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Evaluators

Internal expert: Risto Lehtonen, University of Helsinki.

AMELI-WP6-D6.2



Aim and objectives of deliverable 6.2

The objective of this deliverable is to give an overview of the state of the art of data
generation mechanisms. The generated populations which serve as the simulation basis
are presented in this deliverable. Two main synthetic universes have been generated: on
the one hand the AAT-SILC population and on the other hand the AMELIA data set. The
University of Vienna is responsible for the generation of the AAT-SILC population whereas
the University of Trier is responsible for the generation of the AMELIA population.
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Chapter 1

Introduction

The set of targets of the AMELI project comprehends the testing of different estimation
methods and variance estimation for the Laeken Indicators. In general, micro-simulation
is often used to control for the interplay between data structure, sampling scheme, and
properties of estimators. This can be done with a design-based micro-simulation approach.
To apply such an approach a synthetic population is necessary, which is bigger than the
scientific use file (SUF) delivered by Eurostat. The requirements for such a population
are manifold. In this work an overview of the methodology for the reproduction of the
most important population characteristics and for the minimization of the disclosure risk
is presented.

The benefit obtained from the stand-alone Laeken Indicators is small, whereas the indicat-
ors give added value when a comparison is possible. Comparisons can be made over time
and across different regional entities. The big echo in the press after the publication of
the atlas of poverty by the German Charity Group (Deutscher Paritätischer Wohlfahrts-
verband) showed that there is a big need and interest in regional analysis. Further, it is
interesting to evaluate the reaction of the indicators to extreme data situations such as
the presence of outliers. These reactions can be tested in micro-simulation approaches.

Generally, it is always the optimum to conduct micro-simulations on real data, like data
from the census or complete statistics like the basic file of the European Union Statistics
on Income and Living Conditions (EU-SILC). However, due to different reasons the real
data are often not available. Possible reasons are disclosure problems but also lacking
recent survey material on the topic of interest.

Nevertheless, it is possible to apply scenario analysis to synthetic data if the real data is
not available. To catch the structure of the original data is then the most important issue,
with the disadvantage that statements concerning the content are no longer possible but
also not intended.

Unfortunately, information from censuses or comparable data for most of the countries
in the European Union is not available. The absence of data in an appropriate manner
necessitates the generation of synthetic universes. One important example for the require-
ment of a suitable data set is the situation where the performance of point or variance
estimators have to be checked in a Monte Carlo experiment. The synthetic universe can
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then be helpful to test how different sampling schemes influence the inference. It is re-
markable that reasons for generating a synthetic population are different. Furthermore,
the requirements for such a population are manifold and differ between research tasks.
Moreover, the underlying data basis is of different quality and often various data sets are
available. This also implies that the methods for generating a synthetic population differ
from each other. Therefore, it is not possible to recommend one proceeding which may
be regarded as the best one overall.

For the AMELI project different data sets were applied. The Austrian SILC data set,
delivered by the Austrian national statistical office, and the scientific use file of the EU-
SILC data set, delivered by Eurostat, are the basis for synthetic populations. This data
should be treated confidentially, it becomes subject to non disclosure. Therefore, it is
necessary to generate a synthetic population for which it is impossible to link entries
with real live persons. The importance and difficulty of this task depend very much on
the basic data set. However, when applying synthetisation techniques, one should keep
in mind that the structure of the original data should be identifiable in the synthetic
universe.

Concluding, it is a difficult task to take all exigencies into consideration while generating
a synthetic data set. At the same time it is a chance because the combination of these
structures in one freely available data set is seldom. Our target in the present case is
to produce a public dataset which is free available and which can be used to compare
different estimation methods.

In chapter 2, synthetic data generation is discussed in general. Requirements for synthetic
universes and the state of the art in the generating synthetic universes are presented. Fur-
ther, the data framework for the simulations within AMELI is introduced within section
2.3. Chapter 3 covers the generation of the synthetic Austrian population data AAT-
SILC. The synthetic population AMELIA, which is dedicated to small area estimation, is
presented in Chapter 4. In both chapters a rough overview about the proceeding for the
generation of the universes and selected results is presented. Finally, a summary is given
in Chapter 5.

AMELI-WP6-D6.2



Chapter 2

Synthetic data generation

This chapter provides a general discussion on synthetic data generation. Section 2.1
addresses requirements for synthetic populations. A short review of common methods for
data simulation is given in section 2.2. Lastly, section 2.3 is focused on EU-SILC data.

2.1 Requirements for synthetic universes

It was mentioned in the introduction that requirements may result from specific research
tasks. One example concerns regional arrangements which have to be available if it is the
task to compare survey designs. Other requirements result from the original structure
of the basic data set which should be as far as possible preserved. It is, for example,
important to have the real correlation between variables as well as a realistic heterogeneity
between the populations in different stratas. At the same time the household structure
of the real data should be maintained. That is for example of special interest for the
indicators of social exclusion because some indicators are implemented on household level.
The indicator Persons living in jobless households (SIP5) is one example. Further, it is
assumed that strong interactions exist between the household members, which can be
important for estimations in following simulations. It is, for example, possible that the
current education activity (PE010 in EU-SILC) of children has to be estimated but is not
known. However, maybe the ISCED level (PE040 in EU-SILC) attained by their parents
is known and can be taken as auxiliary information.

If a strong relationship between the educational backgrounds of different household mem-
bers is observed in the basic data set. The so-called household structure should be pre-
served in the synthetic population. The household structures are of prior interest for some
Laeken Indicators and have to be respected. Because it is quite difficult to generate a
completely synthesized household structure, the original structure contained in the data
set should be preserved. These structures can vary between communities of different size.
Beside the interest to preserve micro structures, there is also an interest in preserving
macro structures. This point concerns the heterogeneities which are assumed to have a
great impact on the estimates. Especially in the case of the DACSEIS data set this was
a disadvantage. The question if heterogeneities are sufficiently mapped in the data set
is closely linked with the question whether a close to reality spatial structure is realized.
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2.2 State of the art in data generation 5

This circumstance is one aspect of the exigency to create consistent structures for differ-
ent regional levels. Thus, not only the micro structures (household and maybe address
membership) but also macro structures (communal, regional compilations) have to be
coherent.

Concerning the structure of the data set, the distributions for categorical and discrete
variables as well as conditional frequencies and interactions between variables should be
correct.

A complete new task is the longitudinal structure. For some variables it is easy to forecast
a value into the future (e.g. the age of a person), while for others it is not. One easy
example here is the variable age. Knowing the recent age of a person, it is easy to predict
the age for one year later.

Another requirement affects the interdependencies between variables and geographic en-
tities which have to be taken into account. The comparison of the within-group variance
with the between-group variance should lead towards the same results for the synthetic
and the original data set.

Moreover, the data basis needs to be of sufficient size. A bigger data set than the EU-
SILC scientific use file is necessary because this data set should be treated as universe.
Afterwards, different samples will be drawn to control for the interplay between data struc-
ture, sampling scheme, and properties of estimators. This can conduce to the elaboration
of methods for measuring the adequacy of synthetically generated data with respect to
accuracy, distributional aspects and confidentiality.

The proposed solutions presented in this report fulfill these requirements. Since a synthetic
universe cannot be perfect, the aim of the presented solutions is to generate synthetic
universes which are as realistic as possible.

2.2 State of the art in data generation

The simulation of population micro data is closely related to the field of microsimula-
tion, which is a well-established methodology within the social sciences. Microsimulation
models attempt to reproduce the behavior of individual units such as persons, house-
holds, vehicles or firms. Therefore, most microsimulation studies involve the creation of
an adequate, large-scale micro data set as a first step.

The main purpose of microsimulation models is to allow for policy analysis at the micro-
level. By contrast, within the AMELI project synthetic populations are generated solely
as a basis for extensive simulation studies. Hence, there are some differences in the require-
ments for data generation. However, some of the methods used within microsimulation
have been integrated in the development of the simulation scheme.

There are several main approaches for the generation of synthetic micro data. Two very
important approaches are synthetic reconstruction and combinatorial optimization. Syn-
thetic reconstruction normally involves sampling from conditional distributions derived
from published contingency tabulations (Huang and Williamson, 2001). In contrast,
combinatorial optimization uses reweighting of existing, publicly available micro data
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6 Chapter 2. Synthetic data generation

sets, as released by many countries. Both approaches share the advantage that data from
different sources can easily be linked through methods like iterative proportional fitting
(IPF).

A detailed comparison of these methods and their application to the Sample of Anony-
mised Records from the 1991 Census in Britain is provided by Huang and Williamson
(2001). Norman (1999) gives a practical introduction to IPF together with a compre-
hensive overview of related literature.

Two examples of microsimulation models simulating entire populations are the SimBri-
tain model (Ballas et al., 2005) and the SVERIGE model (Holm et al., 2006). Both
models are dynamic spatial microsimulation models, which means that they simulate the
population over many years at the small area level. SYNTHESIS (cf. e.g. Birkin and
Clarke 1988) is another example in this context.

An alternative approach for the generation of synthetic data sets is discussed by Rubin
(1993). He addresses the confidentiality problem connected with the release of publicly
available micro data and proposes the generation of fully synthetic micro data sets using
multiple imputation. Raghunathan et al. (2003); Drechsler et al. (2008a); Reiter
(2009) discuss this approach in more detail. Drechsler et al. (2008a) compare the re-
gression coefficients of the imputed data with the original ones. However, it is impossible
to generate categories that are not represented in the (original) sample with their ap-
proach. In addition, they do not consider outliers and missing values, or the possible
generation of structural zeros in combinations of variables.

The generation of population micro data as a basis for a Monte Carlo simulation study
is described by Münnich and Schürle (2003) and Münnich et al. (2003). Their work
also acts as a starting point for the development of a simulation scheme for EU-SILC
populations.

As stated above, different methods exist to construct a synthetic data set. The idea of a
synthetic data set goes back to Rubin (1976). This approach to create synthetic data is
embedded in the multiple imputation framework. Drechsler et al. (2008b) implemented
this approach in a German example to take care for disclosure problems. Their target
was to minimize the disclosure risk while maximizing the data utility.

The way of creating a synthetic population depends on the purpose of the study, it is in fact
a multidisciplinary research interest. Synthetic populations are, for example, necessary in
disease research but also for socio-demographic research topics. In general, many different
approaches compete on the task of population generation.

It is important to analyze the process of data collection, especially if extreme sampling
weights exist. At least it is possible to create several public datasets with the same under-
lying data like Abowd and Lane (2004) mentioned it. Then it can be possible to serve
different requirements from different user groups without running in disclosure problems.
It is then possible to avoid this dilemma because sometimes only the combination of
information is critical.

The area of application for synthetic micro data expanded greatly. The so-called synthetic
baseline population is used in travel demand models for example by Beckman et al.
(1996). Ballas and Clarke (2000) applied a microsimulation for local labour market
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2.3 Simulation of SILC populations 7

analysis. Another field of application of synthetic micro data exists in the context of spatial
microsimulation models, applied for example by Chin and Harding (2006). Hanaokaa
and Clarke (2007) combined the examination of these spatial microsimulation models
with the content analysis of retail markets.

The use of microsimulation models for the analysis of tax systems is widespread, Chin
et al. (2005) processed such an analysis. Other examples for microsimulation models
with synthetic data exist for the examination of firm behaviors which was analysed by
Kumar and Kockelman (2007). Such microsimulation approaches are also applied in
fields which are very close to the examined issues in the AMELI context. Harding et al.
(2004) performed a spatial microsimulation approach for the assessment of poverty and
inequality.

Often the aim is to enable the usage of multiple sources which can be micro or macro data.
Also in the present case information from different sources has to be processed. However,
less publications have been published concerning this topic. Kohnen and Reiter (2009)
is one example for the combination of data from two agencies which should be treated
confidentially.

One aim of the AMELI project was to investigate robust estimation of the Laeken Indic-
ators. For this purpose, Alfons et al. (2011b) developed a data generation framework,
which is implemented in the R package simPopulation (Alfons and Kraft, 2010).
Based on Austrian EU-SILC sample data, the synthetic population AAT-SILC was gen-
erated with this framework (see Chaper 3). AAT-SILC was designed to resemble a rep-
resentative country. A further objective was that the population data should not contain
any large outliers, as these are included in the samples during the simulations for full
control over the amount of outliers (see Alfons et al., 2011c).

Obtaining estimates for small regional areas and domains was another target of the simu-
lation study in the AMELI project. The investigation of regional breakdowns to relevant
sub-populations is of great importance in the context of the Laeken Indicators. In this
context the AMELIA population (see Chapter 4) was generated to complement the AAT-
SILC population. Moreover, the AMELIA population was generated based on the ideas
of Voas and Williamson (2000).

2.3 Simulation of SILC populations

In section 2.3.1 a brief description of the basic EU-SILC data provided by Eurostat is
given. Some requirements for synthetic EU-SILC data as basis for simulation studies in
robust statistics and small area estimation are then discussed in sections 2.3.2 and 2.3.3.

2.3.1 The basic EU-SILC data set

The basis for the quantification of poverty and social exclusion is EU-SILC. This data
set, which exists since 2004, is also the basic data set for the data generation within the
AMELI project. The data delivered for the AMELI project by Eurostat contains four
subsequent years from 2004 to 2007. Thus, cross-sectional data are available as well as
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8 Chapter 2. Synthetic data generation

longitudinal data sets. For one year four different files are available, that is the household
register, the personal register, the household data and the personal data (see table 2.1).
The personal register is the most extensive file, for 2004 it contains 307 666 entries and
536 993 entries for 2006.

Dataset Variables 2004 2005 2006
household register (D) 14 116 743 197 657 202 975
personal register (R) 34 307 666 527 189 536 993
household data (H) 65 116 743 197 657 202 978
personal data (P) 87 241 796 422 400 435 169

Countries - 15 26 26

Table 2.1: Size of different EU-SILC data sets.

EU-SILC is a rotating panel (cf. Hauser 2007, p. 2) which is collected differently in
the member states of the EU-SILC survey. Following the data production process in the
countries, an ex-post output harmonization is implemented.

In November 2006 Eurostat organized a conference on requirements concerning the EU-
SILC data set (cf. Hauser 2007, p. 8) in Helsinki. The three criteria accuracy, reliability
and international comparability were of special interest in this conference. The conference
gave important hints on the problems which stem from different data collection strategies
across the European countries.

In Germany, for example, the Microcensus is the base for the EU-SILC data. Attendants
for the access panel are recruited from the discarded quarter of the Microcensus. The
access panel is a pool of households with the willingness to attend further interviews.
This proceeding gives cause for the discussion about the question whether the German
EU-SILC sample can be seen as correct random selection.

The unknown distortions resulting from different selection procedures can affect the com-
putation of sampling errors. Thus, it can be helpful to analyze this process, especially
when extreme sampling weights exist. The composition of the German panel for EU-SILC
does not allow for the calculation of methodologically correct sampling errors and con-
fidence intervals. Therefore, the proposed strategy for the simulation within the AMELI
project was to reconstruct the different sampling designs applied in Europe to control for
the effects.

Another problem is the extrapolation of income variables. As an example we take again
the German case where income variables, which are based on the German Microcensus,
are supposed to give rise to problems. The income reference period defined in EU-SILC
is the whole precedent year, whereas the net incomes for the Microcensus are captured as
income classes and monthly. Thus, a high non-response has to be ascertained for questions
in relation to the income. Therefore, a bias especially for the low income classes has to
be expected.

Additionally, data is not available for every country in all three years, e.g., data for
Germany lacks in the case of 2004. Especially to get the time structure it is preferable to
have information about every year.
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2.3 Simulation of SILC populations 9
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Figure 2.1: Sampling fractions of the German EU-SILC data for the six available regions.

Furthermore, the data set contains no information about regional arrangements apart from
the information about the region of the entry. Germany, for example, is divided into six
regions (cf. figure 2.1) which is quite crude). Regional disaggregated analysis is difficult
due to lacking regional indicators. The colouring of figure 2.1 shows the approximated
sampling rate for Germany. It is visible that the red color which represents a small
approximated sampling rate predominates the graphic.

2.3.2 Synthetic SILC populations and robust estimation

One aim of the AMELI project is, to evaluate advanced estimation techniques for the
Laeken Indicators under common data problems. It is certainly of interest to see how such
data problems affect the estimation of the indicators on national level. For this purpose,
it is necessary to generate synthetic population data for a representative country.

One data problem frequently occurring in practice is the presence of non-representative
outliers, i.e., observations that are either incorrect or can be considered unique in the pop-
ulation. In simulation studies, whose purpose is to investigate how robust the developed
estimation methods are against such deviating observations, it is crucial to have full con-
trol over the amount of non-representative outliers in the samples. Thus, the underlying
population data should not contain any non-representative outliers, instead they should
be included in the samples (see Alfons et al., 2011c).

Since the Austrian EU-SILC sample from 2006 does not contain any large non-representative
outliers in the income variables, it is perfectly suited as a basis for generating synthetic
population data to be used in simulations focusing on robustness issues. The generation
of the resulting synthetic population data AAT-SILC is discussed in detail in Chapter 3.
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10 Chapter 2. Synthetic data generation

2.3.3 Synthetic SILC populations and small area estimation

The AAT-SILC population1 was created to have a data set which is close to the real EU-
SILC data of one country, in this case Austria. The Austrian EU-SILC survey sample from
2006, published by Statistics Austria, was the basic sample for this synthetic population.

The EU-SILC data set as a whole is a conflation of different surveys of many European
countries, it can be supposed that this data set is very heterogeneous. The data comes
from different surveys which are independent from each other. Afterwards, an ex-post
output harmonization is processed. Nevertheless, the data structure can be very different
for the countries. This fact contributes to a situation which can cause problems for the
estimation of results for smaller areas.

One part of the AMELI simulation study deals with the question how to provide reliable
estimates for small areas. The focus of these parts of the simulation study lies more on
small area investigation and the different survey designs. For the realization of the complex
survey designs it is necessary to have information about administrative boundaries. The
survey designs are in a comparable way realized for the AAT-SILC population. Some
aspects, which are very important for the simulation with the AAT-SILC data set, are of
less importance for simulations targeting at the evaluation of small area effects.

One difference concerns the question of outlyingness. For an adequate synthetic popula-
tion, outlying areas are more interesting than single outliers. Here it is not so important
to have the maximum control over the amount of contaminated observations. It is more
interesting to have awareness about the relation between the different nested and disjoint
areas. Ballas et al. (1999) motivated the need for spatially disaggregated micro-data as
basis for microsimulation approaches.

The Austrian SILC data set can be seen as a more homogeneous one than the data of the
public-use-file for EU-SILC delivered by Eurostat. Therefore, a requirement is moving
into the focus which can be neglected for the Austrian data set. That is the requirement
that the statistics on poverty and social exclusion have a close to reality level for every
regional and contentual subarea or subdomain.

It is of course to be welcomed to have one simulation environment which is based on one
population. Unfortunately, the requirements and starting points are extreme different.
Therefore, it seemed sensible to the AMELI project team to produce two different data
sets. It was the target to dispose a population which is on the one hand heterogeneous
but on the other hand also synthetic.

1This synthetic population is described in Chapter 3.1.
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Chapter 3

The AAT-SILC data set

The generation of the synthetic data set AAT-SILC with emphasis on the included vari-
ables is described in section 3.1, whereas section 3.2 presents selected results for the
simulated data.

3.1 Generation of the synthetic data AAT-SILC

In this section, the generation of the synthetic population data AAT-SILC is described.
It was generated in the statistical environment R (R Development Core Team, 2011)
using the data simulation framework developed by Kraft (2009) and Alfons et al.
(2011b), which is implemented in the add-on package simPopulation (Alfons and
Kraft, 2010). Note that this section is focused on describing the variables that are
included in AAT-SILC. For a detailed mathematical description of the models involved in
the data simulation process the reader is referred to Alfons et al. (2011b).

The data basis for the synthetic population data AAT-SILC is the Austrian EU-SILC
survey sample from 2006, which was provided by Statistics Austria. Consequently, the
abbreviation AAT-SILC stands for Artificial Austrian Statistics on Income and Living
Conditions. The motivation for using this particular sample to generate a synthetic uni-
verse is twofold. First, it was desired to generate synthetic population data that resemble
a representative country as close to reality as possible, so that the simulation studies
performed on these data give meaningful results with respect to the performance of the
indicators on the national level. Second, the Austrian sample from 2006 did not contain
any non-representative outliers, i.e., large incomes that are either incorrectly recorded or
can be considered unique in the population. This is important for simulation studies fo-
cused on the evaluation of robust methods, where it is crucial that the amount of outliers
in the samples can be controlled precisely. Thus, the underlying synthetic population
should not contain any non-representative outliers, instead they should be included in the
samples (see Alfons et al., 2011c).

Section 3.1.1 gives a detailed description of the variables available in AAT-SILC, including
their possible outcomes. Afterwards, section 3.1.2 summarizes the simulation models and
parameter settings used to generate the variables.

AMELI-WP6-D6.2



12 Chapter 3. The AAT-SILC data set

3.1.1 Description of the variables

In table 3.1 the basic variables of the synthetic population data AAT-SILC and their
possible outcomes are listed. While eqIncome (equivalized disposable income) is of course
of main interest for the simulation studies, most of the basic variables are categorical.
Note that some categories of pl030 (self-defined current economic status) and pb220a

(citizenship), respectively, have been combined due to low frequencies of occurrence in
the underlying survey sample. Such combined categories are marked with an asterisk (*)
in table 3.1. It should also be noted that these two variables are only conducted in the
survey for persons aged 16 or above. In order to avoid missing values in the synthetic
population data for persons below age 16, a new category (Not applicable) has been
added. This added category is marked with two asterisks (**) in table 3.1. Furthermore,
the variables hsize (household size), age, eqSS (equivalized household size), eqIncome
(eqivalized disposable income) and main (main income holder) are not included in the
standardized format of EU-SILC data and have been derived from other variables for
convenience. For a complete description of the variables included in EU-SILC and their
possible outcomes, the reader is referred to Eurostat (2004).

In addition to the basic variables, most income components conducted in EU-SILC are
available in the synthetic population data AAT-SILC. Nevertheless, some components
were excluded from the data simulation process because they contain too few non-zero
values in the underlying survey sample, e.g., the components py020 (non-cash employee
income) and hy120n (regular taxes on wealth) did not contain any non-zero values. In-
cluding those components would only cause an unnecessary increase in the file size of
AAT-SILC. It is further important to note that the personal income components are
only recorded in the survey for persons aged 16 or above. The values of persons below
age 16 have thus been set to zero to avoid missing values in the synthetic population.
This strategy is reasonable since the income of persons below age 16 is recorded in the
household income component hy110n. In any case, tables 3.2 and 3.3 list the personal
income components and household income components, respectively, which are included
in AAT-SILC.

However, using all 16 available income components to evaluate complex multivariate pro-
cedures in simulation studies with a large number of samples would be computationally
extremely expensive. Hence, Alfons et al. (2011a) suggested to limit the multivariate
setting for the simulation studies to four aggregated components. The aggregated income
components available in AAT-SILC are listed in table 3.4.

3.1.2 Models used to generate the variables

A detailed mathematical description of the models is given in (Alfons et al., 2011b).
How to use the R package simPopulation (Alfons and Kraft, 2010) is illustrated in
the package vignette simPopulation-eusilc (Alfons et al., 2010). If simPopulation
is installed, the following command can be used to view the vignette from within R:

R> vignette("simPopulation-eusilc")
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3.1 Generation of the synthetic data AAT-SILC 13

Table 3.1: Basic variables in the synthetic population data AAT-SILC.

Variable Name Possible outcomes

Household ID db030 Unique integer identifier of household

Household size hsize Number of persons in household

Region db040 1 Burgenland
2 Lower Austria
3 Vienna
4 Carinthia
5 Styria
6 Upper Austria
7 Salzburg
8 Tyrol
9 Vorarlberg

Degree of urbanisation db100 1 Densely populated area
2 Intermediate area
3 Thinly populated area

Age age Age (for the previous year) in years

Gender rb090 1 Male
2 Female

Main activity status during rb170 1 At work
the income reference period 2 Unemployed

3 In retirement or in early retirement
4 Other inactive person

Self-defined current pl030 1 Working full-time
economic status 2 Working part-time

3 Unemployed
4 Pupil, student, further training or unpaid

work experience or in compulsory military
or community service*

5 In retirement or in early retirement or has
given up business

6 Permanently disabled or/and unfit to work
or other inactive person*

7 Fulfilling domestic tasks and care
responsibilities

8 Not applicable**

Citizenship pb220a 1 Austria
2 EU*
3 Other*
4 Not applicable**

Equivalized houshold size eqSS Household size according to modified
OECD scale

Equivalized disposable eqIncome 0 No income
income > 0 Income

Main income holder main TRUE Person holds largest income in household
FALSE Otherwise

* combined categories
** added category to avoid NAs

AMELI-WP6-D6.2



14 Chapter 3. The AAT-SILC data set

Table 3.2: Personal income components in the synthetic population data AAT-SILC.

Variable Name Possible outcomes

Employee cash or near py010n 0 No income
cash income > 0 Income

Cash benefits or losses py050n < 0 Losses
from self-employment 0 No income

> 0 Benefits

Unemployment benefits py090n 0 No income
> 0 Income

Old-age benefits py100n 0 No income
> 0 Income

Survivor’s benefits py110n 0 No income
> 0 Income

Sickness benefits py120n 0 No income
> 0 Income

Disability benefits py130n 0 No income
> 0 Income

Education-related py140n 0 No income
allowances > 0 Income

Table 3.3: Household income components in the synthetic population data AAT-SILC.

Variable Name Possible outcomes

Income from rental of a property or land hy040n < 0 Losses
0 No income
> 0 Income

Family/children related allowances hy050n 0 No income
> 0 Income

Housing allowances hy070n 0 No income
> 0 Income

Regular inter-household cash transfer hy080n 0 No transfer
received > 0 Transfer

Interest, dividends, profit from capital hy090n 0 No income
investments in unincorporated business > 0 Income

Income received by people aged under 16 hy110n 0 No income
> 0 Income

Regular inter-household cash transfer hy130n 0 No transfer
paid > 0 Transfer

Repayments/receipts for tax adjustment hy145n < 0 Receipts
0 No income
> 0 Repayments
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Table 3.4: Aggregated income components in the synthetic population data AAT-SILC.

Variable Name Possible outcomes

Personal income from employment pye < 0 Losses
0 No income
> 0 Income

Personal income from transfers pye 0 No income
> 0 Income

Household income from capital pye < 0 Losses
0 No income
> 0 Income

Household income from employment pye < 0 Losses
and transfers 0 No income

> 0 Income

Note that observations with negative personal net income or household net income of
less than −10 000e (i.e., too large losses on the household level) were disregarded for
the generation of AAT-SILC, since this lead to a considerable number of households with
negative equivalized disposable income and poor fit in the lower tail of the distribution.
However, while only very few observations of the original sample were removed because of
this removal criterion, the resulting improvement in the fit of the equivalized disposable
income is substantial.

Household structure

The household structure is simulated by resampling households from the survey data
conditional on the variables db040 (region) and hsize (household size). First, the number
of households in the population for each combination of region and household size is
determined by the Horvitz-Thompson estimator (Horvitz and Thompson, 1952), i.e., by
the sum of the sample weights of the corresponding observations. Second, households are
resampled separately for each combination of region and household size. The probability
of each sample household to be chosen is thereby determined by its sample weight. For
each household in the population, the values of all household members for certain basic
variables are adopted from the respective sample household. Note that the variables db040
and hsize are immediately available in the synthetic population data as a by-product.
Resampling the variables age and rb090 (gender) ensures sensible correlation structures
within the households. The variable db030 (household ID) is then simply generated by
assigning the simulated households consecutive integer numbers.

Additional categorical variables

For the synthetic data set AAT-SILC, the main aim for the simulation of additional
categorical variables is to generate good predictors for the income variables.
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16 Chapter 3. The AAT-SILC data set

Table 3.5: Categorized variables created for use as predictors during the simulation of the
synthetic population data AAT-SILC.

Variable Categories

Age category ≤ 15, (15, 20], (20, 25], (25, 30], (30, 35], (35, 40], (40, 45], (45, 50],
(50, 55], (55, 60], (60, 65], (65, 70], (70, 75], (75, 80], > 80

Personal net 0, (0, 800], (800, 2800], (2800, 5012], (5012, 8431.59],
income category (8431.59, 11200], (11200, 13664], (13664, 15428.26],
(for multinomial (15428.26, 17675],(17675, 20066.67], (20066.67, 23520],
model) (23520, 29085.30],(29085.30, 36000],(36000, 56548.35],

> 56548.35

Personal net 0, (0, 800], (800, 2800], (2800, 5012], (5012, 8431.59],
income category (8431.59, 13664], (13664, 17675], (17675, 23520],
(for components) (23520, 29085.30], (29085.30, 36000], (36000, 56548.35],

> 56548.35

Equivalized personal 0, (0, 2088], (2088, 6500], (6500, 8610.59], (8610.59, 10666.67],
net income category (10666.67, 12798.88], (12798.88, 14826.67], (14826.67, 16800.61],

(16800.61, 18823.07], (18823.07, 21480.17], (21480.17, 24693.18],
(24693.18, 30000], (30000, 36000], (36000, 53519.11],
> 53519.11

Household net [−10000,−5000), [−5000,−2500), [−2500, 0), 0, (0, 431],
income category (431, 1342], (1342, 2471.60], (2471.60, 4293.20],

(4293.20, 5676.80],(5676.80, 7161.80], (7161.80, 9011],
(9011, 11705.04], (11705.04, 14994.20], (14994.20, 21790],
> 21790

For the simulation of additional variables on the personal level, age categories are built in
order to reduce the computational effort. Table 3.5 lists the age categories thereby used.
This categorization is retained throughout the rest of the data generation, so whenever
age is mentioned in this section from now on, it actually refers to age categories rather
than the precise age.

The additional categorical variables are each generated with the following procedure,
which is performed separately for each region (given by variable db040).

1. Fit a multinomial logistic regression model with suitable predictors to the sample
data taking the sample weights into account.

2. Predict the probabilities for each outcome of the response conditional on the out-
comes of the predictor variables.

3. Draw the realization for each observation in the synthetic population from the re-
spective conditional probability distribution.

Degree of urbanization The variable db100 (degree of urbanization) is generated on
the household level, i.e., households are used as observations rather than persons. It
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Table 3.6: Generation of rb170 (main activity status during the income reference period)
from pl030 (self-defined current economic status).

rb170 pl030

1 At work 1 Working full-time
2 Working part-time

2 Unemployed 3 Unemployed

3 In retirement or 5 In retirement or in early retirement or has
early retirement given up business (if age > 45)

4 Other inactive person 4 Pupil, student, further training or unpaid
work experience or in compulsory military
or community service

5 In retirement or in early retirement or has
given up business (if age ≤ 45)

6 Permanently disabled or/and unfit to work
or other inactive person

7 Fulfilling domestic tasks and care
responsibilities

8 Not applicable

should be noted that the region Vienna is treated as a special case. Since the whole
region is densely populated, the value of db100 is set to one for all observations. For each
other region, db100 is simulated by a weighted multinomial model with predictor hsize

(household size) as described above.

Main activity status and economic status First of all, it is important to note
that the variable rb170 (main activity status during the income reference period) is not
available in the original EU-SILC sample provided by Statistics Austria. Therefore, the
variable pl030 (self-defined current economic status) is simulated beforehand. Then,
variable rb170 is constructed by combining categories from pl030. The conversion of
categories is shown in table 3.6. In any case, pl030 is simulated by weighted multinomial
models with predictors age category, rb090 (gender), hsize (household size) and db100

(degree of urbanization).

Citizenship The variable pb220a (citizenship) is simulated by weighted multinomial
models with predictors age category, rb090 (gender), hsize (household size), db100 (de-
gree of urbanization) and pl030 (self-defined current economic status).

Income variables

Concerning the income variables, eqIncome (equivalized disposable income) is of main
interest. It is generated from two parts which are simulated separately: the personal
net income and the household net income. Each of these parts is then further split into
components for the evaluation of multivariate procedures in simulation studies.
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18 Chapter 3. The AAT-SILC data set

The generation of personal net income and household net income is based on the procedure
for categorical variables described above:

1. Discretize the continuous income variable in the sample data.

2. Simulate the income categories for the synthetic population with the procedure
based on multinomial logistic regression models.

3. Draw values of the observations in the synthetic population from uniform distribu-
tions within the assigned income category, except for the largest category. There
the values are drawn from a truncated generalized Pareto distribution (GPD; e.g.
Kleiber and Kotz, 2003) which is fitted to the sample data.

Kraft (2009) and Alfons et al. (2011b) also proposed a procedure based on two-step
regression models, but the results they present clearly favor the approach based on mul-
tinomial logistic regression models.

In addition, the income components for each of these two variables are generated based on
conditional resampling of fractions. Only very few highly influential categorical variables
should thereby be used as conditioning variables. The procedure for simulating income
components is summarized by the following two steps:

1. According to the value of the conditioning variables, draw the fractions of the com-
ponents from the respective subset in the sample data. The probability of selection
for each observation in the sample is thereby proportional to its sample weight.

2. Multiply the simulated fractions by the total income of the corresponding observa-
tion in the synthetic population in order to obtain absolute values.

This simplified procedure based on resampling is chosen for two reasons. First, the de-
pendencies between the components are too complex to consider all of them. Second, the
income components in the survey sample are very sparse, i.e., they contain a large amount
of zeros. Figure 3.1 shows the percentage of zeros in the income components. Note that
the sample weights are considered in the computation of the percentages and the house-
hold income components are obtained using the households as observations rather than
the persons.

However, before the simulation of the income variables is further discussed, the generation
of the variable eqSS (equivalized household size) needs to be described. Not only is eqSS

necessary for the computation of eqIncome (equivalized disposable income), but it is also
used for the simulation of the household net income.

Equivalized household size The variable eqSS (equivalized household size) is com-
puted according to the modified OECD scale: for each household, a weight of 1.0 is given
to the first adult, 0.5 to other household members aged 14 or over, and 0.3 to household
members aged less than 14 (Eurostat, 2004, 2009).
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Figure 3.1: Percentage of zeros in the income components. Percentages for the household
components are computed on the household level rather than the personal level.

Personal net income Since personal net income is a semi-continuous variable, zero
is a category of its own in the categorization of the variable. The other breakpoints are
given by the weighted 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and
99% quantiles of the positive values. The resulting categories are listed in table 3.5. The
personal net income is then simulated with the procedure based on multinomial logistic
regression models as described above, thereby using the predictors age category, rb090
(gender), hsize (household size), db100 (degree of urbanization), pl030 (self-defined cur-
rent economic status) and pb220a (citizenship). It should be noted that the personal net
income is not included in the final AAT-SILC data set to keep the file size reasonable, as
it can easily be reconstructed from the personal income components.

Personal net income components For the generation of the personal income com-
ponents listed in table 3.2, it is quite natural to use the the categorized personal net
income as one of the conditioning variables. However, Kraft (2009) suggests to use
fewer income categories than for the multinomial models in the simulation of personal net
income. Thus, the breakpoints for the categorization are limited to the weighted 1%, 5%,
10%, 20%, 40%, 60%, 80%, 90%, 95% and 99% quantiles of the positive values. Table 3.5
lists the resulting categories. Then, the personal income components are simulated by res-
ampling fractions conditional on those broader personal net income categories and pl030

(self-defined current economic status).

Main income holder As the name suggests, the variable main (main income holder)
is simply given by assigning TRUE to the persons with the highest personal net income in
the respective households, and FALSE to all other persons.
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20 Chapter 3. The AAT-SILC data set

Household net income First of all, the household net income is generated on the
household level, using households as observations rather than persons. Moreover, house-
hold net income is somewhat more complicated to simulate than personal net income.
It contains a considerable amount of negative values, and its distribution is more right-
skewed, as there are many zeros and small positive values, but also some very high values.
Consequently, the categorization for the multinomial models is more complex. For the
negative values, the breakpoints −10 000, −5 000 and −2 500 are used. Since the house-
hold net income is semi-continuous, 0 is a category of its own. In addition, the breakpoints
for the positive values given by their 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97.5%
and 99% quantiles. The resulting categories are listed in table 3.5. For the simulation
procedure based on weighted multinomial logistic regression models, the following pre-
dictors are used: age category, rb090 (gender), hsize (household size), db100 (degree of
urbanization), pl030 (self-defined current economic status), pb220a (citizenship), number
of persons below age 16, and equivalized personal net income category. Values for age
category, rb090, pl030 and pb220a thereby refer to the values of the main income holder.
As the name suggests, number of persons below age 16 for each household simply counts
the number of persons aged under 16. However, the construction of the predictor equi-
valized personal net income category is more complex. It is generated by computing the
sum of the personal net income of all persons in a household and dividing this sum by
the equivalized household size. Afterwards, it is categorized using the weighted 1%, 5%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 99% quantiles, while zero is a
category of its own (see table 3.5 for the resulting categories).

Household net income components Of course, also the household net income com-
ponents are generated using households as observations rather than persons. Using the
number of persons below age 16 as one of the conditioning variables seems reasonable for
the simulation of the household income components, since many of those components are
related to families or children, e.g., hy050n (family/children related allowances), hy110n
(income received by people aged under 16 ), hy080n/hy130n (inter-household cash transfer
received/paid). In short, the household income components are simulated by resampling
fractions conditional on the number of persons below age 16 and the household net in-
come category. Note that unlike for the personal net income components, all household
net income categories from the multinomial models in the simulation of household net
incomes are used for conditioning.

Equivalized disposable income For each household, the value of eqIncome (equival-
ized disposable income) is obtained by first computing the sum of the personal net income
of all persons in a household plus the household net income, and then dividing this sum
by the equivalized household size (for details, see Eurostat, 2004, 2009).

Aggregated income components In order to simplify the multivariate settings for
the simulation studies within the project, the four aggregated income components are
computed from the available 16 components in the following manner (using R syntax, see
also Alfons et al., 2011a):

• Personal income from employment: pye <- py010n + py050n
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3.2 Selected results 21

• Personal income from transfers:
pyt <- py090n + py100n + py110n + py120n + py130n + py140n

• Household income from capital: hyc <- hy040n + hy090n

• Household income from employment and transfers:
hyet <- hy050n + hy070n + hy080n + hy110n - hy130n - hy145n

3.2 Selected results

In this section the quality of the synthetic population data AAT-SILC is evaluated by
diagnostic plots and by comparing certain quantities of interest to their counterparts
from the underlying survey sample.

Figure 3.2 shows mosaic plots that display the expected and realized frequencies of gender,
region and household size (top), as well as gender, economic status and citizenship (bot-
tom). In both pairs of plots, very similar structures in the sample and population data
are visible. Note that in the bottom plots, the added category not applicable for economic
status and citizenship (see table 3.1) is disregarded. Since this category affects the same
observations in both variables, disregarding it actually makes the plots more readable.
Furthermore, these two specific combinations of variables have been selected represent-
atively. The number of possible combinations of categorical variables is simply too large
to show all of them. Nevertheless, the interactions between all categorical variables are
in general very well reflected in AAT-SILC, which is further documented later on by the
contingency coefficients in table 3.7.

However, while the two mosaic plots at the top of figure 3.2 are nearly identical, small
differences can be seen in the two plots at the bottom. The differences in the latter two
plots are due to the use of multinomial logistic regression models. On the one hand,
the expected frequencies of the different combinations are determined by their Horvitz-
Thompson estimates, i.e., by the sum of the corresponding sample weights. On the other
hand, the multinomial models in the data generation procedure allow to simulate combin-
ations that do not occur in the sample, but are likely to occur in the real population. As a
consequence, a possible interpretation of the small differences is that they are corrections
of the expected frequencies.

In addition to the diagnostic mosaic plots, the interactions between the categorical vari-
ables in AAT-SILC are evaluated by contingency coefficients. Pearson’s coefficient of
contingency is a measure of association for categorical data. It is defined as

P =
√

χ2

n+χ2 , (3.1)

where χ2 is the test statistic of the χ2 test of independence and n is the number of
observations (see, e.g., Kendall and Stuart, 1967).

Table 3.7 compares contingency coefficients obtained from the survey sample to those
obtained from the synthetic population AAT-SILC. The values for the sample data are
thereby based on weighted distributions. The only significant difference occurs for the
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Figure 3.2: Top: Mosaic plots of gender, region and household size. Bottom: Mosaic plots
of gender, economic status and citizenship.

contingency coefficient of db100 (degree of urbanization) and age. This is a result of
using simplified multinomial models to simulate db100 on the household level which do
not consider the age of the household members. All in all, the correlation structure of the
underlying sample is very well reflected in AAT-SILC.

In figure 3.3 (left), the cumulative distribution functions (CDF) of the equivalized dispos-
able income in AAT-SILC is compared to the empirical CDF obtained from the underlying
survey sample. For the latter, sample weights are taken into account by adjusting the step
height. Note that the plot shows only the main parts of the data (from 0 to the weighted
99% quantile of the positive values in the sample) for better visibility of the differences.
Even though there are some deviations, the CDFs indicate an excellent fit. These differ-
ences are due to the complex structure of the household income. Alfons et al. (2011b)
showed that the proposed data simulation methodology leads to almost indistinguishable
CDFs for the personal net income, although it should be noted that the models have been
slightly adjusted for the final version of AAT-SILC.
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Table 3.7: Pairwise contingency coefficients of the categorical variables for the survey
sample and synthetic population data AAT-SILC.

db040 db100 age rb090 pl030 pb220a

Sample hsize 0.216 0.208 0.546 0.083 0.479 0.371
db040 0.587 0.262 0.020 0.137 0.156
db100 0.150 0.015 0.097 0.150

age 0.118 0.823 0.714
rb090 0.356 0.034
pl030 0.712

Population hsize 0.216 0.208 0.546 0.082 0.479 0.371
db040 0.587 0.262 0.020 0.137 0.156
db100 0.100 0.015 0.098 0.149

age 0.118 0.820 0.711
rb090 0.356 0.033
pl030 0.712

Relative hsize 0.042 0.111 0.012 −0.408 0.051 −0.189
difference db040 −0.004 −0.099 2.425 0.136 −0.139
(in %) db100 −33.532 −1.353 0.171 −1.092

age −0.135 −0.415 −0.378
rb090 0.115 −1.256
pl030 −0.028

Figure 3.3 (right) compares the distributions using box plots. In order to better visualize
semi-continuous variables, the box plots are adapted in the following way. While box
and whiskers are computed only for the non-zero part of the data, the box widths are
proportional to the ratio of non-zero observations to the total number of observed values.
For the survey sample, the box plot statistics and the box widths are computed such
that sample weights are taken into account. However, points outside the extremes of
the whiskers are not plotted due to the large number of observations in the synthetic
population. Clearly, the box plots suggest that the proportion of individuals with zero
income and the distribution of non-zero income for the main part of the data are well
reflected in AAT-SILC.

Table 3.8 evaluates the simulated equivalized disposable income based on various quant-
ities of interest: the percentage of zeros, 5% quantile, median, mean, 95% quantile and
standard deviation. For the survey sample, the sample weights are of course considered
for the computation of the quantities of interest. Even though the relative difference for
the percentages of zeros seems quite large, this is not a big problem as the absolute values
are so small that this does not have a considerable impact on the quality of the synthetic
population data. Otherwise, there is a noteworthy deviation in the 5% quantile. Con-
sidering the complex structure of the income data in EU-SILC, the relative differences
indicate that the fit is quite good.

In order to investigate whether heterogeneities are well reflected in AAT-SILC, figure 3.4
contains box plots of the conditional distributions of the equivalized disposable income
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Figure 3.3: Left : Cumulative distribution functions of the equivalized disposable income.
For better visibility, the plot shows only the main parts of the data. Right: Box plots of
the equivalized disposable income. Points outside the extremes of the whiskers are not
plotted.

Table 3.8: Evaluation of the equivalized disposable income based on the percentage of
zeros, 5% quantile, median, mean, 95% quantile and standard deviation.

%Zeros 5% Median Mean 95% SD

Sample 0.02 8401.15 17845.33 19732.64 37225.56 10287.62

Population 0.02 7329.59 18247.41 20129.66 38703.37 10917.81

Rel. difference (in %) 35.89 −12.75 2.25 2.01 3.97 6.13

with respect to gender (top left), citizenship (top right), region (bottom left) and economic
status (bottom right). Only some of the smaller subgroups show significant deviations in
the equivalized disposable income, in general the realized distributions are an excellent
fit. While the heterogeneities in the underlying survey sample are not very distinct, the
data simulation procedure succeeds in reflecting them in the synthetic population.

Last but not least, the aggregated income components are evaluated via box plots in
figure 3.5. Since the components are semi-continuous variables i.e., contain a large number
of zeros, the box plots are adapted in the following way. While box and whiskers are
computed only for the non-zero part of the data, the box widths are proportional to
the ratio of non-zero observations to the total number of observed values. For the survey
sample, the box plot statistics and the box widths are computed such that sample weights
are taken into account. Furthermore, the box plots for the household income components
are computed using the households as observations rather than the persons. The box
plots suggest that the synthetic population data performs well regarding the proportion
of individuals with zero income and the distribution of non-zero income for the main part
of the data. There are some significant differences for the component hyc (household

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


3.2 Selected results 25

Sample

Population

0 10000 20000 30000 40000

male

Sample

Population

female

Sample

Population

0 10000 20000 30000 40000

AT

Sample

Population

EU

Sample

Population

Other

Sample

Population

Not applicable

Sample

Population

0 10000 20000 30000 40000

Burgenland

Sample

Population

Lower Austria

Sample

Population

Vienna

Sample

Population

Carinthia

Sample

Population

Styria

Sample

Population

Upper Austria

Sample

Population

Salzburg

Sample

Population

Tyrol

Sample

Population

Vorarlberg

Sample

Population

0 10000 20000 30000 40000

1

Sample

Population

2

Sample

Population

3

Sample

Population

4

Sample

Population

5

Sample

Population

6

Sample

Population

7

Sample

Population

8

Figure 3.4: Box plots of the equivalized disposable income split by gender (top left),
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Figure 3.5: Box plots of the aggregated income components. Points outside the extremes
of the whiskers are not plotted.

income from capital), but, due to the mostly small values compared to the other income
components, these differences are negligible.

Additional results for the simulation of population data based on the Austrian EU-SILC
sample from 2006 can be found in Kraft (2009) and Alfons et al. (2011b). The results
in Kraft (2009) correspond to a preliminary version of AAT-SILC and also include
χ2 goodness of fit tests for categorical variables. Alfons et al. (2011b) focus on the
evaluation of the data simulation procedure itself. They present average results from
multiple simulations based on the real survey sample, but also from multiple samples that
have in turn been drawn from one specific synthetic population. In the latter case, even
different sampling designs and sample sizes are investigated.
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Chapter 4

The AMELIA data set

Beside the AAT-SILC, a second synthetic universe was generated within the AMELI
project. As described in the introduction the reasons and the requirements for generating
a synthetic universe as well as the underlying data basis can be different. This is the case
for the situation at hand. One of the main differences between the above depicted AAT-
SILC data set and the AMELIA data set, which will be described in the following, is the
differing underlying data base. The Austrian part of the EU-SILC, the AT-SILC is the
basis for the AAT synthetic population, while the scientific-use-file of the complete EU-
SILC population delivered by Eurostat is the basis for the AMELIA population. Although
this scientific-use-file of the EU-SILC data is not as critical under confidentiality reasons,
disclosure control should arouse interest. In either case, it is useful to provide a free
accessible data set. This is reasonable to have the possibility to reproduce, compare and
understand results of simulation studies based on these data sets. The big advantage of a
synthetic data set is that it can be published. Therefore, applied methods can be tested
and evaluated by others on the same data. For these datasets it has to be impossible
to link entries with real live persons. Like AAT-SILC, the AMELIA data set was also
generated with the statistical environment R (R Development Core Team, 2011).

Another argument for the generation of a synthetic data set, beside a solution for the
disclosure problem and the chance to get micro and macro structures, is the size of a
potential size of the synthetic data frame. The personal EU-SILC data set for 2004
includes 241 796 entries for the EU-SILC countries. Some countries are not included in
the data set at this stage. Compared to the whole population the sampling fraction is
quite small. However, it is also interesting to simulate the process of data collection,
whereas it is complicated to realize these simulations with the present EU-SILC data set.

Within the AMELI project, it was the target to investigate questions like the impact of
influential units on the estimation results for small regional or conceptual units. Therefore,
the supply of synthetic administrative structures beyond the regional level is necessary.
The AMELIA synthetic universe is designed to allow for small area estimation. These
administrative structures are of great importance to consider auxiliary information from
other areas or spatial correlations. This is one potential advantage of synthetic micro
data because regional information often lacks for real data sets due to disclosure reasons.
Additionally, it is desirable to visualize regional indicators in maps, as this is an intuitive
portrayal. The AMELIA data set is a synthetic data set and it is important to prevent
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potential misleadings. Therefore, it is essential to make clear that it is not possible to
draw conclusions from the contentual results. No statements with respect to content
are intended. It is, for example, not intended to make the statement that the ARPR
is at a certain level in Eastern Germany. The synthetic data set was generated to test
methods. For making statements about content-related issues the real EU-SILC data
should be utilized. For the AMELIA data set a synthetic map was designed alongside
the generation of the synthetic universe to enable the realization of this visualization
technique. In the following, the steps to create the synthetic data set AMELIA will be
presented shortly.

4.1 Steps for the generation of AMELIA

To generate the synthetic data set, the following steps are proposed. The first step is
to analyze the delivered EU-SILC data. It is necessary to structure and to classify the
data set. General parameters have to be determined, one example here is the number of
regions and the size of the synthetic population. The planned synthetic data set called
AMELIA will comprehend about N = 10 millions entries. To allow for complex sampling
schemes, it is crucial to generate administrative areas. Five levels of administrative areas
are generated, these are depicted in table 4.1. For the AMELIA data set it was decided
to create four regions. The idea behind this was to catch differences between Europe’s
regions. Further, an analysis of the incomes for the EU-SILC 2005 data set showed that
outliers occur for some regions, whereas values in this magnitude do not occur for other
countries. The regions have been created to level these differences between the countries.

The distribution of the EU-SILC countries into the four regions is shown in figure 4.1.
Four regions are chosen to guarantee enough observations in every region. Additionally, it
was the target to have the same number of observations in every region. Great Britain, for
example, is contained in the northern region to have enough observations in this region.

Figure 4.1: The classification of the EU-SILC countries into four regions.

© http://ameli.surveystatistics.net/ - 2011

http://ameli.surveystatistics.net/


4.1 Steps for the generation of AMELIA 29

As indicated above, it will be also interesting to control for spatial effects. Therefore, also
a synthetic map was created.

Figure 4.2: The administrative structure of AMELIA

As can be seen in figure 4.2, the four regions are further divided into counties (third
picture), districts (fourth picture) and communities. The equivalent NUTS level can be
seen in table 4.1 as well as the mean size, the minimum and maximum size of these levels
is displayed in table 4.2.

NUTS level Variable Description Number
NUTS0 AML AMELIA complete 1
NUTS1 REG region 4
NUTS2 NUTS2 county 11
NUTS3 DIS district 40
LAU1 CIT community 1592

Table 4.1: Administrative levels in AMELIA.

Variable (mean) population Minimum Maximum
AML 10012600 - -
REG 2503150 2230382 2673002
NUTS2 910236.4 535313 1382586
DIS 250315 173485 369379
CIT 6289.322 2 268689

Table 4.2: Size of the administrative entities in AMELIA.

The German data set Statistik lokal1 was the basis for the distribution of community sizes
in the synthetic population. A peculiarity of this empirical distribution is the occurrence
of very small communities, in the example at hand the smallest community has only two

1Information on this data base can be found at http://www.destatis.de/jetspeed/portal/cms/

Sites/destatis/Internet/DE/Navigation/Publikationen/Querschnittsveroeffentlichungen/

StatistikLokal,templateId=renderPrint.psml__nnn=true.

AMELI-WP6-D6.2

http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Navigation/Publikationen/Querschnittsveroeffentlichungen/StatistikLokal,templateId=renderPrint.psml__nnn=true
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Navigation/Publikationen/Querschnittsveroeffentlichungen/StatistikLokal,templateId=renderPrint.psml__nnn=true
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Navigation/Publikationen/Querschnittsveroeffentlichungen/StatistikLokal,templateId=renderPrint.psml__nnn=true


30 Chapter 4. The AMELIA data set

inhabitants. This can be problematic for the realization of the sampling scheme since
too heterogeneous sizes of the entities are assumed to cause problems for the variance
estimation. Therefore, an alternative indicator was introduced at this level.

As a next step the generation sequence (building blocks) has to be defined, therefore,
it is necessary to know the structure of the basic data. The found structures should be
preserved and new requirements for the synthetic data set result.

The analysis of the EU-SILC data set showed that this data set comprises different blocks
of variables. Here it is possible to detect seven blocks of variables. These can be desig-
nated as income, education, economic profile, health, household structure, and structure
variables in general.

The first generated block of variables affects household variables and variables which
contain information about the biographical situations of persons.

As mentioned in the literature review in Chapter 2.2, the easiest advancement to create
a synthetic data set would be to implement a kind of sampling with replacement. A re-
weighting method is often chosen to produce a data set. On the one hand, this proceeding
is easy to implement but, on the other hand, the proceeding has the disadvantage that
the rate of replication is quite high. In addition, disclosure is not made more complic-
ated. The next possible method is the one proposed by Ballas and Clarke (2000).
Here, one observation is generated by drawing from a theoretic distribution and by the
subsequent generation of a variable outcome. The disadvantage here is the long dura-
tion of the iterative proceeding. Normally, IPF is used to generate tables by adjusting
to known aggregated values. In the present case, this approach is not usable because
the aggregated values for the synthetic country are not known. Another method implies
the usage of linear or logit models, which are used for the generation of the AAT-SILC
population. The reason why these methods are not applicable for the generation of the
AMELIA population is the lack of high correlated covariates for the EU-SILC data set.
Thus, a composition of these methods is used in the case at hand.

Sampling with replacement is necessary to create a bigger data set with more households
than the original data set. Households are sampled with some key variables like sex, age,
and marital status of the household members. Moreover, belonging to a different cluster
is part of the first block of variables , e.g. whether one person belongs to an education
cluster. Afterwards, one outcome is sampled out of the possible variable combinations in
this cluster.

Implementing this approach the household cross-sectional weight (DB090) could serve as
information to create inclusion probabilities πj. However, the households are taken as
sampling units to preserve the household structures. The task to create realistic synthetic
household structures is difficult, therefore households rather than persons are taken as
sampling units in the first stage. The problem with this approach is the high risk of
replication within the data set. The average household size in the EU-SILC data set for
2004 is 2.63 persons per household, this implies about M = 3.7 million households for the
synthetic population. High weights imply that the risk of replication is quite high for some
households. Furthermore, uniqueness should be avoided, which means that characteristics
in a table are so seldom that they allow the intruder to match them with other data bases
which include the same variables (Fienberg 2003). The approach is slightly modified in
order to avoid disclosure problems.
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Another problem, which has to be kept in mind, is that the data are output of stochastic
processes. Therefore, a sampling error can occur, especially for spatial subgroups. If a
sampling error exists for the basic data, it will be reproduced for the synthetic population
(Huang and Williamson 2001, p.8).

To handle these problems, a first alternation to the basic sampling with replacement
strategy is done. The variable set fi = (xi,1, . . . , xi,k, . . . , xi,K) has to be generated for
every individual. Peri is spread into several blocks, whereas the blocks should be as
far as possible independent from each other. The following symbols are proposed as a
nomenclature for the generation of the AMELIA population.2

Strat stratum 1, . . . , h, . . . , H H number of strata
HH household 1, . . . , j, . . . ,M M number of households
Per person 1, . . . , i, . . . , N N number of persons
X variable 1, . . . , k, . . . , K K number of variables
f variable set 1, . . . , cl, . . . , B B number of variable sets

A first block f 1∗ = (x∗1, . . . , x
∗
K) then comprehends demographic variables like age, sex and

marital status of the household members. The household ID is also one of the variables
which belongs to the first block of variables to be generated. This is necessary to preserve
the household structure. The real ID is directly signed over with a synthetic ID.

Key figures can be computed from this first block, like the size of the household (HX040
EU-SILC), the number of people per sex and the age group of the people in the household.
These numbers are in parts relevant for the computation of equivalent household income.

To construct these first variables the proceeding proposed by Lehtonen et al. (2008) is
used. This means that the weights ajSILC

= 1/πjSILC
are used to replicate the households in

the EU-SILC data set. Thus, a sample S is drawn with replacement S = HH∗
1, . . .HHM

∗,
where HH∗

1, . . . ,HH∗
M are the households in the synthetic population. Together with

the household. we do a sample a variable set of the first key variables x1∗ like it is
described above. Further information about the membership of the variable combinations
of individuals to latent classes is drawn within the same step: f 1

ij = fij,1, . . . , fij,2, . . . , fij,K
for every individual i in household j.

As described above, the original EU-SILC data set is divided into four regions. To in-
troduce regional effects at this stage, it is possible to create one regional indicator per
artificial region and to draw then only households with that region indicator. For region
1 for example, only households from northern countries can be drawn.

An alternative would be to allocate the households to regions according to socio-demographic
criteria. Arbitrative for the allocation may be the average age of the first person in the
household and the average lowest monthly income to make ends meet (HS130 EU-SILC).
This allocation could be conducted with a cluster analysis. However, in this case the pop-
ulation would be very homogeneous within and very heterogeneous between the regions.
The target of this proceeding is to account for heterogeneity between regions.

2Parameters with a asterisk at the top belong to the synthetic population and parameters without a
star rely on the original population.

AMELI-WP6-D6.2



32 Chapter 4. The AMELIA data set

The number of households to be drawn per region n∗
hh,r is then calculated with:

n∗
hh,r = np,r∑

np,r/
∑
nhh,r

(4.1)

Where np,r is the number of persons and nhh,r is the number of households in that region
respectively. The population size per region, defined in the step before, is thus only
a proxy, the resulting number of people in the artificial population can differ from this
number.3 It is important to mention that not every variable available in the EU-SILC data
set is replicated with this kind of drawing. Only the first block of variables is generated
with this proceeding.

The EU-SILC data set comprehends very specific variables with lots of outcomes. If the
households would be replicated with the whole variable combination, it would be easy to
identify households coming from the original data set. Therefore, only the set of variables
f 1
ij associated to persons in the drawn households are accounted.

In the following, recursive modelling is applied. A multivariate distribution F (x1, x2, . . . , xn)
has to be determined. The starting point are the variables x1, . . . , xk which are generated
from the EU-SILC distributions, further variables can be calculated with:

F (xk+1, . . . , xn|x1, . . . , xk) = F (x1,...,xn)
F (x1,...,xk)

(4.2)

In general, the following is given:

F (x1, . . . , xn) = F (x1) · F (x2|x1) · . . . · F (xn|x1, . . . , xn−1) (4.3)

Thus, the constituent (blocks of) variables can be calculated recursively. For every person
in the data set an outcome for every variable is produced with draws from this multivariate
distribution. In the following, a latent class analysis is used to generate further blocks for
variables (see Linzer and Lewis 2007 for further details).

Modelling the income

The categorical variables resulting from this drawing procedure are used to create con-
tinuous variables like the total household gross income (HY010). This is only one of the
variety of variables which treat the income aspect. Various income components are in-
cluded in the EU-SILC data on personal and household level. The importance of these
components is visible in figure 4.3. On the left-hand side, the personal income components
are visible, whereas the significance of the various household income components is visible
on the right. The graphics show the average income for each component in one income
reference period. The most important income component on the personal level is the
Employee cash or near cash income (PY010). The most important income on household
level is, of course, the total household gross income (HY010).

3nhh,r has to be an integer, therefore the result has to be rounded.
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Figure 4.3: The importance of the income components.

The income components are generated step by step. Here, the interdependencies between
the income components have to be considered. These interdependencies are visible in
figure 4.4. In this graphic, the Bravais-Pearson correlation coefficient is plotted for every
combination of income components. Red fields occur for combinations with very high
correlation, blue fields display a weak correlation for this variable combination. Therefore,
every field in the diagonal has to be red, because the correlation is one. The graphic shows
that there are not as many income components with high correlations. One reason might
be the high share of zero incomes for some income components.

Figure 4.4: The interdependence between the income components

The basis for the computation of most indicators in the context of social exclusion and
poverty is based on the equivalized household income. This income has to be computed
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from different income components. Moreover, to receive a consistent picture, the income
components are generated separately. The equivalized household income is computed in
the following way:

HY 010 =
∑

PY 010G+
∑

PY 020G+
∑

PY 050G+
∑

PY 090G+
∑

PY 100G

+
∑

PY 110G+
∑

PY 120G+
∑

PY 130G+
∑

PY 140G+HY 040G

+HY 050G+HY 060G+HY 070G+HY 080G+HY 090G+HY 110G
(4.4)

The equivalized household income is computed with the total income of the household
divided by the equivalent size of the household. The equivalent size is computed with the
modified OECD scale. Following this scale, the first adult has a weight of 1.0. The weight
0.5 is assigned to every further person, provided that this person is older than 14 years.
All other persons have the weight of 0.3.

After the computation of first indicators on poverty and social exclusion, it became ap-
parent that adjustments to the income components are necessary because the values for
Laeken Indicators computed from the synthetic population should be close to the real
values for these indicators. After the basic data set is generated, slight changes will be
implemented to this data set , i.e. the data set will be restructured. These changes
are subject of scenario analysis, which implies that the basic data set stays unmodified.
As a result of this, several entities will belong to another regional community after the
restructuring.

Another possibility is to introduce extreme values by the recoding of the overall income.
The most important insight is that the aggregate values do not change, in other words,
the comparability of the data sets is preserved. Changes are only visible in some scenario
variables.

The first scenario analysis treats the heterogeneities between and homogeneities within
entities. These structures are assumed to have a big impact on estimation results. There-
fore, a scenario with more heterogeneity was generated.

The last step is to check the above formulated requirements and to check for logic incon-
sistencies. Furthermore, it should be checked that disclosure is guaranteed.

4.2 Selected results

The AMELIA data set consits of 10 012 600 entries. These persons are distributed to
3 781 289 households. The data set has more than 40 variables including many income
components. Table 4.3 gives an overview of some selected variables.
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Table 4.3: Basic variables in the synthetic population data AAT-SILC.

Variable Name Possible outcomes

Household ID HID Unique integer identifier of household

Household size HHG Number of persons in household

Region REG 1 Middle region
2 Northern region
3 Southern region
4 Eastern region

Degree of urbanization DOU 1 Densely populated area
2 Intermediate area
3 Thinly populated area

Age AGE Age (for the previous year) in years

Gender SEX 1 Male
2 Female

Basic activity status RB210 1 At work
2 Unemployed
3 In retirement or in early retirement
4 Other inactive person

The main focus of this population was to consider heterogeneities. Therefore, mainly these
population characteristics are described in the following. The share of unemployed persons
is shown in figure 4.5. It is visible that this share differs widely between the regions in the
basic EU-SILC data set and the AMELIA population. On the left-hand side, the share of
unemployed people per region in the EU-SILC data set of 2005 is presented. Every bar
represents the share of this population group in one region. The share differs between
about 12 % and 2 %. It is also visible that this information is not available for every
region. In the figure on the right, the shares for the artificial AMELIA population are
depicted. Here it is visible that more regions exist, also the information about unemployed
people is available for every regional entity.

Figure 4.5: Share of unemployed persons per area.
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As mentioned in the introduction, it is interesting and intended by the European Com-
mission to compare results for poverty and social exclusion statistics between different
thematic subgroups. The synthetic data set AMELIA is obviously based on the EU-SILC
data files. However, there is more information which should be taken into consideration
to generate the synthetic data set. The target of the AMELI project is to evaluate es-
timation functions for the indicators on poverty and social exclusion. Values for these
statistics should be in an interval, in which they are in reality as well.

Figure 4.6: Cumulative distribution functions of the household income HY020.

Figure 4.6 shows the CDF of the household income HY020 for the basic EU-SILC popu-
lation and the artificial AMELIA population. The CDF for the AMELIA distribution lies
slightly below the CDF of the EU-SILC population. This is due to the adjustments which
were necessary to reach the realistic range of poverty and social inclusion indicators.

It is possible in the case of the EU-SILC population, that distortions from this values do
occur if the statistics are computed on the scientific-use-file. Some of these problems occur,
because special observations are treated differently. Negative incomes and extremely high
incomes are designated as special observations in this context.

In figure 4.7 the mean income per area is plotted. The green dots are representing mean
incomes in the different cities of the synthetic universe, whereas the blue points are rep-
resenting the mean incomes per country in the regions of the EU-SILC 2005 population.
The areas are sorted in descending order by average income. It is, first of all, visible that
the number of cities in the synthetic universe is much higher than the number of regions
in the EU-SILC basic population. In both cases the smallest average income is about
5000 Euro in one income reference period. The highest average income for one region
in the EU-SILC data set is much higher than the highest average income in the case of
AMELIA. This implies that the synthetic population might be much more homogeneous
than the basic EU-SILC population.
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Figure 4.7: Average incomes for areas in the EU-SILC 2005 and the AMELIA population.

This impression was the point of departure for the introduction of the scenario analysis.
It was the objective to get a scenario where the observations of the data set remain
unchanged but the allocation of the persons to cities within one region are changed. With
this reallocation more heterogeneity was reached in general (see figure 4.8). In addition
the income for the personal income component PY010 is allocated with more spatial
heterogeneity, which is visible in the right panel of figure 4.8.

Figure 4.8: Two scenarios for the spatial distribution of the income component PY010
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Chapter 5

Summary

To run simulations and to investigate the methodology developed in WP 2, 3, and 4 in
a close-to-reality environment, realistic data sets have to be simulated. This allows for
elaborating recommendations on methods and its applications for estimating the social
inclusion indicators.

The target of this work package was to generate a data set which is an appropriate basis
for the simulations within the AMELI project. For the generation of a synthetic data set
different problems had to be addressed. A fine administrative structuring was necessary
to realize the complex sampling designs. Furthermore, many income components and
their correlation structure had to be reproduced for the synthetic data set.

It is important to keep in mind that many methods are conceivable to produce a synthetic
data set and the best method depends always on the starting point and the requirements
coming from the simulations. The description of work scheduled a lot of simulations and
different data sets have been available. Due to these reasons it was decided to generate
two different synthetic data sets, which are the AAT-SILC data set and the AMELIA
data set. This two methods to simulate population microdata have been discussed in this
contribution.

The first approach discusses how the Austrian EU-SILC household population data can be
generated from a given sample by sequentially simulating variables using a model-based
approach. While in this contribution mainly the application to the Austrian data is dis-
cussed, the approach and the corresponding software (Alfons and Kraft, 2010) can be
used to simulate population data in a quite general manner (Alfons et al., 2011b). In
Templ and Alfons (2010) it is shown that such synthetic data sets fulfills the require-
ments of confidentiality.

In the second approach, regional effects are considered when generating the universe. The
difference to the first approach is that the user can vary such differences, while in the
first approach the regional differences are modelled from the underlying information of
the sample only. This allows for investigations in small area applications.

Both data sets can be obtained from the AMELI website, and the software used to simulate
the Austrian EU-SILC data is freely available at the comprehensive R archive network
(http://cran.r-project.org/package=simPopulation).

© http://ameli.surveystatistics.net/ - 2011
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As mentioned above, with the synthetic data sets generated, all the simulations can be
carried out in a realistic manner. The analysis of these simulations to support in policy
making is undertaken in WP 7, 9, and 10.

One has to bear in mind that only those effects can be measured in microsimulation
approaches which have been included into the data set. There is always the risk to get
in a garbage in garbage out process. Estimation techniques can work perfectly well in a
microsimulation model which do not work in reality. The risk of doing so can never be
completely excluded. To catch some of these uncertainties a scenario analysis was applied.
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