors, separated by +
operators, on the LHS of the formula.

area a one-sided formula object. A ~ operator followed by only one single term
defining the area-specific random-effect part

data data.frame

type either "a" or "b" refering to J.N.K. Rao’s definition of model type A (area-level
model) or B (unit-level model); default is type="b"

na.omit a logical indicating whether NA should be removed (default is FALSE). Note
that none of the algorithms can cope with missing values.

x an object of the class "saemodel" (this argument is implicitly used by the
print and as.matrix methods)

object an object of the class "saemodel" (this argument is implicitly used by the
summary method)

... not used

Details

The step of setting up a SAE model is the starting point of any (robust) SAE modeling exercise.
(Use the makedata to generate a synthetic dataset; see also, below). Here, we have to define the
fixed-effects- and random-effects part of the model, and to tell R what data it shall use.

Once a model has been initilized/ set up, we consider estimating its parameter; see fitsaemodel.

Value

Instance of the S3 class "saemodel".

441

AMELI-WP10-D10.3

12 saemodel

Author(s)

Tobias Schoch

References

Rao, J.N.K. (2003). Small Area Estimation, New York: John Wiley and Sons.

See Also

makedata

442 A9. rsae: Robust Small Area Estimation

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/

Index

∗Topic datasets
landsat, 5

.computekappa (sae-internal), 10

.fitsaemodel.huberm
(sae-internal), 10

.initmethod (sae-internal), 10

as.matrix.saemodel (saemodel), 11

coef.fitsaemodel (fitsaemodel), 2

fitsaemodel, 2, 2, 3, 5, 11
fitsaemodel.control, 3, 4, 4

landsat, 5

makedata, 2, 7, 12

plot.meanssaemodel (robpredict), 9
print.fitsaemodel (fitsaemodel), 2
print.meanssaemodel (robpredict),

9
print.saemodel (saemodel), 11

residuals.meanssaemodel
(robpredict), 9

robpredict, 2, 9
rsae (rsae-package), 1
rsae-package, 10
rsae-package, 1

sae-internal, 10
saemodel, 2, 3, 11
summary.fitsaemodel

(fitsaemodel), 2
summary.saemodel (saemodel), 11

13

443

AMELI-WP10-D10.3

	References and description of R packages
	SimFrame
	SimPopulation
	VIM
	laeken
	GB2
	Robust non-parametric QSR estimation
	MODI
	rsae: Robust Small Area Estimation
	Specific R-Code
	Work Package 2
	Work Package 3
	Work Package 4
	Work Package 8

	Bibliography
	Applications of Statistical Simulation Using simFrame
	Introduction
	Application of different simulation designs to EU-SILC
	Basic simulation design
	Using stratified sampling
	Adding contamination
	Performing simulations separately on different domains
	Using multiple contamination levels
	Inserting missing values
	Parallel computing

	Conclusions

	Simulation of EU-SILC Population Data Using simPopulation
	Introduction
	Wrapper function for EU-SILC
	Step by step instructions and diagnostics
	Conclusions

	An application of VIM to EU-SILC data
	The graphical user interface of VIM
	Handling data
	Selecting variables
	Selecting plots

	An application to EU-SILC data
	Univariate plots
	Bivariate plots
	Multivariate plots
	Other plots

	Fine tuning
	Interactive features
	Summary

	Standard Methods for Social Exclusion Indicators in package laeken
	Introduction
	Basic design of the package
	Class structure

	Calculation of the equivalized disposable income
	Weighted median and quantile estimation
	Indicators on social exclusion and poverty
	At-risk-at-poverty rate
	Quintile share ratio
	Relative median at-risk-of-poverty gap (by age and gender)
	Gini coefficient

	Extracting information using the subset() method
	Conclusions

	Robust Pareto Tail Modeling with package laeken.
	Introduction
	Social exclusion indicators
	Quintile share ratio (QSR)
	Gini coefficient

	The Pareto distribution
	Finding the threshold
	Van Kerm's rule of thumb
	Pareto quantile plot
	Mean excess plot

	Estimation of the shape parameter
	Hill estimator
	Weighted maximum likelihood estimator
	Integrated squared error estimator
	Partial density component estimator

	Estimation of the indicators using Pareto tail modeling
	Conclusions

	Variance Estimation of Indicators using package laeken
	Introduction
	General wrapper function for variance estimation
	Naive bootstrap
	Calibrated bootstrap
	Conclusions

	A1. simFrame Manual
	A2. simPopulation Manual
	A3. VIM Manual
	A4. laeken Manual
	A5. GB2 Manual
	A6. Robust Horvitz-Thompson Estimation (RHT)
	A7. BQSR, TQSR and MQSR
	A8. MODI: Mulivariate Outlier Detection and Imputation
	A9. rsae: Robust Small Area Estimation

