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Aim and objectives of deliverable 6.1

The aim of work package 6 is to yield a basis for a comparative simulation study in. This
shall allow at investigating the methodology developed in WPs 2, 3, and 4 in a close
to reality environment based on realistic datasets. The present deliverable describes the
design of simulation studies in this context and the applied simulation framework within
the project.
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Chapter 1

Introduction

The aim of the AMELI project is it to develop advanced methodology for measuring
poverty and social cohesion in Europe. To do so, extensive simulation is used to evaluate
the developed methodology. However, in larger research projects such as AMELI, with
many partners from different institutions, guidelines regarding, e.g., simulation designs,
survey designs, contamination, missing data models or evaluation criteria are required.
Otherwise the obtained results may be incomparable, thus making it impossible to draw
meaningful conclusions.

Member states of the European Union and other European countries use the so-called
indicators on social exclusion and poverty to measure poverty and social cohesion. The
subset of these indicators based on EU-SILC (European Union Statistics on Income and
Living Conditions) is of particular interest for the AMELI project. Within the project,
the methodology for estimating the indicators on social exclusion and poverty is improved
directly by using robust approaches or small area estimation, but also by enhancing the
data quality with, e.g. appropriate imputation or outlier detection methods. In addition,
suitable variance estimation methodology is developed.

In Workpackage 6, the methods developed in Workpackages 2, 3 and 4 are investigated
and evaluated. The basis of the simulation study are synthetic populations for selected
European countries, which are generated from original EU-SILC samples provided by
Eurostat. Hence, Workpackage 5 has an impact on Workpackage 6, as it is necessary to be
aware of the peculiarities of the data to generate high quality synthetic populations. Using
the results from Workpackage 6, a thorough analysis of the impact of different situations
on different procedures involved in the estimation of the indicators on social exclusion
and poverty is conducted in Workpackage 7. Additionally, suitable visualization methods
for simulation results are developed in Workpackage 8. The output from Workpackages 7
and 8 is in turn used by Workpackage 9 to give best practice recommendations in order
to support policy makers.

The DACSEIS project has a strong impact on the AMELI project regarding simulation
and acts as a starting point for further development. Münnich et al. (2003b) describe
the design of the simulation studies within the DACSEIS project.

Most notably, the simulation studies in the AMELI project are based on repeatedly draw-
ing samples from finite populations. Since registers containing population data are not
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available for most countries, synthetic populations need to be generated from samples.
For detailed information on the generation of the synthetic population data used in the
simulations, the reader is referred to Alfons et al. (2011d).

The design of the simulation study should be as close to reality as possible, to be able
to give best practice recommendations for the real life survey. Besides having realistic
populations, this includes using the true sampling designs, as well as realistic outlier and
missing data models. An important question is the treatment of contamination and non-
response. Including those in the population is the most realistic scenario, but results
in an unpredictable number of outliers and missing values in the samples. On the one
hand only including them in the samples provides maximum control over the amount of
outliers and missing values, which is sometimes required for evaluating their influence on
the methodology, but on the other hand this approach does not reflect the real processes.
This trade-off between close to reality simulation designs and more practical approaches
needs to be considered.

A general introduction to simulation studies is given in section 2.1. Afterwards the design
of the classical simulations within the AMELI project is presented, before the general
design of the simulation studies concerning outlyingness and missingness is addressed in
section 2.3. Chapter 3 then describes the R package simFrame (Alfons et al., 2010;
Alfons, 2011), which is a general framework for statistical simulation. Other simulation
engines used within the AMELI project are discussed in Chapter 4. Finally, Chapter 5
gives a summary of the developments.
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Chapter 2

Design-based simulations

Simulations are the attempt to adjust real life situations in a controllable environment, so
that results can be reproduced. Thus, if simulation methods are applied, it is the target to
reconstruct real life situations, but the starting points can be different. If it is not exactly
clear which starting point is the most realistic one, therefore a scenario analysis might
be helpful. Although one special scenario can be very unlikely, it is sometimes useful to
know what can happen in an extreme situation. The sample is drawn only once but there
are many values to be estimated. Without a simulation it is not possible to evaluate the
quality of an estimator.

Often different factors can influence estimations. It is important for the validity of sim-
ulations to include the structures of the real world into the basis, the synthetic universe
and into the process, in other words the simulation. Here, the manner how a sample is
drawn or the type of observations, which can get into the sample, is meant for instance.
As an example, extreme observations can influence the mean income very much for ex-
ample. The basic principle of a design-based simulation is to evaluate the estimators in
the context of one synthetic population which is assumed to be the real population and
to apply realistic sampling methods on this population.

The general concept of the simulation study should be as close to reality as possible.
Starting from population data, samples are drawn repeatedly using the real life sampling
methods. In each simulation run, the quantities of interest (in most cases, the indicators
on social exclusion and poverty or their variances) are estimated from the corresponding
sample. The results of all simulation runs are then combined to form a distribution.
Finally, certain evaluation criteria are used to compare the estimates with the true values.
Different simulation studies are weighted against each other on the basis of evaluation
and quality criteria.

2.1 General introduction

As the word design-based simulations suggests, realistic survey designs take center stage.
The next step is then to look at results which stem from different starting points. There-
fore, comparable criteria for the evaluation have to be found whenever possible.

AMELI-WP6-D6.1



2.2 Classical studies 5

The simulation set-up within the AMELI project is based on experiences form the FP5
projects EUREDIT and DACSEIS (see for example Hulliger 2011 for the introduction
of missingness and contamination mechanisms). In most of the simulations within the
AMELI project design-based simulations are applied. This implies, that draws from a
previously generated population are realized.

2.2 Classical studies

The European statistics Code of Practice which was published in 2005 has the objective
to improve the confidence in the integrity of European official statistics. It should ameli-
orate the possibility to compare statistics, guaranty that only the most relevant statistical
concepts are applied and that the information is complete. Therefore it is necessary to
evaluate the process of data acquisition up to the computation of statistics on poverty
and social exclusion.

It is the target of the AMELI project to support this evaluation. One important part
of the code of practice is the demand for information about the accuracy of estimations.
Here it is the question how to measure the accuracy in the case of the indicators on social
exclusion and poverty. Normally, two types of errors affect the accuracy of the statistics.
The first one is the sampling error which can be represented by the standard error, the
confidence interval or the effective sample size neff . The second one is the non-sampling
error which do result from non-response and frame errors.

Therefore, one focus of the simulations within the AMELI process was to address variance
estimation of indicators on social exclusion and poverty, on national and local scale, like
NUTS 2, by using EU-SILC data. Because of the nonlinear nature of these indicators,
adequate variance estimation methods like resampling and linearization techniques are
employed. To empirically explore the quality and accuracy measurement of indicators
on social exclusion and poverty a Monte Carlo study, based on the AMELIA data set,
is conducted. In this Monte Carlo studies, single-stage and two-stage cluster designs are
applied which are further described in deliverable 7.1.

The focus thus lies, in contrast to the simulation studies described in section 2.3.1, not so
much on outlier scenarios but more on the realization of close to reality survey designs. The
whole simulation study within the AMELI project is complemented here with the interplay
between complex survey designs, which are applied in EU-SILC, and the estimation of
point and variance estimators for small regional or contentual sub-groups. It is not easy
to control simultaneously for all influences (outliers, missing values for small areas), the
computational costs are to high to control for this. Therefore, the AMELI team decided
to run different simulations which do complement each other.

In figure 2.1 an overview of the situation at hand is given. The true population data is
indicated with the table which is visible at the upper left hand side of the graphic. In
reality samples are drawn from this population data and distributions are based on this
sample (shown symbolically on the left bottom). However it is only a synthetic image of
the true population, influenced by e.g. the EU-SILC samples of 2005 and 2006 and further
informations like knowledge about the possible values for statistics on poverty and social
exclusion. The samples are then drawn from this synthetic population, with a survey
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6 Chapter 2. Design-based simulations

design which is assumed to be as close as possible to reality. The drawing is repeated
R-times and the results for the estimators of statistics on poverty and social exclusion and
their accuracy are summarized. The results of this procedure should then be comparable
to those which would arise from a sample drawn from the real population in Europe.
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Figure 2.1: Overview general simulations

However distortions can occur because the synthetic population is finite. It is very difficult
to foresee extreme situations in reality. This problem gets more serious if results for smaller
entities have to be computed. Then outliers can have a big influence on the result.

Salvati et al. (2010) describe design-based simulations as more interesting than model-
based simulations. They justify this statement with the fact that design-based simula-
tions constitute a more realistic representation of the small area estimation problem than
simulations based on theoretically generated populations. This is due to the fact that
differences between the small areas are fixed effectively (cf. Salvati et al. 2010 p. 22).

The fact that a design-based simulation can lead to very astonishing and interesting
results is for example shown in Hulliger and Münnich (2006). The multitude of survey
designs, scenarios and estimators results in an even higher number of simulation results.
This leads to the challenge to handle big amounts of data. Therefore, it is useful to define
a simulation framework and a strategy how to get from the starting positon to meaningful
results. The focus of simulation studies can be different. It can be the target to test the
interplay between the survey design and e.g. small area estimation. Here survey designs
are applied and estimates for small areas are produced for these samples.
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2.3 Design of the simulation study on outlier and non-response 7

2.3 Design of the simulation study on outlier and

non-response

In Section 2.3.1 general issues regarding the outline of the simulation study on outly-
ingness and missingness are discussed. While section 2.4 addresses sampling methods,
contamination and missing data models are described in Sections 2.4.1 and 2.4.2, respect-
ively. Note that the description of the simulation study in this document is of a general
nature. For detailed information of the sampling methods, contamination and missing
data models, as well as evaluation criteria used within the AMELI project, the reader is
referred to Alfons et al. (2011a).

2.3.1 The simulation design for Outlier and missingness simu-
lations

Before the design of the simulation study is discussed, the notion of representative and
nonrepresentative outliers (Chambers, 1986) is introduced for better understanding of
the role of outliers in survey statistics. Representative outliers in a sample are observa-
tions whose values have been recorded correctly and cannot be regarded as unique in the
population. Therefore, these observations contain some relevant information for estimat-
ing quantities of interest. Nonrepresentative outliers, on the other hand, contain values
that are either incorrect or unique to the specific population element. In the latter case,
they need to be considered in the simulation process, i.e., they should be excluded from
the estimation of quantities of interest or assigned very low weights. If they exist due to
errors in the sample data, they need to be corrected in the editing process, thus this case
is not relevant for our purposes.

Concerning outliers and non-response, the most realistic perception of the world is that
they exist on the population level. Whether a person has an extremely high income or
is not willing to respond to certain questions of a survey does not depend on whether
that person is actually in the sample. Hence the most realistic simulation design is to
insert contamination and non-response into the population (see Figure 2.2 for a graphical
representation). A disadvantage of this approach is that the number of outliers or missing
values in the samples is unpredictable.

If properties of the considered estimators is the main focus of a simulation, or if outlier
detection methods are investigated, maximum control over the amount of contaminated
observations is necessary for a thorough evaluation. The same principle with respect to the
amount of missing values applies if the treatment of incomplete data is the main interest.
This problem can be solved by adding contamination and non-response to the samples
instead of the population. While this approach may not truly reflect the real processes, it
may be more practical from a statistician’s point of view in the aforementioned situations.
Nevertheless, it should be noted that adding contamination and non-response to samples
comes with increasing computational costs for an increasing number of simulation runs.
Figure 2.3 visualizes the general outline of such a simulation design.

A synthetic population is generated from an original sample such that the properties of
the underlying sample are reflected. Hence, also non-response in the population may be
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8 Chapter 2. Design-based simulations

Figure 2.2: Outline of the most realistic simulation design (cf. Münnich et al., 2003b).

generated with a model from the underlying sample (see Section 2.4.2). However, the
situation is much more complicated with contamination. While non-response is clearly
visible in a sample (a missing value is a missing value is a missing value), the contaminated
observations are not known beforehand. Outlier detection methods may be applied, but
the results still leave some uncertainty. Even if outliers are detected, it is still necessary to
find a model for their distribution, which may or may not depend on the majority of the
observations. Simply experimenting with different proportions of outliers and different
distributions for the contamination might be a more practical approach. In any case,
the simulation study should not be confined to only the most realistic contamination and
missing data models. The better the behavior of the developed methodology is known,
the better the best practice recommendations are at the end of the day.

2.4 Sampling and weighting

In order to achive a realistic portrayal of the real-life processes in the simulation study, the
true sampling methods and weighting schemes should be used for the respective countries.
Others may be used additionally to get a more complecte picture of the behavior of the
methodology in different situations. However, there is a large number of sampling methods
described in the literature regarding survey statistics, so it is necessary to select a few
representative methods to be used in the simulations. The effects of simple methods on the

AMELI-WP6-D6.1



2.4 Sampling and weighting 9

Figure 2.3: Outline of the most practical simulation design for the AMELI project.

outcome might provide some insight, thus simple random sampling should be considered.
Nevertheless, unequal probability sampling is frequently used in reality and should be
covered in the simulations. Since each household is linked to a region in EU-SILC data,
stratified sampling should certainly be investigated. Furthermore, more advanced methods
such as multistage sampling or balanced sampling may be of interest. In any case, The
designs to be tested should cover the most frequently used in EU-SILC (as reported by
WP5).

2.4.1 Contamination models

Outlyingness in simulations should be modeled as a two-step process (Béguin and Hul-
liger, 2008; Hulliger and Schoch, 2009). The first step is to select observations to
be contaminated, the second is to model the distribution of the outliers.

To discuss the process in more detail, let n be the number of observations, p the number
of variables, and let xi = (xi1, . . . , xip), i = 1, . . . , n, denote the observations.

1. Let Oi, i = 1, . . . , n, be an indicator whether an observation is an outlier (Oi = 1) or
not (Oi = 0). The situation that the probability distribution of Oi does not depend
on any other variables, i.e., that

P (Oi = 1|xi1, . . . , xip) = P (Oi = 1), i = 1, . . . , n (2.1)

© http://ameli.surveystatistics.net/ - 2011
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10 Chapter 2. Design-based simulations

may be called outlying completely at random (OCAR). If Equation (2.1) is violated,
i.e., if the probability distribution of Oi depends on observed information, the situ-
ation may be called outlying at random (OAR). In the case of EU-SILC data, the
probability of outlying income may depend on, e.g., economic status or age. In order
to simulate practical situations, OAR should therefore be considered.

2. Once the observations to be contaminated have been fixed, the distribution of the
outliers needs to be defined. Again, this distribution may or may not depend on
the observed information. Let Ic := {i = 1, . . . , n : Oi = 1} be the index set of
the observations to be contaminated, and let x∗

i = (x∗i1, . . . , x
∗
ip) denote the original

(i.e., non-contaminated) values of xi, i ∈ Ic. If the distribution does not depend on
the original values, i.e., if

xi ∼ F (x1, . . . , xp), i ∈ Ic, (2.2)

the outliers may be called contaminated completely at random (CCAR). An example
is to generate the contamination with a (multivariate) normal distribution with fixed
location and scatter. On the other hand, if the distribution depends on the original
values, i.e., if

xi ∼ F (x1, . . . , xp, x
∗
i1, . . . , x

∗
ip), i ∈ Ic, (2.3)

the outliers may be called contaminated at random (CAR). A simple example for
CAR situations is the scaling of variables with a certain factor, e.g., 100 or 1000.
Regarding income data in EU-SILC, it is easily conceivable that the distribution of
outliers depends on some underlying information.

Realistic outlier scenarios should be investigated in the simulation study in order to give
recommendations for practical applications. Hence, using OAR-NCAR situations is of
high interest (cf. the simulation example in Béguin and Hulliger, 2008). Nevertheless,
it is also important to know how the developed methodology behaves in simpler (e.g.,
OCAR-CCAR) situations.

2.4.2 Missing data models

This part is structured as follows: first, Section 2.4.2 covers different mechanisms that gen-
erate missing data. Afterwards, two approaches for handling non-response in simulations
are discussed in Section 2.4.2.

Missing data mechanisms

Three important cases of processes responsible for generating missing values are commonly
distinguished in the missing data literature (see, e.g., Little and Rubin, 2002), based
on the original ideas by Rubin (1976).

Let X = (Xobs,Xmiss) denote the data, where Xobs and Xmiss are the observed and
missing parts, respectively.

AMELI-WP6-D6.1



2.4 Sampling and weighting 11

Then the missing values are missing at random (MAR) if

f(M |X,φ) = f(M |Xobs,φ), (2.4)

i.e., the probability of missingness does not depend on the missing part Xmiss. The
important special case of MAR called missing completely at random (MCAR) is given if
the probability of missingness does not depend on the observed part Xobs either, which
translates to the equation

P (Xmiss|X) = P (Xmiss). (2.5)

On the other hand, the missing values are said to be missing not at random (MNAR) if
Equation (2.4) is violated and missingness is in some way related to the outcome variables,
i.e., the probability of missingness depends on Xmiss. This can be written as

P (Xmiss|X) = P (Xmiss|(Xobs,Xmiss)). (2.6)

Hence, in the latter case, the missing values cannot be fully explained by the observed
part of the data.

A motivational example for the different missing data mechanisms, which is also a suitable
illustration for EU-SILC data, is given in Little and Rubin (2002). Consider two
variables age and income, with missing values in income. If the probability of missingness
is the same for all individuals, regardless of their age or income, then the data are MCAR.
If the probability that income is missing varies according to the age of the respondent,
but does not vary according to the income of respondents with the same age, then the
data are MAR. If the probability that income is recorded varies according to income for
those with the same age, then the data are MNAR. Note that MNAR cannot be detected
in practice, as this would require knowledge of the missing values themselves.

The performance of imputation methods usually depends, among other things, on the
multivariate structure of the missing values. In the simulation study, realistic missing
data scenarios should be investigated. Therefore, the existing real life EU-SILC samples
need to be studied. The R package VIM (Templ and Filzmoser, 2008; Templ et al.,
2011), which has been developed in Workpackage 8, contains visualization tools that allow
not only to detect the missing value mechanisms (MAR or MCAR), but also to gain insight
into the quality and various other aspects of the data at the same time.

Adding non-response in simulations

Choosing variables in which missing values should be inserted is the first step of adding
nonresponse to population or sample data. These variables will in the following be referred
to as target variables. In the simulations within the AMELI project, the target variables
typically are (some of) the income variables.

Random insertion of missing values MCAR situations can be generated by select-
ing observations for every target variable with simple random sampling. Using unequal
probability sampling makes it possible to account for MAR or MNAR situations. The
probability weights may thereby be derived from one or more variables. In any case,
different missing value rates may be used for the different target variables. More difficult
situations require special treatment, though. An important example is that non-response
in one variable may only occur for observations with non-response in another variable.

© http://ameli.surveystatistics.net/ - 2011
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12 Chapter 2. Design-based simulations

Response propensity models A completely different approach for generating MAR
situations is to use a logit model, which can be obtained from the simulation’s under-
lying real life sample. Sensible predictors for income components in EU-SILC are, e.g.,
age, gender, region and economic status. With the imputed original sample, even MNAR
situations may be generated. More details on response propensity models with several
applications can be found in Münnich et al. (2003a). The advantage of this method is
that it is a more analytical approach for generating realistic non-response scenarios. How-
ever, the resulting number of missing values is not predictable. Thus, response propensity
models are more suitable for adding non-response to population data than to samples,
as having maximum control over the number of missing values is the motivation for the
latter.

AMELI-WP6-D6.1



Chapter 3

The R package simFrame

Simulation studies in research projects such as AMELI require a precise outline. If dif-
ferent partners use, e.g., different contamination or missing data models, the results may
be incomparable. A software framework for statistical simulation may thus contribute its
share to avoid such problems. For this purpose, the R package simFrame (Alfons et al.,
2010; Alfons, 2011) has been developed. The object-oriented implementation with S4
classes and methods (Chambers, 1998, 2008a) gives maximum control over input and
output and provides clear interfaces for user-defined extensions. Moreover, the framework
allows a wide range of simulation designs to be used with only a little programming.

One of the main goals of the AMELI project is to improve the methodology for the
indicators on social exclusion and poverty under typical data problems such as outliers
and missing data. The package simFrame therefore allows to add certain proportions of
outliers or non-response. In addition, depending on the structure of the simulation results,
an appropriate plot method is selected automatically.

The rest of the chapter is organized as follows. Section 3.1 contains a brief description
of the package contents. How to extend the framework is outlined in Section 3.2, while
Section 3.3 presents extensions implemented specifically for the AMELI project. Last but
not least, an example for the usage of the package is provided in Section 3.4. A more
detailed description of the package is given in Alfons et al. (2010).

3.1 Package contents

A cornerstone of the AMELI project is that all software tools are developed in the open
source statistical environment R (R Development Core Team, 2011a) and will be
made freely available to the statistical community. In addition to being open source,
one of the main reasons that R has been chosen as platform is that it includes a well-
developed programming language and provides interfaces to many others, including the
fast low-level languages C/C++ and Fortran. Most of simFrame is implemented with the
object-oriented S4 system, with the exception of some utility functions and some C++
code. Control classes determine the sequence of events in the simulations and in most
cases provide the interfaces for extending the framework (see Section 3.2 for the latter).
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14 Chapter 3. The R package simFrame

Guidelines for the simulation study in AMELI may thus be defined in terms of specific
control classes and parameter settings. A slightly simplified UML class diagram (e.g.,
Fowler, 2003) of simFrame is shown in Figure 3.1.

Figure 3.1: Slightly simplified UML class diagram of simFrame.
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3.1.1 Data handling

To store data, the data frame concept is used in simFrame, with some restrictions on the
column names. For design-based simulations, the sample weights are stored in a variable
called .weight. Furthermore, when parts of the data are contaminated, it is necessary
to store which observations have been contaminated (e.g., to evaluate outlier detection
methods). The corresponding variable is called .contaminated. Hence these two variable
names should be avoided in the data frame, otherwise the respective columns will be
overwritten.

The generic function generate(control, ...) is available to generate data from a distri-
bution model. Currently only the control class DataControl is implemented in simFrame

(see also Figure 3.1). It allows to specify the number of observations to draw from the
distribution, a function for generating the data, e.g., rmvnorm() from package mvtnorm

(Genz and Bretz, 2009; Genz et al., 2010) for a multivariate normal distribution, and a
list of additional arguments to be passed to this function. For user convenience, the name
of the control class may also be supplied as a character string (the default is DataControl),
in which case the slots of the control object may be supplied as arguments.

3.1.2 Sampling

One of the most important design principles of simFrame is that the indices giving each
sample are obtained before the actual simulations are performed. This process is in the
following referred to as setting up the samples and has two advantages. First, the samples
can be stored permanently for faster reproduction of the simulation results or for other
simulations based on the same population. Second, overall computation time may be
reduced dramatically in certain situations. In stratified sampling, for example, the actual
stratification needs to be performed only once.

The multiple samples are obtained with the generic function setup(x, control, ...)

and stored in an object of class SampleSetup, which contains all information required for
drawing the samples at a later stage. The basic control class SampleControl is highly
flexible and may be used for stratified sampling as well as sampling of whole groups rather
than individuals with a specified sampling method. Furthermore, the number of items to
sample and/or probability weights need to be specified. More complex two-stage sampling
designs can be applied with the control class TwoStageControl. It allows to specify the
desired sampling method for each of the two stages. In addition, the PSUs and SSUs
need to be supplied, with the default SSUs being the observations themselves. It is also
possible to use stratification in the first sampling stage. See also Figure 3.1 for all slots
of the classes involved in the sampling procedure. An important feature is that the each
sample is set up using the function try() to avoid losing all samples if an error occurs.
Furthermore, the control class for setup() may be defined by supplying its name as a
character string, allowing the slots to be specified as arguments.

Numerous approaches for unequal probability sampling without replacement from finite
populations have been proposed in the literature to date (see, e.g. Tillé, 2006), and
many of them are implemented in the R package sampling (Tillé and Matei, 2009).
Wrappers for the corresponding functions to be used with simFrame can easily be defined
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(see Listing 3.3 in Section 3.2.2). Unfortunately, the implementation of the functions
in sampling is not performant. While the package is excellent for teaching purposes,
it cannot be used for the close to reality simulations within AMELI. As a remedy, fast
C++ implementations of Midzuno sampling (Midzuno, 1952), Tillé sampling (Tillé,
1996; Deville and Tillé, 1998) and Brewer sampling (Brewer, 1975) are available in
package simFrame.

Previously set up samples can then be drawn from the population with the generic function
draw(x, setup, ...). Note that it adds the column .weight, which contains the sample
weights, to the resulting data set.

3.1.3 Contamination

The generic function contaminate(object, control, ...) is implemented to con-
taminate certain proportions of the data. Two general control classes are available in
simFrame: DCARContControl and DARContControl. DCAR and DAR stand for distrib-
uted completely at random and distributed at random, respectively. This terminology
was used earlier in the AMELI project before it was further refined to the terminology
presented in Section 2.4.1 (CCAR, CAR and NCAR).

For both control classes, the contamination levels and the variables to be contaminated
need to be supplied. Whole groups rather than individuals may be contaminated, and
OAR situations instead of OCAR situations may be generated by specifying an auxiliary
variable containing probability weights for selecting the items to be contaminated. The
full hierarchy of control classes for contamination is outlined in Figure 3.1.

With DCARContControl, the contamination does not depend on the original values and
is defined in the same way as for model-based data generation - by supplying a function
to generate the data and, if necessary, a list of additional arguments to be passed to this
function (see Section 3.1.1). The number of items to be generated will thereby be passed
as the first argument. With DARContControl, on the other hand, the contamination
depends on the original values. A function is required, too, but in this case the original
values are passed as the first argument. As before, a list of additional arguments may be
specified.

It should be noted that the two control classes DCARContControl and DARContControl

are designed to be as general as possible. For the simulations within the AMELI pro-
ject, specialized contamination models designed specifically for EU-SILC are used. These
project-specific extensions of simFrame are presented in Section 3.3.

In order to be able to identify the contaminated observations, a logical variable called
.contaminated is added to the data set. Furthermore, the control class for contamin-

ate() may be specified as a character string, with DCARContControl being the default.
This allows the slots to be supplied as arguments.

3.1.4 Insertion of missing values

Adding missing values follows a similar implementation as contaminating the data. With
the control class NAControl for the generic function setNA(x, control, ...), missing
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value rates may be selected individually for the variables in which missing values should
be inserted. The same missing value rates are used for all specified variables if they are
specified as a vector. However, if the missing value rates are given by a matrix, each
column is used for the respective variable. Whole groups may be set as missing rather
than individual values, and an auxiliary variable of probability weights may be specified
to account for MAR or MNAR situations instead of MCAR situations (see Section 2.4.2).
Note that it is possible to specify whether missing values should only be inserted into
non-contaminated observations, or if they should also be inserted into contaminated ob-
servations. The latter is the more realistic scenario. An overview of the control class is
given in Figure 3.1.

In addition, the generic function setNA() allows the control class to be specified as char-
acter string, which allows the slots to be supplied as arguments.

3.1.5 Running simulations

The function runSimulation() combines all elements of the package into one convenient
interface for running simulation studies. For design-based simulation, a data frame and
previously set up samples (or a control class for setting up samples) may be supplied. For
model-based simulation, a control class for data generation and the number of replications
may be passed.

How the simulations are performed is determined by the control class SimControl (see
also Figure 3.1). Control classes for contamination and the insertion of missing values
may be supplied. In design-based simulations, contamination and non-response may cur-
rently only be added to the samples rather than the population, to give maximum control
over the amount of outliers or missing values. It is important to note that the methods
themselves should never use this information, this only affects computing evaluation cri-
teria. Furthermore, the simulations may be split into different domains, in which case it is
possible to specify whether small area estimation will be used. The most important thing
is, however, to specify a function(x, ...) for the simulation runs, with the following
requirements:

• The function must return a numeric vector, or a list with components values (a
numeric vector with the main simulation results) and add (additional results of any
class).

• Its argument x should expect a data frame.

• The original data (i.e., the data before contamination and the insertion of missing
values) can be passed via an argument called orig.

• In the case of splitting the simulations into different domains, the indices of units
belonging to the current domain can be passed to the function via an argument
called domain.

If the simulations are split into different domains, the behavior is as follows. For small
area estimation, the whole data set (sample) is always passed to the supplied function,
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and contamination and missing values are added to the whole data (sample) as well. It
is therefore required to use the domain argument to extract the current domain in the
simulations. On the other hand, if small area estimation is not used, the data is split and
simulations are performed on every domain separately, including contamination and the
insertion of missing values.

The simulation results are stored in an object of class SimResults (see Figure 3.1). Similar
to setting up multiple samples, the function for the simulation runs is evaluated using
try(). Hence, not all results are lost if computations fail in any of the simulation runs.

Note that the slots of SimControl may also be specified as arguments for user convenience.
A detailed example for design-based simulation is presented in Section 3.4, additional
examples for model-based simulation and parallel computing can be found in Alfons
et al. (2010).

3.1.6 Visualization

Various plots for simulation results are implemented using package lattice (Sarkar,
2008, 2010). If the simulation study was divided into several domains, the results for each
domain are displayed in a separate panel. The following plots are implemented:

simBwplot: A boxplot of the simulation results is produced.

simDensityplot: A kernel density plot of the simulation results is produced.

simXyplot: The average results are plotted against the contamination levels or missing
value rates.

Reference lines for the true values can be added in all the plots mentioned above. A
convenient feature is that the plot() method for the simulation results selects a suitable
graphical representation automatically, depending on their structure. Examples are shown
in Section 3.4 and Alfons et al. (2010).

3.1.7 Parallel computing

Being an embarrassingly parallel process, statistical simulation may benefit highly from
parallel computing, which is implemented in simFrame using package snow (Rossini et al.,
2007; Tierney et al., 2008, 2009a). The functions clusterSetup() and clusterRun-

Simulation() are available for setting up multiple samples and running simulations on
a cluster. It is important to note that all necessary packages and objects (e.g., functions,
data sets or control objects) need to be made available on every worker process.

Reproducibility and the use of random number generators are slightly more complicated
issues for parallel computing than in the sequential case. Simply using the standard
random number generator on every worker process is not recommended. If the same seed
is used on every worker, identical sequences of random numbers are generated, which in
turn produces the same results on each worker. Using different seeds is not a proper
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solution to this problem, because there might still be some overlap in the sequences of
random numbers. The remedy is to use random number streams, which can be initialized
with the function clusterSetupRNG() from package snow. Two packages for creating
random number streams are supported: rlecuyer (L’Ecuyer et al., 2002; Sevcikova
and Rossini, 2009) and rsprng (Mascagni and Srinivasan, 2000; Li, 2010).

For more detailed information on parallel computing with simFrame, including an ex-
ample, consult Alfons et al. (2010).

3.2 Extending the framework

The object-oriented implementation of simFrame provides clear interfaces for extensions
by developers, which are described in the following.

3.2.1 Model-based data

Since the control class DataControl is very general, it is often sufficient to supply a user-
implemented function for the desired data generation model. The first argument should
thereby be the number of observations to be generated (see Listing 3.1).

In order to extend the framework by more specialized data generation models or for
more convenient access to frequently used distribution models, a control class extending
VirtualDataControl and the corresponding method for the generic function generate()

may be defined (see Listing 3.2).

myDataGeneration <− function ( s i z e , . . . ) {
# computat ions

}

Listing 3.1: Code skeleton for a data generation method.

s e t C l a s s ( ”MyDataControl ” ,
# c l a s s d e f i n i t i o n
conta in s = ”VirtualDataContro l ”)

setMethod ( ”generate ” ,
s i gna tu r e ( control = ”MyDataControl ”) ,
function ( control ) {

# method d e f i n i t i o n
})

Listing 3.2: Code skeleton for extending model-based data generation.
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3.2.2 Sampling

The control classes SampleControl and TwoStageControl are highly flexible and allow
for the most commonly used sampling designs in practice (see also Section 3.1.2). Thus
implementing the desired sampling method for the simplest case of drawing items from a
finite (sub-)population often suffices to extend the framework. Details on some restrictions
for such a function can be found in Alfons et al. (2010) or on the R help file of the
generic function setup() (which can be viewed by calling ?setup or help(setup) on the
R console). Listing 3.3 shows an example for how to define a simple wrapper function for
Poisson sampling based on the implementation in package sampling (Tillé and Matei,
2009).

For more complex sampling procedures such as multistage sampling with more than two
stages, the framework can be extended by implementing a control class extending Virtu-

alSampleControl and the corresponding setup() method. The slot k of VirtualSample-
Control is inherited (see Figure 3.1) and should determine the number of samples. In
addition, the resulting object must be of class SampleSetup. In order to use parallel
computing, a method for clusterSetup() needs to be defined. A code skeleton for such
an extension is given in Listing 3.4.

myPoisson <− function ( prob ) {
require ( sampling )
which( as . log ica l ( UPpoisson ( prob ) ) )

}

Listing 3.3: User-defined function for Poisson sampling.

s e t C l a s s ( ”MySampleControl ” ,
# d e f i n i t i o n o f a d d i t i o n a l p r o p e r t i e s
conta in s = ”VirtualSampleContro l ”)

setMethod ( ”setup ” ,
s i gna tu r e ( x = ”data . frame ” , control = ”MySampleControl ”) ,
function (x , control ) {

# method d e f i n i t i o n
})

setMethod ( ”c l u s t e rSe tup ” ,
s i gna tu r e ( x = ”data . frame ” , control = ”MySampleControl ”) ,
function ( c l , x , control ) {

# method d e f i n i t i o n
})

Listing 3.4: Code skeleton for user-defined setup of multiple samples.
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3.2.3 Contamination

Additional contamination models can be added to the framework by defining a control
class inheriting from VirtualContControl and the corresponding method for the generic
function contaminate() (see Listing 3.5). Note that the control class inherits the slots
target and epsilon for selecting the target variable(s) and contamination level(s), re-
spectively (see Figure 3.1). Furthermore, a logical variable .contaminated indicating the
contaminated observations should be added to the resulting data set before it is returned,
e.g., to be able to use that information for the evaluation of outlier detection methods.

3.2.4 Insertion of missing values

Last but not least, adding user-defined missing value models is done by implementing a
control class extending the virtual class VirtualNAControl and the corresponding method
for the generic function setNA() (see Listing 3.6). The slots target and NArate for
selecting the target variable(s) and missing value rate(s), respectively, are inherited (see
Figure 3.1).

s e t C l a s s ( ”MyContControl ” ,
# d e f i n i t i o n o f a d d i t i o n a l p r o p e r t i e s
conta in s = ”VirtualContContro l ”)

setMethod ( ”contaminate ” ,
s i gna tu r e ( x = ”data . frame ” , control = ”MyContControl ”) ,
function (x , control , i ) {

# method d e f i n i t i o n
})

Listing 3.5: Code skeleton for user-defined contamination models.

s e t C l a s s ( ”MyNAControl ” ,
# d e f i n i t i o n o f a d d i t i o n a l p r o p e r t i e s
conta in s = ”VirtualNAControl ”)

setMethod ( ”setNA ” ,
s i gna tu r e ( x = ”data . frame ” , control = ”MyNAControl ”) ,
function (x , control , i ) {

# method d e f i n i t i o n
})

Listing 3.6: Code skeleton for user-defined missing value models.
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3.3 Extensions for the AMELI project

For the AMELI project, specialized contamination models were designed specifically for
EU-SILC data. A detailed description of these contamination models is given in Alfons
et al. (2011a). In the implementation in simFrame, the corresponding control classes
extend the basic virtual class VirtualContControl. This virtual class consists of the
following slots (see also Figure 3.1):

target: A character vector defining the variables to be contaminated, or NULL to con-
taminate all variables (except the additional ones generated internally).

epsilon: A numeric vector giving the contamination levels to be used in the simulation.

For code sharing purposes, the virtual class UniContControl is implemented for univariate
contamination in EU-SILC data. It extends the basic virtual class VirtualContControl

by the following additional slots, some of which were named in consistency with the built-
in control classes of simFrame:

grouping: A character string specifying the name of the variable containing the household
IDs in order to contaminate whole households rather than individuals.

main: A character string specifying the name of the variable containing the main income
holder of each household.

hsize: A character string specifying the name of the variable giving the number of persons
in each household.

eqsize: A character string specifying the name of the variable giving the equivalized
household size according to the modified OECD scale (see Eurostat, 2004).

design: A character string specifying the name of a variable defining an OAR situation.
If supplied, the outliers are drawn using a stratified sampling design. Consequently,
the specified variable will be interpreted as a factor.

prob: A numeric vector giving the outlyingness probabilities for the different groups in
OAR situations. The values need to be in the order of the corresponding factor
levels and should sum up to 1.

In the simulations within the AMELI project, only CCAR and NCAR situations will
be considered once the outliers are selected. The control classes CCARContControl and
NCARContControl are implemented for CCAR and NCAR situations, respectively. Both
classes extend the virtual class UniContControl. The class CCARContControl consists of
the following slots in addition to the inherited ones:

distribution: A function for generating the data for the contamination, e.g., rnorm()
for a normal distribution (the default).

dots: Additional arguments to be passed to the function in slot distribution.

AMELI-WP6-D6.1



3.4 Example: Quintile share ratio 23

On the other hand, the control class NCARContControl contains the following additional
slots:

fun: A function generating the values of the contaminated data based on the original
values.

dots: Additional arguments to be passed to the function in slot fun.

3.4 Example: Quintile share ratio

This section contains an example demonstrating the usage of simFrame for design-based
simulation. The package contains synthetic EU-SILC data based on the Austrian sample
from the year 2006, which is used as population data. In the data set, information on the
personal level is available for 25 000 households. Note that this is an illustrative example
only. Neither does the data represent the true population sizes of Austria and its regions,
nor will a thorough analysis of presented methodology be provided.

Three methods for estimating the quintile share ratio (QSR) are compared in the following.
The first is the standard estimation as described in Eurostat (2004). The other two are
semiparametric approaches that fit a Pareto distribution (e.g. Kleiber and Kotz, 2003)
to the upper tail of the data. While the Hill estimator uses the maximum likelihood
principle to fit the shape of the Pareto distribution (Hill, 1975), the partial density
component estimator (PDC; Vandewalle et al., 2007) follows a robust approach. Note
that the semiparametric approaches flag values larger than the theoretical 99% quantile
of the fitted distribution as nonrepresentative outliers. Since these are considered to be
unique to the population, the sample weights of the flagged observations are then set to
1, and the weights of the remaining variables are calibrated accordingly. Details on the
semiparametric methods can be found in Alfons et al. (2011b). All the aforementioned
methods are implemented in the R package laeken (Alfons et al., 2011c).

The first step is of course to load the required functions and the data set. To ensure
reproducibility of the results, the seed of the random number generator is set as well.

R> library(" simFrame")

R> source(" simFrameAMELI.R")

R> library(" laeken")

R> data(" eusilcP")

R> set.seed(1234)

Using stratified sampling by regions, combined with sampling of whole households rather
than individuals, 100 samples from the population are set up with just one command.
The sample sizes are thereby selected approximately proportional to the stratum sizes in
the population.

R> set <- setup(eusilcP, design = " region", grouping = " hid",

+ size = c(192, 1108, 1406, 414, 813, 977, 401, 453, 236),

+ k = 100)
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Contamination in this example is introduced by a OCAR-CCAR model (see Section 2.4.1).
The contamination level is set to 0.1%, and the outliers are generated by a normal distri-
bution N (µ, σ2) with mean µ = 500 000 and standard deviation σ = 20 000.

R> cc <- CCARContControl(target ="eqIncome", epsilon = 0.001,

+ grouping = "hid", main = "main", hsize = "hsize", eqsize = "eqsize",

+ dots = list(mean = 5e+05, sd = 20000))

In the function for the simulation runs, the QSR is computed with the three methods.
The Pareto distributions are thereby fit to the largest k values.

R> sim <- function(x, k) {

+ q <- qsr(x$eqIncome, x$.weight)$value

+ fitHill <- paretoTail(x$eqIncome, k = k, method = " thetaHill" ,

+ w = x$.weight, groups = x$hid)

+ wHill <- reweightOut(fitHill, calibVars(x$region))

+ qHill <- qsr(x$eqIncome, wHill)$value

+ fitPDC <- paretoTail(x$eqIncome, k = k, method = " thetaPDC\grqq ,

+ w = x$.weight, groups = x$hid)

+ wPDC <- reweightOut(fitPDC, calibVars(x$region))

+ qPDC <- qsr(x$eqIncome, wPDC)$value

+ c(standard = q, Hill = qHill, PDC = qPDC)

+ }

Running the simulation experiment is only one more command. In this example, the
largest 300 observations are used for Pareto tail modeling.

R> results <- runSimulation(eusilcP, set, contControl = cc,

+ fun = sim, k = 300)

Finally, the true values of the QSR are computed in order to compare them to the sim-
ulation results. In the plot of the simulation results, the true values can be added as
reference lines (see Figure 3.2).

R> tv <- qsr(eusilcP$eqIncome)

Figure 3.2 shows that the standard estimation of the QSR leads to corrupted results
even for a small proportion of outliers. The classical Hill estimator for fitting the Pareto
distribution is somewhat less influenced, but the robust PDC estimator still performs
better with respect to bias. In any case, this example shows that simFrame allows to use
complex simulation designs with only a few lines of code. Other examples for the usage
of the package – including model-based simulation, parallel computing and different plots
of the simulation results – can be found in Alfons et al. (2010).
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R> plot(results, true = tv, xlab = " Quintile share ratio" )

R> simDensityplot(results, true = tv, xlab = " Quintile share ratio" )
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Figure 3.2: Simulation results from the illustrative example. Left : Default plot of results
from a simulation study with one contamination level. Right : Kernel density plots of the
simulation results.
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Chapter 4

Other simulation environments

A simulation framework was installed in Trier to handle computer intensive calculations
with big data amounts. In this Condor environment it is difficult to apply the simFrame
Package. To use the Condor simulation framework it is necessary to store the variables
in groups with specific names. The simFrame package is good for teaching purposes but
cannot be applied for all of the close to reality simulations within AMELI.

4.1 Condor based simulations

Large scaled Monte Carlo studies need a huge amount of calculation time. In order to
obtain results in more or less responsive time (2-3 days) a parallelization of the task is
needed. In survey statistics the computations may be split e.g. by samples such that
blocks of samples are parallel. In Order to do such parallel simulations, multiple CPU are
needed. In Trier there are two such computing clusters, an internal high security cluster
and an external cluster with access capabilities over Internet.

The internal cluster is used mainly for computation on highly confidential data like
Census data or EU-SILC data sets. It has no connection to the Internet whatso-
ever and only a very limited amount of persons have access to it. It consist of 14
computing servers, a managing server, and a file server. The computing server have
overall 304 cores and 1280 GB RAM. The file server is mirrored almost instantly
and has 16 TB storage space.

The external cluster is used only with public data sets. Access is restricted to author-
ized persons only. It can be accessed from all over the world via Internet thorough
an encrypted connection. It consists of 5 computing servers with overall 56 cores
and 192 GB RAM, a managing server and a file server with 16 TB storage space.

In order to be capable to use all this cores full time simultaneously, a job queuing system
called Condor (Thain et al., 2005) is installed on the managing and computing servers.
The Condor system on the managing server queries empty slots from the computing
servers. If a computing server has an empty slot (e.g., another job just finished) the
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managing server submits the next job in the queue to fill this slot. Thus, the user only
has to submit the jobs once into the queue and the Condor system cares about the
optimal distribution to the computing servers. This saves a lot of time and speeds up
computations. Often the data sets needed for computations are rather large data set and
the simulation results are also quite large. In order to save storage space, the data sets
and the results are stored centrally on the file server.

4.2 DBsim: Simulation from Databases

With DBsim we present a simple yet powerful simulation framework for the R statistical
computing language (R Development Core Team, 2011b; Chambers, 2008b), which
is similar to simFrame (see above) and is explicitly designed for parallel computation on
several nodes while storing the data on a database (Schoch, 2010). Further, DBsim is
designed to work explicitly with survey (see Lumley, 2004, 2010), outliers and missing
values of all kinds. Obviously, this is not the only parallel computation framework for
R (see Schmidberger et al. (2009) for a recent comprehensive overview). DBsim is the
ideal candidate for the tuple [simulation jobs; computing clusters] that features
the folowing characteristics

• multiple, homogeneous CPUs (with shared memory),

• homogeneous simulation tasks (typical for design-based simulations),

• huge datasets or large, but different datasets for each single simulation run.

For applications that meet only the first two characteristics, the ideal candidate is the
R-package multicore (see Urbanek, 2009). This implementation draws heavily on the
unix-type system function fork (and similar wrappers around unix processes) and is thus
(at the moment) only available for POSIX-compliant OS (see also fork; Warnes (2007).
Essentially, computing frameworks that are based on the fork mechanism are in general
very efficient in situations where all computation tasks act on the same data (or different
but smaller datasets without danger that R runs out of memory) because fork invokes
child processes with the same data and connections (i.e., stdin, stdout, and stderr) using
the copy-on-work principle.

Users with a heterogeneous computing environment (e.g., different servers with different
OS) may choose the R-package snow (see Tierney et al., 2009b) because it provides a
setting for distributed memory parallel systems (see also Condor, above).

4.2.1 Conceptual Idea

Instead of letting R manage all the storage tasks (viz. simFrame), DBsim lets R and MySQL

(or any similar relational database system) do what they can do best: all computations
are done in R whereas MySQL is concerned with efficiently organizing and delivering data
of all kind. It’s as simple as that.

Moreover, DBsim is based on the following key assumptions/slogans:
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• The purpose of the simulation is to analyze the performance of statistical methods
(in terms of several criteria) in the context of different outlyingness and missing-
ness patterns and other measurements problems, given the sampling design and the
sample size.

• The important thing to note is that both the population and the sample design
are predetermined and serve as fixed parameters in each simulation. This setting
accounts for the practical needs in official statistics to find the best tuned methods
among all methods given the implemented sampling design. And not vice versa.
(This does not mean that only a single sampling design needs to be considered. It
only means that comparison of different methods needs to be conditional on the
sampling design)

• As a result of the preceding assumptions, the population and sampling design are
hold fixed and cannot be modified during a DBsim simulation. Consequently, and be-
cause all simulation runs are homogeneous and independent, DBsim cuts the overall
simulation into pieces and distributes them to the nodes. Each computing node has
its own DB-connection and requests its data for a particular simulation run. Hav-
ing finished the computation task, each node writes the results independently to
the DB. Since no master coordinates the simulation, DBsim has minimal computing
power loss due to communication.

4.2.2 Requirements

The DBsim framework requires the following software requirements

• MySQL database sever/client (version 5.0; MySQL (2010)),

• R (R Foundation for Statistical Computing, see R Development Core Team
(2011b)),

• R-Package DBI (James, 2009),

• R-Package RMySQL (James and DebRoy, 2010)

• R-Package sets (Meyer and Hornik, 2010),

• R-Package survey (Lumley, 2010).

For more details, see Schoch (2010).
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Chapter 5

Summary

The objective of Workpackage 6 is to investigate the methodology developed in Work-
packages 2, 3 and 4 in a close to reality environment based on realistic data sets from
selected European countries. With these results, Workpackage 7 will provide a thorough
analysis of the impact of different situations on the indicators on social exclusion and
poverty. Workpackage 9 will then use this output to support policy making with best
practice recommendations.

However, the lack of real population data and the complexity of the real processes in-
volved in contamination and non-response make completely realistic scenarios virtually
impossible, but the key word is best practice recommendations. The work load of the
Workpackage can be divided into two major tasks:

• to develop a suitable mechanism for generating population data as basis for the
simulations, and

• to provide an outline of the simulation process and simplify the application of com-
mon simulation guidelines.

One problem with generating population data from real life samples is that the structure
of the original data needs to be represented in the synthetic population, but statistical
nondisclosure must under no circumstances be compromised. The first step of data gener-
ation is thus to set up the household structure using only regional information, the number
of persons in the households as well as their gender and age class. This avoids disclosure
problems since no other auxiliary information of the individuals in the real life sample is
used and all categories after cross tabulation of these variables are far away to be unique
in the sample. Further variables of the synthetic population can then be generated with
statistical models. It has been demonstrated that this approach succeeds in reflecting the
dependencies among variables and the heterogeneities between subgroups. Therefore, the
populations created in this manner are perfectly suitable for close to reality simulation.

Concerning the simulation design, special emphasis is placed on typical data problems
such as outliers and non-response. A general question is whether these should be included
on the population level or in the samples. While the first approach may be more real-
istic, it results in an unpredictable number of outliers or missing values in the samples
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and may thus be suitable if these issues are not the main interest of the simulations.
Nevertheless, to evaluate procedures such as outlier identification methods or imputation
methods, maximum control over the amount of outliers or missing values is required. In
these situations, a more practical approach might be to include them in the samples.
Different contamination and non-response models are thereby discussed. Furthermore,
various evaluation criteria for different types of simulations are proposed.

In order to simplify using common guidelines in simulation experiments, a software frame-
work has been developed in the R package simFrame. It allows the use a wide range of
simulation designs with a minimal effort of programming. In addition, the object-oriented
implementation provides clear interfaces for further extensions.
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Deville, J.-C. and Tillé, Y. (1998): Unequal probability sampling without replacement
through a splitting method. Biometrika, 85 (1), pp. 89–101.

Eurostat (2004): Common cross-sectional EU indicators based on EU-SILC; the gender
pay gap. EU-SILC 131-rev/04, Unit D-2: Living conditions and social protection, Dir-
ectorate D: Single Market, Employment and Social statistics, Eurostat, Luxembourg.

Fowler, M. (2003): UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley, 3rd ed., ISBN 978-0-321-19368-1.

Genz, A. and Bretz, F. (2009): Computation of Multivariate Normal and t Probabilit-
ies, Lecture Notes in Statistics, vol. 195. New York: Springer, ISBN 978-3-642-01688-2.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. and Hothorn, T.
(2010): mvtnorm: Multivariate normal and t distributions. R package version 0.9-92.
URL http://CRAN.R-project.org/package=mvtnorm

Hill, B. (1975): A simple general approach to inference about the tail of a distribution.
The Annals of Statistics, 3 (5), pp. 1163–1174.

Hulliger, B. (2011): Main Results of the AMELI Simulation Study on Advanced Methods
for Laeken Indicators. Proceedings of the NTTS conference 2011.
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