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Aim and Objectives of Deliverable 4.2

Indicators and in particular the Laeken indicators are vulnerable to outliers. Outliers may
not only bias the indicators but also introduce a high additional variability. Therefore,
outliers and other deviations from theoretical distributions may undermine the quality of
indicators thoroughly. Robust procedures remain stable in those situations but are more
complex to handle. The workpackage on robustness of the AMELI project developed
robust imputation procedures, in particular for multivariate data, including detection of
outlying and influential observations and small area estimation procedures. The pro-
cedures were implemented in the statistical programming language R and corresponding
packages were developed. The evaluation of the robustness of classical indicators, in
particular the Laeken indicators, and of the new robust procedures will be described in
Deliverable D7.1. Quality measures of the robustness of indicators and of the impact of
robust procedures were developed in Workpackage 4 and implemented in the Workpack-
ages 6 and 7. As a result of the analysis carried out on the robustness of procedures in
Workpackage 4, 6, and 7 recommendations are formulated in Deliverable D7.1 for the use
of indicators in what concerns robustness issues. Workpackage 4 was only possible due to
an intensive and fruitful collaboration between Technical University of Vienna and Uni-
versity of Applied Sciences Northwestern Switzerland. The discussions on contaminations
and the subsequent implementation in the simulation environments of the AMELI project
have brought research on robustness in survey sampling to a new level. The insight that
was possible due to the simulations and the new methods developed would not have been
possible without the support of the European Union through the Socio-economic Sciences
and Humanities programme of the 7th Framework Programme for Research and Develop-
ment. The workpackage contributors are greatful for the support of the European Union
and for the additional support granted from their respective institutions.
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Chapter 1

Introduction

The workpackage on robustness could profit from the development work in the EUREDIT
(cf. EUREDIT, 2003) project of the 5th Framework for Research Technology Develop-
ment (RTD) of the European Union. The work of EUREDIT resulted in two important
papers on multivariate outlier detection and imputation: Béguin and Hulliger (2004)
and Béguin and Hulliger (2008). In that project, research concentrated more on the
issues of business surveys and also used real data to test the methods, but, in contrast,
could not draw on extensive simulation framework like the one developed in AMELI. On
the other hand, the EUREDIT concepts of true data, raw data and imputed data as well
as certain of the criteria to evaluate the success of editing and imputation were also used
in AMELI. The EDIMBUS manual on editing and imputation of cross sectional busi-
ness surveys was another important source for the AMELI project since it clarified the
importance of an overall design of data preparation (EDIMBUS, 2007).

The robustness problems posed by SILC survey data are radically different when they
are tackled from a univariate point of view, i.e. starting with the equivalized dispos-
able income, or when they are regarded as a multivariate problem with possibly outlying
income components. AMELI researched both avenues and the structure of this deliv-
erable reflects this: Part I is dedicated to univariate robust methods and part II treats
multivariate robust methods. Most of the social inclusion indicators called Laeken indic-
ators are inherently robust because the estimands are robust functionals of the population
distribution. This holds for the Median and the poverty threshold as well as for the At-
risk-of-poverty-rate (ARPR) and for the Relative-Poverty-Median-Gap. These measures
are defined through the median, which is outlier robust and a functional of the population
distribution with bounded influence of outliers. These measures are not investigated in
depth in the AMELI project but sometimes serve as references and counterexamples to
non-robust behaviour.

Though the population mean is not part of the social cohesion indicators of the EU, it
is an important indicator simply because its relation with the total disposable income of
a population or a part of the population. In addition it is an indicator which is used
in many other contexts and therefore its robustness and robusfitication are treated to a
certain extent in Chapter 2.

The most critical social inclusion indicator in terms of outlier sentsitivity is the Quintile
Share Ratio (QSR), sometimes also called S80/S20. The QSR is designed to measure
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inequality of income distribution and therefore must, by definition, be sensitive to large
incomes. The conflict between the sensitivity of the population functional to outliers,
which is an relevant objective of any inequality measure, and the inherent non-robustness
is discussed in Part I. The Quintile Share Ratio has a very valuable property: it is simple to
explain. The simplicity of the explanation is particularly important when the discussion
on social inclusion should be carried to a large part of the society and this is exactly
the purpose of these indicators. The Gini-indicator, which has a much longer history
in measuring distribution inequality, lacks the simplicity of the Quintile Share Ratio.
Nevertheless it has been extensively studied and it is interesting to understand the different
behaviour of the Quintile Share Ratio and the Gini-indicator.

Two lines of robustification have been investigated in the AMELI project. One borrows
strength from a parametric model of the tail distribution. It is treated in Chapter 3. The
second is non-parametric in spirit and builds on the experiences with the estimation of
population means and tries to find an optimal trade-off between variance and bias. This
robustification of the Quintile Share Ratio is developed in Chapter 4. An important issue is
the robustification of estimates which are derived for small areas or domains with the help
of models. These methods can be used to obtain better predictions of individual incomes
and they may be used to derive social inclusion indicators for small areas or domains.
Therefore, the robustification must already be used when estimating the models that lead
to predicted income. First methods have been developed in these areas and are described
in Chapter 5.

Part II describes the problems and the methods encountered when outliers in the income
components should be detected and replaced by values which are less harmful to the
social inclusion indicators. Only very few methods can stand the complexity of the data
of SILC. For example, the approach to consider the income components as compositions of
the equivalized disposable income did not prove viable mainly because of the zero-inflated
distributions of the components. Other methods fail due to the missing values contained
in the data. The evaluation of these methods is mainly described in Deliverable Hulliger
et al. (2011). Intermediate simulations which were carried out for the development of the
methods are reported here.
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Chapter 2

Basic Robust Univariate Estimators

In this chapter, we introduce some basic, univariate location estimators that are robust
w.r.t. outlier contamination. These estimators serve as building blocks for more sophist-
icated estimators and are usefull for comparison purposes.

Finite population parameters are often very sensitive to the presence of outliers in the
population. The most prominent example is the mean of a finite population: it depends
on all observations in the population and therefore must also be influenced by extreme
observations. This is to be contrasted to model (infinite population) parameters, which
are usually insensitive to outliers. This basic difference is also reflected in the distinction
between representative and non-representative outliers introduced by (Chambers, 1986).
Because of this difference of estimands, the problem of outlier robustness is therefore dif-
ferent for finite and infinite populations (Hulliger, 1991, 1995; Beaumont and Alavi,
2004). As noted by Chambers (1986), it is the sampling error (or the prediction error
in a model-based framework) of an estimator which must be insensitive to outliers in
finite populations and not necessarily the estimator itself. Nevertheless, and in particular
for social inclusion indicators, much attention should be given to the question whether
a sensitive estimand is really needed. The Laeken indicators have striken a good choice
there in that the poverty indicators are robust estimands. However, it is inevitable to use
a sensitive estimand for inequality, as is the Quintile Share Ratio.

Suppose a sample s (with fixed sample size n < N) has been drawn from the finite
population U = {1, . . . , N} according to the sampling design p(S). Denote by yi, i ∈ U the
variable of interest. In the matter at hand, we are interested in estimating the population
mean ȳ =

∑
U yi/N . To each sampled element in s is attached a weight wi that reflects the

sample inclusion probabilities πi (and probably weight-adjustments such as calibration,
non-response corrections and the like). Notably, we may have that wi = 1/πi where
πi =

∑
s:i∈s p(s), i = 1, . . . , N and in any case we assume that

∑
i∈swi = N . The

weighted mean writes

TM =

∑
i∈swiyi∑
i∈swi

. (2.1)

Because we assume that wi = 1/πi, TM is the Hajek estimator (cf. Hulliger, 1999). We
do not study pure Horvitz-Thompson estimators for the population mean, since they are
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10 Chapter 2. Basic Robust Univariate Estimators

rarely used in practice. It is obvious that the weighted mean can be severely influenced
by both representative and non-representative outliers.

2.1 Weighted Sample Median

The weighted sample median may be considered as a remedy to the non-robust weighted
sample mean at the price of a considerable loss of efficiency. Let {y(j), j = 1, . . . , n} denote
the ith order statistics of the sample {yi, i = 1, . . . , n} and wj = wi if y(j) = yi (i.e. the
weights are sorted according to the ordering of the yi). For the population U , the pth
quantile, Qp, is obtained solving the estimating equation (EE)

∑N
i=1[1{yi ≤ Qp}− p] = 0.

For the sample s, a Horvitz-Thompson-type quantile estimator is given by solving the
sample EE (cf. Binder and Patak, 1994)

∑
i∈s

wi[1{yi ≤ Q̂p} − p] = 0. (2.2)

The sample median is obtained with p = 0.5. For a discussion of the limiting distribution
of sample quantiles and (approximations to) their variance estimators, see Francisco
and Fuller (1991); and Shao (1994) (who uses less restrictive assumptions on the sample
design and the asymptotic setting).

For a simple random sample, the sample median is robust in the classical sense; see
e.g., Hampel et al. (1986). Therefore, its design variance is essentially unaffected by
the presence of an outlier in the finite population, no matter how large is that outlier.
However, Beaumont and Alavi (2004) show that the sampling error and the design bias
of the sample median, when used as an estimator of the finite population mean, take an
arbitrarily large value when one or more population unit takes an arbitrarily large value.
This is explained by the fact that the finite population mean itself takes an arbitrarily
large value in such a case. In fact, it is not the sample median which is not robust, but the
estimand, i.e. the population mean. Unlike the sample median, the sample mean is design
unbiased but it is not robust in the classical sense. The sampling error and the design
variance of the sample mean can thus be heavily affected by the presence of an outlier
in the finite population. This illustrates why outlier-robustness for finite populations is
often viewed as a trade-off between bias and variance and why outliers must usually have
an influence, at least to some extent, on estimators (Hulliger, 1991, 1995).

If weights are needed in (2.2), the (weighted) sample median may be much less robust:
The breakdown point of the median no longer depends on the number of contaminated
observations but on the sum of their weights. If 5%, say, of the observations, account for
50% of the total weight then the breakdown point of the median is 5%!

2.2 Trimmed and Winsorized Weighted Sample Mean

It will prove useful to express the trimmed mean as a smooth location L-functional. We
introduce these location functionals for the classical, infinite-sample context and adopt
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2.2 Trimmed and Winsorized Weighted Sample Mean 11

them in a second step to the finite population sampling paradigm. Therefore, let Y ∼
F ∈ F with F the set of all real-valued distribution functions with support Y ∈ R.
The smooth location L-functional TT : R 7→ Y is defined as TT (F ) =

∫
xJ [F (x)]dF (x)

where J is a weight function J : [0, 1] 7→ R (depending on the characteristics of J ,
we may require additional restrictions on F for TT (F ) to be behave well; see Serfling
(1980) for details). The location L-functional is asymptotically equivalent to the estimator
TT (Fn) = 1/N

∑N
j=1 J(j/N)Y(j) where Y(j) is the jth order statistics.

For the α-trimmed sample mean, the weight function is defined as J(t) = 1/(1−2α)1{α <
t ≤ 1−α} with 0 < α < 0.5. In fact, the α-trimmed sample mean discards all observations
below the α and above the (1−α) quantile. Similarly, we may define a one-sided α-trimmed
sample mean with Jo(t) = 1/(1 − α)1{t ≤ 1 − α}. This estimator is particularly useful
for the positive-valued skewed income distribution.

Let y(j) denote the jth order statistics. The finite-population-sampling analogue of TT (F )
can be obtained from

TT (Fn) =
1

N

N∑
j=1

cjy(j) with cj = wjJ

(∑j
k=1 wk
N

)
, (2.3)

where J is a weight function; see Shao (1994) for details. If the population size N is not
known, it may be estimated by N̂ =

∑
i∈swi.

The α-trimmed and the one-sided α-trimmed sample mean are implemented in the R-
package RHT (2011); see tsvymean therein.

Besides the trimmed sample mean, the winsorized sample mean has received a lot of atten-
tion (see e.g., Searls, 1966; Hulliger, 1991; Fuller, 1991; Rivest, 1994; Hulliger,
1999; Beaumont and Rivest, 2009). The winsorized sample mean cannot be repres-
ented as smooth location L-functional. Though, an adaptation of the winsorized mean
to the finite population sampling context follows immediately. Let α ∈ [0, 0.5) be the
wisorization-tuning constant. Define Fn(t) =

∑t
j=1wj/

∑n
j=1wj with wj = wi if y(j) = yi

(i.e., the weights ordered accoring to y). Find the numbers

al = min{j : Fn(j) ≥ α}, (2.4)

au = max({j : Fn(j) < 1− α}, al). (2.5)

These are the inner α and 1 − α quantiles. The weighted α-winsorized sample mean is
given by (Hulliger, 1999)

TW =
1∑
swi

( au∑
j=al

wjy(j) +

al−1∑
j=1

wjy(al) +
n∑

j=au+1

wjy(au)

)
. (2.6)

The α-winsorized sample mean is implemented in the R-package RHT (2011); see tsvy-

mean therein.
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12 Chapter 2. Basic Robust Univariate Estimators

2.3 Robust Horvitz-Thompson and Ratio M-Estimators

Hulliger (1995) introduced a robustification of the Horvitz-Thompson estimator based
on M-estimators. The key to the robustification is to make the assisting model of the
Horvitz-Thompson estimator explicit. The Horvitz-Thompson estimator is designed for
the situation where the response variable of interest is linearly related to a design variable
zi ∝ πi: yi = βzi +Ei, where the error has variance σ2

E = ziσ
2. It then turns out that the

Horvitz-Thompson estimator is defined as z̄U β̂ where β̂ is defined through the following
estimating equation:

n∑
i=1

wi

(
yi − βzi√

zi

)
√
zi = 0, (2.7)

where zi =
∑n

i=1wi/(nwi). The Horvitz-Thompson estimator for the mean is THT = z̄U β̂.
Note that here we derive the measure of size zi from the weight wi and therefore the Hajek
estimator for z̄U =

∑n
i=1wizi/

∑n
i=1 wi = 1.

The robustification of the Horvitz-Thompson estimator proposed in Hulliger (1995)
assumes that the weights are not outlying and thus only the residuals (yi−βzi)/

√
zi must

be robustified. This leads to a new estimating equation

n∑
i=1

wi ψc

(
yi − βzi√

zi

)
√
zi = 0, (2.8)

where ψc, as a default, is the Huber psi-function. Of course also robustification of the
wi, resp. zi, are possible. The solution of (2.8) is the robustified Horvitz-Thompson
estimator. This estimator can be expressed as weighted estimator, so that the solution
can be obtained by an IRLS algorithm. For the IRLS algorithm a starting value β(0) =
medi(yi, wi)/medi(zi, wi) is used, where medi(yi, wi) is the weighted median of yi. As a
next step a robust standard deviation of the standardized residuals ri = (yi− β(0)zi)/

√
zi

is calculated. The median absolute deviation (mad) is used:

σ̂E = madi(ri, wi) (2.9)

Then, one obtains a robustness weight ui for each observation from

ui =
ψc(ri/σ̂E)

|ri/σ̂E|
. (2.10)

The robustness weight is 1 for observations which are not downweighted, i.e. which are
considered good observations. For outliers, the robustness weight is lower than 1 and it

AMELI-WP4-D4.2



2.4 Choosing the tuning constant 13

may become 0 or nearly so for extreme outliers. Therefore, an estimate of the robustified
Horvitz-Thompson estimator on the (t + 1)th iteration (t ∈ N+

0 ) can be expressed as a
weighted estimator

β(t+1) =

∑n
i=1wiuiyi∑n
i=1wiuizi

, (2.11)

where ui depends on β(t) (the functional dependence is suppressed for ease of display).
The iterative estimation process is repeated until some convergence criterion is met (e.g.,
|β(s+1) − β(s)| ≤ acc with s ∈ N+

0 and acc = 0.00001, say). Using as a covariate zi =
1 instead, gives an M-estimator that does not take into account a possible correlation
between the weights and the response variable yi.

Replacing in (2.8) zi by a covariable xi of which the population mean x̄U is known and
which is correlated to yi we obtain a robust ratio estimator. The robust Horvitz-Thompson
M -estimator and the robust, weighted M -estimator are implemented in the R-package
RHT (2011); see msvymean therein.

The robust ratio estimator was introduced by Gwet and Rivest (1992) and Hulliger
(1995). The robust ratio M-estimator is implemented in the R-package RHT (2011); see
rsvymean therein.

2.4 Choosing the tuning constant

The difficult issue when using univariate robust estimators for asymmetric distributions
is that, inevitably, the robust estimators have a bias. Fortunately the lower variance
compensates at least partially the bias. Thus the question of choosing the tuning constant
has two aspects:

1. How many outliers are in the sample even in the best case? We would like to be
protected against such a minimal number of outliers. This sets an upper bound
to the tuning constant. In fact, if this minimal proportion of outliers we have to
expect is α then there is a tuning constant which declares a proportion α of the
observations as outliers. Of course we would have to translate this into proportion
of weight of the outliers when weighting is involved. In order to be protected against
such a proportion of outliers we already accept a certain bias. This is a price to pay
for the security of being protected against a small number of outliers at least.

2. If there are even more outliers than in the best case we would like to be protected but
we know that the price may become larger in terms of bias. However, we hope that
in terms of variance a slight gain is possible due to the downweighting of extremes.
Thus the question is, where is the best trade-off between bias and variance.

The way to proceed is always to calculate the robust estimator not just for one tuning
constant but for a whole series. Then the change from practically downweighting no
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outlier to a robust estimator with a particular tuning constant can be compared and
also corresponding variance estimates are available. Often the variance gain is already
considerable for slight downweighting while the bias is small. Finding the point where the
bias begins to grow fast when downweighting more and more is the difficult task.

When searching for the good tuning constant it is always helpful to observe the mean of
the robustness weights (weighted or unweighted): ūS =

∑n
i=1 ui/n or

∑n
i=1wiui/

∑n
i=1wi.

The mean of the robustness weights measures how much weight is left in the effective
sample. In many situations ū should not drop below 0.99 or 0.98 to avoid a too large bias.
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Chapter 3

Semi-Parametric Robust Estimation

In this chapter, robust semiparametric estimation of social exclusion indicators and their
application with the R package laeken is discussed. Special emphasis is thereby given
to income inequality indicators, as the standard estimates for these indicators are highly
influenced by outliers in the upper tail of the income distribution. This influence can
be reduced by modeling the upper tail with a Pareto distribution in a robust manner.
The focus of the paper is on both, to demonstrate the functionality of laeken beyond
the standard estimation techniques and to give a brief mathematical description of the
implemented procedures.

3.1 Introduction

From a robustness point of view, the standard estimators for some of the social exclusion
indicators defined by Eurostat (2004, 2009) are problematic. In particular the income
inequality indicators quintile share ratio (QSR) and Gini coefficient suffer from a lack of
robustness. Consider, e.g., the QSR, which is estimated as the ratio of estimated totals
or means (see Section 3.2.1 for an exact definition). It is well known that the classical
estimates for totals or means have a breakdown point of 0, meaning that even a single
outlier can distort the results to an arbitrary extent. In fact, the influence of a single
observation in the upper tail of the income distribution on the estimation of the QSR is
linear and therefore unbounded. For practical purposes, the standard QSR estimator thus
cannot be recommended in many situations (cf. Hulliger and Schoch, 2009). It is also
important to note that the behavior of the Gini coefficient is similar to the behavior of
the QSR.

The data basis for the estimation of the social exclusion indicators according to Euro-
stat (2004, 2009) is the European Union Statistics on Income and Living Conditions
(EU-SILC), which is an annual panel survey conducted in EU member states and other
European countries. On the one hand, EU-SILC data typically contain a considerable
amount of representative outliers in the upper tail of the income distribution, i.e., cor-
rect observations that behave differently from the main part of the data, but that are
not unique in the population and hence need to be considered for computing estimates
of the indicators. On the other hand, EU-SILC data frequently contain some even more
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18 Chapter 3. Semi-Parametric Robust Estimation

extreme nonrepresentative outliers, i.e., observations that are either incorrect or can be
considered unique in the population. Consequently, such nonrepresentative outliers need
to be excluded from the estimation process or downweighted.

As a remedy, the upper tail of the income distribution may be modeled with a Pareto
distribution in order to recalibrate the sample weights or use fitted income values for obser-
vations in the upper tail when estimating the indicators (see Section 3.6). Nevertheless,
classical estimators for the parameters of the Pareto distribution are highly influenced
by the nonrepresentative outliers themselves. Using robust methods reduces the influ-
ence on fitting the Pareto distribution to the representative outliers and therefore on the
estimation of the indicators.

Rather than evaluating these methods, the paper concentrates on showing how they can
be applied in the statistical environment R (R Development Core Team, 2011) with
the add-on package laeken (Alfons et al., 2011a). The basic design of the package,
as well as standard estimation of the social exclusion indicators is discussed in detail
in vignette laeken-standard (Templ and Alfons, 2011a). Furthermore, the general
framework for variance estimation is illustrated in vignette laeken-variance (Templ
and Alfons, 2011b). Those documents can be viewed from within R with the following
commands:

R> vignette("laeken-standard")

R> vignette("laeken-variance")

. Throughout the paper, the example data from package laeken is used. The data set is
called eusilc and consists of 14 827 observations from 6 000 households. In addition, it
was synthetically generated from Austrian EU-SILC survey data from 2006 using the data
simulation methodology proposed by Alfons et al. (2011b) and implemented in the R
package simPopulation (Alfons and Kraft, 2010). More information on the example
data can be found in vignette laeken-standard or in the corresponding R help page.

R> library("laeken")

R> data("eusilc")

The rest of the paper is organized as follows. Section 3.2 gives a mathematical description
of the Eurostat definitions of the social exclusion indicators QSR and Gini coefficient. In
Section 3.3, the Pareto distribution is briefly discussed. Section 3.4 discusses a rule of
thumb for estimating the threshold for the upper tail of the distribution, and illustrates
graphical methods for exploring the data in order to find the threshold. Classical and
robust estimators for the shape parameter of the Pareto distribution are described in
Section 3.5. How to use Pareto tail modeling to estimate the social exclusion indicators
is then shown in Section 3.6. Finally, Section 3.7 concludes.
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3.2 Social exclusion indicators 19

3.2 Social exclusion indicators

This paper is focused on the inequality indicators quintile share ratio (QSR) and Gini
coefficient, which are both highly influenced by outliers in the upper tail of the distribution.
Note that for the estimation of the social exclusion indicators, each person in a household is
assigned the same equivalized disposable income. See vignette laeken-standard (Templ
and Alfons, 2011a) for the computation of the equivalized disposable income with the
R package laeken.

For the following definitions, let x := (x1, . . . , xn)′ be the equivalized disposable income
with x1 ≤ . . . ≤ xn and let w := (wi, . . . , wn)′ be the corresponding personal sample
weights, where n denotes the number of observations.

3.2.1 Quintile share ratio (QSR)

The income quintile share ratio (QSR) is defined as the ratio of the sum of the equivalized
disposable income received by the 20% of the population with the highest equivalized dis-
posable income to that received by the 20% of the population with the lowest equivalized
disposable income (Eurostat, 2004, 2009).

For the estimation of the quintile share ratio from a sample, let q̂0.2 and q̂0.8 denote the
weighted 20% and 80% quantiles, respectively. With 0 ≤ p ≤ 1, these weighted quantiles
are given by

q̂p = q̂p(x,w) :=

{
1
2
(xj + xj+1), if

∑j
i=1wi = p

∑n
i=1wi,

xj+1, if
∑j

i=1wi < p
∑n

i=1 wi <
∑j+1

i=1 wi.
(3.1)

Using index sets I≤q̂0.2 := {i ∈ {1, . . . , n} : xi ≤ q̂0.2} and I>q̂0.8 := {i ∈ {1, . . . , n} : xi > q̂0.8},
the quintile share ratio is estimated by

Q̂SR :=

∑
i∈I>q̂0.8

wixi∑
i∈I≤q̂0.2

wixi
. (3.2)

With package laeken, the quintile share ratio can be estimated using the function qsr().
Sample weights can thereby be supplied via the weights argument.

R> qsr("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 3.971415

3.2.2 Gini coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the population
arranged according to the level of equivalized disposable income, to the cumulative share
of the equivalized total disposable income received by them (Eurostat, 2004, 2009).
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20 Chapter 3. Semi-Parametric Robust Estimation

For the estimation of the Gini coefficient from a sample, the sample weights need to be
taken into account. In mathematical terms, the Gini coefficient is estimated by

Ĝini := 100

2
∑n

i=1

(
wixi

∑i
j=1wj

)
−
∑n

i=1 w
2
i xi

(
∑n

i=1wi)
∑n

i=1 (wixi)
− 1

 . (3.3)

The function gini() is available in laeken to estimate the Gini coefficient. As before,
sample weights can be specified with the weights argument.

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 26.48962

3.3 The Pareto distribution

The Pareto distribution is well studied in the literature and is defined in terms of its
cumulative distribution function

Fθ(x) = 1−
(
x

x0

)−θ
, x ≥ x0, (3.4)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter (Kleiber and
Kotz, 2003). Furthermore, its density function is given by

fθ(x) =
θxθ0
xθ+1

, x ≥ x0. (3.5)

Figure 3.1 visualizes the Pareto probability density function with scale parameter x0 = 1
and different values of the shape parameter θ. Clearly, the Pareto distribution is a highly
right-skewed distribution with a heavy tail. It is therefore reasonable to assume that a
random variable following a Pareto distribution contains extreme values. The effect of
changing the shape parameter θ is visible in the probability mass at the scale parameter
x0: the higher θ, the higher the probability mass at x0.

In Pareto tail modeling, the cumulative distribution function on the whole range of x is
modeled as

F (x) =

{
G(x), if x ≤ x0,
G(x0) + (1−G(x0))Fθ(x), if x > x0,

(3.6)

where G is an unknown distribution function (Dupuis and Victoria-Feser, 2006).

Let n be the number of observations and let x = (x1, . . . , xn)′ denote the observed values
with x1 ≤ . . . ≤ xn. In addition, let k be the number of observations to be used for tail
modeling. In this scenario, the threshold x0 is estimated by

x̂0 := xn−k. (3.7)
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Figure 3.1: Pareto probability density functions with parameters x0 = 1 and θ = 1, 2, 3.

If an estimate x̂0 for the scale parameter of the Pareto distribution has been obtained, k
is given by the number of observations larger than x̂0. Thus estimating x0 and k directly
corresponds with each other.

In the remainder of this chapter, the equivalized disposable income of the EU-SILC ex-
ample data is of main interest. Consequently, the Pareto distribution will be modeled at
the household level rather than the individual level. Moreover, the focus of the chapter
would be on robust estimation of the social exclusion indicators. Hence the equivalized
disposable income of the household with the largest income is replaced by a large outlier.

R> hID <- eusilc$db030[which.max(eusilc$eqIncome)]

R> eusilc[eusilc$db030 == hID, "eqIncome"] <- 1e+07

Since the aim is to model a Pareto distribution at the household level, the following
command creates a data set that contains only the equivalized disposable income and the
sample weights on the household level. This data set will be used in Sections 3.4 and 3.5
to estimate the parameters of the Pareto distribution.

R> eusilcH <- eusilc[!duplicated(eusilc$db030), c("eqIncome", "db090")]

3.4 Finding the threshold

The aim of the methods presented in this sections is to find the threshold x0 for modeling
the Pareto distribution. Several methods for the estimation of the threshold x0 or the
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number of observations k in the tail have been proposed in the literature, but those
proposals typically do not consider sample weights.

Beirlant et al. (1996b,a) developed a procedure that analytically determines the optimal
choice of k for the Hill estimator of the shape parameter (Hill, 1975, see also Section 3.5.1
of this paper) by minimizing the asymptotic mean squared error (AMSE). In package
laeken, this approach is implemented in the function minAMSE(). However, the procedure
is designed for the non-robust Hill estimator and is therefore not further discussed in this
paper. Furthermore, Danielsson et al. (2001) proposed a bootstrap method to find the
optimal k for the Hill estimator with respect to the AMSE, which has less analytical
requirements than the approach by Beirlant et al. (1996b,a). Please note that this
method is not robust either and that it is currently not available in package laeken. A
robust prediction error criterion for choosing the number of observations k in the tail
and estimating the shape parameter θ was developed by Dupuis and Victoria-Feser
(2006). Nevertheless, our implementation of this robust criterion was unstable and is
therefore not included in laeken.

In any case, Holzer (2009) concludes that graphical methods for finding the threshold
outperform those analytical approaches in the case of EU-SILC data. While this section
is thus focused on graphical methods, a simple rule of thumb designed specifically for the
equivalized disposable income in EU-SILC data is described in the following as well.

3.4.1 Van Kerm’s rule of thumb

Van Kerm (2007) presented a formula that is more of a rule of thumb for the threshold
of the equivalized disposable income in EU-SILC data. Is is given by

x̂0 := min(max(2.5x̄, q0.98), q0.97), (3.8)

where x̄ is the weighted mean, and q0.98 and q0.97 are weighted quantiles as defined in
Equation (3.1).

In package laeken, the function paretoScale() provides functionality for computing the
threshold with van Kerm’s rule of thumb. The argument w is available to supply sample
weights.

R> ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090)

R> ts

Threshold: 48459.43

Number of observations in the tail: 119

It should be noted that the function returns an object of class paretoScale, which consists
of a component x0 for the threshold (scale parameter) and a component k for the number
of observations in the tail of the distribution, i.e., that are larger than the threshold.
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3.4.2 Pareto quantile plot

The Pareto quantile plot is a graphical method for inspecting the parameters of a Pareto
distribution. For the case without sample weights, it is described in detail in Beirlant
et al. (1996b).

If the Pareto model holds, there exists a linear relationship between the logarithms of
the observed values and the quantiles of the standard exponential distribution, since the
logarithm of a Pareto distributed random variable follows an exponential distribution.
Hence the logarithms of the observed values, log(xi), i = 1, . . . , n, are plotted against the
theoretical quantiles.

In the case without sample weights, the theoretical quantiles of the standard exponential
distribution are given by

− log

(
1− i

n+ 1

)
, i = 1, . . . , n, (3.9)

i.e., by dividing the range into n + 1 equally sized subsets and using the resulting n
inner gridpoints as probabilities for the quantiles. If the data contain sample weights,
the range of the exponential distribution needs to be divided according to the weights of
the n observations. The Pareto quantile plot is thus generalized by using the theoretical
quantiles

− log

(
1−

∑i
j=1wj∑n
j=1wj

n

n+ 1

)
, i = 1, . . . , n, (3.10)

where the correction factor n
n+1

ensures that the quantiles reduce to (3.9) if all sample
weights are equal.

If the tail of the data follows a Pareto distribution, those observations form almost a
straight line. The leftmost point of a fitted line can thus be used as an estimate of the
threshold x0, the scale parameter. All values starting from the point after the threshold
may be modeled by a Pareto distribution, but this point cannot be determined exactly.
Furthermore, the slope of the fitted line is in turn an estimate of 1

θ
, the reciprocal of the

shape parameter.

Figure 3.2 displays the Pareto quantile plot for the example data eusilc on the household
level with the largest observation replaced by an outlier. The plot is generated using the
function paretoQPlot(), which allows to supply sample weights via the argument w. In
addition, the threshold can be selected interactively by clicking on a data point. Inform-
ation on the selected threshold is then printed on the R console. When the interactive
selection is terminated, which is typically done by a secondary mouse click, the selected
threshold is returned as an object of class paretoScale.

Another advantage of the Pareto quantile plot is also illustrated in Figure 3.2. Nonrepres-
entative outliers such as the large income introduced into the example data in Section 3.3,
i.e., extreme observations in the upper tail that deviate from the Pareto model, are clearly
visible.
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R> paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090)
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Pareto quantile plot

Theoretical quantiles

Figure 3.2: Pareto Quantile plot for the example data eusilc on the household level with
the largest observation replaced by an outlier.

3.4.3 Mean excess plot

The mean excess plot is another graphical method for inspecting the threshold for Pareto
tail modeling, but it does not provide information on the shape parameter. It is based on
the excess function

e(x0) := E(x− x0|x > x0), x0 ≥ 0. (3.11)

A detailed description for the case without sample weights can be found in Borkovec
and Klüppelberg (2000).

For the following definition of the mean excess plot, keep in mind that the observations are
sorted such that x1 ≤ . . . ≤ xn. For each observation xi, i = 1, . . . , bn−

√
nc, the empirical

excess function en is computed. In the case without sample weights, the expectation in
Equation (3.11) is replaced by the arithmetic mean, and the empirical excess function is

AMELI-WP4-D4.2



3.4 Finding the threshold 25

given by

en(xi) :=
1

n− i

n∑
j=i+1

(xj − xi), i = 1, . . . , bn−
√
nc. (3.12)

The values of the empirical excess function en(xi) are then plotted against the correspond-
ing xi, i = 1, . . . , bn−

√
nc. If sample weights are available in the data, the mean excess

plot is simply generalized by using the weighted mean for the empirical excess function:

en(xi) :=
1∑n

j=i+1 wj

n∑
j=i+1

wj(xj − xi), i = 1, . . . , bn−
√
nc. (3.13)

If the tail of the data follows a Pareto distribution, those observations show a positive
linear trend. The leftmost point of a fitted line can thus be used as an estimate of the
threshold x0, the scale parameter. As for the Pareto quantile plot, a disadvantage of the
mean excess plot is that the threshold cannot be determined exactly.

R> meanExcessPlot(eusilcH$eqIncome, w = eusilcH$db090)
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Figure 3.3: Mean excess plot for the example data eusilc on the household level with
the largest observation replaced by an outlier.
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26 Chapter 3. Semi-Parametric Robust Estimation

Figure 3.3 shows the mean excess plot for the example data eusilc on the household level
with the largest observation replaced by an outlier. The function meanExcessPlot() is
thereby used to produce the plot. Sample weights can be supplied via the argument w.
Interactive selection of the threshold works just like for the Pareto quantile plot. Again,
the selected threshold is returned as an object of class paretoScale.

3.5 Estimation of the shape parameter

This section is focused on methods for estimating the shape parameter θ once the threshold
x0 is fixed. It should be noted that none of the original proposals takes sample weights
into account. Most estimators presented in the following were therefore adjusted for the
case of sample weights.

3.5.1 Hill estimator

The maximum likelihood estimator for the shape parameter of the Pareto distribution
was introduced by Hill (1975) and is referred to as the Hill estimator. If the data do not
contain sample weights, it is given by

θ̂Hill =
k∑k

i=1 log xn−k+i − k log xn−k
. (3.14)

In the case of sample weights, the weighted Hill (wHill) estimator is given by generalizing
Equation (3.14) to

θ̂wHill =

∑k
i=1wn−k+i∑k

i=1wn−k+i (log xn−k+i − k log xn−k)
. (3.15)

Package laeken provides the function thetaHill() to compute the Hill estimator. It
requires to specify either the number of observations in the tail via the argument k, or
the threshold via the argument x0. Furthermore, the argument w can be used to supply
sample weights. In the following example, the shape parameter is estimated using the
largest observations (first command) and the threshold (second command) as computed
with van Kerm’s rule of thumb in Section 3.4.1.

R> thetaHill(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 3.437979

R> thetaHill(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 3.437979
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3.5 Estimation of the shape parameter 27

3.5.2 Weighted maximum likelihood estimator

The weighted maximum likelihood (WML) estimator (Dupuis and Morgenthaler,
2002; Dupuis and Victoria-Feser, 2006) falls into the class of M-estimators and is
given by the solution θ̂ of

k∑
i=1

Ψ(xn−k+i, θ) = 0 (3.16)

with

Ψ(x, θ) := u(x, θ)
∂

∂θ
log f(x, θ) = u(x, θ)

(
1

θ
− log

x

x0

)
, (3.17)

where u(x, θ) is a weight function with values in [0, 1] and f(x, θ) is a density function
with unknown population parameter θ. In the implementation in package laeken, a Huber
type weight function is used by default, as proposed by Dupuis and Victoria-Feser
(2006). Let the logarithms of the relative excesses be denoted by

zi := log

(
xn−k+i

xn−k

)
, i = 1, . . . , k. (3.18)

In the Pareto model, these can be predicted by

ẑi := −1

θ
log

(
k + 1− i
k + 1

)
, i = 1, . . . , k. (3.19)

The variance of zi is given by

σ 2
i :=

i∑
j=1

1

θ2(k − i+ j)2
, i = 1, . . . , k. (3.20)

Using the standardized residuals

ri :=
zi − ẑi
σi

, (3.21)

the Huber type weight function with tuning constant c is defined as

u(xn−k+i, θ) :=

{
1, if |ri| ≤ c,
c
|ri| , if |ri| > c.

(3.22)

For this choice of weight function, the bias of θ̂ is approximated by

B̂(θ̂) = −
∑k

i=1

(
ui

∂
∂θ

log fi
)
|θ̂ (Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1))∑k

i=1

(
∂
∂θ
ui

∂
∂θ

log fi + ui
∂2

∂θ2
log fi

)
|θ̂ (Fθ̂(xn−k+i)− Fθ̂(xn−k+i−1))

, (3.23)
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28 Chapter 3. Semi-Parametric Robust Estimation

where ui := u(xn−k+i, θ) and fi := f(xn−k+i, θ). This term is used to obtain a bias-
corrected estimator

θ̃ := θ̂ − B̂(θ̂). (3.24)

For details and proofs of the above statements, as well as for information on a probability-
based weight function u(x, θ), the reader is referred to Dupuis and Morgenthaler
(2002) and Dupuis and Victoria-Feser (2006). However, note the WML estimator
does not consider sample weights. An adjustment of the estimator to take sample weights
into account is currently not available due to its complexity. For sampling designs that
lead to equal sample weights, the WML estimator may still be useful, though.

The function thetaWML() is available in laeken to compute the WML estimator. Again,
either the argument k or x0 needs to be used to specify the number of observations in the
tail or the threshold. Since the sample weights in the example data are not equal, the
following example is only included to demonstrate the use of the function.

R> thetaWML(eusilcH$eqIncome, k = ts$k)

[1] 4.226204

R> thetaWML(eusilcH$eqIncome, x0 = ts$x0)

[1] 4.226204

3.5.3 Integrated squared error estimator

For the integrated squared error (ISE) estimator (Vandewalle et al., 2007), the Pareto
distribution is modeled in terms of the relative excesses

yi :=
xn−k+i

xn−k
, i = 1, . . . , k. (3.25)

The density function of the Pareto distribution for the relative excesses is approximated
by

fθ(y) = θy−(1+θ). (3.26)

The ISE estimator is then given by minimizing the integrated squared error criterion
(Terrell, 1990):

θ̂ = arg min
θ

[∫
f 2
θ (y)dy − 2E(fθ(Y ))

]
. (3.27)

If there are no sample weights in the data, the mean is used as an unbiased estimator of
E(fθ(Y )) in order to obtain the ISE estimate

θ̂ISE = arg min
θ

[∫
f 2
θ (y)dy − 2

k

k∑
i=1

fθ(yi)

]
. (3.28)
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3.5 Estimation of the shape parameter 29

See Vandewalle et al. (2007) for more information on the ISE estimator for the case
without sample weights.

If sample weights are available in the data, the mean in Equation (3.28) is simply replaced
by a weighted mean to obtain the weighted integrated squared error (wISE) estimator:

θ̂wISE = arg min
θ

[∫
f 2
θ (y)dy − 2∑k

i=1wn−k+i

k∑
i=1

wn−k+ifθ(yi)

]
. (3.29)

With package laeken, the ISE estimator can be computed using the function thetaISE().
The arguments k and x0 are available to specify either the number of observations in the
tail or the threshold, and sample weights can be supplied via the argument w.

R> thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 3.993801

R> thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 3.993801

3.5.4 Partial density component estimator

For the partial density component (PDC) estimator Vandewalle et al. (2007) minimizes
the integrated squared error criterion using an incomplete density mixture model ufθ. If
the data do not contain sample weights, the PDC estimator in is thus given by

θ̂PDC = arg min
θ

[
u2

∫
f 2
θ (y)dy − 2u

k

k∑
i=1

fθ(yi)

]
. (3.30)

The parameter u can be interpreted as a measure of the uncontaminated part of the
sample and is estimated by

û =
1
k

∑k
i=1 fθ̂(yi)∫
f 2
θ̂
(y)dy

. (3.31)

See Vandewalle et al. (2007) and references therein for more information on the PDC
estimator for the case without sample weights.

Taking sample weights into account, the weighted partial density component (wPDC)
estimator is obtained by generalizing Equations (3.30) and (3.31) to

θ̂wPDC = arg min
θ

[
u2

∫
f 2
θ (y)dy − 2u∑k

i=1wn−k+i

k∑
i=1

wn−k+ifθ(yi)

]
, (3.32)
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30 Chapter 3. Semi-Parametric Robust Estimation

û =

1∑k
i=1 wn−k+i

∑k
i=1wn−k+ifθ̂(yi)∫

f 2
θ̂
(y)dy

. (3.33)

The function thetaPDC() is implemented in package laeken to compute the PDC es-
timator. As for the other estimators, it is necessary to specify either the number of
observations in the tail via the argument k, or the threshold via the argument x0. Sample
weights can be supplied using the argument w.

R> thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090)

[1] 4.132596

R> thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090)

[1] 4.132596

3.6 Estimation of the indicators using Pareto tail mod-

eling

Three approaches based on Pareto tail modeling for reducing the influence of outliers on
the social exclusion indicators are implemented in the R package laeken:

Calibration for nonrepresentative outliers (CN): Values larger than a certain quantile
of the fitted distribution are declared as nonrepresentative outliers. Since these are
considered to be unique to the population data, the sample weights of the corres-
ponding observations are set to 1 and the weights of the remaining observations are
adjusted accordingly by calibration.

Replacement of nonrepresentative outliers (RN): Values larger than a certain quantile
of the fitted distribution are declared as nonrepresentative outliers. Only these non-
representative outliers are replaced by values drawn from the fitted distribution,
thereby preserving the order of the original values.

Replacement of the tail (RT): All values above the threshold are replaced by values
drawn from the fitted distribution. The order of the original values is preserved.

An evaluation of the RT approach by means of a simulation study can be found in Alfons
et al. (2010).

Keep in mind that the largest observation in the example data eusilc was replaced by a
large outlier in Section 3.3. With the following command, the Gini coefficient is estimated
according to the Eurostat definition to show that even a single outlier can completely
distort the results for the standard estimation (see Section 3.2.2 for the original value).
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3.6 Estimation of the indicators using Pareto tail modeling 31

R> gini("eqIncome", weights = "rb050", data = eusilc)

Value:

[1] 29.24333

For Pareto tail modeling, the function paretoTail() is implemented in laeken. It re-
turns an object of class paretoTail, which contains all the necessary information for
further analysis using the three approaches described above. Note that the household
IDs are supplied via the argument groups such that the Pareto distribution is fitted on
the household level rather than the individual level. In addition, the PDC is used by de-
fault to estimate the shape parameter. Other estimators can be specified via the method

argument.

R> fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090,

+ groups = eusilc$db030)

The function reweightOut() is available for semiparametric estimation with the CN
approach. It returns a vector of the recalibrated weights. In this example, regional
information is used as auxiliary variables for calibration. The function calibVars()

thereby transforms a factor into a matrix of binary variables, as required by the calibration
function calibWeights(), which is called internally. These recalibrated weights are then
simply used to estimate the Gini coefficient with function gini().

R> w <- reweightOut(fit, calibVars(eusilc$db040))

R> gini(eusilc$eqIncome, w)

Value:

[1] 26.45973

For the RN approach, the function replaceOut() is implemented. Since values are drawn
from the fitted distribution to replace the observations flagged as outliers, the seed of the
random number generator is set first for reproducibility of the results. The returned vector
of incomes is then supplied to gini() to estimate the Gini coefficient.

R> set.seed(1234)

R> eqIncome <- replaceOut(fit)

R> gini(eqIncome, weights = eusilc$rb050)

Value:

[1] 26.46924

Similarly, the function replaceTail() is available for the RT approach. Again, the seed
of the random number generator is set beforehand.
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R> set.seed(1234)

R> eqIncome <- replaceTail(fit)

R> gini(eqIncome, weights = eusilc$rb050)

Value:

[1] 26.64921

It should be noted that replaceTail() can also be used for the RN approach by set-
ting the argument all to FALSE. In fact, replaceOut(x, ...) is a simple wrapper for
replaceTail(x, all = FALSE, ...).

In any case, the estimates for the semiparametric approaches based on Pareto tail mod-
eling are very close to the original value before the outlier has been introduced (see
Section 3.2.2), whereas the standard estimation is corrupted by the outlier. Furthermore,
the estimation of other indicators such as the quintile share ratio (see Section 3.2.1) using
the semiparametric approaches is straightforward and hence not shown here.

3.7 Conclusions

This chapter introduces robust semi-parametric modelling which incooperates with sampling
weights. It also shows the functionality of package laeken for robust semiparametric es-
timation of social exclusion indicators based on Pareto tail modeling. Most notably, it
demonstrates that the functions are easy to use and that the implementation follows an
object-oriented design.

Furthermore, it is shown that the standard estimation of the inequality indicators can be
corrupted by a single outlier, thus underlining the need for robust alternatives. Three ap-
proaches for robust semiparametric estimation based on Pareto tail modeling are thereby
implemented such that the corresponding functions share a common interface for ease of
use.

Extensive simulations were carried out to gain insight into the properties of the methods.
They are fully documented in Deliverable 7.1.

Clearly, the RT approach introduces to much additional uncertainty and is not recom-
mendable, while the CN approach is favourable (see the outcome of the simulation study
in Deliverable 7.1 where detailed recommondations were made).
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Borgelt, C., González-Rodŕıguez, G., Trutschnig, W., Lubiano, M., Gil, M.,
Grzegorzewski, P. and Hryniewicz, O. (editors) Combining Soft Computing and
Statistical Methods in Data Analysis, Advances in Intelligent and Soft Computing,
vol. 77, pp. 17–24, Heidelberg: Springer, ISBN 978-3-642-14745-6.

Beirlant, J., Vynckier, P. and Teugels, J. (1996a): Excess functions and estimation
of the extreme-value index. Bernoulli, 2 (4), pp. 293–318.

Beirlant, J., Vynckier, P. and Teugels, J. (1996b): Tail index estimation, Pareto
quantile plots, and regression diagnostics. Journal of the American Statistical Associ-
ation, 31 (436), pp. 1659–1667.
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Chapter 4

Robust Non-Parametric Quintile
Share Ratio Estimator

4.1 Introduction

Lorenz curve, Gini coefficient, and the income share ratios – whereof the Quintile Share
Ratio is the most prominent and represents the primary income inequality measure in the
European Union’s set of Laeken indicators (European Commission, 2003) – are central
to the analysis of income distributions, embodying intuition about the income inequality
and social cohesion. The formal welfare propositions can only be satisfactorily invoked
if sample data can be taken as a reasonable representation of the income distribution
under consideration. In particular, data from income distributions may be contaminated
by recording errors, measurement errors and the like and, if the data cannot be purged of
these, welfare conclusions drawn from the data can be seriously misleading (Cowell and
Flachaire, 2007). In addition, extreme observations, which are not necessarily errors or
some form of contamination, can exert strong influence on the estimate of an inequality
measure (cf. Chambers, 1986). There is large bulk of literature discussing robustness
issues in income inequality measurement (see e.g., Victoria-Feser and Ronchetti,
1994; Cowell and Victoria-Feser, 1996, 2002, 2003, 2006) – but not on income share
ratios. In addition to potential outliers, appropriate statistical inference procedures are
needed to take sampling variability and the complex nature of the sampling design into
account in drawing conclusions. That is, estimators must cope with the heavily non-iid
data structure, which is typical for household-survey samples (e.g., European Statistics
on Income and Living Conditions (EU-SILC), Panel Study of Income Dynamics (PSID),
or the Current Population Survey (CPS)). This pertains primarly to variance estimation
(Hulliger and Münnich, 2006). Using the variance-covariance formulae and estima-
tion procedures applicable for a simple random sample will likely lead to biased variance
estimates for a complex random sample, which may ultimately lead to erroneous inference
(see e.g., Nyg̊ard and Sandström, 1989; Zheng, 2002; Pfeffermann, 1993).

The problem of extreme values is accentuated in complex survey samples. Unlike the case
of iid-data, it seems reasonable to define outliers not with respect to the sample because
these may have been induced or masked by the sampling design. Insofar, the sampling
design, or precisely the weighting scheme constitutes another, but indirect, channel by
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36 Chapter 4. Robust Non-Parametric Quintile Share Ratio Estimator

means of which contamination may affect the inverse-probability-weightes (e.g., Horvitz-
Thompson) estimators, aside from the contaminated observations. Indeed, extreme ob-
servations together with small inclusion probabilities have a particularly large influence
on these estimators (cf. Smith, 1987; Hulliger, 1995; Beaumont and Rivest, 2009).

The purpose of this paper is to provide robust income share ratio estimators under complex
random sampling schemes, which accord well with pragmatic procedures that are adopted
by applied researchers in this field. We show that the robust quantile share ratio estimators
obtain a good trade-off between bias and efficiency. The estimators are asymptotically
normal under weak conditions on the sampling design and their linearization variance
estimators can be estimated by a inverse-probability weighted, design-unbiased estimator
for a general class of stratified multi-stage cluster sampling designs, which are typical for
household surveys (Deaton, 2000).

The remainder of the paper is organized as follows. In Section 4.2, we introduce some
elementary functionals that will be used as building blocks. Section 4.3 is concerned with
robust estimators of the quantile share ratio. In Section 4.4, we discuss estimating the
quantile share ratios in stratified multi-stage cluster samples. Section 4.5 investigates
variance estimation and in Section 4.6, we provide strategies to adaptively choose the
trimming proportions.

4.2 Preliminaries

There is large number of approaches in the literature to the definition of an inequality
measure. We confine ourselves to the discussion of the class of income share ratios.
Typically, the income shares are defined in terms of the income distribution itself, that
is quantiles. Income quantile share ratios (QSR) offer an intuitive interpretation of the
income inequality (in contrast to e.g., the Gini coefficient) in terms of the ratio of total
income received by richest, say, for instance 20% of a country’s population (top quintile)
to that received by the 20 % of the population with the lowest income (bottom quintile);
or any similar choice of quantiles. The quintile share ratio is the most important and
marks the primary income inequality measure in the European Union’s set of Laeken
indicators (denoted S80/S20; aka Indicators on Social Exclusion an Poverty), which play
a central role in monitoring the performance of the EU member states in promoting social
inclusion (cf. Atkinson et al., 2002).

First, we introduce three elementary, statistical functionals (for infinite populations) as
building blocks. Let y1, . . . , yN be independent and identically distributed (iid) realiza-
tions of a univariate (non-negative) random variable Y from a parametric model F ∈ F ,
where F is the set of all absolutely continuous cumulative distribution functions (cdf)
with support Y ⊆ R. Let Y (Y) denote the lower (upper) limit of the support, Y , (i.e.,
Y=0, Y = ∞). Second, let Q := [0, 1] denote the set of population proportions. We
shall write any statistic as statistical functional T (F ) defined on the space of probability
distributions. In particular we define the quantile functional as

Definition 1 (Quantile functional). For any β ∈ Q, the βth quantile is the functional
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4.2 Preliminaries 37

ξ : F ×Q 7→ Y such that

ξ(F ; β) = inf{y : F (y) ≥ β}. (4.1)

The finite population analogue of ξ(F ; β) is obtained by replacing F with the empirical
distribution FU ; this is a distribution consisting of N point-masses 1/N , one at each
unit U = {1, . . . , i, . . . , N}. For ease of simplicity, let β ∈ QU with QU := {q|q =
i/N, where i ∈ U}. Thus, the βth quantile, ξ(FU ; β), is obtained as the solution to the
equation FU(ξ( ; β)) = β.

Given a predetermined quantile ξ(F ; β), we define an (income) quantile share mean, as
the mean income received by all units (i.e., households or individuals) up to the particular
quantile ξ(F ; β).

Definition 2 (Quantile share mean). For any β ∈ Q, the βth quantile share mean is the
functional Q : F ×Q 7→ Y such that

Q(F ; β) =
1

β

ξ(F ;β)∫
Y

ydF (y). (4.2)

Note that the quantile share mean functional is similar to the cumulative income func-
tional in Cowell and Victoria-Feser (2002, Definition 3), but uses a different nor-
malization. Again, the finite population analogue is obtained by plugging in the empirical
distribution FU instead of F and an estimate of the quantile ξ(F ; β). If β ∈ QU , we
can express the estimator as Q(FU ; β) = (βN)−1

∑βN
i=1 y(i), where y(i) denotes the ith or-

der statistics. Alternatively, we may represent the quantile share mean functional as a
location L-estimator (i.e., linear function of order statistics) functional, which allows to
invoke well-known result of Serfling (1980), which again will be helpful in proving the
asymptotic properties of the respective estimators. In the following proposition we state
the Q(F ; β) as an L-functional (adopting the convention that in absence of explicit limits
of integration the range is to be taken from Y to Y).

Proposition 3. Let X ∼ F ∈ F have finite variance then for any β ∈ Q, the βth quantile
share mean is the functional Q : F × Q 7→ Y and admits the following L-functional
representation

Q(F ; β) =

∫
xJq[F (x)]dF (x), F ∈ F , (4.3)

where Jq(t) is a weight generating function on [0, 1] defined as

Jq(t) = β−1
1{t ≤ β}. (4.4)
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Note that the weighting generating function Jq(t) is bounded, continuous (i.e., the set
D := {x : Jq is discontinuous at F (x)} has Lebesgue measure zero), and Jq(t) = 0 when
t > β.

For a proof in the case of iid-data see Serfling (1980, p.279–285). We will prove this
representation in a stratified multi-stage cluster sampling scheme in Section 4.5. The
Assumption that D has Lebesgue measure zero is not needed to ascertain asymptotic
normality of the estimators if we restrict attention to smooth L-statistics with weight
generating functions sufficiently smoothly trimmed (Stigler, 1973). This property is of
considerable empirical relevance when sampling is from finite populations with grouped
data (e.g., highly clustered populations; see Section 4.4) or when outliers are present
in a proportion close to the trimming proportion. Therefore, we may use, for instance,
Js(u) = h if 0 ≤ u ≤ β, Js(u) = h[2(a − β)]−1(a − u) if β ≤ u ≤ a, and zero otherwise,
where h = [β+ (1/4)(a−β)]−1 (adopting the notation in Stigler (1973)). The constant
a is chosen such that β ≤ a ≤ 1.

The functional representation of L-statistics not only helps us to see what an L-estimator
is actually estimating, but also brings into action the useful heuristic tool of the influence
function (Section 4.3). For finite populations, an estimate is obtained by plugging in the
empirical distribution FU instead of F . Thus, we write

Q(F ; β) =

∫
xJq (FU((x)) dFU (x) =

1

N

N∑
i=1

Jq

(
i

N

)
X(i), (4.5)

where Jq(t) (or Js) is defined as before, and X(i) denotes the ith order statistic.

The trimmed sample mean can be expressed as a linear combination of the quantile share
means. This is shown in the following definition.

Definition 4 (Trimmed mean). For any α, β ∈ Q and α 6= β, an asymptotically equival-
ent formulation of the trimmed sample mean as a L-functional T : F × Q × Q 7→ Y is
defined as

T (F ;α, β) =

∫
xJt[F (x)]dF (x), F ∈ F , (4.6)

where Jt(t) is a weight generating function on [0, 1] defined as Jt(t) = (β − α)−1
1{α ≤

t ≤ β}.

Similarly, we may use Js instead of Jt. Moreover, note that the quantile share means and
the trimmed sample mean are related accordingly T (F ;α, β) = [βQ(F ; β)−αQ(F ;α)][β−
α]−1.

Let p, r ∈ Q be associated with the quantiles ξp and ξr, respectively, adopting the notation
that ξp and ξr refer to the income quantile share of the Poor (bottom quantile) and the
Rich (top quantile). (One usually requires that p = 1 − r where p, r ∈ Q). Thus, we
define the quantile share ratio functional.
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4.3 Robustness properties and data contamination 39

Definition 5 (Quantile share ratio). The quantile share ratio is the functional QSR :
F ×Q×Q 7→ Y such that

QSR(F ; p, r) =
(1− r) · T (F ; r, 1)

p ·Q(F ; p)
(4.7)

Note that in the case of the quintile share ratio we choose p = 0.2 and r = 0.8. Strictly
speaking, the normalization by p and (1 − r) is not necessary unless p 6= 1 − r, but the
general ratio formula will be useful in subsequent sections. For the finite population with
cdf FU and p, r ∈ QU , an estimator is given replacing F by FU .

Estimation for such ratios is, however, not simply a matter of applying standard methods
for ratio estimation, since the quantiles must be estimated before estimating the respective
shares. This is particularly relevant for robust estimation.

4.3 Robustness properties and data contamination

Estimates of income inequality indicators are known to be sensitive to outlying observa-
tions from the tails of the income distribution (Cowell and Victoria-Feser, 1996).
The presence of only a few extreme observations can seriously distort the estimate of a
statistic. Cowell and Flachaire (2007) showed that informal discussions of the em-
pirical performance do not provide a reliable guide to the way in which the estimators
respond to outliers and extreme values.

The principal tool for evaluating the influence of data contamination on estimates is the
influence function IF in the theory of robust statistics (Hampel et al., 1986). First, let
y1, . . . , yn be realizations of a parametric model F (according to the definition in Section
1) indexed by a parameter vector θ. Second, suppose that there is a small (but not
directly observable) contamination at point z in the income distribution. Consider as
contaminating distribution the elementary (degenerate) cdf G(y) := 1{y ≥ z}, which
has a unit point mass at z and zero elsewhere. As a result, the actually observed (and
contaminated) distribution is the mixture distribution Fε(y) := (1− ε)F (y) + εG (y),
where ε captures the importance of the contamination relative to the true distribution.
The influence function describes the effect of an infinitesimal contamination, εG, at the
point z on the estimator T of θ standardized by the mass of the contamination ε, given
the model F (y). It is defined by

IF (z, T, F ) := lim
ε→0

T ((1− ε)F + εG)− T (F )

ε
. (4.8)

When T is differentiable at F in direction of G (i.e., has a differential in the sense of
Gâteaux) we may write IF (z, T, F ) := (∂/∂ε)T (Fε)|ε=0. In other words, the linear ap-
proximation ε · IF (z, T, F ) measures the asymptotic bias of the estimator T caused by
a contamination of the relative weight ε at z. If the IF is unbounded for some income
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value z it means that the estimate of the inequality index may be catastrophically affected
by data contamination at z or a value close to z. Although we introduced the influence
function approach to robustness in a strictly parametric setting, it is also useful as a heur-
istic tool (Hampel et al., 1986, 83) in the finite population sampling context Hulliger
(1995, 82).

Next we derive the influence function of the quantile share ratio. It becomes apparent
that the estimation procedure constitutes several channels by means of which data con-
tamination may bias the quantile share ratio estimates.

Lemma 6 (Influence function of the quantile share mean). Let β ∈ Q and β is not
a discontinuity point of F−1. The influence function of the quantile share mean func-
tional Q(F ; β) (with an exogenously determined β, and weight generating function Jq(t) =
β−1

1{t ≤ β}), is given by

IF (z,Q(·; β), F ) = ξ(F ; β)−Q(F ; β) +
1

β
1{z ≤ ξ(F ; β)} [z − ξ(F ; β)] . (4.9)

Proof. See Section 4.7.

The IF is linear increasing and bounded above by ξ(F ; β) − Q(F ; β). Note that the
influence function for β = 1 becomes z − Q(F ; 1), the IF of the arithmetic mean. The
influence function of the trimmed mean functional follows directly from Lemma 6.

Corollary 7 (Influence function of the trimmed mean). Let α < β, for α, β ∈ Q (where
α and β are not limit points of F−1) be associated with the trimmed mean functional
T (F ;α, β) (with weight generating function Jt), then the influence function is

IF (z, T (·;α, β), F ) = (β − α)−1[βξ(F ; β)− βQ(F ; β) + 1{z ≤ ξ(F ; β)} (z − ξ(F ; β))−
−αξ(F ;α) + αQ(F ;α)− 1{z ≤ ξ(F ;α)} (z − ξ(F ;α))] (4.10)

Proof. The proof follows from T (F ;α, β) = [βQ(F ; β)− αQ(F ;α)]/[β − α] and the influ-
ence function of the quantile share mean functional.

Note that IF (z, T (·;α, β), F ) for constants 0 < α < β < 1 is bounded, since we can
show that |IF (z, T (·;α, β);F )| ≤ [ξ(F ; β)− ξ(F ;α)][β−α]−1. On the other hand, the IF
becomes unbounded when β = 1 (given α < β, Y = 0). That is, the influence function
becomes

IF (z, T (·;α, 1), F ) = (1− α)−1[z − µ(F )− αξ(F ;α) + αQ(F ;α)−
−1{z ≤ ξ(F ;α)} (z − ξ(F ;α))], (4.11)
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where µ(F ) denotes the mean functional. Next, the influence function of the quantile
share ratio, QSR(F ; p, r), follows immediately.

Lemma 8 (Influence function of the quantile share ratio). Under the conditions of Lemma
6, the influence function of the QSR functional is

IF (z,QSR(·, p, r), F ) = κ[z − µ(F )− rξ(F ; r) + rQ(F ; r) −
− 1{z ≤ ξ(F ; r)} (z − ξ(F ; r))] −
− υ[pξ(F ; p)− pQ(F ; p) + 1{z ≤ ξ(F ; p)}] ×
× (z − ξ(F ; p)) . (4.12)

where κ = [pQ(F ; p)]−1 and υ = [(1− r)T (F ; r, 1)][pQ(F ; p)]−2 are constants.

Proof. Since the quantile share ratio can be expressed as a simple map in terms of the
quantile share mean functionals, the influence function of the QSR follows immediately
applying the chain rule.

From the mathematical display in Lemma 8, we recognize that the influence function
of the quantile share ratio is clearly unbounded. That is to say, that the gross error
sensitivity of the QSR at F, supz |IF (z,QSR(·; p, r), F )| (the supremum being taken over
all z where the IF exists (Hampel et al., 1986, p.87)), indicates an arbitrarily large
asymptotic bias when the infinitesimal contamination at z takes an arbitrarily large value.
This formally means that a single observation, provided it is sufficiently large, can drive
the estimate of the QSR arbitrarily large. The Quintile Share Ratio is as non-robust as
the mean and thus a very unreliable estimator. Thus, as for the mean, the bias of the
QSR described by the IF refers to non-representative outliers in the sense of Chambers
(1986). That is to say, once an extreme value in a sample has been nominated as outlier,
the question is whether it is correct or not and whether we should use it in inference on the
population or not. Either an outlier may be a correct (but influential) observation from
the target population (called representative outlier by Chambers (1986)) or it may be
an incorrect observation, for instance, due to coding errors or from an element outside the
target population. Discarding a correct observation leads to biased estimates. Keeping it,
however, with full weight makes the estimator highly variable because typically the outlier
would show up only in a few of the possible samples. Thus there is a trade-off between
bias and variance in this case, which is particularly accentuated under asymmetric, heavy-
tailed distributions (cf. Fuller, 1991). Obviously, if a representative outlier would tend
to infinity then the QSR must tend to infinity, too. Therefore, any estimator of the
QSR with a unbounded influence function will finally have an infinitely large bias when
an outlier, in fact, is representative. On the other hand, if the outlier is an incorrect
observation then keeping it with full weight may entail a large bias in addition to high
variability. As a result, discarding or at least downweighting incorrect outliers reduces
both bias and variance. Thus, we derive outlier robust estimators of the QSR reflecting
the trade-off.
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4.3.1 Robust income quantile share ratio estimators

If a known property of the data is presumed to be contaminated trimming these extreme
observations (and doing inference conditional on the trimming) is a well-established oper-
ation and straight-forward robustification of economic inequality measures (cf. Cowell
and Victoria-Feser, 2006). The following proposition defines the trimmed quantile
share ratio estimator.

Proposition 9 (TQSR). Let αu and αl denote two exogenously determined trimming
proportions in Q such that 0 < αl ≤ p and r < 1 − αu < 1, where p and r are the
proportions used in the definition of the QSR such that p = 1 − r. The estimator of the
trimmed quantile share ratio (TQSR) writes

TQSR(F̂ ; p, r, αl, αu) =
(1− αu − r) · T (F̂ ; r, 1− αu)

(p− αl) · T (F̂ ;αl, p)
. (4.13)

Note that TQSR trims the proportion αl (αu) of the observations at the bottom (top) of
the distribution. Thus, the income share means of the poor (denominator) and the rich
(numerator) are trimmed accordingly. The influence function of the TQSR is bounded
since αu is chosen according to r < 1 − αu < 1. In addition, this setup guards the QSR
to be affected by contamination at both tails (also by arbitrary negative values) of the
underlying distribution.

However, this straight-forward robustification by trimming the extreme observations, en-
tails a downward bias (Hulliger and Schoch, 2009) insofar that trimming decreases
the numerators, while the denominator is increased. This is obvious since the numerator
decreases and the denominator increases under trimming. Therefore, we propose two bias-
compensated robust estimators that are based on trimming and a particular correction
term.

Proposition 10 (BQSR). Let αl and αu denote two exogenously determined trimming
proportions in Q, such that r < 1 − αu < 1, and 0 < αl ≤ p, where p and r are the
proportions used in the definition of the QSR. The bias-compensated, trimmed quantile
share ratio (BQSR) writes

BQSR(F̂ ; p, r, αl, αu) =
(1− αu − r) · T (F̂ ; r, 1− αu)

(p− αl) ·Q(F̂ ; p− αl)
. (4.14)

Note that trimming of both the numerator and denominator compensates at least partially.
For a given (small) upper trimming proportion αu, there is an αl such that BQSR is
unbiased, that is, the identity BQSR(F̂ ; p, r, αl(αu), αu) = QSR holds. However, because
the distribution is unknown and thus αl cannot be derived from αu the analyst must
choose two predetermined parameters αu and αl for BQSR. In Section 4.6 we discuss
methods and strategies for an appropriate choice.
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From a practitioners perspective, the BQSR estimator features the disadvantage of choos-
ing two tuning constants separately, instead of a single one. A promising approach that
circumvents choosing two (or more) tuning constants, is based on following heuristic argu-
ment. Observe that trimming and compensation operate in general at different locations
of the income distribution. The density estimates at (or in the neighborhood of) these
locations differ strongly. Recall that the income share mean (QSM) of the poor writes
Q(F, p) (with 0 < p < r). Let ∆p−a

p = Q(F ; p)−Q(F, p−a) denote the difference in QSM
when the range of the poor is reduced by a with 0 < a < p. Likewise we denote by ∆r−a

r

the difference in QSM that results when the range of the rich is reduced (from above)
by a. In this respect, it is trivial to see that for a given a, ∆p−a

p and ∆r−a
r are not equal

because of the skewed overall income distribution. By how far they differ, depends on
the characteristics of the particular distribution. Thus, a reasonable BQSR-compensation
strategy should try to balance ∆p−a

p and ∆r−a
r that results from a given choice a (trough

trimming/compensation), at least partially. A promising approach is to let the compens-
ation depend on the ratio of skewness of the lower versus the skewness upper tail of the
distribution. We shall consider the simple and robust estimator of the skewness ratio, S,
given by

S(F ) =
ξ(F ; 0.95)− ξ(F ; 0.9)

ξ(F ; 0.95)− ξ(F ; 0.85)
× ξ(F ; 0.15)− ξ(F ; 0.05)

ξ(F ; 0.15)− ξ(F ; 0.1)
, (4.15)

where ξ(F, p) denotes the pth quantile. One may choose different quantiles; however, the
reported choice of quantiles gives good result for moderate outlier scenarios. The following
Proposition summarizes the skewness-balanced QSR estimator (SQSR).

Proposition 11 (SQSR). Let αu denote an exogenously determined trimming proportion
in Q, such that r < 1 − αu < 1 where r is the proportions used in the definition of the
QSR. The amount of compensation is defined as

αl = S(F̂ ) · αu, (4.16)

where S(F̂ ) is the estimated skewness-ratio. The skewness compensated quantile share
ratio estimator (SQSR) writes

SQSR(F̂ ;αl, p, r, αu) = TQSR(F̂ ; p, r, αl, αu) (4.17)

Observe that the SQSR estimator is essentially a TQSR-type estimator, except that αl
is computed implicitly (i.e., data-based) instead of being user-supplied. Moreover, the
amount of compensation is regulated by the skewness ratio and the chosen upper trimming
constant, αu. It is important to note (also for reasons of consistency) that SQSR coincides
with QSR for the choice αu = 0 (i.e., no trimming).
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4.4 Estimation with Complex Survey Data

We emphasize that although the parameters of interest have been motivated by infinite
population concepts, we are only concerned with the design-based sampling distribution
of the estimators. For the purpose of finite sampling inference, the observations are to
be taken as fixed and we are interested in estimating the finite population characteristic
Q(FU). The connection to the concepts in Section 4.2 is that the N units of the finite pop-
ulation U = {1, . . . , i, . . . , N} are thought as distinct realizations yi of the characteristic Y
with cdf FU . In other words, we are interested in estimating, for instance, QSR(FU ; p, r)
for an unknown F .

4.4.1 Sampling Design

We consider in this paper a general stratified multi-stage cluster sampling design, which
has been applied in most EU-SILC-countries.1 Let the population U under consideration
be stratified into L strata (h = {1, . . . , L}) and the hth stratum contains Nh primary
sampling units (PSU; or clusters i = {1, . . . , Nh}). Furthermore, we assume that the
design involves a relatively large number of strata with comparatively few PSU’s. In the
majority of country-specific EU-SILC sampling designs, the PSU’s are counties or census
areas that have been stratified by the degree of urbanization, some socio-economic criteria
or geographical variables, and thus meet this assumption fairly well.2 The (h, i)th PSU
contains Nhi secondary sampling units (SSU) or clusters where j = {1, . . . , Nhi}. Typic-
ally, households embody the SSU’s. Associated with the kth ultimate unit (e.g., household
member) in the (h, i, j)th SSU of the (h, i)th PSU of stratum h is a characteristic Yhijk
(with h = 1, . . . , L; i = 1, . . . , Nh; j = 1, . . . , Nhi; k = 1, . . . , Nhij). Here Nhij denotes the
number of ultimate units in the (h, i, j)th SSU (e.g., number of persons in the household
j). The finite population cdf FU(x) is

FU(x) =
1

N

L∑
h=1

Nh∑
i=1

Nhi∑
j=1

Nhij∑
k=1

1{Yhijk ≤ x}, ∀x ∈ R, (4.18)

where N =
∑L

h=1

∑Nh
i=1

∑Nhi
j Nhij.

Following standard survey sampling theory, we assume that estimation is based on a
random sample s of size n with 0 < n < N from the finite population U . According to
Särndal et al. (1992), let pr(s) be the sampling design for random sampling at the rth
stage, where the sampling design may be any of the conventional designs. Each sampling

1 In the 2004/05 SILC exercise, the EU member states Belgium, Czech Republic, France, Greece,
Hungary, Italy, Ireland, Latvia, Poland, Portugal, Spain, and the United Kingdom applied a multi-
stage random sample. The countries Denmark, Finland, Iceland, Norway, Slovenia, Sweden, and The
Netherlands used population registers with income information to draw the samples. In the remaining 8
EU member states, the design consists of an indirect sampling of addresses (EUROSTAT, 2008).

2The SILC sampling design of the United Kingdom may serve as a showcase since stratification has
been done on (24 regions) × (4 socio-economic levels of the head of the household) × (car ownership
indicator).
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design pr(s) for r = 1, 2, . . . is a function defined on the space of samples S that induces
a probability distribution on the set of samples under the sampling scheme in use; see
Münnich et al. (2011) for more details. In particular, suppose that a particular first-
stage design, p1(s), has been fixed. Thus the first-order sample-inclusion probability that,
say, element a is included in the first-stage sample s1 is obtained from p1(s1) as follows:
π1a = Pr(a ∈ s1) =

∑
a:a∈s1 p1(s1) (see e.g. Särndal et al., 1992, p30-32).

In the matter at hand, we suppose that in the first-stage sampling nh ≥ 2 PSU’s are selec-
ted (independently across strata) from stratum h with probability phi > 0, i = 1, . . . , Nh;
h = 1, . . . , L such that

∑Nh
i=1 phi = 1 (cf. Krewski and Rao (1981), Rao and Wu (1985),

and Shao (1994) for a similar setting). For equal probability sampling within the strata,
selection can be either with or without replacement (whereas variance estimation can be
extremely heavy in designs without replacement because of the calculation of the second-
order inclusion probabilities). In the case of unequal probability sampling, we assume that
the clusters are selected independently across the strata by means of a with-replacement
scheme (PSU’s sampled more than once are independently sub-sampled as many times as
they occur). The proposed stratified multi-stage (cluster) sampling scheme is very general
and comprehends a series of simpler designs.

In particular, random sampling at the first stage is carried out as stratified random
sampling of the PSU’s (without replacement) according to the design p1(s). Since we
assume selection of PSU’s to be independent across strata, the sample inclusion probabil-
ity of the (h, i)th PSU is defined as πhi = πhπi|h, where πi|h denotes the sample inclusion
probability of unit i in the hth stratum. For the without-replacement probability sample of
SSU’s within PSU’s according to sampling design p2(s), we define similarly πj|hi as the con-
ditional probability that SSU j is selected given (i.e., within) PSU i in stratum h. While
assuming invariance and independence of the sampling stages subsequent to the first stage,
the sample inclusion probability of the (h, i, j, k)th ultimate unit is πhijk = πhπi|hπj|hiπk|hij
(Särndal et al., 1992, 144–146). Consequently, a design-based Horvitz-Thompson (HT)
type estimator of the sample distribution function writes

F̂ (x) =
1

N

L∑
h=1

nh∑
i=1

nhi∑
j=1

Nhij∑
k=1

whijk1{yhijk ≤ x}, ∀x ∈ R, (4.19)

where whijk = 1/πhijk denotes the inverse-probability weight associated with the (h, i, j, k)th

ultimate unit in the sample. This choice of weights ensures that E[F̂ (x)] = F (x) for any
x (where expectation is w.r.t. the design). The inverse-probability weights (typically ad-
apted according to a calibration or raking procedure (cf. Deville and Särndal, 1992))
are routinely included in survey sampling data files released to analysts.

Note that the last sum in Eq. (4.19) is over all Nhij elements, since subsampling of the
households is assumed to be exhaustive. If the population size N is unknown it can

be replaced by a design-unbiased estimate, N̂ =
∑L

h=1

∑nh
i=1

∑nhi
j=1

∑Nhij
k=1 whijk, in Eq.

(4.19), which yields a Hájek-type estimator. In the subsequent definitions we suppose the
population size N to be known. This assumption does not affect the generalization of
the proposed estimators, but simplifies notation considerably. Moreover, F̂ (x) may not
be a distribution function because F̂ (∞) is not necessarily equal to 1. Thus, one may
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use the normalization F̂ (x) = F̂ (x)/F̂ (∞). Next, we give two illustrative (rather simple)
sampling design examples of the well-established SILC exercise.

Example (2004 SILC Ireland)
The sampling design of the Irish SILC in 2004 consists of a stratified simple random
sample of blocks (geographical areas; PSU’s) in the first stage, whereas stratification is
according to L = 8 population density stratum groups (cities, suburbs, ..., rural areas).
The second-stage involves a simple random sample of households (Central Statistics
Office Ireland, 2005; EUROSTAT, 2008). Let s1 denote the first-stage sample of
number of blocks nh, selected among all Nh blocks. Similarly, let nhi be the number of
household in the second-stage sample s2. The HT estimator of the distribution function
is

F̂ (x) =
1

N

L∑
h=1

Nh

nh

∑
s1

Nhi

nhi

∑
s2

Nhij

nhij

Nhij∑
k=1

1{yhijk ≤ x}, ∀x, (4.20)

where N =
∑L

h=1Nh/nh
∑

s1
Nhi/nhi

∑
s2
nhijk. Alternatively, we may write the weights

whijk =
1

πhπi|hπj|hiπk|hij
=
NhNhiNhij

nhnhinhij
, (4.21)

and apply the HT estimator in Eq. (4.19). Note that usually nhij = Nhij because all
eligible household members are selected, but the explicit notation with nhij establishes a
customary first non-response adjustment in the case not all household members could be
contacted.

Another example is the EU-SILC sampling design in Switzerland in 2007. The Swiss
design is considerably simpler than the general SILC multi-stage design.

Example (2007 SILC Switzerland)
The Swiss SILC sampling design in 2007 consists of a stratification along geographical
regions (NUTS2 level; L = 7 strata), where the stratum size is proportional to the number
of households within the respective stratum. The HT estimator of the distribution function
writes

F̂ (x) =
1

N

L∑
h=1

Nh

nh

nhi∑
i=1

Nhi

nhi

Nhij∑
k=1

1{yhij ≤ x}, ∀x, (4.22)

where N =
∑L

h=1(Nh/nh)
∑nhi

i=1(Nhi/nhi)Nhij.

4.4.2 Asymptotic framework

In order to make the derivation of distribution-free, asymptotic properties of the quantile
share ratio estimates feasible, we impose regularity conditions on the sampling design
(e.g., rule out zero variance in case of cluster sampling). The general framework for
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the development of the asymptotic theory is provided by the concept of a sequence of
finite populations {U}∞L=1 with L strata. Consequently, the distribution function from
Eq. (4.18) would actually be denoted by FL(x) and it’s estimator F̂L(x) for any L. For
ease of notation, the population index L will be suppressed in what follows. In order to
avoid unnecessary repetition, all limiting processes will be understood to be as L → ∞.
We always assume that n→∞ as L→∞ (where n =

∑L
h=1 nh is the number of sampled

PSU’s). In other words, the asymptotic framework is based on large numbers of strata
and modest rates of sampling of PSU’s within strata. An alternative asymptotic setup
requires that the strata be fixed and all limiting results shall be obtained as the number
of sampled PSU’s within each stratum and the stratum sizes tend to ∞ (cf. Wolter,
2007). In order to make the asymptotic treatment feasible, we impose meaningful and
workable regularity conditions on the weights whijk, and the sample sizes n at the different
stages. The regularity conditions are based on Krewski and Rao (1981, p.1014), with
modifications similarly to those in Rao and Wu (1985, p.621).

Assumption 1
Let the stratified multi-stage sampling design be such that the following conditions hold
(all limiting processes are understood to be as L→∞):

each max
h≤L

(nh), max
i≤Nh

(nhi) and max
j≤Nhi

(nhij) is O(1), (A1)

max
h≤L;i≤Nh;j≤Nhi

whijk is O(L−1). (A2)

In the case of the Irish SILC sampling design, one may substitute assumption (A1) and
(A2) for the more general (combined) assumption (A1’): maxh≤L;i≤Nh;j≤Nhi whijkNhNhiNhij

/(nhnhinhij) is O(L−1); see also Shao (1994) for similar conditions. In general, assump-
tion (A1) reflects the intention to focus on surveys with large numbers of strata and
relatively few PSU’s selected within each stratum, and requires additionally the alloca-
tion of strata, PSU’s and SSU’s to be bounded. Assumption (A2) means that no single
stratum has disproportionate size. Note that, for instance, in the case of the Swiss SILC
sampling design (see Example 2), a slightly more general setup is obtained while relaxing
(A1) and requiring maxh(nwh)/nh = O(1) instead. This condition allows for a trade-off
between restrictions on L and n, and roughly says that the allocation of sample across
strata should not be disproportionately small relative to the stratum weights. Under these
conditions an approriate law of large numbers and a central limit theorem for the weighted
mean exist (cf. Krewski and Rao, 1981, 1013-1015). By the assumptions and using

Var(F̂ (x)) ≤ 1

N

L∑
h=1

nh∑
i=1

nhi∑
j=1

E

Nhij∑
k=1

whijk1{yhijk ≤ x}

2

≤ 1

N
E

 L∑
h=1

nh∑
i=1

nhi∑
j=1

Nhij

Nhij∑
k=1

w2
hijk

 ≤ max
1≤h≤L

whijk (4.23)

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


48 Chapter 4. Robust Non-Parametric Quintile Share Ratio Estimator

we obtain (by standard randomization inference arguments and application of Jensen’s
and the Cauchy-Schwarz inequality) that, for any x, F̂ (x) − F (x) →p 0 (note that the
index L is suppressed).

4.4.3 Finite population estimates

In this section we derive design-based estimators of the three functionals for the stratified
multi-stage cluster sampling design. By means of the finite population cdf F̂ , a HT of
the βth quantile is obtained as the solution, ξ̂(F̂ ; β), to the sample estimating function
û(Fs, ξ(·; β)) (cf. Binder and Patak, 1994), such that

û(F̂ , ξ(·; β)) =
1

N

L∑
h=1

nh∑
i=1

nhi∑
j=1

Nhij∑
k=1

whijk1{yhijk ≤ ξβ} − β = 0. (4.24)

Next, recall that the quantile share mean has been defined as a smooth L-functional.
Therefore, we denote {y(l), l = 1, . . . , n} the lth order statistic of the sample {yhijk, h =
1, . . . , L; i = 1, . . . , nh; j = 1, . . . , nhi, k = 1, . . . , nhij} and wl = whijk if y(l) = yhijk. Then

Q(F̂ , β) =

∫
xJq(F̂ (x))dF̂ (x) =

1

N

n∑
l=1

cly(l), with cl = wlJq

(∑l
t=1wt
N

)
, (4.25)

is an L-estimator (cf. Shao, 1994, p.949), with the weight generating function Jq(t).
Similarly, an estimate of T (F ;α, β) is obtained using Jt instead.

Bringing altogether, a Horvitz-Thompson type design-based quantile share ratio estimator
writes

QSR(F̂ ; p, r) =
(1− r)T (F̂ ; r, 1)

p ·Q(F̂ ; p)
. (4.26)

4.5 Variance estimation

In this section we show that the estimators, QSR, BQSR, TQSR, and SQSR, are asymp-
totically normal and their linearization variance can be estimated by substituting the
unknown quantities in the formula of the asymptotic variance by a design-unbiased HT-
type estimator.

The relevance of the IF to the present analysis has been to study the robustness properties.
On the other hand, it may be invoked to derive the limiting distribution of the estimators.
First, let T : F×[0, 1] 7→ Y be some vector-valued statistical functional of the c.d.f F ∈ F .
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Let the distribution G be near (in some topological sense) F , then the first-order von Mises
expansion of the particular functional T of G around F (assuming some differentiability
properties of the functional) is given by

T (G) = T (F ) +

∫
IF (z, T (·), F )d[G− F ](z) +R(F,G), (4.27)

where R(F,G) denotes a remainder term. For sufficiently large n, we may replace G by FU
and obtain

√
n(T (FU)−T (F )) = n−1/2

∑n
i=1 IF (zi, T (·), F ) +

√
nR(F, FU). When the re-

mainder term,
√
nRn, becomes negligible as n→∞, then

√
n(T (FU)−T (F )) is asymptot-

ically normal with asymptotic covariance matrix
∫

[IF (z, T (·), F )]′[IF (z, T (·), F )]dF (z).
For the above treatment to be valid, the remainder term needs to be asymptotically neg-
ligible in an appropriate sense, which follows from the mode of stochastic differentiability
of T at F , and the convergence of FU → F (see e.g., Serfling, 1980, 219–221). In order
to make the above treatment rigorous, we proof that the remainder R(F, FU) is negligible
in an appropriate asymptotic setting for stratified multi-stage cluster sampling designs
(cf. Shao, 1994).

Next, we shall derive asymptotic expressions of the functionals. The derivation of these
expressions make much use of the following Lemma, where we establish the asymptotic
normality of the quantile share means for general stratified multi-stage cluster sampling
designs.

Lemma 12 (Asymptotic normality of the quantile share mean functional). Let Y = 0
(i.e., lower bound of the support of Y ). Suppose the p-dimensional random vector

θ̂ =
[
Q(F̂ ; β1), Q(F̂ ; β2), . . . , Q(F̂ ; βp)

]′

where Q(F̂ ; βt) are quantile share mean functionals (∀βt, t = 1, . . . , p : 0 < βt < 1 and βt
is not a limit point of F−1). Suppose that assumptions (A1) and (A2) hold. Assume in
addition that the Q(F ; βt) functionals have strictly positive variance:

lim
L→∞

inf
L
nσ2(Q(·; βt), F ) > 0, ∀βt, t = 1, . . . , p, (A5)

where

σ2(Q(·; βt), F ) = V

 1

N

L∑
h=1

nh∑
i=1

nhi∑
j=1

Nhij∑
k=1

whijkIF (y,Q(·; βt), F̂ )

 . (4.28)

Then θ̂ is asymptotically normal in that
√
n(θ̂ − θ) has a limiting p-variate normal dis-

tribution with mean zero (i.e., (p × 1) vector of zeros) and covariance matrix Ω, whose
i, jth element (for i, j = {1, . . . , p}) is
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ωβi,βj =
1

βiβj
S(βi, F ) + ξβiQ(βi, F ) + ξβjQ(βj, F )− 1

βj
Q(βi, F )

(
ξβj + ξβi

)
+

−Q(βi, F )Q(βj, F ) + ξβiξβj

(
1

βj
− 1

)
, for i ≤ j. (4.29)

where ωβi,βj is a short-hand notation for ωQ(F ;βi),Q(F ;βj), and S(βi, F ) :=
∫ ξ(F ;βi) y2dF (y)

denotes the variance of Y conditional on Y ≤ ξ(F ; βi).

Proof. See Section 4.7.

Remark.

i) The results of Lemma 12 remain valid under more general conditions (i.e., in the
case of untrimmed smooth L-statistics), with either

(a) 0 < β ≤ 1 when supL
∫
xdF (x) <∞ or

(b) 0 < β ≤ 1 and Y = −∞ when supL
∫
|x|dF (x) <∞,

given that the Liapounov-type moment condition holds: there is a δ > 0 such that
[n]1+δ

∑L
h=1

∑nh
i=1

∑nhi
j=1 E|uhij − Euhij|2(1+δ) is O(1), where

uhij = (1/N)

Nhij∑
k=1

whijkIF (yhijk, Q(·; β), F̂ )

see also Shao (1994).

ii) Note that in the case of the smoothly trimmed weight generating function, Js, Lemma
12 remains valid, but the asymptotic variance may have no closed form.

iii) The linearization variance can be estimated by substituting the unknown quantities
in the formula of the asymptotic variance (see Eq. (4.29)) by some design-unbiased
HT type estimator for a given sampling design.

Next, we introduce a lemma on the limiting distribution of the trimmed mean functional.
This lemma will prove useful to derive the asymptotic variance of TQSR, BQSR, and
SQSR estimators. In particular, we approach the the main results of this paper in step-
by-step manner.

Lemma 13 (Asymptotic normality of the trimmed mean functional). Let α, β, α′, β′ ∈ Q
such that 0 ≤ α < β < α′ < β′ < 1 be associated with the trimmed mean functionals
T (F ;α, β) and T (F ;α′, β′) where α, β, α′, and β′ are not limit points of F−1. Sup-
pose that the assumptions of Lemma 12 hold, then the covariance of

√
nT (F ;α, β) and√

nT (F ;α′, β′) is

ΨT (F ;α,β),T (F ;α′,β′) = [(β−α)(β′−α′)]−1(ββ′ωβ,β′−βα′ωβ,α′−αβ′ωα,β′+αα′ωα,α′) (4.30)
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where ωi,j is the covariance of
√
nQ(F ; i) and

√
nQ(F ; j) for 0 < i ≤ j < 1, as defined

in Lemma 12. Moreover,
√
n(T (F̂ ;α, β)− T (F ;α, β)) has a limiting normal distribution

with mean zero and variance

ΦT (F ;α,β) = (β − α)−2 (β2ωβ,β − 2αβωα,β + α2ωα,α
)
, (4.31)

where ωi,j is the covariance of
√
nQ(F ; i) and

√
nQ(F ; j) for 0 < i ≤ j < 1.

Proof. Note that T (F ;α, β) can be expressed as a linear combination of quantile share
functionals, i.e., T (F ;α, β) = [βQ(F ; β)−αQ(F ;α)][β−α]−1; and analogously for T (F ;α′, β′).
The covariance is given by

∫
IF (z, T (·;α, β))IF (z, T (·;α′, β′))dF (z). Expanding the in-

tegral while using the fact that the influence function IF (z, T (·)) is also a linear combina-
tion of the influence functions of Q(·), the first assertion follows by application of Lemma
12. The second assertion follows immediately, setting α′ = α and β′ = β.

By means of Lemma 12 and standard asymptotic arguments, we establish the asymptotic
normality of TQSR.

Theorem 14 (Asymptotic normality of the TQSR). Let αl, αu, r, p ∈ Q such that 0 ≤
αl < p < r ≤ 1 − αu be associated with the trimmed mean functionals T (F ;αl, p) and
T (F ; r, 1 − αu), where αl, αu, r, and p are not limiting points of F−1. Suppose that the
assumptions of Lemma 12 hold, then

√
n(TQSR(F̂ ;αl, p, r, αu) − TQSR(F ;αl, p, r, αu))

has a limiting normal distribution with mean zero and variance

σ2(TQSR(·;αl, p, r, αu), F ) = κ−4[κ2ΦT (F ;r,1−αu)−2ηκΨT (F ;αl,p),T (F ;r,1−αu) +η2ΦT (F ;αl,p)]

(4.32)

where κ = (1−αu−r)(p−αl)−1T (F ;αl, p) and η = (1−αu−r)(p−αl)−1T (F ; r, 1−αl) are
constants, ΨT (F ;αl,p),T (F ;r,1−αu) denotes the covariance of

√
nT (F ;αl, p) and

√
nT (F ; r, 1−

αu) according to Lemma 13. ΦT (F ;αl,p) and ΦT (F ;r,1−αu) denote the limiting variance of√
nT (F ;αl, p) and

√
nT (F ; e, αu) from Lemma 13, respectively.

Proof. The assertion follows by application of the (functional) delta theorem and Lemma
13.

By means of Theorem 14 the asymptotic normality of the bias-compensated trimmed
quantile share ratio (BQSR) follows immediately.

Theorem 15 (Asymptotic normality of the BQSR functional). Let αl, αu, r, p ∈ Q such
that 0 ≤ αl < p < r ≤ 1 − αu be associated with the functionals Q(F ; p − αl) and
T (F ; r, 1 − αu), where αl, αu, r, and p are not limiting points of F−1. Suppose that the

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


52 Chapter 4. Robust Non-Parametric Quintile Share Ratio Estimator

assumptions of Theorem 14 hold, then
√
n(BQSR(F̂ ;αl, p, r, αu)−BQSR(F ;αl, p, r, αu))

has a limiting normal distribution with mean zero and variance

σ2(SQSR(·;αl, p, r, αu), F ) = κ−4[κ2ΦT (F ;r,1−αu)−2ηκΨT (F ;0,p−αl),T (F ;r,1−αu)+η
2ΦT (F ;0,p−αl)],

(4.33)

where κ = (1−αu−r)(p−αl)−1T (F ; 0, p−αl) and η = (1−αu−r)(p−αl)−1T (F ; r, 1−αl),
and ΦT (F ;r,1−αu), ΦT (F ;0,p−αl), and ΨT (F ;0,p−αl),T (F ;r,1−αu) are defined in Lemma 13.

Proof. The assertion follows from Theorem 14, since we can express BQSR as a variant
of TQSR, i.e., BQSR(F ;αl, p, r, αu) ≡ TQSR(F ; 0, p− αl, r, αu).

Corollary 16 (Asymptotic normality of the SQSR). Suppose S(F ) is a predetermined
(or known) estimate of the skewness ratio. Denote by αl = αuS(F ) the compensation
proportion, where αu, r, p ∈ Q are defined such that 0 ≤ αl < p < r ≤ 1 − αu holds.
Associated with αl, p, r, αu are functionals Q(F ; p − αl) and T (F ; r, 1 − αu), assuming
that neither αl, αu, r, or p is a limiting point of F−1. Suppose that the assumptions of
Theorem 14 hold, then

√
n(SQSR(F̂ ;αl, p, r, αu) − SQSR(F ;αl, p, r, αu)) has the same

limiting normal distribution as BQSR in Theorem 15.

Proof. The assertion follows from Theorem 14, using the same arguments as in Theorem
15.

Note that the limiting normal distribution of SQSR (Corollary 16) is derived under the
assumption that the skewness ratio, S(F̂ ), is known (or predetermined). As a result,
the variance estimate is an underestimate of the true variance when S(F ) is indeed un-
known. One may explicitly consider the contribution of estimating S(F ) on the variance
of SQSR, however, this may make the overall variance estimate unstable because the vari-
ance contribution of S(F ) depends on density estimates in both tails of the distribution.
Furthermore, and because the contribution to the overall variance is small, we ignore it.

The computation of the Horvitz-Thompson variance estimates in the case of general strat-
ified multi-stage cluster sampling design, with a unequal probability without-replacement
sampling scheme at the first stage, may become cumbersome or may be even infeasible
because the second-order sample inclusion probabilities are not routinely included in the
data files released to analysts. There exist numerous approximations for the second-order
inclusion probabilities; see Münnich et al. (2011) for details. However, the two illus-
trative SILC sampling designs may serve as showcase because the variance estimates are
obtained immediately.

Example (Swiss SILC, ctd.)
The linearization variance estimate for the quantile share mean functional Q(F̂ , β) with
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infuence function zhi = IF (yhi, Q(·; β), F ) writes in the case of the Swiss SILC sampling
design (assuming the conditions of Lemma 12 hold)

V̂(Q(·; β), F̂ ) =
1

N2

L∑
h=1

N2
h

nh(nh − 1)

(
1− nh

Nh

) nhi∑
i=1

(
zhi − φ̂h

)2

, (4.34)

where φ̂h = (1/nh)
∑nh

i=1 zhi=0. (supressing the subscript for the household membership
because all eglible household members have been contacted).

For the sampling design of the 2004 SILC exercise in Ireland, we obtain a similar variance
estimator. Note that as a consequence of the invariance and independence conditions of
the sampling stages subsequent to the first stage the additional term (in comparison to
the Swiss design) is additively related, which simplifies matters.

Example (Irish SILC, ctd.)
For the Irish SILC 2004 sampling design, we may use the following variance estimate of
Q(F̂ ; β) for sufficiently large n (under the conditions of Lemma 12),

V̂(Q(·; β), F̂ ) =
1

N2

L∑
h=1

N2
h

nh(nh − 1)

(
1− nh

Nh

) nh∑
i=1

(
zhi − φ̂h

)2

+

+
1

N2

L∑
h=1

Nh

nh

nh∑
j=i

(
1− nhi

Nhi

)
N2
hi

(
1

nhi(nhi − 1)

) nhi∑
j=1

(
zhij − φ̂hi

)2

,

(4.35)

where φ̂i = φ̂hi = 0.

On the other hand, if the design consists of sampling without replacement and unequal
selection probabilites (e.g., 2004 SILC exercise in Belgium), we examine a variance es-
timation strategy appropriate for sampling with replacement (Hansen-Hurwitz strategy),
which is the only feasible technique in the case of the released SILC data, but somewhat
biased (cf. Särndal et al., 1992; Wolter, 2007). That is, we compute the variance
estimator as if sampling had been done with replacement, whereas in actual fact it was
without replacement. Generally, these variance estimates entail an upward bias (i.e.,
conservative confidence intervals); see also Münnich et al. (2011, Section 2.2).

4.6 Adaptive estimation

In empirical data analysis, we hardly face situations where the amount of outlyingness is
known beforehand, such that the choice of the tuning constants for robustification is obvi-
ous. However, the trimming proportion can be chosen adaptively. According to Jaeckel
(1971), the trimming proportion can be selected as follows. Consider a characteristic
SU(F ;α, β) of the distribution of T (F̂ ;α, β), usually a measure of spread (e.g., asymp-
totic variance). For convenience, we assume that the trimming proportion α is known
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beforehand (i.e., nuisance). The idea consist of estimating SU(F ;α, β) for all values β
in a given set and choosing βU(F̂ (x)) corresponding to the smallest estimate. There-
fore, βU(F̂ ) = arg minβ∈B SU(F̂ ;α, β), where B is some set of trimming proportions. The

adaptive trimmed-mean estimate of location is T̂ (F̂ ;α, β̂(F̂ )). In the matter at hand,
the underlying distribution is not symmetric and, thus, the location is no longer unam-
biguously defined (Léger and Romano, 1990). As a result, not only does the adaptive
trimmed mean choose the trimming proportion, but in so doing, it also chooses the func-
tional being estimated. Instead of e.g., the asymptotic variance, we propose to adapt the
estimate according to the minimum estimated risk (MER) (cf. Hulliger, 1991, 1995).
Typically, the estimated mean squared error (MSE) can be used. Thus, the MER idea
consists of estimating the MSE

r(F̂ , β) = max(V̂(T̂ , β), 0) + [T̂ (F̂ ; r, 1)− T̂ (F̂ ; r, β)]2 (4.36)

of the functionals T (F̂ , ·) for all values β in the given set B ⊂ [α, 1] (note that including
1 in B – i.e., admitting the non-trimmed and therefore non-robust mean as a candidate
– ensures consistency of the HT). V̂(T̂ , β) denotes the variance estimator, where max(·)
safeguards the variance estimate from being negative. This estimate of the means squared
error is inherently non-robust because it involves the non-robust arithmetic mean in its
second summand, which estimates the squared bias. Thus, we propose the MER estimate
of the trimmed mean.

Proposition 17. Suppose r(F̂ , ·) has a global minimum at β̂(F̂ ) = arg minβ∈B r̂(F̂ ; β).

The MER-estimator of the trimmed population mean is M(F̂ , β) = T (F̂ , α, β̂(F̂ )).

The MER-estimator is not robust because it is consistent. However the efficiency gain
compared with an unbiased estimator can be considerable. By downweighting the bias
term in an appropriate way, a robust version of the MER results at the cost of an additional
complexity. To estimate the asymptotic variance of the adaptive estimator, one usually
has to estimate the variance of the nonadaptive estimator with its tuning constant equal
to the adaptively chosen value. It is clear that such an estimate does not take into account
the adaptiveness of the estimator. Therefore, the problem is caused by the fact that the
estimator of variance pretends that the tuning constant was chosen a priori rather than
adaptively. This in turn may likely result in a downward bias for the estimate of variance
(see e.g., Léger and Romano, 1990).

4.7 Proofs

Proof. [Lemma 6] Let F ∈ F , where F is the set of absolute continuous cdf, and de-
noted by Fε(y) the mixture distribution Fε(y) = (1 − ε)F (y) + εG(y), where G(y) =
1{y ≥ z} is an elementary (degenerate) cdf. For β ∈ Q such that β is not a limit point

of F−1, the influence function writes IF (z,QSM(·; β), F ) = ∂/∂ε
[
β−1

∫ ξβ(Fε) ydFε(y)
]

AMELI-WP4-D4.2



4.7 Proofs 55

for ε = 0. Thus, differentiating w.r.t. ε (by means of the Leibniz integration rule)

and taking ε ↓ 0, yields IF (z,QSM(·), F ) = β−1
∫ ξβ(F )

ydG(y) − β−1
∫ ξβ(F )

ydF (y) +
β−1ξβ(F )f(ξβ(F )) [d/dεξβ(Fε)]ε=0. Note that d/dε[ξβ(Fε)]ε=0 is the influence function of
the βth quantile functional (see e.g., Huber, 1981, 56-57) and defined as IF (z, ξβ(·), F ) =
[β − 1{ξβ(F ) ≥ z}][f(ξβ(F ))]−1. Bringing altogether, f cancels out and we get the influ-
ence function which completes the proof.

Proof. [Lemma 12] Suppose Y = 0, and βt ∈ Q be associated with Q(F ; βt), where ∀βt, t =
1, . . . , p : 0 < βt < 1; βt is not a limit point of F−1. The Q(F ; βt) functional admits a
first-order von Mises expansion at F around G, which is given by Q(G; βt) = Q(F ; βt) +∫
IF (y,Q(·; βt), F )d(G − F )(y) + R(G,F ), with IF according to Lemma 6. For ease of

notation, write zhijk = IF (yhijk, Q(·; βt), F ) and Zhijk = IF (Yhijk, Q(·; βt), F ) (adopting
the convention that capital letters denote random variables). Under the assumption 0 <
βt < 1 and for n sufficiently large, there exist constants ct such that infL F (ct) > βt, ∀t
(where L → ∞ according to the asymptotic framework; and the fact that F̂L(ct) −
FL(ct)→p 0), then {zhijk} is bounded. Moreover, and under the regularity conditions on
the sampling design, i.e., Assumptions A1 and A2, Liapounov’s condition hold and we
obtain for the weighted average

∫
IF (y,Q(·; β), F )dF̂ (y) = 1/N

L∑
h=1

nh∑
i=1

nhi∑
j=1

Nhij∑
k=1

whijkzhijk = z, (4.37)

and Ez = 1/N
∑L

h=1

∑nh
i=1

∑nhi
j=1

∑Nhij
k=1 Zhijk = 0 (cf. Shao, 1994, Theorem 1). Thus, by

Krewski and Rao (1981, Theorem 3.1) z/σ(Q(·; βt), F )→d N(0, 1) (since Ez = 0). For
n sufficiently large, we may write Q̂(F̂ ; βt) = Q(F ; βt) + z + R(F̂ , F ). Finally, by Shao
(1994, Theorem 1)

√
nR(F̂ , F ) →p 0, and thus [Q̂(F̂ ; βt) − Q(F ; βt)]/σ(Q(·; βt), F ) →d

N(0, 1).

In particular, the asymptotic covariance of
√
nQ(F ; βi) and

√
nQ(F ; βj) using the result

of Lemma 6 is given by

ωβi,βj =

∫
IF (z,Q(·; βi), F )IF (z,Q(·; βj), F )dF (z) (4.38)

Given βi ≤ βj and that 1{x ≤ ξ(F ; βj)} = 1 whenever 1{x ≤ ξ(F ; βi)} = 1 the right-hand
side of (4.38) becomes

[ξβi − Tβi(F )]
[
ξβj − Tβj(F )

]
+

ξβj∫
[ξβi − Tβi (F )]

1

βj

[
x− ξβj

]
dF (x) +

+

ξβi∫ [
1

βj

(
x− ξβj

)
+ ξβj − Tβj(F )

]
1

βi
[x− ξβi ] dF (x) (4.39)
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On simplifying Eq. (4.39), we obtain (in close relation to the “cumulative income func-
tional” in Cowell and Victoria-Feser (2003, Appendix A.1))

ωβi,βj =
1

βiβj
S(βi, F ) + ξβiQ(βi, F ) + ξβjQ(βj, F )− 1

βj
Q(βi, F )

(
ξβj + ξβi

)
+

−Q(βi, F )Q(βj, F ) + ξβiξβj

(
1

βj
− 1

)
, for i ≤ j, (4.40)

where ωβi,βj is a short-hand notation for ωQ(F ;βi),Q(F ;βj), and S(βi, F ) :=
∫ ξ(F ;βi) y2dF (y)

denotes the variance of Y conditional on Y ≤ ξ(F ; βi).

Thus, for each Q(F ; βi) with 0 < βi < 1 (and if βi is not a limit point of F−1), i = 1, . . . , p,
we have

√
n(Q̂(F̂ ; βi) − Q(F ; βi)) →d N(0, ωβi,βi). The vector (Q̂(F̂ ; β1), . . . , Q̂(F̂ ; βp))

T

can be shown (by a Cramer-Wold device; see e.g., Serfling (1980, p.18)) to have a
p-variate limiting normal distribution with covariance matrix Ω whose i, jth element is
equal to ωβi,βj for i ≤ j. This completes the proof.
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Chapter 5

Robust Basic Unit-Level
Small-Area-Estimation Model

5.1 Introduction

Although the models involved in small area estimation have multivariate explanatory
variables, the characteristic of interest is univariate. We therefore treat the robustification
of small area estimation in the part of D4.2 dedicated to univariate estimators.

Small are estimation (SAE) has become of great importance due to the growing demand
for reliable small-area statistics. In the basic setup, small area means (and totals) can
be expressed as linear combinations of fixed and random effects, which are obtained by
best linear unbiased prediction (BLUP) estimators, appealing to well-known results on
BLUP estimation. These estimators minimize the MSE among the class of linear unbiased
estimators without assuming normality of the random effects. Although the classical EB-
LUP method is useful for estimating the small area means efficiently under the normality
assumptions, it can be highly influenced by the presence of outliers or departures from
the assumed distribution. Therefore, Sinha and Rao (2009) proposed a robustification
of the unit- and area-level models.

We discuss a related, but slightly different robustification. The main contribution is a
fast algorithm that avoids inversion of large matrices and minimizes the number of matrix
multiplication which in turn results in a tremendous speed-up in computing time and
permits the user to apply the method to large datasets (e.g., datasets with n = 2, 000, 000
observations). Insofar the proposed method serves the needs in official statistics.

The remainder of the paper is organized as follows. In Section 5.2.1, we introduce the basic
unit-level model and study its maximum likelihood estimators. Section 5.3 is concerned
with robust, bounded-influence estimating equations (BIEE). In Section 5.4, we derive
Newton-Raphson updating equations, introduce bounded-influence predicting equation
(BIPE), and discuss the choice of starting values. Section 5.5 draws together the main
findings.
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5.2 Small Area Estimation

5.2.1 Unit-Level Models

A large class of unit-level small-area estimation models can be regarded as a special case
of the mixed linear model (MLM) of the form

y = Xβ +
c−1∑
t=1

Ztvt + e, (5.1)

where y is a (n × 1) vector of observations; X and Zt are, respectively, known (n × q)
and (n × pt) matrices (of full rank); β is a q-vector of unknown fixed effects; the vt are
(pt × 1) vectors of unobserved random effects, 1 ≤ t ≤ c− 1; and e is a (n× 1) vector of
unobserved errors. The pt levels of each random effect vt are assumed to be independent
with mean zero and variance σ2

t ; the random error e is assumed to be independent with
mean zero and variance σ2

c ; and v1, . . . ,vc−1 and e are assumed to be independent. It
follows that E[y] = Xβ and V[y|X] =: V = θcIn+

∑c−1
t=1 θtZtZ

T
t , where θ = (σ2

1, . . . , σ
2
c )
T

and In denotes the (n×n) identity matrix. Moreover, it is assumed that we have adopted
a parametrization in which all the r = q + c unknown parameters τ = (βT ,θT )T are
identifiable.

The basic unit-level model (BULM), aka basic nested-error regression model (Battese
et al., 1988), and several extensions are regarded as MLM with block-diagonal covariance
structure; see Rao (2003, chap. 6.3). In particular, we shall define the BULM.

Definition 18. The basic unit-level model, M(β,θ), with Gaussian area-specific random
effects, i = 1, . . . , g, is defined as

yi ∼ F ∈ F := N (Xiβ,Vi(θ)), (5.2)

with

Vi(θ) =
2∑
l=1

σ2
l ZliZ

T
li , i = 1, . . . , g, (5.3)

where ∀i = 1, . . . , g, β is an (q × 1) vector of fixed effects; θ is defined as θ = (σ2
c , σ

2
1)T

with σ2
c and σ2

1 the model-error- and random-effect variance, respectively; Z1i = Ii is the
(ni × ni) identity matrix; Z2i = Ji is the (ni × ni) matrix of ones; Xi is the (ni × q)
design matrix of known co-variates. In addition we assume that the area-specific sample
size satisfies ni ≥ (q + 2), i = 1, . . . , g.

It follows that E[yi] = Xiβ and V[yi|Xi] = Vi(θ) = σ2
cIi + σ2

1Ji, i = 1, . . . , g. In what
follows, we shall suppress the functional dependence of Vi(θ) on θ and write Vi for clarity
of display, whenever no confusion can arise. Moreover, we shall define the parameter space
of model M(β,θ).

AMELI-WP4-D4.2



5.3 Bounded Influence-Equation Approach 61

Definition 19. Suppose the basic unit-level model M(τ ), with τ = (βT ,θT )T . The
parameter space for τ is assumed to be

Ω(τ ) = Ωβ × Ωθ (5.4)

where

Ωβ = {βk ∈ R, k = 1, . . . , q} and Ωθ = {(σ2
c , σ

2
1) ∈ R2; σ2

c > 0, σ2
1 ≥ 0} (5.5)

Whenever no contamination is supposed to be present, estimates of the parameter vector
τ = (β,θ)T ofM(τ ) shall be obtained by means of maximum likelihood (ML) estimators.
Let l(τ̂ML) denote the (non-robust) log-likelihood of the core model. The ML estimator
τ̂ML of τ is defined by l(τ̂ML) = supτ∈Ωl(τ ), provided τ is an interior point of Ω from
Definition 19.

Upon having obtained the ML estimates β̂ and θ̂, one then considers predicting the area-
specific random effects vi. From the theory of best linear unbiased predictors (BLUP),
where best is in the sense of minimal mean square error prediction, we note that for known
θ̃ the BLUP (see e.g., Searle et al., 1992, chap. 7.4) is

E[vi|yi] = Gi(θ̃)ZT
i V−1

i (θ̃)[yi −Xiβ̃] =: ṽi(θ), i = 1, . . . , g, (5.6)

where β̃ = BLUE(β) and Gi follows from the decomposition Vi = Ri + ZiGiZ
T
i , a

property of models with a block-diagonal covariance matrix. In the case of the basic
unit-level model, we have Ri = σ2

cIi and ZiGiZ
T
i = σ2

11i1
T
i . Therefore, replacing θ̃ by

the ML-estimate, θ̂, and β̃ by the ML-estimate β̂ leads to the empirical BLUP (EBLUP).
Let x̄i denote the vector of known means for area i. The estimates v̂i (suppressing the
dependence on θ̂) are then used to obtain the EBLUP of µi given by µ̂i = x̄Ti β̂+ v̂i. The
EBLUP of the mean, Ȳi, on the other hand, is obtained from

ti(θ̂,y) = N−1
i (
∑
j∈sj

yij +
∑
j∈s̄j

ŷij), (5.7)

where si and s̄i represent the set of sampled and non-sampled units in area i, respectively,
and ŷij = xTijβ̂ + v̂i; see Rao (2003).

5.3 Bounded Influence-Equation Approach

Although the classical EBLUP method is useful for estimating the small area means
efficiently under normality assumptions, it can be highly influenced by the presence of
outliers in the data or departures from the assumed normal distribution of the random
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effects. Furthermore, mixed linear models have, unlike location-scale or regression models,
no nice invariance structure. Notably, this means that the parameters cannot be estimated
consistently in the presence of contamination; there is an unavoidable asymptotic bias.
Thus in the presence of contamination, any method estimates the parameter at the core
model plus an unknown bias. In the case of ML estimates, the bias can be arbitrarily
large and renders these estimators extremely inefficient when the model does not hold.

We consider as estimators any robust estimator (i.e., with bounded influence function)
that is Fisher-consistent at the Gaussian core modelM(β,θ) when the model holds. For
these estimators, the potential bias is bounded, the efficiency is reasonable if the model
holds, and the estimators are much more efficient than e.g., ML estimators, if it does not
(cf. Welsh and Richardson, 1997).

For the basic unit-level model M(β,θ), Sinha and Rao (2009) propose to replace the
ML estimating equations (1.10) and (1.11) by bounded-influence estimating equations
(BIEE) in order to handle outliers in the response variable. Moreover, they indicate
the usage of a Mallows/Schweppe-type weighting scheme. In contrast to Sinha and
Rao (2009), we define the BIEE associated with the model M(β,θ) (suppressing the
Schweppe-type weighting) according to the proposal of Richardson and Welsh (1995,
p.1432) (called RML II therein; see also Welsh and Richardson (1997, pp.361-362)).
Thus, let yi, Xi, and V−1

i , i = 1, . . . , g, be specified as in the Definitions 18 and 19.
Let ψk(ri) = (ψk(r1), · · · , ψk(rni)) denote the (ni × 1) vector of winsorized residuals,

ri = V
−1/2
i (yi − Xiβ), i = 1, . . . , g, where ψk(·) is Huber’s ψ-function indexed by the

robustness-tuning constant k (or any other ψ-function). The system of BIEE writes

g∑
i=1

{
XT
i V

−1/2
i ψk(ri)

}
= 0, (5.8)

S := (1/2)

g∑
i=1

{
ψT
k (ri)V

−1
i ψk(ri)− tr

(
κiV

−1
i Ii

)}
= 0, (5.9)

M := (1/2)

g∑
i=1

{
ψT
k (ri)V

−1/2
i JiV

−1/2
i ψk(ri)− tr

(
κiV

−1
i Ji

)}
= 0, (5.10)

where κi = cIi are consistency correction matrices with c = E[ψ(z)2] and z ∼ N(0, 1). For
modelM(·) and the Huber ψ-function, we have c = 2[k2(1−Φ(k)) + Φ(k)− 0.5− kφ(k)],
where Φ and φ denote the cdf and pdf of the standard normal, respectively; see e.g.,
Maronna et al. (2006, p.27).

Note that the system of BIEE proposed by Sinha and Rao (2009) (which uses a simpler

normalization of the residuals) can be obtained by changing V
−1/2
i ψk(ri) to V−1

i U
1/2
i ψk(r̃i),

where Ui = diag(Vi) and r̃i = U
−1/2
i (yi −Xiβ).
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5.4 Proposed Method

5.4.1 Preparations

The crucial point is that the variance-covariance matrix of the model M(β,θ), Vi =
σ2
cIi + σ2

1Ji, admits a closed-form expression of its inverse

V−1
i = δIi − ωiJi, i = 1, . . . , g, (5.11)

with δ = 1/σ2
c and ωi = σ2

1/(σ
2
c (σ

2
c + niσ

2
1)); see e.g., Searle et al. (1992, p.308).

We introduce a lemma on orthogonal factorizable variance-covariance matrices that will
be useful to define the function of a matrix that correspond to the function of a scalar.

Lemma 20. Suppose model M(β,θ) with θ = (σ2
c , σ

2
1)T , i = 1, . . . , g. The (ni × ni)

variance-covariance matrices Vi, i = 1, . . . , g, exhibit the orthogonal factorization

Vi = Lidiag (λ1| λ2, λ2, . . . , λ2)LT
i , (5.12)

where Li is the (ni × ni) matrix whose columns correspond to the eigenvectors of Vi;
λ1 = σ2

c + niσ
2
1 and λ2 = σ2

c denote the eigenvalues with multiplicities 1 and n − 1,
respectively, i = 1, . . . , g. (for clarity, the bar in diag indicates the partition)

Proof. Since the factorization for all Vi (i = 1, . . . , g) analogous, we consider here the
decomposition of V (suppressing the subscript). The characteristic equation of V writes
det[(σ2

c−λ)I+σ2
1J] = 0, where λ is an eigenvalue. By the Matrix Determinant Lemma (see

e.g., Gentle, 2007), we obtain det[(σ2
c −λ)I +σ2

111
T ] = (1 +1T ((σ2

c −λ)I)−1
1)det[(σ2

c −
λ)I]. Since det[(σ2

c − λ)I] = (σ2
c − λ)ndet[I] = (σ2

c − λ)n and ((σ2
c − λ)I)−1 = (σ2

c − λ)−1I,
the characteristic equation writes (σ2

c − λ + σ2
1n)(σ2

c − λ)n−1 = 0. From this result, we
can read off the two solutions, i.e., two distinct eigenvalues, λ1 = σ2

c + nσ2
1 with algebraic

multiplicity 1 and λ2 = σ2
c with multicplicity n− 1.

In passing we note that the assertions of the above Lemma could be extended to variance-
covariance matrices with a more general structure. Searle and Henderson (1979,
Theorem 3.1) give a procedure (involving a series of tedious operations) to obtain eigen-
values for very general matrices. However, there method is limited because it works only
for variance matrices of models with balanced data. Alternatively one may derive ex-
pressions of the eigenvalues (and eigenvectors) by means of the matrix-inversion method
proposed LaMotte (1972) that also applies for unbalanced data, but is restricted to
nested designs (without cross-classification).

We introduce the following definition of matrix functions that correspond to functions of
a scalar.
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Definition 21 (Matrix function). Let f : R 7→ R and denote by U = LDLT a symmetric,
orthogonal factorizable (n × n) matrix where L is the (n × n) matrix whose columns
correspond to the eigenvectors of U, and D is a diagonal matrix with the eigenvalues,
λ1, . . . , λn, (incl. multiplicities) as diagonal elements. We define the function of U that
corresponds to a function of a scalar as f(U) = Ldiag

[
f(λ1), . . . , f(λn)

]
LT whenever the

function for λi, i = 1, . . . , n, exists.

In effect, we could directly define functions of V (e.g., V1/2). However, this definition
requires computing the matrices Li (i = 1, . . . , g) whose columns correspond to the ei-
genvectors of Vi, which is usually very involved (at least for large data sets). In the
subsequent proposition, we show that a simple closed-form expression exists.

Proposition 22. Suppose model M(β,θ) and a function f : R 7→ R. By Lemma 20,
each area-specific covariance matrix, Vi, i = 1, . . . , g, posses an orthogonal factorization
Vi = LiDiL

T
i , so that the matrix function f that corresponds to a function of a scalar

from Definition 21, yields

f(Vi) =
1

ni

[
(f(λ1,i)− f(λ2,i))Jni + nif(λ2,i)Ini

]
. (5.13)

Proof. By Lemma 20, we have obtained the first and second eigenvalues, λ1,i, λ2,i, of the
matrix Vi, for all i = 1, . . . , g (with the corresponding multiplicities). In what follows,
we will suppress the subscript i for ease of simplicity. Given λ1 and λ2 we derive the
matrix L, the columns of which correspond to the eigenvectors of V. By the symmetry of
V, the eigenvectors corresponding to one eigenvalue with multiplicity greater than one,
are orthogonal (Gentle, 2007). The characteristic polynomial associated with the first
eigenvalue is (V− λ1I)v = 0. On simplifying we get

∑n
k=1 vk = nvk, k = 1, . . . , n. Simil-

arly, for the eigenvectors (which form an (n − 1)-dimensional eigen subspace) associated
with the second eigenvalue, we have

∑n
k=1 vk = 0. Suppose the following partitioning

L =

(
v1 vT−1

v−1 Q

)
, D =

(
λ1 zT−1

z−1 λ2In−1

)
, (5.14)

where Q is an ((n − 1) × (n − 1)) matrix whose columns correspond to the eigenvectors
associated with the second eigenvalue; v−1 = (vi)i=2,...,n; z−1 = 0 · 1n−1. Thus,

LDLT =

(
v1 vT−1

v−1 Q

)(
λ1 zT−1

z−1 λ2In−1

)(
v1 vT−1

v−1 QT

)
=

(
v2

1λ1 + λ2v
T
−1v−1 λ1v1v

T
−1 + λ2v

T
−1Q

T

λ1v1v−1 + λ2Qv−1 λ1v−1v
T
−1 + λ2QQT

)
(5.15)
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In order to simplify (5.15), we need to study LLT = In. Therefrom, we can retrieve several
building blocks that will emerge to be useful. On simplifying LLT = In, we have

(
v1 vT−1

v−1 Q

)(
v1 vT−1

v−1 QT

)
=

(
v2

1 + (n− 1)v1 v2
i v

T
−1 + vT−1Q

T

viv−1 + Qv−1 v2
i Jn−1 + QQT

)
= In, (5.16)

which in turn give rise to the following identities (i.e., equating block-wise), i) vi = 1/
√
n,

i = 1, . . . , n; by application of i) we have, ii) vT−1Q
T = − 1

n
1
T
n−1 (and analogously, Qv−1 =

− 1
n
1n−1); and iii) QQT = In−1 − v2

i Jn−1. Thus, (5.15) can be expressed as

LDLT =
1

n

(
λ1 + (n− 1)λ2 (λ1 − λ2)1Tn−1

(λ1 − λ2)1n−1 λ2nIn−1 + (λ1 − λ2)Jn−1

)
=

1

n

[
(λ1 − λ2)Jn + nλ2In

]
. (5.17)

This completes the proof.

By application of Lemma 20, we can define V
1/2
i according to Definition 21 as

V
1/2
i =

1

ni

[
(σ2

c + niσ
2
1)1/2 − (σ2

c )
1/2
]
Jni + (σ2

c )
1/2Ini , i = 1, . . . , g. (5.18)

Similarly, we obtain a closed-form expression for V
−1/2
i . Moreover, this definition of the

matrix square root is unique (in contrast to the definitions of e.g., Welsh and Richard-

son (1997) or Huggins (1993) and admits simple expressions for ∂V
−1/2
i (θ)/∂θ1 and the

like.

The following lemma states some useful identities that play an important role in the deriv-
ation of the Taylor series expansions subject to the Newton-Raphson updating equations.

Lemma 23 (Blocks). Suppose modelM(β,θ). For the variance-covariance matrix Vi(θ)
with θ = (σ2

c , σ
2
1)T , we note that ∀i = 1, . . . , g

i) ∂V−1
i /∂σ2

c = −V−2
i ii) ∂V−1

i /∂σ2
1 = −V−1

i JiV
−1
i

iii) ∂V
−1/2
i /∂σ2

c = −(1/2)V
−3/2
i iv) ∂V

−1/2
i /∂σ2

1 = −(1/2)V
−1/2
i JiV

−1
i

Proof. Assertions i) and ii) follow immediately from the chain rule of matrix derivatives,
∂A(θ)−1/∂θk = −A−1(θ)[∂A(θ)/∂θk]A

−T (see e.g., Magnus and Neudecker, 1999,
96), and Lemma 20. For assertions iii) and iv) put ∂x1/2 = (1/2)x−1/2 and evaluate it at
x = V−1, thus ∂V(θ)−1/2/∂θk = −(∂V−1

i /∂θ)(∂x1/2/∂x)|x=V−1 . On simplifying, we are
done (see e.g., Richardson and Welsh, 1995, 1439).

Definition 24. We shall make much use of the following definitions:
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i) Let Vi denote the variance-covariance matrix associated with model M(β,θ), i =

1, . . . , g. According to Lemma 20, define V
−1/2
i = ξiIi + ηiJi with ξi = ni(σ

2
c )
−1/2

and ηi = (σ2
c + niσ

2
1)−1/2 − (σ2

c )
−1/2, i = 1, . . . , g,

ii) let ri,m =
{
V
−1/2
i (yi −Xiβ)

}
{m:m=1,...,ni}

denote the residual, i = 1 . . . , g,

iii) ψk(ri,m) denotes the Huber ψ-function with tuning-constant k, m = 1, . . . , ni, i =
1, . . . , g,

iv) let ψ′k(ri,m) = 1 if |ri,m| < k and 0 otherwise, m = 1, . . . , ni, i = 1, . . . , g.

We write {u}(s) with s ∈ N+
0 to denote the value of u at the sth iteration. In addition, we

will suppress the functional dependence on the iteration-step-specific variance components
(e.g., δ instead of δ({θ}(s))) when no confusion can arise.

5.4.2 Updating Equations

Equations (5.8) to (5.10) can be solved iteratively to obtain robust estimates of β and θ.
We write {u}(s) with s ∈ N+

0 to denote the value of u at the sth iteration.

We adopt a combined Newton-Raphson (NR) and Fisher-scoring (FS) algorithm. For
uniformity of display, we shall introduce some notation.

Theorem 25. Suppose model M(β,θ) and Definition 24. Then, for {β}(t+1) sufficiently
close to {β}(t), the updating equation for β is

{β}(t+1) = {β}(t) +

[ g∑
i=1

δ
(
Sxixi − S̃xixi({β}(t))

)
− ωitxi t̃xi({β}(t))

]−1

×

×
[ g∑
i=1

ξiX
T
i ψk(ri) + ηitxitψi

]
,

where txi = (txi,·1 , . . . , txi,·q)
T , with txi,·j =

∑ni
m=1 xi,mj, and t̃xi = (t̃xi,·1 , . . . , t̃xi,·q)

T , with
t̃xi,·j =

∑ni
m=1 xi,mj1{ψ(ri,m) ≥ k}, j = 1, . . . , q, i = 1, . . . , g; Sxixi = XT

i Xi, and

S̃xixi(β) = X̃i(β)T X̃i(β), where X̃i(β) =
(
xi,mj

)
m∈Ki

with Ki = {m : m = 1, . . . , ni;ψk(ri,m) ≥
k}, which denotes the matrix Xi having removed the non-outlying observations, i =
1, . . . , g; tψi =

∑ni
m=1 ψk(ri,m), i = 1, . . . , g.

Proof. The assertion follows on simplifying the first-order Taylor expansion of the BIEE
around {β}(t) (which follows from the Hessian in Welsh and Richardson (1997, p.363));
see Schoch (2011) for details.
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Note that one has to compute Sxixi and txi only once; they remain the same for each
iteration step. In contrast, t̃xi and S̃xixi may change during iteration. However, since
they operate exclusively on outlying observations, which is a usually very small number,
computation is very fast.

Similarly, we shall derive updating equations for the variance components. To this end,
recall (5.9) and (5.10), the BIEE of σ2

c and σ2
1, respectively. In the following theorem, we

derive the NR updating equations based on S ′ = ∂S/∂σ2
c and M ′ = ∂M/∂σ2

1. In addition,
we obtain C = ∂M ′/∂σ2

c ≡ ∂S ′/∂σ2
1.

Theorem 26. Suppose modelM(β,θ) and Definition 24. Let M and S denote the BIEE
of σ2

1 and σ2
c , respectively, and put γi = δ − niωi. The updating equations write

{θ}(t+1) = {θ}(t) − J
(
θ(t)
)−1

g
(
θ(t)
)

(5.19)

with

g
(
θ(t)
)

= (S,M)T , J
(
θ(t)
)

=

(
S ′ C
C M ′

)
, (5.20)

where

M = (1/2)

g∑
i=1

{
γi

[( ni∑
m=1

ψk(ri,m)

)2

− κni
]}

,

M ′ = (1/4)

g∑
i=1

{
−2niγ

2
i

( ni∑
m=1

ψk(ri,m)

)2

−

−2γ2
i

( ni∑
m=1

ri,m

)( ni∑
m=1

ψk(ri,m)

)( ni∑
m=1

ψ′k(ri,m)

)
+ κn2

i γ
2
i

}
,

and

S = (1/2)

g∑
i=1

{
δ

ni∑
m=1

ψk(ri,m)2 − ωi
( ni∑
m=1

ψk(ri,m)

)2

− κni(δ − ωi)
}
,

S ′ = (1/4)

g∑
i=1

{
−2δ2

ni∑
m=1

ψk(ri,m)2 − 2ωi(niωi − 2δ)

( ni∑
m=1

ψ(ri,m)

)2

−

−2δ2

ni∑
m=1

ri,mψk(ri,m)ψ′k(ri,m) + 2δωi

( ni∑
m=1

ψk(ri,m)

)( ni∑
m=1

ri,mψ
′
k(ri,m)

)
+

+2δωi

( ni∑
m=1

ri,m

)( ni∑
m=1

ψk(ri,m)ψ′k(ri,m)

)
− 2ω2

i

( ni∑
m=1

ri,m

)( ni∑
m=1

ψk(ri,m)

)
×

×
( ni∑
m=1

ψ′k(ri,m)

)
+ niκ

[
δ2 + ωi(niωi − 2δ)

]}
,
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and

C = (1/4)

g∑
i=1

{
−2γ2

i

( ni∑
m=1

ψk(ri,m)

)2

− 2γi

(
δ

ni∑
m=1

ψk(ri,m)ψ′k(ri,m)−

−ωi
ni∑
m=1

ψk(ri,m)

ni∑
m=1

ψ′k(ri,m)

)( n1∑
m=1

ri,m

)
+ κniγ

2
i

}
,

Proof. The assertions follow on simplifying the first-order Taylor expansion of the BIEEs
(which follow from the Hessian in Welsh and Richardson (1997, p.363)); see Schoch
(2011) for details.

Note that from a computational perspective, certain (iteration step-specific) terms e.g.,∑ni
m=1 ψk(ri,m), have to be computed once, but can be used in the updating equations for

both random-effect variances. In general, the computation of the iteration steps is not
very involved, since it barely consists of evaluating sums.

5.4.3 Algorithm

The hitherto derived Newton-Raphson updating equations can be used to iteratively ob-
tain robust estimates of the model parameters. However, it is usually helpful to start
the algorithm with a couple of Fisher-scoring steps. When the estimates are sufficiently
stable, the algorithm switches to Newton-Raphson. This procedure is recommended for
two reasons. First, Fisher-scoring is more robust to poor starting values. Second, to avoid
the computational burden (and associated potential numerical instability) of computing
the second-derivative matrix the Hessian is replaced by the Fisher information matrix.

Denote by I(τ ) the information matrix with (i, j)th element Iij(τ ) = −E[Hij(τ )]. The
main advantage of the information over the Hessian matrix is that large sections of its
elements are zero. In particular, we have

I(τ ) =

[
B(β) 0T

0 T(θ)

]
, (5.21)

where 0 is an (2 × q) matrix of zeros; T(θ) = −E[J(θ)] with J(θ) from (5.20); B(β)
is the sub-information matrix of β. For as I is block-diagonal, the fixed-effects and the
random-effect variances can be updated separately. After a few Fisher-scoring iterations
the algorithm switches, as previously stated, to Newton-Raphson. However, we stick to
updating the estimates for β and θ separately for reasons of numerical stability, although
the Hessian has no block-diagonal structure.

5.4.4 Initialization and choice of starting values

Up to now, we discussed the derivation of updating equations to iteratively solve the
system of BIEE assuming that there is a set of starting values, {β}(0) and {θ}(0). The
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choice of initial values is crucial in terms of robustness of the fully iterated estimates and
the number of iteration until convergence (if it converges). We propose to choose them
by an educated guess. Alternatively one may choose a very robust initial estimate (but
with low efficiency), such as LTS (cf. Maronna et al., 2006) for the fixed effects and a
MAD for the random-effect variances; cf. Stahel and Welsh (1997).

Given reasonable candidates of starting values, one may directly solve the updating equa-
tions, or with very large data sets one may first subsample the data using a stratified
design where stratification is according to the clusters.1 In particular, this step consists of
drawing samples of equal size from the strata and computing robust estimates of the para-
meters using the much simpler BIEE for balanced data (cf. Stahel and Welsh, 1997).
In addition, the size of the subsamples may be enlarged during these burn-in steps. When
the initial estimates have reached some numerical stability, the algorithm operates on the
full sample.

5.4.5 Prediction

Based on the estimates β̂ and θ̂, one then considers predicting the area-specific random
effects vi according to the BLUP theory. For convenience, we repeat the BLUP predicting
equation (5.6)

E[vi|yi] = Gi(θ̃)ZT
i Vi(θ̃)−1

[
yi −Xiβ̃

]
=: ṽi, i = 1, . . . , g. (5.6)

From this result, we notice that outyling observations in yi may influence the predictions

even if β̃ and θ̃ have been replaced by some robust estimates β̂
R

and θ̂
R

, respectively.
Therefore, Sinha and Rao (2009) propose to solve Fellner’s (1986) robust mixed-model
equations for vi

JiR
−1/2
i ψ

(
R
−1/2
i (yi −Xiβ − Jivi)

)
−G

−1/2
i ψ

(
G
−1/2
i vi

)
= 0, i = 1, . . . , g, (5.22)

where Gi and Ri follow from Vi = Ri+ZT
i GiZi. Sinha and Rao (2009) propose to solve

(5.22) by a Newton-Raphson algorithm based on updating equations that are obtained by
another first-order Taylor series expansion. Consequently, computation is very involved.
However, one can obtain robust predictions far more easily; see Schoch (2011).

Proposition 27. Suppose the robust estimates β̂
R

and θ̂
R

. Let ψc(u) denote the Huber
ψ-function indexed by the robustness-tuning constant c. Then, robust predictions of the

1Note that the cluster with the smallest sample size determines the maximum size of the subsamples.
For typical SAE problems, this constraint is no a serious limitation since the clusters’ size is in general
very large.
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random effects are obtained as solutions of the bounded-influence predicting equations
(BIPE)

ṽRi = κGi(θ̂
R

)ZT
i Vi(θ̂

R
)−1/2ψc

[
Vi(θ̂

R
)−1/2[yi −Xiβ̂

R
]
]
, i = 1, . . . , g, (5.23)

where

κ =
[
−2cφ(c) + 2Φ(c)− 1 + 2c2

(
1− Φ(c)

)]−1/2
, (5.24)

with φ(u) and Φ(u) the pdf and cdf of the standard normal distribution, respectively. Note
that κ is kind of a consistency correction term which has been chosen in order ṽRi to
behave similarly to ṽi at the core model. In particular, we impose the (implicit) moment
conditions that E[ṽRi ] = 0 and V[v̂Ri ] = V[ṽi].

Proof. Let zi = V
−1/2
i (yi−Xiβ) denote the standardized residual. The condition E[v̂R] =

0 follows immediately noting that at the core model it holds that zi ∼ N(0, Ii), i =
1, . . . , g. Then, it easy to prove that E[ψc(zi)] = 0 ∀i = 1, . . . , g and thus E[ψc(z)] = 0.
As a result of E[ψc(z)] = 0, the variance at the core model simplifies to E[ψc(z)ψc(z)T ].

For the Huber ψ-function, we obtain κ =
[
−2cφ(c) + 2Φ(c)− 1 + 2c2

(
1−Φ(c)

)]−1/2
.

Note that the derivation of the correction factor κ does not take into account that the
estimation of β itself has a contribution to the variance of vi. In general, this leads
to an overestimation of the variance. However, since the dominating term of the more
sophisticated correction factor is p/n, most SAE applications render this term negligible
since p� n with p the number of fixed effects; see (Schoch, 2011).

All in all, the robust prediction of the area-specific random effects is computationally very
simple.

5.5 Conclusion

We showed that robust estimates of the parameters of the basic unit-level model can be
obtained in a computationally very efficient manner. The proposed algorithm usually
converges in a couple of seconds on a standard personal computer, even for very large
samples. Furthermore, we showed that the robust prediction of the random effects seems
to be almost instantaneous, since no iteratively computation is required. Mean squared
error estimation, on the other hand, remains an open problem (cf. Sinha and Rao, 2009).
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Chapter 6

Robust Multivariate Methods: An
Overview

Univariate outlier-detection and robust estimation methods are well established. However,
the univariate income variable is usually an aggregation of several distinct income sources
or components (e.g., employee cash income, capital income, unemployment benefits, etc.).
Notably outliers in the income components may be propagated or masked during the
aggregation process, which renders outlier detection in the univariate income variable very
difficult if not infeasible. Furthermore, multivariate outliers in the income components
can seriously affect the estimates of the income inequality measures.

Therefore we propose to adopt multivariate outlier-detection methods directly on the
joint distribution of the income components. The observations thus detected as outliers
are subsequently imputed using a robustly fitted data model. Both outlier-detection- and
imputation methods are adapted for the finite population sampling context and can cope
with missing values.

The income components relate to the personal and the household level. Those compon-
ents that are measured at the household level, are expressed as per-capita numbers and
attached to the particular household members. Consequently, analysis can be conducted
with individual-level data only. The multidimensional space of income components has
the following characteristics:

• the marginal distribution of each component is very skewed and features a remark-
able point mass at zero (zero-inflation),

• the joint distribution of the components is far from being elliptically contoured,

• an overwhelming majority of observations lies in subspaces, i.e., exhibits intrinsic
zeros on certain dimension (e.g., individuals on working age with a positive employee-
cash income do ordinarily neither receive old-age- nor unemployment benefits, and
vice versa),

• within subspaces, the observations are clustered with respect to non-monetary, socio-
economic characteristics.
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All Multivariate Outlier Detection and Imputation (MODI) methods in this paper consist
of, at least, three computation steps that depend upon another. The main steps are
as follows. The first step is about data preparation such as transformations, treatment
of zero, missing, and negative income values. This is followed by an outlier detection
procedure. Finally, an imputation step replaces outlying and missing observations with
realizations from a robustly estimated data model (or non-outlying donors).

The remainder of this part is organized as follows. In Chapter 7, we derive a typology
of multivariate outlyingness and contamination mechanisms. The remaining chapters, 9
to 11, are devoted to the outlier detection and imputation methods. The MODI methods
have been classified according to their requirements concerning the structure of the data.

6.1 Aggregation of the Income Components

The 2006 EU-SILC exercise collected data on 18 income components at household- and 14
at the individual level (only net incomes components considered). The resulting number of
32 variables is far too large to be fed directly into any outlier-detection method. In addition
to the usual dimensional restrictions of the methods, zero-inflation in multiple dimensions
and missing values evidently limit the number of feasible dimensions. The non-elliptically
symmetric distribution, on the other hand, and potentially negative observation do not
constitute another restriction to the dimensionality problem, since both phenomena can
be treated by appropriate transformations.

With multivariate income data of this complexity, one has to rely on subject matter
knowledge to reduce the dimensions while holding the loss of information minimal. It
comes without saying that a large number of different dimension-reducing strategies may
be applied. In Table 6.1, we report 16 income components from the synthetic population
A-AT-SILC (Templ et al., 2011) and a proposal how to aggregate them. The motiva-
tion of this proposal is (1) to separate individual- from household-level variables, (2) to
distinguish between income sources that refer to working life, purely capital income and
social transfers, (3) to pool income sources of the same kind but with a large amount of
zeros (e.g., variable survivor benefits, PY110n, features 99.34% zero observations), and (4)
to keep the reduction-strategy sufficiently generalizable and applicable to a broad range
of different populations. Nevertheless, we may possibly find better reduction strategies
when optimizing for a single dataset of a single country (perhaps at risk of overfitting) ,
but discarding generalisability. Further, all household-level variables are expressed as per
capita numbers. Thus, we study all components at the individual level.
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Table 6.1: Aggregation of the income components

workinc = PY010n + PY050n
(employee cash or
near cash income)

(cash benefit or
losses from self-
employment)

capinc = [HY040n + HY090n]/hhsize
(income from rental
of a property or land)

(interests, dividends,
profit from capital in-
vestments in unincor-
porated business)

transh = [HY050n + HY110n + HY070n +
(familiy/ children re-
lated allowances)

(income received by
people aged under 16)

(housing allowances)

+ HY080n – HY130n – HY145n]/hhsize

(inter-household cash
transfers received)

(inter-household cash
transfers paid)

(payments/receipts
for tax adjustments)

transp = PY090n + PY110n + PY130n
(unemployment bene-
fits)

(survivor benefits) (disability benefits)

+ PY100n + PY120n + PY140n
(old-age benefits) (sickness benefits) (education related al-

lowances)

Notes: variable names according to EUROSTAT definition. Data is from the synthetic A-AT-SILC
population, see Templ et al. (2011).
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Chapter 7

Multivariate Outliers

7.1 Introduction

Several of the Laeken indicators are based on equivalized income, which itself is a function
of many income components, some of them may be negative, some of them are related
to persons, others to the household. In addition most of these components have a semi-
continuous distribution with a point mass at zero. Robustness of these income based
indicators can be achieved through direct robustification of the indicators. For example,
the Quintile Share Ratio of the income, an inequality measure, can be robustified (Hul-
liger and Schoch, 2009). However, a more adequate robustification may be achieved
by a multivariate robust imputation of the income components. This avenue is explored
in this article.

Detection of multivariate outliers in survey data with missing values has been treated
in the literature and some experience with applications exist (Little and Smith, 1987;
Maronna and Zamar, 2002; Chambers et al., 2004; Béguin and Hulliger, 2004;
Ghosh-Dastidar and Schafer, 2006; Hulliger, 2006; Hulliger and Kilchmann,
2006). After the detection of outliers and influential observations, these suspicious obser-
vations may be revised interactively (Luzi et al., 2007) and/or an imputation considering
their special status is carried out. Some robust imputation methods have been described in
the literature (Charlton, 2003; Hulliger, 2007). This section discusses the conditions
for successful robust multivariate imputation methods.

7.2 Outlier-, contamination- and missingness-mechanisms

Béguin and Hulliger (2008) set up a simulation where first an experiment decides
whether an observation is an outlier and second if the value of the outlier is determined
under the contaminating distribution. Also Ghosh-Dastidar and Schafer (2006) and
Little and Rubin (2002) consider a model where an indicator on outlyingness and an
outlier distribution is combined. We try to formalize these approaches and suggest that
the outlier mechanism follows a two-step procedure. Alqallaf et al. (2009) discuss
related contamination models.
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7.2.1 Notation

The ingredients of the mechanisms we investigate are the following:

• U is the set of elements in the population of size N . We usually use the index i to
indicate the elements of U .

• Y ∗i is the true, complete data. For the description of the mechanisms, the true
Y ∗i are considered random variables which follow a superpopulation model. In the
survey context we will fix them as one realisation of a superpopulation model. Any
finite population characteristics would be a function of Y ∗.

• Yi is the observable data for unit i, Yij is its j-th component.

• Rij a response indicator per observation i and variable j. Given the vector Ri we
can split the observable data Yi into an actually observed part Yio and a missing
part Yim. We then write Yi = (Yio, Yim).

• Yci is the contaminated data for unit i.

• Oi is an outlier indicator. For those observations with Oi = 1 the true data Y ∗i
is replaced by the contaminated data Yci. Thus for Oi = 1 the observed data Yi
actually consists of Yci and for Oi = 0 we have Yi = Y ∗i .

• Si is the sample indicator.

• Xi are covariables which are fully observed.

• Zi are unobserved covariables.

In Figure 7.1 a possible mechanism of contamination is shown. The outlier mechan-
ism for representative outliers Or is disinguished from the outlier mechanism for non-
representative outliers On though in the following we do not use Or and On is simply
denoted O. In addition, the order of R, S and On is arbitrary and will be discussed later
on. The parameter of interest is θ(Y ∗), i.e. a characteristic of the data which contains
already representative outliers. The outliers detection is denoted D and the result of
detection is a prediction Ô based on the detection. Analogously the imputation yields a
prediction Ŷ of Y ∗ which is then used to make inference on the distribution of Y ∗.

An important difference between Ri and Oi is that Oi is not directly observable. Thus the
outlier indicator Oi is a latent variable. While Ri is a vector indicating for each variable
j whether it is observed or not, Oi is a scalar. In other words, Ri indicates item response
while Oi indicates unit outlyingness.

In the next section (7.2.2) we investigate outlyingness, contamination and missingness
from the point of view of the mechanisms that create them. This step is necessary to de-
velop an appropriate simulation setup. In the following section (7.2.3) we derive conditions
that would allow proper inference for the interesting parameters of Y ∗.
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Figure 7.1: Outlier, contamination and missingness mechanisms which lead to the ob-
served data

7.2.2 Mechanisms

From the start we assume that the sampling mechanism is ignorable and we omit it from
the notation in this section. However, the models we are referring to always pertain to
the population and the sample design should be taken into account when estimating and
testing the model parameters.

We will not consider a process for representative outliers (Chambers, 1986). In other
words we consider Y ∗i our starting point and assume therefore that representative outliers
have been created already before and integrated into Y ∗i . Thus the outlier indicator Oi

refers to non-representative outliers only.

We assume that no further error mechanism is disturbing the observable data than the
outlier process, though we could add a general measurement error mechanism. Such
mechanisms and the treatment of errors in a general data preparation system are discussed
in Luzi et al. (2007).

The full density of all the above variables can be written as:

f(Y ∗, Yc, X, Z,R, S,O; Ξ), (7.1)

where Ξ is the set of parameters. Note that for ease of notation and because we refer to
random variables we usually leave away the subscripts i in Yi etc. in the further develop-
ment. There are many possible factorisations of this distribution. We will consider the
following decomposition

f(Y ∗, Yc, X, Z,R, S,O; Ξ) = (7.2)

f(Z; ξZ)f(X|Z; ξX)f(Y ∗|X,Z; ξ∗)

f(O|Y ∗, X, Z; ξO)f(Yc|Y ∗, O,X,Z; ξc)

f(S|O, Y ∗, Yc, X, Z; ξS)f(R|S,O, Y ∗, Yc, X, Z; ξR),
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In this factorization we implicitely assume that the dependence of the truth Y ∗ on the
outlier mechanism O is not important, while the dependence of the outlier mechanism
on the truth is. In other words, the outlier mechanism is seen as noise and we are not
interested in estimating its parameters ξO, while we are interested in ξ∗, the parameters
of the distribution of the truth Y ∗. Note that contrary to Figure 7.1 R and S occur after
O and Yc.

It seems unnecessary to let depend the contamination Yc on the outlier indicator O in
addition to its dependence on the true Y ∗ and thus we may assume f(Yc|Y ∗, O,X,Z; ξc) =
f(Yc|Y ∗, X, Z; ξc).

It may well be that the contamination depends on covariables X. A convenient assumption
is that no other dependency exists, i.e.

f(Yc|Y ∗, O,X,Z; ξc) = f(Yc|X; ξ′c). (7.3)

We call this situation contaminated at random (CAR) in the narrow sense. In Section
7.2.3 we will relax the condition somewhat by allowing a dependence on good observed
data Yog. There are many possibilites how X may affect the contamination. Simple cases
are when the contamination is more heavy-tailed for self-employed or for retired persons
than for employed. The simplest situation is, of course, when the contamination does not
depend on any other variables, i.e.

f(Yc|Y ∗, O,X,Z; ξc) = f(Yc; ξ
′′
c ). (7.4)

We call this situation contaminated completely at random (CCAR). Obviously this
may not be a realistic assumption. However, most models in classical robust statistics
assume a contamination which is CCAR.

The distribution of Yc may depend on Y ∗, of course. For example the well-known
thousands-error, i.e. Yc = 1000 · Y ∗ is such a case. This contamination may be non-
ignorable if no observed proxy for Y ∗ helps to detect the contamination mechanism, e.g.
when the outlier has missing values in the outlying components.

We think of the contamination Yc as a potential contamination which is plugged into the
data only when the outlier indicator O = 1.

What we actually would observe in the case of no missing values is a mixture of Y ∗ and
Yc, where the mixing is due to the outlier mechanism:

Y = (1−O)Y ∗ +OYc. (7.5)

We call Y observable and not observed because we actually observe Y only if there is no
missingness. The observable variable Y , conditional on O,X,Z, has a density

f(Y |O,X,Z; ξY ) = (1−O)f(Y ∗|X,Z; ξ∗) +Of(Yc|Y ∗, X, Z; ξc). (7.6)

This is a mixture of the distribution of the true data and the distribution of the con-
tamination as in the well known contamination model from classical robustness theory.
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However, the conditioning on O hides a complication, i.e. that the outlier mechanism O
may depend on Y ∗.

We assume that the sample design is independent of all other variables except possibly
X, i.e. f(S|R, Y ∗, Yc, X, Z) = f(S|X). In other words the fully observed covariables X
contain all design information. We assume further that the rest of the involved random
variables is independent of S. In other words we assume S is ignorable for inference on
Y ∗.

We call a mechanism missing at random (MAR) in the narrow sense if f(R|Y ∗, Yc, X, Z; ξR) =
f(R|X,Z; ξ′R). This assumption is strong in what concerns the outlyingness. It may be
more realistic to assume that R depends on representative outliers in Y ∗ or even on O.
For example, a true outlier in the population like a self-employed person who has been
exceptionally successful, may not participate in the survey and it may happen that this
behaviour cannot be modelled through X. It may be more reasonable that the response
R does not depend on the contamination because, in the case of non-representative out-
liers, the contamination is in fact a measurement error and may have no effect on the
response. Note that even this assumption may not hold in reality because it may happen
that a person filling in a paper questionnaire realises that he or she made a mistake and
decides not to respond as a consequence. This latter scenario should, in principle, not
happen for the SILC survey since the survey instrument is administered through personal
or telephone interviews.

In analogy with MAR and similarly to R we assume that the outlier indicator O should
not depend on unobserved observation:

f(O|R, S, Y ∗, Yc, X, Z; ξ′O) = f(O|X,Z; ξO
′′). (7.7)

We call this situation outlying at random (OAR) in a narrow sense (Béguin and
Hulliger, 2008). Particularly in a case where O = 1, such that the observable Y = Yc
it becomes obvious that this is a strong assumption. Even stronger, of course, is the
assumption that the outlier mechanism does not depend on any other variable, i.e.

f(O|R, S, Y ∗, Yc, X, Z; ξO) = f(O; ξ′′′O ). (7.8)

This latter mechanism is called, in analogy to MCAR, outlying completely at random
(OCAR) (Béguin and Hulliger, 2008).

For a simulation set-up we can now formulate mechanisms, which are able to capture
interesting dependencies, though not all dependencies, of course. We may denote the
situtations where no MAR missingness, or no OAR outlyingness or no CAR contamination
holds as MNAR, ONAR, CNAR. And we may denote the situation where no missingness
occurs at all as NoR and where no outlyingness, and therefore no contamination, at all
occurs with NoC. Then the feasible and interesting simulations would use the following
scheme of crossings:

(NoR,MCAR,MAR,MNAR) (7.9)

×
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(NoC, (OCAR,OAR,ONAR)× (CCAR,CAR,CNAR)).

(7.10)

For example the likelihood under MAR, OAR, CAR in the narrow sense and assuming no
dependence on unobserved covariates Z would be

f(Y ∗, Yc, X,R, S,O; Ξ) = (7.11)

f(X|Z; ξX)f(Y ∗|X,Z; ξ∗)

f(O|X; ξO)f(Yc|X; ξc)

f(S|X; ξS)f(R|X; ξR).

In other words the full likelihood factors in marginal densities which all are only condi-
tional on observed covariates X. Of course this is an oversimplification of the full like-
lihood. However, the mechanisms implied are already much more complicated than the
classical robust contamination model which does not consider missingness and assumes
OCAR and CCAR.

7.2.3 Inference

In analogy to the development by Schafer (1997) we look for a possibility of inference
on the parameter ξ∗ governing the conditional distribution Y ∗|X. We assume now, in
addition, that no unobserved variables Z influence the rest of the variables.

For the moment we assume that the outlier indicator O is observed like the response
indicator R. The observable data Y is then partitioned into Y = (Yog, Yoc, Ymg, Ymc),
where Yog is the observed good (not contaminated) data, Yoc is the observed contaminated
data, Ymg is the missing good data and Ymc denotes the part of the data which is missing
and contaminated. The observed good data Yog is the part of the data where Oi = 0
and Rij = 1, or shorter where (1 − Oi)Rij = 0. We concentrate on Yog since we cannot
rely on Yoc the observed contaminated data for inference on ξ∗. Note that in very special
situations we may use the contaminated data for inference. This happens for example
when the true data and the contamination have a normal distribution with mean µ and
the contamination distribution differs only by a larger variance from the distribution of
the true data. We may then estimate µ from the contaminated distribution, too, though
with a large variance. This is the assumption in the classical contamination model. The
observed good data likelihood is obtained as follows

f(Yog, X, Z,R,O; ξ) =

∫
f(Y,R,O,X; θ)dYmdYoc (7.12)
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We see that the marginal distribution of Yog cannot be derived from this density if O is lat-
ent. The condition that O is observable is needed to integrate over Yoc, the contaminated
observed data.

The likelihood of the observed good data Yog together with the indicators R and O can
be written as

f(Yog, R,O|X; ξ′∗, ξR, ξO) =

∫
f(R,O|Y,X; ξR, ξO) f(Y |X; ξ′′∗ )dYocdYm, (7.13)

Note that Yog = Y ∗og and therefore

f(Yog, R,O|X; ξ′∗, ξR, ξO) = f(Y ∗og, R,O|X; ξ′∗, ξR, ξO).

For O = 1 Yog is empty. In other words we integrate over all the components of Y and
what remains is f(R|X, ξR), the distribution of the response only. Thus we cannot use
the outliers for inference on Y ∗. When all data is missingg, i.e. Rij = 0,∀j it remains
f(O|X, ξO) which again does not involve Y ∗ and, of course, is not helpful because it relies
on the assumption that Oi is not latent.

In other words we do not consider the contaminated observations or the completely missing
observations for inference. We can separate the likelihood (7.13) into two parts

f(Y ∗og, R,O|X; ξ′∗, ξR, ξO) = f(R,O|Y ∗og, X; ξR, ξO, ξ∗)

∫
f(Y |X; ξ∗)dYocdYm (7.14)

if the following condition holds:

f(R,O|Y,X; ξR, ξO) = f(R,O|Y ∗og, X; ξR, ξO). (7.15)

This condition is ät randomcondition for the joint distribution of R and O. It is not in the
narrow sense as in Section 7.2.2 because it does condition at least on part of the observed
data in addition to X, namely on Yog. We call this condition outlying and missing at
random (OMAR). In other words, if we can assume that the indicators R and O do not
depend on unobserved data or on data which is contaminated, then we can factor out the
part of the likelihood which contains information on the parameter ξ∗. We then can make
inference on ξ∗ using just Yog, which is Y ∗og.

We may add a further assumption on the conditional independence of R and O, namely

f(R,O|Y,X; ξR, ξO) = f(R|Y ∗og, X; ξR)f(O|Y ∗og, X; ξO). (7.16)

Then R and O are OMAR if they are separately MAR and OAR (not in the narrow sense).
Note that the condition MAR (not in the narrow sense) in a situation where we exclude
outlyingness becomes the original condition of Little and Rubin (2002). In a situation
with outlyingness and missingness we need condition OMAR for inference.

We now have to come back to the assumption that O is observable, which is needed for
the derivation of the above results. Outlyingness is a latent fact and O must be estimated
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from the data. Estimating O means that we try to detect the outliers. In order that the
above derivation is applicable we need a perfect detection of the outliers or equivalently
an estimation Ôi which coincides with Oi for all i with Oi = 1. In other words, we must be
sure that no outlier remains in Yog. It may be inefficient to obtain Ôi = 1 if Oi = 0, i.e. to
declare an observation an outlier though it is good. Thus we would discard observations
which contain information on ξ∗.

Under what circumstances can we detect all outliers with certainty, or perfectly? The
outliers must be detected based on Yo whether good or contaminated. Perfect detection
can be seen as a discrimination problem, where the number of “correct falsemust be 0.
This is possible if the support of the contamination-distribution and the support of the
true data is disjoint.

The conditions for the perfect detection of outliers are:

1. The distribution f(Y ∗|X,Z; ξ∗) must have a support which does not overlap with
the support of f(Yc|Y ∗, X, Z; ξc). Let G∗ = {Y ∗ :
f(Y ∗|X,Z; ξ∗) > 0} and Gc = {Yc : f(Yc|Y ∗, X, Z; ξc) > 0}. The first condition is
then G∗ ∩Gc = {}.
We may relax this condition somewhat in the sense, that only G∗ \ Gc 6= {}. This
means that there may be true observations in the outlier support but there must a
part of the support of the true data where no contamination occurs. We may call
G∗ \Gc a safe support.

Of course the support Gc cannot span the whole space because this would exclude
the possibility of a safe support.

2. The response R must not set all information from the safe support G∗\Gc to missing,
i.e. P [Rij = 1|Y ∗ ∈ G∗ \Gc] > 0.

If both of these conditions hold we call the contamination separable.

Note that even if the contamination is separable, the region G∗ \Gc or a proper subset of
it must still be determined from the data by an outlier detection rule. Since this region
may be complex there is still no guarantee to detect all outliers. Of course we may use
a conservative rule for outlier nomination and thus minimise the risk of not detecting an
outlier. This may cause a loss of efficiency since the usable data Yog is reduced.

If for an outlier contamination occurs exclusively in components of Y which are missing,
then the outlier can only be detected through covariate information in X. This is possible
under the CAR setting but not in a CCAR setting. In any case, because we base our
inference only on the observed part of such an observation the un-observed contamination
should not harm the inference on ξ∗.

Using Ôi instead of Oi in (7.14) we obtain f(Y ∗oĝ|X; ξ∗) for inference on ξ∗. Note theˆon

g in the index, indicating that now we rely on Ô to determine which observations we rely
on to make inference on ξ∗.

Since we may have restricted inference to G∗ \Gc we will have to take this restriction into
account when estimating ξ∗. If we postulate OAR and CAR then the contamination does
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not depend on Y ∗ conditionally on X and thus there is no selection bias in considering
only G∗ \Gc for inference on Y ∗ if the inference is conditionally on X.

To understand the role of a safe region G∗ \ Gc better we can look at the problem of
inliers. Inliers occur for example in a contaminaton model (1 − ε)N(µ, σ2) + εN(ν, τ 2),
which is OCAR-CCAR, when an observation stems from N(ν, τ 2) but is sufficiently close
to µ to have a high probability to stem from N(µ, σ2). Such inliers cannot exist if the
contamination is separable. In other words, there must be a region where no contamination
occurs but good observations from the bulk of the data do occur. Obviously in the above
contamination model this is not the case because true data and outliers have the same
support, the whole real line (or the whole space). Suppose now, for example, that the
true data is distributed with N(µ, σ2) and the contamination is an exponential distribution
with support [x0,∞]. The safe region then would be [−∞, x0]. For inference on (µ, σ2)
we would have to find a number g ≤ x0 and then we would work with the likelihood
truncated at g. Even if g depends on a covariate X we must take the truncation into
account.

Separable contamination is an extreme situation where we understand how inference on
ξ∗ is possible. In such a situation we can impute for the missing values and for the outliers
from the distribution f(Y ∗|X; ξ̂∗). In practice we seldom have such a nice situation and
usually contamination is not separable, i.e. inliers may occur and we cannot ensure that
observations which are not nominated outliers, i.e. with Ôi = 0, stem from the true
distribution.

In conclusion we would need OMAR outlyingness and missingness and separable con-
tamination to obtain a good imputation. But hope is small that these conditions really
hold. Nevertheless these conditions are helpful for the study of detection and imputation
procedures or robust estimators in a complex multivariate setting when missing values
and outliers occur.
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Béguin, C. and Hulliger, B. (2008): The BACON-EEM Algorithm for Multivariate
Outlier Detection in Incomplete Survey Data. Survey Methodology, Vol. 34, No. 1, pp.
91–103.

Chambers, R., Hentges, A. and Zhao, X. (2004): Robust Automatic Methods for
Outlier and Error Detection. Journal of the Royal Statistical Society, Series A: Statistics
in Society, 167 (2), pp. 323–339.

Chambers, R. L. (1986): Outlier Robust Finite Population Estimation. Journal of the
American Statistical Association, 81 (396), pp. 1063–1069.

AMELI-WP4-D4.2



88 Bibliography

Charlton, J. (editor) (2003): Towards Effective Statistical Editing and Imputation
Strategies - Findings of the Euredit project, vol. 1 and 2. EUREDIT consortium (pub-
lished as web reference only), http://www.cs.york.ac.uk/euredit/results/results.html.

Ghosh-Dastidar, B. and Schafer, J. (2006): Outlier Detection and Editing Procedures
for Continuous Multivariate Data. Journal of Official Statistics, Vol. 22, No. 3

”
pp. 487–

506.

Hulliger, B. (2006): On Two Aspects of Outlier Treatment: Univariate vs. Multivariate
Approach and Transformation of Data. Proceedings of Q2006, the European Conference
on Quality in Survey Statistics, Office for National Statistics UK and Eurostat.

Hulliger, B. (2007): Multivariate Outlier Detection and Treatment in Business Surveys.
Proceedings of the III International Conference on Establishment Surveys, Montréal,
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Chapter 8

EM-based Regression Imputation
Using Robust Methods

Abstract Imputation of missing values is one of the major tasks for data pre-processing
in many areas. Whenever imputation of data from official statistics, such as within the
EU-SILC data, comes into mind, several (additional) challenges almost always arise, like
large data sets, data sets consisting of a mixture of different variable types, or data outliers.

We summarize an automatic algorithm called IRMI for iterative model-based imputation
using robust methods which was developed (and implemented and available in R) during
the AMELI project and which encounters for the mentioned challenges. The corresponding
software can be freely downloaded at http://cran.r-project.org/package=VIM.

The proposed algorithm is compared to the algorithm IVEWARE, which is the “recommen-
ded software” for imputations in international and national statistical institutions. Using
artificial data and the EU-SILC data, the advantages of IRMI over IVEWARE – especially
with respect to robustness – are demonstrated.

Keywords: EM-based regression imputation, robustness, R

8.1 Introduction

The imputation of missing values is especially important in official statistics, because vir-
tually all data sets from this area deal with the problem of missing information due to
non-responses, or because erroneous values have been set to missing. This has especially
consequences for statistical methods using the multivariate data information. The naive
approach, namely omitting all observations that include at least one missing cell, is not
attractive because a lot of valuable information might still be contained in these observa-
tions. On the other hand, omitting observations may only lead to non-biased estimates
when the missing data are missing completely at random (MCAR) (see, e.g., Little and
Rubin, 1987)

The estimation of the missing cells can even introduce additional bias depending on the
method used. Valid estimates and inferences can mostly only be made if the missing data
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90 Chapter 8. EM-based Regression Imputation Using Robust Methods

are at least missing at random (MAR) (see, e.g., Little and Rubin, 1987). Even in
this case there are further challenges, and these are very typical in data sets from official
statistics:

Mixed type of variables in the data: Data from official statistics typically consist of
variables that have different distributions, i.e. various variables consist of an al-
ternative distribution (binary data), some variables might be categorical, and the
distribution of some variables could be determined to be continuous. If missing val-
ues are present in all these variable types, the challenge is to estimate the missing
values based on the whole multivariate information.

Semi-continuous variables: Another challenge is the presence of variables in the data
set where the distribution of one part of the data is continuous and the other part
includes a certain proportion of equal values (typically zeros). The distribution
of such variables is often referred to as “semi-continuous” distribution (see, e.g.,
Schafer and Olson, 1999). Data consisting of semi-continuous variables are, for
example, income components in the European Union Statistics of Income and Living
Condition (EU-SILC) survey, or tax components in tax data, in which one part of
such a variable origins from a continuous distribution, and the other part consists
of (structural) zeros.

Large data sets: Since data collection is a requirement in many fields nowadays, the
resulting data sets can become“large”, and thus the computation time of imputation
methods is an important issue. One might argue that many such data sets can be
decomposed into subsets referring to sub-populations, which are for instance defined
by the NACE-codes in Structural Business Survey (SBS) data. Still, these subsets
can contain more that 50000 observations, which calls for fast methods for data
imputation.

Far from normality: A common assumption used for multivariate imputation methods
is usually that the data originate from a multivariate normal distribution, or that
they can be transformed to approximate multivariate normal distribution. This is
violated in presence of outlying observations in the data. In this case, standard
methods can result in very biased estimates for the missing values. It is then more
advisable to use robust methods, being less influenced by outlying observations (see,
e.g., Beguin and Hulliger, 2008; Serneels and Verdonck, 2008; Hron et al.,
2010).

Note that prior exclusion of outliers before imputation is not straightforward. For
example, when regression imputation is applied, leverage points might only be de-
tected when analyzing the residuals from robust regression but might not be reliably
identified from a least-squares fit nor by other multivariate outlier detection meth-
ods.

Note that rather than using sampling weights in the imputation process we recommend
to impute data within reasonable subsets of the data set and to include the variables used
for computing the sampling weights in the imputation model (see, e.g., Lumley, 2010a).
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8.1.1 Imputation methods

Many different methods for imputation have been developed over the last few decades.
The techniques for imputation may be divided into univariate methods such as column-
wise (conditional) mean imputation, and multivariate imputation. In the latter case there
are basically three approaches: distance-based imputation methods such as k-nearest
neighbor imputation, covariance-based methods such as the approaches by Verboven
et al. (2007) or Serneels and Verdonck (2008), and model-based methods such as
regression imputation.

If an imputation method is able to deal with the randomness inherent in the data, it
can be used for multiple imputation, generating more than one candidate for a missing
cell (Rubin, 1987). Multiple imputation is one way to reflect the sampling variability,
but it should only be used with careful consideration of the underlying distributional as-
sumptions and underlying models (see also Fay, 1996; Durrant, 2005). In addition, if
assumptions for the distribution of the occurrence of non-response are made but violated,
poor results might be obtained (see also Schafer and Olsen, 1998). The sampling
variability can also be reflected by adding a certain noise to the imputed values, and
valuable inference can also be obtained by applying bootstrap methods (Little and Ru-
bin, 1987; Alfons et al., 2009). However, most of the existing methods assume that the
data originate from a multivariate normal distribution (e.g. the Gibbs sampling methods
of the imputation software MICE (van Buuren and Oudshoorn, 1999; Buuren and
Groothuis-Oudshoorn, 2011), Amelia (Honaker et al., 2009), mi (Yu-Sung et al.,
2009) or mitools (Lumley, 2010b)). This assumption becomes inappropriate as soon as
there are outliers in the data, or in case of skewed or multimodal distributions. Since this
is a very frequent situation with practical data sets, imputation methods based on robust
estimates are gaining increasing importance.

The basic procedure behind most model-based imputation methods is the EM-algorithm
(Dempster et al., 1977), which can be thought of as a guidance for the iterative applic-
ation of estimation, adaption and re-estimation. For the estimation, usually regression
methods are applied in an iterative manner, which is known under the names regression
switching, chain equations, sequential regressions, or variable-by-variable Gibbs sampling
(see, e.g., van Buuren and Oudshoorn, 1999; Muennich and Rässler, 2004).

8.1.2 Software for imputation

The R package mix by Schafer (2009, 1997) considers most of the challenges described
above, but it cannot handle semi-continuous variables, although Schafer and Olson
(1999) described the problems with semi-continuous variables. In addition also the R
package mice by van Buuren and Oudshoorn (1999) not supports to deal with semi-
continuous variables. The R package mi (Yu-Sung et al., 2009) is well suited for multiple
imputation in general, but it has the same limitations related to semi-continuous variables.
This problem is treated in IVEWARE, a set of C and Fortran functions for which also SAS
Macros are available (Raghunathan et al., 2001). The algorithms in mi and IVEWARE are
based on iterative regression imputation. mi starts the algorithm by a rough initialization
(randomly chosen values). The same concept is used by MICE (Multiple Imputation by
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Chain Equations) the package of van Buuren and Oudshoorn (1999); Buuren and
Groothuis-Oudshoorn (2011) and the Amelia package of Honaker et al. (2009),
where first bootstrap samples with the same dimensions as the original data are drawn,
and used for EM-based imputation. For a detailed review of software, see also White
et al. (2010).

All these algorithms and procedures cannot adequately cope with data including outliers.
The aim is to develop a procedure that is competitive with the above algorithms, but has
the additional feature of being robust with respect to data outliers. Since IVEWARE takes
care of all the mentioned problems except robustness, and because this software is also
recommended by EUROSTAT (see, e.g., Eurostat, 2008), it is natural to use it as a
basis for our task. IVEWARE is mentioned by Eurostat in internal task force reports and
presentation slides, and it is routinely used in national statistical institutions as well as
in various research organizations.

A drawback of IVEWARE is that the exact procedure of the algorithm is not well docu-
mented. Therefore, we analyzed the software and provide a mathematical description of
the algorithm in Section 8.2. Section 8.3 introduces the robust counterpart to IVEWARE

which we call IRMI (Iterative Robust Model-based Imputation). Also other improvements
were included in IRMI, like a different strategy for the initialization of the missing values.
Simple comparisons of the two algorithms on two-dimensional artificial data are made
in Section 8.4, and more detailed comparisons based on simulations are in Section 8.5.
Applications to real data sets are provided in Section 8.6. The final section concludes.

8.2 The algorithm IVEWARE

IVEWARE estimates the missing values by fitting a sequence of regression models and draw-
ing values from the corresponding predictive distributions (Raghunathan et al., 2001).
Unfortunately, a detailed description of the algorithm does not exist. Raghunathan
et al. (2001) provide only a rather vague outline of the functionality of this algorithm.
However, the algorithm is fully described in Templ et al. (2011b). In few words, the
algorithm includes the following steps:

• Sort the variables according to the amount of missing values.

• Initialization loop: Initialize the missing values by using one variable with missing
values as response and the variables which includes either no missing values and
variables which are already initialized as predictors. Apply this procedure for all
variables which includes missing values.

• Iteration: Use one variable as response and the others as predictors and update the
missing values in the response by drawing from the predictive distribution. The link
function of the generalized linear regression method has to be selected based on the
distribution of the response. Do that for all variables. Repeat this procedure until
convergency.
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8.3 The algorithm IRMI

The algorithm called IRMI for iterative robust model-based imputation has been imple-
mented in function irmi() in the R package VIM. Basically it mimics the functionality
of IVEWARE (Raghunathan et al., 2001), but there are several improvements with re-
spects to the stability of the initialized values, or the robustness of the imputed values.
In each step of the iteration, one variable is used as a response variable and the remain-
ing variables serve as the regressors. Thus the “whole” multivariate information will be
used for imputation in the response variable. The proposed iterative algorithm can be
summarized as follows:

1. Initialisation of the missing values.

2. Choose one variable as response and the others as predictors and update the former
missing values in the response.

3. Go to the next variable and repeat the procedure.

4. Repeat the whole procedure starting from 2 until convergency.

5. Add noise to the final estimates in a proper way to allow multiple imputation.

Note that robust regression methods are used instead of classical ones. This implies
to solve many problems concerning these methods. A discussion about these problems
and the detailed mathematical description of the method can be found in Templ et al.
(2011b).

Within our implementation it is possible to use least trimmed squares (LTS) regression
(Rousseeuw and Van Driessen, 2002), MM-estimation (default) (Yohai, 1987) and
M-estimation (Huber, 1981) whenever the response is continuous or semi-continuous. If
the response variable is binary, a robust generalized linear model with family binomial is
applied (Cantoni and Ronchetti, 2001). When the response variables is categorical, a
multinomial model is chosen, which is based on neural networks (for details, see Venables
and Ripley, 2002; Ripley, 1996).

Note that robust regression for continuous or semi-continuous responses also protects
against poorly initialized missing values, because the estimation of the regression coeffi-
cients is based only on the majority of the observations.

The function irmi() also provides the option to add a random error term to the imputed
values, creating the possibility for multiple imputation. The error term has mean 0 and
a variance corresponding to the (robust) variance of the regression residuals from the
observations from the observed response. To provide adequate variances of the imputed

data the error term has to be multiplied by a factor
√

1 + 1
n
#ml, considering the amount

of missing values (#ml) in the response (additionally, the level of noise can be controlled
by a scale parameter, which is by default set to 1). Conceptionally, this is different from
all other implementations of EM-based regression imputation methods. It’s somehow
a simplification because only expected values are used to update former missing values
until convergence. However, it guarantees much faster convergence and full control of the
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convergence of the algorithm. Note that to keeping track of convergence of sequential
methods used in IVEWARE, mice or mi is rather difficult because in each step predictive
values are used to update former missing values instead of expected values like in IRMI.
Within IRMI, errors to provide correct (co-)variances are included in a final iteration in an
adequate way. The chosen factor allows multiple imputation with proper coverage rates as
well (see Section 8.3.1). Within practical application using real-world data this approach
is preferable and the results shows correct variances and coverage rates, i.e. this change
of paradigm has a lot of advantages when working with complex data sets from official
statistics, for example.

8.3.1 Properties

The imputation method should be “proper”, i.e. to incorporate the variability that af-
fects the imputed value, in order to lead to consistent standard errors (see, e.g., Rubin,
1987). Since a mathematical proof whether a complex robust imputation method is proper
in Rubin’s sense is virtually impossible, the problem can be addressed by Monte Carlo
simulation studies. Raessler and Münnich (2004) give a detailed description on how
to use simulations to determine if a multiple imputation method is proper or at least
approximately proper. They investigated in a simulation to estimate coverage rates of
the imputation procedures. We investigated this problem by reproducing the simulation
study given in Raessler and Münnich (2004). Let

(AGE, INCOME) ∼ N

((
40

1500

))
,

((
10 44

44 300

))
the universe from which samples of size 2000 are drawn, whereas variable AGE is recoded
in 6 categories. We set 30% of the income values to missing values using MCAR, MAR and
MNAR mechanisms. Note that under MCAR the missing values are generated completely
at random, under MAR, income is missing with higher probability the higher the value of
AGE, under MNAR the probability of missing in INCOME is higher the higher INCOME
(see, e.g., Little and Rubin, 1987). Then the three data sets are imputed using IVEWARE,
IMI and IRMI, whereas 10 multiple imputed data sets are generated. The results from
multiple imputed data were combined by well known rules (Rubin, 1987). The aim is to
estimate the total variance of the arithmetic mean which is the sum of squared distances
from the MI estimates to the mean of the MI estimates (between-imputaton variance)
plus the variance of the MI estimates itself (within-imputation variance) including small
sample correction (see also Raessler and Münnich, 2004). The whole procedure is
repeated 2000 times and the coverage rate is counted, which is defined as the ratio between
the amount of how often the true mean is covered by the estimated confidence intervals
and the number of replications (2000).

Table 8.1 shows the coverage rate from complete case analysis (CA), mean imputation,
IVEWARE, IMI and IRMI-MM (using MM-regression for robust imputation of continuous and
semi-continuous variables).

All sequential imputation methods lead to comparable results and even in a MAR situ-
ation the coverage rate is reasonable. However, no contamination is introduced in that
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Table 8.1: Coverage rates (0.95% confidence interval) using complete case analysis (CA),
mean imputation, IVEWARE, IMI (the non-robust version of IRMI) and IRMI and different
missing values mechanisms.

Missing mPop CA Mean IVEWARE IMI IRMI-MM

none 0.96
MCAR 0.954 0.818 0.916 0.914 0.902
MAR 0.709 0.527 0.904 0.894 0.882
MNAR 0.822 0.820 0.918 0.916 0.906
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simulation, and it becomes later clear that then the methods (IRMI) based on robust es-
timation are preferable. The coverage rate from complete analysis (CA) and arithmetic
mean imputation is quite low, especially in MAR situations.

8.4 Comparison using exploratory examples includ-

ing outliers

The different behaviour of IVEWARE and IRMI can be investigated by simple data config-
urations where the structure is clearly visible. Here we focus on the robustness aspect of
IRMI, and thus on the effect of outlying observations in the data.

In Figure 8.1, two-dimensional data with both variables continuous distributed are shown.
A complete data set including outliers is generated, and after that certain values of the
non-outlying part are set to be missing. The aim is to impute those missing values
and to evaluate if the covariance of the non-outlying part has changed after imputation.
The dashed lines in the upper plots (Figure 8.1(a) and 8.1(b)) join the original values
with their imputed ones. It is apparent that IVEWARE is highly influenced by outlying
observations (Figure 8.1(a)) while IRMI leads to imputed values in the central part of the
point cloud (Figure 8.1(b)). This becomes again visible when comparing the 95% tolerance
ellipses, constructed by the non-outlying (and imputed) part of the data. A 95% tolerance
ellipse covers (theoretically) 95% of the observations in case of two-dimensional normal
distribution. The non-robust imputation by IVEWARE results in an inflated tolerance
ellipse when compared to the tolerance ellipse using the original complete outlier-free
data (Figure 8.1(c)). In contrast, the robust imputation by IRMI causes both ellipses to
be almost indistinguishable, and thus IRMI generates practically the same bivariate data
structure (Figure 8.1(d)).

Figure 8.2 already shows both the imputation results and the 95% tolerance ellipses from
another two-dimensional data set, where the variable on the vertical axis originates from
a semi-continuous distribution. This situation is very typical for data from official stat-
istics. The figures also contain boxplots in the margins of the horizontal axes, providing
information of both the distribution of the original (dark-grey colored boxes) and the im-
puted (light-grey colored boxes) constant data part. The 95% tolerance ellipses are based
on the continuous and non-outlying part of the data. Although IVEWARE should be able
to cope with semi-continuous variables. In IVEWARE we have used the data type mixed

and the default values for all other parameters. Figure 8.2(a) shows that the imputed
values are influenced by the outliers and the constant data part. In contrast, IRMI works
as expected (see Figure 8.2(b)).

Similar experiments were made with other data configurations (for example, one binary
distributed variable versus one variable where numbers are drawn from a normal distri-
bution) and with other choices of the means and covariances for generating the data.
The conclusions are analogous. A more detailed comparison of IVEWARE and IRMI will be
provided by simulation studies in the next section.
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(a) Imputation by IVEWARE
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(b) Imputation by IRMI
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(c) Imputation by IVEWARE
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(d) Imputation by IRMI

Figure 8.1: Imputation for continuous distributed two-dimensional data by IVEWARE

and IRMI. Upper plots: The dashed lines join the original values with their imputations.
Lower plots: 95% tolerance ellipses characterizing the multivariate data structure of the
non-outlying part of the data. The imputation by IVEWARE is sensitive to the outliers,
while IRMI succeeds to impute according to the original data structure.
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(b) Imputation by IRMI

Figure 8.2: Imputation results by IVEWARE and IRMI for a two-dimensional data set con-
sisting of a continuous variable and a semi-continuous variable. The covariance structure
of the non-outlying continuous part of the data is visualized by 95% tolerance ellipses.
The constant data part is summarized by boxplots for the original (lower boxplot) and
the imputed (upper boxplot) data.
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8.5 Simulation studies

For all simulations presented in this section we randomly generate data with n = 500
observations and p variables from a multivariate normal distribution. The population
mean of (the non-outlier part of) each variable is fixed at 10. Based on the multivariate
normal distribution, variables drawn from a binary and a semi-continuous distribution
(as many other authors (see, e.g., Raghunathan et al., 2001) we do not consider the
multinomial variables because within extensive simulation studies the computation time
would then grow up a lot) are constructed by the following procedures:

Binary variable: A binary variable y with values y1, . . . , yn is created on the basis of a
variable x with values x1, . . . , xn from the generated multivariate data by

yi =

{
0 with P (yi = 0) = 1− FN(µ,σ2)(xi)

1 with P (yi = 1) = 1− P (yi = 0) = FN(µ,σ2)(xi) ,

for i = 1, . . . , n. FN(µ,σ2) denotes the distribution function of x, a normal distribution
with mean µ and variance σ2. Hence, if xi is high (low) the probability that yi
becomes zero is high (low). Depending on the choice of µ the ratio of zero and ones
differs (default 50% zeros on the average)

Semi-continuous variable: Without loss of generality, we set the constant part of the
variable from a semi-continuous distribution to zero. We use two variables from the
multivariate data. One variable is used to generate a binary variable y with values
y1, . . . , yn. This is done in the same way as above for binary distributed variables.
A second variable x̃ with values x̃1, . . . , x̃n determines the non-constant part of the
semi-continuous variable z with values z1, . . . , zn by

zi =

{
0 if yi = 0

x̃i if yi = 1
,

for i = 1, . . . , n.

These procedures allow that the correlation structure generated for the multivariate nor-
mally distributed data is also reflected by the variables with mixed distribution.

In order to avoid complicated notation, the resulting data values are denoted by xorigij ,

with i = 1, . . . , n and j = 1, . . . , p, and the imputed values by ximpij .

8.5.1 Error measures

The use of variables with different distribution has also consequences for an error measure,
providing information on the quality of the imputed data. A solution is to use different
measures for categorical and binary variables, and for continuous and semi-continuous
variables.
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Note, that the specified error measures in the following are suitable to measure precision
of the imputations. Other error measures which are designed to estimate the error in
terms of variance preservation are not discussed in this contribution.

Error measure for categorical and binary variables: This error measure is defined
as the proportion of imputed values taken from an incorrect category on all missing
categorical or binary values:

errc =
1

mc

pc∑
j=1

n∑
i=1

I(xorigij 6= ximpij ) , (8.1)

with I the indicator function, mc the number of missing values in the pc categorical
variables, and n the number of observations.

Error measure for continuous and semi-continuous variables: The two different
situations continuous and semi-continuous have to be distinguished. For the con-
tinuous parts we use the absolute relative error between the original and the im-
puted value. For the categorical (constant) part we count the number of incorrect
categories, similar to Equation (8.1). Here we assume that the constant part of the
semi-continuous variable is zero. Hence, the joint error measure is

errs =
1

ms

ps∑
j=1

n∑
i=1

[∣∣∣∣∣(x
orig
ij − x

imp
ij )

xorigij

∣∣∣∣∣ · I(xorigij 6= 0 ∧ ximpij 6= 0) +

I((xorigij = 0 ∧ ximpij 6= 0) ∨ (xorigij 6= 0 ∧ ximpij = 0))
]

, (8.2)

with ms the number of missing values in the ps continuous and semi-continuous
variables. For continuous variables we assume that both the original value and
the imputed value are different from zero, and thus the first part of Equation (8.2)
measures the imputation error. In the other case, if either the original or the imputed
value is zero, the second part of the equation is used.

8.5.2 First configuration: varying the correlation structure

In a first simulation setting we want to study the effect of the correlation structure between
the variables. Therefore, the covariance matrix of the underlying multivariate normally
distributed data is taken as a matrix with variances of one on the main diagonal, and
otherwise constant values. These are chosen in 4 steps as 0.1, 0.3, 0.5, 0.7 and 0.9,
respectively. The following type of variables are included - two continuous variables, one
binary variable and one semi-continuous variable. As for all simulations in this section,
the number of repetitions is 500, and the final error measure is the average of all 500
resulting error measures. The proportion of missing values is fixed at 5% in each variable.

The results of the algorithms IVEWARE, IRMI, and IMI, the non-robust version of IRMI, are
presented in Figure 8.3. Generally, the error measure decreases with increasing correlation,
because then the multivariate information is more and more useful for the estimation of the
missing values. The error measure for the categorical variables (see Figure 8.3(a)) and the
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continuous and semi-continuous variables (Figure 8.3(b)) is compariable among the robust
method (IRMI) and the non-robust OLS-based regression method, because no outliers
have been generated in the simulated data. The difference for the error measures between
IVEWARE and our proposed methods gets more pronounced with increasing correlation
(Figure 8.3(b)). Here, IVEWARE obviously may suffer from a less optimal strategy to
initialize the missing values, which is then reflected in slightly poorer imputation quality.
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Figure 8.3: Comparison of the error measures resulting from the three algorithms by
varying the correlation structure of the generated data.

8.5.3 Second configuration: varying the number of variables

With increasing dimensionality of the data, the gain in multivariate information can be
used by model-based regression imputation as long as the additional variables are not
uncorrelated to the variable where missing information needs to be estimated. This effect
is demonstrated by a simulation setting which starts from 4 variables (two continuous,
one binary and one semi-continuous), and increases in each step the dimensionality of the
data by including one further variable of each type. Figure 8.4 presents the results of this
study. Here the simulated data are based on multivariate normally distributed data with
fixed covariances of 0.7 and variances of 1. Again the proportion of missing values is fixed
with 5% in each variable.

Figure 8.4 shows that all three algorithms have a similar performance. IMI and IRMI

have a slightly better precision than IVEWARE with respect to lower dimensionality of the
data. While the errors from the categorical and binary variables remain almost constant
when increasing the number of variables (see Figure 8.4(a)), the error from imputing
the continuous and semi-continuous variables is first decreasing and then increasing (see
Figure 8.4(b)).
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Figure 8.4: Comparison of the error measures resulting from the three algorithms by
varying the number of variables.
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8.5.4 Third/fourth configuration: varying the amount of out-
liers using variables with high/low correlation

To illustrate the influence of outliers on the considered imputation algorithms, n1 out of
n observations will be replaced by outlying observations. The non-outlying part of the
data is generated in the same way as described in the previous settings, with covariances
of 0.9 (third configuration) and 0.4 (fourth configuration), respectively, including two
continuous variables, two binary variables and one semi-continuous variable. The outlier
part is generated with the mean vector

µout = (5, 15, 10, 10, 10)t

and covariances 0.5 (third configuration) and 0.4 (fourth configuration), the variances are
1. The generation of binary variables and semi-continuous variables is done as described
in the first part of this chapter. The percentage of outliers is varied from 0 to 50. The
proportion of missing values in the variables is (0.1, 0.06, 0.05, 0.04), and they are only
chosen in the non-outlying part. Accordingly, the error measures are only based on non-
outlying observations. The results are shown in Figure 8.5.

With respect to the errors in the categorical parts (Figure 8.5(a) and 8.5(c)), the non-
robust method IMI and its robust counterpart IRMI performs almost identical since non-
robust regression is used by IRMI for imputing categorical responses per default, because
robust methods tends to be very instable for categorical responses. Especially for the
highly correlated data including outliers, both methods outperforms IVEWARE. The error
in the continuous parts reveals a contrasting behavior (Figure 8.5(b) and 8.5(d)). Here,
the robust version IRMI clearly dominates, and it remain stable until about 30% outliers.
The non-robust version IMI perfoms slightly better than IVEWARE.

8.6 Application to EU-SILC

Originally, all the EU-SILC data set come with missing values and few outlying ob-
servations. We took the available complete observations, almost ignoring the possible
dependencies of the missing values in the data. However, also within this simplification
the results should reflect how the algorithm performs with the data. We set missing val-
ues randomly to the available information before imputing these artificial missing values.
After imputation, the imputed values are compared with their “true” original values.

The EU-SILC data set includes a moderate amount of missing values in the semi-continuous
part of the data. IVEWARE is used by various statistical agencies (e.g. by the Federal
Statistical Office in Swiss) to impute the income components of the EU-SILC data, for
example. Statistics Austria, for example, uses (non-iterative) least-squares regression im-
putation whereas a random error based on the variance of the residuals is added to the
response (see, e.g., Rubin, 1987; Ghellini and Neri, 2004). Fisher (2006) imputed the
income components of “similar” data (consumer expenditure data) separately, i.e. he uses
one income component as the response variable and as predictors demographic character-
istics of the consumer unit and a variable that equals the quarterly expenditure outlays
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Figure 8.5: Comparison of the error measures resulting from the three algorithms by
varying the percentage of outliers.
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Figure 8.6: Results for the Austrian EU-SILC data comparing original data points with
the imputed data points.

for the consumer unit. He performs a stepwise backward approach to select only the most
important predictors.

For imputation we used the household income variables (semi-continuous variables) with
the largest amount of missing values in the raw data set, namely hy050n (family/children
related allowances), hy060n (social exclusion not elsewhere classified), hy070n (housing
allowances), hy090n (interest, dividends, profit from capital investments in unincorporated
business), and three categorical variables, namely household size, region, and number
of childrens in the household. The available complete observations of this data set are
used (3808 observations), and missing values are set completely at random in the income
components respecting the rate of missing values in the income variables from the complete
data. Therefore, 25 percent missing values are generated in variable hy090n, and 2 percent
missing values are generated in the other income components. IMI, IRMI and IVEWARE

are applied to impute the missing values.

The procedure is repeated 1000 times. Figure 8.6 displays the results of the simulation.
Since missing values are only obtained in the semi-continuous income components, only
the error measure for continuous and semi-continuous variables is reasonable. It is easy
to see that IRMI leads to much better results than IMI and IVEWARE. Also the variance of
the errors is much smaller.

An additional result within the AMELI project by imputing this data set with IRMI is
obtained by Alfons et al. (2009). They used IRMI (without describing the algorithm) to
estimate the additional uncertainty (with respect to missing values) of indicators via the
bootstrap approach from Little and Rubin (1987). In fact they estimate the additional
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uncertainty due the presence of imputations when estimating the GINI coefficient but also
the weighted mean of the equivalised household income from the Austrian EU-SILC data.
The additional uncertainty was evaluated for the point estimates but also for the variance
estimates. Their simulations was not designed to show that IRMI is proper according to
definitions in Nielsen (2003) or Rubin (1987), but it results in realistic estimates and
consider small additional uncertainty due to point and variance estimates.

8.7 Conclusions

All real-world data sets we have seen so far, especially in official statistics, include outlying
observations and they often include different types of distributions. We summarize an
EM-based iterative robust model-based imputation procedure for automatic imputation
of missing values, which can deal with the mentioned data problems. All simulation
results show that our robust method shows either equal behaviour or outperforms the
investigated non-robust methods. Additionally, the results from the imputation of the
complex and popular EU-SILC data set which includes several semi-continuous variables
showed that IRMI performs very well in a real-world settings.

Therefore, we would suggest to apply IRMI whenever an automatical approach for im-
putation is needed, and especially, when the variables are realizations of different types of
distributions possible including all, binary, categorical, semi-continuous and continuous
variables.

Furthermore, our methods are implemented in the package VIM version 1.4.4. (Templ
et al., 2011a) written in R (R Development Core Team, 2009). The function irmi()

can be used to impute missing values with our proposed method. It has sensible defaults
and various user-friendly tools to automatically detect the distribution of variables (opt-
inally), for example. The application is straightforward and explained in the manual of
the package. As mentioned before, the package VIM can be freely downloaded from the
comprehensive R archive network (see http://cran.r-project.org/package=VIM).
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Chapter 9

Robust Methods for Elliptically
Contoured Data

All the methods in this chapter assume that the data come from a model (i.e., from an
elliptically contoured distribution; see below). This assumption is less restrictive than it
may seem at first sight since the income data can be transformed (by a series of data
preparation steps) to fit into the model; at least nearly so. From the model perspective,
a general framework for multivariate outlier identification in a p-dimensional data set
X = (xT1 , . . . ,x

T
n )T is to compute some measure of the distance of a particular data point

from the center of the data and declare as outliers those points which are too far away
from the center. Usually, as a measure of öutlyingnessfor a data point xi, i = 1, . . . , n, a
robust version of the (squared) Mahalanobis distance RDi is used, computed relative to
high breakdown point robust estimates of location µ and covariance Σ of the data set X

RD2
i (xi;µ,Σ) = (xi − µ)TΣ−1(xi − µ). (9.1)

The most common estimators of multivariate location and scatter are the sample mean,
m, and the sample covariance matrix, C, i.e. the corresponding ML estimates (when the
data follow a normal distribution). These estimates are optimal if the data come from a
multivariate normal distribution but are extremely sensitive to the presence of even a few
outliers in the data.

We restrict attention to the familiy of ellipitically contoured distributions (EC); a natural
extension of the multivariate normal distribution. Notably, we assume that the data come
from an EC. Denote by Fp,I ∈ Fp,I a distribution in the class of spherically symmetric
distributions in Rp. A (p× 1) random variable x is said to have a spherically symmetric
distribution S(ω) if there exists a scalar function ω(·) (characteristic generator) such that
for its characteristic function f(u) it holds that f(u) = ω(uTu), for ω in the family of all
generators and u ∈ Rp; see Fang et al. (1990, p.28-29) for the details. Thus, an (p × 1)
random variable y is said to have elliptically symmetric distribution with parameters µ
(p × 1) and Σ = ΛTΛ of dimension (p × p) and rank p if y =d µ + ΛTx, with x a
spherically symmetric distributed (p × 1) random variable (where a =d b denotes that a
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112 Chapter 9. Robust Methods for Elliptically Contoured Data

and b have the same distribution). We shall write y ∼ ECp(µ,Σ, ω) with rank(Σ) = p.
For ω(u) = exp(−u/2), ECp(µ,Σ, ω) is the p-dimensional normal distribution.

In the presence of contamination, outlier identification procedures based on sample mean
and sample covariance will suffer from the following two problems (Rousseeuw and
Leroy, 1987):

• Masking : multiple outliers can distort the classical estimates of mean and covariance
in such a way (attracting m and inflating C) that they do not get necessarily large
values of the Mahalanobis distance, and

• Swamping : multiple outliers can distort the classical estimates of mean and covari-
ance in such a way that observations which are consistent with the majority of the
data get large values for the Mahalanobis distance.

Consequently, sample mean and sample covariance matrix are not reliable candidates of
location and scatter estimators for multivariate outlier detection. Suppose we have some
robust estimators of multivariate location and scatter. The second issue is to determine
how large the robust distances should be in order to declare a particular point an outlier.
If the data X have a p-variate normal distribution, one may base outlier declaration
on a cutoff value dc = χ2

p(c). Consequently, all observations with RD2
i larger than dc

would be declared outliers. This procedure will no more be valid if robust estimators are
applied and/or if the data have other than multivariate normal distribution. Therefore,
Maronna and Zamar (2002) propose to use the following transformation

d̃c =
χ2
p(c)median[RD2

1, . . . , RD
2
n]

χ2
p(0.5)

. (9.2)

Once outliers have been declared by an outlier-detection method, one considers imputing
(non-outlying) observations for the declared outliers in order to end up with a clean
dataset. However, a drawback of all methods considered so far is that they work only
with complete data. As for the income components from EU-SILC consist of a large
number of missing observations, the outlier-detection methods in this chapter take into
account missing values. Notably, the imputation methods impute for both the declared
outliers and the missing observations.

The Multivariate Outlier Detection and Imputation (MODI) methods based on the EC-
model consist of, at least, three computation steps that depend upon another. The main
steps are as follows. The first step is about data preparation such as transformations,
treatment of zero, missing, and negative income values. This is followed by an outlier de-
tection procedure. Finally, an imputation step replaces outlying and missing observations
with realizations from a robustly estimated data model (or non-outlying donors). In the
sequel, we shall discuss the properties of MODI methods in more detail.
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9.1 Data Preparation

In order to invoke EC-distribution-based MODI methods, the income data from the EU-
SILC exercise needs to be preprocessed. In this respect, the data must be transformed
such that they behave similarly to EC-data. The data prepration consists of the following
tasks.

• Dimension reduction: The 2006 EU-SILC exercise collected data on 18 income com-
ponents at household- and 14 at the individual level (only net incomes components
considered). Having in mind the complex data structure, the resulting number of
32 variables is far too large to be fed directly into any outlier-detection method.
Therefore, the income components have to aggregated; see Chapter 6 for more on
that issue. Moreover, through aggregation information is accumulated.

• Symmetrizing transformation: The income components are transformed such that
their marginal distribution is close to symmetric (e.g., coordinate-wise transform
by the logarithm with base 10, ỹ = log10(y + 1)). Note that the application of
coordinate-wise transformations is sufficient since the aggregated data (see Chapter
6 for more details) are nearly orthogonal to each other. If this would not be the
case, one may process the data by a truely multivariate transformation; see e.g.,
Andrews et al. (1971).

• Negative income values: For negative values, the transformation is applied to the
absolute value. In addition, the information that a particular observation is negative
is stored in order to reset the sign after back-transformation.

• Structural zero observations: All structural zeros are replaced by a missing value,
but the information that a particular observation was zero is stored in order to reset
it to zero after back-transformation. As a result, the method cannot detect false
zeros, i.e., observations with a truely positive value that are falsely zero.

9.2 Outlier Detection

9.2.1 BACON-EEM

The BACON-EEM algorithm by Béguin and Hulliger (2008) is based on the BACON
algorithm proposed by Billor et al. (2000) which in turn is an improvement of an earlier
forward search based algorithm by one of the authors. The original BACON algorithm is
limited to complete, multivariate normal iid data. The BACON-EEM, on the other hand,
has been adapted to cope with missing values and the finite population sampling context.
The BACON-EEM starts from a subset of the data which is supposed outlier free or nearly
so. It uses an adjusted version of the EM-algorithm to estimate the population sufficient
statistics. Next, it calculates the Mahalanobis distances according to these statistics for
the whole sample and includes or excludes observations according to their Mahalanobis
distance. These steps are iterated until the final set remains stable; see Béguin and
Hulliger (2008) for details. The algorithm is supposed to be a balance between affine
equivariance and robustness (Todorov et al., 2011).
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9.2.2 GIMCD: Gaussian Imputation followed by MCD-detection

The GIMCD detection method imputes for the missing values on grounds of a multivari-
ate normal model using data augmentation (Gaussian imputation; GI step). Since the
underlying MV model has not been robustly fitted, the GI step may impute outliers. How-
ever, with the imputed – and thus complete – data one subsequently estimates the robust
location vector and the scatter matrix by means of MCD; see Maronna et al. (2006)
for details on MCD. Accordingly, outliers are detected using a cutoff on the Mahalan-
obis distance (with the robustly estimated statistics) (cf. Béguin and Hulliger, 2004).
It is noteworthy that in situations where the data feature an overwhelming majority of
missing values (e.g., 60-70% in a single variable) in addition to extreme outliers, GI may
impute too many outlying observations for MCD in order not to breakdown. The finite
breakdown point (in the sense of Huber-Donoho) of MCD (assuming that the data are in
general position) is equal to (n+ p)/2 (Maronna et al., 2006, p. 190).

9.2.3 TRC: Tranformed Rank Correlations

The Transformed Rank Correlation (TRC) is one of the algorithms proposed by Béguin
and Hulliger (2004) and is based, similarly as the OGK algorithm of Maronna and
Zamar (2002), on the proposal of Gnanadesikan and Kettenring (1972) for pair-
wise construction of the covariance matrix. The initial matrix is calculated using bivariate
Spearman Rank correlations ρ(xk,xh), 0 ≥ i, j ≤ p which is symmetric but not neces-
sarily positive definite. To ensure positive definiteness of the covariance matrix the data
are transformed into the space of the eigenvectors of the initial matrix and univariate
estimates of location and scatter are computed which are used then to reconstruct an
approximate estimate of the covariance matrix in the original space. The resulting robust
location and covariance matrix are used to compute robust distances for outlier identific-
ation. In case of incomplete data the Spearman rank correlations are computed only from
observations which have values for both variables involved and thus the initial covariance
matrix estimate can be computed using all available information. From this matrix the
transformation matrix can be computed but in order to apply the transformation com-
plete data matrix is needed which is the most difficult problem in this algorithm. To
obtain complete data each missing item xik is imputed by a simple robust regression of
xk on xh where xh is the variable with highest rank correlation ρ(xk,xh). In order to be
able to impute xik, the item xih must be observed and the quality of the regression on
a given variable is controlled by an overlap criterion, i.e. in order to choose a variable
as a regressor, the number of observations in which both variables are observed must be
greater than some γn where 0 < γ < 1 is a tuning constant. After all missing items have
been imputed (or some observations with too few observed items have been removed) the
complete data matrix can be used to perform the transformation and compute the final
robust location and covariance matrix as in the case of complete data.
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9.3 Imputation

Once outliers have been declared by an outlier-detection method (e.g., BACON-EEM),
one considers robust imputation for both the missing values and the declared outliers. We
distinguish three types of imputation for outliers: (1) treating the outlier as if it were a
completely missing observation, (2) winsorizing the outlier with the help of the outlying
values and (3) nearest neighbour imputation.

Let y∗ = (y∗i,1, . . . , y
∗
i,p)

T denote the (p× 1) vector of true, un-contaminated income com-
ponents for the ith observation, i = 1, . . . , n. Both outlier-detection methods produce a
flag variable oi indicating outliers. We shall write (for ease of notation) yc if some or all
components are outlying to distinguish contaminated from un-contaminated observations,
i = 1, . . . , n.

• Treating outliers as missing (TOaM): A simple solution to imputation for outliers
is to impute them as if the outlying component(s) were completely missing. Insofar
imputation does only take into account the information in the flag variable oi, that
is, whether a particular component in observation i has been declared outlying or
not. The procedure does not make use of the information contained in yci . This
is often inefficient, and it is usually more appropriate to use the information in
yci (i.e., sign and magnitude). By way of example, suppose an outlier of the kind
error-of-thousand in several components (e.g., yci = 1000 y∗i ). Winsorizing such an
observation would at least preserve the direction of the correct value while setting
the outlier to missing would imply that a mean value is imputed which may lie
in a different direction. In other words winsorizing the outlier may preserve the
correlation structure while imputing a mean does not.

• Winsorization and Gaussian imputation (WGI): The multivariate outlier-detection
methods that are based on the robust (p×1) location vector µ̂ and the robust (p×p)
scatter matrix Σ̂ (e.g., for BACON-EEM) lead to a direct model-based imputation.
Let d̂i = [RD2

i (yi; µ̂, Σ̂)]1/2 denote the Mahalanobis distance of observation yci from
the robust location µ̂ w.r.t. Σ̂. Observations are declared outliers if their Mahalan-
obis distance is larger than a constant k. The imputation for an observation yci with
Mahalanobis distance d̂i > k is

ŷi = µ̂+ (yci − µ̂)ui, (9.3)

with

ui = min[k/d̂i, 1], (9.4)

where k is a robustness tuning constant. The squared Mahalanobis distance of the
winsorized value ŷi w.r.t. µ̂ and Σ̂ is equal to k2. Thus this imputation corresponds
to winsorizing the Mahalanobis distance of the vector yci − µ̂ to k while leaving
its direction unchanged. In general, the tuning constant k may be larger than the

AMELI-WP4-D4.2



116 Bibliography

corresponding tuning constant in the foregone outlier detection in order to accom-
modate representative outliers. This is often necessary to avoid heavy bias when
the underlying data is heavily asymmetric.

If there are missing values in the outliers then the observed variables of the outlier may
be winsorized in the same way as above but with the mean and covariance are then
only referring to the sub-space of observed variables. Note that when calculating the
Mahalanobis distance with missing values, a factor p/q (where q is the number of present
values) is applied to compensate at least partially for the number of missing dimensions.

Once outliers are winsorized, the rest of the data may be imputed under the model, condi-
tioning on the observed variables. Since the covariance matrix used for this imputation is
robust and there are no outliers left due to winsorization, imputing missing values should
not create outliers (unless the model is wrong).
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Chapter 10

Robust Methods for Non-Elliptically
Contoured Data

The multivariate outlier detection and imputation (MODI) methods in the previous
chapters depend on strong distributional assumptions, notably, on p-variate elliptically
contoured (EC) distributions. There we argued that subtable transformations can bring
the data into shape, so that the distributional assumption holds (at least partially). How-
ever, the multivariate zero-inflation property of income data can not be directly addressed
by transformation. Thus, for the MODI methods that are based on EC distributions (e.g.,
BACON-EEM), we could rely on those method’s strong capability of sustaining a large
amount of missing values (NA), and set all structural zeros to NA prior to detection. That
is, we could cede the treatment of these NA observations to the methods and therefore to
their strong underlying model. If the model holds (at least nearly so), this strategy should
give reasonably good results. However, this strategy of leaving the task of dealing with the
NA of this kind to the method, works fine up to a certain share of missing observations.
In addition to the total amoung of missing values, the dimension, p, of the data under
consideration matters, too. Thus, the larger p, the larger the possibility of observing at
least one p-vector of income, the components of which are missing. As a result, we may
end up with a rather large number of observations containing no information. Observe
that no information means here that the methods cannot distinguish whether a particular
NA resulted from setting a zero observation to NA or whether the observation is truely
missing. In other words, such an information is uninformative. The problem of structural
zeros is accentuated in the case of data on income data because several income compon-
ents feature a large amount of truely zero observations. To a certain extent, one can avoid
having variables with an overwhelming share of zeros by aggregating the data from similar
income-component variables, such that resulting variable features more non-zero values.

Another shortcomming of setting all zero observations to NA before detection (and setting
them back to zero afterwards) is that outlier-zero observations are masked. In doing so,
we cannot detect wrong zeros, that is observations that were truly positive (more general,
non-zero valued). Depending on the application, this may depict a serious limitation.

The Epidemic Algorithm (EA) can be considered a remedy to the above problems because
it does not depend on any assumption on the distribution (Béguin and Hulliger, 2004).
For EA to work, neither a transformation of the data nor setting the zero observations
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118 Chapter 10. Robust Methods for Non-Elliptically Contoured Data

to NA is needed. The Epidemic Algorithm has basically no assumption on the form of
the distribution except that there is a bulk of relatively dense data while outliers are
more or less separated from this bulk. But, this simplicity comes at the price of higher
computational costs because EA has to compute a (upper-triangular) distance matrix
consisting of [n(n+ 1)]/2 between-observation distances for a sample of size n.

10.1 Detection by the Epidemic Algorithm

The Epidemic Algorithm has been proposed by Béguin and Hulliger (2004). Here, we
give only a short overview; for more details, see the original paper.

An epidemic is simulated starting at the centre of the data and spreading through it
stepwise. The epidemic is, in fact, thought to be running in the population and the
infection process in the population must be estimated from the sample. Missing values
are accounted for in the distance underlying the infection probability. The probability that
an infected point transmits the disease to an uninfected point in the next step decreases
with the distance between both points. Eventually most or all of the points are infected.
Typically outliers are infected late in this process or not at all. The infection times of the
points are used to judge their outlyingness. To put this simple idea to work a distance
is needed. The Euclidean distance is used here. To avoid unbalanced contributions of
the different variables to the Euclidean distance, the variables are standardized with the
median and the median absolute deviation (MAD) beforehand. Thus, let di,j denote the
standardized Euclidean distance between two points, xi and xj.

The epidemic is started from the sample spatial median (which is preferred to the coordinate-
wise median because the former lies, unlike the latter, always in a dense region of the data).
Assume that observation i is infected. The probability that point i infects point j depends
on the distance di,j through a transmission function, h(di,j): P [i|j] = h(di,j) = P [j|i]. The
function h is monotone decreasing and obeys h(0) = 1 and 0 ≤ h(d) ≤ 1. The function
that is used here is the root function, h(d) = max(1−(d0/d)1/l, 0), l denoting the stopping
criterion of the algorithm. The reach d0 is determined as the maximum of the distances
to the nearest neighbor, d0 = maxi(minj,di,j>0(di,j)). In addition, we assume that at each
step the infections are independent of each other.

Suppose the sample spatial median is the starting value at t = 1, i.e., the first infected
observation. The algorithm then proceeds as follows.

1. increase the running time of the epidemic by 1 (t := t+ 1),

2. calculate the total infection probability for all non-infected points

3. calculate the expected number of infections, ν, by the sum of the total probabilities
of infection of the non-infected points; then infect those ν non-infected points with
largest total probability of infection and set their infection time to t.

4. if the number of infected observations at time t, Ii, is equal to n or if t −max(ti :
i ∈ It) > l, then the algorithm stops. Otherwise go to step 1.
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Thus the epidemic stops if all points are infected or if during l steps no infection occurred.

The main problem is the tuning of the infection process such that it has the right timing.
It should not be too fast, in order to obtain a good differentiation of the infection times.
And it should not be too slow in order to see accelerations and de-accelerations in the
infection process which may indicate clustering or special sub-groups of the population.

10.2 Imputation by Reverse Epidemic Algorithm

Subsequent to outlier detection, one considers imputing good observations for those ob-
servations that have been declared outliers and the missing observations. Similarly to
detecting, imputation cannot build on any model. Therefore, we start the Epidemic Al-
gorithm from an outlying observation of the sample (Hulliger and Schoch, 2009). An
imputation where the algorithm is started at an outlier and propagated until it touches
one or several observations, which are not considered outliers is a natural extension of the
concept for outlier detection. In order to obtain a successful imputation only complete
non-outlying observations may be used as donors. The imputation is a nearest neighbour
imputation since the infection time is a distance measure. The tuning of this infection
running backwards is somewhat delicate: to avoid overusing certain donors the epidemic
should reach several potential donors when started from an outlier. In order to impute
missing values in non-outliers the Epidemic Algorithm may be started at the observa-
tion with missing values and propagated until one or several observations are infected
which are able to donate the missing values. Restrictions on the amount of overlap of
non-missing values between receiver and donor should be imposed in order to obtain a
meaningful distance.
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Chapter 11

Robust Imputation for
Compositional Data

Abstract The aim of this contribution is to present the advantages of imputation al-
gorithms which consider the special nature of compositional data. These kind of data
consist of multivariate observations that carry only relative information. The Euclidean
geometry is no longer valid and standard statistical methods should only be applied after
an isometric transformation to an unrestricted space. It is shown that our proposed al-
gorithms are designed to deal with compositional data. Within a simulation study it is
demonstrated that these algorithms perform better than other imputation algorithms. It
is also shown that multiple imputation can be made, and we give an outline to possible
problems when applying these methods to real-world data sets such as EU-SILC.

Note that an paper is already published (Hron et al., 2010) which detaily explains the al-
gorithm for model-based imputation of compositional data. In this chapter we summarize
the paper and concentrate on problems in official statistics.

11.1 Introduction

11.1.1 Imputation

Many different methods for imputation have been developed over the last few decades.
The techniques for imputation can be subdivided into four categories: univariate methods
such as column-wise (conditional) mean or median imputation, distance-based imputation
methods such as k-nearest neighbor imputation, covariance-based methods such as the
well-known expectation maximization imputation method, and model-based methods such
as regression imputation. Most of these methods are able to deal with missing completely
at random (MCAR) and missing at random (MAR) missing values mechanism (see, e.g.,
Little and Rubin, 1987). However, most of the existing methods assume that the data
originate from a multivariate normal distribution. In addition to that, almost all methods
are not designed to deal with compositional data.
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122 Chapter 11. Robust Imputation for Compositional Data

11.1.2 Compositional Data

Compositional data occur frequently in official statistics. Examples are expenditure data,
income components in tax data or in the EU-SILC data, wage components in the Earnings
Structure Survey Graf (2006), components of turnover of enterprises etc., and all data
that carry all the relevant information in the ratios between the components (parts).

Compositions are also known as data which parts sum up to a certain constant, e.g. 100 in
case of percentages.. The estimation of missing values in compositional data is a common
problem not only in official statistics, but also in various other fields (see, e.g., Filzmoser
and Hron, 2008b). The estimation becomes even more complex if outliers are present in
the data.

Advanced (robust) imputation methods have turned out to work well for data with a
direct representation in the Euclidean space. However, this is not the case when dealing
with compositional data (see, e.g., Mart́ın-Fernández et al., 2003; Boogaart et al.,
2006; Hron et al., 2008; Albaladejo and Mart́ın-Fernández, 2008). It can be shown
that existing imputation methods are not appropriate for compositional data.

An observation x = (x1, . . . , xD) is called a D-part composition if, and only if, all its
components are strictly positive real numbers and all the relevant information is included
in the ratios between them Aitchison (1986). One can thus define the simplex, which is
the sample space of D-part compositions, as

SD = {x = (x1, . . . , xD), xi > 0,
D∑
i=1

xi = κ} . (11.1)

Note that the constant sum constraint κ implies that D-part compositions are only D− 1
dimensional, so they are singular by definition. It is, however, possible that the constant
κ is different for each observation without loss of information.

The application of standard statistical methods, like correlation analysis or principal com-
ponent analysis, directly to compositional data can lead to biased and meaningless results
(see, e.g., Filzmoser and Hron, 2008b,a). This is also true for imputation methods.

11.2 One-to-One Transformations for Compositional

Data and Their Properties Related to Imputa-

tion

A way out is to first transform the data with an appropriate transformation. Such trans-
formations, preserving the specific geometry of compositional data on the simplex (also
called Aitchison geometry), are represented by the family of logratio transformations: ad-
ditive (alr), centered (clr) and isometric (ilr) logratio transformations Aitchison (1986);
Egozcue et al. (2003). Standard statistical methods can then be applied to the trans-
formed data, and the results can be back-transformed to the original space.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


11.3 Challenges 123

By applying the alr transformation, all values are divided by the values of the j-th variable
(compositional part),

x(j) =
(
x

(j)
1 , . . . , x

(j)
D−1

)
=

(
ln
x1

xj
, . . . , ln

xj−1

xj
, ln

xj+1

xj
, . . . , ln

xD
xj

)
. (11.2)

The index j ∈ {1, . . . , D} refers to the “ratioing” part used.

There are two disadvantages of the alr transformation in the context of imputation:
Firstly, the “ratioing” variable should not contain any missing values, and, secondly, in
general the imputed values will differ when using another “ratioing” variable, i.e. this
transformation is not isometric which, for example, plays a crutial role in detecting out-
liers.

The ilr transformation can be identified with representation of compositions in coordinates
with respect to an orthonormal basis of D-1 compositions on the simplex, and it is also
an isometric transformation.

However, for imputation purposes a special choice of the ilr transformation is necessary:
We define the ilr transformed data as ilr(x) = z = (z1, . . . , zD−1), where

zj =

√
D − j

D − j + 1
ln

D−j
√∏D

l=j+1 xl

xj
, for j = 1, . . . , D − 1 . (11.3)

Equation (11.3) ensures that missing values in the first compositional part only affect the
first ilr variable z1, leading to a better stability of the transformed variables. It is thus
useful to re-arrange the original variables in descending amounts of missing values.

The corresponding inverse transformation is ilr−1(z) = x = (x1, . . . , xD), with

x1 = exp

(
−
√
D − 1√
D

z1

)
, (11.4)

xj = exp

(
j−1∑
l=1

1√
(D − l + 1)(D − l)

zl −
√
D − j√

D − j + 1
zj

)
, for j = 2, . . . , D − 1,(11.5)

xD = exp

(
D−1∑
l=1

1√
(D − l + 1)(D − l)

zl

)
. (11.6)

11.3 Challenges

11.3.1 Outliers

It is well-known that outliers influence standard imputation methods and therefore ro-
bust methods should be preferred (see, e.g, Hron et al., 2008). This also holds for
compositional data, where standard imputation methods will be influenced by outlying
observations.
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The effect of outliers in the geometry of compositional data can be visualized using 3-part
compositions. In that case the data can be presented in a planar graph, called ternary
diagram, which is an equilateral triangle X1X2X3 such that a composition x = (x1, x2, x3)
is plotted at a distance x1 from the opposite side of vertex X1, at a distance x2 from the
opposite side of vertex X2, and at a distance x3 from the opposite side of vertex X3 (see,
e.g., Aitchison, 1986).

We generate 90 observations with 3 parts, being normally distributed on the simplex (i.e.
they are multivariate normally distributed in the 2-dimensional ilr space). The data points
are shown in the ilr space in Figure 11.1 (right), and in a ternary diagram in Figure 11.1
(left). In addition to the normally distributed data, 5 outliers (group 1) are added, that
are shown as green crosses in the plots. Furthermore, another group (group 2) of 5 outliers
is added that is only affecting the Euclidean space (blue triangles). Both types of outliers
are simulated to have a considerably higher sum of their parts, which is not visible in the
ternary diagram Aitchison (1986) in Figure 11.1 (left) where the parts are re-scaled to
have sum 1. The points of group 2 originate from the same distribution as the clean data,
whereas the points from group 1 are simulated from a different distribution.
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Figure 11.1: Simulated data set with 5 points from outlier group 1 (symbol ×) and 5
points from outlier group 2 (symbol 4). Left plot: 3-part compositions shown in the
ternary diagram; right plot: data after ilr transformation.

11.3.2 The Structure of Missing Values

Before imputation, especially before model-based imputation, one should be aware of the
multivariate structure of the missing values. The multivariate structure could be explored
by using the R-package VIM Templ and Alfons (2008); Templ and Filzmoser (2008).
13 different plot methods are implemented in this package which allow to interactively
visualize data with missing values.
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11.3.3 Zeros

Practical data sets like income components often have zero entries (e.g. zero income
for a specific income component). This problem is in the context of compositions also
known under the term structural zeros problem. Compositional data including zeros are
problematic for logratio transformations because the logarithm of zero is infinity. As a way
out, one could replace zeros by small values Aitchison and Kay (2003). However, by
applying this procedure, the ratios between the parts might become very high or small.
In other words, outliers will be introduced which might affect non-robust imputation
algorithms.

Another way to deal with zeros is to combine variables so that no zeros remain in the
data. This is straightforward because often some compositional parts have a very similar
meaning, e.g., household income from children allowances are similar to income from other
family allowances, and it may be reasonable to combine such variables. After eliminating
the zeros, the imputation can be done in the usual way. Finally, the imputed values have
to be split into the original income components. For this purpose, the information of
the current sample can be used (see, e.g., Kraft, 2009) which, however, is not easy to
perform in the Aitchison geometry.

Usually, those compositions which include zeros in a certain part are conceptionally dif-
ferent from compositions including no zeros in this part Bacon-Shone (2003). The
algorithms proposed by Hron et al. (2008) and presented below could be adapted to deal
with zeros. Firstly, it must be determined if a zero or a positive value should be imputed
by using a certain model. Secondly, a subset of the variables can be used to impute the
missing values for those missing values that are grouped in the “non-zero” part.

11.3.4 Measuring the Uncertainty of the Imputations

Little and Rubin (1987) suggest to estimate standard errors for estimators via boot-
strapping, and they outline two approaches – a modified bootstrap approach and a mod-
ified jackknife procedure – to obtain consistent standard errors when data are imputed.
Each bootstrap sample is drawn from the raw data and afterwards the missing values in
the bootstrap samples are imputed and the bootstrap replicates are computed. Confid-
ence intervals obtained from these bootstrap replicates are in general slightly larger as if
the imputation were done before the bootstrap samples are drawn. A result within our
proposed procedure is shown in Templ et al. (2009a). It reveals that mean imputation
– a simple method still frequently applied – can lead to higher uncertainty, and that
the results are biased, whereas our proposed model-based procedure provides reasonable
results.

Another possibility to take care of the variability due to imputations is to use (proper)
multiple imputation methods (e.g., Rubin, 1987). While a proof that a method is proper
in Rubin’s sense is almost impossible, methods can be evaluated by simulation if they are
proper or at least approximately proper.
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11.4 Imputation Algorithms for Compositional Data

In the following we briefly describe the imputation methods that have been implemented
in the R-package robCompositions. The detailed description of the algorithms can be
found in Hron et al. (2010).

11.4.1 k-Nearest Neighbor Imputation

k-nearest neighbor imputation is usually based on Euclidean distances. Since composi-
tional data are represented only in the simplex sample space, a different distance meas-
ure needs to be used, like the Aitchison distance, being defined for two compositions
x = (x1, . . . , xD) and y = (y1, . . . , yD) as

da(x,y) =

√√√√ 1

D

D−1∑
i=1

D∑
j=i+1

(
ln
xi
xj
− ln

yi
yj

)2

. (11.7)

Thus, the Aitchison distance takes care of the property that compositional data include
their information only in the ratios between the parts.

Once the k-nearest neighbors to an observation with missing parts have been identified,
their information is used to estimate the missings. For reasons of robustness, the estima-
tion can be based on using medians rather than means. If the compositional data do not
sum up to a constant, it is important to use an adjustment according to the sum of all
parts prior to imputation. For details, see Hron et al. (2010).

11.4.2 alr-EM algorithm

This approach was introduced by Palarea-Albaladeja and Mart́ın-Fernández
(2008). Here a kind of EM-algorithm Dempster et al. (1977) for alr-transformed (see
Equation (11.2)) compositional data was used for imputation. In fact, this algorithm is an
iterative regression-based method: at every step of the algorithm one variable is chosen to
be the response and a regression fit is taken with all other transformed variables. Missing
values in the response are then updated using the obtained regression coefficients. The
procedure is continued until “convergence”. Although this algorithm was originally intro-
duced for replacing rounded zeros of geochemical data under a certain detection limit, it
can be easily adapted for estimating missing values without using the restrictions that
the missings originate from such rounded zeros. This approach, however, is not robust
against outlying observations, and the alr-transformation is not isometric. Thus, robusti-
fying this method may not improve the imputation because of the lack of good geometrical
properties. In the following, this algorithm will be denoted by alr-EM.

11.4.3 Iterative Robust Model-Based Imputation

In the second approach we initialize the missing values with the proposed k-nearest neigh-
bor approach. Then the data are transformed to the D − 1 dimensional real space using
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the ilr transformation from Equation (11.3). The ilr transformation holds the so-called
isometric property,

da(x,y) = de(ilr(x), ilr(y)) (11.8)

Egozcue and Pawlowsky-Glahn (2005). Here, de denotes the Euclidean distance.
Consequently, one can use standard statistical methods like multiple linear regression,
that work correctly in the Euclidean space. We use a special form of the ilr transformation
and its inverse shown in Equations (11.3) and (11.4) to (11.6). Here, the compositional
parts are rearranged such that x1 includes the highest amount of missings, x2 the second
highest, and so on. Thus, when performing a regression of z1 on z2, . . . , zD−1, only z1 will
be influenced by the initialized missings in x1, but not the remaining ilr variables.

The idea of the procedure is thus to iteratively improve the estimation of the missing
values. After the regression of z1 on z2, . . . , zD−1, the results are back-transformed to
the simplex, and the cells that were originally missing are updated. Next we consider
the variable which originally has the second highest amount of missings, and the same
regression procedure as before is applied in the ilr space. After each variable containing
missings has been proceeded, one can start the whole process again until the estimated
missings stabilize. The detailed description of this algorithm can be found in Hron et al.
(2010).

As a regression method we propose to use robust regression, like LTS regression (Ma-
ronna et al., 2006), especially if outliers are included in the data.

Multiple imputation is provided by drawing values from their posterior predictive distribu-
tion. In the context of regression, normal noise with mean zero and variance corresponding
to the residual variance is added to the point estimation of a specific value in direction
of the response variable. It can easily be shown that this modification of the algorithm
(denoted by LTS MI (ilr), see Figure 11.2 and 11.3) leads to a proper, or at least an ap-
proximative proper multiple imputation method. However, this can only hardly be shown
in an analytic form. Nevertheless, if estimations are taken from a complete data set and if
this estimations have similar properties as the average of multiple imputations of several
data sets generated randomly from the complete data set, then the imputation method is
proper or approximately proper in a frequentist’s way of thinking.

11.4.4 Other Imputation Methods for Compositional Data

Mean imputation is still frequently applied, although it is well-known that such an im-
putation reduces the variance of the variables, and that the multivariate structure of the
data is not respected. For compositional data one should replace (arithmetic) mean im-
putation by using the column-wise geometric mean, because the geometric mean accounts
for the relative information of compositional data. Moreover, the geometric mean repres-
ents the best linear unbiased estimator of the center of the distribution with respect to
the Aitchison geometry.

In Mart́ın-Fernández et al. (2003) the estimation of missing values in compositional
data was done in the sense of the Aitchison geometry, but with the constraint of constant
sum of the parts. They impute missing compositional parts and adjust the non-missings
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so that the row sums are constant. However, this concept is not meaningful whenever
the compositions sum up to different constants, which is usually the case for expenditures
data, income components, tax components, etc. In official statistics it may even not be
acceptable to change non-missing values that fulfill given editing rules.

11.5 Results

11.5.1 Data Used

As an example, the 5-dimensional expenditure data set from Aitchison (1986) is used.
Missing values are generated in the first four parts with equal amount in order to keep
things simple. Note that our proposed iterative method provides the best results if the
amount of missing values is different for each variable (see, e.g., Templ et al., 2009a).
While in the simulations performed in Hron et al. (2008) and Templ et al. (2009a) the
percentage of the outliers is varied, we concentrate on varying the amount of missing
values without introducing outliers. 1000 simulations were run for 3%, 5%, 10%, 15% and
20% of missing values in the first four parts, and the arithmetic means of the simulation
results are presented in Figure 11.2. The two graphics on the left report the results
of imputation methods that do not account for the compositional nature of the data,
while the graphics on the right show the results from methods considering the special
properties of compositional data. The method iterative LTS (ilr) refers to the algorithm
proposed by Hron et al. (2008), and iterative LS (ilr) replaces robust regression by
classical regressions. The counterparts denoted by no transf. are applied in the original
space without using the ilr transformation.

Two different quality measures of the imputed values are used: The two upper graphics
provide the results for the compositional error variance Templ et al. (2009a), measuring
closeness of the imputed values in the Aitchison geometry. The two bottom graphics report
the relative difference in covariance structure Hron et al. (2008); Templ et al. (2009a),
expressing the influence of the imputation to the multivariate covariance structure.

The results in Figure 11.2 show that working in the inappropriate geometry (left two
graphics) generally leads to much poorer quality of the imputed values. When working in
the correct geometry, varying the percentage of missing values does not much effect the
results. Moreover, the considered methods lead to comparable quality. The regression
based methods are preferable in terms of compositional error variance. Since classical
and robust regression only yield a marginal difference, there might not be severe outliers
included in the expenditures data set.

In the second experiment we will use simulated data, where the data structure and the
outliers are exactly known. The data structure of one single realization is presented in
Figure 11.1. Additionally, 10 values (of the non-outliers) are set to zero. We keep the
percentage of outliers fixed with 5%. The average amount of missing values vary from 1
percent to 20 percent whereas the first part includes twice as high missing values than
the second part. The probabilty of missing of the second part depends on the third part
(MAR situation). Again the results presented in Figure 11.3 show the same tendency
as before. The quality of the imputation is generally improved if methods are used that
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Figure 11.2: Simulation results with varying percentage of missing values for the ex-
penditures data set: methods are applied in the original space (left column) and in the
appropriate space (right column); the quality of the imputation is measured by the com-
positional error variance (upper row) and by the difference in covariance structure (bottom
row).

consider the compositional nature of the data. The best results are obtained with our
proposed robust iterative method.

We performed numerous simulations with different data dimension (up to 10 composi-
tional parts), with different covariance structure, different outlier models, different miss-
ing values mechanisms, etc. We also tested more than 15 standard imputation methods,
with the conclusion that they show poorer performance in the context of compositional
data. All results supported that our iterative model based method based on a special ilr
transformation performs best.
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Figure 11.3: Simulation results with varying percentage of missing values for simulated
data according to Figure 11.1. The results are presented in analogy to Figure 11.2 expect
that robust methods performs better than non-robust.

11.6 Conclusions

This paper focuses on various aspects for the imputation of missing values in the context
of compositional data. Different data transformations are proposed, and their advantages
and shortcomings are discussed. Some of this shortcomings like a high amount of zeros
in the income parts of EU-SILC are still under research focus and no solution have been
presented there. The lack of the methods for compositional data is that a log-ratio trans-
formation cannot deal with zeros. While there exists already some solutions for detection
limit problems in geochemical data sets, the zero problem in official statistics is untouched
untill now. Note that we was not be aware of this problem and so nothing is outlined
in the work package description. However, we found the problem of interest and showed
some possible solutions and give some simulation results on simplified situations without
zeros. This is typically the situation when we want to impute only those subgroups with
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having positive values in each income parts.

Simulation results show that our model-based robust imputation method performs best,
and that standard imputation methods should not be applied to compositional data. The
algorithm is described in detail in Hron et al. (2010), where also simulation results with
different settings of outliers are presented, see also Templ et al. (2009a). This paper
compares the quality of the imputation when the amount of missing values is varied
and when the compositions include zeros. The algorithm is provided in the R-package
robCompositions Templ et al. (2009b).
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Chapter 12

Robust Methods for
Semi-Continuous Data

This chapter is based on the master thesis of Meraner (2010) that was part of the
AMELI project.

In general, data on income exhibit high percentage of zeros which, in turn, results in semi-
continuous variables. This leads to a serious limitation of outlier-detection methods. One
approach consists of treating the strctural zeros in the data as if they were missing values
and subsequently impute for these missings with an appropriate (but not necessary robust)
imputation method. Finally, one may apply conventional outlier-detection methods on
the imputed data. A possible disadvantage of this approach is the strong dependence on
the performance of the imputation method used. Therefore, we concentrate on estimates
which omit observations with zeros. However, this causes a problem for multivariate
methods due to the fact that excluding observations with zeros might render a data
matrix far too small for drawing significant conclusions.

Hence, a pairwise approach of certain multivariate methods seems sensible because it
is possible to make use of a considerable amount of observations from the actual data
without having to resort to imputation. In this context, we adapted three robust estim-
ators for the estimation of location and dispersion using the pairwise approach, namely
the OGK estimator (Maronna and Zamar, 2002), the quadrant correlation estimate
(Shevlyakov, 1997; Blomqvist, 1950; Mosteller, 1946) and an estimator based on
robust PCA (Locantore et al., 1999).

These adaptations were implemented in the statistical environment R and compared to the
original pairwise procedures as well as to two multivariate procedures, the MCD estimator
(Rousseeuw, 1985) and the BACON-EEM (Béguin and Hulliger, 2008) algorithm.

12.1 Adaption of Robust Methods for Semi-continuous

Variables

Semi-continuous variables frequently appear in survey data and are particularly difficult
to handle because of the large proportion of zeros. Most of the effective methods for
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136 Chapter 12. Robust Methods for Semi-Continuous Data

multivariate outlier detection require a prior imputation since too many observations may
be lost by merely excluding all the zeros. This however, makes the estimates strongly
dependent on the type of imputation used. Consequently, it seems advantageous to use a
pairwise approach for the robust estimation of location and scatter because in this case,
it is possible to exclude the zeros in a pairwise manner which does not sacrifice as much
information and increases the amount of äctual datäıncluded in the process of estimation.

12.1.1 The OGK Estimator for Semi-continuous Variables

The orthogonalized Gnanadesikan-Kettenring (OGK) covariance matrix estimator (Ma-
ronna and Zamar, 2002) uses a specific pairwise approach which was first proposed by
Gnanadesikan and Kettenring (1972) and is defined as

cov(X, Y ) =
1

4
(σ(X + Y )2 − σ(X − Y )2) , (12.1)

where σ is a robust estimate of the standard deviation and X, Y is a pair of random
variables. However, the resulting multivariate scatter matrix is neither affine equivariant
nor necessarily positive semidefinite. Affine equivariance is, however, desirable but not
mandatory, and it can be sacrificed for other properties such as computational speed
(Maronna et al., 2006).

OGK covariance-matrix estimator

Maronna and Zamar (2002) subsequently propose a way to obtain a robust covariance
matrix predicated on Equation (12.1), which is both positive semidefinite and approxim-
ately affine equivariant. Their procedure, also described e.g. in Filzmoser et al. (2008)
and in more detail in Maronna et al. (2006), is implemented in R, e.g. in the R packages
robustbase (Maechler et al., 2009) and rrcov (Todorov, 2010). It is based on the
idea that the eigenvalues of a covariance matrix are the variances along the directions
given by the respective eigenvectors. If the variables in eigenvector space are orthogonal,
the covariances are equal to zero. Hence it is sufficient to obtain robust variance estim-
ates of the data projected onto each eigenvector direction and then replace the eigenvalues
with these robust variances. Finally, the eigenvector transformation is applied in reverse
in order to obtain a positive semidefinite robust covariance matrix.

Notably, Maronna and Zamar (2002) take the identity

σ2(aTx) = aTΣa, ∀a ∈ Rp (12.2)

as their starting point, where Σ is the covariance matrix of the p-dimensional random
vector x and σ denotes the standard deviation. The lack of positive semi-definiteness is
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12.1 Adaption of Robust Methods for Semi-continuous Variables 137

then overcome by a modification that forces Equation (12.2) for a robust σ and a set of
principal directions.

This whole procedure is expressed in more mathematical terms by Maronna and Zamar
(2002) as follows. Let X = [xij] be an n×p matrix with rows xTi , i = 1, . . . , n, and columns
xj, j = 1, . . . , p. Let σ(·) and µ(·) be robust univariate dispersion and location statistics,
and let cov(·, ·) denote a robust estimate of the covariance of two variables. A robust
scatter matrix C(X) and a robust location vector t(X) are obtained by the following
computational steps:

1. Let D = diag(σ(x1), . . . , σ(xp)). To make the estimate scale equivariant, compute
a normalized data matrix Y with columns

yj = xj/σ(xj), j = 1, . . . , p (12.3)

and hence rows

yi = D−1xi, i = 1, . . . , n (12.4)

2. Compute the robust “correlation matrix” U = [Ujk] of X by applying cov(·, ·), i.e.
(12.1), to the columns of Y. Respectively,

Ujj = 1, and Ujk =
1

4
(σ(yj + yk)2 − σ(yj − yk)2), j 6= k. (12.5)

3. Determine the eigenvalues λj and eigenvectors ej of U, j = 1, . . . , p, and let E be the
matrix whose columns are the ej’s. The principal components of the standardized
variables are obtained from the eigenvectors of the correlation matrix U of the
original variables, hence we get

U ≡ EΛET where Λ = diag(λ1, . . . , λp). (12.6)

Here the λj’s may be negative. (12.6) corresponds to the principal component
decomposition of Y.

4. Let

A = DE, and zi = ETyi = ETD−1xi = A−1xi (12.7)

so that

xi = Azi , (12.8)
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with z1, . . . , zp being the principal components of Y.

5. Compute σ(zj) and µ(zj) for j = 1, . . . , p and set

Γ = diag(σ2(z1), . . . , σ2(zp)) and ν = (µ(z1), . . . , µ(zp))T . (12.9)

Since the z1, . . . , zp should be approximately uncorrelated, Γ corresponds to their
diagonal covariance matrix.

6. Transform back to X using Equation (12.8) and finally define

C(X) = AΓAT (12.10)

and

t(X) = Aν , (12.11)

where the λj’s are replaced by robust variances σ2(zj).

Motivation for Formula (12.11) is the fact that results are better when t(X) is
computed by applying a coordinate-wise location estimate to the (approximately
uncorrelated) zj’s and then transform back to the X-coordinates rather than apply-
ing it directly to the xj’s. In general, Equations (12.10) and (12.11) can be justified
by the argument that if ν and Γ were the mean and covariance matrix of Z, the
mean and covariance matrix of X would be given by said equations because of the
identity xi = Azi from Equation (12.8).

The procedure can be iterated by computing C and t according to Equations (12.10) and
(12.11) following steps 1-6, now, however, for the matrix Z with rows zi = A−1xi from
Equation (12.7), rendering C(Z) and t(Z), which are then expressed back in the original
coordinate system by solving the following equations

C(2)(X) = AC(Z)AT (12.12)

and

t(2)(X) = At(Z). (12.13)

This second step makes use of the fact that the zj’s are expectedly less correlated than
the original variables. Further iterations are possible (see Maronna et al., 2006) but
Maronna and Zamar (2002) found that iterations beyond the second do not lead to

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


12.1 Adaption of Robust Methods for Semi-continuous Variables 139

an improvement. A potential final step is a re-weighting procedure which is supposed to
improve the estimators by increasing their efficiency and making them more equivariant.
It is done by using a weight function W , with W being an indicator function

W (d) = I(d ≤ d0), (12.14)

which is employed to obtain the weighted location estimate

tw =

n∑
i=1

wixi

n∑
i=1

wi

(12.15)

and the weighted scatter matrix

Cw =

n∑
i=1

wi(xi − tw)(xi − tw)T

n∑
i=1

wi

, (12.16)

where each xi has weight wi = W (di) for the robust distances di. In other words, obser-
vations whose robust distances satisfy d ≤ d0 receive full weight while for the remaining
observations with d > d0 zero weight is assigned. The threshold d0 is set to

d0 =
med(d1, . . . , dn)

√
χ2
p(β)√

χ2
p(0.5)

, (12.17)

where χ2
p(β) is the β-quantile of the χ2-distribution with p degrees of freedom. According

to Maronna and Zamar (2002), β = 0.9 usually yields the best results, with β = 0.95
being almost as good.

For the computation of the robust distances d, no matrix inversion is needed since they
can be calculated in the eigenvector space where the p components are orthogonal. Hence

di =

p∑
j=1

(
zij − µ(zj)

σ(zj)

)2

, i = 1, . . . , n , (12.18)

where σ(·) and µ(·) are robust univariate dispersion and location statistics as stated
above. The entries zij of the transformed data matrix Z and the principal components zj

correspond to Equation (12.7).
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Modifications of the OGK method for Semi-Continuous Data

Consider an n× p data matrix X with rows xi, i = 1, . . . , n and columns xj, j = 1, . . . , p,
where each column may contain a certain amount of zeros. A robust scatter matrix C(X)
and a robust location vector t(X) are obtained according to the following computational
steps.

1. Let σ(·) and µ(·) be the robust univariate dispersion and location statistics and
denote a column xj deprived of its zeros by x̃j, j = 1, . . . , p.

2. Let D = diag(σ(x̃1), . . . , σ(x̃p)) and compute a normalized data matrix Y with
columns

yj = xj/σ(x̃j), j = 1, . . . , p. (12.19)

3. For each pair of columns {yj,yk} exclude the rows that contain zeros in either
one of the two variables, thus creating a new pair of (equal equal length) columns
{ỹj(jk),ỹ

k
(jk)} which form a matrix Ỹ(jk). Subsequently, use Equation(12.1) to com-

pute the robust correlation matrix U according to

Ujj = 1, and Ujk =
1

4
(σ(ỹj(jk)+ỹk(jk))

2−σ(ỹj(jk)−ỹk(jk))
2), j 6= k. (12.20)

4. Find the eigenvalues λj and eigenvectors ej of U, j = 1, . . . , p, so that U ≡ EΛET ,
where E consists of the eigenvectors ej and Λ = diag(λ1, . . . , λp).

5. Replace the zeros in Y by imputed values stemming from an adequate imputation
method and compute the principal components z1, . . . , zp of the imputed data set
Y(imp) with rows yi(imp) , i = 1, . . . , n, by

zi = ETyi(imp) = A−1xi(imp) (12.21)

so that

xi(imp) = Azi(imp) , (12.22)

where

A = DE (12.23)

and X(imp) is the original data set X containing imputed values instead of zeros.
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6. Compute the robust univariate dispersion and location statistics σ(zj) and µ(zj) for
j = 1, . . . , p and set

Γ = diag(σ2(z1), . . . , σ2(zp)) and ν = (µ(z1), . . . , µ(zp))T . (12.24)

Γ corresponds to the diagonal covariance matrix of the approximately uncorrelated
zj’s.

7. Transform back to the X-coordinates with the help of Equation (12.22) or perform
an iteration step.

In the first case, compute

C(X) = AΓAT (12.25)

and

t(X) = Aν. (12.26)

In the second case, apply steps 1-6 on the matrix Z from Equation (12.21) whose
columns are the principal components z1, . . . , zp, rendering C(Z) and t(Z). Follow-
ing this, transform back to the original coordinate system by solving

C(2)(X) = AC(Z)AT (12.27)

and

t(2)(X) = At(Z). (12.28)

8. Since our approach is based on omitting zeros in a pairwise manner, the re-weighting
step can not be applied as in the case of the standard OGK.

To be more precise, a weighted location estimate can still be computed after slight
modifications of Equation (12.15) but the weighted scatter matrix in Equation
(12.16) can not be realized in a pairwise way without possibly losing important
properties such as positive definiteness or affine equivariance. Consequently, one
could go forward, and apply another pairwise estimate on only those observations
with weight 1. This however did not improve our results. For said reason we only
employed re-weighting on the location estimate, rendering the weighted location
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estimate tw(X̃) = (tw(x̃1), . . . , tw(x̃p)) which is computed by

tw(x̃j) =

n(x̃j)∑
i=1

wix̃ij

n(x̃j)∑
i=1

wi

, ∀j = 1, . . . , p, (12.29)

where X̃ is created by excluding all zeros in X column by column and n(x̃j) refers
to the number of entries in x̃j.

The weights wi, with

wi =

{
1 if di ≤ d0

0 otherwise

are found according to Equations (12.17) and (12.18), where the distances di, i =
1, . . . , n, are computed by applying Equation (12.18) on the matrix Z(2) which is
calculated during the computation of C(Z) and t(Z) in step 7.

The final estimates of location and scatter in this algorithm are hereby tw(X) and
C(2)(X). We shall denote them by tOGK(X) and COGK(X).

12.1.2 The sign1 Covariance Matrix for Semi-continuous Vari-
ables

The idea of computing robust principal components after robustly sphering and normal-
izing the data in order to use them for the computation of the covariance matrix was
originally proposed by Locantore et al. (1999) and then refined and implemented as
the function sign1 in the R package mvoutlier by Filzmoser and Gschwandtner
(2009). For more detail, see also Filzmoser et al. (2008). The sign1 covariance matrix
is obtained by carrying out the following computational steps.

1. Robustly sphere the data set X = [xij] by computing

xj
∗

=
xj −med(xj)

MAD(xj)
, j = 1, . . . , p (12.30)

with entries

x∗ij =
xij −med(x1j, . . . , xnj)

MAD(x1j, . . . , xnj)
, (12.31)
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using the coordinate-wise sample medians and the respective median absolute devi-
ations (MAD), which are defined as

MAD(x) = MAD(x1, . . . , xn) = med{|x− 1 ·med(x)|}, (12.32)

where 1 is a vector of ones. Then bring the resulting rows of the rescaled data
matrix X∗ to norm 1 with

yij =
x∗ij√
p∑
l=1

x∗
2

il

, i = 1, . . . , n; j = 1, . . . , p (12.33)

resulting in the robustly sphered and normalized data matrix Y. Variables with
MAD zero should be either omitted or associated with a different measure of scale.

2. Apply singular value decomposition (SVD) on the matrix Y, i.e.

Y = UDVT , (12.34)

with U and V being orthogonal n × r and r × p matrices and D being a diagonal
r×r matrix with the singular values in the diagonal. r is the rank of Y and without
loss of generality we assume r = p. The column vectors of U and V are the left and
right singular vectors of Y.

The diagonal values σj, j = 1, . . . , p, of D with σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 are the
square roots of the eigenvalues of YTY and YYT . Furthermore, V corresponds to
the matrix E consisting of the eigenvectors of YTY, i.e.

YTY = VDTUTUDVT = VDTDVT (12.35)

and hence

YTY = EΛET = VDTDVT (12.36)

where Λ is the diagonal matrix containing the eigenvalues λj, j = 1, . . . , p, of YTY
and E is the matrix whose columns are the corresponding eigenvectors ej of YTY.
For more detail see, e.g., Gonnet and Scholl (2009).

There exists an immediate connection between singular value decomposition and
principal component analysis (see e.g. Wall et al., 2003). To be more specific,
since Y is a centered and scaled matrix with p variables and n observations, YTY
is proportional to the sample covariance matrix of the matrix Y.
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As a consequence of Equation (12.36), the matrix Z of principal components can be
computed analogously to Equations (12.6) and (12.7) by (Filzmoser et al., 2008)

Z = YV, with V = E. (12.37)

3. Let σ(·) denote the MAD. We replace the eigenvalues in Λ from Equation (12.36)
with robust variances σ2(zj), j = 1, . . . , p, assembling the diagonal covariance matrix
of the principal components as in Equation (12.9):

Γ = diag(σ2(z1), . . . , σ2(zp)). (12.38)

Since the principal components are defined by those directions that maximize the
variance along each component, we can select the p−1 components with the largest
variances (or accordingly, if p > n, the n− 1 components), thereby excluding those
components which usually represent useless noise and have an obscuring effect on
the underlying data structure. Furthermore we avoid singularity problems for the
case p >> n.

With regard to the new dimension p∗ = min {p− 1, n− 1}, we obtain the reduced
matrix E∗ of corresponding eigenvectors and a reduced matrix Γ∗ containing only
the first 1, . . . , p∗ robust variances of the principal components.

4. To facilitate the calculation of the Mahalanobis distances later on in the process of
outlier detection, we can directly compute the inverted covariance matrix C−1 by

C−1 = EΓ−1ET . (12.39)

Since E is an orthogonal matrix with its inverse being equal to its transpose, i.e.
ET = E−1 and hence, for the covariance matrix C as in (12.10), it holds that

C−1 = (EΓET )−1 = ET−1

Γ−1E−1 = EΓ−1ET . (12.40)

Proceeding by approximating C−1 with only p∗ dimensions, we get

C−1
sign1 = E∗Γ∗

−1

E∗
T

(12.41)

By directly computing the inverse of the approximation matrix Csign1, we also avoid
the singularity problems resulting from the dimension reduction.
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Modifications of the sign1 Covariance Matrix Estimator for Semi-Continuous
Data

For semi-continuous data, the sign1 algorithm can be adapted as follows.

1. Consider the n × p data set X = [xij] which may consist of a (high) proportion
of zeros and compute the robust univariate location and scale estimates, i.e. the
coordinate-wise sample medians and the respective median absolute deviations (see
Equation (12.32)) after excluding all zeros column by column. We shall denote these
estimates by med(x̃j) and MAD(x̃j), where x̃j, j = 1, . . . , p are the columns of X
without zeros like in Section 12.1.1.

2. Robustly sphere the data set by computing

xj
∗

=
xj −med(x̃j)

MAD(x̃j)
, j = 1, . . . , p (12.42)

3. Let each pair of columns {xj,xk}, j, k = 1, . . . , p, form a matrix X(jk). Subsequently,

create a reduced matrix X̃(jk) with columns {x̃j(jk), x̃
k
(jk)} for every matrix X(jk) by

excluding all rows containing zeros in either one of the two variables of X(jk). In this
context, the same rows are excluded from every sphered matrix X∗(jk), resulting in

the reduced robustly sphered matrices X̃∗(jk) with entries x̃∗ij(jk) , i = 1, . . . , n(x̃j(jk)),

where n(x̃j(jk)) refers to the number of entries of column x̃j(jk).

4. Bring the rows of the reduced rescaled data matrices X̃∗(jk), j, k = 1, . . . , p, to norm
1 with

yij(jk) =
x̃∗ij(jk)√
p∑
l=1

x̃∗
2

il(jk)

, i = 1, . . . , n; j = 1, . . . , p (12.43)

resulting in the robustly sphered and normalized reduced data matrix Y(jk). If a
row sum in the denominator of Equation (12.43) should be zero, hence leading to
no result, the respective cells in Y(jk) are filled with zeros since this problem can

only occur if all the values in the corresponding row of X̃∗(jk) are equal to zero.

5. Apply singular value decomposition on the matrix Y(jk), i.e.

Y(jk) = U(jk)D(jk)V
T
(jk), (12.44)

AMELI-WP4-D4.2



146 Chapter 12. Robust Methods for Semi-Continuous Data

where U(jk) and V(jk) contain the left and right singular vectors of Y(jk) and the
diagonal matrix D(jk) its singular values. Moreover, V(jk) also satisfies

YT
(jk)Y(jk) = V(jk)D

T
(jk)D(jk)V

T
(jk) = E(jk)Λ(jk)E

T
(jk), (12.45)

where E(jk) and Λ(jk) contain the eigenvectors and eigenvalues of YT
(jk)Y(jk) respect-

ively.

Furthermore, YT
(jk)Y(jk) is proportional to the sample covariance matrix of Y(jk)

since Y(jk) is a centered and scaled matrix with two variables and n(x̃j(jk)) observa-
tions.

It follows, that the matrix Z(jk) of principal components can be computed by

Z(jk) = Y(jk)V(jk), with V(jk) = E(jk). (12.46)

6. Let σ(·) denote the MAD and replace the eigenvalues in Λ(jk) with the robust vari-
ances σ2(zj), σ2(zk) by substituting Λ(jk) in Equation (12.45) with the diagonal
matrix Γ(jk) = diag(σ2(zj), σ2(zk)). In other words, we perform the inverse trans-
formation

C(jk) = E(jk)Γ(jk)E
T
(jk). (12.47)

7. Compute the preliminary covariance matrix C(1) = [C(1)jk ], j, k = 1, . . . , p, by using
the results of the previous steps according to

C(1)jj = MAD(x̃j), and C(1)jk = C(1)kj = C(jk)12 , j 6= k (12.48)

with the MAD(x̃j)’s from steps 1-2 and with the corresponding 2 × 2 matrices
C(jk) = [C(jk)ab ], a, b = 1, 2, where of course C(jk)12 = C(jk)21 .

8. Finally, it is necessary to ensure the positive definiteness of C(1), which is not guar-
anteed under given circumstances. In this context, find the eigenvalues and eigen-
vectors of C(1) so that

C(1) = E(1)Λ(1)E
T
(1), (12.49)

where E(1) consists of the eigenvectors and Λ(1) = diag(λ(1)1 , . . . , λ(1)p) of the ei-
genvalues of C(1). Subsequently, keep only the positive eigenvalues λ(1)j ≥ 0,
j = 1, . . . , p and the pertinent eigenvectors. Store them in the respective matrices
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Λ∗(1) and E∗(1) and compute the inverted covariance matrix

C−1
sign1 := C−1

(2) = E∗(1)Λ
∗
(1)E

∗T
(1) (12.50)

which is equal to C−1
(1) if dim(Λ∗(1)) = dim(Λ(1)) and which approximates the in-

verse of C(1) if dim(Λ∗(1)) < dim(Λ(1)). Direct computation of the inverse prevents
singularity problems resulting from a possible dimension reduction.

12.1.3 Quadrant Correlation and Covariance for Semi-continuous
Variables

First of all, we introduce quadrant correlation methods for non-semi-continuous data.

For a bivariate sample {(xi, yi)}, i = 1, . . . , n, denoted by the vectors x and y, the
quadrant correlation is computed as (see Shevlyakov, 1997; Mosteller, 1946)

rQ =
1

n

n∑
i=1

sign {(xi −med(x))(yi −med(y))} (12.51)

In other words, the two coordinate-wise sample medians med(x) and med(y) divide the
plane into 4 quadrants so that rQ is based on the number of observations in the first or
third quadrant, minus the number of observations in the second or fourth quadrant.

According to Maronna et al. (2006), the estimator is not consistent under a given model
but can be corrected by (see Blomqvist, 1950)

r̂Q = sin
(rQπ

2

)
(12.52)

to ensure consistency at the normal model. The robust quadrant covariance is then
computed as usual by

covQ(x,y) = σ(x)σ(y)r̂Q , (12.53)

where the univariate scale estimate σ corresponds to the MAD (see Equation (12.32)).
Based on the definitions (12.51), (12.52) and (12.53) for two variables, the quadrant
covariance matrix CQ = [CQ jk

] for the multivariate case is then computed by applying
covQ(·, ·) to the columns xj, j = 1, . . . , p, of X, i.e.

CQ jj
= σ(xj), and CQ jk

= covQ(xj,xk), j 6= k. (12.54)
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Finally, to assure positive semidefiniteness, an eigenvalue decomposition is performed,
subsequently keeping only the positive eigenvalues before transforming back to the cov-
ariance matrix. Since the eigenvector matrix is orthogonal, one can directly transform
back to the inverse of the covariance matrix, see Equation (12.40), which saves us from
the matrix inversion later on in the process of outlier detection, i.e. for computing the
Mahalanobis distances.

Modification of Quadrant Correlations for Semi-Continuous Data

The quadrant correlation method can be adapted to semi-continuous data as follows.

1. Consider the n×p data set X = [xij] where each column xj, j = 1, . . . , p, may contain
a certain amount of zeros. As in Sections 12.1.1 and 12.1.2, the robust univariate
location and scale estimates are denoted by med(x̃j) and MAD(x̃j), j = 1, . . . , p,
where the x̃j’s are the columns of X without zeros. In this context, we also use
the notation from the previous sections for the reduced two-dimensional matrices
deprived of all zeros in a pairwise manner. To be more specific, the matrices denoted
by X̃(jk) with columns {x̃j(jk), x̃

k
(jk)} of length n(x̃j(jk)) are each created by removing

the rows with zeros in the corresponding matrices X(jk) which are composed of the
pair of columns {xj,xk}, j, k = 1, . . . , p.

In the following, find the respective 2×n(x̃j(jk)) matrices X̃(jk) for every pair {xj,xk}
and execute steps 2-4 for each of these matrices. In step 5, combine the bivariate
results in a multivariate scatter estimate which is ensured to be positive definite in
step 6.

2. Calculate the quadrant correlation according to Equation (12.51) by

rQ(jk)
=

1

n(x̃j(jk))

n(x̃j
(jk)

)∑
i=1

sign
{(
x̃ij(jk) −med(x̃j(jk))

)(
x̃ik(jk) −med(x̃k(jk))

)}
.

(12.55)

3. Apply Equation (12.52) to the estimator rQ(jk)
to ensure consistency at the normal

model, i.e.

r̂Q(jk)
= sin

(rQ(jk)
π

2

)
(12.56)

4. Compute the robust quadrant covariance according to Equation (12.53) by

cov(jk)(x̃
j
(jk), x̃

k
(jk)) = r̂Q(jk)

√
MAD(x̃j)MAD(x̃k), (12.57)

with the univariate scale estimates MAD(x̃j), j = 1, . . . , p, as mentioned in
step 1.
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5. Assemble a preliminary multivariate covariance matrix C(1) = [C(1)jk ], j, k = 1, . . . , p,
by using the results from the previous steps according to

C(1)jj = MAD(x̃j), and C(1)jk = C(1)kj = cov(jk)(x̃
j
(jk), x̃

k
(jk)), j 6= k.

(12.58)

6. Use step 8 from Section 12.1.2 to ensure the positive definiteness of C(1) and denote
the resulting inverted covariance matrix estimate C−1

(2) by C−1
Q .

12.1.4 Outlier Detection for Semi-continuous Variables

The following distance-based method for detecting outliers is obviously applicable on any
result from the previous sections. Hence, the location and covariance estimates in this
current section will generally be denoted by t = t(X) and C = C(X).

Start by preparing an imputed data set X(imp) with rows xi(imp) , i = 1, . . . , n, for compu-
tational purposes. Hereby, an adequate imputation method is used to replace the zeros
in X by imputed values. Subsequently, compute the robust distances for the observations
xi(imp) of the imputed data set according to

di = d(xi(imp)) =
√

(xi(imp) − t)TC−1(xi(imp) − t) . (12.59)

Note that the sign1 and quadrant covariance algorithms in Sections 12.1.2 and 12.1.3
already deliver an inverted covariance estimate C−1.

Now transform the di’s, i = 1, . . . , n, by

d∗i = di ·

√
χ2
p(0.5)

med(d1, . . . , dn)
, (12.60)

which should make the distribution of the robust distances better resemble the χ2
p distri-

bution and eventually use the cutoff-value d0 =
√
χ2
p(β) to flag all observations as outliers

whose robust distances d∗i , i = 1, . . . , n, satisfy

d∗i ≥ d0. (12.61)
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12.2 Simulations and Results

Simulations under different scenarios were run to compare the methods discussed in the
previous sections. We compare the modified pairwise methods from Section 12.1 with
each another and with the methods from the previous sections that were applied to data,
which has been imputed beforehand (except of the BACON-EEM).

12.2.1 Data Generation

To evaluate and compare the performance of the different methods, contaminated data
consisting of semi-continuous variables have to be generated synthetically. For this pur-
pose, data sets of dimension n × p with p << n were created, where the data follow a
contaminated multivariate normal model with “mean-shift outliers” (see e.g. Todorov
et al., 2011), i.e. (1 − ε)n regular observations in each data set X = [xij], i = 1, . . . , n,
j = 1, . . . , p are generated from a multivariate normal distribution Np(µ,Σ) while the
remaining εn outlying observations are sampled from Np(µ(out),Σ(out)). We used the
following values for the parameters:

1. µ = (10, . . . , 10)T

2. Σ = [Σjk] with Σjj = 1 and Σjk = 0.5 for j 6= k

3. For µ(out), we considered the following cases, where p(out) denotes the number of
values being different from the entry in µ, i.e. the number of variables that should
contain (univariate) outliers:

(a) p(out) = 2:

i. Moderate Outliers: Replace the first 2 entries of µ = (10, . . . , 10)T by
(5, 15)T to get µ(out). For p = 5, for example, this would render the mean

vector µ(out) = (5, 15, 10, 10, 10)T .

ii. Extreme Outliers: Replace the first 2 entries of µ = (10, . . . , 10)T by
(−30, 50)T to get µ(out).

(b) p(out) > 2: The distance between the (centers of the) two point clouds of
observations with and without outliers should be the same for any number
p(out) of variables with outliers. This is accomplished by computing a constant

c =

√√√√√√
p(out)∑
j=1

(µj − µ(out)j)
2

p(out)

(12.62)

with the Euclidean distance between µ(out) from alternative (a), where only
the first two columns of the generated data set contain outliers, and µ =
(10, . . . , 10)T . The constant is then used to replace the first p(out) entries of µ
by 10 − c and 10 + c in equal parts to form the new µ(out). If p(out) is not an

even number,
p(out)

2
+ 1 entries are replaced by 10 + c.
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4. Σ(out) = bΣ, with b = 1.1.

To make the data set semi-continuous, zeros were inserted according to the following
approach:

1. Let n0 be the total number of rows containing zeros so that n0/n is the proportion
of rows with zeros. Then denote number and proportion of zeros in such rows by p0

and p0/p.

2. The observations without zeros will occupy the first i = 1, . . . , (n − n0) rows of X
and the observations with zeros the last i = (n− n0 + 1), . . . , n rows.

3. Now let X(reg) and X(out) denote the regular and outlying parts of the continuous
data set X = (X(reg),X(out)). The position of the observations belonging to X(out)

depends on the proportion n0/n of rows with zeros:

(a) If ε ≤ n0/n, half of the εn outlying observations will occupy the last rows of
the observations without zeros while the remaining εn

2
outlying observations

will occupy the first rows of the observations with zeros.

(b) If ε > n0/n, n0

2
outlying observations will occupy the first half of the rows with

zeros while the remaining εn − n0

2
outlying observations occupy the last rows

of the observations without zeros.

For illustrative purposes, Figure 12.1 shows the principal structure of such a data
set. X0 and X 6=0 shall denote the parts with and without zeros of a data set X =
(X 6=0,X0) respectively.

4. After these structural arrangements, p0 zeros are included randomly in every row
of X0. However, if p0 ≥ p(out), there is a chance that all outlying entries in an
observation belonging to X0 and X(out) are replaced by zeros. This is avoided by
creating a slightly restricted sample pool of possible indices {1, . . . , p} for the zeros
in each row. To be more specific, p(out) − 1 elements are randomly selected out of
the index set {1, . . . , p(out)} ⊂ {1, . . . , p} and then combined with the elements of
{(p(out) + 1), . . . , p} = {1, . . . , p} \ {1, . . . , p(out)}. The indices of the p0 zeros can
then be randomly selected out of this new index set.
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X(reg)

X(out)

X≠0

X0

Rows without zeros
Rows with zeros
Rows with outliers

Figure 12.1: Structure of a data set with ε = 0.1 and n0/n = 0.25

12.2.2 Simulation

The performance of the methods is evaluated on grounds of the following criteria.

1. Mean proportion of false negatives: the average percentage of false negatives (FN),
i.e. outliers that were not identified

2. Mean proportion of false positives: the average percentage of false positives (FP),
i.e. non-outliers that were classified as outliers

Whether an observation is considered an outlier depends strongly on the choice of the
threshold d0 and hence, in the case of semi-continuous data, on the imputation method
used for the computation of the Mahalanobis distances in Equation (12.59). This is
illustrated by way of example.

Consider the semi-continuous data set X with X = (X 6=0,X0) and X = (X(reg),X(out))
as defined in the previous section. The parameters are set to p = 5, n = 1000, p0 = 3,
n0/n = 0.4, p(out) = 2 moderate, ε = 0.1. Applying the OGK algorithm on this data set
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with β = 0.975 (see Section 12.1.4) and with varying types of imputation, renders the
results depicted in Figure 12.2.

Figures 12.2(a)-12.2(c) show the Mahalanobis distances of observations with/without
zeros and observations with/without outliers as well as the cutoff-value d0. The scale
of the y-axis is inverted for easier comparison with Figure 12.1 depicting the structure
of such a data set. It can be seen, that the Mahalanobis distances belonging to X0, i.e.
index 601 − 1000, exhibit a different structure than those belonging to X 6=0, i.e. index
1− 600, which can make the choice of a “good” threshold rather difficult. False positives
can be identified as those observations above the threshold belonging to X(reg), i.e. index
1− 550 and 651− 1000, and false negatives correspondingly as those observations below
the threshold belonging to X(out), i.e. index 551− 650.

In the following, simulations were performed for semi-continuous data sets of dimension
1000 × 5, 1000 × 10 and 100 × 5 as defined in Section 12.2.1, for which p(out) = 2 when
p = 5 and p(out) = 4 when p = 10. For comparative purposes, a fixed value β = 0.975 was
used for all simulated scenarios and the proportion of outliers was set to ε = 0.1.

Simulations were also carried out for ε = 0.01 since small amounts of outliers are often of
interest, but only marginal differences to the findings in Sections 12.2.2 and 12.2.2 could
be observed; see also Meraner (2010) for more details.

100 simulations were made for all scenarios where n = 1000 and 500 simulations were run
when n = 100.

The resulting plots show the proportion n0/n of rows with zeros on the x-axis and the
average proportion of false negatives or false positives on the y-axis. There are two sets
of plots for every parameter setting. One set compares modified and original pairwise
methods for different types of imputation while the other set compares modified pairwise
and multivariate methods, where the modified pairwise methods as well as the MCD
algorithm use knn-imputation for outlier detection which seemed best when looking at
the first sets of plots. The second set of plots also shows the proportion of false negatives
and false positives corresponding to the parts X0 and X 6=0 with and without zeros. To
be more specific, for every proportion of rows with zeros n0/n, the mean proportion
of false negatives/false positives of the whole data set X is equal to the corresponding
mean proportion of false negatives/positives of X0 plus the mean proportion of false
negatives/positives of X 6=0.

Note that the scale of the plots is different for every scenario and that the scale of the plots
depicting false negatives within each scenario is different from the scale used to depict
false positives.

Moderate Outliers

In this section, we discuss the simulation results for p = 5 and p = 10 dimensional data
and a scenario with moderate outliers. In Figure 12.3, we depict the general structure of
such data sets without zeros.

The simulation results are presented visually (Figures 12.4 – 12.11). It can be seen that
the modified pairwise methods do – in general – not yield better results than the original
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Figure 12.2: OGK for different types of imputation with p = 5, n = 1000, p(out) = 2
moderate, p0 = 3, n0/n = 0.4 and ε = 0.1

pairwise methods do. It is also remarkable that BACON-EEM gives usually the best
results. Furthermore, both modified and original methods strongly depend on the type of
imputation used. The results indicate that the knn imputation performs best.

The results for p = 5, n = 1000 and p0 = 1, show hardly any difference in the performance
between the modified pairwise and the standard pariwise methods (Figure 12.4). It is also
evident that the knn imputation algorithm is to be preferred (Figure 12.4). The BACON-
EEM algorithm performs best up until a proportion of approximately n0/n = 0.65 rows
with zeros. For n0/n > 0.65, the MCD algorithm for example is slightly better (Figure
12.5). The results remain essentially the same for the setup p = 5 and p = 10, n = 1000
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Figure 12.3: Five variables without zeros and moderate outliers with ε = 0.1

and p0 = 3 and p0 = 6 (Figures 12.6, 12.7, and 12.8). Again, BACON-EEM tends to be
better than the other methods (Figure 12.9). However, for n0/n > 0.65, the MCD and
OGK algorithms are slightly better (Figure 12.11).
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Figure 12.4: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros. Comparison of
pairwise outlier detection procedures with different types of imputation.
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Figure 12.5: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros (moderate outliers,
ε = 0.1, p = 5, n = 1000, p0 = 1). Comparison of X, X 6=0 and X0. Legend: [blue] sign1
modified (knn); [red] Qcov modified (knn); [green] OGK modified (knn); [yellow] MCD
(knn); [grey] BACON-EEM.
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Figure 12.6: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros. Comparison of
pairwise outlier detection procedures with different types of imputation.
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Figure 12.7: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros (moderate outliers,
ε = 0.1, p = 5, n = 1000, p0 = 3). Comparison of X, X 6=0 and X0. Legend: [blue] sign1
modified (knn); [red] Qcov modified (knn); [green] OGK modified (knn); [yellow] MCD
(knn); [grey] BACON-EEM.
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Figure 12.8: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros. Comparison of
pairwise outlier detection procedures with different types of imputation.
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Figure 12.9: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros (moderate outliers,
ε = 0.1, p = 10, n = 1000, p0 = 1). Comparison of X, X 6=0 and X0. Legend: [blue] sign1
modified (knn); [red] Qcov modified (knn); [green] OGK modified (knn); [yellow] MCD
(knn); [grey] BACON-EEM.
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Figure 12.10: Average proportion of false negatives (left) and false positives (right) for
a fixed proportion of outliers and varying percentage of rows with zeros. Comparison of
pairwise outlier detection procedures with different types of imputation.
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Figure 12.11: Average proportion of false negatives (left) and false positives (right) for a
fixed proportion of outliers and varying percentage of rows with zeros (moderate outliers,
ε = 0.1, p = 10, n = 1000, p0 = 6). Comparison of X, X 6=0 and X0. Legend: [blue] sign1
modified (knn); [red] Qcov modified (knn); [green] OGK modified (knn); [yellow] MCD
(knn); [grey] BACON-EEM.
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Extreme Outliers

In Meraner (2010), a simulation setup with extreme outliers is studied. With a low
proportion of structural zeros (n0/n < 0.65) BACON-EEM performs best. For n0/n >
0.65, on the other hand, the modified OGK is best.

Smaller Number of Observations

In Meraner (2010), a simulation setup with a small number of observations is studied.

Simulations were therefore also performed for data sets of dimension 100 × 5. In this
section, the results for the extreme case of p0 = 3, i.e. 3 zeros per row, are presented.
Meraner (2010) shows that with moderate outliers shows no improvement between
original and modified pairwise methods and indicates that the knn imputation algorithm
is to be preferred in most cases. However, for a very high proportion n0/n of rows
with zeros, IRMI imputation tends to render better results in the case of the modified
pairwise methods Qcov and OGK. Moreover, the BACON-EEM algorithm is best up to a
proportion of approximately n0/n = 0.3 rows with zeros and the OGK algorithm is best
for a proportion of n0/n > 0.3 rows with zeros.

12.3 Summary and Conclusions

This anaylsis was motivated by the question whether certain modifications of pairwise
methods for robust estimation of location and scatter would render better results in con-
nection with outlier detection than the original methods when applied to semi-continuous
variables. These modifications were based on the idea that omitting the zeros in the data
in a pairwise manner could prove effective for pairwise procedures when dealing with a
high percentage of zeros.

The pairwise methods chosen for this purpose were the OGK estimator, the sign1 covari-
ance matrix and the quadrant correlation. The modified OGK estimator now includes an
imputation technique, as do the outlier detection procedures corresponding to the adapted
methods. Hence, there is a strong dependency on a “good choice” of imputation which
is analyzed in a series of plots comparing modified and original pairwise methods for dif-
ferent types of imputation, where the original pairwise methods are applied to previously
imputed data sets.

The most appropriate type of imputation is then used for another series of plots comparing
the modified pairwise methods to two multivariate procedures, the MCD estimator and the
BACON-EEM algorithm. The MCD estimator is also applied to a previously imputed
data set, which is not necessary for the BACON-EEM algorithm where an imputation
procedure is already included.

The first series of plots (see Section 12.2) indicate that the modifications of the pairwise
methods do not improve the results. They also show that knn is the best imputation
technique for the chosen parameters as opposed to imputation with norm or the IRMI
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algorithm. Subsequently, knn imputation was used for the second series of plots which
generally identify the BACON-EEM procedure as being the best choice.

All of the above methods are implemented in the statistical environment R. The source
code of the pairwise procedures that were modified in the course of this analysis can be
found in Meraner (2010) and also the corresponding software.
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